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The development of a robotic slit-lamp for remote ophthalmology is the

primary  purpose  of  this  work.   In  addition  to  novel  mechanical  designs  and

implementation, it was also a goal to develop a control system that was flexible

enough  to  be  adapted  with  minimal  user  adjustment  to  various  styles  and

configurations  of  slit-lamps.   The  system  was  developed  with  intentions  of

commercialization,  so  common  hardware  was  used  for  all  components  to

minimize  the  costs.   In  order  to  improve  performance  using  this  low-cost

hardware, investigations were made to attempt to achieve better performance by

applying  control  theory  algorithms  in  the  system  software.    Ultimately,  the

controller was to be flexible enough to be applied to other areas of human-robot

interaction including pediatric rehabilitation via the use of humanoid robotic aids.

This  application  especially  requires  a  robust  controller  to  facilitate  safe

interaction.  Though all of the prototypes were successfully developed and made

to work sufficiently with the control hardware, the application of advanced control

did not yield notable gains as was hoped.  Further investigations were made
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attempting to alter the performance of the control system, but the components

selected did not have the physical capabilities for improved response above the

original  software  implemented.   Despite  this  disappointment,  numerous novel

advances were  made in  the  area of  teleoperated ophthalmic  technology and

pediatric physical  rehabilitation tools.   This includes a system that  is used to

remote control a slit-lamp and lens for examinations and some laser procedures.

Secondly, a series of of humanoid systems suitable for both medical research

and therapeutic modeling were developed.  This included a robotic face used as

an interactive system for ophthalmic testing and training.  It can also be used as

one component in an interactive humanoid robotic system that includes hands

and  arms  to  allow  use  of  teaching  sign  language,  social  skills  or  modeling

occupational therapy tasks.  Finally, a humanoid system is presented that can

serve  as  a  customized  surrogate  between  a  therapist  and  client  to  model

physical therapy tasks in a realistic manner.  These systems are all functional,

safe and low-cost to allow for feasible implementation with patients in the near

future.   
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1. INTRODUCTION

Advances in the medical arts has increased rapidly over the past century.

Though these improvements have been on many fronts, technology has been

one of  the leading factors in  improving treatments.   Robots are one of the

newest types of technology to be applied to this field and their acceptability and

use have increased dramatically in a short period of time.

Robots have numerous current and potential uses in health care.  They can

be used in  hospital  and clinical  settings as well  as in  homes.   Some uses

include remote interactive patient consultations, home assistive care, cleaning,

social  companionship  and  activity,  active  prostheses,  drug  delivery,

rehabilitation and surgery.  These robots range from the nano-scale to large

devices that occupy much of an operating room.

While  all  types  of  medical  robotics  are  undergoing  active  research  and

advances, the work presented here focuses on robots used in ocular surgery

and pediatric rehabilitation.  While these areas seem different, there are many

overlapping  areas  of  research  and  concern.   In  addition  to  creating  two

prototypes  for  the  ophthalmic  robot  and  example  robots  for  physical

rehabilitation, a control system is developed that can be used to adequately

control any type of robot with similar requirements.
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1.1 Motivation

Ocular disease and problems affect 285 million people worldwide [71].  It is

estimated that up to 75% of worldwide blindness is preventable [106].  Two

major reasons include high costs and the availability of ophthalmologists within

easy travel distances.

Many of those lacking proper care are in rural  areas or underdeveloped

nations.  While there have been attempts to provide care to these individuals

such as utlizing the Flying Eye Hospital, the needs of many populations are not

being met.  Further, patients with conditions that require special expertise may

not  receive  the  best  care  when  only  physicians  of  other  specialties  are

available to provide treatment.

Some solutions include increasing the localized access of care, increasing

the number of physicians trained in specialized treatments, and reducing the

operating costs of clinics and practices that perform ophthalmic services.

Robotic technology can solve many of these issues, though upfront costs

can still be high.  By utilizing standard communication networks, an ophthalmic

robot can be controlled and monitored remotely by a physician in nearly any

location.  This allows care by specialized physicians to remote areas including

rural  villages,  battlefields  and places of  scientific  exploration.   Patients  can

have  more  options in  selecting  who provides their  care,  such as  a trusted

physician in another location or an expert for a rare condition.  Care can be
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provided  by  one  physician  or  coordinated  to  simultaneously  include  any

combination of specialists and medical personnel from a variety of locations.

This not only improves patients’ options and quality of care, but also provides a

means of educating and training a pool of physicians about rare conditions and

new treatment options.  

Though the robots in each location will require an initial investment, some

costs savings are possible in the long run. Physicians can use teleoperated

robotic technology to reduce their travel time and costs.  For instance, even if

they are the only specialist in a region, they can work from home or a single

nearby office by connecting to robots located at remote service points.  These

points could be shared medical offices, hospitals, clinics or even mobile units

parked or scheduled in libraries, assisted living facilities, homes or any other

appropriate location.  They can also increase the number of patients seen daily

whether  local  or  spread  over  a  wide  geographical  area  by  allowing  the

physician  to  nearly  instantaneously  switch  from  one  robot  to  another.

Physicians can operate in clinics located in areas where they may not have the

desire to live or that may not fully support the income they wish to receive.  By

offering their services in a more affluent area at higher rates and also providing

remote services in other areas at much lower rates, physicians can serve a

wider range of populations while maintaining their desired lifestyle.

In addition, robots offer several additional advantages in many procedures

including improved accuracy, endurance, hygiene, and dexterity. Hand tremors

3



are a major issue in eye surgery since these movements in healthy individuals

can be 312  μm wide when holding an instrument steady and larger  during

motions [97].   The sizes of the structures in the eye are such that this is a

significant proportion in some procedures. Robots reduce and eliminate these

tremors so that components such as the lens holder and laser are held steady

and stable  [113].  A robot may also be able to hold a position and automate

simple routine tasks, reducing the effort and strain on the ophthalmologist.  In

many cases, a robot can offer more degrees of freedom (DOF) and more ideal

kinematics for performing procedures – especially because the structures of

the eye are so small and scale of motion is very different than normal human

movements.  Finally,  a robot can be covered and sterilized more effectively

than a physician so that the occurrence of disease transmission is reduced. 

In addition to costs, the other major inhibitor to implementing robots for this

purpose  is  the  safety  of  their  use  in  direct  contact  with  humans.   This  is

especially a concern when a robot is being operated by a physician that is not

on-site.  Issues such as time delays and operation faults can lead to undesired

consequences.  A controller must be designed to not only be robust and fault-

tolerant, but it should be effective for a range of ophthalmic robots in order to

increase adoption and reduce costs.

These issues and concerns apply to other areas where medical robotics are

used remotely or with minimal supervision when interacting with patients.   Use

of robotics in physical rehabilitation is a second example provided here.

4



1.2  Goals

This  project  had  two  distinct  goals,  though  both  lead  to  the  ultimate

outcome of having a fully-functional ophthalmic robot that can be safely used

via  teleoperation.   In  addition  to  the  first  goal  of  designing  and  building  a

physical prototype, the second goal was to develop a control system that is

adaptable  and  robust  for  a  variety  of  slit-lamp configurations.   The  control

system was to be developed to be applied to other areas of medical robotics

with  pediatric rehabilitation robots being of the greatest interest.  Specifically,

this  means  that  the  control  system  can  be  used  safely  with  little  or  no

adaptation in a wide variety of human-robot interaction scenarios.

1.2.1 Ophthalmic Prototype

Goals for the primary prototype, dubbed OphthBot, include it being based

upon a standard slit-lamp that offers the full examination and treatment form

and functions with which nearly all ophthalmologists are familiar.  This not only

reduces the learning curve, but also can decrease the costs because the base

structure is an off-the-shelf piece of equipment that has been around for over a

century.  Ideally, the robotic portion of this project was to be made into a retrofit

kit to work on nearly any slit-lamp so that clinics can save money using what

they already have and physicians can use the particular model in which they

are most comfortable.  The prototype was to demonstrate that a robotic slit-
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lamp can provide examinations and treatments from a remote location with only

the aid of a nurse or medical assistant aiding the patient on-site.

1.2.2 Control Theory

Goals for the control system were to be able to operate an ophthalmic robot

from a remote location using standard communication methods, safely operate

despite time delays that may not be accurately known and may change quickly

over time, automatically adapt and work accurately with various slit-lamps, and

work safely in direct contact with patients.

Secondly, the control system was to be flexible and easily adapted for use

in other areas of human-robot interaction.  Specifically, a goal was to apply it

toward robotic technology for pediatric physical therapy.  The use in humanoid

robots for modeling is the specific example provided as it limits the scope and

has related uses to ophthalmic research. 

1.3 Significance

The prototype ocular robot was the first to be earnestly developed for the

market that is based on a tool very familiar to all ophthalmologist.  It was the

only robotic  tool  nearing commercialization at time of  publication that  offers

both full-featured examination abilities as well  as the ability to provide laser

surgeries for some ocular conditions via a remote platform.  Unlike specially-
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designed  robots,  this  device  was  based  on  slit-lamps  used  by  nearly  all

ophthalmologists  for  decades.  Modified  and  simplified  design  allows  for  a

system that can be purchased new and used in nearly any country and at

various prices.  This not only decreases the learning curve for the device and

reduces  the  financial  investment,  but  also  allows  the  system  to  be  easily

customized to suit the needs and preferences of physicians. 

The prototype rehabilitation robots bring novel improvements to technology

as well.  They provide a non-living, but animated and interactive platform to

allow for training and testing of medical devices.  They also can be controlled

remote control to facilitate a more tactile and visual proxy experience to allow

therapists  or physicians to quickly interact with  patients in  distant locations.

Next, humanoid robots can be used as a surrogate for a therapist to interact

with children on the autism spectrum to allow for more interaction during most

therapeutic encounters.  Finally, low-cost humanoid robots allow for kinematic

and  dynamic  adjustments  so  that  the  system  matches  the  physiology  and

anatomy of the child it will  help.  This allows for very realistic and accurate

modeling of the tasks as the client is able to perform them as well as showing

validation and acceptance of the child's unique appearance and abilities.
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2. ROBOTIC OCULAR SURGERY LITERATURE REVIEW

Before getting into the specifics in ocular robot technologies, it is helpful to

overview  some  of  the  key  developments  of  robotic  surgery  in  general.

Afterward, robotic ocular surgery components are presented.  Relevant issues

and current state-of-the-art are briefly surveyed.  After discussing laser use in

ophthalmology,  a  brief  discussion  of  current  open  issues  supported  by  the

preceding sections is provided.

2.1 General Robotic Surgery

Robotic surgery has been a reality since a PUMA was used in 1985 for a

brain biopsy [61].  Benefits of using robots to perform surgeries include smaller

incisions, better accuracy, tremor reduction [98], adjustments to scale [17], and

higher mobility [54].  All of these things benefit the patient by providing a more

directed  surgery  and  faster  recovery  time.   Robots  can  also  reduce  the

personnel involved in a procedure and reduce the operation time, cutting costs

for both patients and medical providers [74].  

It should be noted that it is not typically the intention of robotic surgery to

completely  replace  highly  trained  medical  personnel  including  operating

physicians.  Instead, robots are a powerful tool intended to improve a surgeon's

abilities utilizing the benefits listed above.  Given the increase in abilities, it is
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inevitable  that  some  personnel  will  no  longer  be  needed  such  as  multiple

assistants to hand over instruments or move a camera.  Instead, the surgeon

has control of these instruments via the control console [62].  The use of robots

may reduce the number of errors in the operating room [17] and can decrease

some costs by eliminating some assistants [74].  However, robots are not able

to make medical judgments, can malfunction and have their own maintenance

costs [87], and so they cannot in the near future replace skilled physicians,

nurses, nor all assistants.

A future benefit is the ability to perform surgeries remotely via teleoperation

[94].  While this is already the case in some instances either directly [69] or by

teleproctoring [29], it is not in routine nor widespread practice.  This feature

allows a specialist in one location to control a robot and perform surgery on a

patient in another location whether it is across the room or across the globe

[43].  This may be necessary if the patient is in critical need and does not have

time to travel or wait for a specialist to arrive.  Teleoperation may also be used

to remotely provide first-response care to soldiers and civilians in areas not

easily accessible due to geography, politics, disasters, and war.  It could also

be  a  tool  to  provide  care  when  distances  are  too  great  to  travel  for  any

specialized care, such as during a space exploration mission.

Robotic  surgery allows for  procedures to  be  performed by one or  more

physicians located right beside the patient or from a distance.  This not only

allows for more opinions and options for the patient to consider, but can also
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provide  a  means  for  training  surgeons  about  rare  conditions  and  new

procedures.  Information can be recorded to be used in virtual reality training

exercises and eventually to create a virtual training library.

While some of these benefits are not fully realized as of now due to costs

and communication abilities, robots were used in over 20,000 surgeries every

year as reported for 2010 [48] and over 360,000 procedures in 2011 [41] with

growth continuing. There are hundreds of robotic surgery systems in various

stages  of  development  [48]  [87].   By  far,  the  most  popular  surgical  robot

currently on the market is the da Vinci by Intuitive Surgical.  The da Vinci is

commonly used for certain types of surgery including hysterectomies, prostate

care, and thoracic surgeries [119].  Other popular surgical robots fully in use

target orthopedic surgeries.  These include MAKO Robotics's RIO for knee and

hip  replacement  surgery  [40]  and  Mazor  Surgical's  SpineAssist  and

Renaissance [103] for aiding spinal surgeries.  

Other surgical  robots are nearing mainstream use.  One of these is the

Raven surgical  system to compete with  da Vinci  with  a much smaller size,

weight and price tag [65].  It can also accommodate additional features such as

the ability to pump blood and maintain circulation during surgeries.  There are

numerous other systems as well that are targeting brain surgery [72].

While current robots are primarily used for intracorporeal  and orthopedic

surgeries,  there are  other  areas where  robot  technology can be employed.

One such area is in the eyes.
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2.2 Robotic Ocular Surgery

In this section, some fundamentals of ophthalmology are provided to aid in

the  understanding  of  the  robotic  device  and  procedures  it  performs.   The

current state-of-the-art in ocular robotic surgery is also detailed.

2.2.1 Ophthalmology Basics

Before delving fully into details of robotic eye surgery, a brief introduction to

ophthalmology is helpful.  Basic terms and structures in eye care, as well as

some  tools  used  in  this  area  of  medical  practice  are  described  in  the

subsections that follow.

2.2.1.1 Eye Anatomy and Physiology

The eye is a round organ approximately 24.2 mm in diameter in an adult [4].

It is composed of several layers and includes numerous parts that aid in the

retrieval  of  visual  information  from  the  environment.   A diagram  of  major

components of the eye are shown in Figure 2-1.
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Figure 2-1: Eye Anatomy [from nei.nih.gov]

2.2.1.2 Examination Procedures and Tools

A sample of basic equipment used in eye examinations include tonometers,

phoropters, retinoscope, refraction boxe and the slit-lamp biomicroscope.

The main instrument of concern for this work is the slit-lamp.  This device

was first developed in 1911 [115].  It is capable of a wide variety of examination

tasks and can also be fitted with accessories to accomplish a greater range of

uses.  The slit-lamp is mainly useful for examining the anterior of the eye and

can also examine the posterior segments with appropriate lenses [115].   In

addition to examinations, the slit-lamp also lends itself to be used in treatment

procedures as well.  This is because a laser can easily be integrated via an

adapter to be used in various ways as mentioned in the following section.
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A slit-lamp can come in a variety of configurations.  Most commonly, they

are split into two categories: a Zeiss-type or a Haag-Streit-type.  There are also

portable models that are handheld, but due to their limited options and lack of a

stationary base, those are not of primary focus here.

Slit-lamps have two major working components, the slit illuminator and the

microscope.  The light is transferred through optics via the Kohler illumination

principle [115] and is directed at the eyes.  Direct illumination is avoided in

modern instruments so that the image of the source is not reflected in the eye.

Through the use of  electronics,  optics,  and mechanical  adjustment,  several

aspects of the light output can be adjusted and comes out as the desired slit of

light.  These adjustments include the light intensity, height, width, color, and

angle.  The microscope is attached to a swinging arm and can manually be

adjusted for angle.  Magnification and focus are also adjustable.  The swinging

movements of the lamp and microscope arms are almost always coupled so

the entire device is parfocal and focus at the same point.  In Zeiss-type slit-

lamps, the light comes up from a source below the output point and usually a

Galilean magnification changer is used in the microscope.  In Haag-Streit-type

slit-lamps, the light source originates above the output point and a Grenough-

type of microscope may be used.  

The slit-lamp also includes other  parts.   Both  the lamp and microscope

portions are connected to a base platform.  This base platform sits on the table

surface connected by a cross-slide and is able to move back and forth as well
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as left and right.  Located so that an eye can be placed at the focal point, a

head rest assembly including a height adjustable chin bar and forehead rest, is

attached to  the  slit-lamp base.   This  is  where the patient’s  head is  placed

during the exam.  A small manually-moved focus light may be attached to this

assembly to provide a means for the ophthalmologist  to direct  the patient’s

gaze direction.

2.2.1.3 Treatment Procedures and Non-Robotic Tools

Laser  eye  surgery  is  typically  performed  by  the  ophthalmologist

manipulating instruments and a laser by hand while looking into a  binocular

microscope.   The  procedure success  depends  upon  the  dexterity  of  the

physician during what can be long and arduous procedures [102].  Due to the

risk  of  unintended  damage  from  a  hand  tremor,  patient  movement,  or  the

fatigue and strain on the surgeon's eyes and hands, robots are a good solution

to improve existing instruments [113].   Coupled with robotic technology,  the

ability to track along any eye movement is needed.  In many procedures, it is

preferred that the eye is not anesthetized and can move normally.

Lasers are used extensively in  eye  surgery for  a  variety of  procedures.

They have many benefits in ocular use including not requiring physical contact,

being precise,  and allowing for  many parameters to  be customized.   Laser

parameters  that  can  be  controlled  include  the  wavelength,  intensity,  pulse

duration, and spot size [68].  Different lasers can be used for different purposes
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in  order  to  utilize  different  ranges  of  wavelengths  and  energy  [34].   The

wavelength  is  important  to  ensure  effective  absorption  by  the  tissue  being

treated and the energy is important in ensuring the correct amount of tissue is

affected.

Most  well-known  are  the  refractive  surgery  uses,  such  as  with  vision

correction  in  LASIK  procedures.   In  these  instances,  excimer  lasers  ablate

small  portions  of  the  cornea  so  that  the  shape  is  altered  to  correct  visual

distortions  and  improve  vision [114].   Lasers  can  also  be  used  to  treat

glaucoma by lowering the intraocular pressure and to treat cataracts [68].

Lasers can also be used on the posterior segments of the eye, particularly

in  retinal  procedures.   They  can  help  treat  conditions  such  as  diabetic

retinopathy, vessel occlusions and retinal breaks [68].  These conditions are

treated by focal coagulation of the retinal pigment epithelium (RPE).  Points

can be targeted one at a time or, on some laser systems, certain patterns can

be selected for faster treatment [6].  One major issue with retinal procedures is

tracking movements  in  the back of  the eye so  the  laser  treats  the desired

points.  Failure to do this can cause unintended damage including blindness if

the wrong target is hit.  

There have been some investigations on tracking the retina using various

image processing tools [55] that have proven to be successful in clinical trials

[50].   These laser  systems are themselves robotic in  nature since they are

precisely controlled to perform at given locations at a variety of parameters that
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can be adjusted as previously mentioned [114].  Still, fully robotic systems have

been investigated for ocular use for years now and those are detailed in the

next section.

2.2.2 Current Ocular Robotic Systems

Ophthalmic uses of robotics are currently under development including the

Eye-RHAS (Eye Robot for Haptically Assisted Surgery) and PRECEYES [42],

IRISS  (Interocular  Robotic  Inverventional  and  Surgical  System)  [92],  and

Steady Hand Robots [78] [113].  By most accounts, certain procedures such as

LASIK are also considered robotic because mirrors or fiber optics are actuated

to quickly direct the laser beam at the desired target on the eye, even while the

eye  is  moving.  The  surgeon  does  little  intervention  once  the  procedure  is

started [87].

Robots have been tested for ophthalmic uses since at least 1992 [37].  An

early 6-DOF parallel robotic arm [36], simply referred to as “The Eye Robot,” is

shown in Figure 2-2.  It was not only used in live animal experiments, but was

also was used for testing the feasibility of adding haptic feedback [37].  Another

early  system  is  shown  in  Figure  2-3.   It  is  unnamed  and  was  created  to

experimentally prove  that  robotic  technology opened up the  possibility  of  a

wider range of procedures that could be performed within the eye, particularly

vitreoretinal drug delivery [122].  
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Figure 2-2: “The Eye Robot” [37]

Figure 2-3: Experimental ocular ultramicrosurgery robot [122]

The Steady Hand Robots have been created at Johns Hopkins University

for vitreoretinal surgery.  They aid in the control of an inserted instrument as

shown in Figure 2-4.  Force sensors are used to detect hand motion in order to

move the robot arm with the surgeon, while eliminating tremors and stabilizing
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the motion.  The first prototype, Eye Robot 1, had a positioning precision of five

microns,  but many other limitations.  The researchers worked to  obtain  the

specific goal of performing retinal vein cannulation, which would allow for direct

targeting of drug delivery to this structure [78].  Eye Robot 2 [113] was built to

improve  upon  some of  the  limitations  of  its  predecessor.   Rejected  design

decisions such as a six-bar mechanism in the manipulator were reconsidered

and implemented to give a greater range of motion rather than a more compact

design.

Figure 2-4: Steady Hand Eye Robot 1 [78]

Other designs have been introduced that include various parallel  robotic

arms.  These are popular due to the high stiffness and accuracy.  One of these
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devices uses two 6-DOF parallel robotic mechanisms to control the position of

a halo as shown in Figure 2-5 to gain very high precision [117] [32].  Another

device  (Figure  2-6)  uses  a  master/slave  system  and  has  been  specifically

designed for vitreoretinal surgeries and has proven to significantly reduce the

effect  of  tremors.   It  has  been  carefully  designed  for  the  demanding

specifications and sterilization abilities to ensure commercial viability [83].

Figure 2-5: Design for a surgical system using a halo positioned by two robotic arms [32]
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Figure 2-6: A parallel robotic arm for vitreoretinal surgery [83]

A novel design uses tiny MEMS-controlled pneumatic actuators to mimic the

motion of a human hand.  Tiny bladders are inflated and deflated in order to

make the 4-mm long fingers curl or straighten as shown in Figure 2-7.  The

system is able to lift and manipulate retina tissue and so shows promise for

performing as micro forceps in ocular procedures [48].  Another novel concept

is the OctoMag.  It utilizes eight electromagnets set at predefined angles to

direct an untethered metallic micro-robot similar to that shown in Figure 2-8 to

perform desired tasks [70].
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Figure 2-7: Microhand forceps closing under increasing pressure [48]

 

Figure 2-8: OctoMag micro robot [70]

IRISS was designed with the intention to perform all  types of intraocular

surgeries [92].   The robot serves as a slave and is controlled by a similar

master  console.   The  design focuses  on  maintaining  the  remote  center  of

motion (RCM) via both hardware and software controls.   Each stage of the

robot maintains a RCM as can be seen in Figure 2-9.
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Figure 2-9: IRISS eye surgery robot [92]

PRECEYES is a company that started as a spin-off from university research

in the Netherlands that included work on the Eye-RHAS control console [42].

The company hopes to be the first in the world to reach the market.  Toward

this goal, they are already the first robotic system used to actually perform eye

surgery [116].  The system, shown in Figure 2-10, consists of two arms that

help guide the surgical instruments.  The arms reduce tremors and also provide

haptic feedback.
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Figure 2-10: PRECEYES prototype [42]

In  addition,  proposals  to  use  da  Vinci  system  (Figure  2-11)  have  been

presented.  As it was with general robotic surgery, the high cost of the da Vinci

system is  a  problem in  quickly  gaining  widespread  use  of  this  system for

ophthalmic uses.  However,  discounting this with the assumption that many

medical centers now have these robots available anyway, it is interesting for

many to try to use these already-mainstream robots for ever more specialized

tasks.  An early test showed that it was feasible to use the da Vinci for eye

surgery, but it was much slower than using traditional instruments [111].  It was

suggested  that  developing  smaller  manipulators  for  the  da  Vinci  would  be

beneficial.  This sentiment was echoed two years later in [9] when the da Vinci

system was used to test  whether a more intricate procedure (a penetrating

keratoplasty operation) could be performed within a human head.  While the
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procedure  was  successful,  it  was  determined  that  the  da  Vinci  was  not

optimized  for  performing  eye  surgeries.   Vitreoretina  operations  are  never

attempted with the standard da Vinci since the 10-mm diameter manipulator

arms are much too large to safely enter the sclera [112].  In order to address

these issues, a research team has developed a parallel  robotic manipulator

called the Hexapod Surgical System (HSS) to be placed onto the da Vinci as

shown in Figure 2-12.  This system combines two proven technologies so that

a complete eye surgery can theoretically be performed with both intraocular

and extraocular tasks [10].  Further work is needed to fully realize the use of a

da Vinci robot for ocular surgeries, however.

 

 

Figure 2-11: da Vinci surgical robotic system [99]
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Figure 2-12: Hexapod Surgical System for micro-macro manipulations [10]

 

2.2.3 Current Ocular System Technologies

In this section, some current technologies, components and issues relevant

to ocular robotic surgery and examination systems are reviewed. 

Ocular robotic surgery has a few key aspects that make it different from

other types of robotic surgery.  One of these is the issue of scale.  Small errors

in position that are acceptable in general internal surgeries may not tolerable in

eye surgery.  The components of the eye are very small and delicate compared

to most  other organs such as the heart,  bones or  reproductive organs.   In

addition, some structures such as the retina are unable to fully heal if damaged

and are  also  hard  to  access both  visually  and  with  instruments  [78].   The

second key aspect is that any instruments that enter the internal parts of the

eye must not produce any forces on the outer eye surfaces.  Small tensions

that may be acceptable on skin can severely and permanently damage the

sclera other vital components.  Not only can this cause unnecessary scarring,

but it can lead to vision loss or blindness.
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Avoiding forces at the point of entry is a problem that is being tackled by a

variety of means.  One is by manipulator design.  This involves implementing a

remote center of motion (RCM) where the instrument has a motionless point

where the instrument sits at the sclera or other point of entry.  The manipulator

moves below this pivot point as the control mechanisms are worked above.  An

early  design  included  4-DOF  manipulator,  though  it  slowed  the  physician's

ability to perform tasks [38].  Another team utilized the concept of this system

with a robot manipulator and was able to show that precision and dexterity

could  be  greatly  increased  [78].   They  also  studied  the  phases  of  retinal

surgery and determined the minimal number of DOF needed for each step.

Tissue damage due to excessive forces from instruments is a great concern

in  many  types  of  surgery,  particularly  ocular  surgery.   In  the  case  of  eye

surgery, most of the force thresholds are too small for surgeons to manually

detect  as  they  are  outside  of  the  human  sense  of  touch  [39].   Currently,

surgeons use visual inspection to detect and avoid excessive force.  However,

by implementing  force  sensors,  these  micro-forces can be  sensed and  the

information can be used to aid physicians during delicate procedures.  This is

also a crucial  step in  order  to  make certain  maneuvers  autonomous in  the

future.

One  group  of  researchers  have  worked  to  measure  tool-tissue  forces

distally [109].  By using force sensors in the shaft and transmitting information

via  fibers  optics  to  the  tool  handle  outside  of  the  eye  (see  Figure  2-13),
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accurate vitreoretinal force information is obtained with a minimal increase in

the  inserted  portion of  the  instrument.   They have noted that  placing  force

sensors in other positions has severely decreased the accuracy and amplitude

of the readings. 

 

Figure 2-13: Fiber optic force sensors [109]

One  issue  with  control  of  robotic  manipulators  in  eye  surgery  is  the

guidance of surgical instruments.  The Steady Hand Robots hold instruments

and move according to  force applied by the surgeon's hand via admittance

control, reducing tremors in the process [78].  It also offers the great advantage

27



of holding the instrument position should the surgeon let go, allowing for the

surgeon  to  rest  and  avoid  fatigue  during  certain  procedures  such  as  the

injection of medication into a vein.  

As mentioned before, one of the problems with inner eye surgery is the

need to avoid stresses on the tissue at the insertion point.  Software, alone or

in addition to hardware, can be used to solve this issue.  Eye Robot 1 used

software to compensate for simplification of a six-bar mechanism to a compact

slider-crank mechanism in order to keep the RCM stationary. In contrast, Eye

Robot  2  uses a  more  complex mechanism to  maintain  the RCM and uses

control software only to improve the stability of the RCM. Information from force

sensors  aid  the  surgeon  by  encouraging  movements  that  cause  the  least

amount of  force on the tissue.  This algorithm is called “micro-force guided

cooperative control” and it showed promise as a solution when tested on raw

chicken eggs [113].

This chapter completes an overview of current surgical ophthalmic robots.

Some  background  on  an  existing  robotic  device  that  can  be  used  for

ophthalmic exams and additional control issues will be discussed in Chapter 4.
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3. PEDIATRIC ROBOTIC THERAPY LITERATURE REVIEW

This  chapter  discusses  the  state-of-the-art  of  robotic  technology  for

pediatric physical therapy.  It provides the foundation of another application for

the control systems developed later.

3.1 Robotics in Physical Therapy

Robots can be used in physical therapy in two ways.  One form is to use the

robot for assisting daily living tasks and the other is to use in physiotherapy.

Assistive examples include advanced prostheses [22],  mobility devices, and

aids for daily tasks [67].  Devices used for physiotherapy include aids for the

neurophysical rehabilitation of an individual due to a disability or accident that

may be used for periods of time, but not usually permanently.  In some cases, a

robotic device may perform both tasks if programmed to switch functions.  This

work will focus mostly on robotics in physiotherapy.

3.1.1 Physical Therapy Basics

Over the past two decades or so, the use of robotics in neurorehabilitation

has become a reality.  In this application, robots assist in the physiotherapy of

individuals  who  suffer  from  disabilities  due  to  stroke,  Parkinson's  Disease,

Multiple Sclerosis, spinal cord injuries or other motor impairment conditions.

Where traditional therapy may last only a short time due to the high costs and
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limited availability of physicians, patients can experience further improvements

if therapy were to be continued [96].  With the amount of time permitted for

rehabilitation by insurance companies in  the United States decreasing,  it  is

necessary to find ways to make rehabilitation time more effective [13] or allow

patients to continue less expensively without insurance.  

The use of robotics makes long-term rehabilitation a possibility.  They do

this by allowing patients to work without the constant presence of a therapist,

and by reducing the costs by performing the routines at home.  Though the

upfront costs are something to consider, virtual visits with therapists can save

money  directly  with  lower  session  rates.   The  savings  associated  in  the

reduced number of trips to a therapy office, both in money and in time, could

also help to offset the initial cost of a home device.  In some cases, it has also

been proven that long-term robotic therapy in a hospital setting doesn't cost

more than traditional long-term rehabilitation care [47].

Another important factor in the design and marketability of robotic therapy

devices  is  the  user  acceptance  of  such devices.   Early  in  the  research of

physical  therapy robotics,  it  was  found  that  there  was  some apprehension

toward using robots, both from patients and their therapists [26].  After using

the  robotic  aides,  however,  the  apprehension  mostly  dissipated.   Other

research has shown that the use of robotics is readily accepted by patients, but

not necessarily by the therapists.  While patients may work harder and enjoy

simple exercises more, therapists may find that they themselves are bored or
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have less control.  Acceptance is less of a focus in current research trends.

With robots being used in homes and offices for vacuuming as well  as the

surge  in  robotic  surgery,  the  general  population  has  become  much  more

accepting of the use of robotics.  In fact, robots have a reputation for being fun

and this could allow for more interesting therapeutic exercises to be performed.

Integrated games and challenges in particular make the interface very familiar

to younger patients.

The validity of the use of robotics in therapeutic improvements has been

investigated.  The use of repetitive motions to regain motor capabilities has

long been used and has been shown to be helpful.  Sometimes therapies begin

with a passive-assistance technique where the therapist moves the patient who

passively  allows  the  motion.   Many  therapy  techniques  use  an  active-

assistance technique where the patient tries to perform a task and is aided,

when needed, to completion.  This type of therapy is the most predominate in

research,  possibly because it  is  the most  natural  for  robotic implementation

[96].  Another technique used is the active-constrained mode of learning where

a user's movement is halted if a deviation from a correct movement is made,

but allowed otherwise.  

Early therapy is nearly universally accepted as being better than delaying

therapy  [15].  In  general,  it  is  agreed  upon  that  long-term  rehabilitation

continues  to  improve  the  condition  of  the  patient.   However,  after  the  first

several months, the results are not as evident and progress more slowly and so
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insurance  companies  and  sometimes  patients  decide  to  discontinue  further

treatment.   Robot-aided neurorehabilitation  in  particular  has been shown to

indeed affect motor learning [56] and motor capacity [59] through studies using

the MIT-MANUS robot.  There is debate, however, on whether robotic-aided

therapy is significantly better than traditional therapy [96].  Though it is clear

that robotic-aided therapy works, it may not work better than traditional therapy

with a human therapist alone.  Robotic devices must provide the correct type

and amount of assistance to reach their full potential and the perfect treatment

depends upon the individual patient as well as the severity and nature of the

impairment.   Robotic therapy could provide more motivation for  the patient,

however, if tailored to the interests and goals of that patient.

The effectiveness of robotic therapy at home is yet to be determined.  One

review study found that the outcome of non-robotic home therapy was similar

to that found non-robotic in-office care [11].  Therefore, if a robotic device can

achieve the same results as a therapist working alone, then it can be presumed

from these studies that there would also be no noticeable reduction in progress

by using a robotic device at home rather than in an office.  In fact, it may soon

to be seen if automated robotic devices can improve therapy at home as they

can motivate patients as well as enforce and enhance proper form of therapy

activities even when the therapist is not physically present.

A unique benefit to robotic physical therapy is the quantitative feedback that

they can provide.  Much of the time, traditional therapy tends to use somewhat
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objective measures in determining a patient's current level  of progress [95].

Even in cases when quantitative measures are used (such as speed, distance,

or strength of motion), these measurements may not be consistently measured

by all  therapists.   Robot-aided rehabilitation systems could be outfitted with

sensors  and  provide  consistent  and  accurate  information  about  patient

performance regardless of the therapist.

3.1.2 Current Physical Therapy Robotic Systems

Robotics have been proposed and used in neurorehabilitation for over two

decades.  Just a few examples are mentioned here.  MIT has been developing

the MIT-MANUS [57], shown in Figure 3-1 below, since 1989.  This system is

used in  upper-limb rehabilitation.   It  is  the  pioneering  low-impedance robot

device that allows it to be backdrivable.  Impedance control [44, 45, 46] allows

the patient to move the end-effector of the robotic arm to perform a task using

the video screen and only feel a reaction force when necessary, such as to

provide haptic feedback.  It has been used in studies and shown to provide

better  and more long-lasting results  over non-robotic  therapies [58].   It  has

been commercialized under the name InMotion [49].
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Figure 3-1: MIT-MANUS [57]

 

Another  system  that  uses  an  industrial  robot  arm  is  the  Mirror  Image

Movement Enhancer (MIME) device.  This device is primarily focused on stroke

victims or those with injury to one side of the body.  In this system, the patient's

good arm is used to move a passive robotic arm, which then acts as the master

control of a slave robotic arm that moves the impaired arm [15].   The master-

slave configuration gives the patient control over the movements and allows

him or her to direct their efforts.  It is also a safety feature in that the system will

only move in a way that mirrors the ability of the non-impaired side of the body

and so can not move the patient into unnatural positions.  In addition, since the

therapy is patient-guided, the patient can discontinue or avoid motions that are

uncomfortable.  The system is shown below.
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Figure 3-2: MIME Project [15]

Cable-driven  devices  are  also  proposed  for  use  in  upper-limb

neurorehabilitation.  Cables have inherent flexibility and are light so they don't

risk inures from contact in the same manner as industrial robots.  They can

become entangled, however, or provide less accurate movements.  A barrier

between the patient and the cables is one method to ensure safety.  This was

done in a previous work by this author [81] and is shown below.  

Figure 3-3: Cable-driven rehabilitation robot [81]
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ReWalk  is  a  therapeutic  system  that  is  being  used  in  centers  to  help

patients  regain  lower-limb  mobility [123].   It  is  the  first  FDA  approved

exoskeleton and is currently on the market and in-use at some clinics.

  

Figure 3-4: ReWalk robotic exoskeleton [123]

Further review of technology in this area has been completed by the author

[80] and others.  Pediatric systems are the focus in the next section.

3.1.3 Current Pediatric Physical Therapy Robotic Systems

Pediatric physical therapy systems are in some ways very similar to adult

counterparts.   They  are  not  always  just  scaled-down  versions,  however.

Treatment  of  children  versus  adults  differs  in  other  ways  than  size  [18].
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Notable differences include having more uncertain prognoses, needing multiple

areas of rehabilitation, not having any experience of performing certain tasks

before (e.g., they are learning to walk, not relearning), habits are evolving more

quickly than in adults, and children are already dependent on many individuals.

It can also be noted that there are not as many studies showing the efficacy of

robotic-aided rehabilitation in children as with adults.  While there is reason to

believe that the technology will be helpful and some studies have proven this to

be the case, it hasn't yet been established in a wide range of studies, not many

studies with controls, nor for a wide range of robotic systems [76] [31].

There are some systems that exist or have been modified specifically for

the neurorehabilitation of children.  A few are noted in the paragraphs below.

The InMotion2 system has been used with children.  In use with children

with cerebral palsy (CP), it was found that not only did the robot help bring

about motor improvements, but it did so to a greater extent than studies with

adults [30].
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Figure 3-5: InMotion2 system in use with a child [30]

The  New  Jersey  Institute  of  Technology  Robot-Assisted  Virtual

Rehabilitation  (NJIT-RAVR)  system  is  comprised  of  algorithms  and  virtual

reality equipment interfaced with a commercial Haptic Master system.  It has

been  tested  with  two  children  with  CP to  successfully  test  viability  of  the

platform [91].

Figure 3-6: NJIT-RAVR [91]
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The Rutgers Ankle CP is designed to help train the ankle of children with

the combined use of a robotic platform under the foot as the controller for a

video game console [14].

   

Figure 3-7: Rutgers Ankle CP [14]

A commercial gait-training system, the DGO Lokomat, has been used with

pediatric  patients.   This  European  system  has  been  shown  to  offer  motor

improvements for the children, though no control group was used [75] [8].
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Figure 3-8: DGO Lokomat used for pediatric gait training [75]

The Gait Trainer GT I is another commercial system that has been used

with children.  This system is an exoskeleton that aids in the training of lower

extremities.   In  a  trial  with  children with  CP, it  was shown to  help produce

improvement in motor abilities against a test group [105].
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Figure 3-9: Gait Trainer GT I in pediatric use [105]

3.2 Humanoid Robots

Task modeling is an important part  of  physical therapy regardless of the

patient's age.  The task must be placed into context, made to seem important,

and be performed in  a realistic  manner  and speed [86].   Modeling  this  for

someone  with  a  physical  impairment  or  difference  can  be  very  difficult  for

someone with normal motor function and physiology.   Treated patients who

have  a  similar  difference  or  had  a  similar  injury  are  highly  effective  in

demonstrating to new patients [86], but it isn't feasible for most rehabilitation

practices to have former patients available to model every new activity.

Therapy provided in natural context and environments is desired or even

required  by law [28]  [51].   In  practice,  this  is  not  typically implemented as
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intended. Instead, therapy in-home or in-school is often performed exactly as in

an in-office setting even though the setting is natural.  

Furthermore, therapy should continue past the short weekly half- or full-hour

sessions  with  a  therapist  and  be  a  continual  part  of  everyday  activities.

Movements performed only for discrete time intervals once or twice a week

have a much more limited result  than those performed daily,  if  not  multiple

times a day.  In some instances, patient compliance performing activities may

be  limited  or  nonexistent  due  to  lack  of  motivation  or  confidence  [104].

Determined  by numerous  circumstances,  some patients  require  more  visits

from therapist and professionals than others [51].

Humanoid robots can provide some solutions to these problems by having

an inexpensive tool  to  better  model  tasks  in  a  manner  that  is  realistic  and

achievable to individual patients, and to provide motivation and accountability

to perform tasks when the therapist is not present.  It can even be used as a

teleoperated tool to provide quick and urgent consultations or to supplement

home or  office visits  without  the  need for  the  patient  or  therapist  to  travel.

Finally,  humanoid  robots  can  act  as  an  intermediary  between  a  human

therapist  and  a  child  on  the  autism  spectrum  to  achieve  interaction  and

participation from the patient  that  may not  be possible otherwise [101].  For

these reasons, humanoid robots are of interest in physical therapy and some

current models are noted below.
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3.2.1 Partial Humanoids

Depending upon the needs of the patient, a full humanoid robot may not be

necessary.  Only focusing on the parts that are affected or undergoing therapy

can reduce system complexity and size in addition to making the robot less

expensive and less intimidating.  

Projects  that  are incomplete humanoid projects include the face,  hands,

arms and legs.  In some ways, industrial robots can be considered mimics of

human  arms,  but  this  review  will  focus  on  robots  that  can  be  used  as

anatomically-correct human models.

3.2.1.1 Humanoid Faces

Faces have been used on robots since their inception.  However, making

faces  that  are  correct  anatomically  and  physiology is  a  goal  for  numerous

reasons including making both complex and simple social robots [5].  Hanson

Robotics has numerous realistic robot face systems including one that looks

like Albert Einstein and another called the Zeno R-50 [100].  Some expressions

it makes are shown in Figure 3-10 below.

Figure 3-10: Zeno showing (from left to right) happy, sad and angry faces [100]
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A major aspect of the face is the eyes.  These not only are a major part of

expressions, but they have fast movements.  Relating to the other aspect of

this work, eye movements are a consideration when conducting eye exams

and surgical procedures.  Realistic robotic eyes within a face can provide a

means for physicians to practice procedures similar to that performed on living

humans when anesthetization is not preferred.  One project from Italy attempts

to do this using actuation inspired by human anatomy [20].  An image of this

system is shown in Figure 3-11.

 

Figure 3-11: Robotic Eyes [20] 

3.2.1.2 Humanoid Arms and Hands

Arms and hands are another area where work is being done to make robots

that look like realistic human models.  There are numerous hands that have

been built over the years [35].  These are made to study human hand dexterity

as with the MIT-Utah hand [77], serve as active prosthetics for amputees [23]

or children born with differences in their physiology [124], and to simply mimic
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humans or be a research tool [120] [88].  Some examples of these are shown

in  the  figures  below.   The  last  of  these,  the  InMoov  robot,  not  only  has

articulated arms and hands, but also includes the possibility to add torso and

head/neck control as well.

Figure 3-12: Cyborg Beast robotic hand [124]
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Figure 3-13: Anthropomorphic robotic hand [120]

Figure 3-14: InMoov robotic arms and hands [88]

46



3.2.2 Complete Humanoids

Humanoid robotics have always been of interest as can be seen by various

depictions in science fiction and the many uses that they have [110].  For use in

physical rehabilitation, sufficient articulation and realistically-proportioned limbs

are necessary to properly model tasks.  In the case of children, smaller models

are also warranted.  Though it is possible for the robots to be life-sized, this is

not  necessary.   Smaller  robots  can  demonstrate  movements  well  and  are

easier  to  transport,  less  likely  to  cause  injury  to  a  child,  and  can  be  less

expensive.  Smaller robots also allow for some simplifications and may allow

for older children or their parents to participate in their set-up so as to reduce

some anxiety in their use [108].

There are some commercial humanoid systems on the market that allow

users  to  program  movements  and  interactions  with  the  robot.   Popular

examples include the NAO [73] and Darwin [79] robots.  The NAO, shown in

Figure 3-15,  by  Softbank  Robotics  is  a  popular  system  for  educational

institutions for programming motions and studying motion control  or human-

robot interactions.  It has 25-DOF, is nearly 600-mm tall and costs thousands of

dollars.   The Darwin-OP by Trossen Robotics,  shown in  Figure 3-16,   is  a

system that is slightly smaller than the NAO and has only 20-DOF, but costs

hundreds of dollars instead of thousands.
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Figure 3-15: NAO humanoid robot [73]

Figure 3-16: Darwin humanoid robot [79]
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Open-source and custom-designed systems allow for physical flexibility in

addition to software programming.  Nearly every aspect of these robots can be

customized to meet desired specifications including size, strength, speed and

cost.  A popular system is the Poppy Project [63].  Though it has many variants,

the original, shown in Figure 3-17, is 25-DOF and nearly 850-mm high and can

be used as an open-source alternative to the NAO.

Figure 3-17: Poppy Project humanoid robot [63]

The next chapters develop technology based on the background provided in

the previous two chapters in order to meet the goals and objectives of this

work.
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4. THEORETICAL BACKGROUND

This chapter reviews and develops theoretical issues that pertain equally to

both  types  of  medical  robotics  discussed  in  this  dissertation.  This  includes

issues with remote operation as well as the theory of control systems that are

used later in  this work.   An overview of  what  will  be done in each area is

provided followed by notes about  use in medical  robotics.   Finally,  different

control systems are surveyed and evaluated for use in the scope of this work.

4.1 Teleoperation

Teleoperation is a large component of successful operation of the robotic

system  proposed  in  this  work.   While  it  is  certainly  possible  and  may  be

convenient for a physician to control the robotic slit-lamp from the same room,

allowing the control of this device over a long distance provides a greater range

of  use  and  benefits.   After  reviewing  general  research  in  all  forms  of

teleoperation  of  robots,  the  following  sections  discuss  specific  issues

encountered in both tele-examination and tele-surgery.

Synchronous teleoperation has been tested for ocular procedures since at

least 1997 [6].  Time delays are the biggest obstacle when controlling a robot

real-time  from  a  great  distance.  A contemporary  system  offers  the  simple

solution to time delays by simply adjusting the scale of the tremor and thereby
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smoothing the reactions [83].  It was noted that scaling too far slows the ability

to complete the procedure quickly, so it is necessary to determine an optimal

point to balance the speed of the manipulator with the time delay.

4.1.1 Tele-examination

There is a growing trend toward telemedicine in  practice, with  a current

focus on tele-examinations and consultations.  In ophthalmic applications, most

current  teleophthalmology practices  are  limited  to  consultation.   While  both

synchronous teleoperation and store-and-forward models can be followed, only

the later is currently practiced [60].  This involves manually taking general eye

exam images as well as images of any features of interest and sending the

information to a remote location for interpretation and diagnosis.  

While  most  devices  mentioned  in  a  previous  chapter  focus  solely  on

performing eye surgeries, eye examinations are an important routine step that

must  first  be  performed.   This  involves a  synchronous teleoperation  model

where  everyone  involved  in  both  the  physician  and  patient  locations  are

connected with real-time communication abilities.

Prior to this work, only one robot has been created with the intention of fully

performing eye exams from a remote location in real-time [21].  This device,

built and tested in Thailand, is able to give a remote physician the ability to

perform a full eye examination with some help from an aide working with the

patient.   A slit-lamp,  the  tool  of  choice  for  eye  examinations  as  described
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previously, is fitted with motors to allow for computer control of several major

functions as shown in Figure 4-1.  While traditional use of a slit-lamp requires

adjustments of several knobs to alter the focus while performing an eye exam,

the group devised an auto-focus algorithm to capture clear images of the eye.

Due to concerns about bandwidth and delays, only select images are sent to

the  physician  and  text-based  communication  is  used  between  the  two

locations.  While the initial trials of teleophthalmology were less accurate and

slower  than  traditional  in-person  use  of  a  slit-lamp,  the  research  group

expected  that  further  studies  would  show improvements  as  the  physicians

learned how to best utilize this technology.

Figure 4-1: Robotic slit-lamp for teleophthalmology developed in Thailand [21]
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4.1.2 Telesurgery

Telesurgery is a little more complicated than simple exams because of the

risks of harm from surgical tools in addition to possible danger of the patient

unexpectedly getting in the way of the robotic mechanisms while in motion.

There have been some cases of remote robotic surgery being performed [69],

but it isn't currently a typical arrangement. 

Especially in ophthalmic procedures, time delays can cause huge issues.

A surgical tool may move into a harmful position before the ophthalmologist

notices  and  can  alter  the  motion  or  stop  the  laser,  causing  damage.   Not

realizing that a motion is in progress, but subject to large latency, a movement

or action may be requested by the doctor that is already in progress and an

overshoot in the desired position or action occurs.  There is some work being

done to develop an algorithm to determine when the human operator should be

overridden and also when to employ automated subroutines [7].

For research purposes, open-source alternatives are interesting because

they provide a means for multiple institutions to work on the same platforms

and share information and ideas.  This is not possible on commercial platforms

since components, whether hardware or software, tend to be proprietary and

are not easily manipulated to test alterations.  One open-source project uses

retired da Vinci systems and is developing a controller by parts that is run via

an open-source Linux computer [53]. 
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4.1.3 Teletherapy

Performing various types of therapy remotely lies somewhere between tel-

examinations and telesurgery in risks and complexities.  Depending upon the

style of the therapy robot, it may or may not require physical contact with the

patient to perform.  Examples of systems that require physical contact include

the InMotion system and exoskeletons such as ReWalk.  A patient may have

more ability to discontinue contact and thus the operation of a system such as

InMotion, but physical contact is still something to be considered and severely

disabled patients should have someone, even if not medically trained, present.

An exoskeleton provides more invasive contact and can not easily nor quickly

be removed, especially by an impaired patient.  These devices require much

more robust safety measures similar to that used in telesurgery.

Robotic therapy systems that do not require direct contact are those used

for  modeling  behaviors  as  proposed  previously  in  this  work.   There  is  still

reason to consider human safety, however.  The patient should be supervised

to check for proper mimicry and participation, but also as a precaution against

any usual concerns such as poor balance or the inability to stand unaided.

There are also some risks of injury should the patient or caregiver touch the

robot during motion and be hit or pinched by moving parts.  Decreasing robot

size as well as increasing joint compliance are two major methods for passively

increasing robot safety in these instances.
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In  addition  to  considering  how  safe  a  robot  is  around  a  patient,  the

programming and control of the robot is another area of concern.  Therapists

will  be required to program these robots and few are programming experts.

There are three major methods of programming including kinesthetic (moving

the actual robot by hand to points it should be), remote control via a physical

model or joystick, and control and programming via a software interface (either

utilizing  a  specialized  program  created  to  capture  motions  virtually  or  by

numerically programming points).  All of these have advantages and drawbacks

depending upon the situation and user preferences [33].  Determining the best

method for a given therapy robot is a necessary task to complete the project.

The therapist must be able to comfortably program and adapt the robot to the

needs of individual clients in order to gain the maximum benefit.

4.2 Control Systems

Control  systems in  robotics  serve  to  control  the  movements  to  follow a

desired outcome.  This is a key design aspect in robotic technologies and a lot

of work as been done in this particular field.  Most of the work is theoretical and

applied on idealized or simplified models.  When a control system is actually

implemented, most systems utilize expensive control hardware and peripherals

to complete the task.  Others are limited and do not perform exactly as the

original control design intended due to hardware limitations.  Recent trends are
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allowing  for  more  complex  control  methods  with  lower  equipment  costs  as

processors become faster and cheaper [25].  This enables the consideration of

using  embedded  systems  to  perform  control  methods  that  only  large

manufacturing plants could consider before.

The market for some control systems is changing.   The Maker Movement

[27] is one catalyst that has changed how robotic technology is implemented.

Globalization as well has led to the desire to use standardized equipment and

cut  costs,  so  that  systems  can  be  affordable  and  obtainable  on  the  world

market.  There are now numerous low-cost, yet versatile hardware options that

can be used as powerful robotic control systems.  This work will focus on these

technologies.  Specific examples include the Raspberry Pi, BeagleBone and

Arduino.  New low-cost PLCs, or used low-cost systems, can also be used as

well, though the availability to alter the control algorithms for these devices are

limited.  Other technologies that are not explored in detail here include mobile

devices  such  as  tablet  and  smartphones,  PCs  with  USB  GPIO,  small

microcontrollers such as the PIC, DSP or motion-control microcontollers, and

hardware-in-the-loop systems.

There has been little research in literature on implementing control systems

for Maker Movement devices.  While it is easy to find numerous projects using

inexpensive  hardware,  they  are  usually  simply  plugged  together  and

programmed to perform a task.  In some ways, technical engineering analyses

counter the ideals of the Maker Movement;  Many see it as a way to open up
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the ability to make technical objects to everyone without the need for highly

specialized  knowledge.   In  reality,  research  in  this  area  would  benefit  all

Makers; though not all may choose to delve into the foundational literature and

fully understand technical nuances.  In any case, research and improvements

can be made available through open-source instructions and code to be utilized

by those who find use in their application. This benefits hobbyists, educators

and students, as well as the entrepreneurs and small businesses that are using

the low-cost devices in small-scale manufacturing and medical equipment.  It is

possible that in the future, these inexpensive devices may become capable and

robust enough to be of serious consideration for market-use in moderate to

large-scale manufacturing facilities and the medical device industry.

4.3 Control Systems in Medical Robotics

The control systems in medical robotics do not actually differ that greatly

from those used in industrial systems.  Many may think that medical systems

require greater accuracy or more features; in reality industry does, and has,

been  demanding  very  similar  specifications.   One  must  only  consider  how

intricate many modern electrical devices have become to see how assembly of

even mundane objects requires high precision and accuracy.  In addition, the

motions  of  many  medical  and  manufacturing  robotic  systems  correlate:

cleaning  and  painting,  physical  rehabilitation  repetitive  pick-and-place  and

manufacturing pick-and-place, and surgical site targeting and part targeting.
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The  materials  the  robotic  devices  are  made  out  of  and  the  exact

implementation  of  the  end-effector  are  the  only  real  differences  between

industrial and medical robotics.  Medical robotics typically require materials that

are easy to sanitize.  There should be some degree of tolerance for fluids and

UV lights as the cleaning process is critical.  Industrial robots should be made

from materials that can withstand the chemicals and abrasions of materials that

may  be  in  their  environment.   This  difference  has  some  influence  on  the

controller  as  the  weight  and  dynamic  characteristics  may  be  affected,  but

usually it is not significant.  Therefore, techniques used in manufacturing can

be used for medical robot control systems.

It is also worthwhile to keep an open-mind in the use of control methods

from other industries outside of robotics to be applied to robotics problems.

Numerous instances can be found of control methods from one discipline being

used  in  another.   In  many  cases,  one  can  find  great  similarities  between

models and equations used in one type of system to another.  Electrical circuits

and hydraulic systems are sometimes modeled with the exact same equations

using only different symbols for the variables, for example.  Even with different

equations, control systems can provide new solutions or just new insights in

multidisciplinary settings.
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4.4 Control Methods

There are numerous control methods found in engineering literature.  This

work will not attempt to list every type.  It is helpful to try to classify them in

order to consider major types and examples.  This classification is somewhat

arbitrary and is not meant to imply that this is the only way to consider these

control techniques.  Broadly, the following sections will briefly survey classical

control, hardware control, software control, and control techniques that don't fit

well into one of the previous categories [1].  

4.4.1 Classical Controllers

Classical controllers are ones that are found in nearly every engineering

textbook on control theory and are in use in innumerable applications.  They

work  for  linear  systems  and  can  be  the  most  efficient  solutions  in  many

instances.  Examples include hysteresis and PID controllers.

The simplest types of classical control are the hysteresis or on/off methods.

These can be used in both continuous or discrete systems [3].  This type of

control typically works between two different boundaries with the input being

one of two states.  Figure 4-2 shows a block diagram. Advantages to this type

of controller is that it is fast and stable.  However, it can lead to undesirable or

variable  frequency  changes  which  can  cause  premature  failure  or

electromagnetic  interference  [16],  though  there  are  numerous  altered

hysteresis  controllers that  address these shortcomings.   There are different
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types of hysteresis controllers including bang-bang and deadbeat controllers.

This type of controller is most commonly used in HVAC systems or to stabilize

the output of filters in electrical circuits.

Figure 4-2: Schematic of a simple hysteresis control system [3]

PID  controllers  and  their  permutations  are  the  classical  continuous

improved solution to the hysteresis controllers.  In general, these controllers

are tuned for a particular linear system.  When they are properly tuned, they

can work well and efficiently.  However, PID controllers quickly become less

effective when the system operates outside of specifications for which it was

tuned.  Tuning and even auto-tuning can be cumbersome and intrusive [1].

PID controllers produce an error value that is calculated as the difference

between the desired reference input and measured plant output variable.  The

controller uses the output calculated from a proportional (P) term and usually
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an integral (I) and/or derivative (D) term to attempt to correct the plant output to

reach an error of zero.  Depending upon the terms used, the controller may be

referred  to  as  a  P,  PI,  PD  or  PID  controller.   A schematic  of  this  type  of

controller is shown in Figure 4-3 below.

Figure 4-3: Schematic of a basic PID controller 

PID controllers are extremely common in industrial systems.  This type of

controller and all of the many hybrid and adapted versions can be implemented

in many ways and they can be found in both technical literature and in control

system hardware specifications.  They can be programmed in simulation, using

high-level programming languages on a variety of computing hardware, or built

into a chip.

Another way to implement PID control methodologies is with Programmable

Logic  Controllers  (PLCs).   These  are  modular  systems  that  are  extremely

robust, but many are limited in the complexity of programs they can handle by
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internal memory and the software or hardware available in which to program

them.  Each brand of PLC also has its own structures and instruction sets, so

programs can not be used from one type of device to another [12].  Still, some

PLCs such as  the  Allen  Bradley SLC 5/02 have built-in  PID algorithms for

closed-loop control that can be utilized.

4.4.2 Hardware Controllers

These types of controllers are based on control theories that originated with

hardware controls, but are a step away from classical control in that they delve

into  nonlinear,  robust  and  optimal  scenarios  [1].   Examples  of  this  type  of

control include sliding mode control and predictive control.

Sliding  mode control  is  one  type  of  controller  that  differs  from classical

control in that it is non-linear.  The feedback control changes based upon the

state of the system and the position it assumes on a selected sliding surface.

One must adjust the feedback so that the system stays on the selected surface

at all times.  The control used can be simple or complex and combine features

so that the controller is extremely robust.  

Predictive  control  comes  in  several  varieties.   Some  examples  are

hysteresis-based predictive control, trajectory-based predictive control, and a

type of deadbeat control [25].

Another type of predictive control is Model Predictive Control (MPC).  This

methodology utilizes a process model  to  predict  the future response of  the
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plant and optimize future behavior at each control interval [90].   Numerous

variations on this type of control exist in the literature including finite control to

lower the complexity [25] and explicit models to solve for interesting conditions

off-line and simplify on-line calculations [2].   They are also being applied to

increasing numbers of applications in more diverse fields as well.  One reason

for the pervasiveness in literature is because MPC controllers are commercially

available [90] [25].  Still, most MPC methods have drawbacks that include a

lack  of  internal  (nominal)  stability,  and  lack  of  dynamic  optimization  [90].

Tuning is also a problem and can only be done for certain models and may not

result in a stable controller even with the perfect model [90].  There are many

works on improving these controllers, but it is one case where the improved

algorithms are not yet fully implemented in commercial controls.

4.4.3 Software Controllers

These  types  of  controllers  are  purely  software-based.   They  are  only

possible  because of  digital  computers  [1].   These include Fuzzy Logic  and

Neural Networks. 

Fuzzy logic  controllers are programmed by rule sets that  provide output

reactions for given inputs.  Several rule sets are programmed for any given

controller that is developed.  These sets are then used to make a decision for

the output  of  the entire  system given the state of  the inputs.   This type of

controller does not require a lot of processing power and so can be made low-
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cost, even for unknown or inexact models.  Drawbacks are that the outputs

must be tested for input states and so validation and tuning of the controller

can only be done by trial-and-error.  

Neural networks attempt to model 'thinking' behavior.  They are trained by

giving them inputs and programming the appropriate output.  After training, they

use this as a guideline to determine what to output based on examples that

were given in their training.  The algorithm in a neural network can be simple to

complex, so the processing power varies.  Part of the design in this controller is

having a sufficient algorithm without being unnecessarily memory and process

intensive.

4.4.4 Other Controllers

Some  controllers  don't  fit  neatly  into  one  of  the  above  classifications

because they are a hybrid  of  control  techniques.   Examples of  this include

Hardware-in-the-Loop controllers and Fuzzy-PID controllers.  There are also

other  controllers  that  are  more  advanced  or  specialized  and  will  not  be

discussed in the scope of this work.

Hardware-in-the-Loop  controllers  are  not  exactly  a  new  control

methodology, but real time simulations that have actual devices embedded in

the loop instead of models for these components.  This allows for a controller

simulation to fully take into account limitations and actual signals from sensors

and such rather than depending upon an idealized model [12].  This can speed
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up development and validation of embedded controllers.  Simulation tools such

as LabView are frequently used in this type of controller.

Hybrid  control  techniques  are  numerous  and  found  throughout  control

literature  of  nearly  every  field.   Proposed  and  implemented  hybrid  control

systems can span and combine any control methodologies.  PID, MPC, and

Fuzzy Logic controllers seem to especially lend themselves to be utilized in

hybrid  systems.   In  the  case  of  PID  controllers,  they  are  the  classical

benchmark and are nearly universal.  They are also found throughout industry

and so  have practical  importance that  can benefit  from adaptations.   MPC

controllers are also used in hybrid systems because they are commercialized

and can be better adapted to specific instances of interest.   Fuzzy Logic is

used in hybrid systems because it is a relatively quick and low-cost adaptation

that can provide easily understood changes to the controller with which it is

combined.
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5. OPHTHALMIC PROTOTYPES DESIGN AND CONSTRUCTION

This  project  involved  building  a  physical  model  to  serve  as  a  proof-of-

concept and as an initial testing platform.  This chapter provides details on the

two iterations of prototypes that were produced.  For ease in reference, the

project  was  dubbed  OphthBot  and  first  prototype  is  usually  referred  to  as

OphthBot 1 and the second is referred to as OphthBot 2.

The robotic slit-lamp presented here served as the proof-of-concept for this

technology.   This  low-cost  system  was  developed  to  help  obtain  further

sponsorship and lead the way toward improved prototypes for medical testing.

For the purpose of this work, the goal was to make the robot as accurate as

manual  procedures  currently  performed.   Procedures  were  to  be  limited  to

those done with a standard slit-lamp and hand-held lenses, though the addition

of  a  laser  integrated in  the slit-lamp was a  key consideration  as well.   No

instruments were to be inserted into the eye.  All testing during the time this

work was completed was done on anatomically-correct plastic eye models and

not on human nor animal tissue.

The  robotic  slit-lamp  was  to  be  designed  to  work  with  a  medical  aide

present with the patient.  This medical aide helps set-up the patient and makes

gross adjustments to the slit-lamp.  The medically-trained individual also helps

the patient during procedures and is available to assist the patient in the event
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of any technical fault.  Major components of the complete technical system are

shown in Figure 5-1 below.

 

Figure 5-1: Major system components of OphthBot

For the rest of this chapter, sections 5.1 through 5.5 will discuss the first

prototype,  OphthBot 1,  in  detail.   Section 5.6 discusses the major  changes

made of the second iteration, OphthBot 2.

5.1 Automation of Base Slit-Lamp

The  prototypes  were  based  was  a  standard  slit-lamp.   A vintage  Neitz

SL/W-J shown in Figure 5-2 was utilized.  The slit-lamp is similar to Zeiss-type

units and was also sold by Wesley-Jessen, but is no longer in production.  It
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includes standard features such as adjustable light width, height, intensity and

three light filter options.  It does not include a means to disassociate the focal

point  of  the  microscope  and  lamp  nor  any digital  features  found  on  many

current  models.   Moreover,  no  laser  adapter,  specialized  accessories  for

cameras, or other tools are available as the unit has not been in production for

many years.  

 

Figure 5-2: Base slit-lamp used for the prototype

In order to standardize nomenclature used in this work, the base refers to

the base of the slit-lamp that moves on the table.  The knobs are named by the
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feature in which they alter, for instance the light width knob controls the width of

the light that shines on the patient's eye.  The arms refer to the swinging parts

mounted near the rear of the slit-lamp base.  The microscope-binocular arm is

the lower one which allows the eyepiece portion to change angles, while the

lamp arm is the upper rotational part that allows the light angle to be changed.

These parts are labeled in Figure 5-3 below.

  

Figure 5-3: Names of parts referred to on a slit-lamp
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5.1.1 Actuator Selection

The first step was to determine the actuation method.  Due to the need to

control  the  position  and  accuracy  rather  than  velocity,  stepper  motors  and

servo motors were considered. 

Stepper motors are available in a wide range of sizes and load ratings,

starting at a low-moderate price range.  They are a good choice due to their

options of either rotational or linear (usually via a screw mechanism) motion

outputs.   They do  require  more  sophisticated  controllers,  however,  as  they

have multiple control lines that must be activated in specific sequences.  This

adds  hardware  along  with  the  associated  integration  and  costs.   This  is

becoming  less  of  a  concern  as  stepper  motors  are  being  used  by  Maker

Movement  enthusiast  to  produce  machines  such  as  desktop  3D  printers.

Availability and costs of commercial stepper controllers are rapidly decreasing.

Servo motors are also available in range of sizes and load ratings, however

the  price  range  varies  significantly.   Servos  tend  to  fall  into  hobby  and

professional categories with costs varying accordingly.  As with stepper motors,

the  Maker  Movement  has  increased  interest  in  easy-to-use  devices  for

automation projects and the range and availability of very inexpensive servos

have  thus  increased.   High-torque  hobby  servos  intended  for  robotic

applications are available at  very affordable costs and are easy to use.   In

addition, control hardware for these servos are also easy to find and are well

documented.   Finally,  many  servos  are  position-controlled  and  offer  the
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advantage of built-in position feedback and do not require additional wiring,

hardware and programming to use this feature.

Though stepper motors may offer better control in some situations, servos

were selected for the initial prototype due to their ease of implementation.  This

was deemed the most important consideration given the short time-frame in

which to complete OphthBot 1.  Servos offering sufficient torque and accuracy

had to be selected so that the prototype would meet the criteria developed.

It  was  determined  through  experimentation  that  the  torque  required  to

rotate each of the arms and knobs as well as the linear force required to move

base of the slit-lamp varied notably between trials.  It was decided to size the

actuators for  the largest  of  these possible  forces to  ensure that  they could

handle all variability in the forces during operation.  The maximum amount of

torque needed to rotate the knobs and arms was found to be approximately 8-

kg-cm.  This was too high for a typical hobby servo such as a Futaba S3003,

so stronger servos were sought.

The  servos  selected  for  this  project  were  the  Turnigy  TGY-SM-8168R

oversized robotic servo for all  of the movements that required a full  rotation

actuator  and  the  Turnigy TGY-S810  oversized  digital  robotic  servo  for  the

components that could be driven with less than 180º of rotation actuation.  Both

of these servos are shown in Figure 5-4 below.
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Figure 5-4: Turnigy TGY-SM-8168R (left) and TGY-S810 (right)

The addition of sensors for position feedback of the rotational and linear

motions caused by the continuous rotation servos was also a consideration.

The internal feedback of these servos are for speed, not position.  However,

the goal was the keep the project as simple as possible in order to facilitate

quick prototyping and allow for easy changes later as the project progressed

into later iterations.  It was thus decided to not implement additional position

sensors outside of those included inside the servos for the OpthBot 1 iteration.

Instead, position was calculated via software and occasionally calibrated.

The  use  of  digital  position-controlled  servos  for  most  of  the  actuation

alleviated the need to include encoders, though additional sensors would allow

for  verification  and  automatic  start-up  positioning.   In  the  initial  prototype,

additional sensors were not addressed as all motion was manually controlled

and also very limited.   As a safety measure,  limit  switches for  all  actuated

ranges are recommended in order  to ensure that  mechanical  limits are not

exceeded and damage to the robot and patient are avoided.
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5.1.2 Actuator Implementation

Attaching  the  actuators  for  OphthBot  1  involved  primarily  the  goals  of

allowing for accurate and precise actuation of the slit-lamp joints.  In addition, it

was desired to allow the actuators to be easily removed in order to allow the

slit-lamp to function in a fully manual mode.  Finally, making the robotic retrofit

as  universal  as  possible  was  a  tertiary  goal  as  it  would  help  the  future

development  of  nearly  universal  retrofit  kits.   Retrofit  kits  are  of  interest

because it reduces the costs of the robot if medical facilities can use equipment

they already have, or purchase used slit-lamps.

There were three methods in which the actuators were implemented that

included friction-fit torque transfer, belt-drives and direct-drives.  As labeled in

Figure  5-5,  the  rotational  lamp arm (2),  binocular-microscope  arm (3),  and

limited-rotation  knobs (1)  were  controlled  via  the  digital  servos  which  were

friction-fit  to  the  components.   A belt  system  was  used  with  a  continuous

rotation servo for the slit-lamp height  adjustment (5).   A continuous rotation

servo was friction-fit to the chin rest adjustment as well (4).  Finally, directly-

driven wheels were used to control the base movements of the slit-lamp with

continuous rotation servos (6) and (7).
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Figure 5-5: Joints and knobs activated on the slit-lamp

5.1.2.1 Actuation of Slit-Lamp Arms

The binocular-microscope arm and lamp arm were obvious candidates for

the position controlled servos because of a limited rotation range under 180º

and the need to know the position at all times including when position limits

have been reached.  Also, these two arms have interconnected motions in that

any rotation of the lower binocular-microscope arm also causes the lamp arm

to  rotate  to  the  same  degree  as  well.   The  position  feedback  allows  for
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adjustments to be made so that when the binocular arm is rotated, the lamp

arm can  be  counter-rotated  to  remain  in  the  same  position  relative  to  the

patent, if desired.  

In order to achieve the goal  of  making the actuators easy to install  and

remove, adjustable worm-drive steel band clamps were used to hold the servo

mounting  brackets  securely in  place as  shown in  Figure  5-6.   These were

simple, strong, and readily available in all  the sizes that were suited for this

project.  The vintage slit-lamp shape dictated that all the areas where these

servos could be mounted were round and angled.  The clamps were mounted

just under each joint so that the binocular arm servo was mounted to the slit-

lamp base and the lamp arm servo was mounted at the base of the binocular

arm.  Some modification was made to the clamps to allow them to fit into the

narrow spaces, but the goal was achieved.  

Figure 5-6: Clamp and aluminum bracket used to hold servos to slit-lamp
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The  servos  were  attached  by  the  clamps  with  custom made  aluminum

brackets.  These had one surface shaped like a C-bracket that allowed for the

servos  to  be  secured  via  their  four  screw  mounts  and  a  second  surface

perpendicular  to  the first  that  was a tab that  allowed for  the bracket  to  be

secured between the slit-lamp and the clamp.  This can be seen in detail in

Figure 5-6 above.  Rubber material was placed between the slit-lamp, bracket

tab, and clamp to ensure a snug and slip-free mount.

The servo outputs needed to be connected in a way to cause the arms to

move.  There were two possible options for this to occur.  The servos could be

fitted  with  gears that  engaged with  gear  strips  attached to  the slit-lamp,  or

direct friction-drives could be used.  With preferences to try to make the retrofit

as simple as possible, be used as a universal kit, and allow for manual use, the

friction-fit drive system was selected.  It required fewer parts and nothing had to

be permanent attached to the slit-lamp. This also allowed for easy and quick

adjustments  during  the  prototyping  since  relocating  a  servo  would  be  less

labor-intensive.  

Rubber discs were attached to the disc servo horns.  These were slightly

over-sized  to  make  the  servo  outputs  contact  the  slit-lamp  with  increased

friction between the servo output and the slit-lamp.  The slit-lamp surface was

also made to be rougher to aid in this endeavor by light sanding.  The resulting

implementation is shown in Figure 5-7 below.
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Figure 5-7: Actuation of the rotational arms of the slit-lamp

5.1.2.2 Actuation of Slit-Lamp Knobs

The control knobs for both the lamp light width and chin rest were actuated

in a very similar manner as noted above.  The light width also used the digital

robotic servos, but the chin rest required the use of the continuous rotation

servos due to multiple revolutions being necessary.  

The light  width servo was clamped securely onto the slit-lamp as in the

previous cases and is shown in Figure  5-8.  The knob then rotated as the

rubberized circular servo horn rotated.
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Figure 5-8: Actuation of the light width adjustment knob

The  chin  rest  was  actuated  similarly  to  examples  above,  but  with  two

differences.  Due to the fact that the adjustment allows for more than three full

rotations  of  the  knob,  a  continuous servo  was  used.   Next,  the  servo  was

mounted upside down so that the it was attached near the chin rest support bar

as shown in Figure 5-9.  This made it such that the relative position of the servo

to the knob did not change during operation as the chin rest support moved up

and down along the pole.
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Figure 5-9: Actuation of the chin rest height adjustment

The  slit-lamp  height  adjustment  required  a  different  drive  mechanism

solution.  While similar to the chin rest in that the knob moved more than one

full  rotation,  there  was  not  a  secure  place  to  anchor  the  servo  so  that  it

remained in complete contact with the knob throughout the range of motion.

This is because the knob moves upwards from the base of the slit-lamp as the

height is raised.  There was no secure place to attach the servo from above

since thee was only a very small tab without sufficient area to securely mount

the servo and the binocular arm above allowed for no clearance to build a

secure bracket.  To solve this problem, The servo bracket was mounted to the

base of the slit-lamp.  A thread spool was used on top of the servo horn to
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guide a belt and transfer the torque from the servo to the adjustment knob.

The height of the spool was sufficient to allow the belt to freely travel upwards

and  downwards  as  necessary  as  the  adjustment  knob  shifted  in  these

directions so that the belt did not come off.  The spool was later replaced with a

3D printed version for aesthetic reasons as shown in Figure 5-10 below.

 

Figure 5-10: Actuation of the slit-lamp height adjustment

5.1.2.3 Actuation of Slit-Lamp Base

Actuating  the  movement  of  the  base  called  for  a  completely  different

method of implementation.  This motion requires the back-and-forth and left-to-

right motions of the entire slit-lamp within the range of motion allowed by the
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retaining  tracks.   The two  main  possibilities  of  actuating  the  base included

using a wheeled or  tracked system, or  using a linear-actuated planar  table

mechanism.  Based on previous work in Thailand [21], it seemed that perhaps

a mobile platform underneath was the easier option.  

It was decided to use Omni-wheels as this would allow movement back and

forth in both directions in the plane.  These wheels are not well suited for some

applications such as moving on inclines or in rough terrain, but in this case they

are used on a completely smooth and flat surface.  This is an ideal application

in many respects because they allow for motion in both linear directions.  To

move in one direction, the large wheels of one set mounted on an axle are

activated  while  the  other  set,  mounted  perpendicular  to  the  first,  remain

motionless with the small rollers acting as free-wheels.  The underside of the

base showing the implemented wheel configuration is shown in Figure 5-11.

These  wheels  allow  for  an  immediate  direction  change  by  changing  the

activation of one set of wheels to another.
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Figure 5-11: Underside of the slit-lamp base with Omni-wheels mounted

  The original track that kept the slit-lamp on the table and within the bounds

was retained to be used for the same purpose.  The use of the Omni-wheels

with this track made the motion of this system functionally similar to a linear-

actuated table, but with less complexity and precision needed in machining.

This  kept  the  cost  down  and  is  also  easier  to  develop  as  a  universal  kit.

Keeping with the goal of making the system modular, the base was made as a
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separate unit and the slit-lamp was then attached to the top.  The mounting of

the wheels was done such that the axles would be perpendicular as required

for Omni-wheels, but that the slit-lamp would have its weight balanced on top of

the wheels as shown above in Figure 5-11.  A servo was mounted to rotate

each set of wheels.  The result with the slit-lamp mounted on top is shown in

Figure 5-12 below.

 

Figure 5-12: Actuation of the slit-lamp base with Omni-wheels

5.2 Control Hardware

Selection and implementation of the control hardware for this project went

hand-in-hand  with  the  actuation  method.   Again,  the  ease  and  speed  of

prototyping was a critical factor in selecting components.  As noted previously,

the  Maker  Movement  increased  the  offerings  of  well-documented,  cost-

conscious and powerful options for this project.  
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5.2.1 Control Hardware Selection

A full PC is used in conjunction with laser procedures as it is the controller

for many ophthalmic laser systems, as shown in Figure 5-13.  This PC may be

modified and used in the control of the robot in a future iteration, but the use of

a full PC for just the automation of the slit-lamp is not necessary.  Since little to

no autonomous function is  given to  the robot,  the necessary computational

abilities are limited.  Furthermore, the system is intended for use over a long-

distance communication line and cloud-based computing resources will likely

be available.   The most intensive processes are those involved with  image

processing and eye tracking and would require more intensive processor power

for full  real-time implementation.  However,  simple eye tracking has already

been  available  on  smart  phones for  years,  so  again  the  processing  power

needed is limited.  Due to these facts, a single-board computer was deemed

acceptable for this device.  In addition to being small and cost-effective, they

offer direct  access to processor GPIO pins so that interacting with physical

hardware is streamlined and avoids additional hardware to link the bus to the

outside world. 
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Figure 5-13: Full commercial laser and slit-lamp system (Zeiss)

Though several single-board PCs were considered, only two stood out as

good  options  considering  features,  cost,  and  availability.   These  were  the

Raspberry  Pi  and  the  BeagleBone  Black.   These  devices  are  very  similar,

though at the time that this project was implemented the Raspberry Pi offered

slightly  better  graphics  and  the  BeagleBone  Black  offered  slightly  better

processing and memory.  Though both aspects are important to this project, the

overall control of the robot was the first and most important stage and so the

BeagleBone Black Rev C, shown in Figure 5-14 was chosen.  It was decided
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that handshaking with a Raspberry Pi could later be considered, if necessary,

when implementing  the  image processing  portion  of  the  project  in  order  to

increase capabilities for eye tracking tasks.

 

Figure 5-14: BeagleBone Black

While  the  BeagleBone  Black  offers  direct  access  to  GPIO,  additional

hardware was utilized to more efficiently direct servo motion.  The Adafruit 16

Channel 12-bit PWM/Servo Driver 1411 shown in Figure 5-15 was selected to

be the servo driver.  With the ability to control up to 16 servos, it had sufficient

capabilities to handle all of the actuators used in this project while only using

two BeagleBone GPIO pins for i2c communication.
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Figure 5-15: Adafruit 16 Channel 12-bit PWM/Servo Driver

5.2.2 Control Hardware Implementation

Implementation of the control  hardware involved first  wiring the separate

components described in  the previous section together.   This  was done by

connecting the i2c lines from the BeagleBone to the Adafruit PWM/Servo Driver

as well as their power and grounds.  A 5V, 20A power supply was connected to

the servo driver to ensure sufficient power to the servos.  The BeagleBone had

its own plug-in wall transformer to provide power and offer some isolation if the

servos drew a lot of current.  All of the servos were then connected to ports on

the servo driver with the output port numbers corresponding to those used in

the software program.   Finally, since the BeagleBone was usually connected to

a PC for programming purposes, the PC was used to offer it connection to the

Internet.  In later uses, a WiFi dongle or direct Ethernet connection replaced
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this.  A pictorial schematic is shown in Figure 5-16 while a photo of the physical

implementation is shown in Figure 5-17 below.

 Figure 5-16: Pictorial schematic of circuit diagram for servo control system

88



 

Figure 5-17: Implemented control hardware for the first prototype

5.3 User Interface Implementation

The patient-side interface is dictated mainly by the base medical hardware.

Major  components  on  the  patient  side  are  shown  in  Figure  5-18.   These

components as numbered are (1) robotic slit-lamp with control  over moving

parts and controls, (2) adjustable patient chin/head rest, (3) adjustable table,

(4)  on-site  controller  of  laser  and  robot,  (5)  emergency  stop  button,  (6)

monocular  camera,  and  (7)  robotic  lens  holder.   Not  shown  is  the

communication devices needed for remote access to the robot as these may

be  included  in  the  controller  or  separately  depending  upon  the  method

selected.
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Figure 5-18: Patient-side interface

In regard to the remote controller part of the system, convenience of use for

physicians from a variety of locations and devices is a primary concern when

determining  how  to  implement  the  user  interface  for  the  robot.   The  user
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interface must also be clear and easy to use to allow for safe and accurate

control of the robot on the patient's of the system.

Current  commercially  available  surgical  robots  have  dedicated  hardware

control  consoles  [62].   The  consoles  tend  to  offer  an  integrated  package

including  visual  feedback  from  cameras,  tactile  control  manipulators  and

buttons for robot control, and sometimes even haptic feedback.  Ergonomics is

an issue for some consoles [41] and  is a concern for any interface used for

long lengths of time.  These large consoles are acceptable for current robot

surgery uses as remote telesurgery is rarely performed.  The physician travels

to the location of the console and attends to the procedure in the operating

room or in an adjacent room.  The consoles are generally not moved notable

distances once installed in the medical facility.

Different user interfaces were considered for this project and are proposed

in  the  published  patent  for  future  options  when  the  robot  goes  to  market.

These  fit  into  three  main  categories  and  have  their  own  advantages  and

limitations.

5.3.1 Master-Slave Console

A master-slave system is the first option.  The control console consists of a

physical device to manipulate the robot just as in current systems such as the

da Vinci.  This control console could vary in size and physical features, but the

most obvious option is to use a full-scale slit-lamp shell as the controller.  This
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follows  the  master-slave  model  for  robot  control  where  a  passive  (master)

device  that  is  a  full-sized  or  scaled  version  of  the  active  (slave)  robot  is

manipulated to direct the motion of the slave robot.  It is also possible to display

the image output of the actual slit-lamp into the binocular portion of the master

slit-lamp in order to make the experience three-dimensional and most like an

in-person exam.  

The  slave  side  of  the  system  can  be  seen  in  Figure  5-18 as  already

discussed.  Major components of the master side of the system are shown in

Figure 5-19 below.  These components as numbered include (8) sensors for

moving parts, (9) sensors for tactile control devices, (10) digital screens in false

binoculars  and/or  use  of  a  video  monitor  for  patient-side  monocular  visual

input, and (11) a method for activating the laser similar to that used in-person.

Not shown is the communication method used to interface to the robotic side.

This would vary depending upon the communication method chosen.  On-site

control  hardware  can easily be  concealed within  the  faux slit-lamp to  save

space.
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 Figure 5-19: Master-Slave style control console

This would be the best control console for training as the physician will be

able to apply the knowledge to both remote and in-person exams.  It is also a

great option for experienced ophthalmologists who would be more comfortable

using equipment just as they have always done.  This control console would be
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larger,  heavier  and  thus  less  portable  then  the  other  options  that  will  be

presented. Though it could be made to be lighter than an actual slit-lamp, it will

still be of such a size that it would likely remain in one location.  It could be

made semi-portable by use of a cart or installed in a vehicle.  It would also be

possible to have these installed in various locations such as clinics, hospitals

and in physicians’ homes so that they are likely to be near one of the devices,

but it would not be something that could be kept nearby and ready to use at all

times.    In addition,  the physical  components and manufacturing of such a

device  likely  makes this  console  option  the  most  expensive  of  all  of  those

presented.  The increase in cost will increase the investment needed as well as

limit the number of locations these consoles could be installed.  

One big consideration in this type of console is that a master slit-lamp may

not be very similar to the slave slit-lamp.  While one option is to limit the slave

options of each master console to those that are of a similar style, size and

range-of-motion, this could pose problems as upgraded models of  both the

controller and robotic slit-lamps come to the market.  As can be seen in many

technology products, lack of compatibility causes increased costs with the need

for further upgrades or case-by-case fixes.  It would also mean that a control

console used by an available physician may not be able to be used with a robot

during an emergency.  The unnecessary increases in cost and lack of prompt

care  are  two  factors  that  would  defeat  main  objectives  of  the  proposed

technology.  Another option is to develop built-in translation code to allow all
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master controllers to control all slave slit-lamps.  Investigations must be made

into how to implement this including kinematic detection, motion translation and

unifying  physician  experience  so  that  changing  from  one  slave  device  to

another will not cause any unexpected motions or mistakes. 

5.3.2 Portable Physical Console

A more cost-effective  and portable  physical  controller  is  an  intermediary

step in the line of possible controllers.  In this case, the means of controlling the

slit-lamp still involves physical components, but these components are reduced

in size and weight.   The package would either be made relatively small  or

would  quickly  fold  to  be  a  manageable  form.   The  control  console  would

typically  consist  of  some  type  of  joystick  or  similar  primary  motion  control

mechanism and tactile mechanisms for control of some features.  One possible

example is shown in Figure  5-20 and has the following components:  (12) A

simple joystick mimics that which is used to make small adjustments to manual

slit-lamps.  Gross movements can be added by sensing larger input angles.

Tactile buttons, knobs and switches can provide other movements and feature

adjustments similar to the tactile experience of a manual slit-lamp.  (13) Visual

feedback  can  range  from an  external  monitor,  integrated  LCD,  or  to  video

glasses.  (14) Laser control can be separated for safety.  
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Figure 5-20: Portable physical control console

A portable  control  console  allows  a  physician  to  still  have  the  tactile

experience of using a slit-lamp.  It could be fitted with motors to also provide

haptic feedback to confirm reaching end positions, indicate the robot hitting a

physical object, or verify impending action.  The device would be of a notable
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size, but could be stored within a small vehicle or possibly even a bag to be

nearby at nearly all times.  Unless controls are designed to be kinematically

similar to a slit-lamp, the same generic control console could be used for any

slave  robotic  slit-lamp  without  adjustment.   Though  there  would  be  some

manufacturing  costs,  all  the  components  can  be  typical  off-the-shelf  tactile

inputs so that the end product costs are kept to a minimum.

5.3.3 Software Console

The final option is to implement a software console.  This would be a click-

based or touch-based console operated through a computer application or a

website.   An example of a possible interface is shown in Figure  5-21.  This

interface would be ideal on a large monitor or tablet in a landscape orientation.

Modifications would allow it to be more easily viewed in portrait orientation or

even on a smartphone for emergency situations.
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Figure 5-21: Software console

Clear advantages to this ‘virtual console’ include near-constant availability

through use in nearly any computer.  This includes desktop computers, laptops,

tablets or even single-board PCs provided they can be connected to nearby

monitor  or  screen.   In  an  emergency,  some  functionality  could  even  be

provided through a smartphone with the main limitation being the screen size.

In the case of devices that do not have a screen or large screen, the use of

video glasses would allow for use with minimal equipment to carry.  Using a
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nearby television or  computer  monitor  is  a  possibility  as  well.   All  of  these

electronic devices are typically already available in hospitals, clinics and homes

and so would not usually need to be purchased for the sole purpose of acting

as a control console.  They are easily carried and some are even are typically

carried around.  They already have built-in means for telecommunication and

these can be easily used by the application or to connect to a control website.

All of these allow for decreased cost in implementation of the robotic system.  

Some  problems  are  introduced,  however.   Current  personal  computing

devices typically do not provide for any haptic feedback and will have no tactile

sensations outside of some vibration.  This means that the physician must be

comfortable  working  completely  through  the  software.   Another  problem  is

limiting control to qualified individuals.  Once nearly any computer can access

the robot, protocols must be put in place to ensure only expected and qualified

individuals are able to access the robots at any time, especially while a patient

is present.  Finally, the use of equipment used for personal and casual use may

have  psychological  impacts.   Ophthalmologists  may  not  approach  every

session  in  a  professional  mindset.   It  will  be  important  to  try  to  make  the

interface feel that they are in a clinical environment with the patient to aid in

their mindset, much like pilots of military drones are required to wear battlefield

uniforms for a similar reasons including mentality and professional custom [89].
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5.3.4 Prototype Console

For  this  prototype,  it  was  determined  that  the  fastest  and  most  flexible

option  was  to  use  the  later  of  the  presented  configurations.   To  allow  for

compatibility on a variety of devices without programming a version for every

possible operating system, the web-based interface was selected.  As this was

to  be  a  quickly  developed  proof-of-concept,  issues  such  as  security  and

professional mindsets were not a concern.  These issues are expected to be

addressed in later development and some may be alleviated by the use of

dedicated applications and protocols rather than simple web pages.

5.4 Lens Holder Implementation

Other than being supported by the chin and head rest bars, the patient will

only come into regular physical contact with one other component of the robotic

platform.  This will be lenses and the manipulator that holds them in place.  

Lenses of  varying properties  are used to  expand or  enhance the  visual

access of the interior of the eye.  They can magnify aspects or allow view of

peripheral areas that are not in direct line-of-sight without aid.  The lenses are

of varying size and shape.

For the current stage of this project, it was expected that the on-site medical

assistant places and secures the desired lens at the end of the manipulator and

applies the lubrication needed between the lens and eye.  This assistant also
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places the manipulator  in  position on the eye so that  gross adjustment  via

robotic control is not required.  In the future, a process similar to automated

tooling changes can be designed and implemented to perform this task.   

The lens must stay in consistent contact with the eye.  If the eye and lens

separate, then the view is altered or disrupted.  At the same time, the lens must

not be allowed to apply too much pressure on the eye.  This could cause an

altered  view and  in  more  extreme cases  could  cause  damage to  the  eye.

Maintaining this balance is a challenge.  The patient can be expected to fidget

and move slightly, even when told to remain perfectly still and possibly be aided

in doing so by the on-site medical assistant.  The eye is usually able to move

around freely and all people have a certain amount of tremor and will fidget

during long periods of time.  Normally, a physician controls this pressure and

makes adjustments based on what they see and feel.  Ideally, the lens holder

must have mechanisms to perform these tasks in addition to simply holding the

lens and making simple adjustments to lens position.

Once  the  lens  is  in  place  in  the  lens  holder  and  on  the  eye,  the

ophthalmologist will then be able to take over control and make more minute

motion adjustments.  This requires a small and accurate sub-mechanism that is

a robot  itself.   As with  any robotic  manipulator  design, multiple  options are

available and were considered.
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5.4.1 Lens Holder Design Options

The most traditional design would be that of a serial manipulator directly

driven by actuators.  This resembles robotic arms that are commonly used in

manufacturing facilities.  It is composed of a chain of rigid links connected by

actuators from the base to the end-effector, in this case the lens bezel.  An

example is provided in Figure  5-22.  It can easily be any number of DOF by

simply adding or removing a link.  Motion at any of the links can be rotational or

linear.

 Figure 5-22: Serial lens-holding robotic arm general design
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A variation of the above design is to indirectly drive each link.  This has the

advantage of allowing motor placement to be more flexible.  In this case, it

affords the ability to locate the motors at the base of the lens holding arm in

order to decrease the weight and size of mechanism near the patient’s face.

This increases safety in that less force is needed to move the lens and that

there is less material and mass near the face.  Different mechanisms can be

used to convey the actuator movement to the links.  These include cables (also

referred to as tendons or strings) and belts.  Due to elasticity in the cables or

belts, these systems naturally tend to include notably more compliance than

traditional directly-driven links.  Though this can cause position errors, in this

application it allows for a certain amount of passive tracking to keep the lens on

the patient’s eye during normal fidgeting without necessitating constant fast-

moving adjustments in the lens holder manipulator arm.  An example of this

variant is is presented in Figure 5-23.

Figure 5-23: Compliant serial lens-holding arm. Image adapted from [121]
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The final  main type of mechanism considered for the lens holder was a

parallel manipulator.  This type of manipulator generally is extremely rigid and

accurate, though more complex and heavy.  This would have the drawback of

having  more  material  in  front  of  the  face  and  also  could  lead  to  a  less-

responsive system to larger motions.  However, newer designs and material

uses allow for it to be compliant or fast, however, so that it is still a feasible

consideration for this application.  Semi-flexible links or cable-driven motions

both introduce some tolerance for the mechanism to passively adapt to small

quick movements as well as to be built  with less weight and material to be

obtrusive to the patient’s face.  Some examples of these options are shown in

Figure 5-24.

Figure 5-24: Parallel lens-holding designs. Image adapted from [24]
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 Any of these options provide feasible options for holding the lens.  They all

allow  the  physician  to  remotely  control  the  position  of  the  lens  in  varying

degrees.  While the serial arms allow for larger motions, the parallel options

also  provide sufficient  motions for  most  cases.   The possibility  of  selecting

materials  and  configurations  to  allow  for  passive  compliance  to  maintain

consistent contact with the eye are also present.  This compliance could be

adjusted  by  changing  the  material  or  cable  tensions  used  in  each  design.

Reliability, cost and comfort become the main deciding factors after technical

aspects have been achieved.

5.4.2 Implementation

Simple analytical evaluations of the various lens holding arm mechanisms

are not sufficient for determining the best option for use in the actual system.  It

is hard to account for human preference, both for the patient and doctor, in a

simulated  model.   Also,  actual  properties  of  the  physical  unit  after

manufacturing change the expected performance somewhat.   While minute,

small changes on something as sensitive as the eye can have large impacts.

The best  of  the  above options may not  be  fully  known until  after  more

extensive testing.  Human and animal testing is a future part of this work, so an

optimal  design  will  not  be  definitively  named  here.   Still,  options  were

considered and tested to come up with some initial opinions.  It was decided to

try to start with those that would be the simplest first.  This would require easy
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manufacture and passive compliance so that the system would not have to be

as responsive in making small movements to maintain proper pressure on the

eye.  These designs would probably be the least expensive as costs would be

saved in manufacturing, materials, actuation and control.   In this regard, two

different lens holders were implemented on the first prototype.  The first used a

serial  arm with  cable-driven links.   The second was a parallel  cable-driven

mechanism.  Both had advantages as well as issues to resolve.

The first lens holder is shown in Figure 5-25 below.  This lens holder was a

2-DOF hollow serial arm driven by cables attached to servo motors.  Springs

were used to stiffen the joints, but allow for bending.  Small internal pulleys

were  used to  direct  the  thin  wire  cables  so  that  the  joints  would  move as

desired.  In the spirit of trying the most simple solutions first, the mechanism to

actually  secure  the  lenses  to  the  arm  was  simply  a  small  support  with

adjustable Velcro tape to wrap around.  It was initially able to perform the tasks

required and was installed for several months of initial testing.  However, over

time the springs tended to weaken and the pulleys were too delicate to remain

in  place  with  the  forces  that  were  sometimes  applied  to  obtain  positions

needed.  Overall, this is a very feasible design, but some adjustments to make

it robust and more complicated manufacturing is needed.
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Figure 5-25: Initial lens holder

A better view of the actuation of the lens holder can be seen from the rear of

the slit-lamp where the patient would approach as in Figure 5-26.

 

Figure 5-26: Initial lens holder actuation (from the patient's side of the slit-lamp)
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When  replacing  the  first  lens  holder,  it  was  decided  to  try  an  entirely

different mechanism.  While the first could have been made to work with further

adjustments, it was desired just to see how a more conventional and simple

mechanism would work on the actual system.  This second iteration used a

pan-tilt  mechanism.   It  is  shown  below  in  Figure 5-27.   The  mechanism

implemented  was  a  commercially-available  kit  intended  for  small  video

cameras.   The lens was held on by a round bezel mounted to the platform

where a video camera would normally be mounted.  Set screws held the lens in

place and allowed for adjustment to accommodate various sizes of lenses.  It

proved to be much more robust against the forces acting upon it by the eye and

held  steady  against  movements  of  the  slit-lamp.   After  testing,  it  was

determined that a large amount of compliance was not needed for the lens

holding component.

 

Figure 5-27: Pan-tilt mechanism for lens holder
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5.5 Implemented First Prototype

The first prototype, OphthBot 1 as completely implemented can be seen in

the Figure 5-28.  

 

Figure 5-28: First robotic slit-lamp prototype – OphthBot 1
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More discussion  about  the  operation  and results  from this  phase of  the

projects are discussed in Chapter 8.

5.6 Second Prototype Design and Construction

The original intent of the project was to use an entirely different slit-lamp for

the second prototype.  It  was planned to use a modern model  with a laser

installed.  However, there were many improvements that could be made to the

original prototype.  Using the same slit-lamp on the second prototype allowed

for the investigation and comparison of alternative design options that were not

selected the first time.  

Some changes in the goals were made for the second prototype, OphthBot

2.  In this instance, making a universal retrofit kit was not a goal.  Instead, the

focus  was  making  the  actuation  and  control  as  accurate  and  robust  as

possible.  This means that the parts used were made to custom fit the slit-lamp

and  would  have  to  be  uniquely designed  and  manufactured  for  any future

model of slit-lamp.

5.6.1 Automation of the Base Slit-Lamp

The second prototype automating the slit-lamp was completed with the aid

of a team of undergraduate students.  Details were published in other works

including [64], but a very brief overview is presented here. 
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The automation of the base slit-lamp used alternative methods not selected

for the first “kit-style” prototype.  Most notably, in this implementation, an X-Y

table, shown in Figure  5-29, driven by stepper motors and linear screws was

selected for the base motions.  In addition, all rotational joints were fitted with

custom-designed gears that were 3D printed and permanently affixed to the

slit-lamp as can be seen in Figure 5-30.  An image of the slit-lamp portion of

Ophthbot 2 is shown in Figure 5-31 below.

Figure 5-29: Stepper-driven X-Y table for base movements
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Figure 5-30: Geared servo interface to binocular and lamp arms

Figure 5-31: OphthBot 2 automated slit-lamp
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5.6.2 Lens Holder Implementation

The lens holder implementation also followed one of the alternative designs

not used in the initial prototype.  It was completed with the participation of a

second team of undergraduate students with published details in other works

including [52].

One  of  the  more  ambitious  alternatives  developed  in  the  brainstorming

processes, but not noted above, was chosen for this design. This design is

shown in Figure 5-32 below.  

 

Figure 5-32: Design for OphthBot2 lens holder
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This  design  was  pursued  as  it  seemed to  be  the  most  promising  after

experiences with the shortcomings of previous iterations.  The only additional

feature omitted was a keyless twist-lock lens clamp on the lens holder bezel to

allow for  quick and easy lens replacement and fit  adjustment.   It  would be

similar to a keyless twist-lock chuck as is used in drills to hold various sized

bits.  However, set screws were a suitable alternative that offer better cost and

weight  specifications  and  these  are  implemented  in  prototype  as  shown  in

Figure 5-33 and Figure 5-34.

 

Figure 5-33: Close up of the implemented OphthBot 2 lens holder
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Figure 5-34: Full implemented OphthBot 2 lens holder

5.6.3 Complete OphthBot 2 Implementation

The two parts of the second system were integrated into one unit.   The

same  control  system  and  user  interface  was  used  for  both  OphthBot

prototypes.  A camera mount was designed and implemented to provide visual

feedback via the web control interface.  The complete implemented OphthBot 2

system  is  shown  in  Figure  5-35.   Further  details  on  how  both  prototypes

functioned and compared will be provided in Chapter 8.  
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Figure 5-35: Complete OphthBot 2 system
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6. REHABILITATION ROBOTS DESIGN AND CONSTRUCTION

This chapter provides an overview of three robots that were designed and

produced  that  can  be  used  as  models  for  aiding  in  physical  rehabilitation,

among  other  purposes.   They  also  form  a  continuum  with  the  ophthalmic

project and reiterate the interconnections that robotics allow amoung medical

fields.  

These projects were in a large part completed with the participation teams

of undergraduate with the initial ideas, concepts, and guidance provided by the

author of this work.  The undergraduate teams, however, performed nearly all

of the detailed design and all of the construction of the projects presented in

this chapter.  The control systems are similar to those used in OphthBot and

notes are provided about this as well. 

6.1 Robotic Face

The first  of  the projects directly bridges eye procedures to  rehabilitative

uses.  It can also be used in other fields and interest areas of robotics including

creating more life-like androids or social robotics.  The primary focus of this

project was to develop realistic robotic eyes, though provisions were made for

actuation of the complete face.
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6.1.1 Goals of the Robotic Face

The primary goal of this project was to design and implement a platform for

which to test devices such as OphthBot as well as to allow for a means to train

physicians  for  performing  non-robotic  ophthalmic  procedures  with  animate

eyes.  While it is possible to perform these tests on animals and the goal is not

to completely replace this practice, animal testing is expensive and when used

extensively  it  raises  concerns  for  some  individuals  and  organizations.   In

addition, animals are not exactly like humans and the exposure to all situations

and conditions for which a physician should be trained are not available.    A

robotic  platform  could  be  reused  over  and  over  again  and  can  set-up  to

simulate various eye diseases and conditions.  As with current training, artificial

eyes with  replaceable retina films can be used to provide practice on laser

techniques  in  a  simulated  in  vivo  environment  with  no  patient  in  danger  if

mistakes are made.

The secondary goal of this project is to serve as a model face to help in

rehabilitation tasks.   Most  notably is for  use in teaching or expressing sign

language.  American Sign Language (ASL) not only uses hand shapes and

movements, but facial expressions and body language as well [107].  In order

to fully model ASL and other dialects of visual communication, realistic facial

expressions are needed.   This aspect of  the project will  tie into the project

discussed in Section 6.2 and more details will be provided there. 
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6.1.2 Robotic Face Implementation

The robotic face was successfully produced with moving eyes, though the

mouth and other features were not completed in this iteration.  Details on the

design  choices  and  manufacturing  of  this  project  have  been  published

elsewhere [93] and are not critical to this work to be fully repeated here.  The

resultant  prototype  had individually-actuated  eyes  controlled  by servos with

wire  linkages,  somewhat  like  the  tendons and muscles in  biological  human

eyes.  This provided a realistic model complete with the ability to shift gaze and

blink lids.  The prototype is shown in Figure 6-1 below.

   

Figure 6-1: Robotic face without cover (left) and with cover (right)
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6.2 Robotic Arm and Hand

The next  progression from the  robotic  face is  to  include the  hands and

arms.  A realistic robotic face can be used for medical  simulation, but  also

provides an important component for making a realistic humanoid model for

other tasks.  As with all projects in this chapter, more details on the design and

implementation are documented elsewhere [66].

6.2.1 Goals for Robotic Arm and Hand

The primary goal for the robotic hand begin with the secondary goal of the

face; to be a model for ASL. A robot that can model any sign language would

also be able to produce it as a translation of spoken or written communications

in any language.  This can be useful in situations were a human translator is

not available, or when a crowd is too big and having another sign language

translator would be useful. 

A robot that can model sign language is not a solution for all needs.  Most

adults can learn ASL without a physical  model  such as when using videos.

Many children are able to learn this way as well.  However, there is a lack of

depth when learning ASL from videos.  A physical model can allow the student

to  change  angles  and  clear  up  confusion.   A human  teacher  may  not  be

available at all times, or could teleoperate the robot in order to reduce travel

time and costs.  This opens up on-site ASL instruction to individuals who may

not be near instructors and want a more realistic learning experience.  A robotic
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model  programmed  to  perform  signs  can  perform  the  same  movements

precisely over and over again and do so at different speeds without changes in

positions as well.  All of this can be done on-demand as needed.  Finally, it can

provide a tactile experience in learning that videos can not provide.  This can

be helpful to some learners or audiences, especially those with limited vision.  

This robot project had a secondary goal as well.  This goal is to provide a

model  for  movements  in  many  physical  rehabilitation  activities.   The  fully

articulated arms, hands and fingers allow for use modeling many occupational

therapy tasks as well.

6.2.2 Project Implementation

The  project  was  based  primarily  on  the  InMoov  open  source  project

mentioned previously [88], though alterations were necessary.  Alterations were

made due to inaccuracies of the 3D printer utilized.  In addition, adaptations

were made to allow for slightly different servo motors that were used based on

availability and costs.  The revisions were extensive time-wise due to the large

size as each individual set of parts took well over three hours to print.  Due

primarily to this fact, only one arm was completed in this phase of the project.

The result is shown in Figure 6-2 below.
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Figure 6-2: Robotic hand as completed

The project had some other minor adaptations as well.  The index finger

was printed in a different color to help facilitate the identification of the hand

and finger positions when making various gestures.  Other fingers could be

made in different colors to further differentiate them.

Though it was not implemented in this phase of the project, the 3D printed

open source base allows for other adjustments to be made.  Like the humanoid

project that will be discussed later in this chapter, the arms and fingers can be

modified to represent the actual configuration of an individual.  The adaptations

would allow the robot to perform any occupational therapy task, including sign

122



language,  accurately  modeled  given  each  individual  client's  ability  and

physiology.   The size  and proportion  of  the  arm,  hand and fingers  can be

adjusted as well  as the form and number of  fingers.  Servo motors can be

controlled in such a way to mimic any difference in strength or range of motion.

6.2.3 Control System

There were two control systems implemented in this project.  The first uses

the base system of control used in the ophthalmic project.  The second utilized

an all-in-one controller.  It  allowed for some direct comparisons in controller

selections.

The first controller utilized was a Raspberry Pi along with the Adafruit servo

controller used in the ophthalmic project.  The program was written in Python

as in OphthBot as well.  This did allow for full control of the robot and some

progress was made.  However, programming was step-by-step and individual

for each joint motion.  This made programming tedious.

Toward the end of the time-frame of this project, an EZ-B version 4 by EZ-

Robot, Inc. was implemented as a control system replacement.  This device is

shown in Figure 6-3.  
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Figure 6-3: EZ-B v4 servo controller

The EZ-B allowed for built-in WiFi capabilities and serves a webpage for

control.   It  can control  73 servos, which was perfect for  the servo-intensive

device.  It was also able to control all three types of servos used in the project

as there were various ones selected due to functionality and costs constraints.

The EZ-B was programmed using MyRobotLab, which allowed for gestures

to be created simply by picking end position needed.  The software performed

the kinematic calculations and greatly simplified the task of programming the

robot.  Several signs were programmed in this phase of the project to complete

the proof-of-concept and meeting the minimal goals.  Further work will be done

completing both arms and further developing the tools  and programming to

make the system fully meet the goals outlined.
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6.3 Humanoid Robot

In the final stop in the progression of projects, a full humanoid model was

investigated.  This robot, again published in more detail in other publications

including  [85],  is  a  full  humanoid  scaled-down  model  to  perform  motion

research  as  well  as  modeling  tasks.   It  was  named  HCTeR for  Humanoid

Companion Technology for Rehabilitation.

6.3.1 Humanoid Project Goals

Humanoid robots have several uses in therapy.  They can be used to study

motion dynamics in real life without tiring or endangering humans.  Mostly, this

is important when trying to develop motion planning for an impairment that may

not be well understood.  Still, computer models and working with the patient to

determine best courses of action are sufficient and provide a more realistic

dynamic model given the size and costs limitations of this project.  Due to these

factors, this isn't a primary goal of this particular humanoid model.

One goal that is considered for this project is to allow the robot to act as a

surrogate between the therapist and the child.  This is important in cases such

as  the  child  being  on  the  autism  spectrum,  where  direct  adult-to-child

interactions may be difficult or impossible.  However, the therapist could control

the humanoid robot and elicit interaction via this device.  A major objective of

this robot was to be able to model physical therapy tasks in order to achieve

the goal of being a surrogate.  A secondary objective inline with this goal was
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for the robot to be able to help develop a child's social skills.  This allows for a

more holistic therapeutic tool to help the child gain the maximum benefit from

all therapies as well as in life.

As already mentioned in this work, robotic systems such as HCTeR allow

for customization of the limb proportions and strengths so that the robot can

better model a task as the impaired patient would be able to realistically mimic.

This  was  the  primary  goal  when  the  project  began,  though  it  became  the

secondary goal as things developed due to a greater prevalence of autism and

the urgent call for support tools.  However, the goal of making a customized

and adaptable system for each individual is unique to this system as far as the

literature review revealed.  Many children, and even adults, have different body

proportions or configurations from that which is considered typical.  Examples

include shortened limbs in  some individuals with  Down Syndrome,  reduced

limb size or strength in children with muscular disorders, impairments to only

one side in victims of stroke or certain head injuries, and altered or missing

limbs due to  birth defects or  amputations.  This  is the only system with  the

objectives of being so inexpensive and easily manufactured, that it can achieve

the goal of being made individually and to the specifications for each patient.  

6.3.2 HCTeR Implementation

The robot was first modeled to closely follow the Poppy Project mentioned

in the  literature  survey.   However,  it  was never  intended to  fully follow the
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Poppy  design  and  components.   The  first  immediate  designs  focused  on

finding ways to adapt the Poppy design to accommodate lower-cost servos and

control components.  The Poppy Project as it currently stands costs nearly ten

thousand dollars, which is not a reasonable amount to allow for individuals to

afford the system.  Furthermore, the higher cost components, while allowing for

some  great  features,  also  increase  the  cost  of  repair  should  a  motor  be

damaged during use as can be expected with repeated use around children.

Ultimately, the design differed fairly drastically from that of Poppy as can be

seen from Figure 6-4 below. The body is more enclosed than that of Poppy,

shown in Figure 3-17,  which keeps components and wires out of sight and out

of grasps of children.  HCTeR is also much less intimidating in appearance than

Poppy due to the enclosed nature and the more realistically shaped head and

torso.   Clearly  visible,  separate  and expressive  electronic  eyes  further  add

aesthetic appeal to HCTeR.

HCTeR differed from Poppy in other ways as well.  The degrees-of-freedom

were reduced from Poppy’s 21 to only 18 in HCTeR.  This cut costs, but mostly

simplified the design where the extra motions did not aid in the goals of the

project.   In addition,  low-cost  hobby servos including the TowerPro HG996r

standard servo and SG90 micro servo were used in place of the much more

costly  Dynamixel  servos  specified  for  Poppy;  This  alone  cut  thousands  of

dollars in costs.  Less expensive control hardware was paired with the servos

using an Arduino and the Adafruit servo driver used in the ophthalmic project.
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Figure 6-4: HCTeR Humanoid Rehabilitation Robot

The resulting  project  performed tasks  such as  crawling  and would  walk

assisted with  its hands held,  accurately modeling these tasks for  a child to

mimic.  Time did not allow for customization with various proportioned limbs,

however.  This, with the integration of sensors, addition of force feedback, and

the implementation of internal battery power is left for future work.
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6.4 Therapy Robots Summary

The three robots described in this chapter all demonstrate how inexpensive

robot technology can be used to help aid in therapies,  especially those for

children.  They have other uses outside of therapy as well as they can be used

as  surrogates  for  humans  in  training  doctors,  be  teleoperated  in  remote

environments for safety or convenience, and be used to interact with those on

the autism spectrum.

Future  work  with  these  platforms  include  adding  more  sensors  and

capabilities to the devices.  More programming and motion development is also

required on all of these systems.  Finally, testing and development alongside

physicians, therapists, and clients is a final step to verify that these projects

fully achieve their ultimate goals.
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7. CONTROLLER DESIGN

This  chapter  explores  the  design  of  control  systems  for  use  in  the

prototypes,  particularly  that  of  the  ophthalmic  project.   This  includes  the

modeling and compensation methods for the major actuated components of the

systems.  The controllers were expected to not only be useful  in improving

functionality  of  ophthalmic  and  rehabilitative  systems,  but  also  small-scale

manufacturing and systems developed by students and hobbyists influenced by

the Maker Movement.  Limitations of this work are noted.

7.1 Control System Requirements

The requirements for the control system in the scope of this complete work

are  varied  as  there  are  different  actuators  used,  applications  in  which  the

systems  are  applied,  and  approaches  taken.   There  are,  however,  some

fundamental  criteria that are the same.  Further,  to simplify and restrict  the

scope of this work, hobby and robotic rotational servo actuators are the primary

focus.  In addition, some consideration for small stepper motors were made.

In looking at the criteria of the control system, cost is a main consideration.

Given  the  goal  of  making  surgical,  examination  and  rehabilitation  robotic

devices that can be used in numerous remote locations, the hardware used

must be made as inexpensive as possible.  This would enable small clinics,
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clinics  in  rural  areas,  and  facilities  in  economically  depressed  areas  and

developing countries to have a greater chance of obtaining the on-site devices.

It would also aid in making the systems affordable for in-home use in the case

of  rehabilitation  and  some  diagnostic  instances  whether  or  not  insurance

covered  the  devices.   Finally,  since  the  scope  of  this  work  also  includes

consideration that devices that are accessible to the general public including

students and hobbyists influenced by the Maker Movement, the controller costs

must be kept down so that it is in-line with the expectations and limitations of

this population.

Next, the controller will be used in a system that has inherent time-delays.

These time-delays are due to the lag in control over the Internet or any future

remote communication system that may be implemented.  This time-delay must

not only be tolerated by the controller and not cause further disturbances or

inaccuracy, but ideally the controller may even offer some compensation.  An

example of this would be to limit the reaction of the device in response to a

quick series of commands given over the remote connection.  The inherent

delay may cause the remote operator to inadvertently cause an overshoot in

motion by sending a command too many times.  In any case, the controller

should not enhance the overshoot that the operator may have implemented.

Robustness is critical for a controller that is being used for a robot in direct

contact  with  human  beings.   Human  beings  can  behave  erratically  and

unpredictably at times, particularly children at play.  Though the devices will
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ideally be used within a clear range of expected conditions, the system should

perform  reasonably  well  and  have  a  relatively  predictable  response  to

conditions that may be outside of the normal modes.  In some instances, the

response may be to get to a shut-down mode as quickly and safely as possible.

Unexpected conditions can include another person interacting with the device,

the  patient  disregarding  directions  and applying  excessive  forces,  a  patient

trying to move the system in a way that was not intended, a patient falling or

becoming incapacitated while using the device, a component or appendage

being altered while in use or rest, a child or pet stepping in the way, etc.  The

system should have a controller that is stable in these conditions and is able to

at  least  maintain  safe  motion  control.   The  device  should  never  move  too

quickly or too far such that it could cause injury to the patient.

The final major criterion for the control system is that of adapting to not fully-

known, or in some cases mostly unknown, model variables.  In the case of a

ground-up designed robotic slit-lamp or new medical device, the model will be

well known and a controller can be made accordingly.  However, there are a lot

of used slit-lamps and medical devices that could be retrofitted for robotic use

and thus lower the upfront costs for implementation.  The controller in such a

retrofit kit would be designed for a known model of a similar system, but it could

differ in a number of  ways.  Similarly,  a controller developed for a pediatric

rehabilitation system should be able to work with a range of unknown factors.

This would enable a device to be used as-is without further programming and
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modification by the users in children of a range of sizes and abilities, though

these ranges could be specified and limited.

In summary, the control system must meet several main criteria as follows:

• Use low-cost hardware to facilitate adoption of implemented systems

• Tolerate time-delays that may be inherent in the controlled systems

• Exhibit robustness in the presence of unexpected conditions

• Adapt to new and not fully-known/defined models

7.2 Modeling

Modeling is an important first step in developing a control system.  As noted

above, the exact model may not be known for all of the proposed applications.

However, a general idea of the model is known for all cases.  In addition, the

range of conditions is known or can be specified for each application.  Models

are developed for the slit-lamp, lens holder and for possible motors used in this

project.

7.2.1 Slit-Lamp Model

Due to the prototype being a robotic retrofit, the exact specifications of the

slit-lamp were not known.  In this case, full disassembly of the slit-lamp was not

possible as many parts were permanently adhered and the system was not

meant to be fully serviceable.  Accurate spatial measurements were feasible as
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were the range of motions.  The exact weights of components were not known,

though these can be closely estimated and forces needed for motions were

able to be measured as well.

To  simplify  the  system,  the  slit-lamp  model  was  comprised  of  several

smaller models, one for each joint.  These sub-models can then be individually

controlled by a control system designed for that joint.  A controller was then

implemented to handle the entire range of conditions expressed by all of these

joints.

Another consideration in the dynamics of the model was that the robotic slit-

lamp itself should never move very quickly.  This was for safety reasons rather

than technical limitations as the actuators allowed for quick motions.  The slit-

lamp needed to move slowly to prohibit it from hitting a person or object with

notable force.  This reduces the chance of injury or damage in the event that

the remote operator is unable to detect that something is in the path of motion.

It  also  limits  the  overshoot  that  may  be  caused  due  to  the  latency  when

controlling the robot remotely.   A slower motion with smaller increments will

cause more gentile motions should a command be given more than once in the

event that the operator does not see a reaction as quickly as expected and hits

the command again.   
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7.2.1.1 Base Platform

The first aspect of the slit-lamp to be considered is the motion of the base

platform.  This platform only moves in a plane and is constrained by a frame

consisting of rails on both sides.  This portion of the slit-lamp was modified by

raising  it  and  placing  it  on  Omni-wheels  in  the  case  of  OphthBot  1.   The

wheeled platform is therefore the main aspect to be modeled for this motion.

Simplistically, it can be modeled as a platform with simple wheels.  It does

vary from this scenario because the wheels are not positioned as in normal

vehicles, but it can be shown that this has limited to no effect. 

Research on previous platforms using Omni-wheels have shown wheels to

be aligned evenly around the outside or in a symmetrical pattern underneath

the platform [118] [84] [82].  In the case of OphthBot 1, however, the wheels are

mounted in a T-shape as shown below.

Figure 7-1: Configuration of wheels and axles in base platform of OphthBot 1
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Typically, the position of a mobile robotic platform in a plane is described

using the following rotation matrix and translation vector:

R(θ)=[
cosθ sinθ 0

−sin θ cosθ 0
0 0 0] Equation 7-1

T=[xy
θ
] Equation 7-2

However, in this case, the angle and rotation can not change as the base

platform is bound by the track system of the slit-lamp.  Therefore, the position

is only the translation in a plane.  It reduces the position to a simple vector:

PWheeledBase=[xy] Equation 7-3

In addition to  the translational  motions allowed by the base,  there is an

adjustment just above the base that allows for the slit-lamp assembly to be

raised and lowered.  As it  moves everything but the wheeled platform, it  is

convenient to include it is the base kinematics to keep the number of equations

more compact.  Therefore, the full base position vector becomes:
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PBase=[
x
y
z ] Equation 7-4

A more complex model can be developed considering that it is not simple

wheels that are used, but instead Omni-wheels.  This changes the dynamics of

control and motion due to their geometry and properties.  There is slippage and

other factors that can be considered in some cases [118] [19].  However, the

models used in these works included the use of re-purposed cargo rollers in

one case and the rotation of casters in another, neither of which matches this

example.  In fact,  no examples found in literature indicated that there were

special considerations for dual row Omni-wheels.

Based on single-row wheels, it was assumed that the main factor with these

wheels is the uneven motion they experience when rolling along the activated

hub plane (the typical direction of motion expected of a wheel) and the slippage

that  results.   This  problem plagues  the  single-row designs  is  is  a  primary

investigation in the literature.

A CAD model and tests with the actual wheels were performed.  Four-inch

diameter VEX Omni-wheels were used.  As indicated in both the CAD model

and photos, shown in Figure 7-2, the wheels are designed to be perfectly round

in profile.  The rollers are offset such that the wheel is always resting on at least

one roller surface and never dips or slips due to the gap between rollers.
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Figure 7-2: Dual-row Omni-wheel in profile

In  practice,  there  was some minute dipping of  the  wheel  in  use due to

movement  and  deformation  of  the  rollers,  but  it  was  barely  notable  and

certainly did not affect the positioning of the slit-lamp.  Given the slow motions

and relatively limited range of motion of this project, any effects of the Omni-

wheels in either plane of motion were not a major consideration for this project

and were not investigated further.

7.2.1.2 Rotational Arms

The arms have a few aspects that are relevant to model.  In addition to

completing the model itself for each arm, there is also the aspect that rotation

of the lower binocular arm will rotate the upper lamp arm.  This requires some

compensation  so  that  the  binocular  arm  can  be  rotated  without  undesired

changes in the angle of the light.
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Looking at each arm individually, kinematic models can be made based on

the geometry and range of motion.  The main kinematic consideration for the

arms is their rotational position in relation to the base in the X-Y plane.  This is

shown in Figure 7-3 where M represents the microscope-binocular arm and L

represents the lamp arm.

 Figure 7-3: Kinematic model of slit-lamp arm positions

Given this diagram, determining the equations for motion of the arms based

on the input angles of the servos can be found to be:

PLamp Arm=[
Lsin θL
L cosθL
zL

] Equation 7-6
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PMicroscope=[
M sin θM
M cosθM
zM

] Equation 7-7

where ZL and ZM are known fixed offsets and L and M are known fixed lengths.

Coupling the motion of the lower arm with the top, the top arm needs to

have corrective motions for every motion made on the bottom arm.  The motion

is simple in that as the lower microscope arm rotates, the lamp arm moves

directly with it.  In order for the lamp to remain in the same position, it simply

must be rotated in the opposite direction when the microscope arm is moved.

In  other  words,  for  every  θM,  there  is  a  -θL commanded. This  is  directly

programmed as a joint motion when programming motions of the microscope

arm.

7.2.1.3 Control Knobs

The control knobs are automated in retrofit form by using friction fit discs,

belts or gears to connect the servos.  This means that the knobs are modeled

as physical knobs as they are not digitized or manipulated in an alternative

manner as may be done if the slit-lamp were custom-designed to be robotic

from the start.  

A model can be derived for each knob based on the diameter.  It actually

involves the calculation of gear ratios whether an actual gear or disc is used
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and is  simply the  driver  (servo  horn)  circumference over  the  driven  (knob)

circumference, both of which are known and fix values:

θknob=
πdservo
πdknob

θservo=
dservo
dknob

θservo Equation 7-8

Each knob can therefore be modeled using this equation.  Substituting the

diameters of both the knob and the driving actuator to determine the position of

the knob given the position of the actuator.

7.2.1.4 Model Limitations

There are some limitations of  the models that  should be noted.   These

include assumptions, simplifications and details that could not be determined

precisely.

The first major limitations of the model is that it ignores the effects of the

position of the binocular and lamp arms in the overall inertia of the system.  In

reality,  the  positions  of  these  arms  does  change  the  center  of  mass  and

dynamic characteristics of the system, particularly base motions.  It is ignored,

however,  due to the fact that the motions are so small  and slow that these

changes do not have a significant role.   If  the system were to move faster,

however, these would have to be taken into account.  The inverse would also

be  a  concern  as  well.   In  the  case  of  large  or  fast  base  movements,  the
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binocular and lamp arms may attempt to rotate.  In these instances, the model

would  need  to  show  this  and  their  affects  so  that  compensation  can  be

provided for both the base motions and to stabilize the arms.  Again, the slow

and incremental motions of this system do not make this a considerable factor.

Another  limitation  is  that  all  friction  in  the  slit-lamp  is  not  taken  into

consideration.  Some friction was considered when measurements were taken

from the  actual  slit-lamp to  build  the  model  or  controller.   However,  it  was

omitted to simplify the project.

7.2.2 Lens Holder Model

The modeling of this component of the project differs drastically from the

main  slit-lamp portion  in  a  couple  of  ways.   First,  the  mechanism is  much

smaller and lighter.  Second, the motions may not be as slow, though the full

speed  was  not  used  in  this  particular  prototype.   Though  motions  may be

incremental as with the slit-lamp, some motions may be made automatic so

that the lens tracks and stays firmly against the eye. 

The  model  provided  here  is  for  the  lens  holder  designed  alongside

Ophthbot 2 as it was the most robust and complete lens system.  This lens

holder had multiple stages of motion in which to model.  As with the slit-lamp,

the equations for programming motions will be noted from the base upwards.  

The kinematics of the lens holder base is represented below in Figure 7-4

with equations for determining the position noted immediately thereafter. 
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 Figure 7-4: Kinematic model of the lens holder base

PLensBase=[
E(LH )

−D
(LH )

H
( LH )

] Equation 7-9

Next, the position of the lens bezel is considered.  There are several partial

rotational motions, a full rotational motion, and two offsets to be considered.

First, consider the vertical and horizontal partial rotations of the bezel shown in

Figures 7-5 and 7-6.  Next,  the rotation of the lens is shown in Figure 7-7,

completing the actively controlled lens motions.  The composite equation for

the actively controlled lens motions is shown in Equation 7-10 below.
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 Figure 7-5: View from top of lens holder bezel – horizontal partial rotation

 Figure 7-6: View from side of lens holder bezel – vertical partial rotation
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 Figure 7-7: View from front of lens holder bezel – full lens rotation about the eye

Plens ActivelyControlled=[
E

(LH )

−D
( LH)

H
(LH )

θV
θR
θH

] Equation 7-10

Two offsets are also possible pending the manual placement of the lens as

well as variable lens parameters such as the lens depth.  These are shown in

Figures 7-8 and 7-9 below.  A complete equation for the kinematics of the lens

position  for  both  actively  controlled  and  user  offset  positions  is  shown  in

Equation 7-11.
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 Figure 7-8: View from side of lens holder bezel – lens depth offset

 Figure 7-9: View from front of lens holder bezel – lens center offset

PLens=[
ELH+xoff

−D(LH )−yoff
H LH+zoff

θV
θR
θH

] Equation 7-11
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7.3 Controller Design

The methodologies selected for controlling the system must meet the main

criteria provided at the beginning of the chapter.  As it would be impossible to

design and test every feasible control methodology for this system within the

limits  of  this  work,  it  was  decided  to  select  a  couple  of  controllers.   This

provided means to test the possibilities of control algorithms on the hardware

and systems presented.

The  controllers  were  designed  to  be  used  with  the  systems  provided,

though the ophthalmic project was the primary focus given the time limitations

for implementing models on the physical prototypes in this work.  Designs were

made for both the slit-lamp and the lens holder as they are both controlled

remotely at the same time and must coordinate to allow the desired view and

control of the eye exam or procedure.

Narrowing down all of the possible control methodologies to select those

tested  required  consideration  of  the  system,  prototype  goals,  and  potential

knowledge gains of all of the possible candidates.

The first selected control  methodology was the PID controller.  This was

chosen for a number of reasons including being the most widely-used control

method.  The PID controller is shown in Figure 4-3 shown previously.
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The equation for this controller shown in the diagram is:

u(t )=K P⋅e(t)+K I⋅∫
t o

t

e (τ)+
KD⋅d

dt
e(t) Equation 7-12

There are numerous ways of tuning the controller.  In this case, the simplest

method was to set all of the gains to zero and adjust them until obtaining the

desired  control.   This  was  the  method  selected  as  it  allowed  for  a  quick

implementation as it  was planned to design and implement several different

controllers for comparison.

7.4 Controller Implementation

The controller was implemented in Python on the BeagleBone Black and

used to  run the robotics servos of the slit-lamp. The pseudocode is  shown

below.

Set KP, KI and KD

Set dt as the time interval

Read in the current position and the desired position

PreviousError = Error

Error = Desired position – Current position
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IntegralError += Error * dt

DerivativeError = (Error – PreviousError) / dt

U = (KP * Error) + (KI * IntegralError) + (KD * DerivativeError)

Sleep for time dt

 Even with all gains set to zero and the proportional gain slowly changed, it

was immediately clear that it had no effect.  Adjusting any of the gains to any

extent had no noticeable effect.  This was tested repeatedly as shown in the

next chapter.  The addition of filters made with passive electrical components

were added to the controller as well,  though there was no difference in the

servo performance as well.  Due to the lack of response in differing software

and physical control systems, no further control systems were developed nor

implemented  for  this  project,  though  a  MPC  and  PLC were  prepared  and

planned.  This is further discussed in the chapters that follow.
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8. RESULTS

The details of the results from the physical prototypes and implementing the

controllers are shown in this chapter.   

8.1 Functionality of the OphthBot Prototypes

The overall performance goal of the ophthalmic prototypes was to meet, if

not  exceed,  the  capabilities  of  the  slit-lamp and  lens  holder  motion  with  a

human doctor physically present controlling these components in-person.

To test the devices, no human nor animal tissue was used both for safety

and due to institutional restrictions.  Instead, an anatomically correct plastic eye

was used.  The specific model was the Reti Eye Laser Practice Kit by Gulden

Ophthalmics.  This is shown in Figure 8-1.

Figure 8-1: Reti Eye practice eye by Gulden Ophthalmics
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More  detail  on  how  the  device  performed  both  quantitatively  and

subjectively is provided in the next sections.

8.1.1 Robotic Slit-Lamp Specifications

The slit-lamp was designed and controlled to move with limited speed and

range  of  motion,  so  the  specifications  provided  are  those  of  the  controlled

system and not  the maximum capabilities  of  the actuators  under  the loads

provided.

The first area tested extensively was the translational motions of the base of

OphthBot 1.   The testing and extensive use caused the realization that the

base movements were the most troublesome and least accurate.  Of the first

prototype iterations, it was the only aspect that definitely did not meet the goals

consistently.  

The results from one series of tests of the OphthBot 1 base is shown in

Table 8-1 below as it clearly demonstrates typical base behavior.  It compares

the distance that the base traveled after each incremental command in the two

translational directions.  It does this for both the unmodified controller running

the software controller and a modified controller that had a passive filter to try

to obtain a more controlled response.  It is also clear from this data that the

modified controller had no significant effect.  Reasons for these outcomes will

be discussed in the next chapter.
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 Table 8-1: OphthBot 1 Base Movement Data (in mm)

 

Similar data was obtained from all joints of OphthBot 1.  As there was no

significant  difference  with  any  of  the  attempts  to  improve  or  modify  the

controller, data was only fully collected using the original unmodified controller.

Each actuator was given an identical step command so that the movements

could  be  compared  equally  from that  standpoint.   The  filter  knob  was  not

implemented due to space restrictions on the slit-lamp, so it was omitted from

the practical tests.
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Base Movements Unmodified Base Movements Modified
Back and Forth Left and Right Back and Forth Left and Right
Unmodified Unmodified Modified Modified

5 16 4 10
2 11 2 9
5 14 3 7
5 10 1 9
2 7 6 13
2 20 7 17
4 21 1 19
2 22 1 20
4 7
1 2
5 6
6 5
7 6
4 5
7 2
3 1

Average 4 15.125 3.6875 13
Standard Deviation 1.8618986725 5.5661605131 2.3012677665 5.0426750271



 Table 8-2: OphthBot 1 Rotational Movement Summary (in degrees)

 

The table above shows clearly that  the rotational  arms have the largest

rotational motions to a given increment command as well as the least amount

of consistency in the motion that is produced.  The arms show similar motions,

which is expected as they have the same drive mechanism implemented as

well as similar dynamic characteristics. 

 The height knob was the best performing mechanism of the prototype.  It

had  both  the  best  accuracy  and  precision.   It  also  did  not  require  any

adjustment or further alterations during the months of testings.

The lamp width knob and the chin rest knob both performed similarly.  This

was expected as they had similar size, friction, and load characteristics.  They

were also actuated using similar friction discs.  Their performance was median

of the group of knobs.

The performance of the rotational actuation of the slit-lamp are shown in

Figure 8-2 below.  It gives more details of the actual values obtained during the

testing trial  shown and provides a visual  comparison of the performance of
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Average Standard Deviation
Microscope Arm 5.75 1.82
Lamp Arm 5.83 1.64
Height Knob 1.83 0.71
Width Knob 3.91 0.99
Chin Rest Knob 3.33 1.07



various components.  Further information on why the actuation performed as

shown will be provided in the next chapter.

Figure 8-2: Graph of OphthBot 1 rotational component performance

OphthBot  2  did  not  have  significant  changes  other  than  in  the  base

movement mechanism.  This is because the same actuators were used with

only changes in how they interfaced with the joints.  The connections were not

necessarily as reliable as in the first prototype and so it was difficult to get a

significant amount of trials before adjusting the joints.  The small trials did not

show any notable differences in data between the prototypes, however.

The X-Y table of OphthBot 2 was a huge change from the Omni-wheeled

base of OphthBot 1, however.  The X-Y table was not only consistent in both
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translational directions, but it had extremely consistent and small movements

after  each increment  command.   In  fact,  the  increments  were  too  small  to

accurately measure with the same instruments used with OphthBot 1.  Each

increment was under one millimeter in linear motion.  This will  be discussed

further in the next chapter.

Overall, the specifications for OphthBot 1 can be briefly summarized as:

• Linear movements in the X-direction: 15-mm ± 5.6-mm

• Linear movements in the Y-direction: 4-mm ± 1.9-mm

• Rotational movements of the microscope and lamp arms: 5.8° ± 1.8°

• Rotational movements of the lamp width and chin rest knobs: 

3.9° ± 1.0°

• Rotational movement of the lamp height knob: 1.8° ± 0.7°

For OphthBot 2, the first two summary specifications can be replaced by:

• Linear movement of the X-Y table: < 1-mm

8.1.2 Lens Holder Specifications

The  lens  holder  used  different  servos  and  had  slightly  different  results

during  testing.   As  with  the  testing  shown  above,  it  was  done  under  the

unmodified controller and using the same increments of motion as for all other

components.

The  three  linear  adjustments  of  the  base  of  the  lens  holder  were  not

required to be actuated by the project goals.  In order to simplify the project and
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ensure  completion  by  the  deadline,  these  joints  were  never  robotically-

actuated.  As they are manually adjusted by sliding the square tubing within

brackets and setting the position by tightening set screws, the precision and

accuracy of adjustment depends upon the dexterity of the patient-side assistant

performing these adjustments.

Likewise, the positioning of the lens within the bezel is done manually as

was  specified  and  recommended  by  the  goals  of  the  project.   The  on-site

patient-side assistant selects the correct lens and places it in the bezel.  The

offset from the patient's eye is determined both by the gross adjustment of the

base depth position as well as the offset of the lens in reference to the patient's

eye.  The placement of the lens within the bezel also is dependent upon the

assistant.   If  a  twist-lock  clamp  is  implemented,  the  lens  will  self-center.

However,  the  current  prototype  uses  set  screws  to  allow  for  lens  size

adjustments and the centering of the lens is dependent upon both the lens

diameter as well as how well the assistant positions the lens within the bezel.

The partial rotations of the lens in both the horizontal and vertical directions

were actuated, however.  These were tested to obtain specifications similarly to

the slit-lamp.  These are summarized in Table 8-3 below.

 Table 8-3: Lens Holder Partial Rotational Movement Summary (in degrees)
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Average Standard Deviation
Horizontal Rotation 2.2 0.42
Vertical Rotation 2.3 0.48



The table shows that the lens holder movements were very small and fairly

consistent.  This was necessary and expected given the small motors and the

high precision  required  of  this  motion.   The lens holder  worked with  much

better precision and consistency than most of the slit-lamp actuators.

The lens rotation was not implemented in this phase of the project, so no

data from the physical prototype could be obtained.  It can be assumed that

given that the same actuator, construction material and similar loads, the full

rotation  would  perform approximately within  the  specifications  of  the  partial

rotations.

Discussion of these results will be provided in the next chapter as with the

notes and observations from the robotic slit-lamp.  

Performance  of  the  actuated  portion  of  the  lens  holder  can  be  briefly

summarized as:

• Vertical  and  horizontal  partial  rotational  movement  of  the  lens

holder: 2.3° ± 0.5°

8.2 Comparison of Prototype Performance to Traditional Use

The comparison of the robotic specifications noted above to performance

using  traditional  (in-person)  control  is  provided  in  this  section.   These

comparisons are not quantitatively made.  This is because sufficient data was

not found in a literature search and human testing was not performed as it was
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not  within  the  scope  of  this  project  due  to  institutional,  time  and  resource

restrictions.  However, some clear comparisons were made due to handling the

base  ophthalmic  equipment  before  it  was  roboticized  and  also  from

observations made while gathering information about the project requirements

when working with an ophthalmologist.

The  original  prototype  was  actually  tested  both  manually  and  with  the

robotic attachments.  The particular model of slit-lamp used for this project was

old and very well worn.  The tracks on the base sometimes caused the base to

move awkwardly and the swinging of the arms or turning of the knobs did not

always move smoothly nor in the desired increment.   Due to these factors, it

was  actually  fairly  difficult  to  use,  even  by  an  ophthalmologist.   It  quickly

became  clear  why this  unit  had  been  upgraded  with  a  newer  model  by  a

previous owner.  Still, it was a functional device despite the fact that it required

more  effort  to  move  and  manually  get  into  alignment  compared  to  newer

models.  This effort was in both in dexterity and time and it was very difficult to

get good views of the points of interest on the practice eye.  

In the robotic implementation, the slit-lamp still exhibited the same difficult

behaviors.  However, the motions were kept partially in check by the allowed

increments and extra stability gained through the damping of the servo motor

actuators that were attached to all moving joints.  Either slit-lamp arm could not

suddenly  move  further  than  desired  when  an  area  of  high  friction  was

overcome  because  the  force  of  the  servo  automatically  dampened  the

158



tendency to overshoot and moved the arm to the next incremental position.

The same was true of the knobs, though these were much more stable as they

had less inertia to keep them moving.  The base of the slit-lamp did provide

some  trouble  even  for  the  robotic  platform.   The  tracks  and  wheels  had

irregularities that made motions jerky and greatly upset the accuracy in one

direction in particular.  However, even these erratic motions were limited by the

servos that dampened motions and held unactivated joints still.  

The main advantage of the robotic implementation of the slit-lamp was that

it was controlled from a computer and not manually.  This meant that the user

could simply click desired motions on the interface and the actuators would

perform that movement.  It was much more ergonomic than leaning over and

looking  into  the  binocular  microscope  eyepieces  and  moving  all  of  the

components  of  the  slit-lamp  by  hand.   Sitting  upright  and  not  having  to

constantly lean in at varying directions and degrees as the slit-lamp was moved

proved to be helpful in enduring the time aspect of getting the slit-lamp targeted

correctly.  Also, when one motion was made, it was separated from any other

motions being made at the same time.  This meant that an adjustment in one

direction by one actuator did not create an inadvertent adjustment in another

direction or to another component.  This created a condition that actually made

the slit-lamp more cooperative than it had been.  Overall, the robotization of the

slit-lamp of the slit-lamp had a positive effect and it made the operation easier

to use than by hand.
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The lens holder was another story.   The first  prototype consisted of two

different iterations of lens holder designs.  The first was a wire-driven serial

arm.  This was described in more detail  in previous chapters.   This design

proved to be a failure for long term use.  While it initially worked fairly well, the

components developed wear very quickly and the holder soon would not hold

up the lenses.  The motions, while very accurate, did not have sufficient range

to move the lens into all of the needed positions.  It did suffice in preliminary

testing of the physical prototype.  A teleoperation test as well as several videos

were obtained using this lens holder before complete failure.

The  second  lens  holder  was  a  simple  micro-servo  actuated  pan-and-tilt

mechanism  that  is  commercially  available  and  intended  for  small  video

cameras.   Again,  this  designed  is  discussed  in  more  details  in  previous

chapters.  This iteration proved to be much more stable than the first.  It was

also  much  more  responsive  and  allowed  for  more  than  enough  range  of

motion.  Because it was a commercially-available device intended for another

purpose, it did have some limitations.  The remote center of rotation was not

located in the correct place.  The lens holder did not rotate around the eye, but

instead at a point  lower and further away from the eye than desired.   This

aspect made it more difficult to test, but the motions were small and could not

be improved during any the testing that was done.

The third, and final in the scope of this work, iteration of the lens holder was

the most robust and worked well.  It allowed for gross adjustments in all three
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directions  necessary  via  manual  means.   The  lens  holder  portion  was

robotically-controlled and did  rotate around the eye in  both the vertical  and

horizontal directions.  The implemented version did not have the lens rotation

fully functioning, but this did not hinder any of the simulated examinations and

testing that  were performed.   The feature can be added in  the laser-ready

version in a later prototype.  This lens holder as implemented used the same

micro-servos as in the pan-tilt mechanism of the second iteration.  Due to this,

the incremental motions were not as sharp as desired.  However, they did work

and allowed for adequate testing with proper rotation around the artificial eye.

In  this  case,  a  human  physician  would  almost  certainly  provide  smaller

motions, but would not be able to hold as steady for so long as shown in other

work  [52].   The  lens  holder  also  provides  for  greater  comfort  and  better

ergonomics as the physician does not need to lean over and keep an arm

propped on the table in an attempt to hold the lens steady.  More extensive

testing with human subjects would be needed to determine how this device

compares with traditional methods over long periods of time.  It is likely in this

scenario based on testing done that the lens holder performs better than a

human hand. 
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9. DISCUSSION

This work developed several prototypes.  Controllers were developed to try

to improve the real-life performance of the robotic systems.  These had their

successes and failures.  This chapter will  focus on exploring how well these

controllers worked as well as their shortcomings.

9.1 Prototype Comparisons to Prior Technologies

It  is  difficult  to  fully  compare  OphthBot  with  exact  prior  technologies  as

comparable data on the device motion was never released on the robotic slit-

lamp developed in Thailand [21].   Instead,  they focus on trials  with  human

patients, which was not possible in the scope and limitations of this project.  It

is not evident that any other robotic slit-lamp was every physically developed

nor that the system in Thailand underwent further development and testing.

Still, based on use of the slit-lamp and subjective comparison with the data

taken from the device in Thailand, it is likely that OphthBot did not perform as

well as the previously published device.  Though not a large difference, it can

be estimated that  the ophthalmologists  would find the Thailand robot  to  be

more sensitive than the device presented in this work.  This is to be expected

as based on appearance, the previous robot used a new slit-lamp with more

expensive components and was also controlled on-site rather than remotely.
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This  eliminated  many  problems  and  allowed  for  quicker  and  sharper

responses.  However, it is clear that the Thailand robotic slit-lamp took nearly

three times as long for the ophthalmologists to use than the standard slit-lamp.

In this case, based on limited testing on OphthBot before and after being made

robotic, it would seem that both prototypes performed similarly or that perhaps

OphthBot was even a little easier to use compared to its non-robotic version.  It

is hoped that future testing will provide quantitative results to be able to make

more certain comparisons on a later date.

With regards to the therapy robots, very little exists in quantitative results of

previous technology.  As with the ophthalmic robot, no tests nor studies with

human  clients  were  used  with  the  systems  developed  here  due  to  the

difficulties  such  trials  entail.   Therefore,  quantitative  comparisons  were  not

possible.   Prior  robotic  humanoid  systems were  observed and the systems

developed here performed in similar manners and with similar capabilities as

those.  

9.2 Improvements of OphthBot 2 over OphthBot 1

The differences between the two ophthalmic prototypes were not as large

as originally intended.  Still,  some improvements were made and more was

learned so that project continues to improve.
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The use of gears rather than friction-fit discs for the microscope and lamp

arms is one of the major changes in the second iteration of the prototype.  It

offered the promise of more consistent performance and the reduction, if not

elimination, of  slippage.   In practice,  however,  there was not much pace in

which to attach the servo brackets.  As plastic was used, the brackets tended to

bend and allowed the servos to lift away from the slit-lamp so that the gears no

longer meshed.  A firmer bracket structure would solve this problem.

The friction drives of the knobs were replaced with belt drives that worked

by friction as well.  While this was an improvement in that it made adjustments

much easier, the belts used were friction tape and it required more frequent

adjustment and replacement than the rubber discs.  It is hard to tell whether

any costs or time are saved long term due to this change.  Based on the more

stable performance of the belt systems in both prototypes, at least while the

belts are in good working order, it is likely that using more permanent rubber or

silicone  belts  as  used  in  OphthBot  1  combined  with  the  OphthBot  2

mechanisms would offer the best of both designs.

The main improvement between the systems was the change of a wheeled

base platform to an X-Y table.  The X-Y table performed markedly better than

the  wheeled  base.   The  results  were  a  more  controlled  and  consistent

movement.   It  also  offered  movements  that  were  more  minute  and  thus

superior to that offered by the micro adjustment joystick on the slit-lamp.  Of all

the  changes  and  improvements  in  OphthBot  2,  this  is  certainly  the  most
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important.   Based  on  the  information  that  was  published,  it  not  only  out

performed OphthBot 1 in these motions, but the Thailand prototype as well.  It

was  determined that  the  X-Y table,  or  similar  design,  is  the  mechanism of

choice for controlling the base motions of any robotic slit-lamp system.

9.3 Controller Performance

The initial controller performed well enough for the system to operate as

intended.   Though  not  perfect,  it  did  complete  the  proof-of-concept.   It

performed well in many areas, but was lacking in others as can be seen from

data shown in the previous chapter.  

One of the biggest issues was that the ophthalmic project did not show any

benefits  from improved  controllers  nor  more  sophisticated  control  software.

There are a number of possible reasons for why this was the case.  The first is

that the servos used had a limited resolution and no controller could overcome

the physical limitations of these components.  Still, the servos did not perform

to the specifications provided by the manufacturer.  While it is possible that the

manufacturing quality was low and the servos acquired and tested were not

capable of performing to  optimal  specifications,  it  is  also possible that they

require adjustments or particular types of commands in order to achieve their

ideal performance.  Very little information was provided by the manufacturer,

even after directly making contact.  The manufacturer was slow to respond and
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never  completely  divulged  some  information  commonly  known  about  other

servos that would have cleared up uncertainty.  

Another reason for a lack of performance improvement may be due to the

relatively short motions performed.  Though the movement sizes were adjusted

in order to see if differences resulted in the better controller performances, the

movements were never made to be extremely large nor fast.  As noted before,

large or quick motions are usually undesirable in manual use of a slit-lamp and

are more so when used remotely.  The robot was never tested at full speed or

range  of  motion  as  it  was  deemed  undesirable,  even  if  the  performance

improved.  The controller needed to improve the performance with smaller and

slower motions or it was unsuitable for these applications.

It was certainly a disappointment to not be able to test a myriad of controller

algorithms and conclusively determine which were superior than all others for

these applications or for the hardware utilized.  Still, something was learned

from the attempt.  While it is possible that other algorithms may show results, it

is suggested by the research presented here that different hardware, at least

different actuators, must be selected in order for this method to bear fruit.  New

control hardware is coming to market at all times and there constantly remains

the necessity to evaluate and test the limits of the new offerings to get the most

out of the current technology and advance the products and systems.

From work with the robotic arm project, it  is clear that there are already

other control solutions now available in addition to the system chosen as the
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main focus during this project.  The EZ-B that was used in a second iteration

for the arm controller design was compact, all-inclusive, and much easier to

program than the original controller.  It also costs approximately the same as

the microcontroller and servo-driver combination that it replaced, so cost was

not  a  hindrance  in  selecting  that  controller  over  the  first.   The  use  of  this

controller, or a similar integrated unit, on the other projects in this work would

be an interesting next step for further research.

Auto-targeting of structures within the eye is a new goal of the controller

design.  It was not completed due to limitations of the actuator resolutions and

because  it  was  not  part  of  the  stated  scope  of  this  work.   However,  the

groundwork was provided through the kinematics of the slit-lamp provided in

Chapter  7.   A simplified  slit-lamp with  only the  necessary components  and

actuators  placed  in  more  ideal  locations  is  the  next  logical  step  for  the

prototype.   In  some  respects,  this  is  no  longer  the  familiar  slit-lamp  of

physicians, but from the remote control point of view, it will be identical.  The

patient  will  certainly  see the  difference,  but  a  compact  and efficient  design

should only be less intimidating and more accepted.  This compact design will

allow for better control no matter what hardware and software is selected.  It

will  allow  for  more  focus  to  be  put  on  improving  the  programming  and

functionality of the system as it moves into clinical trials and commercialization.
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9.4 Experimental Errors and Uncertainty

The controller sometimes didn't  work as well  as desired in the OphthBot

prototypes, as noted previously.  This was caused by many factors.  Some of

the possible and known causes of issues, uncertainty, and errors are discussed

here.  These were introduced in both the models and in the actual implemented

hardware, so both aspects will be mentioned.

9.4.1 Model Factors

Error in control systems can be introduced from multiple sources.  One of

the main sources is the model.  Depending upon the methodology used, the

design of a controller and the success of implementation is heavily dependent

upon the accuracy of the model.  If the actual system differs too far from the

model, then it allows unexpected or undesired results.

One major factor that was not accurate in the models of the ophthalmic

system was that of friction.  It was included in some instances when model data

was taken from measuring forces and torques in the system, so it  was not

completely omitted as with many system models.  However, as with nearly all

complex models, it could not be completely and realistically included both due

to simplifications of the task and for hardware reasons that are discussed in

further details in the next section.

As noted before, inertial movements of components that may move in the

actual system were not modeled.  The binocular and light arms are the main
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factors here, though all parts have the potential to move and have an effect.

These were neglected because the slow movement of the system did not allow

for notable inertial effects.  In addition, all components ideally would be locked

into  their  position  by actuators  that  control  their  position,  even in  the  case

where movements may cause inertial disturbances.

Ultimately, future iterations will result in the model being less of a source of

error.  As the amount and size of hardware is reduced to just the necessary

components  and  movements,  the  simplified  equations  representing  the

physical  prototype  will  perfectly  match  the  specialized  essential  hardware

components.   Full  electronic  control  of  features  that  can  be  implemented

without  hardware  components  will  be  made  furthering  the  reduction  in

complexity.  

9.4.2 Hardware Factors

Sources of  error  and uncertainty came into  play with  the  hardware  and

software that was used for implementation of the OphthBot prototypes. 

As with the model, friction appears again in this section. Uneven friction is

one of the main sources of error.  Friction in the actual system, even if it were

to be modeled exactly for one instant, changed frequently during use.  After

extended manual use of the slit-lamp, inconsistencies and changes in friction

over time were noticed.  These changes were not always stiffer, as would be

the case in the deterioration of lubrication, but sometimes components became
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more  free-moving.   They would  also  sometimes  go  back  to  stiffer  motions

again or vice versa.  Due to the age of the vintage slit-lamp, there was wear of

nearly all of the components and uneven lubrication noted in the device; It was

impossible  to  fully plan  for  and overcome all  the friction issues without  full

replacement of the base slit-lamp.  These issues will be encountered if retrofit

kits are commercialized for older systems, so it will remain a challenge in need

of  better  solutions  in  which  to  overcome.   Stronger  and  more  accurate

actuators,  in  addition to  more  robust  control  systems,  can be developed in

future  iterations so that  more consistent  rotation  motions are made despite

these friction factors. 

Another significant factor were the tracks on which the base of the slit-lamp

slid.  These tracks remained in use for OphthBot 1, but were not necessary and

were omitted in OphthBot 2.  The tracks sometimes caused issues because

they were no longer completely flat and had protrusions that caused the slit-

lamp to sometimes stick in one position or move more than expected after an

incremental  movement  command.   This  can  be  most  clearly  seen  in  the

measurements of the base motions shown in Table 8-1 as well as Figure 8-2.

The erratic behavior was due almost entirely to the slit-lamp becoming stuck on

the tracks or moving quickly due to depressions.  While some of this was due

to friction, most was due to some warping of the metal over the years.  Not only

were they no longer completely flat, but they were also no longer completely

parallel as the spacing between the rails were not even.  Finally, the guides on
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top of the rails were bent.  While this was repaired upon receipt of the slit-lamp,

the foundation of the rail  surfaces had warped enough to continue to cause

issues  and  it  attempts  to  fully  straighten  them  did  not  hold.   All  of  these

conditions made it such that the travel of the wheels in the tracks were more

difficult for some spots so that motion would be hindered and then begin again

abruptly.  As can be noted by the data shown in Chapter 8, removal of the track

system proved to eliminate much of the hardware factors in control variability

and allowed for a much more stable and robust system.
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10.CONCLUSION

This work produced two iterations of a prototype for a robotic slit-lamp. It

also contributed research into using a similar controller in other areas such as

pediatric rehabilitation.  The controller was not improved by applying control

theory  techniques,  but  the  prototypes  still  proved  to  be  successes.   They

completed their goals of  being proof-of-concepts for these technologies and

introduced technical innovations.

10.1 Implications of Research

The  prototypes  developed  in  this  work  have  the  potential  to  increase

options of care for people all over the world.  These are specifically shown for

the fields of ophthalmology and rehabilitation.  

Teleophthalmology allows individuals in remote areas with limited access to

physicians  to  receive  expert  care  via  tele-examinations  and  telesurgery.

Soldiers and civilians in war zones will be able to quickly receive ophthalmic

care on-site without risking the lives of specialists who will  otherwise not be

willing or available to provide the care.  Emergency rooms and clinics will be

able to offer near-immediate access to ophthalmologists even when one is not

physically on-site.  Patients in areas with access to specialists will be able to

benefit from getting second opinions from experts located other regions who

may be more knowledgeable about rare or complicated conditions.  In turn, this
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can help ophthalmologists work together and share knowledge and expertise

among themselves easier, faster, and more directly than ever before.

This  work  specifically  pointed  out  the  example  of  pediatric  rehabilitation

where  inexpensive,  but  easily adaptable  and robust  control  systems,  are  a

great benefit.  Prototypes were developed to show the possibility of creating

affordable and fully customized humanoid systems to  interact  with  patients,

whether  in  the  same room or  in  a  remote  location.   These  also  allow for

modeling of behaviors and tasks to children with different abilities in a way that

typically-capable  adult  therapists  are  rarely  able  to  perform  fully  and

realistically.

The  innovations  in  this  dissertation  can  influence  technologies  in  many

other industries as well.  Since this work uses hardware commonly used by

those influenced by the Maker Movement, it is hoped that this work will help

propel  increased  research  interest  in  this  area.   Increasing  numbers  of

professional engineers will hopefully embrace the concept of performing design

in areas commonly thought of as only for hobbyists.  Further collaboration and

research will help to increase the creative and technical accomplishments of

Makers  all  over  the  world  as  well  as  inspire  talented  hobbyists  to  pursue

professional research and engineering themselves.
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10.2 Future Directions and Recommendations

This work, as with all  academic endeavors, is never complete.  There is

plenty of room for other engineers to pick up and further this research both

directly and in branching fields of study.

One area that allows for direct continuation of work is in the improvement of

the remote ophthalmology prototype.  This work leaves the prototype ready to

be implemented in a laser-integrated slit-lamp and tested with both examination

and surgical capabilities present.  Many areas of improvement still exist in the

mechanical design of actuation methods of the slit-lamp as well as the lens

holder.  Work can also be done designing a system from the ground up to be a

robotic slit-lamp.  Unlike this work where an existing slit-lamp was adapted,

making a slit-lamp specifically to  be used remotely will  likely lead to  many

improvements  in  the  motion  and  ease  of  operation  of  the  system.  This

observation is based on preliminary studies performed during this work.

Work can be continued and is planned by the author in applying principles

of this work toward pediatric rehabilitation systems.  Child therapy devices offer

challenges in accommodating a wide range of sizes and abilities.  Developing

safe control strategies, both active and passive, is critical.  Children do grow to

be adults, so this work can naturally be applied to adult therapeutic needs as

well.  It is not to exclude the possibility of applying this technology to adults, but

many more researchers prefer to concentrate on adult patients than pediatric

situations due to the extra complexities of the later.
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Finally, more work can be done in developing and implementing advanced

control  techniques for use in popular low-cost  hardware that exists and will

perpetually be developed on placed in the market.  This work would appear to

have no end in sight.  While there are companies making new hardware for do-

it-yourself  enthusiasts,  there  has  not  been  as  much  academic  input  as

compared with the industrial counterparts.  Though it may not lead to patents or

fame, this area is exploding in popularity with  the general  public and many

people would benefit from having increased control options that work in their

creations.  It can only make everything better if school children, teachers and

hobbyists are helping to develop and advance technology alongside engineers

and scientists.
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