
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

12-2-2002

Remote experimental station for engineering
education
Muralidhar Doddapuneni
Florida International University

DOI: 10.25148/etd.FI15101207
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Doddapuneni, Muralidhar, "Remote experimental station for engineering education" (2002). FIU Electronic Theses and Dissertations.
3070.
https://digitalcommons.fiu.edu/etd/3070

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3070&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.fiu.edu%2Fetd%2F3070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3070?utm_source=digitalcommons.fiu.edu%2Fetd%2F3070&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

REMOTE EXPERIMENTAL STATION FOR ENGINEERING EDUCATION

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Muralidhar Doddapuneni

2002

To: Dean Vish Prasad
College of Engineering

This thesis, written by Muralidhar Doddapuneni, and entitled Remote Experimental
Station for Engineering Education, having been approved in respect to style and
intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Malcolm Heimer

Tadeusz M. Babij

Subbarao V. Wunnava, Major Professor

Date of defense: December 2, 2002

The thesis of Muralidhar Doddapuneni is approved.

Dean Vish Prasad
College of Engineering

Dean Douglas Wartzok
University Graduate School

Florida International University, 2002

ii

DEDICATION

I dedicate this thesis to my parents Vijaya Kumari and Krishnaiah, my sister

Neelima and my friend Vidya. Without their patience, understanding, support, and most

of all love and caring, this work would not have been possible.

iii

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my major professor, Dr. Subbarao Wunnava, for

his continued support and for providing me with remarkable opportunities throughout my

masters. I would like to thank my committee members Dr. Tadeusz Babij and Dr

Malcolm Heimer for contributing their valuable time and experience.

I extend my gratitude to HSTN lab members for their kindness, friendship and support.

Finally I would like to thank Pat Brammer in Electrical and Computer engineering for all

her help through out my masters.

iv

ABSTRACT OF THE THESIS

REMOTE EXPERIMENTAL STATION FOR ENGINEERING EDUCATION

by

Muralidhar Doddapuneni

Florida International University, 2002

Miami, Florida

Professor Subbarao V. Wunnava, Major Professor

This thesis provides a distance-learning laboratory for students of electrical and computer

engineering department where the instructor can conduct experiments on a computer and

send the results to the students at remote computers. The output of the experiment

conducted by the instructor is sampled using a successive approximation Analog to

Digital (A/D) converter. A microcontroller collects samples using high speed queued

serial peripheral interface clock and transmits data to IBM-compatible personal computer

over a serial port interface, where the samples are processed using Fast Fourier

Transforms and graphed. The client/server application developed transfers the acquired

samples over Transmission Control Protocol/Internet Protocol (TCP/IP) network with

operational Graphical User Interface (GUI) to the remote computers where the samples

are processed and presented to students.

The application was tested on all Windows platforms and various Internet speeds (56k

modem, Digital Subscriber Line (DSL), Local Area Network (LAN)). The results were

analyzed and appropriate methodology of Remote Experimental Station was formulated.

v

TABLE OF CONTENTS

CHAPTER PAGE

1.0 Introduction... 1
1.1 W eb-Based Learning ... 2

1 1 1H yperm edia .. 2

1.2 Classification of Computer-Based Education Systems 3
1.2.1 Virtual Laboratory ... 4
1.2.2 Components of Virtual Laboratory ... 5

1.3 Previous Work .. 6
1.4 Design Objective of The Thesis... 7

2.0 Design Considerations for Remote Experimental Station .. 9
2.1 Analog To Digital Converters... 9

2.1.1 Successive Approximation Converter... 9
2.1.2 Dual Slope Integrating Converter 10
2.1.3 Charge Balancing Converter .. 10
2.1.4 Flash Converter... 10
2.1.5 Sigma-Delta Converter .. 10

2.2 Specifications of Analog-D igital Converters 11
2. . geo ut o g.. 12.2.1 Resolution 11
.,2.2 Linearity... 11

2.2.3 Sam ple and old A cquisition Time..................... . ,,,,.. ,...... 11
2.2.4 Throughput... 12
2.2.5 Integration Time ... 12
2.2.6 Re-Calibration .. 12

2.3 Interfacing to Com puter ... 13
2.3.1 Serial Port Interface ... 13

2.3.2 Parallel Port Interface .. 17

3.0 Client/Server Model Using Winsock ... 19
3.1 Introduction.. 19
3.2 Client Server Model ... 20

.3 Client And Server Model Association.. 21
3.5 N etw ork Progra e sng Sketch....,,.......... 22
3.5 Client Sveir ketches .. 23

3.6 The Operation Modes ... 26

3.7 Byte Ordering ... 27

4.0 A udio and V ideo on the Internet........,.,,........ ,.................. . ,,,,,,,........... 28
4.1 Introduction ... 28

4.2 Streaming Audio and Video -Applications... 28
4.3 V ideo Com pression for the Internet... 29

4.3.1 Frame Quality .. 29

vi

4.3.2 Frame ... 30
4.3.3 p .. Color 30
4.3.4 Distortion ... 30

4.4 A udio and V ideo Com pression A lgorithm s .. 32
4.4.1 andidt calabiity 2' t T3

4.4.2 Resolution, Frame-Rate, Frame Quality Scalability.. 32
4.4.3 Fast Com pression/D ecom pression 32

4.4.4 A bility to Cope W ith N etw ork Losses......... 33
4.5 W indow s M edia Encoder 34

4.5.1 Special Considerations for High Bandwidth.. 34
4.5.2 Considering Compression.. 35
4.5.3 High-Bandwidth Features of Windows Media Technologies.......................... 36
4.5.4 Intelligent Streaming and Multiple-bit-rate Video... 38
4.5.5 Looping ... 39
4.5.6 Codecs.. 40

5.0 Implementation... 42
d51 42t5. n rodu to .. 4

5.2 Operation of A/D Converter ... 43

5.2.1 Track/H old ... 46
5.2.2 Input Bandwidth ... 47

5.2.3 Internal Reference ... 47
5.2.4 Starting a Conversion ... 47

5.2.5 Timing and Control ... 48

5.2.6 QSPI Interface.. 49
5.3 M icroco tro l M odule 68he 16 52

5.3.1 Serial Communications... 53

5.4 Softw are 3... 53
5.4.1 Data Display/Processing Application ... 53

5.4.2 Client/Server A pplication . 4.............. -....
5.4.3 Audio/Video Streaming Application 54

6.0 Results, Conclusion and Future w ork 56
6.1 Results ... 56
6.2 Conclusion .. 60
6.3 Future Work and Enhancements.....................,... 61

REFEREN CES 6... 62

A PPEN D ICES 64

vii

LIST OF FIGURES

FIGURE PAGE

Figure 1.1. System A rchitecture ... 6

Figure 3.1. Client Server application model 20

Figure 5.1. Remote Experimental Station Architecture .. 42

Figure 5.2. Typical Operating Circuit .. 44

Figure 5.3. Equivalent Input Circuit .. 45

Figure 5.4. A/D Converter Schematic Diagram.. 45

Figure 5.5. QSPI Interface Timing Sequence ... 48

Figure 5.6. Schematic Diagram of Microcontroller (68HC16) Module(l) 49

Figure 5.7. Schematic Diagram of Microcontroller (68HC16) Module (2) 50

Figure 5.8. Schematic Diagram of Microcontroller (68HC16) Module (3) 51

Figure 6.1. Sine Waveform 56

Figure 6.2. Square W aveform 57

Figure 6.3. Triangular Waveform .. 57

Figure 6.4. Windows Media Encoder .. 58

Figure 6.5. C lient 59....................... 59

Figure 6.6. Server.. 60

viii

1.0 Introduction

Our industries face stiff competition in the current progress towards globalization of the

economy, as manufacturers search for new ways to increase production at a lower cost

with higher quality. To address these challenges, industries need highly skilled personnel

tuned to modem technology. However, rising costs, reduced budgets, difficulties in

retaining high quality students and lack of technical and laboratory resources are some of

the challenges that beset engineering education. Further exigencies include timetable

clashes and time constraints within a flexible semesterised system offering multiple

options. Therefore, innovative teaching methods are necessary to circumvent some of

these problems. An essential factor in student learning is motivation. Studies [1] note the

limitations of traditional classroom teaching in today's changing environment.

Presenting the course material in an attractive manner to encourage their

participation. For example: combining text, sound, graphics, interactivity and motion to

animate technical concepts helps students understand concepts and enables them to do far

more than through listening alone. Thus, a well-implemented hypermedia-enhanced

curriculum could be an effective tool in technical education. The task must be perceived

by students to be relevant to their needs as future professionals, and must include their

direct involvement with problem solving and exploring possible options in plant

conceptualization, design and operation. To overcome these difficulties, we have to

develop a computer based instruction system with real-world case studies.

1

.1 Web-Based Learning

A major shortcoming with conventional engineering education is the exigency of

providing equipment and laboratory tools caused by rising costs and infrastructure

requirements. Besides the difficulties in managing and maintaining units, additional

problems arise in upgrading these facilities to continue providing leading edge education.

We contend that it is now partly possible to facilitate higher level learning in practice-

oriented courses with the availability of affordable computers and supporting software.

Our early experience shows that in a highly dynamic and technologically fast-moving

environment, web-based laboratory work may be a suitable option for sustainably

providing high-level skills to engineering students.

From its inception, the web was recognized as a low cost, flexible, and platform-

independent means for information exchange. In its infancy, web-based education relied

on the distribution of static pages. In this delivery mode, the only advantages the web

offered over its Internet predecessors, such as the News Groups and Gopher servers, were

ease of use and the ability to embed graphical content. However, the current interactivity

available with a web-based system provides significant advantages over these early

versions.

1.1.1 Hypermedia

As the World Wide Web (WWW) evolves into an important instructional

platform, educational hypermedia is gaining increasing attention. Hypermedia is made up

of nodes that can contain text, graphics, audio, video, even entire programs, and is an

open system that allows users to read from, append or write materials to shared

structures. Consequently, educational hypermedia provides flexible means of accessing

2

instructional information and supports various learning styles. From an instructional

perspective, a critical feature of hypermedia is that it provides a non-sequential

information presentation that differs markedly from the text-based material used in

conventional instructional systems. Sound structures and learning guidance, however, are

as important as is navigational freedom. A hypermedia learning system must be able to

assist students in determining their learning performance levels. A hierarchical learning

environment may help students not only during non-sequential information searches and

browsing, but also during knowledge construction and integration [1]. Thus, hypermedia

courseware has the potential to offer distributed, interactive, student-centered learning.

Students will have greater flexibility and control to study when and where they desire.

The courseware will be interactive, adaptive and responsive to the pedagogical needs of

the students. Classroom instruction can be transformed from primarily lecturer-based to

predominantly student-centered. It is a well-established fact that students tend to retain

more by interactive doing and reading. Coupled with hypermedia, the methodology of

student learning is set to undergo fundamental transformations.

1.2 Classification of Computer-Based Education Systems

Computer-based educational systems are classified, depending on the main

research focus, as follows [2]:

Computer-aided instruction system: Most educational systems using computers belong to

this general category. It developed with the advances of computer and computing

technologies and is being used in a broad term. They are more interested in and satisfied

with transferring educational contents efficiently even if the implemented system and

methodology are quite different from the real counterpart.

3

Multimedia/virtual laboratory: Using computers, advanced graphics, and multimedia

technology, e.g. head-mounted displays, 3D sound, and artificial sensory devices, they

would like to make a mockup of the real part as closely as possible.

Distance-learning system on the Web: On the Internet or intranet, the education is

performed with less direct interference between the instructor and the trainee, usually by

downloading and installing the necessary computer programs and/or connecting to the

education server. The instructor becomes free from directly managing the education

session compared with general computer-aided instruction systems.

Intelligent tutoring system: Intangible education method itself, especially the role of

human instructor who is adaptively controlling the information transfer rate, is the

objective to try to replace with the computer. How to react and proact to the trainee's

changing knowledge level and how to interactively give only the necessary feedback are

main focus of the research and development in this area.

1.2.1 Virtual Laboratory

A Virtual Laboratory is a heterogeneous, distributed problem solving environment

that enables a group of researchers located around the world to work together on a

common set of projects. As with any other laboratory, the tools and techniques are

specific to the domain of the research, but the basic infrastructure requirements are shared

across disciplines. Although related to some of the applications of tele-immersion, the

virtual laboratory does not assume a priori the need for a shared immersive environment.

4

1.2.2 Components of Virtual Laboratory

* The components of a virtual laboratory include [4]:

* Computer servers capable of handling very large-scale simulations and data

reductions.

* Data bases that contain application specific information such as simulation initial

and boundary condition, experimental observations, customer requirements,

manufacturing constraints, as well as distributed, application specific resources

such as the human genome repositories.

* Scientific instruments that are connected to the network.

* Collaboration tools, sometimes including tele-immersion

* Software assets. (Each virtual laboratory is based around specialized software for

simulation, data analysis, discovery and reduction, and visualization. Most of this

software was originally designed for "stand-alone" use on a single machine.

* Tightly coupled, multi-disciplinary computations place great stress on network

bandwidth. Low latency is critical and computer system resource scheduling must

be coupled with bandwidth reservation services. Multicast protocols and

technology are critical to the collaborative nature of an experiment in a virtual

laboratory where people, resources, and computations are widely distributed.

Information streams in these experiments might combine voice, video, real-time

data streams from instruments, and large bursts of data from simulations and

visualization sources. Fig 1.1 below shows you the basic system architecture of a

virtual lab.

5

nteLlgent tutor
Lab Modules Tutornng scenarios a ~~

Manuah Test generator
Stndar d G Cl

B ckgrs ud c eo new rin ouie

Figure 1.1. System Architecture [2]

1.3 Previous Work

Work on the Virtual Laboratory began in 1989, motivated by the need to organize

a fast-growing database of experiments related to plant modeling and fractal generation

Using L-systems. The original concept and design were introduced and related to

previous research results by Mercer, Prusinkiewicz and Hanan, and detailed in

Mercer's MSc, thesis. This work introduced several key elements of vlab design that

remained essential to the subsequent implementations and extensions:

F Related data files were grouped into objects, complete with a specification file

detailing which tools (programs with options and argment files) apply to this

object.

6

* The objects were organized into a hierarchical database called the object-oriented

file system (oofs), governed by the prototype-extension relation between objects

introduced by Lieberman.

* To prevent unwanted modifications, the objects were fetched from the database to

a temporary location called the lab table for experimentation.

* The user could configure virtual control panels to manipulate chosen model

parameters.

Mercer's implementation included the first versions of the browser for navigating

through the database, the object manager for applying tools to objects, and the control

panel manager for creating control panels. The browser displayed only a limited view of

the database (current object and its immediate extensions) and did not provide adequate

support for moving objects within the hierarchy [31.

1.4 Design Objective of The Thesis

With the rapid changes in technology and varying marketing conditions, the

education system is challenged with providing increased educational opportunities

without increase in budgets. Many educational institutions are answering this challenge

by developing distance education programs.

The distance education takes place when a physical distance separates teacher and

student, and technology (i.e. voice, video and data) often in concert with face-to-face

communication, is used to bridge the instructional gap. These types of programs can

provide adults with a second chance at a college education, reach those disadvantaged by

limited time, distance or physical disability, and update the knowledge base of workers at

their places of employment

7

On the other side, it is often difficult for students, especially for students who

follow at-distance flavors of engineering schools or masters, to have access to a good

laboratory over full time of the course. Remote experimental station would allow students

to practice experiments in undergrad curriculum of Electrical and computer engineering

major.

2.0 Design Considerations for Remote Experimental Station

The main purpose of this thesis activity is to provide a good remote laboratory for

undergraduate students of Electrical and Computer Engineering department. In this

chapter various design issues to develop Remote Experimental Station are discussed

2.1 Analog To Digital Converters

As the output from student experiment board in labs like (Circuits lab, Electronics

I lab, Electronics II lab, Integrated Circuits lab) will be analog we will be working mostly

with analog signals, we have to convert the acquired signal to digital samples for

computer to understand. So we have to choose a better a/d converter from widely

available varieties by considering factors like cost, complexity, efficiency and reliability

2.1.1 Successive Approximation Converter

A successive approximation converter provides a fast conversion of a momentary

value of the input signal. It works by first comparing the input with a voltage which is

half the input range. If the input is over this level it compares it with three-quarters of the

range, and so on. Twelve such steps gives 12-bit resolution. While these comparisons are

taking place the signal is frozen in a sample and hold circuit. After A-D conversion the

resulting bytes are placed into either a pipeline or buffer store. A pipeline store enables

the A-D converter to do another conversion while the previous data is transferred to the

computer. Buffered A-D converters place the data into a queue held in buffer memory

[7]. The computer can read the converted value immediately, or can allow values to

accumulate in the buffer and read them when it is convenient. This frees the computer

from having to deal with the samples in real time, allowing them to be processed in

convenient batches without losing any data.

9

2.1.2 Dual Slope Integrating Converter

This converter reduces noise but is slower than the successive approximation

type. It lets the input signal charge a capacitor for a fixed period and then measures the

time for the capacitor to fully discharge at a fixed rate. This time is a measure of the

integrated input voltage, which reduces the effects of noise.

2.1.3 Charge Balancing Converter

The input signal again charges a capacitor for a fixed time, but in this converter

the capacitor is simultaneously discharged in units of charge packets: if the capacitor is

charged to more than the packet size it will release a packet, if not a packet cannot be

released. This creates a pulse train. The input voltage is determined by counting the

pulses coming out of the capacitor. Noise is reduced by integrating the input signal over

the capacitor charging time.

2.1.4 Flash Converter

A flash converter is the fastest type of converter we use. Like the successive

approximation converter it works by comparing the input signal to a reference voltage,

but a flash converter has as many comparators as there are steps in the comparison. An 8

bit converter, therefore, has 2 to the power 8, or 256, comparators [7].

2.1.5 Sigma-Delta Converter

This converter digitizes the signal with very low resolution (I-bit) and a very high

sampling rate (MHz). By over sampling, and using digital filters, the resolution can be

increased to as many as 20 or more bits. Sigma-delta converters are especially useful for

high-resolution conversion of low-frequency signals as well as low-distortion conversion

of signals containing audio frequencies. They have good linearity and high accuracy.

10

2.2 Specifications of Analog-Digital Converters

Many types of specifications for A-D converters are quoted by hardware

manufacturers. Here are some of the specifications, which are in practice, namely

resolution, linearity, offset errors, sample and hold acquisition time, throughput,

integration time and re-calibration.

2.2.1 Resolution

The resolution of the A-D converter is the number of steps the input range is

divided into. The resolution is usually expressed as bits (n) and the number of steps is 2

to the power n. A converter with 12-bit resolution, for instance, divides the range into 21,

or 4096, steps. In this case a 0-10 V range will be resolved to 0.25 mV, and a 0-100 mV

range will be resolved to 0.0025 mV. Although the resolution will be increased when the

input range is narrowed, there is no point in trying to resolve signals below the noise

level of the system.

2.2.2 Linearity

Ideally an A-D converter with n-bit resolution will convert the input range into (2

to the power n)-1 equal steps (4095 steps in the case of a 12-bit converter). In practice the

steps are not exactly equal, which leads to non-linearity in a plot of A-D output against

input voltage.

2.2.3 Sample and Hold Acquisition Time

A sample and hold circuit freezes the analogue input voltage at the moment the

sample is required. This voltage is held constant while the A-D converter digitizes it. The

acquisition time is the time between releasing the hold state and the output of the sample

11

circuit settling to the new input voltage value. Sample and hold circuits are not used with

integrating converters.

2.2.4 Throughput

The throughput is the maximum rate at which the A-D converter can output data

values. general it will be the inverse of the (conversion time + the acquisition time) of

the A-D converter. Thus a converter that takes 10 microseconds to acquire and convert

will be able to generate about 100 000 samples per second. Throughput can be increased

by using a pipelined A-D converter, so a second conversion can start while the first is still

in progress. Throughput may be slowed down, however, by other factors, which prevent

data transfer at the full rate.

2.2.5 Integration Time

An integrating A-D converter measures the input voltage by allowing it to charge

a capacitor for a defined period. The integration averages the input signal over the

integration time, which if chosen appropriately will average over a complete mains cycle

thereby helping to reduce mains frequency interference. The throughput of an integrating

converter is not the inverse of the integration time, as throughput also depends on the

maximum discharge time.

2.2.6 Re-Calibration

Some A-D converters are able to re-calibrate themselves periodically by

measuring a reference voltage, and compensating for offset and gain drifts. This is useful

for long term monitoring since drifts do not accumulate. If the re-calibrations are set too

far apart there may appear to be small discontinuities in the recorded data as the re-

calibrations occur. (If you have a reading other than zero for a zero condition, then you

12

have an offset error: every reading will be inaccurate by this amount. When the A-D

converter is preceded by signal conditioning circuits offset errors need not normally be

considered. Drift occurs because components in the amplifier change over time and with

temperature. Drift is usually only significant for people trying to measure low-level

signals a few millivolts over long periods of time or in difficult environmental

conditions).

2.3 Interfacing to Computer

The samples acquired from a/d converter have to be transferred to the computer,

for this we need a microprocessor which can store the digital samples in a buffer and send

it to the computer as the speed of acquiring samples from a/d converter is different from

the speed of transferring the samples to computer. The interfacing techniques that are

widely used are serial port interface (RS-232 interface), parallel interface

2.3.1 Serial Port Interface

The serial communications are used for transferring data over long distances,

because parallel communications requires too many wires. Serial data received from a

modem or other devices are converted to parallel so that it can be transferred to the PC

bus. The serial communications equipment can be divided into simplex, half-duplex and

full duplex. A simplex serial communication sends information only in one direction (i.e.

a commercial radio station). Half-duplex means that data can be send in either direction

between two systems, but only in one direction at a time. In a full-duplex transmission

each system can send and receive data at the same time. There are two ways to transmit

serial data: synchronously or asynchronously. In a synchronous transmission data is sent

13

in blocks, the transmitter and the receiver are synchronized by one or more special

characters called sync characters [10].

The serial port of the PC is an asynchronous device. For asynchronous

transmission, a bit identifies its start and 1 or 2 bits identify its end, don't need any

synchronization. The data bits are sent to the receiver after the start bit. The least

significant bit is transmitted first. A data character usually consists of 7 or 8 bits.

Depending on the configuration of the transmission a parity bit is send after each data bit.

It is used to check errors in the data characters. Finally 1 or 2 stop bits are send.

Description of the port:

The serial port of the PC is compatible with the RS-232C standard. This standard was

designed in the 1960s to communicate a data terminal equipment or DTE (the PC in this

case) and a data communication equipment or DCE (usually a modem).

The standard specifies 25 signal pins, and that the DTE connector should be a male and

the DCE connector should be a female. The most used connectors are the DB-25 male,

but many of the 25 pins are not needed. For that reason in many modem PCs a DB-9

male connector is used. So you will find one or more of these connectors in the rear panel

of the PC. The voltage levels are between -3V and -15V for logic high. A logic low is a

voltage between +3V and +15V. The commonly used voltages are +12V and -12V.

The most commonly used signals are listed below:

DTR (Data-Terminal-Ready): The PC tells the modem that is powered up and ready to

send data.

DSR (Data-Set-Ready): The modem tells the PC it is powered up and ready to transmit or

receive data.

14

RTS (Request-To-Send): The PC sets this signal when has a character ready to be sent.

CD (Carrier-Detect): The modem sets this signal when has detected the computer.

CTS (Clear-To-Send): The modem is ready to transmit data. The computer will start

sending data to the modem.

TxD: The modem receives data from de PC.

RxD: The modem transmits data to the PC.

The integrated circuits that convert the serial data lines to parallel and vice versa

are called UART (Universal Asynchronous Receiver-Transmitter). The typical PC UART

is the Intel 825 1A, this IC can be programmed like a synchronous or an asynchronous

device.

Eight data bits (DO-D7) connect the 8251A to the data bus of the PC. The chip

select (/CS) input enables the IC when is asserted by de control bus of the PC system.

This IC has two internal addresses, a control address and a data address. The control

address is selected when the C-ID input is high. The data address is selected when the

C/D input is low. The RESET signal resets the IC. When the /RD is low the computer

reads a control or a data byte. The /WR enables the PC to write a byte. Both signals are

connected to the system signals with the same names.

The UART includes four internal registers:

THR: Temporary output register.

TSR: Output register.

RDR: Input register.

RSR: Temporary input register.

15

Every character to be transmitted is stored in the THR register. The UART adds

the start and stop bits. Then copies all bits (data, start and stop bits) to the TSR. To finish

the process the bits are sent to the line by the TD signal.

Every character received from the line RD is stored in the RSR register. The start

and stop bits are eliminated and the UART writes this character to the RDR. To finish the

process the character is read for the PC.

Addressing the port.

There are two ways to address the serial port, by the 14H BIOS interrupt and by

the 21H DOS interrupt.

The 14H BIOS interrupt uses four functions to program the serial port. Each

function is selected assigning a value to the AH register of the microprocessor. We list

the four functions below:

* Function OGH: Initializes the serial port and sets the speed, data and stop bits and

the parity parameters.

* Function 01H: Sends a character to the specified serial port.

* Function 02H: Reads a character from the specified serial port.

* Function 03H: Returns the state of the specified serial port.

There are three functions in the 21H DOS interrupt related to the operation of the serial

port:

* Function 03H: Reads a character from the COMI serial port.

* Function 04H: Writes a character to the COM1 serial port.

16

* Function 40H: It is a common out function for all files and devices that use a

handle access. This function sends a number of bytes from a buffer to the

specified device.

2.3.2 Parallel Port Interface

A parallel interface is used for connecting an external device such as a printer.

Most personal computers have both a parallel port and at least one serial port. On PCs,

the parallel port uses a 25-pin connector (type DB-25) and is used to connect printers,

computers and other devices that need relatively high bandwidth. It is often called a

Centronics interface after the company that designed the original standard for parallel

communication between a computer and printer [101.

The Parallel port is a standard designed to connect a printer to a computer. It is

used for the CPU to send data to a printer. This interface drives some input and output

signals. The purpose of these signals is to let the computer know the state of the printer

and control it. Eight data bits carry all the information sent with each clock pulse. The

hardware of this port consists of 8 output data bits, 5 input control bits and 5 output

control bits. The control signals are listed below:

Outputs:

* STROBE: Tells the printer when the eight data bits are ready to be read. Turns to

a low logic level when the data are ready.

* INIT: Reset the printer.

* SLCT IN: Selects the printer when it turns to a low logic level.

* AUTO FD: Tells the printer to print an empty line followed by a carriage return.

* DO-D7: Data bits.

17

Inputs:

* ACK: Tells the CPU that the data has been correctly received.

* BUSY: The printer sets this line when its buffer is full. The computer will stop

sending more data.

* SLCT: Tells the computer that a printer is present.

E EROR: An error has occurred. The CPU stop sending more data.

* PE: The printer is out of paper.

All these signals are connected to a 25 PIN connector. All the bits have TTL logic levels.

Addressing the port.

In the MS-DOS operative system three parallel ports, called LPT1, LPT2 and

LPT3, are supported. So we can find three addresses dedicated to these ports in the

memory map of the PC. Let's study the addresses dedicated to LPT1 first. Each parallel

port uses three addresses of the I/O map. For LPT1 these addresses are 378H, 379H and

37AH.

* 378H PORT: In this address the CPU writes the data to be sent to the printer. It is

an output port. The eight data bits (DO-D7) are latched to appear in the output

connector. In the table 2.1 we can see which pins of the connector are used.

* 379H PORT: This is an input port. These signals are used by the CPU to know the

state of the printer.

* 37AH PORT: In this port the computer writes the signals that control the printer.

18

3.0 Client/Server Model Using Winsock

3.1 Introduction

The Windows Sockets (also known as WinSock) specification defines a network-

programming interface for Microsoft Windows, which is based on the "socket" paradigm

popularized in the Berkeley Software Distribution (BSD) from the University of

California at Berkeley. It encompasses both familiar Berkeley socket style routines and a

set of Windows-specific extensions designed to allow the programmer to take advantage

of the message-driven nature of Windows.

The Windows Sockets Specification is intended to provide a single API to which

application developers can program and multiple networks software vendors can

conform. Furthe ore, in the context of a particular version of Microsoft Windows, it

defines a binary interface (ABI) such that an application written to the Windows Sockets

API can work with a conformant protocol implementation from any network software

vendor. This specification thus defines the library calls and associated semantics to which

an application developer can program and which a network software vendor can

implement.

Network software, which conforms to this Windows Sockets specification, will be

considered "Windows Sockets Compliant". Suppliers of interfaces which are "Windows

Sockets Compliant" shall be referred to as "Windows Sockets Suppliers". To be

Windows Sockets Compliant, a vendor must implement 100% of this Windows Sockets

specification. Applications which are capable of operating with any "Windows Sockets

Compliant" protocol implementation will be considered as having a "Windows Sockets

Interface" and will be referred to as "Windows Sockets Applications".

19

This version of the Windows Sockets specification defines and documents the use

of the API in conjunction with the Internet Protocol Suite (IPS, generally referred to as

TCP/IP). Specifically, all Windows Sockets implementations support both stream (TCP)

and datagram (UDP) sockets [16].

3.2 Client Server Model

Every network specification has a communication endpoint. There are two types

of endpoints: clients and servers. By definition, a client sends the first packet, and a

server receives it Fig 3.1. This is not the extension of their functionality, but is

characterized by the role it plays during this initial communication.

It is possible for two network applications to begin simultaneously, but it is

impractical to require it. It is very difficult to start two applications (programs) at the

same instant, and the nature of a network-with varying traffic loads and the like-make the

arrival of packet at each end unpredictable. For these reasons, we design each pair of

network applications to perform complementary network operations in sequence, rather

than simultaneously.

The server application executes first and waits to receive; the client executes

second and sends the first network packet.

Network Application A Network Application B

Client First contact Server

Figure 3.1. Client Server Application Model [10]

20

After initial contact, either the client or the server is capable of sending and

receiving data. The initial contact is used to characterize their relationship only for the

purpose of definition. The services these applications provide can be reverse this

relationship any time after their first communication between each other.

33 Client And Server Model Association

Socket types are associated with the protocols they support. For two sockets to

communicate as a client and server, they must have same socket types. Either both

sockets must be stream (TCP) or both must be datagram (UDP), Client applications must

be able to locate and identify a server's socket. A server application names its sockets to

establish its identity, so clients can reference to it. A socket name (for TCP) consists of

the IP address and port number, as well as the protocol. A client can use the Window

Sockets service name functions to find out the standard service's port number, and a

server's IP address is easy to find with Windows Sockets host name resolution functions

if server's host name is known.

When the client socket successfully contacts a server socket, their two names

combine to form an association. When one socket bonds with another to form an

association, the association establishes the identity of both sockets. At that point, each

socket is uniquely identified by the combination of its own name and that of its peer. This

association has five elements [16]:

* Protocol (same for both client and server sockets)

* Client IP address

* Client port number

21

* Server address

* Server port number

For stream (TCP) a connection-oriented protocol, the life of an association

corresponds directly to the creation and destruction of the TCP virtual circuit between a

client and server. Since the datagram (UDP) socket is connectionless, the protocol does

not clearly define the life of a UDP association, theory, each data am packet

transmitted creates and destroys an association. But most UDP applications use the same

association for the life of the socket.

3.4 Network Programming Sketch

There are five basic steps to network programming [10]:

* Open a socket.

* Name the socket.

* Associate with another socket.

* Close the socket.

The steps mentioned above are similar in operation to file I/O operations.

Table 3.1. Socket I/O Operation [10]

File I/O Network I/O

Open a file Open a socket

Name the Socket

Associate with another socket

Read and write Send and receive between sockets

Close the file Close the socket

22

In the table above, the first operation of opening file corresponds to three

operations on a Socket (open, name and associate). A file already has a identity when it is

opened, and system device is already associated with it. But the socket when opened has

a incomplete identity. To complete this identity, a network application must assign it a

name and associate it with another socket. One significant similarity between opening a

socket and a file is that both operations return a handle, an arbitrary descriptor with which

to access the opened resource. The point to note is that handles can make the source

codes non- portable because they are non-equivalent on all operating systems[10].

3.5 Client Server Sketches

It is not possible to make a single network client and server pair of network

programs that can be used for either datagram (UDP) or stream sockets(TCP), without

some modification. This is not surprising, given the differences between the connection-

oriented and connectionless paradigms. Below is a "bare-bone" superstructure for all

Window Sockets Network applications, so it is worthwhile to present them [10].

23

Table 3.2. Connection- Oriented (TCP) Network Application [10]

Client Server

Socket() Socket()

Initialize sockaddr in structure Initialize sockaddr in structure

with server (remote) socket name with server (local) socket name

bind()

listen()

connect()- --------

<association created, either side can send or receive>

send() --------------- > recv()

recv() <------------------------- send()

closesocket() closesocket() (connected socket)

closesocket() (listening socket)

24

Table 3.3. Set the Remote Socket Name Once [10]

Client Server

socket() socket()

Initialize sockaddr in structure Initialize sockaddr in structure

With server (remote) socket name With server (local) socket name

bind()

connect()

send() ------------------ > recv()

<association created either side can send or receive>

recv() <------------- send()

Table 3.4. Set the Remote Socket Name for Each Datagram [10]

Client Server

socket() socket()

Initialize sockaddr in structure Initialize sockaddr in structure

With server (remote) socket name With server (local) socket name

bind()

Sendto() ------------------- > recvfrom()

recvfrom() <------ ----- sendto()

closesocket() closesocket()

25

3.6 The Operation Modes

The connection established via Window Sockets has three distinct operation

modes. They are as follows:

* Blocking Mode

* Non-Blocking Mode.

* Asynchronous Mode.

A blocking mode if fails will block all attempts to run any other WinSock

function call within a task (or thread). Blocking operation if pending can be problematic

if they usually initiate network operations. Though simpler to design such an operation

gives rise to the problem of reentry (into the program). Clearly such a mode does not

suffice our design needs if the application is to run on a Window platform, where calls to

other window messages need to be handled simultaneously.

The problem with non-blocking mode is that is that an application needs to retry

function over and over-polling to complete an operation, or detect its completion. This

incurs significant system overhead if polled to often, or adversely affect application

performance such as data throughput-if not polled often enough. Besides that it

complicates the code.

Then how do solve the problem? The answer to this is quite simple, suppose the

responsibility to callback is left for the remote application i.e. after initiating a network

call the application goes about doing its chores and WinSock DLL sends the application a

message when the event for which a callback was requested occurs. Fortunately Window

Sockets provides us with such an operational mode, which is called as Asynchronous

mode of operation. It is non-blocking since it returns from a call before the operation is

26

completed and relies on the "call you back" concept to complete its pending operation.

The asynchronous mode of operation is non compatible with UNIX based Berkeley

Sockets, since it was designed to use the inheritant message generating/operating

property of Windows platform.

3.7 Byte Ordering

When transferring numeric data over a network it is important to consider the byte

order used for representing numbers. PCs store the least significant byte at the lower

memory address (little-endian byte order). However the big-endian byte order is the

standard network byte order defined for the Internet. A number of functions defined in

the socket interface require numeric parameters specified in network byte order. The

following functions perform byte order conversions.

* ntohlO (network to host long)

Converts a 32-bit value from network to host byte order.

* ntohsO (network to host short)

Converts a 16-bit value from network to host byte order.

* htonlO (host to network long)

Converts a 32-bit value from host to network byte order.

* htonsO (host to network short)

Converts a 16-bit value from host to network byte order.

27

4.0 Audio and Video on the Internet

4.1 Introduction

Until recently, video on the web has been a down load-and-play technology. It

worked as follows. the user clicked on a URL corresponding to the video file; the

standard HTTP protocol was used to fetch that file to the local disk, based on the

extension of the file (.avi or mov), Microsoft's Media player or Apple's QuickTime player

was invoked to display the video. This basic solution, while having the advantage of

implicitly, had a fundamental flaw. The user had to wait for the entire video file to

download before he or she could see any of its content. Because video files are usually

very large, the only video found on the web was short 30-second clips. Even these short

clips were avoided by most users connected via 28.8 Kbps modems to the Internet

4.2 Streaming Audio and Video -Applications

Enabling compelling video on the web required the innovation of streaming

video. With streaming video technology, the video is displayed to the end-user as it

streams over the network in real-time. Other than a few seconds latency at the beginning,

there is no wait associated with watching a video clip and it doesn't matter whether the

clip is 30 seconds or I hour long. The user, in general, has the capability of skipping

around within the video, just like one can within CD for music.

As real-time audio-video streaming over the Internet has become prominent, with

products from Macromedia, Microsoft Net Show, Netscape, Progressive Networks, V

DO, Vivo, VXtreme, Xing, and others, there are two major approaches emerging for

streaming multimedia content. The first is the "server-less" approach, where a standard

web server is used to supply data to the client. The second is the server-based approach,

28

where a specialized streaming server is used to deliver video to the client. In this paper

we compare the advantages and disadvantages of the two approaches. Before we discuss

relative merits, let's take a look at the way each approach works.

Applications:

* Streaming Video Creates A Media Rich Environment

* Migrating From A Text Only Published Site To A Compelling Media Rich

Environment

* Increasing sales with better presentation

* Bringing training materials directly to the desktop

* Dramatically reducing the cost of attending meetings and seminars by

bringing the meeting directly to the desktop

* Seamless integration with comp. any newsletters, announcements and HR

materials

4.3 Video Compression for the Internet

One of the biggest challenges in enabling video over the Internet is developing

video compression technology that can cope with the skinny pipes and heterogeneity of

the Internet. The importance of compression is easy to see if we look at the storage and

bandwidth requirements of uncompressed digital video.

4.3.1 Frame Quality

There are several dimensions to frame quality, including frame resolution, color

depth, and distortion.

29

4.3.2 Frame

The frame resolution is measured as the width and height of the frame in pixels on

the screen. For instance, for NTSC video:

* 640x480 video corresponds to full-screen resolution.

* 320x240 represents quarter-screen resolution.

* 160x120 represents quarter-quarter-screen resolution

The higher the resolution, the sharper the image appears to the eye. The lower the

resolution, the fuzzier the image appears to the eye. By lowering the resolution of the

frames, significantly higher-compression ratios can be achieved. For example, a 160x120

frame contains only 1/1.6th the pixels of a 640x480 frame. For this reason, most vendors

use a resolution of 160x120 when delivering video over 28.8 Kbps channels.

4.3.3 Color Depth

The second dimension of frame quality, the color depth, refers to the number of

bits used to represent each pixel in the image. 24-bits per pixel offers the highest quality

(16 million colors) 16-bits per pixel (more common, difference in quality to 24-bit is

small) 8-bits per pixel (more common substantial difference in quality to 16-bit)

From a compression perspective, reducing the number of bits used per pixel in the

original image can give higher compression ratios. Unfortunately, quality that is lost in

the original image due to such a conversion can never be recovered at the decoder.

4.3.4 Distortion

The third dimension of frame quality is the amount of distortion or error between

the original frame and the compressed-then-decompressed frame. There are several

established quantitative measures for distortion, including absolute error per pixel (the

30

average error between each pixel of the original frame and decoded frame), mean-

squared-error (MSE) per pixel, or in signal processing theory terms "signal-to-noise

ratio" (SNR).

Unfortunately, all of the above metrics offer good insight only within narrow

regions of the evaluation space, that is, when the artifacts caused by the two compression

algorithms being compared are of similar nature (e.g., blockiness observed in block-based

algorithms, or DCT artifacts observed in the MPEG-family of algorithms) and of similar

magnitude. The reason for the limited usefulness of distortion measures is that ultimately

a human is judging the quality, and the human visual system is highly non-linear. For

example, the human visual system may mask a particular type of error in one region of

the image, and amplify the same error in another region of the image based on the

surrounding context. For example, blockiness artifacts stand out much more in smooth

regions of the image, like in a sky region, than they do in complex portions of the image,

like in a flowerbed region.

The eventual task of evaluating video quality is further complicated by the fact

that the temporal dimension (frame rate) and the spatial dimension (frame quality)

interact with each other in complex ways. For example, the perceived resolution of the

image and our sensitivity to errors is reduced when there is high motion in the scene.

Given a bandwidth limit, most compression algorithms have the capability of trading off

between offering higher frame rate or higher individual frame quality.

Some codec implementations fix the frame rate, and simply vary the frame quality to

meet the bandwidth constraints. Others maintain a certain frame quality, but drop frames

to meet the bandwidth constraints. Still others vary both parameters and attempt to

31

optimize visual quality for the end user. In summary to measure video quality we need to

consider both the frame rate and frame quality at the same time. We emphasize that video

quality is a subjective experience, quantitative measures offer only a rough guide to

human perception.

4.4 Audio and Video Compression Algorithms

4.4.1 Bandwidth Scalability

This is the codec's ability to deliver a compressed video over a wide range of

bandwidths. (From 20kbps to several Mbps)

4.4.2 Resolution, Frame-Rate, Frame Quality Scalability

When providing bandwidth scalability, the codec should allow the application to

freely trade-off among video resolution, frame-rate, and individual frame quality.

discussed in the previous section, for action-oriented videos, high frame-rate may be

more important than frame resolution. Conversely, for educational videos, frame

resolution may be more important than frame rate.

4.4.3 Fast Compression/Decompression

Most existing codecs do not allow for real-time compression in software requiring

expensive compression hardware. In order for Internet video to become pervasive, the

codec should be able to compress frames in real-time in software without taking up too

much of the CPU time. More importantly, it should be able to decode rapidly the

compressed stream as users receive It over the network. In fact, to allow multi-way video

conferencing, the codec needs to be cheap enough computationally to allow multiple

simultaneous decodes and one encode.

32

4.4.4 Ability to Cope With Network Losses

The Internet is a lossy transport medium and data packet can be lost in the

delivery process. The compressed video stream must be structured so that individual

packet losses do not severely degrade the quality of the video. For example, significant

dependencies between encoded frames, as found in P (predicted) and B (bi-directionally-

predicted) frames in MPEG, can cause a substantial reduction in visual quality in the

event of packet loss. Video compression traditionally involves stripping out redundancy,

whereas delivery over lossy networks often involves introducing redundancy. By

optimizing these conflicting processes jointly rather than separately, high quality video

can be delivered at lower bandwidths. An important implication is that live/on-demand

video servers that provide codec-agnostic network delivery do not offer the best possible

quality to end-users.

4.4.5 Encoding and Decoding Latency

In interactive applications such as video conferencing, it is important that the

video and audio latency (i.e., the time between when the speaker says something and

when the person on the other end observes it) be very small. Delays should not be

introduced for the sake of high compression efficiency. For example, the B frames (bi-

directional frames) in MPEG are encoded as a difference from both earlier and later

frames. At 10 fps, waiting for the next few frames to occur can introduce several hundred

milliseconds of latency into the video stream, which is a noticeable lag.

The codec should allow this type of latency to be disabled. To summarize, codecs for use

on the Internet have different and more stringent requirements than those designed for

playback from a CD-ROM or for TV broadcast. Codecs designed for the Internet require

33

greater scalability, lower computational complexity, and greater resiliency to network

losses, and lower encode/decode latency for video conferencing.

4.5 Windows Media Encoder

Microsoft Windows Media Encoder is an easy-to-use, powerful production tool

for converting both live and prerecorded audio and video to Windows Media Format.

With Windows Media Encoder, you can deliver live content in real time to client

computers or to a file for later use. Real-time sources of audio and video content include

anything that you can plug into your audio or video card, including a CD player,

microphone, VCR, video camera, or video player. Stored sources are audio or video files.

Users can view encoded Windows Media-based content with Microsoft Windows Media

Player or with any application built using the Windows Media Format.

4.5.1 Special Considerations for High Bandwidth

To take advantage of the high-bandwidth features and codecs in Windows Media

Audio and Video 8, you will need to be able to capture audio and video at its highest

quality. A computer that can capture a small image size at 15 frames per second may not

be able to handle video with four times the image size and twice the frame rate.

When video is converted from analog to digital, each frame is broken up into

hundreds of pixels. Each pixel is represented by one or more bytes that represent the

color of that small area of the image. Each video conversion requires a certain amount of

computer memory and computation time. The higher the quality of video, the greater the

number of frames per second; and the larger the image size, the eater the number of

pixels that must be converted in a given period of time. For example, when capturing

video at 30 frames per second, the computer must not only be capable of handling many

34

pixel conversions, it must also perform many conversions very quickly in order to keep

up with the continuous stream of video.

The computer must also be able to handle the audio conversion simultaneously.

The smallest unit of audio is a called a sample. High-quality audio requires more samples

per second, plus a computer that has the speed and memory to process the continuous

stream. The optimal system described previously takes advantage of the new codecs and

features in Windows Media Audio and Video 8.

4.5.2 Considering Compression

The digital audio and video streams of samples and pixels are measured as the bit

rate of the content, such as 700 kilobits per second (Kbps). High-quality professional

video has a bit rate that far exceeds the capacity of most computers and networks: 270

megabits per second (Mbps). However, there is a way to maintain hi quality while

lowering the bit rate and file size so that the content can be delivered over a network

more easily. This method is called digital compression.

There are many digital compression techniques, or algorithms, which can be made

available to programs for capturing, encoding, and playing back digital media. A

compression algorithm that is created for this type of general use is called a codec. The

Microsoft Windows Media Audio codec and the Microsoft Windows Media Video codec

compress very high bit rate raw audio and video to a rate that can be streamed over a

network or saved to a file and downloaded. The codecs offer a great deal of user

flexibility because they are highly scalable. Scalability enables you to choose the amount

of compression and bit rate for a given situation. For example, you can sacrifice some

quality and compress to very low bit rates for streaming media at telephone modem

35

speeds, or maintain high quality and high bit rates to stream or download over a high-

bandwidth network or to save to a CD.

Windows Media Audio and Video codecs enable you to put your audio and video

on the Internet or an internal intranet and quickly reach many end users. When designing

your production workstation, you must consider the codec and bit rates you will use. The

analog-to-digital conversion requires a certain amount of speed and memory, and

compression requires additional processing power from your computer. However, if you

follow the recommendations for the optimal system, your workstation will be able to

handle the additional workload

4.5.3 High-Bandwidth Features of Windows Media Technologies

Several features introduced in Windows Media Technologies 7 are aimed at

improving the quality of high-bandwidth content. With the introduction of Windows

Media Audio and Video, the quality of the codecs has been greatly improved. The

Windows Media Video codec offers near-VHS quality at 250 kilobits per second (Kbps)

and near-DVD quality at 500 Kbps when creating Windows Media files for download.

As you can see, the need is greater than ever to upgrade the quality and speed of a

production system to take advantage of all that Windows Media Audio and Video 8 has

to offer. The following list briefly describes the most important high-bandwidth features:

Deinterlacing: When encoding a video file captured at the full frame size of 640 x

480 pixels, the two interlaced fields contained in a single frame of NTSC video must be

converted to one complete frame that can be displayed on a computer monitor. Computer

monitors use a different method of displaying video called progressive scanning, which

does not use interlaced fields. The deinterlacing feature converts interlaced video frames

36

into progressively scanned frames, creating a cleaner, sharper image with fewer motion

artifacts at both a full frame size and at 320 x 240 pixels.

Inverse telecine: To make the conversion from film, which plays back at 24

frames per second, and video, which plays at 29.97 frames per second, a telecine, such as

a film scanner, adds redundant fields to the video. When encoding captured video of a

film, you can use the inverse telecine filter to remove redundant fields that were added by

the telecine. The final encoded video appears more like the original film; plus, with fewer

frames, the file size and bit rate decrease.

60 frames per second: high-quality video can be created that has very smooth and

crisp motion by using the deinterlacing filter to encode from 640 x 480 pixels to 320 x

240 pixels, and then converting the 60 fields per second into 60 frames per second.

Variable bit rate: Any on-screen movement results in an increase in the bit rate of

a video, because new pixels must be generated from frame to frame. One of the benefits

of using Windows Media Technologies for streaming over a network is that it maintains a

constant bit rate (CBR) regardless of how much change occurs in the video. To maintain

a constant bit rate, however, Windows Media Encoding Utility must compromise

playback quality by dropping frames or dynamically reducing the number of new pixels.

Playback is not always as smooth as one would like, but the end user experiences as

smooth a presentation as possible for a given bandwidth. With the introduction of

Windows Media Audio and Video, you have the option of encoding CBR video for

streaming over a network or variable-bit-rate (VBR) video for situations where bit rate is

not an issue. VBR video cannot be streamed. You should use VBR video when video is

to be downloaded and played back locally or over a fast network. With VBR, the

37

integrity of high motion or rapid changes in the video is maintained by simply allowing

the bit rate to vary as needed. You set the desired quality level, and the bit rate changes to

maintain that quality.

Two-pass encoding: When using two-pass encoding, the Windows Media

Encoding Utility reads through the file first to analyze the complexity of the content. It

then goes through the content a second time and encodes a file based on that analysis.

Two-pass encoding can be used with either the CBR or VBR methods and produces a

much cleaner and smoother video than the one-pass CBR method used in previous

versions of Windows Media Encoder. Windows Media Encoder currently supports only

one-pass CBR, making it suitable for encoding broadcast or on-demand streams.

By using these features with the improved Windows Media Audio and Video

codecs, you can create high-quality pictures and sound at a fraction of the file size and bit

rate of conventional digital media. The typical computer monitor has a far higher

resolution and faster frame rate than an NTSC television. This enables you to produce

video on a computer monitor that is higher quality than standard television-and with

Windows Media Audio and Video codecs, you can produce video and audio that can be

downloaded or streamed. However, to do all this you need a system that can capture and

maintain high quality.

4.5.4 Intelligent Streaming and Multiple-bit-rate Video

Intelligent streaming is a set of features in Microsoft Windows Media

Technologies that automatically detects network conditions and adjusts the properties of

a video stream to maximize quality. Because Windows Media Technologies is a

client/server system, the server and the client communicate with each other to establish

38

actual network throughput and automatically make a series of adjustments to maximize

the quality of the stream. With intelligent streaming, users receive a continuous flow of

content tailored to their connection speeds.

To take full advantage of intelligent streaming, you must encode your content

using multiple bit rates. To encode content at multiple bit rates, you create a single

Windows Media Format stream or file containing multiple streams (audio, video, and

script) that are encoded at different bit rates. When a multiple-bit-rate Windows Media

file or live stream is received by a player, only one of the video streams is played: the one

that is the most appropriate for current bandwidth conditions. The process of selecting the

appropriate stream is handled by the Windows Media server and Windows Media Player

and is completely invisible to the user.

Windows Media Encoder provides predefined multiple-bit-rate profiles, making

encoding content for multiple bit rates an easy process. You can also create your own

multiple-bit-rate profiles using Profile Manager.

4.5.5 Looping

Looping is a feature of Windows Media Encoder where file-based content is

played repeatedly until encoding is complete and ensures that you have no interruption in

the stream as a result of reaching the end of a file before completing a broadcast or

capture session.

Looping is available for broadcast and capture scenarios. In a broadcast scenario,

and is applied automatically when one of your source groups is a file. In a capturing

scenario, looping is applied automatically when you have a configuration that includes

multiple source groups. both cases, looping is applied to only the active source group.

39

Looping is not available for file-conversion scenarios or when you are sourcing

content from an .mpg file and is also not invoked when you use the time compression

feature to accelerate or decelerate the playback of your content.

4.5.6 Codecs

Audio and video content can consume a lot of bandwidth on a network when it is

streaming. By compressing the content, it can be broadcast over common Internet

bandwidths. You can compress content by applying compression algorithms to the data,

taking into account the desired output quality and available bandwidth. Before the stream

is played on a player, it is decompressed using decompression algorithms. These

compression and decompression algorithms are called codecs.

Codecs are designed to compress a stream to a certain bit rate. The target bit rate

determines the amount of compression applied. Codecs that do not compress source

content as much produce content that usually sounds and looks richer and more dynamic,

but requires more bandwidth to stream.

Windows Media Audio and Windows Media Video are software codecs used to

decrease the bit rate of digital media files so they can be delivered efficiently over a

network. Windows Media Encoder uses these codecs to compress the data for streaming,

while Microsoft Windows Media Player decompresses the data for playback.

The Windows Media Audio and Windows Media Video codecs offer excellent

compression quality and efficiency. The Windows Media Audio codec delivers a .wma

file of the same quality as an .mp3 file, but at nearly one-third the size. The codec is fully

compatible with Windows Media Player and all portable devices supporting Windows

Media Audio. While the quality of encoded video depends on the content being encoded,

40

Windows Media Video can deliver near-VHS-quality at bit rates ranging from 250

kilobits per second (Kbps) to 450 Kbps, and near-DVD-quality at 500 Kbps to several

megabits per second (Mbps). Windows Media Video 8 codec is appropriate for both

streaming and downloading digital media files. It is also compatible with Windows

Media Player.

41

5.0 Implementation

5.1 Introduction

this section we will discuss the architecture of the Remote Experimental

Station and various tools and methods used to implement system. The theoretical

perspective of the thesis study is to provide a distance-learning laboratory for the students

in undergrad curriculum of Electrical and computer engineering major where a student

can learn experiments from a remote location under the supervision of the instructor.

Interactive Remote Experimental station provides a network-based interactive

environment between students and instructor, which is used to bridge instructional gap

INSTRUCTOR STUDEF

ND

MCROCON
TROLLER

SERVER
\ STUDENT

STUDENT

STUDENT

Figure 5.1. Remote Experimental Station Architecture

42

5.2 Operation of A/D Converter

The MAX1284 is a12-bit analog-to-digital converter (ADC), which combines a

high-bandwidth track/hold (T/H), a serial interface with high conversion speed, an

internal +2.5V reference, and low power consumption. The MAX1284 operates from a

single +4.5V to +5.5V supply. The MAX1284 is a high-speed, 12-bit data-acquisition

system. Resistor R1 (1k.) and capacitor Cl (0.01pF) form a single-pole, low-pass anti-

aliasing filter with a nominal 10 s time constant and a comer frequency of approximately

16kHz. C3 and C4 bypass the analog-to-digital converter's (ADC's) voltage reference.

When plugged into the micro controller (68HC16) module, the VDD circuit is powered

by +5V. Fig shows the various connections and pin out, the specifications and pin outs

are referred in appendix.

The MAX1284 use an input T/H and successive-approximation register (SAR)

circuitry to convert an analog input signal to a digital 12-bit output. Figure 5.3 shows the

MAX1284 in its simplest configuration. The internal reference is trimmed to +2.5V. The

serial interface requires only three digital lines (SCLK, CS, and DOUT) and provides an

easy interface to microprocessors (pPs).

43

+5V0R+3V

__ F 1pF

- - VDD SCLK(

NALOG INPUT 2 AIN 284 SERIAL
0 TO V4X 2 INTERFACE

SHUTDIYWN OUT FINPUT

4 REF GND

4.7 F

Figure 5.2. Typical Operating Circuit [15]

The MAX1284/MAX1285 have two modes: normal and shutdown. Pulling

SHDN low shuts the device down and reduces supply current to below 2pA (typical),

while pulling SHDN high puts the device into operational mode. Pulling CS low initiates

a conversion that is driven by SCLK. The conversion result is available at DOUT in

unipolar serial format. The serial data stream consists of three zeros, followed by the data

bits (MSB first). All transitions on DOUT occur 2Ons after the rising edge of SCLK. Fig

5.3 illustrates the sampling architecture of ADC's comparator. The full-scale input

voltage is set by the internal reference (VREF =+2.5V)

44

N

CAPACITIVE DAC
REF

ail

ERR
+ 1 x R

IMF E IE? ..

H
TA

UT 7-EF
RAIL

Figure . Equivalent put Circuit 7]

NQ
J1-i --- 0

J1-:3 5

J1-4 JU2 1 1l1I

2

VDD
t

J1-? D 0 0

J1 C2

D.1L F

J1-2R

tl a> Jul
1130, _,11Dt# ID1 V R1

1k

DOUT X61 AIII o 0

J1 ,a]C1,M _ AIN

J1 34 Dt 11T
UX 4XI284 RAF 4 0D1 tF

J1-35 DDIJT
1? DND

_

1-C3 G4
J1 J4d

O.IpF 4,741

TP1-1 F ^" bil d

T P1-2 } I -- -T-l { l

'UK
I1 0 J1-30

TP1-3 - -- J1 ,. J1. J1

11 J1-14 J16

TP1-4 J1- J121 ? --- J1

I: T i i- 1122 r J1-1iI

J1-31 J1-23 J1 7- 11-11

TP1-6

J1
11-24

J1-1 11 12 .32 igure 5.4. A/D Converter Schematic Diagram 7

45

5.2.1 Track/Hold

In track mode, the analog signal is acquired and stored in the internal hold

capacitor. In hold mode, the T/H switch opens and maintains a constant input to the

ADC's SAR section. During acquisition, the analog input (AIN) charges capacitor

CHOLD. Bringing CS low, ends the acquisition interval. At this instant, the T/H switches

the input side of CHOLD to GND. The retained charge on CHOLD represents a sample

of the input, unbalancing node ZERO at the comparator's input. In hold mode, the

capacitive digital-to-analog converter (DAC) adjusts during the remainder of the

conversion cycle to restore node ZERO to 0 within the limits of 12-bit resolution. This

action is equivalent to transferring a charge from CHOLD to the binary-weighted

capacitive DAC, which in turn forms a digital representation of the analog input signal.

At the conversion's end, the input side of CHOLD switches back to AIN, and CHOLD

charges to the input signal again. The time required for the T/H to acquire an input signal

is a function of how quickly its input capacitance is charged. If the input signal's source

impedance is high, the acquisition time lengthens and more time must be allowed

between conversions. The acquisition time (tACQ) is the maximum time the device takes

to acquire the signal, and is also the minimum time needed for the signal to be acquired.

Acquisition time is calculated by:

tACQ = 9(RS + PIN) x l2pF

Where RIN = 800 ,Fig 4.4 RS = the input signal's source impedance, and tACQ is never

less than 625ns. Source impedances below 2kl do not significantly affect the ADCs AC

performance. Higher source impedances can be used if a 0.01 ptF capacitor is connected to

46

the analog input. Note that the input capacitor forms an RC filter with the input source

impedance, limiting the ADCs input signal bandwidth.

5.2.2 Input Bandwidth

The ADCs' input tracking circuitry has a 6MHz small-signal bandwidth, so it is

possible to digitize high-speed transient events and measure periodic signals with

bandwidths exceeding the ADC's sampling rate, by using under-sampling techniques. To

avoid aliasing of unwanted high-frequency signals into the frequency band of interest,

anti-alias filtering is used.

5.2.3 Internal Reference

The MAX1284 have an on-chip voltage reference trimmed to 2.5V. The internal

reference output is connected to REF and also drives the internal capacitive DAC. The

output can be used as a reference voltage source for other components and can source up

to 800pA. Bypass REF with a 4.7 F capacitor. Larger capacitors increase wake-up time

when exiting shutdown. The internal reference is disabled in shutdown

5.2.4 Starting a Conversion

When power is first applied, and if SHDN is not pulled low, it takes the fully

discharged 4.7pF reference bypass capacitor up to 2ms to provide adequate charge for

specified accuracy. No conversions should be performed during this time. To start a

conversion, pull CS low. At CS's falling edge, the T/H enters its hold mode and a

conversion is initiated. Data can then be shifted out serially with the external clock which

in this case is provided by the micro-controller.

47

5.2.5 Timing and Control

Conversion-start and data-read operations are controlled by the CS and SCLK

digital inputs. The timing diagrams of Figures 8 and 9 outline serial-interface operation.

A CS falling edge initiates a conversion sequence: the T/H stage holds the input voltage,

the ADC begins to convert, and DOUT changes from high impedance to logic low.

SCLK is used to drive the conversion process, and it shifts data out, as each bit of

conversion is determined. SCLK begins shifting out the data after the rising edge of the

third SCLK pulse. DOUT transitions 20ns after each SCLK rising edge. The third rising

clock edge produces the MSB of the conversion at DOUT, followed by the remaining

bits. Since there are twelve data bits and three leading zeros, at least fifteen rising clock

edges are needed to shift out these bits. Extra clock pulses occurring after the conversion

result has been clocked out, and prior to a rising edge of CS, produce trailing zeros at

DOUT and have no effect on converter operation. Pull CS high after reading the

conversion's LSB. For maximum throughout, CS can be pulled low again to initiate the

next conversion immediately after the specified minimum time (tcs)

48

5.2.6 QSPI Interface

QSPI allows the minimum number of clock cycles necessary to clock in the data.

The MAX1284 require 15 clock cycles from the pP to clock out the 12 bits of data.

Figure 4.5shows a transfer using CPOL = 0 and CPHA = 1. The conversion result

contains two zeros followed by the 12 bits of data in MSB-first formatted.

V0 B5 LEDI G ID 11-1 J1-2 IID
470il GROUND GD - J4 J- NG1'' J . CO 1- 114 IDI
YMC Ut REGULATED7V TD20V I VPREREG J1- J1-6 PEE

O F REGULATED45V CC - J1-7 J14
INTEL COMPATIBLE READAWRITESTROBES 1/D10 -J1-9 J1-10 CJO

_ CHIP SELECTS E - J1-11 J1-12 - vE
08/F000 J1-13 J1-14 - C F

CS0BUFFER IE LOW ADDRESS BITS A'0 J1-15 J1-1 - A01

1 A5lO DIR U A02 J1-17 J1-18 - Aw

J4HCT25 EXTD - J1-19 J1-2 - EX TDI
DOB Al 181 umTD EXTD2 J1-21 JI-22 EXID3DOR A2 82 EX18- RBIT BUFFERED BIDIRECTIONAL DATA BUS EXTD2 J-22 - XTD
DRJ A2 B2 1 TD1 EXTD4 JI-23 J1-24 EXT05

DI A3 13 EXTD2 EX06 - I-25 J1- EXTD7
D11 A4 84 EXCl3 IC - J1-27 J1-2 IC2
012 A5 18 EXTDJ4 3 J1-29 J1- 1
D13 AG B1 EXTD5 -BIT GENERAL0 PORT 1- 1

D15 'A BR EXTD7 C4 -33 J14- C

HIGH-SPEED SERIAL INTERFACE (Of H PI) K -
CLKOUT - 1-9 J1-40 - F A

NTSTk1E

RG DS LK

10k D I - J4-1 J4-2 BEER

RESI- R BE GND 14 J4-4 FIKPTDL Kt

ODCLK GND - 4 4- FREE
DC E 4ET J4-8 IPIPE1IO1
0 DAS VCC 4 J410 IPIPEO!D $

F i u r0'
IR S

Figure 5.6. Schematic Diagram of Microcontroller (68HC16) Module (1) [15]

49

C14

C.1F

CR +

0.01 aF

. M ISO vflC

r: f
._.... Ca. PC

i L P7, Y9

TDB

1,9 T XD I 11 ?7 RRAM

01 19 ADDR1 _ 11" c #Vi lO
A02 20 ADDR2

Fzi tj

VCC 21 VDDE IV C,; ,E VCC

VSSE 22 V SSE V SSE 112 VSSE

A03 23 ADDR'1
FCD Ili

24
A04 25 ADDRT CSR.IOT 110 CSI3DCTIRDRCiM

A05 ADDF15 C": q i? DQCT

A06 2 ADDR[
1

ADDRT

R ADDRR
F -; 1r

29
33 'ISSI;:

;I

ADDR9
DAa ! t 1

x,10 3i ADDR10
i

All - 32 ADDR11 W116. DAT, , 1

A12 ADDR1
NT .' -

LL-A13 1 ADDR13 Dp35 tA14 ADDR14 - Dt

ADDR1 V DDE
37 ADDR16

9

ADDR17 DATA10 Diu
39 1 .DDR1R DATA11 D11

Cr1 40 ' TDE DIV I D1;2

i1 D1

t'c{ DAT414 E D14

DATA 15 91 D1S

1a , AD[D '0 ACC

DSAGKO

47 , 2
DSt - 4

a i t

L
50

77

Lzr -j

Ej IS

s

u

i
VSTBY

'SSE

M

E,

a

E, L V-
ACC

3F 0.j 4 10 Ica -

DF f ZONAL 12 2i3 ,

VKGI

Figure .7. Schematic Diagram o icrocontrollcr (6 16) Module (2) [15]

50

R vCC
330k J3_8

- - 1fTAI

r222i
CTS

1 R1
V

,13.7

Y1 10111 RTS
2 32- 7GSkHz, 2 T11N TIOUT

UTAL TXD J3-2

-P VCC RXD

t T21 PI T20UT i
G ND

E.,C RkD R10LIT RI IN s 13_3
TXD

Hk tT ;a 20 OUT R21N Gr1D

Pro
J2 01-1 P 1R fI.C. b - C14 C24

lw a J3-4 1 -0 RESET C _ - C1+ DTR

+ PFI REFSET T RESET 12 V_ J. 11 C2 10

Z GND E C2- DSR
DAR

+ GND GND J3-1

;, D D

a
,l .-

P f!
1 Ll

D1 JU5

2 1 PiIWI GND VSSE _ RI
VPREREG

L 1
1 IH

M05
' IN OUT 1G YGC I C OPTIC f1L C GI

a 2 F 2 2V
C5 GND mr

Uul

2zuF 2
2l' JU3

TG1D

A011 A[f 1,=tin iI D08 13 10

Alf1 Al 5 DOO (. I D00

A02 A2 E266 0111 - ,25 tu[13 D1R

R4 A2 1 A03 T Dt1 D03 15 D11

2 A04 A4 Ire I D12 D04 1 D12

DOD A05 A5 Ix.5 11 D13 - Do,- II D1

A06 A6 16 18, Di 1 D{1C 18 D14

A07 3 A7 IG7 !M ED 15 r D07 19 D15

25 AS &I 8 23
R3

Alfa

1Ok. L2 " A9 A09 4= AO

DO9 t, t1t -EST vCC A1O 2AIO C

A12
z A11

A12 A12
A13 A13 ", A13

A14 CI
Gil

OAtiF e"T A1d UpF

Gh1DaCC -2 ---L vpp
C ,arpRA v1 Gf1D CSBOOT RDROh1 OE

F WE

Al4 0 03 vCC
32kx S-BIT HIGH-SPEED CBIOS STATIC RAM 32k x -BIT UAO EPROM

Figure Schematic Diagram icrocontroller 6 C16) Module (3) [15]

1

5.3 Microcontroller Module (68hc16)

Fig 5.6 to 5.8 shows the schematics of the microcontroller module. The 68HC16

module is an assembled printed circuit board from Motorola. The module uses an

inexpensive 8-bit implementation of Motorola's MC68HC16Z1 microcontroller (pC) to

collect data samples at high speed using the Queued Serial Peripheral Interface (QSPI).

The module draws its power from user supplied power source connected to terminal

block J2.A three terminal 5V regulator allows input voltages between 8V and absolute

maximum of 20V. The module requires 200mA of input current.

The MC68HC16Z1 (Fig 5.7) is a member of Motorola's modular microcontroller

family, a series of 16-bit and 32-bit devices constructed from standard on-chip peripheral

modules that communicate by means of a standard inter module bus. The MC68HC16Z1

is a sophisticated single chip control system that incorporates a 16-bit CPU module, a

system integration module (SIM), a general-purpose timer (GPT), a queued serial module

(QSM), an 8-channel analog to digital converter (ADC), and 1-Kbyte stand by RAM. The

MCU thus provides a designer with many options, ranging from reset configuration to

interrupt generation, that must be considered during the design phase [15].

MAX 707 on the module monitors the 5v logic supply, generates the power on

reset , and produces whenever reset button is pressed. The module uses a phase-locked

loop (PLL) to set its bus speed. Crystal Y1 is a 32.768kHz frequency reference. The

internal oscillator runs 256 times faster than the external crystal. When the 68HC 16 is

reset, it waits for the PLL to lock before it executes any software. After the PLL locks

onto the reference frequency, the software doubles the clock speed by writing to the clock

synthesizer control register, selecting a bus speed of 16.78MHz.

52

The 74HCT245 octal buffer lets the 68HC16 module access an 8-bit port on the

40-pin interface connector. This memory-mapped port consists of separate read and write

strobes, four chip selects, four address LSBs, and eight data bits.

5.3.1 Serial Communications

J3 is an RS-232 serial port, designed to be compatible with the IBM PC 9-pin

serial port. Use a straight through DB9 male-to-female cable to connect J3 to this port. If

the only available serial port has a 25-pin connector, you may use a standard 25-pin to 9-

pin adapter. The MAX233 is an RS-232 interface voltage level shifter with two

transmitters and two receivers. It includes a built-in charge pump with internal capacitors

that generates the output voltages necessary to drive RS-232 lines.

The connections and their descriptions are referred in Appendix B.

5.4 Software

The software used to develop application is C++ and the compiler is Visual C++

compiler. Pre defined Microsoft Foundation Class (MFC) were also used to reduce the

time for development.

5.4.1 Data Display/Processing Application

The data from the microcontroller module is acquired using RS-232 cable. The

software main window controls the serial clock speed and sample rate. It displays the

voltage and output code as well as some statistics of the input signal. A separate graph

shows the data changing in the real time. The update rate is limited to about 10 samples

per second due to com port bandwidth limitations.

53

5.4.2 Client/Server Application

This application was developed using C++ and windows sockets Application

Programming Interface (API). Various classes were written in C++, which implements

the data transfer and connectivity between clients. The server application consists of list

and information of the clients that are connected and plays the role of transferring the

data from one client to other client. The instructor and student uses the client part and the

server will be running on a different machine, this type of architecture was implemented

keeping in mind that if instructor application is implemented in the server than every

client connected to the server has to reconnect again if there is a connection problem in

the instructor machine. The client part also has the functionality of displaying the digital

code acquired from the microcontroller module in form of a graph so the data samples

can be transferred to the other clients and displayed.

5.4.3 Audio/Video Streaming Application

Microsoft Windows Media Encoder is a audio /video streaming application which

uses the latest audio and video compression technologies, the Microsoft Windows Media

Audio codec and Microsoft Windows Media Video codec for real-time capture and

streaming applications. These codecs, or compressor/decompressors, deliver

incomparable audio and video quality at lower bit rates.

Windows Media Encoder includes multiple input sources, on-the-fly source

switching for live or on-demand events, and creating and modifying encoding profiles.

addition, the encoder includes four new profiles that were designed specifically for

streaming to take advantage of the quality and efficiency of the Windows Media Audio 8

54

and Windows Media Video 8 codecs. The audio/video data streamed by the windows

media encoder can be viewed in windows media player.

55

6.0 Results, Conclusion and Future work

6.1 Results

The following figures 6.1 to 6.3 show the waveforms of actual signal, which is

regenerated from samples acquired using A/D converter and microcontoller module. The

fig shows the graph part where the analog signal is displayed and to the right we have the

volts/div and time/div which means that each division is to be multiplied by the number

shown. Voltage/amplitude is represented on y-axis and time is represented on x-axis. The

"UpDate" button will draw the graph with the updated samples.

I '

Figure 6.1. Sine Waveform

56

mea Divm

Figure 6.2. Square Waveform

Figure 6.3. Triangular Waveform

57

The following figure (Fig 6.4) is screen shot of windows media encoder which

encodes and broadcasts the audio and video captured by the web camera. Traversing

through "session" item in the menu gets you the new session wizard where you can

specify the streaming speed, title and other data

[n pt

Nonitor

Figure . Windows Media Encoder

58

Fig 6.5 is screen shot of the client, which establishes the connection between

instructor and student. Where the right side list box shows the list of the users connected,

typing a text in the edit box and left clicking the mouse button on "send" will pass the

message to all users. Other functionalities like different fonts and font colors are

implemented. The "Graph" button on clicking with mouse left button displays the graph

shown above in Fig 6.1. The 'C' menu item is to connect to the server and one should be

aware of the IP address of the server to connect.

Times New Roman 1

Figure 6.5. Client

Fig 6.6 is the screenshot of a server, which connects all the clients and enables the

data transfer between them. The list box shows the users connected to server. The

59

"start/stop" button toggles between the on and off stages of the listening socket (i.e.

server will not be able to accept connection if it is stopped).

I- Xn ES ServenIDLQg
131.94 16 225

13 y4162535

Figure 6.6. Server

6.2 Conclusion

The design of Remote Experimental Station For Engineering Education achieved

its goal using the analog to digital converter for sampling analog signal and a

microcontroller module to collect the samples and transmitting them to computer over

serial cable (RS 232) where the samples were analyzed and analog signal is regenerated

and displayed in a pc based oscilloscope. Client/Server application plays role of

60

transmitting the samples to remote computers and presenting the output signal to the

students. Windows Media Encoder incorporated audio/video conference for the system.

The system designed is a cost effective solution as a/d converters and the microcontroller

units can be purchased for as low as $10.00 per each unit. To view the audio/video

streaming broadcasted by the windows media encoder we need to have high-speed

Internet connections such as DSL/Cable for home users.

6.3 Future Work and Enhancements

The application design is presently done on a single channel a/d converter for

avoiding the complexity. The system can be enhanced by using multi channel a/d

converters for more channels in the pc-based oscilloscope. With the increase in the

number of channels they can be utilized for acquiring various signals at same time and

utilities like multi meter can also be implemented. We can replace the microcontroller

with re-programmable devices like CPLDs and FPGAs, which are faster and reliable. As

technology is rapidly increasing a/d converters with greater sampling rate and greater

resolution can replace the present a/d converters. Enhancement of the present Internet

protocols for smooth audio/video streaming over the networks without loss of data.

61

REFERENCES

[1] Vincent G. Gomes, Bruce Choy, Geoff W. Barton, Jose A. Romagnoli," Web-Based
Courseware in Teaching Laboratory-Based Courses", Department of Chemical
Engineering, The University of Sydney, Sydney, NSW 2006, Australia (2000 UICEE
Global J. of Engg. Educ., Vol.4, No.1.

[2] Dongil Shin a,,, En Sup Yoon a, Sang Jin Park b, Euy Soo Lee b," Web-based
interactive virtual laboratory system for unit operations and process systems engineering

education" Computers & Chemical Engineering.Volume 24, Issues 2-7, 15 July 2000,
Pages 1381-1385.

[3] L, Mercer, P, Prusinkiewicz, J, Hanan, "The concept and design of a Virtual

Laboratory". In Graphics Interface '90 Conference proceedings, pages 149-155. Canadian

Information Processing Society, 1990.

[4] The Virtual Laboratory, "An Application Environment for Computational Science

and Engineering", Http://www.intemet2.edu/html/virtuallaboratory.html.

[5] Hesselink, L, Rizal, D, Bjornson, E, " CyberLab, A New Paradigm in Distance

Learning", Stanford University, 2000.

[6] Hoon, P, S, "Conducting Experiments Over the Internet using Lab VIEW and

Component Works", Department of Electrical Engineering, Singapore Polytechnic, 2000.

[7] Analog-Digital Conversion Handbook: by The Engineering Staff of Analog Devices,
Prentice hall, 1986.

[8] Richard, M, Jones, "Introduction to MFC Programming with Visual C++" Prentice

hall, 2000.

[9] Sanjit, K, Mitra, "Digital Signal Processing: A Computer based approach " - 2 "a

edition, McGraw-Hill, 2001.

[10] Bob, Quinn, Dave, Shute, "Windows Socket Network Programming ", Adison-

Wesley, 1997.

[11] David, J, Kruglinsky, George, Shepherd, Scot, Wingo, "Programming Microsoft

Visual C++", Microsoft Press, 1998.

[12] Sharon, Darley, Charles, Melear, "An Introduction to the MC68HC16Z1 ", Motorola

Semiconductor Device Tutorial, Motorola INC, 1996.

[13] Lang, George, Fox, " Quantization noise in A/D converters ", S V SOUND VIB.

Vol. 34, no. 11, pp. 5-6. Nov 2000.

62

[14] Chiorboli, Giovanni; Fontanili, Massimo, "Cross-correlation noise measurements in

A/D converters", IEEE TRANS. INSTRUM. MEAS. Vol. 48, no. 6, pp. 1282-1286. Dec
1999.

[15] Maxim Integrated Products, "Understanding SAR ADCs", Mar 2001.

[16] William, Stalling, "Data And Computer Communications", Prentice Hall, 1996.

[17] Maxim Integrated Products, "MAX1284 Evaluation System", June 2000.

63

APPENDIX A

ADC and DAC Glossary

Terms

acquisition time (for track/hold): The amount of time it takes for the analog-to-digital
converter (ADC) input to "acquire" the input signal. The RC time constant formed by the
ADC's "track/hold" circuitry and the accuracy to which the ADC must digitize the input
signal determine the length of acquisition.

aliasing: In sampling theory, when an input signal frequency component exceeds the

Nyquist limit, the signal is "aliased" or "folded back" or replicated at other frequencies in
the frequency spectrum above and below Nyquist. Normally, aliasing is due to unwanted
signals beyond the Nyquist limit. To prevent aliasing, all undesired signals must be
filtered adequately so that they are not digitized by the analog-to-digital converter

(ADC). Aliasing can be used advantageously when undersampling.

aperture delay: In an analog-to-digital converter (ADC), the delay in time from when
the user requests the analog input to be sampled (that is, when the user puts the ADC's
track/hold in "hold" mode) and the actual time when this occurs.

aperture jitter: The amount of variance in the aperture delay. This value is typically
much smaller than that of the aperture delay.

binary coding (unipolar): A digital coding scheme in which zero is represented by all

zeros (00000000) and full scale by all ones (11111111).

bipolar: A signal that swings both above and below analog ground, thus having positive

and negative values.

common-mode rejection (CMR): The ability of a device to reject a signal that is

"common" to or applied to both input terminals. The common-mode signal can be either

an AC or a DC signal or a combination of the two. CMR is often expressed in decibels.

common-mode rejection ratio(CMRR): It is the ratio of the differential signal gain to

the common-mode signal gain.

crosstalk: For an analog-to-digital converter (ADC) with more than one input, crosstalk

is the amount of signal from one analog input that appears on the measured analog input.
This value is typically specified in decibels. For a digital-to-analog converter (DAC),

64

crosstalk is the amount of noise that appears on the DAC output(s) when another DAC is
being updated.

decibel (dB): A unit of relative amplitude defined on a logarithmic scale. For voltage
values, dB is given by 20 log Va/Vb. For power, it is 10 log Pa/Pb. DBc is dB referenced
to a carrier signal, and dBm is dB referenced to 1mW. For dBm, the load resistance must
be known for the specification to determine the voltage or current equivalence (that is,
1mW into 50 ohms).

differential nonlineari (DNL) error: Assuming an ideal analog-to-digital converter

(ADC) with finite digital codes exactly 1LSB apart (DNL error = 0) or an ideal digital-to-
analog converter (DAC) with analog output values exactly one code apart (DNL error =

0), the DNL error is defined as the difference between the ideal and the measured code

transitions for successive codes for an ADC or the difference between the ideal and the

measured output value between successive DAC codes. As an example, when using an

ADC, as the analog input voltage increases, if the next code transition occurs at a voltage

1.5LSB away from the previous transition, the DNL error is 0.5LSB; if it occurs at

0.5LSB away, the DNL error is -0.5LSB.

dynamic range: The range of signal amplitudes (or signal strengths) a converter can

resolve, typically expressed in decibels. A converter with a dynamic range of 60dB

means that it can resolve signals in the range in amplitude from x to 1000x. Dynamic

range is important in communication applications where signal strengths vary

dramatically. For an analog-to-digital converter (ADC), if the signal is too large, it will

over-range the ADC input. If it is too small, the signal will get lost in the quantization

noise of the converter.

effective number of bits (ENOB): The measured performance (in bits) of an analog-to-
digital converter (ADC) with respect to input frequency fm. As fIN increases, overall

noise (particularly the distortion components) also increases, thereby reducing the ENOB

and SINAD(signal-to-noise and distortion ratio). ENOB is related to SINAD by the
following equation:

_ SNAD-.76
6.02

full-scale (FS) error: For the ideal transfer curve, the code edge transition that causes all

ones in the digital code to occur 1.5LSB below full scale. The full-scale error is the

difference between this code transition of the ideal transfer function and the actual

measured value at this code transition. Unlike gain error, offset error is included in the FS

error measurement.

full-power bandwidth (FPBW) : A large-signal (i.e. at or near full scale) analog input

is applied to the analog-to-digital converter (ADC), and the input frequency is swept up

65

to the point where the amplitude of the digitized conversion result has decreased by -3dB.
This point is defined as the "full-power bandwidth frequency."

gain error: With a full-scale analog input voltage applied to the analog-to-digital

converter (ADC) (resulting in all ones in the digital code) or a digital code of all ones

applied to the digital-to-analog converter (DAC), gain error is defined as the amount of

deviation between the ideal transfer function and the measured transfer function (with the

offset error removed). Gain error is usually expressed in LSB or a percent of full-scale
range (%FSR). It can be calibrated out with hardware or in software.

glitch impulse energy: The amount of energy that appears at the digital-to-analog

converter (DAC) output when a major carry transition occurs. It is measured typically in

nV*s and given by the area under the curve on a voltage-versus-time graph.

integral nonlinearity (INL) error: The amount of deviation of the measured transfer

function of an analog-to-digital converter (ADC) or a digital-to-analog converter (DAC)

from the ideal transfer function (defined as a straight line drawn from zero to full scale).

(Sometimes a "best-fit" straight line is used where the ideal transfer function is

represented by a straight line drawn between the end points of the actual transfer

function. This method is referred to as "end-point linearity.") The INL error is also

defined as the sum of the DNL errors starting from code 000 to the code where the INL
measurement is desired.

intermodulation distortion (IMD): An analog-to-digital converter (ADC) test where

two signals (fi and f2) of equal amplitude that are also very close in frequency are

applied to the ADC input. A frequency spectrum plot of the data reveals the amount of

distortion due to the ADC's digitizing of the two signals. IMD is typically specified in

decibels.

MS sum of disto ionterms
IMD =2LgIMD 2~o ~Input (Vols RMS)

where the distortion terms are given by
2nd-order terms: - fl + f2, fl -2
3rd-order terms: - 2fl + 2, 2fl-2, fl+ 2, fl-2f2

least significant bit (LSB): In the binary number scheme, the bit position in a group of

bits given the smallest weighted value. The LSB is typically the furthest-right bit in a

grouping of data bits. The LSB weight is given by the full-scale range of the converter

divided by 2N, where N is the converter's resolution.

major carry transition: The midscale point where the MSB changes from low to high

and all other bits change from high to low, or where the MSB changes from high to low

66

and all other bits change from low to high. This point is often where the worst switching
noise occurs. See also most significant bit (MSB).

monotonic (referring to the DAC): A digital-to-analog converter (DAC) is said to be
monotonic if, as the DAC code is increased, the analog output never decreases in value.
A +/-lLSB DNL guarantees that a DAC is monotonic.

most significant bit (MSB): In the binary number scheme, the bit position in a group
of bits given the largest weighted value. The MSB is typically the furthest-left bit in a
grouping of data bits.
multiplying DAC: A digital-to-analog converter (DAC) that allows an AC signal to be
applied to the reference input pin. This allows the DAC to be used as a digital attenuator
by feeding the signal of interest into the reference pin and using the DAC codes to scale
it.

no missing codes (referring to the ADC): An analog-to-digital converter (ADC) has no
missing codes if, as a ramp signal is applied to the ADC input, all digital codes appear in
the resulting conversion data.

Nyquist frequency: In sampling theory, the Nyquist frequency is the maximum
frequency that can be applied to the analog-to-digital converter (ADC) input with no

aliasing effects. The Nyquist frequency is defined as the "sampling frequency/2."

offset binary coding: For bipolar signals, offset binary is a digital coding scheme in

which the most negative value is represented by all zeros (00000000) and the most

positive value is represented by all ones (11111111).

offset error (bipolar): When using a bipolar converter, the ideal midscale transition

occurs at AGND -0.5LSB. Bipolar offset error is the measured deviation from this ideal

value.

offset error (unipolar): For an ideal converter, the first transition occurs at 1/2LSB,

above zero. Offset error is the amount of deviation between the measured first transition

point and the ideal point. For an analog-to-digital converter (ADC), OV is applied to the

ADC input and then the analog input voltage is increased until the first transition occurs.

This voltage can be converted to LSBs by dividing it by the LSB step size, which is

VREF/2N. For a digital-to-analog converter (DAC), offset error is determined by loading
a code of all zeros into the DAC and measuring the analog output voltage. Offset error is

easily calibrated out in software or with hardware.

oversampling: Sampling the analog-to-digital converter (ADC) input at a much higher

frequency than that of Nyquist. This technique provides a processing gain by effectively
reducing the noise floor of the converter. A 2X increase in oversampling rate
theoretically improves signal-to-noise by 3dB.

67

power-supply rejection (PSR): The amount of change in the converter's value (often
measured at full scale), as the power-supply voltage changes from its nominal value. PSR
assumes that the converter's linearity is unaffected by changes in the power-supply
voltage. It is often measured in LSB/V. Power-supply rejection ratio (PSRR) is the ratio
of the input signal change (in volts) to the change in the converter output (in volts). It is
measured typically in decibels.

quantization error: When a continuous time signal is digitized, because there isn't an
infinite number of discrete digital levels, the difference between the actual analog value
and the digital representation of that value is defined as the quantization error.
ratiometric measurement (referring to an ADC): Rather than using a voltage
reference with an absolute value, a ratio of the signal applied to the transducer (that is, the
load cell or bridge) is also applied to the voltage reference input of the analog-to-digital
converter (ADC), thereby eliminating any errors introduced by a changing reference.

resolution: When an analog signal is digitized, it is represented by a finite number of
discrete voltage levels. The resolution is the number of discrete levels that are used to
represent the signal. To more accurately replicate the analog signal, the resolution must
be increased. Resolution is usually defined in bits. Using converters with higher
resolutions will reduce the quantization error.

root mean square (RMS): The effective value or effective DC value that an AC signal
represents. For a sine wave, the RMS value is 0.707 times the peak value, or 0.354 times
the peak-to-peak value.

sampling rate/sampling frequency: The rate at which a converter acquires the input
signal, digitizes it, and outputs data to a pC/DSP. It is specified in samples per second or
Hertz (Hz) and is also referred to as the "throughput rate."

settling time (referring to the DAC): The actual amount of time it takes a digital-to-

analog converter (DAC) output to reach its final value (within a certain percentage) once
the DAC has accepted a command to change its output value. This time can be affected

by the slew rate of an output amplifier and by the amount of amplifier ringing and signal
overshoot.

signal-to-noise and distortion ratio (SINAD): The RMS value of the sine wave f(IN)
(input sine wave for an ADC, reconstructed output sine wave for a DAC) to the RMS

value of the noise of the converter from DC to the Nyquist frequency, including harmonic

content. It is typically expressed in decibels.

Jopu (Vols ~R MS)
SINAD = 2Log6 Nose + Harmonis

68

signal-to-noise ratio (SNR): The RMS value of the sine wave f(IN) (input sine wave for
an ADC, reconstructed output sine wave for a DAC) to the RMS value of the noise of the
converter from DC to Nyquist frequency, excluding noise at DC and harmonic distortion
content. It is typically expressed in decibels.

Input (Volt RMS)
SNR = 2OLogNj

signed binary coding: A coding scheme in which the MSB represents the sign (positive
or negative) of a binary number. In this scheme, "-2" is represented by 10000010 and "2"
is represented by 00000010.
slew rate: The maximum rate at which the digital-to-analog converter (DAC) output can

change, or the maximum rate at which an input signal can change without resulting in an

error in the digitized representation of the input signal.

small-signal bandwidth: A small-amplitude signal is applied to the analog-to-digital
converter (ADC) in such a way that the signal's slew rate will not limit the ADC's

performance, and the input frequency is swept up to the point where the amplitude of the

digitized conversion result has decreased by -3dB. The small-signal bandwidth is often

limited by the track/hold amplifier performance.

spurious-free dynamic range (SFDR): The ratio of the RMS value of the sine wave

f(N) (input sine wave for an ADC, reconstructed output sine wave for a DAC) to the RMS

value of the peak spur observed in the frequency domain. It is typically expressed in

decibels. SFDR is important in certain communication applications that require
maximizing the dynamic range of the converter.

total harmonic distortion (THD): The RMS value of the distortion appearing at
multiples (harmonics) of the input (or output for a DAC) frequency to the RMS value of

the input (or output) sine wave. Only harmonics within the Nyquist limit are included in

the measurement. It is typically expressed in decibels.

Noise
THD = 2LogTHD 2O~ ~ nput (V Its. RS)

transition noise (referring to the ADC): The range of input voltages that cause the

analog-to-digital converter (ADC) result to toggle between codes. As the input voltage is

increased, the voltage that defines where a code transition occurs (code edge) has an

associated amount of noise due to this transition. This specification is often given as an

RMS value rather than peak-to-peak.

69

two's complement coding: A binary digital coding scheme for negative numbers that
simplifies addition and subtraction computations. In this scheme, the number "-2" is

represented by 11111110 and "2" is represented by 00000010.

undersampling: A technique whereby the analog-to-digital converter (ADC) sampling
rate is lower than the input frequency (which normally results in a loss of signal
information), which causes aliasing. With proper filtering of the input signal and proper
frequency selection (including fa and fsAPLE), the aliased components that contain the
signal information can be shifted from a higher frequency to a lower frequency and
converted. This method effectively uses the ADC as a downconverter by shifting higher
bandwidth signals into the ADC's desired band of interest. The bandwidth of the ADC's
track/hold must be capable of handling the highest frequency signals for this technique to
work.

unipolar: A signal that swings from zero to the positive full-scale range, thus having
only a positive polarity.

70

EvlainAPPENDIX

B

Maxim Max 1284 Evaluation System

The MAX1284 evaluation system (EV system) is a complete data-acquisition system
consisting of a MAX1284 evaluation kit (EV kit) and a Maxim 68HC16MODULEDIP
microcontroller (pC) module. The MAX1284 is a high-speed, 12-bit data acquisition
system. Windows 95/98 software provides a handy user interface to exercise the
MAX1284's features.

GNfl

J1-2

J1 C5
J1-4 S J2 1C9EF

2

VDDVDDD

C2

SCIK 0.1pF

1k

6OUT DCUK O121pF
11.L1 [REF ci AIRi

J1 35 DOUT 7 GNf 0
ii37 SLK - C3 C 4
J1 38 11pF L 4-F (2 ,.DMINAL)

,1

3,

111 3

TP1 [-- -- ~ LK 1 -J K 1 J 1 -

TP 1 120 J1114 11 >

J1 >--,11 J1-15 J1.
TP15 -j E 1 / 21T J. 112 -1 All21)

J~ [4)1b 1 2 J11' 1 1

TP16 j-.---..~ 132 11J24 1 + ill 2

Figure 1. MAX1284 EV Kit Schematic Diagram

Detailed Hardware Description

The MAX1284, U1, is a high-speed, 12-bit data-acquisition system. Resistor Ri (1k.) and
capacitor Cl (0.01 F) form a single-pole, low-pass anti-aliasing filter with a nominal

10ps time constant and a comer frequency of approximately 16kHz. C3 and C4 bypass
the analog-to-digital converter's (ADC's) voltage reference. When plugged into the

68HC16MODULE, the VDD circuit is powered by +5V.

Problem: No output measurement. System seems to report zero voltage or fails to make

a measurement.

71

Check the VDD supply voltage. Check the reference voltage using a DVM. Use an
oscilloscope to verify that the conversion-start signal is being strobed. Verify that SHDN
is being driven high.

Problem: Measurements are erratic, unstable; poor accuracy.

Check the reference voltage using a DVM. Use an oscilloscope to check for noise. When
probing for noise, keep the oscilloscope ground return lead as short as possible,
preferably less than 1/2in (10mm).

JUl IPER PsITION FUNCTION

Closed SHDN driven by pC JU2 must be
Jul open

Open* HDI setbyJU2

1-2* Operate

2-3 Shutdown

* Default Configuration

Table 1. Jumper JUl Functions

72

DESIGNATION OTY DSRITO
Cl, C2, 3 2 lpF ceramic capacitors

04, C5 9 22pF, 25V radi-lead electrolytic
capacitors

0~i 07 ~ | 2pF capacitors
C_ _ 1 01pF capacitor

90 Reference designator, not used
C10 C14 5 01pF cpacitors

D1 1 1N4001 diode
J1 1 40-pin right-angle male connector
J2 1 2-circuit terminal block

J3 1 Right-angle printed circuit board
mount, DB9 female socket

J4 0 Open
Jul 0 Open
JU2 0 R-- rence designator, not used
JU3 0 Ope
JU4 0 Open
JUS 0 Open
L1 0 Open
L2 0 Open

LED1 1 Light-emitting diode
R1 1 M, resistor

Table 2. 68HC16 Module Component List

73

R2 1 55ik7 % resistor
R3, R42 10ki59' 5 resi tors

R_________ 1 470E 5%resistor

1 1Ok lINreitor
W1 1 Slide switch
W 1 Momentary pushbutton switch

68HC16 pC
U1 1 MCGSHC1GZ1CFC1G (132-pin

plastic quad flat pack)

U2 1 M xir MAX23CPP

U3 1 27C256 EPROM containing
monitor program

U4 1 7805 regulator, TO-220 size
US 1 6 256 (32K x 9) static RAM
U6 1 74HCT245 bidirectional buffer
U7 1 Maxim MAX707 PA
Y1 1 32.67kHz watch crystal

None 4 Rubber feet

None 1 28-pin socket for U
None 1 20-pin socket for UG

None 1 3" x' printed circuit board
None 1 Hea ink for U4, therm all # 6078

Table 3. 68HC16 Module Component List

68HC16 Module

General Description

The 68HC16 module is an assembled and tested printed-circuit board intended for use

with Maxim's high speed serial-interface evaluation kits (EV kits). The module uses an

inexpensive 8-bit implementation of Motorola's MC68HC16Zl microcontroller (pC) to
collect data samples at high speed using the QSPITM interface. It requires an IBM-

compatible personal computer and an external DC power supply, typically 12V DC or as

specified in EV kit manual. Maxim's 68HC16 module is provided to allow customers to

evaluate selected Maxim products. It is not intended to be used as a microprocessor

development platform, and such use is not supported by Maxim.

74

Detailed Description

Power Input Connector J2

The 68HC 16 module draws its power from a user-supplied power source connected to
terminal block J2. Be sure to note the positive and negative markings on the board. A
three-terminal 5V regulator allows input voltages between 8V and an absolute maximum
of 20V. The 68HC16 module typically requires 200mA of input current.

6811C16 Microcontroller

U1 is Motorola's 68HC16Z1 pC. Contact Motorola for piC information, development,
and support. Maxim EV kits use the high-speed queued serial peripheral interface (QSPI)
and the internal chip-select generation. A MAX707 on the module monitors the 5V logic
supply, generates the power-on reset, and produces a reset pulse whenever the reset
button is pressed.

Serial Communications

J3 is an RS-232 serial port, designed to be compatible with the IBM PC 9-pin serial port.
Use a straightthrough DB9 male-to-female cable to connect J3 to this port. If the only
available serial port has a 25-pin connector, you may use a standard 25-pin to 9-pin
adapter. Table 1 shows the pinout of J3.
The MAX233 is an RS-232 interface voltage level shifter with two transmitters and two
receivers. It includes a built-in charge pump with internal capacitors that generates the
output voltages necessary to drive RS-232 lines.

40-Pin Data Connector Ji

The 20 x 2 pin header connects the 68HC16 module to a Maxim EV kit. Table 2 lists the

function of each pin. Note that 68HC16 object code is not compatible with 68HC1

object code. Use the 68HC16 module only with those modules that are designed to

support it, and only download code that is targeted for the 68HC16 module. Downloading
incorrect object code into the 68HC16 module will have unpredictable results.

Address Ranges

The 68HC16 pC generates various enable signals for different address ranges. The ROM

and RAM enable signals are fed directly to the respective chips. Several additional

signals (J1.11-J1.14) are available on the data connector to be used by Maxim EV kits.

Table 6 outlines the address ranges for each of the elements found on the 68HC16

module, and Table 7 is a truth table that describes the logic for each of the 68HC16's

chip-select outputs. Because the addresses are not completely decoded, the boot ROM

and user RAM have shadows.

75

PIN NAME FUNCTON

DCD Handshake hard -wire to DTR and DSR

2 RXD RS-23 2-compatible data output from
68HC16 module

XD R232-compatible data input to
8HC1 module

4 DTR Handsh ke; hard-wired to DCD and DSR
GND 1ignal ground connertion

6 DSR Handshake; hard-wired to DCD and DTR
7 T Handshake; hard-wir to CTS

8 CTS Handsha e; hard-wired to RT
9 None Unused

Table 4. Serial Communications Port J3

PIN NA E FUNCTION
1-4 GND Ground

, 6 VPREREG Unregulated input voltage
7,8 VCC + from on-board regulator

9 RD Read strobe
10 R Write strobe
11 7E000 Chip select for 7E00-7E7FF
12 7E800 Chip select for 7E803-7EFFF
13 7FOCO Chip select for 7FOO--7F7FF

14 7F800 Chip select for 7F OO-FFFF
15 A00 Address bit 0 (LSB)
16 A01 Address bit 1
17 A02 Address bit 2
18 A3 Address bit 3
18 EXTDO Buffered data bus 0 (LSB)

20 26 EXTD1-7 Buffered data bus bits 1-7
27 lC1 General I/O port bit 0 (LSB)
28 IC2 General /O port bit 1
29 IC GeneralI/O port bit2
30 GC1 General 1/0 port bit3

31 2OC General I/O port bit4
32 003 General I/0 port bit 5
33 OC4 General 1/ port bit 6
34 IC4 General I/O port bit 7
35 MISO SPI master-in, slave out
36 MOSI OSPI master-out, slave-in
37 SCK OSPI serial clock
38 PCO/P 0 PI chip-select output
39 CLK0UT System clock output
40 PWMA Pulse-width-modulator output

Table 5. 40 Pin Data-Connector Signals

76

PIN FUNCTION
00000-0 7FFF Boot ROM (U3 trobed by CSBOOT)
08000-0FFFF hadow of boot ROM
10000User RA (U5, strobed by Co and C)
1h8000-1 FFFF dow of user RAM
20000- 02FF Internal standby RAM 1 kbyte
20400-7DFFF Unused

7E00--E7F External chip select (J1 pin 11) (CS7)
7E O 7EFFF External chip select (J1 pin 12) (C 8)
7F00-7F7FF External chip select (J1 pin 1) (C 9)

F00-71FFF External chip select (J1 pin 14) (CSlO)
80000-F7FFF Not accessed b the 8HC 16
F8000-FF6 Unused

FF700 FF73F 68HC16s built-in ADC (not used)

FF740- FFFF Unused

FF900-FF.3F General-purpose timer module (GPT)

FF940-FF FF Unused

FFAOO FFA7F estm integration module (SIM)
FFA8O FFAFF Unused

FFBO-FFB07 Internal standby RAM (SRAM)
control registers

FFB0-FFBFF Unused
FFC00-FFDFF Queued serial module ' M)

FFE0 FFFFF Unused

Table 6. 68HC16 Module Memory Map
(all address values are in 20-bit hex)

Boot ROM

The boot ROM, U3, is configured as an 8-bit memory device. Resistor 4 pulls data bit 0

low during system reset, forcing the piC to fetch instructions using only the upper eight
data bits. The boot ROM checks the system and waits for commands from the host.

68HC16 Module Self Check

To test the 68HC16 module's integrity, connect the power supply to the power terminals

(J2). Do not connect anything to Jl or J3. Slide the power switch SW1 to the "ON"

position. The LED will light up, and will flash within 5 seconds. If the LED flashes with

a 50%-on/50%-off duty cycle, then it passed its self-check. Note that this test does not

exercise the RS-232 port or the EV kit 40-pin interface, but it does confirm that the

power supply, microprocessor, ROM, and RAM passed the self-test. If the LED flashes

with a 10%-on/90%-off duty cycle, then it failed its self-check. Most likely, the RAM

chip (U5) is bad. If the LED remains on and does not flash, then the problem is U3 (the

77

EPROM), UI (the microprocessor), U4 (the regulator), the MAX707 reset generator, or
the power supply. Use a voltmeter to verify that the power supplies are good. Check the
power-supply input and the +5V output from the regulator. Use an oscilloscope to see if
the 32.768kHz reference oscillator is running.

ADDRESS ssooT cso es CS2 ess ese cs7 csB o sQ csioRANGE

xxxxread L H H H H H H H H H
I xxxread H H H L H H H H H H

1xxxxwrite H L H H H H H H H H

7Oxx read H H L H H L L H H H

7EOxx write H H H H L L L H H H

7F8xx read H H L H H L H L H H
7E8xx write H H H H L L H L H H
7Foxx read H H L H H L H H L H

7FOxx write H H H H L L H H L H

7F8xx read H H L H H L H H H L

7F8xx write H H H H L L H H H L

Table 7. 68HC16 Chip-Select Outputs Truth Table

F, s LEGUI GIJD - -I 31 -2 GND
47 / GROUDD Gl 1 1

1 tBGND - - I3-3 J1-4 - GND
P- MB UNREGULATED 7V TO 20V { VPREREG - 31-5 J-6 VPREREG

VGC C1F REGULATED V CC 1-7 JI VC
INTEL COMPATIBLE READ 'RITE STROES SRD -- J1-9 J1-10 - WIO

G-ND CHIP SELECTS 31-1 J1-12 800
J1-13 J1-14 - S1 0"00

GStVI SUFFER 1 IE LOW ADDRE" BITS A0

741-CT2 r EXTDO J1-19 J1-2D - EXTD1

DOS Al B1 ET 3BITBUFFERED6IDIRE TIONALDATABUS EXID 31-21 J1-22 EXID
D EXTD1 EXTD - J1-23 J1-24 EXTDS
D10 - A3 63 EXTD2 EXTD 31-2 J1- EXTD7
OIL A4 B4 EXTD3 IC1 J1-27 J1-2 - 12
D12 - A5 B5 EXTD4) ii-29 J1-3O oci
D13 A B5 EXTD5 S-BIT GENERAL Ul PORT 2 -1 J 2 t

D14 - - A7 B7 EXTDB 1-3 J 1-4 -

D1 - As B EXTh HIGH-SPEED SERIAL INTERFACE(SM-OSPI) -
OVCOPIC II K J1-37 31-3 PCO

GLKDUT I -10 PWMA

\ PTIDSCLK

RG FTiD CLK
10k S - J4-1 J4-2 - Eii

RESIST BE GND J4-3 J4 IKPTDSCLK

\ -1 1K GND J4-5 J, FREEZE
- - A 1 RESET J4-7 J4 IPIPE1/DSI

VCC 34- J4-1I IPIPEOD IS

Figure 5. 68HC 16 Module Schematic

78

C14 V S

MOSI Lu
50K6

PCSD1 t

V-D~lTF

IXO ~ ~J~iIL1JJTiJJJJ

ADD R2 FD

AXD AD:R F! _______ at ca e _'

AD ADTXTD 0F00 R
AD 1 ADRi 0 2 1 >,
AD2 ADDR FAIF2114

AD V ADOE DATA
ADD ?8 ADDR3 AA
AI l ADDRID 11T111 DAIA 0

Al ADORil 65 61C 1 DAI
Ak - A)ORB? DATA?3

A1 Df- DATA 1 i O

ADORi?1 DATAD 01
AD O-_) :RI DAT~l l

A13 VDDE1 DT~l ~ D
A1 EDR1 DATlS D

ADDA15 D -i
31S ' ADDIAJ DATA t

ADDRRO C AA3 ADAI1 DSACD.1 ' 0 AD114 41DE2 0 JA1 4

ADAD
VoE- 1 OE - u

4J -JA

L)E
ADC- - CG

1 IAL 2 EV 1

Figure 6. 68 HC16 Moule Schematic (continued)

79

R2 'ACC
2' 1 k J3-8

C7. X1AL 7 CTS

RFACC

J3-

7

RTS
2 T11fd 2 EXTAL TXD

J3-2

CG VCC RXD

_ 22UF
CND T21N T20UT ,

C
RiDUi Riled

RXD J3-3

TXD

Rt 1 -17 20 R20UT R21N 1g
GND

r - _

J2 ff R P = C1 C2+
f

PL J1 C1- CZ+
+ Ci PH RESET RESET V_ C2- FIR,

_ CND 7r- CZ 1

GND GND i

u-D9 6

PIS&Ef1
A L1

D1 JU5

t'PREREG G14D } ® _ n1

Lt

MjH

JT 1dCC Ucc C OPTIONAL t C2 TD1

ilIF _ 1L1

1 + in + 211 200
Cd

2r4 ,. 22UF

I t airE
1 JU3 2

GND

_ ,in AU [r 3n " _ C G9 spa T 1 cr! I', DOB

1 Al 1 D3 l T f Dli
U
, ;, D1t} + ? '{ 56 C D1G

R4 AUZ A2 -
33 A3 D11 D11

itlk A ' Al F. D12 N DFId'~- D12

DOD-- AU5 AU D13 MIS ' As DOS D13

AUG a AS D14 4 Af, 00, to D14

K07 3 A7 I if D13 - 3 A7 DG7 N D1S

R3 18 AS d 48
10k A09 AUA10 VOCD09 ::A 1 __1_7 All %CC

A13 I A 1 , A13 C12 A13 A13 G91
A14 0141' -- -" A14 U pF

rND TS
vCC V'PP GND- GND L - CEIDf 10 - CSB. CTIRDN4 --

CTS 'MR-AT01 - WE TL
A14

1 1cC
32kx B-BIT HIGH-SPEED - 13 RAI IJ 32k x MIT CMOS EPROIA

Figure . C 16 Module Schematic (continued)

80

APPENDIX C
Client/Server Implementation Code

/client source code
/These are some of the main function implemented

void CChatRoomDlg::OnBtnsend()

{
// TODO: Add your control notification handler code here
SetDefaultCharFormat4 puto);
SendPkg);

}
void CChatRoomDlg::OnClose()

{
// TODO: Add your message handler code here and/or call default
if(bConnected fl bSignln){

MessageBox("Pls log off before you
leave.",NULL,MB _OKIMB_ICONWARNING);

return;
}
Finalize();
SavelniFileo;
CExpandingDialog::OnClose(;

}
void CChatRoomDlg::Finalize()
{

if(m pArchiven != NULL){
delete mpArchiveln;
mpArchive~n = NULL;

}
if(mpArchiveOut != NULL){

delete mpArchiveOut;
mpArchiveOut = NULL;

}
if(mpSocketFile != NULL){

delete mpSocketFile;
m _SocketFile = NULL;

}

if(m pClientSocket != NULL && bConnected) {
bConnected = FALSE;
bSignln = FALSE;
mpClientSocket->CloseO;
delete mpClientSocket;

}

81

}

void CChatRoomDlg::AssemblePkg(CPkg& pkg)

{
pkg.Init();
//the next 5 are for client side

m_wnd put. GetWindowText pkg.strText); //1
pkg.strName = _strScreenName; /1/2

pkg.bAway = bAway; //3

pkg.iMylcon = m_iMyIcon; /14

pkg.bBold = bCharBold; //5

pkg.bltalic = bCharltalic; //6
pkg.bUnderLine = bCharUnderline; /17
pkg.bStrikeOut = bCharStrikeOut; //8

pkg.clrText = cirChar; //9

pkg.fontName = rnfontName; H10
pkg.fontSize = mfontSize; /I

// pkg.ipAddress //12 reserved for

Server
// pkg.request = UNDEFINED; //13 reserved

// pkg~pSocket 1114
reserved for Server

/ pkg.port 1115
reserved for Server

void CChatRoomDlg::SendPkg()
{

if(!bConnected I !bSign n){
m_wndlnput.SetWindowText("")
return;

}

CPkg pkg;

AssemblePkg kg);

pkg.request = MESG;

try{

82

pkg.Serialize(*rnpArchiveOut);
mpArchiveOut->Flush();
m-wndnput.SetWindowText("");

}
catch(CFileException* e) {

TCHAR lpszError[255];
e->GetErrorMessage(lpszError,255);
AfxMessageBox(lpszError);
exit(O);

}
}

void CChatRoomDlg::ConnectServer(CString serverlp,UINT port)

{
//Create the socket, as well as the initialization of the socketfile and archive

mpClientSocket = new CChatSocket(this);

rnpClientSocket->Create();

mpSocketFile = new CSocketFile(mpClientSocket);
m-pArchiveln = new CArchive(mpSocketFile,CArchive::load);

m-pArchiveOut = new CArchive(m_pSocketFile,CArchive::store);

while(!r pClientSocket->Co ect(serverlp,port)) {
if(MessageBox("Not Connected. Do Yo want to try again?","Connecting

Server ...",MB ICONQUESTIONIMB_YESNO)=DN0) {
FinalizeO;
return;

}
}
bConnected = TRUE;

void CChatRoomDlg: :ParsePkg()

{
CPkg pkg;

try{
do{

pkg.Serialize(*mpArchiven);
}while(!mpArchiveIn->IsBufferEmpty());

}catch(CFileException* e) {
mrpArchiveln->AbortO;

I

if(pkg.request == SIGNIN){

83

bSignn = TRUE;
m_hlcon = (HICON)mimgContactList.Extractcon(iMyIcon);

//only now, all the authentication done, we can really begin talking..
/set the default char format for Input window - yh
SetDefaultCharFo at4Input();

}

if(pkg.request == SIGNOUT){
bSignn = FALSE;
m_wndShow.ShowMessage(pkg);
OnSignOut();

}

if(pkg.request == SVRSTOP) {
m_wndShow.ShowMessage("Server",pkg.strText);

}

if(pkg.request == SVRSTART){
m_wndShow.ShowMessage("Server",pkg.strText);

I

if(pkg.request == NEW){
I/update the contact list - yh

CString strTmp = pkg.strName;
m nameString.RemoveAll();

_wndShow.ShowMessage("SeVer",pkg.strText);

int index;
while((index=strTmp.Find(";"))!=-1){

CString name = strTnp.Left(index);
mnameString.Add(name);
strTmp = strTmp.Right(strTmp.GetLength() -(index+1));

}

UpdateListBox();

if pkg.request == OFF) {

m_ ndShow.ShowMessage("SerVer",pkg.strText);
CString strTmp = pkg.strName;
m nameString.RemoveAll();

it index;

while((index=strTmp.Find(";"))!L1) {

84

CString name = strTmp.Left(index);
rnameString.Add(name);
strTmp = strTmp.Right(strTmp.GetLength() -(index+1));

}

UpdateListBox();
}

/ if(pkg.request == SERVER){
// rnwndShow.ShowMessage(pkg);
// }

if(pkg.request == CONN){
rwndShow.ShowMessage pkg);

}

if(pkg.request == MESG){
if(!pkg.strText.IsEmpty()

m_wndShow.ShowMessage pkg);
}

}

void CChatRoomDlg::OnConnect()
{

1/ TODO: Add your command handler code here
CConnectDlg dlg;
if(bConnected){

bConnected = FALSE;
// if(bSignln){

bSignln = FALSE;
// CString tmp;
// tmp.Format("%s just logged off.", mstrScreenName);
// m_wndShow.ShowMessage("Server",tmp);
I// }

SendPkg(OFF);
return;

}
if(dlg.DoModal() == IDOK){

CString strTmp = dlg.GetIpAddress();
m_strServerIP = strTmp;
ConnectServer(strTmp,1500);
return;

}

}

85

void CChatRoomDlg::OnSi ()
{

// TODO: Add your command handler code here
CSi lg dlg;
if(!bConnected) return;
if(bSignln) return;
if(dlg.DoModal() == IDOK){

m_strScreenName = dlg.GetName();
if(mstrScreenName.IsEmpty()) return;
SendPkg(NEW); //sign in, then send the NEW request to the server -

yh
bSignIn =TRUE;
SetDefaultCharFormat4Input();

}
}

CString CChatRoo lg::GetServerIP()

{
return rstrServerIP;

}

CString CChatRoomDlg: :GetScreenName()
{

return mstrScreenName;
}

void CChatRoonDlg::OnMylogo()

{
// TODO: Add your command handler code here
CIconDlg dig;
if(dlg.DoModal()== IDOK){

m iMylcon = dlg.GetMylcon();
mn_hcon = (HICON)m_imgContactList.Extractlcon(miMylcon);
Setlcon(m_hlcon,TRUE);
SetIcon(_h con,FALSE);

}
void CChatRoomDlg::OnAway()

{
// TODO: Add your command handler code here

bAway = !bAway;

}
void CChatRoomDlg::OnDetails()

86

{
// TODO: Add your control notification handler code here

}

// update the list box on the right regarding the current name list -yh
void CChatRoomDlg::UpdateListBox()
{

m wndContactList.ResetContent();
for(int i=0;i<m n eString.GetSize();i++){

CString name = mnameString.GetAt(i);
m_wndContactList.IsertString(i,name);

}
}

// send the pkg stream to the server with indicating request - yh
void CChatRoomDlg::SendPkg(int request)
{

CPkg pkg;
AssemblePkg(pkg);
// send a quest to the server
pkg.request = request;

try{
pkg.Serialize(*mpArchiveOut);
mpArchiveOut->Flush();
mwndnput.SetWindowText("");

}
catch(CFileException* e){

TCHAR lpszError[255];
e->GetErrorMessage(lpszError,255);
AfxMessageBox(lpszError);
exit(0);

}
}

void CChatRoomDlg::OnUpdateConnect(CCmdUI* pCmdUI)
{

// TODO: Add your command update UI handler code here
pCmdUI->SetCheck(bConnected);

}
void CChatRoomDlg::OnUpdateAway(CCmdUI* pCmdUI)
{

// TODO: Add your command update UI handler code here
pCmdUI->Enable(bConnected && bSignIln);
pCmdUI->SetCheck(bAway);

}

87

void CChatRooimDlg: :OnUpdateSignln(CCmdUl* pCmdUI)
{

// TODO: Add your command update UI handler code here
pCmdUl->Enable(bConnected);
pCmdUI->SetCheck(bSignln);

void CChatRoo lg: OnppAbout()
{

// TODO: Add your command handler code here
CAboutDlg dlgAbout;
dlgAbout.DoModal();

}
void CChatRoonDlg::OnSignOut()

{
// TODO: Add your command handler code here
if(bConnected && bSignln){

bConnected = FALSE;
bSignIn = FALSE;
CString tmp;
tmp.Format("%s just logged off.", m_strScreenName);
mn wndShow.ShowMessage("Server",tmp);
SendPkg(OFF);

m_nameString.RemoveAll();
m_wndContactList.ResetContent();
return;

}

void CChatRoomDlg::LoadlniFile()
{

CFile iniFile;

if(iniFile.Open("Config.dat",CFile::modeNoTrnncatelCFile::modeCreatelCFile::m
odeRead)){

if(iniFile.GetLength() 0) return;

CArchive* ar = new CArchive(&iniFile,CArchive::load);

*ar >> r_strSeerIP;
*ar >> r_strScreenName;

*ar >> bCharBold ;
* >> bCharltalic;

88

*ar >> bCharUnderline ;
*ar >> bCharStrikeOut ;
*ar >> clrChar ;
*ar >> m_fontName ;
*ar >> m_fontSize;

/for combo
int nlndex;
*ar >> nIndex;

m_ wndRichTextBar.m_cmbFontSize.SetCurSel(nIndex);

*ar >> nlndex;

m_wndRichTextBar.m_cmbFontName.SetCurSel(nIndex);

delete ar;

iniFile.Close();

}

}
void CChatRoomDlg::SavelniFile()
{

CFile iniFile;
if(iniFile.Open("Config.dat",CFile::modeNoTruncatelCFile::modeCreatelCFile::m

odeReadWrite)){

/ if(iniFile.GetLength() == 0) return;

CArchive* ar = new CArchive(&iniFile,CArchive::store);

*ar << m_str ererrP;
*ar << mstrScreenName;

*ar << bCharBold;
*ar << bCharItalic ;
*ar << bCharUnderline ;
*ar << bCharStrikeOut;
*a << clrChar ;
*ar << m_fontName ;
*ar << m_fontSize ;

/for combo
int nIndex = m wndRichTextBar.r_cmbFontSize.GetCurSel(;
*ar << nIndex;

89

nIndex = m_wndRichTextBar.m_cmbFontName.GetCurSel();
*ar << nndex;

ar->Flush();

delete ar;
iniFile.Close();

}
}

/SERVER IMPLEMENTATION SOURCE CODE

BOOL CChatServer::OnlnitDialog()
{

CPropertyPage::0 itDialog();

/ Create the ToolTip control.

m_tooltip.Create (this);
m tooltip.Activate (TRUE);

I TODO: Use one of the following forms to add controls:
1/ mtooltip.AddTool (GetDlgltem (DC_<name>), <string-table-id>);
// m_tooltip.AddTool (GetDlgltem (DC_<name>), _T ("<text>"));

/set imagelist for the listctrl
mimgComputer.Create(1 6,16,TRUE,1,1);
mimgComputer.Add(AfxGetApp()->LoadIcon(IDICON1));

/start listening
BeginListening(1500);

retum TRUE;
}

void CChatServer::OnStart()
{

// TODO: Add your control notification handler code here
bListening = !bListening;

CString strTitle;
CButton* pButton = (CButton*)GetDlgItem(DC_START);
pButton->GetWindowText(strTitle);

90

if(strTitle = "Start") {
if(!mContactList.IsEmpty()){

Update nfo2All("Server is now starting listening
again.",SVRSTART);

}
str Title = "Stop";
CStatic* pStatic = (CStatic*)GetDlgtem(IDC IPADDRESS);
pStatic->SetWindowText(GetServerp());
pStatic->EnableWindow(TRUE);

}
else{

Updatelnfo2All(
" The Server is now stopping listening.But your Li still exists.

Pis try again later. Sorry for any inconvinience.",
SVRSTOP);

strTitle = "Start";
CStatic* pStatic = (CStatic*)GetDlgltem(IDCIPADDRESS);
pStatic->SetWindowText(GetServerIP());
pStatic->EnableWindow(FALSE);

}

pButton->SetWindowText(strTitle);

I

void CChatServer: :SetOwner(CMainSheet *pMainSheet)
{

mpMainSheet = pMainSheet;

I

BOOL CChatServer::BeginListening(UINT port)

{
ASSERT(mpListenSocket = NULL);

if(!m_ContactList.IsEmpty()
CloseAllClients();

mpListenSocket = new CListeningSocket(this);
mpListenSocket->Create(port);

// bListening = TRUE;
return m pListenSocket->Listen();

// ((CEditView*)m viewLis.GetHead())->SetWindowText(T("Begin
listening ...));

91

void CChatServer::ProcessClientPkg(CClientSocket *pSocket)

{
CPkg pkg;
ASSERT(pSocket);

try{

/ the next line of code was first not included in the bListening == FALSE
block

// and caused some error: for that part the Archive buffer was just full.
// Now I moved it outside of the if-else block so that it applys both parts.
pSocket->ReceivePkg(&pkg);
if(bListening){

if(pkg.request = NEW){
if(IsThisNameBeingUsed(pkg,pSocket)) {

Server2Indivisual(pSocket,"Sorry. The screen name
is being used. Try using another one.Thank you.",SIGNOUT);

return;
}

UpdateClient fo(&pkg,pSocket);
CString strReminder;
strReminder.Format("%s just signed in.", pkg.strName);

UpdateListCtrl();
Updatelnfo2All(strReminder,NEW);

// log message sent to the log page
CTime time= CTime::GetCurrentTime();;
CString strTmp = time.Format(" Time is: %H:%M:%S.

Date is: %A, %B %d, %Y");
strReminder += strTmp;
mpMainSheet->SetLogMessage(strReminder);

}
if(pkg.request =- OFF){

CString strReminder;
strReminder.Fo at("%s just logged off.", pkg.strName);

Delete ndivisual(pkg.strName);
UpdateListCtrl();
Update nfo2All(strReminder,OFF);

// log message sent to the log page
CTime time= CTime: :GetCurrentTime();;

92

CString strTmp = time.Format(" Time is: %H:%M:%S.
Date is: %A, %B %d, %Y");

strReminder += strTmp;
m-pMainSheet->SetLogMessage(strReminder);

if(pkg.request == MESG){
UpdateClient fo(&pkg,pSocket);
Send2AllClients(&pkg);

}
}

}
catch(CFileException* e){

TCHAR szCause[255];
e->GetErrorMessage(szCause,255);
AfxMessageBox(szCause);

}
}

void CChatServer::Send2AllClients(CPkg *pkg)
{

for(POSITION pos = m_ContactList.GetHeadPosition(); pos != NULL;) {
CPkg* pClient = (CPkg*)mContactList.GetNext(pos);
ASSERT(pClient);
CClientSocket* pSocket = (CClientSocket*)pClient->pSocket;
ASSERT(pSocket);
try{

pSocket->SendPkg(pkg);

}
catch(CFileException* e) {

TCHAR szCause[255];
e->GetErrorMessage(szCause,255);
Afx MessageBox(szCause);

}
}

}

void CChatServer::CloseAllClients()

{
for(POSITION pos = m_ContactList.GetHeadPosition();pos ! NULL;) {

CPkg* pClient = (CPkg*)mContactList.GetNext(pos);
ASSERT(pClient);
CClientSocket* pSocket = (CClientSocket*)pClient->pSocket;
pSocket->Close();
if(pSocket != NULL) {delete pSocket;pSocket = NULL;
// pSocket->Finalize();

93

delete pClient;

pClient = NULL;
}
m_ContactList.RemoveAll();

}

void CChatServer::CloseListening(
{

if(m pListenSocket = NULL) return;

//close the linked client and clear up the contact list
CloseAllClients();
mpListenSocket->Close();
delete mpListenSocket;

mpListenSocket = NULL;
bListening = FALSE;

}

//when got a connection message from a client
void CChatServer::ProcessAccept()
{

CClientSocket* pSocket =new CClientSocket(this);
mpListenSocket->Accept(*pSocket);
pSocket->Init();

CString ipAddress;
UINT port;
pSocket->GetPeerName(ipAddress,port);

//send the connection confirmation to the client,add to the list - yh
CPkg pkg;
pkg.Init();
pkg.strName = _T("Server");
pkg.strText = "Connected. Please Sign in now
pkg.clrText = RGB(0,,0);
pkg.bBold = 1;//bold
pkg.fontName = "system";
pkg.fontSize = 12;
pkg.clrText = RGB(,,255);//blue
pkg.request = CONN;

pSocket->SendPkg(&pkg);

94

CPkg* pTmp;
pTmp = new CPkg;
ASSERT(pTmp);

pTmp->Init(;
pTmp->ipAddress = ipAddress;
pTmp->port = port;
pTmp->pSocket = (DWORD)pSocket;

if(mContactList.IsEmpty()){

m_ContactList.AddHead(pTmp);
}
else{

m_ContactList.AddTail Tmp);
}

}
void CChatServer::Server2Individual(CString name, CString strMessage,int request)
{

for(POSITION pos = mContactList.GeteadPosition(); pos != NULL;){
CPkg* pClient = (CPkg*)mContactList.GetNext(pos);
ASSERT(pClient);
if(pClient->strName != name) continue;
try{

CClientSocket* pSocket = (CClientSocket*)pClient->pSocket;
ASSERT pSocket);

CPkg pkg;
pkg.Init();
pkg.strName = _T("Server");
pkg.strText = strMessage;
pkg.clrText = RGB(0,,O);

pkg.bBold = 1;//bold
pkg.clrText = RGB(0,0,255);//blue
pkg.fontName = "system";
pkg.fontSize = 12;
pkg.request = request;
pSocket->SendPkg(&pkg);

}
catch(CFileException* e){

TCHAR szCause[255];
e->GetErrorMessage(szCause,255);
AfxMessageBox(szCause);

}
}

95

}

void CChatServer: :Server2Individual(CClientSocket* pSocket, CString strMessage,int
request)
{

for(POSITION pos = mContactList.GetHeadPosition(); pos != NULL;){
CPkg* pClient = (CPkg*) ContactList.GetNext pos);
ASSERT(pClient);
if((CClientSocket*)pClient->pSocket != pSocket) continue;
try{

CClientSocket* pSocket = (CClientSocket*)pClient->pSocket;
ASSERT(pSocket);

CPkg pkg;
pkg.nit();
pkg.strName = T("Server");
pkg.strText = strMessage;
pkg.clrText = RGB(0,0,0);

pkg.bBold = 1;//bold
pkg.fontSize = 12;
pkg.clrText = RGB(0,0,255);//blue
pkg.fontName = "system";
pkg.request = request;
pSocket->SendPkg(&pkg);

}
catch(CFileException* e){

TCHAR szCause[255];
e->GetErrorMessage(szCause,255);
AfxMessageBox(szCause);

}
}

}

void CChatSeer::Update nfo2All(CString msg,int request)

{
CPkg pkg;
CString nameString =

for(POSITION pos = m_ContactList.GetHeadPosition(; pos != NULL;){

CPkg* pClient = (CPkg*)mContactList.GetNext(pos);
nameString += pClient->strName;
nameString += ";";

for(pos = mContactList.GetHeadPosition(); os != NULL;){

96

CPkg* pClient = (CPkg*)_ContactList.Get extpos);
pkg.bBold = 1;//bold
pkg.clrText = RGB(0,0,255);//blue
pkg.strName = nameString;
pkg.strText = msg;
pkg.request = request;

try{

CClientSocket* pSocket = (CClientSocket*)pClient->pSocket;
ASSERT(pSocket);
pSocket->SendPkg(&pkg);

}
catch(CFileException* e){

TCHAR szCause[255];
e->GetErrorMessage(szCause,255);
AfxMessageBox(szCause);

}
}
nameString =

void CChatServer::UpdateClient nfo(CPkg* pPkg,CClientSocket* pSocket)

{
ASSERT(pSocket);
ASSERT(pPkg);

/ CString name = pPkg->strName;

for(POSITION pos = mContactList.GetHeadPosition(;pos != NULL;){
CPkg* pTmp = (CPkg*)mContactList.GetNext(pos);
if pSocket == (CClientSocket*)pTmp->pSocket) {

pTmp -> strText = pPkg->strText; //update the
pkg info from client

pTmp -> strName = pPkg->strName;
pTmp -> bAway = pPkg->bAway;
pTmp -> iMylcon = pPkg->iMylcon;
pTmp -> bBold = pPkg->bBold ;
pTmp -> bltalic = pPkg-> bItalic;
pTmp -> bUnderLine = pPkg->bUnderLine;
pTmp -> bStrikeOut = pPkg->bStrikeOut;
pTmp -> clrText = pPkg->clrText;
pTmp -> fontName = pPkg->fontName;
pTmp -> fontSize = pPkg->fontSize;

97

/ pTmp -> ipAddress pPkg->ipAddress;
/ pTmp -> port pPkg->port;

pTmp -> request pPkg->request;
/ pTmp -> pSocket = pPkg->pSocket;

pPkg->ipAddress = pTmp->ipAddress;
pPkg->port = pTmp->port;
pPkg->pSocket = pTmp->pSocket;

return ; //successful in update

}
}

}

void CChatServer::Deletelndivisual(CString name)
{

for(POSITION pos = m_ContactList.GetHeadPosition();pos != NULL;){
CPkg* pClient = (CPkg*)mContactList.GetAt(pos);
ASSERT(pClient);
if(pClient->strName == name) {

m_ContactList.RemoveAt(pos);
CClientSocket* pSocket = (CClientSocket*)pClient->pSocket;
pSocket->Close();
delete pSocket;
pSocket = NULL;
delete pClient;
pClient = NULL;
break;

}
else{

m_ContactList.GetNext(pos);
}

}
}

void CChatServer::UpdateListCtrl()

{
mClientListCtrl.DeleteAllitems();

m_ClientListCtrl.SetlmageList(&m _imgComputer,LVSIL_SMALL);
LV_ITEM lvltem;

int iActualltem,iltem,iSub;

it length = m_ContactList.GetCount();
for(iltem=;iltem<length;iltem++){

98

CPkg* pTmp =
(CPkg*)_ContactList.GetAt(m _ContactList.Findndex(item));

LPTSTR ipAddress = Tmp->ipAddress).GetBuffer(pTmp-
>ipAddress.GetLength());

CString tmp;
tmp.Format("%d",pTmp->port);
LPTSTR port = tmp.GetBuffer(tmp.GetLength());

for(iSub = O;iSub<3;iSub++){
lvItem mask = LVIF_TEXTI(iSub == 0? LVIF_IMAGE:0);
lvItem.iltem= (iSub == 0)? iltem : iActualltem;
lvltem.iSubltem = iSub;
lvltem.ilmage =0;
lvItem.pszText = ""; /even you don't need this member,still

declare it!
if(iSub == 0)
iActualltem = mClientListCtrl.nsertltem(&lvltem);

else{
if(iSub == 1)

lvltem.pszText = ipAddress;
else if(iSub == 2)

lvltem.pszText = port;
m_ClientListCtrl.Setltem(&lvltem);

}
}

}
}

CString CChatServer::GetServerIP()
{

char szHostName[200];
gethostname(szHostName,strlen(szHostName));
LPHOSTENT pHost;
pHost = gethostbyname(szHostName);
struct in addr* ptr = (struct inaddr*)pHost->hpaddrjlist[0];
int a = ptr->_un.S_un_b.s_b1;
int b = ptr->S un.S_ _b.s_b2;
int c = ptr->S_un.S_un b.s_b3;
intd = ptr->S un.S_un_b.s_b4;

CString strTmp;
strTmp.Format("%d.%d.%d.%d",a,b,c,d);
return strTmp;

}

99

	Florida International University
	FIU Digital Commons
	12-2-2002

	Remote experimental station for engineering education
	Muralidhar Doddapuneni
	Recommended Citation

	tmp.1501618943.pdf.j4HlF

