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ABSTRACT OF THE DISSERTATION 

3D DYNAMIC ANALYSIS OF HIGH-SPEED RAILROAD TRACK 

by 

Mohammad Fesharaki 

Florida International University, 2017 

Miami, Florida 

Professor Ton-Lo Wang, Major Professor 

High-Speed Rail (HSR) as a fast, reliable and environmentally friendly mode of 

transportation has received a lot of attention in recent decades. The International Union of 

Railways reported that there are more than 18600 miles of HSR in operation and about 1.6 

billion passengers per year are carried by them. Although there are plans for HSR in many 

states including Florida, the United States, however, is still hesitant to develop its own HSR 

network. One of the main barriers to developing high-speed rail is excessive vibration 

propagation to the media which may cause annoyance to people who live in the track 

neighborhood. Train induced vibration also contributes to track settlement, developing 

track flaws, and increasing life cycle cost of track and supporting structures.  

The aim of this research is to address this problem by conducting a comprehensive 

investigation into track dynamics. For this purpose, three-dimensional mass-spring-damper 

models of vehicle, track and supporting structures were developed and matrices of mass, 

stiffness and damping of each subsystem were formed. The response of the whole system 

was, then, determined by coupling the subsystems using Hertz contact theory. The 

differential equations of the coupled system were solved by the Newmark integration 

method and the results including vertical and lateral displacements and forces were 



v 

 

presented in the time domain. Since the purpose of this dissertation is to quantify the effect 

of track and vehicle condition on vibration level, rail defects were also taken into account 

and rail random irregularities for vertical profile, Gauge, alignment and cross level (super 

elevation) were incorporated into a numerical solution. The results of the study show the 

effect of track and vehicle parameters on the response of the vehicle, track and 

substructures.  

Since Florida and some other states in the United States are very prone to hurricanes, an 

investigation was conducted into the effect of wind speed on vehicle stability. For this 

purpose, a curved beam was modeled to consider the influence of track curvature, cant 

deficiency, wind speed and train speed simultaneously. The results from the study show 

the maximum allowable values of train speed and axle load for different wind speeds. The 

findings can be used to decide under what circumstances there is a risk of vehicle 

overturning and how to avoid it.  
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1. Introduction   

This short chapter provides as an overview of the dissertation and its contents and 

demonstrates the current problem that this research will address, the objectives of the 

project and the necessity of doing the dissertation. The method employed to conduct this 

study and also the organization of the project are the last parts of this chapter. 

 Problem statement 

The recent worldwide demand for construction of high-speed rails and increase of axle 

loads and traffic volumes is evidence of a need for structural improvement or modification 

of the conventional railroad track system. This requires a better understanding of railroad 

track system behavior and then improvement of the current codes of practice. Despite 

considerable developments in understanding of the mechanical behavior of the track, there 

are still several areas in the railroad field which need further studies. Due to lack of such 

studies, there have been many examples of incidents and complaints in different countries 

(Straszak & Tuch 1977).  

In recent years, after considerable increase in ground vibration from X2000 trains in 

Sweden, many researchers started to investigate high-speed rail vibration and the 

possibility of trains’ instability. Hence, considerable research has been conducted to 

investigate the dynamics of the rail track subjected to moving load during the last two 

decades (Krylov 2001).  

A large volume of papers have been written on analyzing track and ground vibrations 

utilizing methods ranging from mathematical analyses to finite element (FEM) and 

boundary element methods (BEM). Recently Connolly et al, reviewed more than 200 

scientific papers on track dynamics, it is evident that since the dynamics of railway track 
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is a complicated problem, no model has been able to successfully address the vibration 

problem of high-speed tracks (Connolly et al. 2015). A review of literature also shows that 

some important aspects of the track dynamics are still overlooked. The effect of track 

geometry on vibration level and operation safety has not been sufficiently addressed in the 

literature and very little attention has also been paid to the parameters influencing train 

operation including track defects such as vertical and lateral inflection angles at rail gaps 

and track geometry such as curve parameters.  

The importance of track system geometry necessitates more investigation into track system 

to reduce vibration level and improve train safety. A study at the University of Illinois at 

Urbana-Champaign shows that after broken rails, track geometry is the main reason for 

derailments of freight trains (Liu et al. 2012). Increasing train speed increases vulnerability 

of trains to track geometry flaws.  

Track deficiencies also generate vibration over a wide range of frequencies and amplitudes. 

Large amplitude vibration can cause damage to track components such as cracking, 

settlement of foundations, destabilization of embankments, and damage to nearby 

structures. So probe into safer and more reliable track is of great importance.  

In this research, the possibility of derailment and vibration amplification due to track 

geometric deficiencies will be discussed and recommendations will be made for different 

track conditions and train speeds. 

 Research Objective 

The objective of the research is to improve high-speed rail track systems to reduce vibration 

and increase operation safety. It is also the purpose of the research to find the maximum 

safe speed for different track conditions.  
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 Research Methodology 

This research develops a 3D train and track model and investigates the effective parameters 

on track and train vibrations and safety. It encompasses the following stages; 

- Development of a vehicle model using a mass-spring-damper model, 

- Development of vertical and lateral rail irregularities using appropriate power 

spectral density functions, 

- Development of track and bridge models, 

- Coupling the subsystems as an interaction model, 

 Structure of the dissertation 

This research includes eight parts which describe the process of numerical modeling of 

vehicle and railroad track. This section briefly introduced each part and its purpose:  

Chapter 2 investigates the current practice in railroad track analysis to choose the best 

method for solving the current problem. The method must be able to model vehicle and 

track both in vertical and lateral directions. 

Chapter 3 shows the process of vehicle modeling. Rail vehicle is simulated using a 31-

degree-of-freedom mass–spring–dashpot system including a car body, two bogies and four 

wheelsets. Vehicle response in both vertical and lateral directions are considered.  

Chapter 4 covers the process of rail irregularities modeling. Four types of track 

irregularities i.e., vertical profile, alignment, cross level and gauge are considered and 

characterized by the one-sided Power Spectral Density (PSD) functions.  

Chapter 5 discusses the modeling of track and bridge. Rail and bridge are modeled by 

Euler-Bernoulli beams and a series of mass-spring-dampers, representing the rail pad, 

sleepers, ballast, and embankment form the track system. To address dynamic interaction 
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between rail and vehicle, Hertz contact theory will be used. 

Chapter 6 discusses the results obtained from chapter 5 and probes into the effect of rail 

flaws on track and vehicle response.   

Chapter 7 shows the process of curved beam modeling and the effects of wind forces on 

lateral stability of rail vehicle. 

Chapter 8 summarizes the result of the study and provides recommendations for future 

works.  
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2. Literature Review

The dynamic analysis of railroad track is a complicated problem with numerous degrees of 

freedom. A detailed analysis of track consists of interaction between different components 

of track’s superstructure and substructure, as well as vehicle-track interaction. On the other 

hand, the magnitude of loading from vehicle depends on different factors including rail 

irregularities, subgrade quality, axle load and train speed. As a result, an accurate track and 

vehicle models and loading pattern that account for every excitation sources is still a 

challenge and there is no exact solution for analysis of railroad track. The approximate 

solutions can be achieved by idealizing loading, material properties and track-vehicle 

interaction. However, some acceptable results can be obtained from such models. The 

efforts that have been made to simulate track, vehicle and nearby structures can be mainly 

divided into two groups: numerical and analytical methods. This chapter discusses the 

different methods and solutions that have been used thus far for analysis of railroad track 

and introduces the methodology that will be utilized in this dissertation.  

 Analytical solutions 

To avoid complex formulations, analytical solutions usually simplify track structure as 

much as possible, as a result, analytical methods cannot be used for detailed analysis of 

track under different conditions. These methods are based on analysis of beam as rail on 

track foundation. In most studies, two types of beams have been modeled: Euler-Bernoulli 

beam for simple analyses neglecting shear deformations and Timoshenko beam to take into 

account shear deformations and rotational bending effects. In most cases, the track 

substructure are considered to be elastic.  
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2. 1. 1.  Beam on Winkler Foundation 

The most popular method of track analysis is called beam on elastic foundation. It was first 

proposed by Winkler in 1867 and later developed by Zimmermann in 1887 (Esveld 2001). 

As Figure 2.1 shows it is assumed that deflection at each point is a function of under rail 

pressure. Using free body diagram of the beam shown in Figure 2.1, differential equation 

of rail displacement can be written as follows  

 
dxxpdx

dx

dD
qdx )(  2.1 

In which “p(x)” is the contact pressure between sleeper and ballast in unit width. “D” is 

the shear force of an element.(Sadeghi 2009)  

Assuming a linear relationship between p(x) and displacement of each point, i.e. y(x)up(x) .  

and applying boundary conditions, one can obtain 

 
x)sinx(cos)y(

2

xe


 





u

P
x  2.2 

Where 

.250

EI4










u
 and “u” is coefficient of stiffness or elastic modulus of track bed.  

 

Figure 2.1 Beam on elastic foundation (Sadeghi 2009) 

Although, beam on elastic foundation makes the solution easy by reasonable assumptions, 

however, this method has the following disadvantages 
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- The model does not consider ballast layer and rail supporting system. Track 

geometry including the effect of the distance between sleepers (cross ties), ballast 

depth and subgrade condition cannot be taken into account in the Winkler 

formulations. 

- The longitudinal forces due to thermal stresses cannot be considered. 

- Inertia and damping forces are not included in the model.  

2. 1. 2.  Beam on discrete support 

To obtain Winkler’s equations, track bed support was assumed to be continuous, but in real 

track, rail is supported in a certain distances (the distance between sleepers). Beam on 

discrete support model, considers rail supports only at the position of sleepers. The stiffness 

of each spring is equal to the stiffness of track. The solution was proposed by Boresi and 

Schmidt (2003) using Castigliano theorem (Boresi & Schmidt 2003). Kerr compared the 

method with Winkler solution and concluded that the results from both approaches are very 

close (Kerr 2003). 

Kerr, also assuming rigid rail-tie connection and continuous moment at rail support, solve 

the following equations of motion 

 
qky

dx

yd
s

dx

yd
EI 

2

2

4

4
 2.3 

where “s” is a parameter show the relation between rail rotation and moment at rail support. 

”ky” indicates the vertical pressure of rail support (Kerr 2003).    

 

   )xsinxcos()y(
2

x

e













P

x  2.4 











EI4
2 s

 and 









EI4
2 s

  
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As the derived equation shows, rail displacement depends on track bed parameters “k” and 

“s” which can be determined from field measurements of rail displacements.  

 

 

 

Figure 2.2 Analytical model including bending of rail support (up) physical problem (down) track 

model(Kerr 2003) 

2. 1. 3.  Pasternak foundation  

Pasternak foundation can be considered as a modification to the beam on elastic foundation 

model. In this model, shear interaction between elastic supports have been taken into 

account. In other words, contrary to Winkler foundation, spring supports do not act 

independently. To incorporate shear effect on beam response, Pasternak used a vertical 

shear element between springs and rails. In the absence of external forces, free body 

diagram of Pasternak foundation is shown in Figure 2.3 (Esveld 2001).   
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Figure 2.3 Free body diagram of Pasternak model (Sadeghi 2009) 

The differential equation of vertical displacement of rail can be formulated as follows 

 
0

2

2

4

4

 ky
dx

yd
GA

dx

yd
EI  2.5 

Applying a concentrated load “P” to rail, displacement and bending moment of rail can be 

calculated 

 
)sincos()(

28
axbaxae

EIab

P
xy bx  


 2.6 

 

 
)sincos()(

4
axbaxae

ab

P
xM bx  

 2.7 

where  

EI

GA

b

a













2

2

4
2

1

4
2

1

 

Kargarnovin and Younesian (Kargarnovin & Younesian 2004), using Hamilton principle, 

developed the Pasternak equations for Timoshenko beam under dynamic moving loads and 
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solved by complex Fourier transformation in conjunction with the residue and the 

convolution integral theorem. They found the deflections, bending moments, and shear 

forces along the beam length, as well as the effects of velocity and frequency variation of 

the load on the beam response. 

Younesian and Kargarnovin (Younesian & Kargarnovin 2009) also investigated the 

response of the beams on random Pasternak foundations subjected to harmonic moving 

loads. Based on the results obtained from numerical analysis, the maximum deflection of 

a Timoshenko beam is larger than that of an Euler beam and inversely the maximum 

bending moment obtained from Timoshenko beam is lower than that of Euler-Bernoulli 

beam. 

2. 1. 4.  Double beam model 

Although beam on elastic foundation and similar models successfully provide a good 

approximation of track response to train loads, in some cases more detailed models are 

required. Slab track as an alternative to conventional ballasted track is a well-known 

example of double beam model application. As Figure 2.4 demonstrates, this model 

consists of two beams: upper beam represents rail and lower beam shows track substructure 

such as slab or bridge. Many researchers analyzed slab track using this model. Hussein and 

Hunt (Hussein & Hunt 2006), employing this model, considered the effect of floating slab 

on vibration attenuation and identified the critical load velocity using the direct solution of 

the dispersion equation. 

Kuo et al (Kuo et al. 2008) used double beam model to analyze the vehicle-track interaction 

problem under dynamic loads. They concluded that the rail deflections increase 

significantly as train speed increases. Although large slab mass may lower tuning 
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frequency, it could also result in higher wheel–rail contact forces and rail deflections. 

Correlation between wheel–rail resonance and train speed was also discussed in the paper.  

 

Figure 2.4 Double beam model 

Another example of double beam modeling is presented by Lombaert (Lombaert et al. 

2006) which investigated the effect of double beam track on far field vibrations. 

The differential equations of Euler-Bernoulli double-beam model in case oscillating 

moving loads have the following form 
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2.8 

Where”  vtx  ” is Dirac delta function and “  tx,wr ”and “  tx,ws ” indicate rail and slab 

displacements. “ sc ” and “ sk ”are also damping and stiffness of slab, respectively. An easy 

way to solve the above differential equations is to use Fourier transform. In other words, 

the problem should be transformed from time-space domain to wavenumber-frequency 

domain. 

Double Fourier transform results in 
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The solution in time-space domain can be demonstrated in the following form 
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Where   Af  ,1 ,    spspss ccikkmEIf   24
2 , and    ickf pp ,3  

“ A ” is the determinant of matrix “A”. “ rw~ ” and “ sw~ ”are transformed displacement of rail 

and slab in wavenumber-frequency domain. 

2. 1. 5.  Other solutions 

Fryba (Frýba 1999) in his book, “ Vibration of Solids and Structures under Moving Loads” 

reviewed a number of mass-spring-damper models and presented solutions for different 

conditions. Table 2.1 shows a summary of these models. Incorporating vehicle into 

dynamic equations of motion makes the solution fairly difficult. For example, for a beam 

under moving vehicle with two degrees of freedom the following differential equation 

applies 
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 The second derivative on the right-hand side of equation makes the solution difficult 

compared to “moving loads” models. The complexity of problem increases with using 

more elaborate models in Table 2.1. In this case, where detailed analysis of rail or vehicle 

is necessary, numerical solution should be used instead. 

 Numerical methods 

Although analytical solutions can successfully predict the response of 2D track models, 

they are not reliable methods for problems including multi-body vehicles, track 

irregularities and train and track lateral stability analysis. To overcome these limitations 
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and analyze more realistic models including wheelflat, track irregularities, rail joints 

defects, track settlement, and ballast-slab transition zone, numerical methods have been 

utilized. There are several numerical approaches to track analysis including finite element 

method, boundary element method, and finite difference method which are briefly 

described.    

2. 2. 1.  Finite Element method 

Finite Element Method (FEM) is the most popular numerical method for track analysis. 

Depending on the required level of complexity, a wide range of FE models have been 

developed. The basic FE model consists of Euler-Bernoulli beam on elastic foundation. 

Beam is modeled by Hermitian shape functions with two Degrees of Freedom (DOF) at 

each node of the beam elements (Lou & Zeng 2006).  

The track components such as rail pads, sleepers (cross ties), ballast, subballast and 

subgrade have been modeled by mass-spring-dashpot systems. The number of sub-track 

layers depends on the purpose of analysis. If rail or vehicle response is of interest, the track 

sublayers can be reduces to one or two. (Lou et al. 2006), (Lou & Zeng 2005), but in case 

of substructure analysis a detail modeling of track components is usually required 

(Esmaeili et al. 2014).  

Numerous studies have been conducted on track flaws using FE method. (Lei & Noda 

2002), (Sun & Dhanasekar 2002), (Zhai et al. 2004). 
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Table 2.1 Track and vehicle models(Frýba 1999) 

Model description figure 

Beam subjected to a moving 

system with 2 DOF 

 

Beam subjected to a moving 

two-axle system 

 

Beam subjected to a moving 

multi-axle system 
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Most of the above-mentioned investigations considered a multi-body vehicle for vehicle-

track interactions. There are generally two different ways to approach the interaction 

problems: first, it is assumed that wheels and rail are always in contact, (Lou et al. 2006), 

(Lei & Noda 2002) and second, the models consider the displacement between rail and 

wheels. The most famous model to include wheel-rail interaction in modeling is Hertz 

theory. Based on the shape and elastic properties of wheel and rail, the stiffness constant 

between rail and wheel can be determined (Esveld 2001). Other investigations proposed 

numerical methods to take into account friction force and creepage between wheel and rail 

(Zhao & Li 2011).   

As Figure 2.5 shows vehicle models vary from a simple moving load to detailed 3D models. 

The first attempt to include the vehicle in track analysis was made by Winkler using single 

moving mass on Euler-Bernoulli beam. More realistic vehicle models were then used by 

introducing the multiple moving mass. The models, including car body bogie frames and 

wheelsets, are very popular for vehicle-track interaction analysis. In order to consider 

lateral response of track and vehicle, three-dimensional models of vehicles developed. 

These models are able to successfully simulate the unsymmetrical flaws, lateral rail 

irregularities and vehicle stability.  
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Figure 2.5 Evolution of railway vehicle models(Johansson 2013) 

To investigate wave propagation to surrounding structures a number of three-dimensional 

FE models developed. These models mainly focus on track bed and consider wave 

propagation in the soil. As a result, the vibration level in far-field can be investigated. This 

approach can be used either by commercial FE codes such as ABAQUS (Hall 2003) or 

using theory of wave propagation in half-space (Krylov 1995), (Steenbergen & Metrikine 

2007). The object of such analyses is usually to investigate the response of track to high-

speed vehicles traveling faster than Rayleigh wave velocity in the subsoil. In this case, it is 

shown that high vibration level is expected. Figure 2.6 shows the effect of train traveling 

at the speed exceeding Rayleigh wave velocity on subsoil vibrations. The effect of 

embankment, ground geometry, and trench geometry were also investigated by some 

researchers. (Fu & Zheng 2014) , (Younesian & Sadri 2012).      
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Figure 2.6 Deformed mesh from finite element analyses for different train speeds (a) 142 km/h 

and (b) 204 km/h (Hall 2003) 

2. 2. 2.  Boundary Element Method 

Finite Element method is widely used in analysis of railroad track vibration. The matrices 

produced by FE analysis are symmetric, banded and positive definite and consequently 

programming this method is straightforward. However, in case of railroad track or other 

problems involving infinite boundaries, classical FE procedures cannot accurately simulate 

the infinite boundaries and treatments are required. As reported by Rizos and Wang (Rizos 

& Wang 2002), to solve this problem, many types of radiating, transmitting or absorbing 

elements have been developed. For example, as it is used by some FE codes such as 

ABAQUS, during dynamic steps, the infinite elements introduce additional normal and 

shear tractions on the finite element boundaries that are proportional to the normal and 

shear components at the boundary. These boundary damping constants are chosen to 

minimize the reflection of dilatational and shear wave energy back into the finite element 

mesh (Dassault Systèmes Simulia Corp 2012).  
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Figure 2.7 Finite Element and Boundary Element domains (Rizos & Wang 2002) 

An alternative solution, is Boundary Element Method (BEM) where the radiation and wave 

propagation from boundary is considered in the associated Boundary Integral Equations 

(Brien & Rizos 2005). Another popular approach is FEM-BEM approach that uses the 

advantages of both methods and avoids the shortcomings of selecting one procedure. For 

example, O’Brien and Rizos (Brien & Rizos 2005) used BEM for the modeling of the soil-

tie system within the framework of impulse response techniques and the FEM for modeling 

the rail system then the two methods was coupled at the tie-rail interface.  

This approach has been used to model track and surrounding media for underground 

railways. Andersen and Jones (Andersen & Jones 2006), using coupled boundary and finite 

element method analyzed vibration from railway tunnels. They also compared two and 

three-dimensional models and recommended 2D or 3D analysis for different conditions. 

Vasilev et al (Vasilev et al. 2015) used the same approach to investigate soil-structure 

interaction using coupled BEM–FEM through finite element software ANSYS.  
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2. 2. 3.  Finite Difference Method 

Finite Difference Method (FDM) is an alternative to FEM used by some researchers. Based 

on the results of the study by Katou et al. (Katou et al. 2008), FDM has some advantages 

over FEM. They concluded that FDM programing are quite simple, and the FDM performs 

much faster and with lower memory usage compared to FEM. FDM has been utilized to 

find ground vibrations from wheel forces of high-speed trains, (Katou et al. 2008) and to 

predict ground-borne and structure-radiated noise from railroad track (Thornely-Taylor 

2004). 

 Other methods 

Although FEM and BEM can model almost every geometry, discontinuity and boundary 

conditions, but in some cases, it would be easier and more accurate to use semi empirical 

or empirical approaches especially where the geometry of the model becomes too 

complicated or some hard-to-model components such as ground water should be included 

in the simulation. Hence, some researchers tried to develop other approaches to investigate 

track and surrounding structures.    

2. 3. 1.  Pipe-in-pipe models 

The Pipe-in-Pipe (PiP) is a software package developed by Mohammed Hussein and Hugh 

Hunt at University of Cambridge. It is a semi-analytical three-dimensional model that 

accounts for the dynamic interaction between the track, the tunnel and the soil. As shown 

in Figure 2.8, the continuum theory of elasticity in cylindrical coordinates is used to model 

two concentric pipes: an inner pipe to represent the tunnel wall and an outer pipe to 

represent the surrounding soil. The tunnel and soil are coupled accounting for equilibrium 

of stresses and compatibility of displacements at the tunnel–soil interface. This method 



20 

 

assumes that the tunnel is invariant in the longitudinal direction and the problem is 

formulated in the frequency–wavenumber domain using a Fourier transformation. A track, 

formulated as an Euler–Bernoulli beam, is then coupled to this model. Results can be 

transformed to the space domain using the inverse Fourier transform.(Gupta et al. 2007) 

 

Figure 2.8 The PiP model (Gupta et al. 2007)  

2. 3. 2.  Empirical approach 

Concern for excessive noise and vibration from trains has led to developing vibration 

assessment studies which are either preliminary or detailed. The purpose is to estimate 

track and nearby structures response due to passage of trains with different configurations.  

Federal Transit Administration (FTA), considering the previous studies conducted in 

different countries, quantified human response to ground-borne vibration and then 

developed some Adjustment Factors for predictions of vibration from track. Based on the 

type of track and vehicle, track defects, vehicle speed and geologic conditions, the response 

of track and neighboring structure can be determined. (Carl E. Hanson; David A. Towers; 

and Lance D. Meister 2006) 

Other studies also developed preliminary or scoping vibration assessments. For example, 

Connolly et al. (Connolly et al. 2014) emphasizing on soil conditions, developed an initial 
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assessment prediction tool for high speed lines. The model developed by simulating track 

using three-dimensional FE analysis. A Neural Network (NN) approach was then used to 

establish relationships between key track parameters. The accuracy of the model was tested 

against the field measurements from high-speed track test results.  

 Current approach 

As it is discussed, many different approaches have been used to analyze track response to 

moving loads ranging from beam on Winkler foundation to complicated three dimensional 

vehicle-track interaction models. Choosing the most efficient method depends on the 

purpose of the analysis and the required level of precision. In some cases, a combination 

of different solutions produces more accurate results and makes the analysis easier.  

The aim of this research is to gain a better understanding of track behavior under high-

speed train loading and delve into track defects and their tolerance to guarantee the smooth 

traveling of vehicles. This dissertation also investigates the effect of curved beam and 

lateral loadings on the train stability. As a result, the model must be capable of the modeling 

of train, track and their interaction. Both vertical and lateral loadings are of interest and 

track components including sleepers and ballast should be modeled. To take into account 

the damping effect of vehicle, it should have the primary and secondary suspension 

systems.  

The requirements of such model to get satisfactory results dictates using a three 

dimensional vehicle and track simulation. A mass-spring-damper model can be 

successfully employed to model such system. It would also be more convenient to solve 

the governing differential equations using finite element method. So, the process of solving 

the vehicle-track differential equations of motion is to form the matrices of mass, stiffness 
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and damping of the coupled system and then to apply sources of excitation including rail 

irregularities and wind forces. The response of the whole system can be determined by 

solving the differential equations employing the Newmark integration method in time 

domain.  

 

 

 

 

 

 

 

 

 

 

 

  



23 

 

3. Vehicle Model 

 Introduction 

The early models, developed to analyze railroad track, considered the vehicle as a series of 

concentrated loads. Although, these models were successful to predict track response for 

ideal situations, more complicated “real” track and vehicle conditions could not be modeled 

by such idealizations. Moreover, in such models, the interaction between track and the 

moving vehicle is ignored. For this reasons, moving load model produces acceptable results 

only where the mass of train is small compared to that of the track substructure. In other 

cases, where vehicle response is of interest or track defects considerably affect the vehicle-

track interaction forces, more elaborate models are required. To address this issue, different 

vehicle models have been proposed. The simplest one is moving mass model which is able 

to take into account vehicle inertia. Akin and Mofid (1989) solved the problem for different 

boundary conditions by analytical-numerical approach (Akin & Mofid 1989). 

While moving on track with irregularities, the bouncing effect of vehicle must be 

considered to accurately calculate track response especially for high-speed trains. Hence, 

the vehicle models have been further improved by considering the effects of the suspension 

systems. This has been done by modeling moving mass supported by a spring-dashpot unit, 

the so-called sprung mass model (Biggs 1964), (Pesterev, A. V., Yang, B., Bergman, L. 

A., and Tan 2001). The more advanced models apply the properties of different 

components of vehicle proposed by different researchers. Depending on the required level 

of precision, two and three dimensional vehicle models developed (Wang et al. 1991), 

(Zhang et al. 2001). Figure 3.1 shows a three dimensional model for analysis of railway-

bridge interaction proposed by Wang et al (Wang et al. 1991).    
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In this study, the lateral and vertical response of track to high-speed train loading is 

investigated. As a part of study, the influence of track defects such as rail irregularities on 

track impact factors and stability of train under different conditions will be examined.  As 

a results, a three dimensional model which is able to simulate motions and rotations in 

different directions is required. The model should be able to simulate primary and 

secondary suspension system and wheel-rail interactions.   

 

 

Figure 3.1 Three dimensional model of the vehicle (left) side view (right) front view (Wang et al. 

1991) 

 Vehicle Model 

In the present research, a railway vehicle is simulated using a 31-DOF mass–spring–

dashpot system including a car body, two bogies, four wheelsets and secondary and 

primary suspension systems. Note that primary suspension connects wheelsets to bogie 

frames and secondary suspension is a set of spring and dashpots that join bogie frames to 

car body. A schematic model of vehicle is shown in Figure 3.2. According to the figure, 

the car body is able to simulate vertical and lateral displacements, as well as roll and pitch 

motions in the vertical planes. Note that rotation around “x”, “y” and “z” axis is called 
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rolling, yawing and pitching, respectively. Figure 3.3 shows the rotation of a rigid body.  

The assumptions of vehicle model are summarized as:  

- The secondary suspension that links the car-body and bogies is idealized by two 

similar linear springs and two viscous dashpots in both horizontal direction and 

vertical direction. 

- The primary suspension connecting a bogie and a wheelset is characterized by the 

similar way described for the secondary suspension.  

- The movement of the car-body and bogie frames are represented by five degrees of 

freedom (DOFs) in lateral, rolling, yawing, vertical and pitching directions. The 

mass and mass moments of a car-body, bogie and wheelset are lumped at their mass 

centers. 

- Four DOFs in lateral, rolling, yawing and vertical directions characterize the 

movement of the wheelsets; 

- Local deformations in the wheelset under contact forces are allowed. 

Total DOFs of vehicle, consisting of one car-body, two bogies and four wheelsets are 31. 

 Equilibrium equations of vehicle 

There are a number of methods to find the equilibrium equations of a mass-spring-damper 

model. Selecting the most convenient method depends on the problem’s configuration and 

model’s level of complexity. The energy method has been used by most researchers to find 

equilibrium equations. For example, Lagrange’s equations used by Tarighi and Wang 

(Tarighi & Wang 2015) to form the differential equations of different single truck and 

Tractor Semitrailers. By forming the expressions for the “Kinetic Energy”, “Potential 

Energy” and “Damping Energy” and using the Lagrange’s formulation, equations of 
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motion will be obtained. 

 𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇𝑖
) −

𝜕𝑇

𝜕𝑞𝑖
+

𝜕𝑉

𝜕𝑞𝑖
+

𝜕𝐷

𝜕𝑞̇𝑖
= 0 3.1 

Where “T”, “V”, and “D” are the Kinetic, Potential and Damping Energy of the system, 

respectively and “q” is the degree of freedom. 

Another energy methods used for modeling of rail vehicle is principle of a stationary value 

of total potential energy of a dynamic system. It is assumed that the total potential energy 

of dynamic system is composed of the potential energy of the gravity (Π𝑔), the elastic strain 

energy (Π𝑒), the potential energy of the damping force(Π𝑑), the potential energy of the 

inertia force (Π𝑖), the potential energy of the Coulomb friction force (Π𝑐), the potential 

energy of the applied load of the system (Π𝑝), etc. at instant of time “t”. The principle of 

virtual work can be expressed as (Lou & Zeng 2005) 

 𝛿𝜖Π = 0 

Π = Π𝑔 + Π𝑒 + Π𝑑 + Π𝑖 + Π𝑐 + Π𝑝 
3.2 

The above formulation have been used to obtain the differential equations of the whole 

vehicle-track interaction system (Lou & Zeng 2005 and Lou 2005).  

In the present study, the dynamic equilibrium method has been used to find the differential 

equations of the vehicle. To obtain the equations of motion, for each DOF, let the rigid 

body undergo a unit displacement (velocity or acceleration), and then considering the 

dynamic equilibrium of the body, the corresponding force in all DOF calculates.  

For example, as Figure 3.4 shows, to derive car body equation of motion in “y” direction, 

a unit displacement is applied and generated forces in all DOFs must be determined. 
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Figure 3.2 Vehicle model, (up) side view, (down) front view 
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Figure 3.3 Degrees of freedom of a rigid body in x,y and z directions 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.4 Forces on vehicle bodies due to car body unit displacement  

2(𝑘𝑠𝑦1 + 𝑘𝑠𝑦2)  is the force generated in car body in “y” direction due to a unit 

displacement of car body in “y” direction. 

𝑘49 = −2𝑘𝑠𝑦1  is the force generated in first bogie in “y” direction due to a unit 

displacement of car body in “y” direction. 

𝑘4(14) = −2𝑘𝑠𝑦2  is the force generated in second bogie in “y” direction due to a unit 
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displacement of car body in “y” direction. 

No force generates in other DOFs. Since viscous damper is used in the model, by replacing 

stiffness coefficients by damping coefficients, damping forces will be determined. So the 

equation of motion of car body motion in y direction would be: 

𝑀𝑦
𝑐𝑦̈𝑐 + 2(𝐶𝑠𝑦1 + 𝐶𝑠𝑦2) 𝑦̇𝑐 − 2𝐶𝑠𝑦1 𝑦̇𝑏1 − 2𝐶𝑠𝑦2 𝑦̇𝑏2 + 2(𝑘𝑠𝑦1 + 𝑘𝑠𝑦2) 𝑦𝑐 − 2𝑘𝑠𝑦1𝑦𝑏1

− 2𝑘𝑠𝑦2𝑦𝑏2 = 0 

The lateral, rolling, yawing, vertical and pitching directions are represented by the letters 

“z”, “Rx” , “Ry” , “y” and “Rz” , respectively, while “k” and “c” stand for stiffness and 

damping coefficients. The car-body, bogies and wheelsets are shown by the superscripts 

“c”, “b” and “w”, respectively. The parameters of vehicle and the values used for the 

simulation were tabulated in Table 3.1.  

The dynamic equations of motion of 31 DOFs of vehicle then can be derived as follows: 

Equations of car-body: 

 𝑀𝑦
𝑐𝑧̈𝑐 + 2(𝐶𝑠𝑧1 + 𝐶𝑠𝑧2)𝑧̇𝑐 − 2ℎ1(𝐶𝑠𝑧1 + 𝐶𝑠𝑧2)𝑅̇𝑥

𝑐 − 2𝐶𝑠𝑧1𝑧̇𝑏1 −

2𝐶𝑠𝑧2𝑧̇𝑏2 − 2ℎ2(𝐶𝑠𝑧1𝑅̇𝑥
𝑏1 + 𝐶𝑠𝑧2𝑅̇𝑥

𝑏2) + 2(𝑘𝑠𝑧1 + 𝑘𝑠𝑧2)𝑧𝑐 − 2ℎ1(𝑘𝑠𝑧1 +

𝑘𝑠𝑧2)𝑅𝑥
𝑐 − 2𝑘𝑠𝑧1𝑧𝑏1 − 2𝑘𝑠𝑧2𝑧𝑏2 − 2ℎ2(𝑘𝑠𝑧1𝑅𝑥

𝑏1 + 𝑘𝑠𝑧2𝑅𝑥
𝑏2) = 0  

 

3.3 

 𝐽𝑥
𝑐𝑅̈𝑥

𝑐 + 2(𝑏2
2𝐶𝑠𝑦𝑗 + ℎ1

2𝐶𝑠𝑧𝑗)𝑅̇𝑥
𝑐 − 2𝐶𝑠𝑧𝑗ℎ1𝑧̇𝑐 + 2𝐶𝑠𝑧𝑗ℎ1𝑧̇𝑏𝑗 +

(2𝐶2𝑍𝑗ℎ1ℎ2 − 2𝐶𝑠𝑦𝑗𝑏2
2)𝑅̇𝑥

𝑏𝑗
+ 2(𝑏2

2𝑘𝑠𝑦𝑗 + ℎ1
2𝑘𝑠𝑧𝑗)𝑅𝑥

𝑐 − 2𝑘𝑠𝑧𝑗ℎ1𝑧𝑐 +

2𝑘𝑠𝑧𝑗ℎ1𝑧𝑏𝑗 + (2𝑘𝑠𝑧𝑗ℎ1ℎ2 − 2𝑘𝑠𝑦𝑗𝑏2
2)𝑅𝑥

𝑏𝑗
= 0                j=1, 2 

  

3.4 

 

 𝐽𝑦
𝑐𝑅̈𝑦

𝑐 + 2𝑆𝑗
2𝐶𝑠𝑧𝑗𝑅̇𝑦

𝑐 + (−1)𝑗+12𝑠𝑗𝐶𝑠𝑧𝑗(𝑧̇𝑏𝑗 + ℎ2𝑅̇𝑥
𝑏𝑗

) + 2𝑆𝑗
2𝑘𝑠𝑧𝑗𝑅𝑧

𝑐 +

(−1)𝑗+12𝑆𝑗𝑘𝑠𝑧𝑗(𝑍1
𝑏 + ℎ2𝑅𝑥

𝑏𝑗
) = 0         j=1, 2 

3.5 
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 𝑀𝑦
𝑐𝑦̈𝑐 + 2𝐶𝑠𝑦𝑗𝑦̇𝑐 − 2𝐶𝑠𝑦𝑗𝑦̇𝑏𝑗 + 2𝑘𝑠𝑦𝑗𝑦𝑐 − 2𝑘𝑠𝑦𝑗𝑦𝑏𝑗 = 0       j=1, 2 3.6 

 

 𝐽𝑧
𝑐𝑅̈𝑧

𝑐 + 2𝑠𝑗
2𝑐𝑠𝑦𝑗𝑅̇𝑧

𝑐 + (−1)𝑗2𝑠𝑗𝑐𝑠𝑦𝑗𝑧̇𝑏𝑗 + 2𝑠𝑗
2𝑘𝑠𝑦𝑗𝑅𝑧

𝑐 +

(−1)𝑗2𝑠𝑗𝑘𝑠𝑦𝑗𝑧𝑏𝑗 = 0       j=1, 2 
3.7 

 

Dynamic equilibrium of the jth bogie:  

 𝑀𝑧
𝑏𝑗

𝑧̈𝑏𝑗 + 2(𝐶𝑠𝑧𝑗 + 4𝐶𝑝𝑧𝑗)𝑧̇𝑏𝑗 + (2𝐶𝑠𝑧𝑗ℎ2 − 4𝐶𝑝𝑧𝑗ℎ3)𝑅̇𝑥
𝑏𝑗

− 2𝐶𝑠𝑧𝑗𝑧̇𝑐 +

2𝐶𝑠𝑧𝑗ℎ1𝑅̇𝑥
𝑐 + 2𝐶𝑠𝑧𝑗ℎ1𝑅̇𝑥

𝑐 + (−1)𝑗+12𝑐𝑠𝑧𝑗𝑆𝑗𝑅̇𝑦
𝑐 − 2𝐶𝑝𝑧𝑗𝑍̇𝑘

𝑤𝑗
+ (2𝑘𝑠𝑧𝑗 +

4𝑘𝑝𝑧𝑗)𝑧𝑏𝑗 + (2𝑘𝑠𝑧𝑗ℎ2 − 4𝑘𝑝𝑧𝑗ℎ3)𝑅𝑥
𝑏𝑗

− 2𝑘𝑠𝑧𝑗𝑧𝑐 + 2𝑘𝑠𝑧𝑗ℎ1𝑅𝑥
𝑐 +

(−1)𝑗+12𝑘𝑠𝑧𝑗𝑆𝑗𝑅𝑦
𝑐 − 2𝑘𝑝𝑧𝑗𝑧𝑘

𝑤𝑗
= 0 k=1, 2 

3.8 

 

 𝐽𝑥𝑗
𝑏 𝑅̈𝑥

𝑏𝑗
+ (2ℎ2𝐶𝑠𝑧𝑗 − 4ℎ3𝐶𝑝𝑧𝑗)𝑧̇𝑏𝑗 + (2𝑏2

2𝐶𝑠𝑦𝑗 + 2ℎ2
2𝐶𝑠𝑧𝑗 + 4ℎ3

2𝐶𝑝𝑧𝑗 +

4𝑏1
2𝐶𝑝𝑦𝑗)𝑅̇𝑥

𝑏𝑗
− 2ℎ2𝐶𝑠𝑧𝑗𝑧̇𝑐 + 2(ℎ1ℎ2𝐶𝑠𝑧𝑗 − 𝑏2

2𝐶𝑠𝑦𝑗)𝑅̇𝑥
𝑐 +

(−1)𝑗+12ℎ2𝑆𝑗𝑐𝑠𝑧𝑗𝑅̇𝑦
𝑐 + 2ℎ3𝑐𝑝𝑧𝑗𝑍̇𝑘

𝑤𝑗
− 2𝑏1

2𝐶𝑝𝑦𝑗𝑅̇𝑥
𝑤𝑗

+ (2ℎ2𝑘𝑠𝑧𝑗 −

4ℎ3𝑘𝑝𝑧𝑗)𝑧𝑏𝑗 + (2𝑏2
2𝑘𝑠𝑦𝑗 + 2ℎ2

2𝑘𝑠𝑧𝑗 + 4ℎ3
2𝑘𝑝𝑧𝑗 + 4𝑏1

2𝑘𝑝𝑦𝑗)𝑅𝑥
𝑏𝑗

−

2ℎ2𝑘𝑠𝑧𝑗𝑧𝑐 + 2(ℎ1ℎ2𝑘𝑠𝑧𝑗 − 𝑏2
2𝑘𝑠𝑦𝑗)𝑅𝑥

𝑐 + (−1)𝑗+12ℎ2𝑆𝑛𝑘𝑠𝑧𝑗𝑅𝑦
𝑐 +

2ℎ3𝑘𝑝𝑧𝑗𝑍𝑘
𝑤𝑗

− 2𝑏1
2𝑘𝑝𝑦𝑗𝑅𝑥𝑘

𝑤𝑗
= 0                  k=1, 2 

3.9 

 

 𝐽𝑦
𝑏𝑗

𝑅̈𝑌𝑛𝑗
𝑏 + 4𝑡𝑗

2𝐶𝑝𝑧𝑗𝑅̇𝑦
𝑏𝑗

+ (−1)𝑘+12𝑡𝑗𝐶𝑝𝑧𝑗𝑍̇𝑛𝑗𝑘
𝑤 + 4𝑡𝑗

2𝑘𝑝𝑧𝑗𝑅𝑦
𝑏𝑗

+

(−1)𝑘+12𝑡𝑗𝑘𝑝𝑧𝑗𝑍𝑘
𝑤𝑗

= 0    k=1, 2 
3.10 

 

 𝑀𝑦
𝑏𝑗

𝑦̈𝑏𝑗 + (2𝐶𝑠𝑦𝑗 + 4𝐶𝑝𝑦𝑗)𝑦̇𝑏𝑗 − 2𝐶𝑠𝑦𝑗𝑦̇𝑐 + (−1)𝑗2𝑆𝑗𝑐𝑠𝑦𝑗𝑅̇𝑧
𝑐

− 2𝐶𝑝𝑦𝑗𝑦̇𝑘
𝑤𝑗

+ (2𝑘𝑠𝑦𝑗 + 4𝑘𝑝𝑦𝑗)𝑦𝑏𝑗 − 2𝑘𝑠𝑦𝑗𝑦𝑐

+ (−1)𝑗2𝑆𝑗𝑘𝑠𝑦𝑗𝑅𝑧
𝑐 − 2𝑘𝑝𝑦𝑗𝑍𝑘

𝑤𝑗
= 0 

3.11 

 

 𝐽𝑧𝑗
𝑏 𝑅̈𝑧

𝑏𝑗
+ 4𝑡𝑗

2𝐶𝑝𝑦𝑗𝑅̇𝑧𝑗
𝑏 + (−1)𝑘2𝑡𝑗𝐶𝑝𝑦𝑗𝑦̇𝑘

𝑤𝑗
+ 4𝑡𝑗

2𝑘𝑝𝑦𝑗𝑅𝑧𝑗
𝑏

+ (−1)𝑘2𝑡𝑗𝑘𝑝𝑦𝑗𝑦𝑘
𝑤𝑗

= 0 

 

3.12 
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Dynamic equilibrium of the kth wheelset of the jth bogie: 

 

 𝑀𝑧,𝑘
𝑤𝑗

𝑍̈𝑗𝑘
𝑤𝑗

+ 2𝐶𝑝𝑧𝑍̇𝑘
𝑤𝑗

− 2𝐶𝑝𝑧𝑧̇𝑏𝑗 + 2𝐶𝑝𝑧ℎ3𝑅̇𝑥
𝑏𝑗

+ (−1)𝑘+12𝐶𝑝𝑧𝑡𝑅̇𝑦
𝑏𝑗

+ 2𝑘𝑝𝑧𝑍𝑘
𝑤𝑗

− 2𝑘𝑝𝑧𝑧𝑏𝑗 + 2𝑘𝑝𝑧ℎ3𝑅𝑥
𝑏𝑗

+ (−1)𝑘+12𝑘𝑝𝑧𝑡𝑅𝑦
𝑏𝑗

= 𝐹𝑧,𝑗𝑘
𝑤−𝑟 

3.13 

 

 𝐽𝑥
𝑤𝑅̈𝑥𝑘

𝑤𝑗
+ 2𝐶𝑝𝑦𝑏1

2𝑅̇𝑥𝑘
𝑤𝑗

− 2𝐶𝑝𝑦𝑏1
2𝑅̇𝑥

𝑏𝑗
+ 2𝑘𝑝𝑦𝑏1

2𝑅𝑥𝑘
𝑤𝑗

− 2𝑘𝑝𝑦𝑏1
2𝑅𝑥

𝑏𝑗
= 𝑀𝑥,𝑗𝑘

𝑤−𝑟 3.14 

 

 𝐽𝑦
𝑤𝑅̈𝑦𝑘

𝑤𝑗
+ 2𝐶𝑝𝑥𝑏1

2𝑅̇𝑦𝑘
𝑤𝑗

− 2𝐶𝑝𝑥𝑏1
2𝑅̇𝑦

𝑏𝑗
+ 2(𝑘𝑝𝑥𝑏1

2 + 𝑘𝑅𝑦)𝑅𝑦𝑘
𝑤𝑗

− 2(𝑘𝑝𝑥𝑏1
2

+ 𝑘𝑅𝑦)𝑅𝑥
𝑏𝑗

= 𝑀𝑦,𝑗𝑘
𝑤−𝑟 

3.15 

 

 𝑀𝑦,𝑘
𝑤𝑗

𝑦̈𝑘
𝑤𝑗

+ 2𝐶𝑝𝑦𝑦̇𝑘
𝑤𝑗

− 2𝐶𝑝𝑦𝑦̇𝑏𝑗 + (−1)𝑘2𝐶𝑝𝑦𝑡𝑗𝑘𝑅̇𝑧
𝑏𝑗

+ 2𝑘𝑝𝑦𝑌𝑘
𝑤𝑗

− 2𝑘𝑝𝑦𝑌𝑛𝑗
𝑏 + (−1)𝑘2𝑘𝑝𝑦𝑡𝑗𝑘𝑅𝑧

𝑏𝑗
= 𝐹𝑦,𝑗𝑘

𝑤−𝑟 
3.16 

Where  

h1: the distance between secondary suspension and cab body’ centroid  

h2: the distance between secondary suspension and bogie frames’ centroid  

h3: the distance between primary suspension and bogie frames’ centroid  

t: the distance between two wheels of the same bogie  

s: the distance between car body and bogie centers 

𝐹𝑦
𝑤−𝑟: wheel-rail contact force in “y” direction 

𝐹𝑧
𝑤−𝑟: wheel-rail contact force in “z” direction 

𝑀𝑦
𝑤−𝑟: wheel-rail moment around “y” axis (yawing) 

𝑀𝑥
𝑤−𝑟: wheel-rail moment around “x” axis (rolling) 

Note that no axial forces are considered in the analysis, as a result, wheel-rail contact force 

in “x” direction is zero.  
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 Verification 

Verification of vehicle models consists of two parts. First, it is shown that springs and 

dashpots of vehicle work properly and the proposed formulations could successfully model 

damping and stiffness of each component into the formulas; and second, lateral and vertical 

displacements of each degrees of freedom can be recorded by using the derived 

formulations.   

To check the dashpots of the vehicle, displacements of car body, bogie frames and 

wheelsets in vertical direction is monitored for a sine shape bump with amplitude of 0.05 

meter.  

y(t) =abs (0.05cos (10t))   0<t<3.3 

The results are shown for 10 seconds. As Figure 3.5 shows, after 3.3 seconds (10/3) vehicle 

vibrates freely so the applied displacement after this time would be zero. As a result, forced 

and free vibration of vehicle can be observed. Figure 3.6 to Figure 3.11  show displacement 

history of wheel, bogie frames and car body for two cases of damped and undamped 

systems. The figures demonstrate that the model can successfully simulate the effect of 

damping on vehicle and free vibration. The values of primary and secondary suspension 

damping coefficients are presented in Table 3.1 
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Figure 3.5 Applied displacement to rail 
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Table 3.1 Vehicle parameters 

Notation Parameter Value Unit 

Mc Mass of car body 47 ton 

𝐽𝑥,𝑦,𝑧
𝑐  Car body inertia moments about x, y and z 49.50, 1950 ,2210 Ton.m2 

Mb Mass of bogie 3.1 ton 

𝐽𝑥,𝑦,𝑧
𝑏  Bogie inertia moments about x, y and z 1.55, 2.34, 5.1 Ton.m2 

Ksy Vertical stiffness of secondary suspension  2.15×105 N/m 

Ksz Lateral stiffness of secondary suspension 2.75×105 N/m 

Cs Damping of secondary suspension 104 N.s/m 

Kpy Vertical stiffness of primary suspension  6.55×105 N/m  

Kpz Lateral stiffness of primary suspension 2.35×106 N/m 

C𝑝 Damping of primary suspension 104 N.s/m 

Mw Mass of wheel axle 1.7 ton 

𝐽𝑥,𝑦,𝑧
𝑤  Wheel axle inertia moments about x, y and z 1.5, 1.2, 0.005 Ton.m2 

Lc Length of car body 6.3 m 

Rwheel Wheel radius 0.5 m 

E Wheel’s modulus of elasticity 2×1011 N/ m2 

𝜈 Wheel’s Poisson ratio 0.3 - 

h1 
the distance between secondary suspension 

and cab body’ centroid 
0.6 m 

h2 
the distance between secondary suspension 

and bogie frames’ centroid 
0.35 m 

h3 
the distance between primary suspension and 

bogie frames’ centroid  
0.2 m 

t 
the distance between two wheels of the same 

bogie 
1.2 m 

s 
the distance between car body and bogie 

centers 
2.25 m 
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Figure 3.6 Wheel displacement (no damping) 

 

Figure 3.7 Wheel displacement (including damping) 
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Figure 3.8 Bogie displacement (no damping) 

 

Figure 3.9 Bogie displacement (including damping) 
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Figure 3.10 Car body displacement (no damping) 

 

Figure 3.11 Car body displacement (including damping) 
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To control the lateral response of vehicle to lateral loading, a vertical half-staggered 

rectified sine displacement as rail irregularities is applied to rails. Right and left rail have 

phase angle difference of 90 degrees so vibration in lateral direction, as well as vertical 

motions occurs. Figure 3.12 shows the applied irregularities to right and left rails. 

Figure 3.13 to Figure 3.15 depict the lateral displacements of wheelset, bogie and car body, 

respectively. Vertical displacements of vehicle are also shown in Figure 3.16 to 

Figure 3.18.  

    

Figure 3.12 Rail irregularities (up) right rail (down) left rail 
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Figure 3.13 lateral displacement of wheel  

 

Figure 3.14 lateral displacement of bogie 
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Figure 3.15 lateral displacement of car body 

 

Figure 3.16 vertical displacement of Wheelset 
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Figure 3.17 vertical displacement of Bogie 

 

Figure 3.18 vertical displacement of car body  



42 

 

 The Vehicle’s Natural Frequencies 

Since mass and stiffness matrices of vehicle are formed, natural frequencies can be 

calculated. Free vibration of a linear system is determined by harmonic functions as shown 

in the following equation: (Chopra 2011) 

{𝑢} = {𝜑𝑖}𝑐𝑜𝑠𝜔𝑖𝑡 3.17 

where “𝜑𝑖” is eigenvector of i-th natural frequency (𝜔𝑖) 

Neglecting damping, the equation of motion reads 

(−𝜔𝑖
2[𝑀] + [𝐾]){𝜑𝑖} = {0} 3.18 

This is an Eigen value problem and expanding the determinant gives algebraic equations 

of the Nth degree. The “N” roots of this equation represent the frequencies of the “N” 

modes of the vibration.  

|[𝐾 − 𝜔2𝑀]| = 0 3.19 

The mode having the lowest frequency is called the first mode, the next higher frequency 

is the second mode, etc. 

For the rail vehicle, with the values of mass and stiffness shown in Table 3.1, the first six 

frequencies are: 

𝜔1 = 6.85 𝑟𝑎𝑑/𝑠  𝑜𝑟  𝑓1 = 1.1 𝐻𝑧 

𝜔2 = 7.01 𝑟𝑎𝑑/𝑠  𝑜𝑟  𝑓2 = 1.12 𝐻𝑧 

𝜔3 = 7.29 𝑟𝑎𝑑/𝑠 𝑜𝑟  𝑓3 = 1.16 𝐻𝑧 

𝜔4 = 10.22 𝑟𝑎𝑑/𝑠 𝑜𝑟  𝑓4 = 1.63 𝐻𝑧 

𝜔5 = 11.78 𝑟𝑎𝑑/𝑠 𝑜𝑟  𝑓5 = 1.87 𝐻𝑧 

𝜔6 = 28.30 𝑟𝑎𝑑/𝑠 𝑜𝑟  𝑓6 = 4.50 𝐻𝑧 
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4. Rail Irregularities 

 Introduction 

Rail irregularities are defined as deviations of rail from its ideal position. Irregularities are 

the major sources of track excitations during the passage of vehicles and are usually caused 

by imperfections of materials, tolerance errors in manufacturing of rail and other track 

components. Rail joints, terrain irregularities and errors in surveying during the design and 

construction phases of track also add to the track irregularities. Depending on the track 

characteristics, rail flaws may be periodic or random. Periodic irregularities are mainly 

attributed to flat wheels, defects in fastening system or sleepers. Periodic irregularities of 

the track are analytically described by the Fourier analysis. However, since random 

irregularities have no specific patterns and many factors contribute to them, statistical 

process must be used to characterize the flaws (Frýba 1996) (Wang 1984).  

There are four types of track irregularities namely vertical profile, cross-level, alignment 

and gauge irregularities.  

Vertical profile is defined as vertical deviation of rail from its planned geometry. 

Gauge is defined as the horizontal distance between two rails that should be constant. For 

a standard track in straight route, as defined by AREMA, the gage is 56.5” or 1435 mm. 

Any change in the distance between rails is called gauge flaw. (American Railway 

Engineering and Maintenance-of-Way Association 2010) 

Alignment is lateral movement of track from its centerline. It usually happens as a result 

of excessive lateral loading and low lateral resistance of track due to superstructure or 

substructure defects. This problem causes extra pressure on vehicle and track and expedites 

the deterioration rate of track.  
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Cross level (super elevation or cant) is the vertical distance between right and left rails 

that causes unbalanced centrifugal forces. To avoid unbalanced lateral force at curves, the 

level of outer rail should be raised. Extra cross level or deficiency in rails level cause extra 

forces on inner and outer rails. In extreme cases there is a risk of derailments.   

Figure 4.1 shows the different types irregularities. 

This chapter discusses the four types of random track irregularities and presents different 

approaches to describe them depending on the track conditions. Different models used in 

different countries will be presented and artificial rail surface for poor and good track 

quality will be produced.  

 
 

 

Figure 4.1 Four types of track irregularities 

 Formulations to rail irregularities 

Rail irregularities are random in nature and as a result, each measurement of rail profile 

produces a unique surface that cannot be predicted. Rail profile can be characterized by 

stochastic Gaussian ergodic processes which mean that the statistical measures are 
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independent of time and every signal of the ensemble can be considered representative for 

the statistical properties of the process.  

To produce the rail surface profile, some expressions should be defined first;     

The mean value (𝜀)̅ and correlation function (𝑅𝜀(𝜉)) of an ergodic stationary process 𝜀(𝑥) 

in the range 0-L, is defined:  

 
𝜀̅ = lim

𝑛→∞

1

𝐿
∫ 𝜀(𝑥)

𝐿

0

𝑑𝑥 4.1 

 
𝑅𝜀(𝜉) = lim

𝑛→∞

1

𝐿
∫ 𝜀(𝑥)𝜀(𝑥 − 𝜉)

𝐿

0

𝑑𝑥 4.2 

Power Spectrum Density (PSD) is the Fourier transform of the correlation function. PSD 

is defined by the following formula  

 
𝑆(Ω) = ∫ 𝑅𝜀(𝜉)𝑒−2𝜋𝑖Ω𝜉

∞

−∞

𝑑𝜉 4.3 

Where “Ω” is the frequency,  

The inverse Fourier transform is  

 
𝑆(𝜉) = ∫ 𝑅𝜀(Ω)𝑒2𝜋𝑖Ω𝜉

∞

−∞

𝑑Ω 4.4 

In case of 𝜉 = 0, the correlation function is mean square value: 

 
𝜀2̅̅ ̅ = lim

𝑛→∞

1

𝐿
∫ 𝜀2(𝑥)

𝐿

0

𝑑𝑥 4.5 

Which results the following equation  

 
𝜀2̅̅ ̅ = ∫ 𝑆(Ω)

∞

−∞

𝑑Ω 4.6 

For one-sided spectral density, i.e.Ω ≥ 0, PSD can be obtained by 
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 𝐺(Ω) = 2𝑆(Ω) 4.7 

The definition of PSD shows that the mean square value of a signal in specific frequency 

range is equal to the area under the spectral density function.  

Using the following formula proposed by Yang, rail surface irregularities can be simulated 

(Y.C.Yang 1986) 

 

𝜀(𝑡) = ∑ 𝛼𝑛𝑐𝑜𝑠(2𝜋Ω𝑛𝑡 − 𝛽𝑛)

𝑁

𝑛=1

 4.8 

Where “𝛽𝑛” is random phase angle in the range of [0,2𝜋] and “𝛼𝑛” is defined by 

 

 

𝜀2̅̅ ̅ = ∑
1

2
𝛼𝑛

2

𝑁

𝑛=1

 4.9 

The mean square value, “𝜀2̅̅ ̅”, can also be defined over a range of frequency divided into 

“N” intervals with bandwidth “∆Ω”   

 

𝜀2̅̅ ̅ = ∑ 𝐺(Ω𝑛)

𝑁

𝑛−1

∆Ω 4.10 

So “𝛼𝑛” can be resulted from 

𝛼𝑛 = √2𝐺(Ω𝑛)∆Ω 

The rail irregularities then read 

 

𝜀(𝑡) = ∑ √2𝐺(Ω𝑛)∆Ω𝑐𝑜𝑠(2𝜋Ω𝑛𝑡 − 𝛽𝑛)

𝑁

𝑛=1

 4.11 

Ω𝑛 = ΩΔΩ = Ω
Ω𝑢 − Ω𝑙

𝑁
 

where “N” represents the total number of discrete spatial frequencies, and “Ω𝑛” is the nth 
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discrete frequency. “ Ω𝑢 ” and “ Ω𝑙 ” are, respectively, the maximum and minimum 

frequencies.  

 Spectral Density Functions for Rail Irregularities 

As discussed earlier, rail irregularities should be modeled by using PSD functions. 

Different countries conducted comprehensive tests to record rail surface irregularities for 

different track conditions. Employing the PSD functions, an artificial rail surface is 

simulated and the response of track and vehicle can be measured. This section reviews a 

number of PSD functions derived from field measurements in different countries and 

railroads.  

4. 3. 1.  The SNCF Function 

The SNCF1 or French National Railway Company suggested the following PSD formula 

 

 
𝐺(𝑛) =

10−6𝐴

(1 +
𝑛

𝑛0
)

3 
4.12 

Where” 𝑛0” is equal to 0.307 cycles/m. “A” is a parameters that shows the quality of track. 

For good rail condition, A = 160 and for poor condition, A = 550. Figure 4.2 show the 

power spectral density formula of the rail roughness proposed by SNCF for good and poor 

track conditions. Figure 4.3 and Figure 4.4 also illustrate the waveform of rail roughness 

for good and poor state.  

                                                 
1 Société Nationale des Chemins de Fer François 
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Figure 4.2 PSD function of the rail roughness proposed by SNCF 

 

Figure 4.3 Rail irregularities proposed by SNCF for poor state 
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Figure 4.4 Rail irregularities proposed by SNCF for good state 

4. 3. 2.  Braun and Hellenbroich’s Functions 

Braun and Hellenbroich (1991) using PSD for road surface roughness proposed a PSD 

function for rail irregularities.  

 
𝐺(𝑛) = 𝐺𝑟𝑟(𝑛0) (

𝑛

𝑛0
)

−𝜔

 4.13 

Where 𝑛0 = 1 / (2π) cycles/m and the exponent “𝜔” is constant between 3 and 4. For good 

track condition, the values of the roughness parameter G(n0) = 5 × 10−7 m3 and for poor 

condition G(n0)= 1 × 10−9 m3.  

The PSD functions graphs for upper and lower limits are presented in Figure 4.5.  
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Figure 4.5 PSD function proposed by Braun and Hellenbroich 

4. 3. 3.  FRA formulations 

The most widely used PSD formulations for track analysis and design were presented by 

FRA (Federal Railroad Administration). FRA collected a large database of track 

irregularities profiles in the United States. Based on the recorded rail profiles, Track is 

divided into six classes (1 the worst and 6 the best quality) to characterize the roughness 

of the rail and track quality. FRA suggested the following PSD functions for rail 

irregularities (Hamid et al. 1983). 

 
𝐺𝑒,𝑎(𝑛) =

𝐴𝑛2
2(𝑛2 + 𝑛1

2)

𝑛4(𝑛2 + 𝑛2
2)

 4.14 

 
𝐺𝑐,𝑔(𝑛) =

𝐴𝑛2
2

(𝑛2 + 𝑛1
2)(𝑛2 + 𝑛2

2)
    4.15 

where “𝐺𝑒,𝑎” is PSD function for vertical profile and alignment and “𝐺𝑐,𝑔” is the PSD 
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function for cross level and gauge irregularities. “A” is the roughness parameter (in2-

cycle/ft.). “n1” and “n2” are defined as the break frequencies (cycle/ft.). The values of “A”, 

“n1”, and “n2” are different for track classes 1 to 6. The values of the constants are given 

in Table 4.1 (Wang 1984), (Hamid et al. 1983).  

Table 4.1 Spectrum constants for different track classes defined by FRA(Wang 1984) 

Irregularities Parameter 
Track Class 

6 5 4 3 2 1 

Profile 

A×10-4 0.45 0.79 1.4 2.5 4.5 7.9 

n1×10-3 7.1 7.1 7.1 7.1 7.1 7.1 

n2×10-2 4.0 4.0 4.0 4.0 4.0 4.0 

Cross level 

A×10-4 0.34 0.50 0.74 1.1 1.6 2.3 

n1×10-3 7.1 7.1 7.1 7.1 7.1 7.1 

n2×10-2 4.0 4.0 4.0 4.0 4.0 4.0 

Alignment 

A×10-4 0.28 0.50 0.89 1.6 2.8 5.0 

n1×10-3 10.0 10.0 10.0 10.0 10.0 10.0 

n2×10-2 5.6 5.6 5.6 5.6 5.6 5.6 

gage 

A×10-4 0.28 0.50 0.89 1.5 2.8 5.0 

n1×10-3 8.9 8.9 8.9 8.9 8.9 8.9 

n2×10-2 7.1 7.1 7.1 7.1 7.1 7.1 

 

Figure 4.6 to Figure 4.9 illustrate the power spectral density for vertical profile, cross level, 

alignment and gauge irregularities. The presented results are for track class 4 based on FRA 

classification.   
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Figure 4.6 Vertical profile power spectral density for track class 4  

 

Figure 4.7 Cross level power spectral density for track class 4  
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Figure 4.8 Alignment power spectral density for track class 4  

 

Figure 4.9 Gauge power spectral density for track class 4  
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If “R” and “L” refer to right and left rails, then the vertical ( 𝑢𝑦) and lateral 

(𝑢𝑧) irregularities are given as (Wang 1984) 

 𝑢𝑦𝑅 = (𝜀𝑣 +  
1

2
𝜀𝑐) ,  𝑢𝑧𝑅 = (𝜀𝑎 +  

1

2
𝜀𝑔) 4.16 

 𝑢𝑦𝐿 = (𝜀𝑣 −  
1

2
𝜀𝑐) ,  𝑢𝑧𝐿 = (𝜀𝑎 −  

1

2
𝜀𝑔) 4.17 

In which “𝜀𝑣”, “𝜀𝑐”, “𝜀𝑎”and “𝜀𝑔” are vertical profile, cross level, alignment and gauge 

irregularities, respectively.  

Figure 4.10 to Figure 4.13 show right and left rail vertical and lateral irregularities for track 

class 4. The same results for track class 6 are presented in Figure 4.14 to Figure 4.17. 

Comparing the figures of the two track classes clearly demonstrates that class 4 

irregularities are about 30% higher than those of track class 6.   

 

Figure 4.10 Right rail vertical irregularities for track class 4 (Vertical profile + ½cross level) 
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Figure 4.11 Left rail vertical irregularities for track class 4 (Vertical profile - ½cross level) 

 

Figure 4.12 Right rail lateral irregularities for track class 4 (Alignment +½gage) 
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Figure 4.13 Left rail lateral irregularities for track class 4 (Alignment - ½gage) 

 

Figure 4.14 Right rail vertical irregularities for track class 6 (Vertical profile + ½ cross level) 
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Figure 4.15 Left rail vertical irregularities for track class 6 (Vertical profile - ½cross level) 

 

Figure 4.16 Right rail lateral irregularities for track class 6 (Alignment +½gage) 
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Figure 4.17 Left rail lateral irregularities for track class 6 (Alignment - ½gage) 

4. 3. 4.  Spectral Density Functions for High-Speed Track 

As mentioned earlier, different PSD functions have been developed for different railroad 

tracks. Recently, there have been attempts to delve more into rail irregularities of high-

speed tracks. Kang et al (2014) based on the measurements in Chinese high-speed tracks, 

developed the following PSD functions 

 𝐺(𝑓) = 𝐴𝑓−𝑘 4.18 

where “A” and “k” are constants defined for four categories of track quality. Table 4.2 

shows the values of the constants for different sections.  

Figure 4.18 to Figure 4.21 demonstrate vertical and lateral irregularities for right and left 

rail.  
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Table 4.2 Parameters of PSD for high-speed rail (Kang et al. 2014)  

Irregularities 
Section 1 Section 2 Section 3 Section 4 

A k A k A k A k 

Gage 5.497×10-2 0.828 5.070×10-3 1.903 1.877×10-4 4.594 - - 

Alignment 3.614×10-3 1.727 4.368×10-2 1.046 4.586×10-3 2.093 - - 

Profile 3.951×10-3 1.867 1.104×10-2 1.535 7.563×10-4 2.817 - - 

Cross-level 1.054×10-5 3.389 3.558×10-3 1.927 1.978×10-2 1.364 3.948×10-4 3.451 

 

 

Figure 4.18 Right rail Vertical irregularities for HSR model (Vertical profile + ½cross level) 
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Figure 4.19 Left rail Vertical irregularities for HSR model (Vertical profile + ½cross level) 

 

Figure 4.20 Right rail lateral irregularities for HSR model (Alignment + ½gage) 
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Figure 4.21 Left rail lateral irregularities for HSR model (Alignment - ½gage) 

 Effect of rail irregularities on vehicle response 

To demonstrate the effect of rail irregularities on rail response, the results presented in 

chapter 3, are repeated with applying random irregularities instead of half-staggered 

rectified sine displacement. Figure 4.22 show the irregularities used in the analyses. To 

clearly see the effects of irregularities, large amplitude of 2 cm for rail irregularities has 

been considered. The results are shown for PSD function proposed by Braun and 

Hellenbroich for poor condition.  

Figure 4.23 to Figure 4.28 show the response of wheelset, bogie frames and car body to 

rail roughness. To illustrate the effect of irregularities, the results with and without 

irregularities for rail, bogie and car body depicted. As the figures suggests, the effect of 

irregularities on vehicle components displacements decreases from rail to car body. If 

irregularities are applies, the increase in maximum rail displacement is more than 87% 
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compared to smooth rail. For the same rail surface conditions, bogie displacement increases 

only 12% and car body maximum displacement does not show any increase.  

 

Figure 4.22 Rail irregularities, produced by PSD function proposed by Braun and Hellenbroich 
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Figure 4.23 Rail displacement (No irregularities) 

 

Figure 4.24 Rail displacement (with irregularities) 
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Figure 4.25 Bogie displacement (No irregularities) 

 

Figure 4.26 Bogie displacement (with irregularities) 
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Figure 4.27 Car body displacement (No irregularities) 

 

Figure 4.28 Car body displacement (with irregularities) 
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5. Track model 

The purpose of this chapter is to describe the modeling procedure of railroad track. This 

chapter are divided into two parts; first the modeling the interaction of vehicle and track 

and second, the modeling of track components and track substructure. Then the differential 

equations of the whole vehicle-track system are formed and solved by numerical solutions. 

 Train-Track Interaction 

The vehicle-track interaction is an important issue in railroad track dynamics. Due to high 

contact pressure at wheel-rail interface, most rail and track failures occur or initiate from 

this point. Based on the results of an analysis of causes of major train derailment conducted 

by Liu et al. (Liu et al. 2012), rail defects are responsible for almost 20% of derailments 

and more than 30% of derailed vehicles. On the other hand, creep, fatigue and slippage at 

the rail surface make the modeling of train-track interaction important.  

The contact theory of rail and wheel evolved during the past decades. The early models 

considered Coulomb's friction on the rail interface and a concentrated load applied on rail 

and wheel interface. Hence, fatigue, as well as wear phenomenon cannot be calculated by 

the early models (Kalker 1991).  

Due to limitations of single-point contact theory, Carter (Carter F.W 1926), assuming rail 

as infinite half-space and wheel as moving cylinder developed two-dimensional solution 

for rail-wheel interaction problem. However, this model only considers rolling forces and 

it fails to simulate lateral forces. Therefore, three-dimensional theories have been 

developed to address this problem. One model that successfully describes the vehicle-track 

interaction is Hertz contact theory which states that the elastic deformation of the steel of 

the wheel and the rail creates an elliptic area. The dimensions of the contact ellipse are 
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determined by the normal force on the area, while the ratio of ellipse axes “a” and “b” 

depends on the main curvatures of the wheel and rail profiles. Figure 5.1 shows the contact 

area between wheel and rail (Esveld 2001) 

 

Figure 5.1Wheel-rail contact area 

 

To find the wheel-rail contact force, the contact stiffness in vertical direction “𝐾𝑤/𝑟
𝑣 ” needs 

to be defined first. It depends on the wheel load and wheel and rail properties. 

 

𝐾𝑤/𝑟
𝑣 = √

3𝐸2𝑃√𝑅𝑤ℎ𝑒𝑒𝑙𝑅𝑟𝑎𝑖𝑙

2(1 − 𝜈2)2

3

 5.1 

where “Rwheel” and “Rrail” are wheel rolling radius and rail head radius, respectively and 

“P” is the static wheel load.  Note that it is assumed that wheel and rail have the same 

modulus of elasticity, “E” and Poisson ratio,” 𝜈”. 

The wheel-rail contact force” 𝐹𝑤/𝑟
𝑣 ” then can be determined by 

 𝐹𝑤/𝑟
𝑣 = 𝐾𝑤/𝑟

𝑣 (𝑦𝑤ℎ𝑒𝑒𝑙 − 𝑦𝑟𝑎𝑖𝑙) 5.2 

“𝑦𝑤ℎ𝑒𝑒𝑙 ” and “𝑦𝑟𝑎𝑖𝑙 ” are wheel and rail vertical displacements. The contact force is 
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nonlinear elastic and tensionless which means that if (𝑦𝑤ℎ𝑒𝑒𝑙 − 𝑦𝑟𝑎𝑖𝑙)<0 or wheel and rail 

are not in contact then the force will be equal to zero. It should be noted that in the above 

formula, rail irregularities will be added to the rail displacement (Esveld 2001).  

The lateral interaction between rail and wheel is modeled by a linear spring at the contact 

point (Wu & Thompson 2002). As Thompson reported the lateral contact spring is 20% 

stiffer than the vertical spring (Thompson 1990). Figure 5.2 is the illustration of Hertz 

vertical and horizontal springs.  

 

Figure 5.2 Wheel-rail interaction 

 Track model 

Track model consists of rail, rail pad, sleeper and ballast. Rail is modeled as beam elements 

with six degrees of freedom at each node. So the nodal displacements of rail can be 

expressed as a vector 

 [𝑈] = [𝑢1 𝑣1 𝑤1 𝛼1 𝛽1 𝛾1 𝑢2 𝑣2 𝑤2 𝛼2 𝛽2 𝛾2]𝑇 5.3 
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Where “u”, “v” and “w” represent displacements in “x”, “y” and “z” directions and “𝛼”, 

“𝛽” and “𝛾” denote rotations around “x”, “y” and “z” axes. Subscripts 1 and 2 indicate first 

(left) and second (right) node of a beam element. (Chopra 2011) 

First order Lagrange shape functions (𝑁1  and 𝑁2 ) and cubic Hermitian interpolation 

functions (𝑁3, 𝑁4, 𝑁5, 𝑁6) are used to describe the axial and flexural deflections of beam 

elements. Note that ‘e’ is the distance from the left node of the beam and ‘l’ is the beam 

element length. To simplify the solution, the length of beam elements is equal to the 

distance between two adjacent sleepers. Figure 5.3, shows the beam element and its DOFs. 

 

  

Figure 5.3 beam element’s DOFs 

 

The interpolation vectors for the axial, vertical, lateral, and torsional displacements are 

given as follows: 

 [𝑁𝑢] = [𝑁1 0 0 0 0 0 𝑁2 0 0 0 0 0]𝑇                                                                                            

[𝑁𝑣] = [0 𝑁3 0 0 0 𝑁4 0 𝑁5 0 0 0 𝑁6]𝑇 

[𝑁𝑤] = [0 0 𝑁3 0 −𝑁4 0 0 0 𝑁5 0 −𝑁6 0]𝑇 

5.4 
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[𝑁𝛼] = [0 0 0 𝑁1 0 0 0 0 0 𝑁2 0 0]𝑇 

where  

𝑁1(𝑒) = 1 −
𝑒

𝑙
 

𝑁2(𝑒) =
𝑒

𝑙
 

𝑁3(𝑒) = 1 − 3 (
𝑒

𝑙
)

2

+ 2 (
𝑒

𝑙
)

3

 

𝑁4(𝑒) = 𝑒 (1 + (
𝑒

𝑙
)

2

− 2 (
𝑒

𝑙
)) 

𝑁5(𝑒) = 3 (
𝑒

𝑙
)

2

− 2 (
𝑒

𝑙
)

3

 

𝑁6(𝑒) = 𝑒 ((
𝑒

𝑙
)

2

− (
𝑒

𝑙
)) 

The displacements of a rail element can be related to nodal DOFs as follows 

 𝑢(𝑥) = [𝑁𝑢][𝑈]                                                                                                                                                              

𝑣(𝑥) = [𝑁𝑣][𝑈] 

𝑤(𝑥) = [𝑁𝑤][𝑈] 

𝛼(𝑥) = [𝑁𝛼][𝑈] 

5.5 

The mass matrix for the beam element can be written in the following form:  
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The mass matrix of rail, composed of mass matrices of right and left rails, then can be 

expressed as the following formula: 

 
𝑀𝑅 = [

𝑀𝑟𝑟 0
0 𝑀𝑙𝑟

] 5.7 

where “𝑀𝑟𝑟” and “𝑀𝑙𝑟” are mass matrices of right and left rails, respectively. Since each 

beam element has 12 degrees of freedom, the total DOFs of mass matrix for right and left 

rails would be 24.  

The same procedure and shape function are utilized to find the stiffness matrix of beam 

elements. The stiffness matrix of the beam element reads:  
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5.8 

To apply damping to the system, proportional or Rayleigh damping is used. It is assumed 

that the matrix of damping is proportional to a linear combination of mass and stiffness 

 [𝐶] = 𝑐1[𝑀] + 𝑐2[𝐾] 5.9 

where ‘𝑐1’ and ‘𝑐2’ are constant coefficients which show the effect of mass and stiffness 

on damping. The values of “c1” and “c2” are 400 and 4 × 107 as used by Naeimi et al. 

(Naeimi et al. 2015). 
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Sleepers are modeled as rigid bodies. Rail is linked to sleepers by rail pads modeled by 

linear springs and dashpots. Although previous studies showed that rail fastening behavior 

is not linear but an average value of stiffness produces good results (Sadeghi et al. 2015). 

Ballast material is considered to be rigid body which is connected to the subgrade. Since 

ballast is composed of coarse aggregate materials, the shear stiffness and damping or the 

effects of the ballast granules interlocking is also considered in the modeling.  

To find the effective mass and stiffness of ballast material, it is assumed that sleeper load 

distributes in conical area in ballast. The mass and stiffness of ballast will be calculated 

considering ballast in the cone area and the “outside ballast” is not considered in dynamic 

analysis. The so-called “ballast pyramid model” first developed by Ahlbeck et al (Ahlbeck 

et al. 1978). In this research, the pattern of load distribution in ballast was considered for 

non-overlapping pyramids of stress distribution in two neighboring sleepers. The 

equations, proposed for mass and stiffness of the ballast for non-overlapping cones, are: 

(Zhai et al. 2004) and (Esmaeili et al. 2014) 

 
𝑀𝑏𝑎𝑙 = 𝜌𝑏𝑎𝑙ℎ𝑏𝑎𝑙 [𝑙𝑒𝑙𝑠𝑙𝑝 + (𝑙𝑒 + 𝑙𝑠𝑙𝑝)ℎ𝑏𝑎𝑙 𝑡𝑎𝑛 𝜃 +

4

3
ℎ𝑏𝑎𝑙

2𝑡𝑎𝑛2𝜃]  5.10 

 
𝐾𝑏𝑎𝑙 =

2(𝑙𝑒 − 𝑙𝑠𝑙𝑝)𝑡𝑎𝑛 𝜃

𝑙𝑛 [(
𝑙𝑒

𝑙𝑠𝑙𝑝
) . (𝑙𝑠𝑙𝑝 + 2ℎ𝑏𝑎𝑙𝑡𝑎𝑛 𝜃)/(𝑙𝑒 + 2ℎ𝑏𝑎𝑙𝑡𝑎𝑛 𝜃)]

𝐸𝑏𝑎𝑙 
5.11 

where “ρbal” stands for the density of the ballast, “Ebal” is the elastic modulus of ballast, 

and “hbal” represents the thickness of the ballast layer. “le” indicates the effective support 

range of a half sleeper,” lslp” is the width of sleeper and “𝜃” shows the ballast stress 

distribution angle. Figure 5.4 depicts the effective volume of ballast used in ballast pyramid 

model. (Zhai et al. 2004)  
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Figure 5.4 Stress Distribution in Ballast 

The interaction matrix of track subsystem consisting rail, sleepers and ballast can be written 

as follows 

 

[𝐼] = [

𝑅 𝑅/𝑆 0
𝑆/𝑅 𝑆 𝑆/𝐵

0 𝐵/𝑆 𝐵
] 5.12 

 “R”, “S” and “B” represents the matrices of mass, stiffness or damping for rail, sleeper 

and ballast, respectively. Non-diagonal members represent the interaction between 

elements.  

By the assemblage of the mass, stiffness and damping matrices of the track components, 

the dynamic equation of the track subsystem is presented in the following format. 

 

 [𝑀𝑡𝑟]{𝑈̈𝑡𝑟} + [𝐶𝑡𝑟]{𝑈̇𝑡𝑟} + [𝐾]{𝑈𝑡𝑟} = {𝑃𝑡𝑟} 5.13 

The subscript “tr” shows that each matrix is formed by assembling track components 

matrices. Figure 5.5 shows the process of numerical solution to the vehicle-track problem.   



74 

 

Table 5.1 Track Parameters 

Notation Parameter Value Unit 

Mr Rail Mass Per Unit Length 60 Kg/m 

Mslp Sleeper Mass 250 Kg 

ls Sleeper spacing 0.6 m 

le Effective support length of half sleeper 0.95 m 

lslp Sleeper width 0.27 m 

Kpad Rail Pad Stiffness 4×107 N/m 

Cpad Rail pad Damping 1.3×105 N.s/m  

hbal Ballast thickness 0.45 m 

Ebal Elastic Modulus of Ballast 1×108 N/m2 

Kint Ballast Shear Stiffness 7.8×107 N/m 

Cint Ballast Shear Damping 8×104 N.s/m 

θ Ballast stress distribution angle 35 degree 

Cbal Ballast Damping 8×104 N.s/m 

Esub Elastic Modulus of Subgrade 8×107 N/m2 

Csub Subgrade Damping 5.5×104 N.s/m 

Kw/r Hertz Spring Constant 1.1×1011 N/m2 

𝑅𝑟𝑎𝑖𝑙 Rail head radius 0.3 m 
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Figure 5.5 Algorithm of train-track numerical analysis 
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 Bridge model 

Bridge is considered as Euler-Bernoulli beam and the procedure of modeling is the same 

as explained for the rail model. The Hermitian and first order Lagrange shape functions are 

utilized. The bridge bearings are modeled as vertical springs and dampers as well as, lateral 

springs and dampers to account for friction and lateral resistance of girder-pier connection. 

Figure 5.6 shows the vehicle-track-bridge model used in this study. The parameters in 

numerical study are also shown in Table 5.2. The total vehicle-track-bridge equations of 

motion can be formulated 

 

[

𝑀𝑣𝑒ℎ 0 0
0 𝑀𝑡𝑟𝑎 0
0 0 𝑀𝑏𝑟𝑔

] {

𝑢̈𝑣𝑒ℎ

𝑢̈𝑡𝑟𝑎

𝑢̈𝑏𝑟𝑔

} + [

𝐶𝑣𝑒ℎ 𝐶𝑣𝑒ℎ/𝑡𝑟𝑎 0

𝐶𝑡𝑟𝑎/𝑣𝑒ℎ 𝐶𝑡𝑟𝑎 𝐶𝑡𝑟𝑎/𝑏𝑟𝑔

0 𝐶𝑏𝑟𝑔/𝑡𝑟𝑎 𝐶𝑏𝑟𝑔

] {

𝑢̇𝑣𝑒ℎ

𝑢̇𝑡𝑟𝑎

𝑢̇𝑏𝑟𝑔

}

+ [

𝐾𝑣𝑒ℎ 𝐾𝑣𝑒ℎ/𝑡𝑟𝑎 0

𝐾𝑡𝑟𝑎/𝑣𝑒ℎ 𝐾𝑡𝑟𝑎 𝐾𝑡𝑟𝑎/𝑏𝑟𝑔

0 𝐾𝑏𝑟𝑔/𝑡𝑟𝑎 𝐾𝑏𝑟𝑔

] {

𝑢𝑣𝑒ℎ

𝑢𝑡𝑟𝑎

𝑢𝑏𝑟𝑔

} = {

𝐹𝑣𝑒ℎ

𝐹𝑡𝑟𝑎

𝐹𝑏𝑟𝑔

} 

5.14 

where “M”, “C” and “K” are matrices of mass, damping and stiffness of each sub-systems.  

Since the beam elements are used to find the behavior of bridge, the matrix form is similar 

to rail formulations. The mass matrix of bridge is a diagonal matrix of order n×n  

 𝑀𝑏𝑟𝑔 =  𝑑𝑖𝑎𝑔[𝑚𝑒𝑏1 𝑚𝑒𝑏2 … 𝑚𝑒𝑏𝑛] 5.15 

where “n” is the number of beam elements. 

Bridge element stiffness can be formed by following formula  

 𝐾𝑏𝑟𝑔 = 𝑑𝑖𝑎𝑔[𝑘𝑒𝑏1 𝑘𝑒𝑏2 … 𝑘𝑒𝑏𝑛] 5.16 

“𝑘𝑒𝑏𝑖” shows the stiffness of ith bridge element.  

 
𝑘𝑒𝑏𝑖 = ∫ 𝐸𝑏𝑟𝑔

𝑙

0

𝐼𝑏𝑟𝑔𝑁𝑏𝑖
′′𝑇𝑁𝑏𝑖

′′ 𝑑𝑥 + ∑ 𝑘𝑠𝑢𝑏𝑁𝑏𝑗
𝑇 𝑁𝑏𝑗

𝑚

𝑗=1

 5.17 

 Note that “m” is the total number of subgrade spring located on ith bridge element. “l” is 
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the length of bridge element and “x” is local coordinate system measured from the left node 

of bridge element. Figure 5.7 shows the bridge element.  

The track structure is connected to bridge by ballast material so the submatrix “𝐾𝑡𝑟𝑎/𝑏𝑟𝑔” 

should demonstrate the interaction of bridge and ballast.  

 𝐾𝑡𝑟𝑎/𝑏𝑟𝑔 = 𝑑𝑖𝑎𝑔[𝑘𝑏𝑏1 𝑘𝑏𝑏2 … 𝑘𝑏𝑏𝑛] 5.18 

where “𝑘𝑏𝑏𝑖” is the stiffness matrix of the ballast-bridge interaction on the ith bridge 

element. “𝑘𝑏𝑏𝑖” can be formulates as follows 

 𝑘𝑏𝑏𝑖 = [−𝑘𝑠𝑢𝑏𝑁𝑏1
𝑇 −𝑘𝑠𝑢𝑏𝑁𝑏2

𝑇 … −𝑘𝑠𝑢𝑏𝑁𝑏𝑛
𝑇 ] 5.19 

 “n” is the total number of concentrated mass considered in the bridge element.  

Incorporating viscous dampers makes the process of forming damping matrix easy and the 

formulas are similar to the resulted stiffness matrices 

 𝐶𝑏𝑟𝑔 = 𝑑𝑖𝑎𝑔[𝑐𝑒𝑏1 𝑐𝑒𝑏2 … 𝑐𝑒𝑏𝑛] 5.20 

“𝑐𝑒𝑏𝑖” shows the damping of ith bridge element.  

  𝑐𝑒𝑏𝑖 = ∫ 𝐸𝑏𝑟𝑔
𝑙

0
𝐼𝑏𝑟𝑔𝑁𝑏𝑖

𝑇 𝑁𝑏𝑖𝑑𝑥 + ∑ 𝑐𝑠𝑢𝑏𝑁𝑏𝑗
𝑇 𝑁𝑏𝑗

𝑚
𝑗=1  5.21 

and the submatrix “𝐶𝑡𝑟𝑎/𝑏𝑟𝑔” has the following form 

 𝐶𝑡𝑟𝑎/𝑏𝑟𝑔 = 𝑑𝑖𝑎𝑔[𝑐𝑏𝑏1 𝑐𝑏𝑏2 … 𝑐𝑏𝑏𝑛] 5.22 

where “𝑐𝑏𝑏𝑖” is the damping matrix of ballast-bridge interaction on ith bridge element. 

“𝑐𝑏𝑏𝑖” can be formulates as follows 

 𝑐𝑏𝑏𝑖 = [−𝑐𝑠𝑢𝑏𝑁𝑏1
𝑇 −𝑐𝑠𝑢𝑏𝑁𝑏2

𝑇 … −𝑐𝑠𝑢𝑏𝑁𝑏𝑛
𝑇 ] 5.23 

In which “𝑐𝑠𝑢𝑏” is damping coefficient of ballast material.  
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Figure 5.6 Vehicle-track-bridge model 



79 

 

 

Figure 5.7 Bridge element 

Table 5.2 Bridge parameters 

Notation Parameter Value Unit 

Mbrg Bridge Mass Per Unit Length 4×1010 Kg/m 

Ebrg Elastic Modulus of bridge 3.5×1010 N/m2 

Gbrg Shear modulus of bridge 1.5×1010 N/m2 

𝐼𝑥𝑏𝑟𝑔 moment of inertia about x-axis  50 m4 

𝐼𝑦𝑏𝑟𝑔 moment of inertia about y-axis  20 m4 

𝐼𝑧𝑏𝑟𝑔 moment of inertia about z-axis  120 m4 

Klbrg Lateral stiffness of elastic bearing 5×108 N/m 

Kvbrg Vertical stiffness of elastic bearing 5×109 N/m 

Clbrg Lateral damping of elastic bearing 1×105 N.s/m 

Cvbrg Vertical damping of elastic bearing 1×106 N.s/m 

 

Table 5.3 shows the first five natural frequencies of the bridge. The process of calculating 

the Eigen values or the natural frequencies of the system has been explained in chapter 3. 
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Table 5.3 The first five natural frequency of the bridge  

Mode No. Natural Frequency (Hz) 

1 5.865 

2 6.121 

3 6.899 

4 7.250 

5 10.704 

 

 Solution to Train-Track-Bridge Model 

By the assemblage of the mass, stiffness and damping matrices of the vehicle and track 

elements, the dynamic equation of the whole system will be formed 

 [𝑀𝑡]{𝑈̈𝑡} + [𝐶𝑡]{𝑈̇𝑡} + [𝐾𝑡]{𝑈𝑡} = {𝑃(𝑥, 𝑡)} 5.24 

Where, [𝑀𝑡], [𝐶𝑡] and [𝐾𝑡] are the matrices representing mass, damping and the stiffness 

of total train- track coupling system, respectively. “P” indicates the vector of the load 

induced by the passage of the train. 

To solve the dynamic equation of motion, the Newmark integration method is used. This 

method, developed by Newmark (1959), is based on the assumption that the acceleration 

varies linearly between two instants of time. So if the track response is known at time “t”, 

the response at time “t+dt” can be calculated. 

 {𝑈𝑡+𝑑𝑡} = [𝐾̅][{𝐹𝑡+𝑑𝑡} + [𝑀](𝑏1{𝑈𝑡} + 𝑏3{𝑈̇𝑡} + 𝑏4{𝑈̈𝑡}) +

[𝐶](𝑏2{𝑈𝑡} + 𝑏5{𝑈̇𝑡} + 𝑏6{𝑈̈𝑡})]                                  

{𝑈̇𝑡+𝑑𝑡} = 𝑏2({𝑈𝑡+𝑑𝑡} − {𝑈𝑡}) − 𝑏5{𝑈̇𝑡} − 𝑏6{𝑈̈𝑡} 

{𝑈̈𝑡+𝑑𝑡} = 𝑏1({𝑈𝑡+𝑑𝑡} − {𝑈𝑡}) − 𝑏3{𝑈̇𝑡} − 𝑏4{𝑈̈𝑡} 

5.25 

where [𝐾̅] = (𝑏1[𝑀] + 𝑏2[𝐶] + [𝐾])−1 and “𝑏1” to “𝑏6” are constants as follows (Chopra 

2011).  



81 

 

 
𝑏1 =

1

𝛼𝑑𝑡2
 , 𝑏2 =

𝛽

𝛼𝑑𝑡
 ,       𝑏3 =

1

𝛼𝑑𝑡
 

𝑏4 =
1

2𝛼
− 1 , 𝑏5 =

𝛽

𝛼
− 1 ,       𝑏6 =

𝑑𝑡

2
(

𝛽

𝛼
− 2) 

5.26 

The Newmark integration is an implicit method which means the proper values of “α” and 

“β” leads to unconditionally stable solution. For this reason, the values of “α” and “β” are 

considered 0.25 and 0.5 throughout the analyses.    

Note that the time step in numerical analyses is assumed 0.0001s.  

 Track Model validation 

To show the validity of the numerical solution and formulation procedure, the response of 

a beam under a series of moving loads from current solution was compared with the results 

from theoretical solutions for the same problem. Figure 5.8 shows a series of concentrated 

loads on an Euler-Bernoulli beam as a validation model. The beam is rested on an elastic 

foundation and track stiffness and damping have been modeled by a continuous layer of 

springs with stiffness “Kp” and dampers with constant “Cp” in unit length. The loads are 

moving at the speed “v”.  

 

Figure 5.8 Euler-Bernoulli beam on elastic foundation 
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Table 5.4 Parameters of validation model 

Notation Parameter Value Unit 

F Wheel-set load  15 ton 

Kp Rail support stiffness 2×106 N/m 

Cp Rail support damping 25000 N.s/m 

v Moving loads’ speed 20 m/s 

l Length of rail 36 m 

E Rail’s elastic modulus 2×1011 N/m2 

Ir Rail’s moment of inertia 3×10-5 m4 

m Beam mass of a unit length  50 Kg/m 

 

Using the above assumptions, the governing differential equations of beam on elastic 

foundation can be determined (Hussein & Hunt 2006) 

    
 
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   vtxtiP
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r

4

 5.27 

where  vtx   is Dirac delta function as well as  tx,w r  and   indicate rail displacement 

and load frequency. Terms  tiexp  and  vtx  , respectively, show that the load is 

oscillating with frequency   and moving. It is also assumed that at time t=0, the location 

of first load is x=0.    

A number of solutions proposed to solve the differential equation (Hussein & Hunt 2006), 

(Frýba 1999). An easy way to solve the above equations is to use Fourier transformation. 

In other words, the problem should be transformed from time-space domain (x, t) to 

wavenumber-frequency domain ( , ). 

Double Fourier transform results in  

   ~2~~~~
0

24  vPwicwkwmwEI rprprrrr  5.28 

In which rw~ and ~  are transformed rail displacement and load frequency respectively, and 
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“i” is unit imaginary number.  

Applying double inverse Fourier transform, rail displacement in time-space domain takes 

form  

 
  









d

VickickmkVVmkmEI

vtxitiP
txw

ppppr

r 








2

exp

2

)exp(
,

222
0  

5.29 

By determining the poles of the integrand and applying theory of residues, rail 

displacement can be determined (Hussein & Hunt 2006). The solution is repeated for other 

three loads which are located at 2, 8 and 10 meters from the first load. Assuming linear 

elastic materials, beam response can be calculated by the superposition principle.  

Figure 5.9 shows the time histories of midpoint deflection obtained by the current and 

analytical solutions. As the Figure suggests, the results from numerical procedure used in 

this research are in good agreement with those from theory. In the figure, less than 5% 

discrepancy can be observed. Note that, no rail irregularities are considered in the 

verification model.  

The parameters used in both theoretical and numerical solutions are shown in Table 5.4.   
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Figure 5.9 Rail midpoint displacements from theory and current model  
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6. Analyses results 

This chapter presents the results of analyses of the vehicle, track and bridge and discusses 

the effects of rail defects on track and vehicle response. Both lateral and vertical defects 

are investigated and the results compared to conclude the influence of each defect on track 

and vehicle vibration. This chapter also investigates the impact of train and track 

parameters on bridge dynamic response.   

 Rail defects 

Three kinds of rail flaws are considered: rail irregularities, rail joints (with or without dip 

and raise) and rail corrugation. The results obtained from different parameters to determine 

the significance of rail flaws on rail impact factor. In the analyses, unless mentioned 

otherwise, it is assumed that track is in class 6 condition and train speed is 100 km/hr.  

6. 1. 1.  Effect of Rail Corrugation  

Corrugation is a prevalent defect on rail head initiating from rail head de-carbonization (on 

new steel) and irregularities such as rail manufacture pitting, contact fatigue defects, rail 

welds, rail joints, etc. (American Railway Engineering and Maintenance-of-Way 

Association 2010). Corrugations with different depths and frequencies are detected in the 

field. The International Union of Railways, based on wavelength, divided this defects into 

two groups: short-pitch with wavelength between 3 to 8 cm, and long-pitch corrugation 

with wavelength between 8 to 30 cm (International Union of Railways 2002). The depth 

of corrugation also varies depending on rail and wheel condition. In this study, the depth 

of corrugation is considered between 0.01 to 0.1 mm. Figure 6.1 shows the short (0.05 m 

wavelength) and long pitch (0.3 m wavelength) corrugation. The corrugation is simulated 

as a sine wave and the same phase for the right and left rails.    
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To demonstrate the effect of rail defects on dynamic forces, the impact factor will be used 

as a criterion. Impact Factor indicates the increase in forces due to dynamic excitations and 

is defined by the following equation  

Impact Factor(%) =
Maximum Dynamic Response − Maximum Static Response

Maximum Static Response
× 100   6.1 

It should be noted that based on the vehicle data used in this research, the static load of 

train is 75 KN. Figure 6.2 shows the effect of rail corrugation depth and wavelength on rail 

displacements. Increasing corrugation depth from 0.02 mm to 0.05 mm leads to 0.1 mm 

increase in rail vertical displacement, but corrugation wavelength is not as effective as 

corrugation depth and the maximum rail displacement in this case is about 0.05 mm. 

Figure 6.3 shows the relation between corrugation depth and the impact factor of the rail 

and vehicle forces. It is evident that for deeper corrugation, the accelerated increase in 

impact factor occurs. The same trend can be observed for the rail, primary suspension and 

car body. The highest rail impact factor is 103% for 0.1 mm rail corrugation. 
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Figure 6.1 short-pitch and long-pitch corrugation 

 

Figure 6.2. the effect of  rail corrugation depth (left) and  rail corrugation wavelength (right) on 

rail displacement  
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Figure 6.4 shows the impact factor for different corrugation wavelength. In this case, the 

depth of corrugation is 0.04 mm and the dynamics amplification is observed for different 

wavelength range from 50 to 300 mm. This figure shows that with increasing the 

wavelength, the impact factor decreases considerably. This trend is valid especially for 

lower wavelengths. As the wavelength of corrugation increases the rate of impact factor 

reduction drops. This trend can be clearly seen in the case of car body vertical impact factor 

where the impact factor decreases sharply as wavelength increases. 

 

Figure 6.3. The effect of corrugation depth on rail impact factor  
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Figure 6.4. the effect of corrugation wavelength on rail impact factor 

Figure 6.5 and Figure 6.6 demonstrate the effect of train speed on rail impact factor for 

different wavelengths and depths. As Figure 6.5 depicts, at a certain speed the dynamic 

force reaches its maximum value. This critical speed for the wavelengths 100 and 200 mm 

is 200 km/hr, and for corrugation with the wavelength 300 mm, it increases to about 250 

km/hr. It is evident from Figure 6.6 that there is the same trend for deeper corrugation but 

in this case, the impact factor increases substantially and the maximum value is 4.7 times 

greater than that of 0.01 mm corrugation depth. This graph also shows that increasing 

corrugation depth has a major effect on rail impact factor for longer wavelength. For 

example, in case of 250 km/hr train speed shown in Figure 6.5, the impact factor 

corresponding to 300 mm wavelength is 4% higher than that of 100 mm wavelength while 

as shown in Figure 6.6, this value increases to 31% with increasing corrugation depth from 

0.01 to 0.1 mm. 
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Figure 6.5. the effect of train speed on rail impact factor (for 0.01 mm corrugation depth) 

 

Figure 6.6. the effect of train speed on rail impact factor(for 0.1 mm corrugation depth) 
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points of weakness. Due to defects such as rails height difference, rail joints are susceptible 

to cause rail accidents. This problem especially arises when the rail joint is dipped. 

Figure 6.7 shows a schematic view of rail dip. The curve of the dipped rail is modeled by 

quadratic functions and characterized by parameters “L”, length of dip, “H”, depth of dip, 

and “α”, the dip angle (Wu & Thompson 2003).  

The opposite case or raise on rail joints may also happen. This flaw may especially occurs 

due to manufacturing or material defects and improper welding (Sun & Dhanasekar 2002), 

(Steenbergen & Esveld 2006). Raise on rail surface is a dangerous defect and generates 

great dynamic forces. In order to compare the results from rail surface flaws, the same 

conditions as rail dip has been taken into account. The shape of the raise on rail surface is 

quadratic and the same parameters “L”, “H” and “α” have been used to characterize the 

rail defect.  

In this research, the effect of defects parameters on rail impact factor is investigated for 

track class 6 and different train speeds. Figure 6.8 shows the rail impact factor for rail joints 

with and without defect for different train speed. As the Figure 6.8 suggests, in the 

condition of no defect, the impact factor does not change considerably with increasing load 

speed. The maximum impact factor is 13% for 100 km/hr train speed. However, dip in rail 

joint has a profound influence on rail dynamic forces. With increasing speed, impact factor 

increases from 18% to 62% when vehicle speed increases from 50 to 200 km/hr. the graph 

also demonstrates that the rate of increase in impact factor is a function of train speed and 

higher speeds result in increasingly more impact factor. Figure 6.9 to Figure 6.10 also 

compares rail impact factor for rail joint raise and dip. The results of the study show that 

the defects causing rail raise generally produce much more dynamic forces compared to 
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dip type defects. Figure 6.9 implies that the rail impact factor increases considerably when 

the depth of defect increases. In Figure 6.10, with increasing the defect length, the rail 

impact factor increases sharply to the maximum value which occurs at the defect length of 

0.3 m, then it decreases. This figure also shows that the impact of the defect length on the 

rail impact factor reduces gradually. Moreover, it is evident that for the shorter defect 

length, the difference of rail impact factors between raised and dipped flaws is 

considerable. The results are shown for 1 mm deep rail dip.  

  

Figure 6.7. Rail dip shape 

 

Figure 6.8. The effect of dip and raise on rail joint impact factor 
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Figure 6.9. The effect of depth of rail dip and raise on rail impact factor 

 

Figure 6.10. The effect of the length of rail dip and raise on rail impact factor 
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body for different train speeds for tracks class 4 and 6 ,respectively, as defined by FRA.  

The figures show that rail has the highest impact factor and the maximum impact factor 

reach 34% and 62% for class 4 and 6, respectively. Comparison of the results obtained 

from track class 6 with those from track class 4 also reveals that improving track condition 

leads to about 25% reduction in rail impact factor, but in case of car body, the difference 

between impact factors obtained from class 4 and 6 is limited to 17%.  It is also evident 

that the train speed has little influence on impact factor when it increases to 250 km/hr or 

higher. 

Figure 6.13 depicts the difference between rail displacements of classes 4 and 6. There is 

a maximum of 7% difference between the results from two track categories.    

 

Figure 6.11. Rail impact factor for track class 6  
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Figure 6.12. Rail impact factor for track class 4  

 

Figure 6.13. Rail displacement for track class 6 and class 4 

0

10

20

30

40

50

60

70

100 150 200 250 300

Im
p

ac
t 

Fa
ct

o
r 

(%
)

Speed (km/hr)

Rail Primary Suspension Car body



96 

 

 The influence of bridge parameters on track response 

This section discusses how track and vehicle parameters affect the bridge impact factor and 

determines the critical response of bridge. The values of bridge parameters used in the 

analyses are shown in Table 5.2. The initial values of vehicle’s speed and axle load are 

considered as 100 km/hr and 15 ton, respectively.  

Figure 6.14 shows the influence of rail defects on bridge impact factor. To obtain the 

results, static and dynamic forces on bridge due to the passage of trains were compared. 

Three rail defects or rail random irregularities, rail raise, and rail corrugation are considered 

to determine impact factors for different bridge spans. The range of bridge spans is 

considered 10 to 40 m.  

As Figure 6.14 shows the rail random irregularities have the least effect on bridge impact 

factor and as it is expected, track class 6 has less influence on bridge forces compared to 

track class 4. The graph also demonstrates that, for track class 6, bridge span-impact factor 

graph is almost linear, but track class 4 shows nonlinear behavior, especially for longer 

bridge spans. The other important conclusion from Figure 6.14 is that rail raise and 

corrugation clearly causes greater impact factors compared to random rail irregularities. 

The average impact factor induced by irregularities is about 20% less than that of other rail 

flaws. This figure also suggests that rail raise has the most influence on bridge response. 

However, for longer bridge spans, rail corrugation has almost the same impact on bridge 

forces as rail raise does. For the analyses, the rail raise parameters or depth and length, are 

chosen to be 0.5 mm and 0.3 meter, respectively.  

Figure 6.15 shows the influence of vehicle parameters on bridge impact factor. Two 

parameters of vehicle speed and vehicle axle load have been taken into account. The range 
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of train speed is 100 to 250 km/hr. As it is shown, the behavior of impact factor due to rail 

irregularities is almost linear especially for track class 6. Rail raise shows highly nonlinear 

behavior. It can also be observed that rail raise has the biggest influence on the bridge 

impact factor as train speed increases.  

Axle load, compared to train speed, shows more linear behavior. The same trend as before 

can be seen and rail irregularities and rail raise have the most and least influence on bridge 

impact factor, respectively. The difference between impact factors of rail raise and track 

class 6 irregularities is about 50%.  

 

Figure 6.14. the influence of rail defects on bridge impact factor  
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Figure 6.15. the influence of train speed and axle load on bridge impact factor 
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7. Vehicle Stability on Curves 

As it was shown in the previous chapters, the lateral loading due to irregularities has 

negligible effects on track and vehicle response compared to vertical irregularities. 

Therefore, most research on vehicle-track analysis has been dedicated to straight beam 

behavior under train loadings. However, in curves with small radius, the lateral loading is 

significant enough that it might pose the risk of vehicle overturning. This issue is especially 

important for high-speed trains where centrifugal forces due to cross level (cant) 

deficiencies can increase the lateral forces considerably.  

This chapter includes the formulation of the curved beam in railroad tracks and discusses 

the results of analyses on the vehicle stability. The findings from this chapter can be used 

to have a better understanding of the response of the vehicle-track system on the curve and 

put limitations on vehicle and track parameters to assure safety and smooth running of the 

vehicle. 

 Curved beam formulations 

Adding curvature parameters to beam formulation makes it more difficult to solve 

compared to the straight beam. In other words, out-of-plane response, i.e. vertical 

displacement, needs to be determined, as well as, in-plane or horizontal displacement. 

Curvature makes radial displacement and torsional rotation important in analysis, which 

can be easily neglected in the straight beam analysis. 

To derive the curved beam formulations, it is assumed that: (1) beam is considered to be 

elastic and homogeneous; (2) transverse displacements are large compared to longitudinal 

displacements; (3) beam curvature is constant and does not change in the beam length.  

Figure 7.1 demonstrates a two-node curved beam element with constant radius “R” and 
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displacements “u,” “v” and “w” in “x”, “y” and “z” direction, respectively.   

 

Figure 7.1 Curved beam element 

 

To form the differential equations of the curved beam, the principle of virtual 

displacements has been utilized. The principle of virtual displacements states that if an 

elastic structure is in equilibrium, then the virtual work due to external forces is equal to 

the virtual work due to internal stresses. Neglecting body forces, the equilibrium of a beam 

with volume “V” and length “l” can be formulated 

 
∫ 𝑆𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑉 = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑊𝑜𝑟𝑘 (𝐸. 𝑉. 𝑊) 7.1 

where, 𝑆𝑖𝑗 is the second Piola-Kirchhoff stress tensor; and 𝛿𝜀𝑖𝑗 is the variation of the 

Green-Lagrange strain tensor (Yang & Kuo 1987).  

The left-side of the equation expands as follows 
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∫ 𝑆𝑥𝛿𝑒𝑥𝑑𝑉 + ∫(𝑆𝑥𝑦𝛿𝑒𝑥𝑦 + 𝑆𝑥𝑧𝛿𝑒𝑥𝑧)𝑑𝑉 + ∫ 𝑆𝑥𝛿𝜂𝑥𝑑𝑉

+ ∫(𝑆𝑥𝑦𝛿𝜂𝑥𝑦 + 𝑆𝑥𝑧𝛿𝜂𝑥𝑧)𝑑𝑉 + ∫ 𝑆𝑧𝛿𝜂𝑧𝑑𝑉 = 𝐸. 𝑉. 𝑊 

7.2 

The expanded formula shows that the internal virtual work consists of five terms, which 

accounts for strain energy of axial forces, strain energy of shear stresses, potential energy 

of axial stresses, potential energy of shear stresses and potential energy of radial stresses. 

Each term can then be rewritten as follows  

 
∫ 𝑆𝑥𝛿𝑒𝑥𝑑𝑉 =

1

2
∫ [𝐸𝐴𝛿 (𝑢′ +

𝑤

𝑅
)

2

+ 𝐸𝐼𝑦𝛿 (𝑤′′ +
𝑤

𝑅2
)

2𝑙

0

+ 𝐸𝐼𝑧𝛿 (𝑣′′ −
𝜃

𝑅
)

2

+ 𝐸𝐶𝑤𝛿 (𝜃′′ +
𝜃

𝑅2
)

2

] 𝑑𝑥 

7.3 

where “𝜃” is twist angle. “E”, “A” and “I” represent modulus of elasticity, cross section 

area and moment of inertia of the beam. “𝐶𝑤” is warping constant.  

 
∫(𝑆𝑥𝑦𝛿𝑒𝑥𝑦 + 𝑆𝑥𝑧𝛿𝑒𝑥𝑧)𝑑𝑉 =

1

2
∫ 𝐺𝐽𝛿 (𝜃′ +

𝑣′

𝑅
)

2

𝑑𝑥
𝑙

0

 7.4 

 
∫ 𝑆𝑥𝛿𝜂𝑥𝑑𝑉 =

1

2
∫ {𝐹𝑥𝛿 [𝑣′2 + (𝑤′ −

𝑢

𝑅
)

2

]
𝑙

0

+ 𝑀𝑦𝛿 [
1

𝑅
(𝑤′ −

𝑢

𝑅
)

2

− 2𝑣′𝜃′ −
𝑣′2

𝑅
]

− 2 (𝑀𝑧 +
𝐵

𝑅
) 𝛿 [(𝜃′ +

𝑣′

𝑅
) (𝑤′ −

𝑢

𝑅
)]

+ 𝐾̅𝛿 (𝜃′ +
𝑣′

𝑅
)

2

} 𝑑𝑥 

7.5 

where 𝜂𝑥 is nonlinear strain and 𝐹𝑥 is axial force 
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𝛿𝜂𝑥 =

1

2
[(

𝜕𝑢

𝜕𝑥
+

𝑤

𝑅
)

2

+ (
𝜕𝑣

𝜕𝑥
)

2

+ (
𝜕𝑤

𝜕𝑥
−

𝑢

𝑅
)

2

] (
𝑅

𝑅 + 𝑧
)

2

 7.6 

and 𝐾̅ = ∫ 𝑆𝑥(𝑦2 + 𝑧2)𝑑𝐴 = (𝐹𝑥 +
𝑀𝑦

𝑅
) 𝑟2,    𝑟2 =

𝐼𝑦+𝐼𝑧

𝐴
 

 
∫(𝑆𝑥𝑦𝛿𝜂𝑥𝑦 + 𝑆𝑥𝑧𝛿𝜂𝑥𝑧)𝑑𝑉

= ∫ {𝐹𝑦𝛿 [−𝑣′ (𝑢′ +
𝑤

𝑅
) + 𝜃 (𝑤′ −

𝑢

𝑅
)]

𝑙

0

− 𝐹𝑧𝛿 [(𝑤′ −
𝑢

𝑅
) (𝑢′ +

𝑤

𝑅
) + 𝜃𝑣′]

− (1 − 𝛾)𝑀𝑥𝛿 [
𝜃

𝑅
(𝑤′ −

𝑢

𝑅
) + 𝑣′ (𝑤′′ −

𝑢′

𝑅
)]

+ 𝛾𝑀𝑥𝛿 [(𝑤′ −
𝑢

𝑅
) (𝑣′′ −

𝜃

𝑅
)]} 𝑑𝑥 

7.7 

In which, 𝑀𝑥 is torque (moment about axis x) and  

 
𝜂𝑥𝑦 = [

𝜕𝑢

𝜕𝑦
(

𝜕𝑢

𝜕𝑥
+

𝑤

𝑅
) +

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑥
+

𝜕𝑤

𝜕𝑦
(

𝜕𝑤

𝜕𝑥
−

𝑢

𝑅
)]

𝑅

𝑅 + 𝑧
 7.8 

 
𝜂𝑥𝑧 = [

𝜕𝑢

𝜕𝑧
(

𝜕𝑢

𝜕𝑥
+

𝑤

𝑅
) +

𝜕𝑣

𝜕𝑧

𝜕𝑣

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
(

𝜕𝑤

𝜕𝑥
−

𝑢

𝑅
)]

𝑅

𝑅 + 𝑧
 7.9 

 
𝛾 =

∫ 𝑆𝑥𝑧𝑦𝑑𝐴

𝑀𝑥
 7.10 

 
∫ 𝑆𝑧𝛿𝜂𝑧𝑑𝑉 = − ∫

𝑀𝑦

2𝑅
𝛿 [𝜃2 + (𝑤′ −

𝑢

𝑅
)

2

] 𝑑𝑥 7.11 

Expressing the external virtual work in the following format results the differential 

equations of a curved beam   
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𝐸. 𝑉. 𝑊 = [𝐹𝑥𝛿𝑢 + 𝐹𝑦𝛿𝑣 + 𝐹𝑧𝛿𝑤 + 𝑀𝑥𝛿𝜃 − 𝑀𝑦𝛿 (𝑤′ −

𝑢

𝑅
) + 𝑀𝑧𝛿𝑣′

+ 𝐵𝛿 (𝜃′ +
𝑣′

𝑅
)] 

7.12 

where 𝐵 = 𝐸𝐶𝑤𝜃" 

Axial displacement 

 

 
𝐸𝐴 (𝑢" +

𝑤′

𝑅
) +

1

𝑅
𝐹𝑥 (𝑤′ −

𝑢

𝑅
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1
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𝑅
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𝜃

𝑅
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𝑧 (𝑤′ −
𝑢

𝑅
) − 𝐹𝑧 (𝑤" +

𝑤

𝑅2
)

= 0 

7.13 

Radial displacement 
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(𝑢′ +

𝑤

𝑅
) − [𝐹𝑥 (𝑤′ −

𝑢

𝑅
)]

′

−
1

2
(𝑇′

𝑠𝑣𝑣′)′

+ [(𝑀𝑧 +
𝐵

𝑅
) (𝜃′ +

𝑣′

𝑅
)]

′

− 𝐹𝑦 (𝜃′ +
𝑣′

𝑅
) + 𝐹𝑧 (𝑢" +

𝑢

𝑅2
)

+ 𝐹′
𝑧 (𝑢′ +

𝑤

𝑅
) − [𝑀𝑥 (𝑣" −

𝜃

𝑅
)]

′

= 0 

7.14 

Vertical displacement 
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𝐸𝐼𝑧 (𝑣′′′′ −

𝜃"

𝑅
) −

𝐺𝐽

𝑅
(𝜃" +

𝑣"

𝑅
) − (𝐹𝑥𝑣′)′ + [𝑀𝑦 (𝜃′ +

𝑣′

𝑅
)]

′

+ (𝐹𝑧𝜃)′

+ 𝐹𝑦 (𝑢" +
𝑤′

𝑅
) +

1

𝑅
[(𝑀𝑧 +

𝐵

𝑅
) (𝑤′ −

𝑢

𝑅
)]

′

+
𝑟2

𝑅
[(𝐹𝑥 +

𝑀𝑦

𝑅
) (𝜃′ +

𝑣′

𝑅
)]

′

+ [(𝑀𝑥 −
1

2
𝑇𝑠𝑢) (𝑤′ −

𝑢

𝑅
)]

′

+ [𝑀𝑥 (𝑤" −
𝑢′

𝑅
)]

′

= 0 

7.15 

Torsional rotation 

 
𝐸𝐶𝑤 (𝜃′′′′ + 2

𝜃"

𝑅2
+

𝜃

𝑅4
) −

𝐸𝐼𝑧

𝑅
(𝑣" −

𝜃

𝑅
) − 𝐺𝐽 (𝜃" +

𝑣"

𝑅
) + 𝑀𝑦 (𝑣" −

𝜃

𝑅
)

+ [(𝑀𝑧 +
𝐵

𝑅
) (𝑤′ −

𝑢

𝑅
)]

′

− 𝑟2 [(𝐹𝑥 +
𝑀𝑦

𝑅
) (𝜃′ +

𝑣′

𝑅
)]

′

+ 𝐹𝑦 (𝑤′ −
𝑢

𝑅
) −

𝑀𝑥

𝑅
(𝑤′ −

𝑢

𝑅
) = 0 

7.16 

 Lateral forces on vehicle 

Lateral forces applied on the vehicle can be divided into three categories: (1) forces due to 

gravity and centrifugal forces; (2) forces due to rail irregularities and defects; and (3) wind 

loading. This section discusses how to determine these three lateral forces applied on the 

vehicle. The result of this section will be used to determine the stability of vehicles under 

different conditions. 

7. 2. 1.  Gravitational and centrifugal forces  

Centrifugal forces at horizontal curves generate an unbalanced force on vehicles which 

may cause extra forces at wheel-rail interface, as well as instability of the vehicle. As 

Figure 7.2 demonstrates, a centrifugal acceleration v2/R applies on a vehicle running at 
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constant speed “v” through a curve with a radius “R”. The track cant (super-elevation) that 

balances the lateral acceleration of the vehicle at curve is called “equilibrium cant”, which 

can be calculated by the following approximate formulas  

 
𝐶𝐸 = 4

𝑉2

𝑅
  (𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 𝑢𝑛𝑖𝑡𝑠) 

𝐶𝐸 = 11.8
𝑉2

𝑅
 (𝑚𝑒𝑡𝑟𝑖𝑐 𝑢𝑛𝑖𝑡𝑠) 

7.17 

where “V”,“R” and “CE” are vehicle speed in mph (km/h), curvature radius in feet (meter) 

and super-elevation in inches (millimeters), respectively. It is also assumed the track gauge 

is standard or 56.5 in (1435 mm). Cant deficiency and cant excess lead to underbalanced 

and overbalanced forces.  

    

Figure 7.2 Vehicle and track at curve 

In the American railroad, maximum cant is 6 inches (152 mm) and unbalanced cant should 
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not be more than 3 inches (76 mm). However, for freight train, the super-elevation is 

limited to 4 inches (101 mm). (Brinckerhoff Parsons Consulting Co. 2009) 

7. 2. 2.  Rail irregularities 

Defects in track geometry which are presented as irregularities in gauge and super-

elevation are the major source of track and vehicle lateral forces. As it was discussed in 

chapter 4, to simulate rail irregularities, appropriate PSD equations should be used.   

7. 2. 3.  Wind forces 

There have been reports on wind induced accidents and derailments around the world in 

recent decades (Li et al. 2005). As the speed of vehicles increases and more high-speed 

trains become operational, rail vehicles are more susceptible to the wind loading. To 

response to this issue, some researchers have investigated the influence of wind on vehicle 

response. Vehicle-Wind-Track interactions have been studied through analytical methods, 

Computational Fluid Dynamics (CFD) analysis and wind tunnel tests. As the formulas of 

this section suggest, estimating the coefficients of wind forces depends on vehicle type and 

speed which makes their estimation difficult. Li et al. (2005) mentioned the difficulties of 

doing wind tunnel test for moving vehicles. As a result, more approximation should be 

applied  (Li et al. 2005). 

In this section, using theoretical method the effect of wind loads and other lateral forces on 

train stability will be discussed.  

In the analysis of Vehicle-Wind-Track interaction the following assumptions have been 

made 

- The train speed (VT) is constant 

- The direction of train and wind is perpendicular 
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- There is no change in the direction of vehicle and wind 

- The aerodynamic effects of first and last wagon is neglected and train is considered 

long enough so strip assumption can be made 

The detailed procedure of calculating wind loads was presented in the previous studies (Li 

et al. 2005) and Zhang et al. 2013).  

Due to wind velocity fluctuations in wind direction (u) and vertical to wind direction (w), 

the wind’s angle of attack is non-zero (α). The vehicle yawing angle (β), also needs to be 

considered in calculations. 

The wind velocity and angle of attack considering fluctuations reads 

 𝑈𝑅
2 = (𝑈 + 𝑢)2 + 𝑤2   , 𝛼 = arctan

𝑤

𝑈 + 𝑢
 7.18 

Where “U” is mean wind speed. 

The relative wind velocity (VR) to the vehicle is 

 
𝑉𝑅

2 = (𝑈 + 𝑢)2 + 𝑤2 + 𝑉𝑇
2  , 𝛽 = arctan

𝑉𝑇

𝑈𝑅
 7.19 

Since the speed fluctuations are small compared to the mean wind velocity, higher-order 

terms of “u” and “w” can be neglected.  

 𝑈𝑅
2 = 𝑈2 + 2𝑈𝑢  , 𝛼 =

𝑤

𝑈
 7.20 

 
𝑉𝑅

2 = 𝑈2 + 2𝑈𝑢 + 𝑉𝑇
2  , 𝛽 = arctan

𝑉𝑇

𝑈
 7.21 

Then, the aerodynamic force per unit length can be determined (Simiu 2011) 

 
𝐷 =

1

2
𝜌𝐻𝐶𝐷(𝛼, 𝛽)𝑉𝑅

2 7.22 
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𝐿 =
1

2
𝜌𝐵𝐶𝐿(𝛼, 𝛽)𝑉𝑅

2 

𝑀 =
1

2
𝜌𝐵2𝐶𝑀(𝛼, 𝛽)𝑉𝑅

2 

In which “D”, “L” and “M” are drag, lift and moment due to wind effect. “𝜌” is air 

density and “H” is the reference height which is the height of car body and “B” is the 

width of the car body.  

“𝐶𝐷”, “𝐶𝐿” and “𝐶𝑀” are the coefficients of drag, lift and moment. 

Using the Taylor series at 𝛼 = 0 and writing the above formula in vehicle coordinate 

system, wind forces take the following shape  

 
𝐷 =

1

2
𝜌𝐻𝑉̅𝑅

2 (𝐶𝐷(𝛽) + 𝐶𝐷(𝛽)
2𝑈𝑢

𝑉̅𝑅
2 𝛾1 + [𝐶𝐷

′ (𝛽) −
𝐵

𝐻
𝐶𝐿(𝛽)]

𝑤

𝑈
𝛾2) 

𝐿 =
1

2
𝜌𝐵𝑉̅𝑅

2 (𝐶𝐿(𝛽) + 𝐶𝐿(𝛽)
2𝑈𝑢

𝑉̅𝑅
2 𝛾3 + [𝐶𝐿

′(𝛽) −
𝐻

𝐵
𝐶𝐷(𝛽)]

𝑤

𝑈
𝛾4) 

𝑀 =
1

2
𝜌𝐵2𝑉̅𝑅

2 (𝐶𝑀(𝛽) + 𝐶𝑀(𝛽)
2𝑈𝑢

𝑉̅𝑅
2 𝛾5 + 𝐶𝑀

′ (𝛽)
𝑤

𝑈
𝛾6) 

7.23 

where 𝛾 is the aerodynamic admittance and therefore, terms containing 𝛾 are buffet forces 

and the other terms show the static wind forces. Since there is no data available, the 

aerodynamic admittance are taken as 1 (Zhang et al. 2013).    

Some researchers using data from the wind tunnel tests, provide forces and moment 

coefficients for vehicle subjected to wind loading (Han et al. 2014). For example, Baker 

(1991) proposed the following formula of force and moment coefficients for  0 ≤ 𝛽 ≤
𝜋

2
   

(Baker 1991) 

 𝐶𝐷 = −𝑎1(1 + 2𝑠𝑖𝑛3𝛽) 7.24 
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𝐶𝐿 = 𝑎2(1 + 𝑠𝑖𝑛3𝛽) 

𝐶𝑀 = 𝑎3𝛽1.77 

𝑎1 to 𝑎3 are vehicle constants.  

As it is explained in chapter 4, Power Spectral Density (PSD) is a widely used tool to model 

a random process. Wind is turbulent in nature and fluctuates occur in time and space. As a 

result, wind speed can be regarded as a random process (Simiu 2011).  

There are some PSD functions proposed to simulate the wind fluctuations in vertical, lateral 

and longitudinal directions. Von Karman auto-spectra density equations are as follows  

 
𝑛𝑆𝑤(𝑛)

𝜎𝑤
2

=
4

𝐿𝑤𝑛
𝑉̅

[1 + 70.8 (
𝐿𝑤𝑛

𝑉̅
)

2

]

5/6
 

7.25 

 
𝑛𝑆𝑢(𝑛)

𝜎𝑢
2

=
4

𝐿𝑢𝑛
𝑉̅

[1 + 755 (
𝐿𝑢𝑛

𝑉̅
)

2

]

[1 + 283 (
𝐿𝑢𝑛

𝑉̅
)

2

]

11/6
 7.26 

where 𝜎𝑢  and 𝜎𝑣  are standard deviations of fluctuations in vertical and longitudinal 

directions. These values are considered 0.075𝑢̅ and 0.1𝑢̅ and 𝑉̅(𝑧) is the mean wind speed.  

The parameters 𝐿𝑤 and 𝐿𝑢 are length scales of fluctuations.  

Other widely used PSD equations in wind engineering were proposed by Kaimal as follows 

(Simiu 2011) 

Lateral wind spectrum  

 𝑛𝑆𝑢(𝑓)

𝑢∗
2

=
200𝑓

(1 + 50𝑓)5/3
 7.27 

Longitudinal wind spectrum 
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 𝑛𝑆𝑤(𝑓)

𝑢∗
2

=
3.36𝑓

(1 + 10𝑓)5/3
 7.28 

Vertical wind spectrum 

 𝑛𝑆𝑣(𝑓)

𝑢∗
2

=
15𝑓

(1 + 10𝑓)5/3
 7.29 

In which, “𝑢∗” is friction velocity. 

 
𝑢∗ =

𝑉̅(𝑧)

2.5𝑙𝑛
𝑧
𝑧0

=
1

𝜂
𝑢2(𝑧, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 1/2 

7.30 

and 𝑓 =
𝑛𝑧

𝑉̅(𝑧)
 

“n” is frequency and “𝑉̅(𝑧)” denotes the mean wind speed at elevation “z”. 

𝑢2(𝑧, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 1/2 is the R.M.S (Root Mean Square) of the longitudinal velocity fluctuations.  

The values of “𝜂(𝑧0)” in the empirical equation 7.30 have been tabulated as follows: 

Table 7.1 Values of parameter 𝜂(𝑧0) (Simiu 2011) 

𝑧0 (m) 0.005 0.03 0.3 1.00 

𝜂(𝑧0) 2.55 2.45 2.30 2.20 

 

 “𝑧0” or roughness length is a reference elevation representing surface roughness. ASCE 

7-10 Commentary suggested the values of Table 7.2 for different types of surfaces.  

Table 7.2 Roughness lengths proposed in ASCE 7-10 Commentary (Simiu 2011) 

Type of Surface  Roughness length, ft (m) 

Water 0.016-0.03 (0.005-0.01) 

Open terrain 0.05-.05 (0.015-0.15) 

Urban and suburban terrain, wooded areas  0.5-2.3 (0.15-0.7) 

 

The value of “𝑧0” is assumed 0.05 m which represents the areas with low vegetation and 
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isolated obstacles such as tress or buildings. 

The procedure of calculating the time-history of wind fluctuations are similar to the process 

explained in chapter 4. Figure 7.3 shows the PSD function of wind speed fluctuations in 

longitudinal, vertical and lateral directions for 100 km/hr wind speed.   

 

Figure 7.3 PSD functions of wind speed fluctuations in vertical, lateral and longitudinal 

directions for 100 km/hr wind speed 

The procedure of calculating the time-history of wind fluctuations are similar to the process 

explained in chapter 4.  

Figure 7.4 shows the horizontal wind speed fluctuations derived from PSD formula 

proposed by Kaimal. Figure 7.5 depicts the time history of horizontal wind forces applies 

on car body and Figure 7.6 demonstrates the horizontal displacements of wheel-rail 

interface due to applying wind loads. It should be noted that, the results are presented for 

track class 6 and no other defects are considered in track. Train speed is 100 km/hr and 
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other parameters are kept constant as mentioned in Table 5.1.  

 

Figure 7.4 Horizontal wind speed fluctuations  

 

Figure 7.5 Wheel-rail horizontal contact forces  
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Figure 7.6 Wheel-rail displacements 

 Vehicle stability 

This section investigates the vehicle stability under lateral loading due to track defects and 

wind forces. There are a number of methods to evaluate the stability of vehicles or the risk 

of overturning. Three most popular criteria are: wheel loading, moment method and 

intercept method. 

Wheel unloading criterion intends to limit the unloading of windward rail as a sign of 

vehicle overturning (Thomas 2009).  

 𝑄𝑠𝑡𝑎 − 𝑄𝑑𝑦𝑛

𝑄𝑠𝑡𝑎
≤ 0.9 7.31 

𝑄𝑠𝑡𝑎 and 𝑄𝑑𝑦𝑛 are static and dynamic wheel loading.  

Moment method uses the same idea of retaining structures design which states the 

equilibrium moment about the outer rail should be greater than the unbalanced moment 
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due to crosswind forces. The Author could not find any study on safety factors or the 

minimum ratio of balanced to unbalanced moment in the rail codes.   

The third approach or intercept method considers the vertical contact force between wheel 

and rail to estimate the risk of vehicle overturning. As it is shown in Figure 7.7, the idea is 

to calculate the resultant contact forces between rail and wheel for both right and left rails 

and then calculate the difference between the forces. Obviously, the unloading or 

overloading of rails should be limited to avoid the risk of overturning.  

 

Figure 7.7 Wheel-rail forces used by intercept method to calculate the overturning risk 

The risk of vehicle overturning is measured by the following formula 

 
𝑛𝑅 =

𝑏𝑡

𝑏0
=

∑|𝑄𝑙 − 𝑄𝑟|

∑(𝑄𝑙 + 𝑄𝑟)
 7.32 

where 𝑄𝑙 and 𝑄𝑟 are vertical forces applied on left and right rail. As the formula implies, 

in the ideal situation, the resultant vertical force,𝑄𝑡, is in the centerline of track and 𝑛𝑅 , 

risk factor, is equal to 1. Acceptable values of “𝑛𝑅” usually lies bTetween 0.8 and 1. 

(Thomas 2009) 
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Table 7.3 shows the parameters used in the stability analysis of the rail vehicle. The 

coefficients of wind forces are taken from results of a study conducted by Han et al. (Han 

et al. 2013). Unless it is stated otherwise, the values shown in Table 7.3 will be used in this 

chapter.   

Table 7.3. Parameters used in stability analysis of vehicles 

Parameter Value Notation 

Vehicle Axle Load 15 Ton 

Vehicle Speed 200 Km/hr. 

Wind Speed  50 Km/hr. 

Curve radius  250 m 

air density 1.225 Kg/m3 

Height of car body 3 m 

Lift Force Coefficient 0.2602 - 

Drag Force Coefficient  0.0669 - 

Moment Coefficient -0.0141 - 

   

Figure 7.8 shows the results of an analysis with applying wind forces. The Kaimal PSD 

formula used to take into account the wind speed fluctuations. The results are presented for 

two cases of track qualities. As the figure shows, lateral displacements for track class 4 and 

class 6 vary considerably in time. This is because two random wind forces and forces due 

to rail irregularities have been applied to the car body. The range of car body lateral 

displacements for track class 4 is between 0 and 28 mm and for track class 6 is between -7 

to 15 mm which shows greater range of displacement for track class 4. The results also 

suggest that considering the assumptions mentioned earlier, rail irregularities have bigger 

effects on vehicle lateral displacements. The figure also shows that the mean values of 

lateral displacements obtained from track class 4 are about 50% more than those of track 

class 6.          
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The results for wheel-rail lateral displacements are shown in Figure 7.9. The range of 

displacements is limited compared to the car body motion. The maximum displacements 

are 7 mm and 4 mm for track class 4 and class 6, respectively. The mean value of lateral 

displacements recorded for track class 4 is about 30% more than the displacements 

obtained from track class 6.   

 

Figure 7.8 Car body lateral displacement for track classes 4 and 6 
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Figure 7.9 Wheel-rail lateral displacement for track classes 4 and 6 

7. 3. 1.  The effect of wind speed 

To consider the influence of wind speed on the risk of vehicle overturning, this parameter 

has been changed in the range of 0 to 100 km/hr. The value of 0.8 is selected as the critical 

value for vehicle’s risk of overturning. As a result, for each case, the vertical loads on inner 

and outer rail are calculated and then the criteria in equation 7.32 controls whether or not 

the vehicle is susceptible to overturning.  

The results of analyses have been shown in Figure 7.10 for different wind speeds and track 

qualities. As a general trend, with increasing wind speed the risk of vehicle overturning 

increases, but the rate of increasing the risk is changed sharply in the range of 40 to 70 

km/hr and after that it increases with lower rate. Another finding from the results is the 

importance of track quality in reducing the risk of overturning. If the rail quality is 

improved from class 4 to class 6, the risk of vehicle overturning decreases more than 23%.   
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Figure 7.10. Risk of vehicle overturning for different wind speeds and track qualities 

Figure 7.11 demonstrates the maximum lateral displacement vs mean wind speed. As it is 

expected, with increasing speed, the lateral displacement of wheels increases but there is a 

middle region where displacement increases with highest rate. For speeds lower than 20 

km/hr and higher than 60 km/hr the maximum lateral displacements change slowly 

compared to the middle range.   
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Figure 7.11. the effect of mean wind speed on maximum lateral displacement of wheels 

7. 3. 2.  The effect of cant deficiency 

The effect of super-elevation (cross level or cant) irregularities on track and vehicle was 

discussed in previous chapters. In many instances, the defect in track geometry is due to 

track construction errors or subbase settlement. This section discusses the results of cant 

deficiencies on track response and vehicle overturning risk. Table 7.4 shows the maximum 

values of super-elevation proposed for California high-speed rail for different train speeds.  

This section shows the impact of cant deficiency on the vehicle’s risk of overturning. Note 

that for the results derived in this section, it is assumed that the only track defect is cant 

deficiency and rail surface is in ideal condition.   
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Table 7.4 the maximum values of superelevation proposed for California high-speed rail 

(Brinckerhoff Parsons Consulting Co. 2009) 

Design Speed 
Applied Superelevation 

Desirable Maximum Exceptional 

Mi/hr Km/hr inches mm inches mm inches mm 

<186 <300 4 100 6 150 7 180 

>186 >300 4 100 6 150 7 180 

 

The influence of cant deficiency on the risk of overturning depicted in Figure 7.12. It is 

shown that increasing cant deficiency causes an increase in the unbalanced forces, and 

therefore, the risk of vehicle overturning increases. The graph is composed of two parts. 

The slope of vehicle overturning risk in the first part for the cant values less than 20 mm is 

smaller than that in the second part which the cant values are more than 20 mm. The 

maximum out of balance super-elevation is 17 mm for track class 4 and train axle load of 

15 ton. Other values of track parameters are shown in Table 7.3.  
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Figure 7.12. the effect of cant deficiency on the vehicle’s risk of overturning 

Figure 7.13 demonstrates the how cant deficiency affects the ratio of unbalanced force to 

balanced force. With increasing the deficiency, the unbalanced force increases. Note that 

the balanced force is constant and as mentioned before depends on vehicle speed and the 

radius of curve. Vehicle speed and the radius of the curve is assumed 100 km/hr and 200 

m, respectively. Since rail is assumed to be in perfect condition and no defect except cant 

deficiency was considered in the analysis, the ratio of unbalanced to balanced force is 

almost linear. However, car body undergoes more unbalanced forces compared to wheels. 

Since car body is heavier than wheel, more centrifugal forces apply on it and so more 

overturning moment and unbalanced force produce with increasing cant deficiency.   



122 

 

 

Figure 7.13. the effect of cant deficiency on the ratio of unbalanced to balanced force 

 The effect of wind and rail irregularities on track and vehicle parameters  

The aim of this section is to discuss the circumstances that cause unacceptable lateral forces 

which poses a threat to vehicle safety. As discussed, numerous factors may affect the lateral 

forces of vehicle. This section considers four parameters of vehicle speed, vehicle axle 

load, wind mean speed and track quality to discuss the conditions the running of vehicle is 

not safe. The wind speed selected for simulation lies in category 1 and 2 of Saffir-Simpson 

hurricane wind scale (Simiu 2011).  

Figure 7.14, based on train speed and wind mean speed, shows the area where the allowable 

and not allowable parameters lie. It is assumed that train axle load is 12 ton. Increasing 

track quality from class 4 to class 6 causes allowable train speed increases about 9%. It can 

be observed that with increasing wind speed, the difference between allowable train speeds 

for two classes of track quality slightly increases. The maximum train speed for track class 
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6 is limited to 216 km/hr while the allowable speed is limited to 195 km/hr for track class 

4. In the analyses, it was assumed that the vehicle is running on a curve with radius 250 m.   

Figure 7.15 demonstrates the same results for a 15 axle load train. All parameters were 

kept constant except for wind mean speed, train speed, and rail irregularities. Two 

important conclusion can be made from this figure; (1) for heavier trains, the track quality 

has more influence on maximum allowable speed compared to wind forces. In other words, 

the difference between the results obtained from different track qualities is larger for 15-

ton vehicle; (2) as equation 7.23 shows, the wind force is proportional to the square wind 

speed(𝐹 ∝ 𝑉2). For track class 6, the curves show that wind force is the dominant factor 

on determining safe train speed. However, for track class 4, the curve becomes more linear. 

This trend can be seen for both heavy and light trains.  

 

 

Figure 7.14. The area of allowable and not allowable parameters (left) track class 6, and (right) 
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track class 4, for 12-ton axle load train 

 

Figure 7.15. The area of allowable and not allowable parameters (left) track class 6, and (right) 

track class 4, for 15-ton axle load train 
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8. Summary and Conclusions  

A comprehensive study on three-dimensional modeling of railroad track was conducted. 

Vehicle, track and substructure were modeled, and their interaction was considered in the 

calculations. The vehicle includes primary and secondary suspension systems and is able 

to simulate the vertical as well as, lateral displacements. Using the nonlinear Hertz springs, 

the wheels are connected to three-dimensional Euler-Bernoulli beams as rails. The mass 

and stiffness of the track substructure was derived from the ballast pyramid model and then 

the mass, damping and stiffness matrices of the whole system were formed and solved in 

time domain by the Newmark integration method. The model further developed to include 

the bridge and curved beams. Rail flaws and wind speed fluctuations as two sources of 

excitations in vertical and lateral directions were considered, and sensitivity analysis was 

performed to determine the influential factors to the track impact factor. The results 

obtained from this research can be divided into three groups as follows. 

  Rail flaws  

Rail flaws are the major source of dynamic forces in the track and vehicle. Three important 

rail flaws are: rail random irregularities, rail corrugation and rail dip and raise. In this study, 

their parameters were investigated under different operating conditions. Rail and vehicle 

impact factors were used to assess the influence of each parameter on track and vehicle 

dynamics. The results of analyses led to the following conclusions: 

1- Rail random irregularities significantly affect rail dynamic forces. The amount of 

dynamic forces is a function of track quality and train speed. The impact factor 

generated from track class 4 is much larger than that due to track class 6, especially 

for high-speed trains. The results show that increasing vehicle speed does not 
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necessarily increase impact factors. It is especially  valid for  bogie and  car body  

impact factors  that the impact factor reduces when the train speed increases to 250 

km/hr. 

2- The joint in the railroad track causes an increase in rail impact factor, but in case of 

no defects, the train speed does not have considerable influence on the rail impact 

factors. However, a dip or a raise in the rail joint has a great influence on dynamic 

forces. For dipped rail, with increasing speed, impact factor increases from 18% to 

62% when vehicle speed increases from 50 to 200 km/hr. 

3- The depth  and length  of the  rail joint  raise or  dip are  important factors  on the 

dynamic forces  from the vehicle. The results of the study indicate that for defect 

lengths shorter than 0.3 m there is a large difference of the impact  factors between  

rail joint  dip and  raise but  with increasing  the defect  length, the difference 

decreases.  

4- Among the rail flaws considered in this research, corrugation has the biggest 

influence on rail impact factor. Based on the results of the study, increasing 

corrugation depth generates a large impact factor. As it is expected, shorter 

wavelength causes greater impact factor.  

 Stability of the vehicle 

The stability of vehicles under lateral forces was investigated and the effect of different 

factors on track and vehicle lateral displacements and forces were determined. For this 

purpose, first, the equations of motions of curved beam were incorporated into the 

numerical model of the vehicle-track interactions, and then the wind forces considering 

wind speed fluctuations were determined. Based on the intercept method, used to assess 
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the risk of vehicle overturning, the following conclusions were made: 

1- Higher wind speeds raise the risk of vehicle overturning and as a general trend, with 

increasing wind speed the rate of increasing in lateral forces increases. It is also 

concluded that track irregularities have more influence on the vehicle’s risk of 

overturning for higher wind speeds. 

2- Cant deficiency causes an unbalanced force that may pose a threat to vehicle stability. 

Based on the results, cant deficiency has the biggest effect on car body. The results 

indicate that there is a point at which the rate of vehicle risk of overturning increases 

by increasing cant deficiency.  

3- Parameters of vehicle speed, vehicle axle load, wind mean speed, and track quality 

were studied to evaluate safe conditions of the running vehicle. Increasing track quality 

from class 4 to class 6 causes the allowable train speed to increase about 9%. It can be 

observed that with increasing wind speed, the difference between allowable train 

speeds for two classes of track quality slightly increases. The results show that for 

heavier trains, the track quality has more impact on maximum allowable speed 

compared to wind forces. For track class 4, the relation between wind speed and 

allowable train speed becomes more linear compared to track class 6.  

 Suggestions for future work 

As it is mentioned, railroad track dynamics is a complicated problem with numerous 

degrees of freedom, and all researchers disregarded some aspects of the problem to make 

it solvable. In this study, in order to produce precise results a detailed model of vehicle and 

track was considered. However, for conducting a comprehensive study, considering other 

track types and vehicle conditions, the following are suggested for the future work. 
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1- The focus of this study was on high-speed rail track. To investigate the response of 

other types of railroad track to dynamic excitations, data from experiments are 

required. Since the accuracy of the results completely depends on the choice of 

correct values for the vehicle, track and substructure parameters, the behavior of 

non-conventional tracks, such as slab tracks, which are widely used in urban and 

high-speed tracks, also need to be investigated. The double beam model used in this 

research provides a good estimate of the slab track response. However, more 

research on the effect of different track and vehicle parameters on slab track 

response is essential.   

2- Few attempts have been made to understand the behavior of rail vehicles under 

wind forces. More wind tunnel tests are necessary to provide accurate aerodynamic 

data for numerical modeling. The reliable data obtained from the tunnel tests that 

can be used in numerical modeling is very limited, and it is very hard to find proper 

values for some parameters, such as aerodynamic admittance, vehicle (shape) 

parameters and the effect of changes in the direction of vehicle, as well as the effect 

of curvature on wind forces.       

3- Investigation on the material properties of the track is also required to have a better 

understanding of the track behavior. It is well known that the behavior of the 

fastening system, ballast and track substructure becomes nonlinear with increasing 

the accumulative loads from vehicles. The author could not find any well-

documented experiments or material models that can be utilized in numerical 

simulations. As a result, except for Hertz nonlinear springs between rails and 
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wheels, the behavior of other track parts is assumed to be linear. Using more 

accurate track and subgrade models, leads to more reliable results.     
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