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ABSTRACT OF THE DISSERTATION 

QUORUM SENSING SIGNALS PRODUCED BY HETEROTROPHIC BACTERIA IN 

BLACK BAND DISEASE (BBD) OF CORALS AND THEIR POTENTIAL ROLE IN 

BBD PATHOGENESIS 

by 

Chinmayee D. Bhedi 

Florida International University, 2017 

Miami, Florida 

Professor Laurie L. Richardson, Major Professor 

     Black band disease (BBD) of corals is a temperature dependent, highly virulent, 

polymicrobial disease affecting reef-building corals globally. The microbial consortium 

of BBD is primarily comprised of functional physiological groups that include 

photosynthetic cyanobacteria, sulfate reducers, sulfide oxidizers and a vast repertoire of 

heterotrophic bacteria. Quorum sensing (QS), the cell-density dependent communication 

phenomenon in bacteria, is known to induce expression of genes for a variety of 

virulence factors in diseases worldwide. Microbes capable of QS release signals such as 

acyl homoserine lactones (AHLs) and autoinducer-2 (AI-2), which coordinate microbial 

interaction. The focus of the present study was to investigate the presence and potential 

role of QS in BBD pathogenicity, utilizing culture dependent and independent 

methodologies. Isolates across coral health states including BBD, were screened for 

production of QS signals, and AHL and AI-2 production capabilities were analyzed via 

LC-MS/MS. The effect of temperature on AHLs was also examined. Additionally, 

antimicrobial production capabilities of isolates were tested. BBD metagenomes were 
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utilized to screen for sequences related to QS, antimicrobial synthesis, and antimicrobial 

resistance genes. BBD isolates represented a significantly higher proportion of isolates 

capable of producing QS signals in comparison to healthy coral isolates. Several AHLs 

produced by coral derived bacterial cultures were identified, and three AHLs, specifically 

3OHC4, 3OHC5 and 3OHC6, showed a significant increase in production at an elevated 

temperature of 30 °C, which correlates with increased BBD incidence on reefs with 

increasing water temperature. Most of the BBD cultured isolates were identified as 

vibrios. Several sequences related to QS, antimicrobial synthesis and resistance genes 

were detected in the BBD metagenomes. Based on the findings of this study, a model for 

potential microbial interactions amongst BBD heterotrophs, centered around QS, is 

proposed. Taken together, the findings from this study provide a clearer understanding of 

the potential role of QS in BBD, and serve as the basis for further studies aimed at 

elucidating the pathogenesis of an intricate coral disease. 
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     The worldwide deterioration of coral reef ecosystems has been attributed to several 

factors such as global warming, ocean acidification, over-fishing, and pollution 

(Sutherland et al. 2004; Hoegh-Guldberg et al. 2007; Carpenter et al. 2008; Hernandez-

Agreda et al. 2017). Over the past few decades, it is being increasingly recognized that 

coral diseases are aggravating the decline of coral diversity and coral cover (Ainsworth et 

al. 2010; De'ath et al. 2012). Corals are known to exist in symbiotic associations with 

bacteria, viruses, algae, protozoa, and dinoflagellates, often labeled collectively as the 

coral holobiont (Rowan 1998; Rohwer et al. 2002). As proposed in the coral probiotic 

hypothesis, the dynamic nature of the symbiotic associates of the coral animal facilitates 

efficient adaptation of the coral holobiont to environmental changes (Reshef et al. 2006). 

The surface mucopolysaccharide layer (SML) of corals is a prime source of nutrients and 

organic carbon to resident microbes (Ritchie and Smith 2004). Several reports have 

studied the diversity of bacteria inhabiting healthy corals, indicating evident shifts in 

microbial inhabitants after environmental stress (Ritchie 1995; Rohwer et al. 2001; 

Cróquer et al. 2013). 

     Black band disease (BBD) was the earliest documented coral disease, in the early 

1970s, and is now recognized as one of the most virulent infections affecting gorgonian 

and scleractinian species of corals (Antonius 1973; Garrett and Ducklow 1975; Antonius 

1981; Rützler et al. 1983; Richardson 2004). Since its discovery in the Caribbean, it has 

subsequently been reported on reefs of the Red Sea, Indo-Pacific, Great Barrier Reef 

(GBR), Philippines, Hawai’i, Indonesia, and Indian Ocean and is currently identified as a 

globally distributed disease (Edmunds 1991; Page and Willis 2006; Kaczmarsky 2006; 

Barneah et al. 2007; Aeby et al. 2015; Johan et al. 2015; Sere et al. 2016). The disease 
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manifests as a dark, migrating mat on the surface of a coral colony, covering a distance of 

1 mm to up to 3 cm per day (Rützler et al. 1983; Kuta and Richardson 1997). Tissue lysis 

by this biofilm-like mat leads to coral death, exposing the coral skeleton, which is then 

colonized by algae. BBD has been widely accepted to be of polymicrobial nature, with no 

single pathogen involved (Carlton and Richardson 1995; Richardson 2004). The highly 

variable microbial consortium of BBD is largely comprised of phycoerythrin-rich 

cyanobacteria, sulfide oxidizers, sulfate reducers, fungi, archae, and a vast population of 

organoheterotrophs (Garrett and Ducklow 1975; Ducklow and Mitchell 1979; Ramos-

Flores 1983; Rützler et al. 1983; Sato et al. 2013). The volumetric mass of the band is 

dominated by photosynthesizing cyanobacteria that include Leptolyngbya, Geitlerinema 

and Roseofilum reptotaenium (Myers et al. 2007; Casamatta et al. 2012), with the latter 

found in BBD on reefs worldwide. Vertical gradients of sulfide, light and oxygen/anoxia 

are present in the band (Kuta and Richardson 1996; Page and Willis 2006). Within the 

band itself, sulfate reducers produce sulfide while photosynthesis by cyanobacteria 

releases oxygen. These reactions lead to the formation of a sulfide-rich anoxic base and 

an oxygenated mat surface, along with a sulfide/oxygen interface that migrates vertically 

(Carlton and Richardson 1995; Richardson et al. 2001).  

     Numerous investigators have studied the variable BBD heterotrophic community; yet, 

this is the least understood of the physiological groups of BBD in relation to 

pathogenicity (Cooney et al. 2002; Frias-Lopez et al. 2002; Frias-Lopez et al. 2004; Sekar 

et al. 2006; Sekar et al. 2008; Richardson et al. 2016). Black band disease clone libraries 

have revealed the presence of alphaproteobacteria, verrucomicrobia, deltaproteobacteria, 

bacteroidetes and firmicutes as dominant BBD heterotrophs (Sekar et al. 2006). Cooney 
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et al. (2002) have reported the additional occurrence of epsilonproteobacteria, 

Bacillus/Clostridium (BC) and Cytophaga-Flexibacter-Bacteroides (CFB) group bacteria 

within BBD. A meta-analysis of 87 clone libraries of BBD spanning 16 species of corals 

found alphaproteobacteria to be the most varied group, with a sequence matching 

Roseovarius crassostreae, the second most repeated sequence amongst BBD heterotrophs 

(Miller and Richardson 2011). Clone libraries have also reported the presence of 

Ferrimonas sp. in the BBD consortium (Sekar et al. 2006; Sekar et al. 2008). Despite 

studies indicating the presence of specific bacteria in BBD, the precise interaction of 

these microbes with each other and role in disease initiation and progression has yet to be 

elucidated. 

     As with most coral diseases, BBD incidence on reefs is influenced by a variety of 

ecological factors such as temperature, light intensity, the presence of nutrients, water 

depth, and anthropogenic factors (Kuta and Richardson 1996; Page and Willis 2006; 

Voss and Richardson 2006b). Many studies have reported a positive correlation between 

increased temperature and BBD abundance as well as severity (Antonius 1981; Kuta and 

Richardson 1996; Voss and Richardson 2006a). Under the premise of global warming 

resulting from climate change, increased disease prevalence and intensity with high 

temperatures is of specific concern to coral populations susceptible to BBD (Sato et al. 

2015). Warm temperatures have been proposed to decrease host immunity while 

concurrently increasing bacterial virulence (Harvell et al. 2002; Harvell et al. 2007). Such 

a change in microbial pathogenicity may be triggered by cell signaling phenomena such 

as quorum sensing. 
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     Quorum sensing is a cell density mediated microbial communication facilitated by 

signaling molecules (Nealson et al. 1970; Nealson and Hastings 1979; Bassler 1999). 

When a precise ‘quorum’ of bacterial cells is achieved, bacteria regulate gene expression 

of a variety of characters such as biofilm formation, conjugation, and competence 

capabilities, increased and specialized nutrient uptake strategies, and antimicrobial 

production and resistance abilities (Bassler et al. 1994; Taga and Bassler 2003; Waters 

and Bassler 2005b; Jayaraman and Wood 2008; Bandara et al. 2012; Rutherford and 

Bassler 2012). One or more of the above-described characteristics often enable the 

conversion of a non-pathogenic bacterial strain to a pathogenic one (Jayaraman and 

Wood 2008). Quorum sensing in most Gram-negative bacteria is facilitated by secretion 

of small molecular weight signaling compounds characterized as acyl homoserine 

lactones (AHLs) (Fuqua et al. 2001). These signaling compounds are comprised of a fatty 

acid side chain attached to a homoserine (lactone) ring. By permutations and 

combinations of side chain groups and saturation, bacteria are capable of manufacturing 

up to hundreds of AHL variants (Fuqua et al. 2001; Hmelo 2017). In polymicrobial 

assemblages, the precise variants of signaling molecules generate bacterial responses for 

inducing gene expression of specific pathogenic characters. Interspecies communication 

in bacteria is achieved by another set of signaling molecules called autoinducer 2 (AI-2), 

produced by both Gram-positive as well as Gram-negative bacteria (Greenberg et al. 

1979; Bassler et al. 1994). Due to the ubiquitous signaling nature of this compound, it is 

often designated as the universal signaling molecule (Jayaraman and Wood 2008). The 

chemical nature of QS signaling molecules makes them vulnerable to ecological factors 

such as pH, oxygen, and temperature (Decho et al. 2009; Decho et al. 2010; Decho et al. 
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2011). Specific environmental variations, such as alkaline milieus, often render signaling 

molecules like AHLs, incapable of functioning (Decho et al. 2009). 

      Recent advances in reporting microbial interactions within the coral holobiont have 

indicated the synthesis of AI-2 as well as AHLs by microbes (Tait et al. 2010; Alagely et 

al. 2011; Golberg et al. 2011; Hunt et al. 2012; Ransome 2013). Proteobacterial 

populations, including vibrios, are well-known producers of AHLs in the marine 

environment (Visick and Fuqua 2005; Hmelo 2017). Along with QS, antimicrobial 

production as a microbial interaction phenomenon has also been studied in microbes of 

healthy as well as diseased corals (Mao-Jones et al. 2010; Hunt et al. 2012; Kvennefors et 

al. 2012; Glasl et al. 2016). Both QS and antimicrobial interactions are estimated to 

influence the structuring and organization of microbes inhabiting the coral SML. In 

polymicrobial diseases such as BBD, the impact of microbial exchanges on configuration 

and operation of the disease community can be of unique significance. Accordingly, the 

present study examines the interactions amongst BBD heterotrophic bacteria primarily 

through the lens of quorum sensing and signaling molecules. The present dissertation 

includes both laboratory (microbiological and analytical) and metagenomic data to obtain 

a strong understanding of microbial collaborations influencing BBD pathogenicity. 

     Chapter two begins by inspecting the AHL and AI-2 production capabilities of 

microbes across healthy and BB-diseased coral health states. Isolates of bacteria positive 

for both categories of signaling molecules are screened and subjected to identification (of 

AHLs) and quantification (of AI-2) via LC-MS/MS. Part of the data presented in this 

chapter have been published in Zimmer et al. 2014. 
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     Chapter three has been published in FEMS Microbiology Ecology (Bhedi et al., 2017) 

and investigates the role of temperature on AHL production by BBD microbes. AHL 

production is compared across heath states of corals infected with BBD. AHLs most 

significantly varied with temperature are identified via LC-MS/MS and all AHL 

producers are revealed to be vibrios. This chapter also examines the QS sequences 

annotated in BBD metagenomes. 

     Chapter four reports the AHL and antimicrobial production capabilities of microbes 

across coral health states of BBD. This chapter also compares BBD and other publicly 

available non-diseased coral metagenomes to evaluate QS and antimicrobial synthesis as 

well as antimicrobial resistance sequences in BBD metagenomes. The proteobacterial 

population across metagenomes is also evaluated in this chapter.   

     Chapter five summarizes the implications of the findings from this dissertation and 

proposes a model of microbial interaction including establishment and maintenance of 

the virulent BBD heterotrophic community, centered primarily around quorum sensing. 
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Abstract 

     Black band disease (BBD) is a destructive disease of corals manifested as a dark band 

migrating over the coral colony, lysing coral tissue, and leaving behind bare coral 

skeleton. The polymicrobial mat is composed of cyanobacteria, sulfate reducers, sulfide 

oxidizers, and a wide variety of heterotrophic bacteria. Several studies have pointed 

towards the potential for the heterotrophs to be significant contributors to the 

pathogenicity of BBD. In the present study, heterotrophic bacteria from black band 

disease mat, the surface mucopolysaccharide layer (SML) of healthy coral and healthy 

part of the BBD infected coral were isolated and tested for their potential to produce 

quorum sensing signals (QSSs). Specifically, isolates were analyzed via LC-MS/MS for 

production of acyl homoserine lactones and (S)-4-5-dihydroxy-2,3-pentandione (DPD), 

the chemical precursor for autoinducer-2 (AI-2). Twelve bacterial isolates across coral 

health states showed production of AHLs, while nine produced DPD. The detection of 

these compounds indicated the active production of QSSs by heterotrophs in black band 

disease of corals. The potential influence of these QSSs in the organization and 

pathogenicity of the BBD community requires further investigation. 

Introduction 

     Over the last three decades, global coral reef deterioration has been caused by several 

factors including global warming, ocean acidification, anthropogenic factors, water 

quality deterioration, over-fishing (Hoegh-Guldberg et al. 2007; Harborne et al. 2017), 

and the foremost contributor to this decline has been coral disease. Black band disease is 

one such devastating coral disease, plaguing reef-building corals globally. The disease 

mat is a consortium of several operative groups of microbes that move across the coral 



 22 

colony, lysing the coral tissue at a rate of 3 mm per day (Rützler et al. 1983). The 

collection of functional players of the black band mat includes photoautotrophic 

cyanobacteria (Rützler et al. 1983), primarily, Roseofilum reptotaenium (Casamatta et al. 

2012), sulfate reducers such as Desulfovibrio sp. (Antonius 1981; Richardson 1996; 

Viehman et al. 2006), sulfide oxidizers such as Beggiatoa sp. (Ducklow and Mitchell 

1979), marine fungi (Ramos-Flores 1983), archae (Sato et al. 2013), and a diverse 

assembly of heterotrophic bacteria (Ducklow and Mitchell 1979; Cooney et al. 2002; 

Frias-Lopez et al. 2004; Sekar et al. 2008). Black band disease heterotrophic bacteria 

have been proposed to include potential primary pathogens (Cooney et al. 2002; Frias-

Lopez et al. 2002; Sekar et al. 2006). A meta-analysis of 16 scleractinian coral species 

across 87 BBD samples from the literature revealed the alpha- and gammaproteobacteria 

to be the most diversely represented groups amongst the BBD heterotrophic population 

(Miller and Richardson 2011). Bacteria in such large and diverse assemblages have been 

known to interact with one another in an intricate manner, to not only coexist but also 

potentially communicate with one another to exploit the environment for self-

perpetuation. One such phenomenon of bacterial interaction is quorum sensing. 

     The first reported indication of a cell density dependent ‘activator substance’ causing 

competence of bacterial cells was described in the early 1960s (Tomasz and Hotchkiss 

1964). Autoinduction in Vibrio fischeri was described as the cause of bioluminescence in 

the 1970s (Nealson et al. 1970; Nealson and Hastings 1979). ‘Quorum sensing’ (QS) as a 

term was coined much later in the 1990s (Fuqua et al. 1994). The unique phenomenon of 

bacterial communication was revealed to be facilitated by small molecular weight 

molecules called quorum sensing signals (QSSs) that are released into the environment 
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by bacterial cells upon reaching a certain cell number or ‘quorum’. Several types and 

sub-types of QSSs produced by prokaryotes as well as eukaryotes have since been 

discovered and described in the literature. Communication via QSSs in bacteria induces 

gene expression of a variety of functional characteristics such as biofilm formation, 

motility, swarming, competence, production of virulence factors, antibiotics etc. 

(Williams 2007; Hmelo 2017). Such characteristics enable bacteria to adapt and evolve in 

concordance with the external environment, by conferring ecological advantages when 

competing in a harsh and complex milieu.  

     One of the most common and abundantly produced categories of prokaryotic QSSs is 

the acyl homoserine lactones (AHLs), produced by Gram-negative bacteria. These 

molecules serve to facilitate intra-species signaling amongst the bacteria producing these 

compounds. The chemical structure of an AHL molecule is comprised of a lactone ring, 

with an acyl side chain varying in chain length (C4-C20), saturation, and addition of 

functional groups (Decho et al. 2011). So far, hundreds of AHL variant molecules have 

been discovered (Decho et al. 2011), which enable bacteria to correspond precisely in 

polymicrobial environments.  

     The first evidence for interspecies communication was unearthed in the bacterium 

Vibrio harveyi (Greenberg et al. 1979), where the bioluminescence of the bacterium was 

found to be a function of a special signal molecule called AI-2 (Bassler et al. 1994). Since 

then, gene expression of an inordinate variety of prokaryotic and eukaryotic genes has 

been attributed to the AI-2 signaling system. The most common synthase-receptor 

complex in bacterial cells capable of producing and detecting AI-2 is LuxS-LuxP; 

however other receptor proteins such as LsrB and RbsB have also been recognized. 
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     Apart from being a QSS, AI-2 is a byproduct of an integral biochemical reaction series 

in living cells called the activated methyl cycle (AMC). The AMC cycle is responsible 

for the recycling of the primary methyl-donating compound in living cells, namely S-

adenosylmethionine (SAM) (Schauder et al. 2001). The synthase, LuxI, utilizes SAM 

along with acyl substrates in the cell to manufacture AHL autoinducer molecules. The 

compound, SAM, undergoes a series of three reactions as part of the AMC, to be 

ultimately converted into (S)-4,5-dihydroxy-2,3-pentandione (DPD), the linear, unstable 

form of AI-2, by the synthase protein, LuxS (Bandara et al. 2012; Pereira et al. 2013).  

     Acyl homoserine lactones (AHLs) and AI-2 are the two most pertinent signal 

molecules produced by marine bacterial QS systems (Hmelo 2017). Bacteria in the 

phylum Proteobacteria are the most predominant synthesizers of AHLs in the bacterial 

world (Visick and Fuqua 2005). The diverse proteobacterial population within BBD 

makes investigating QSS production capabilities of the heterotrophic bacterial population 

within BBD and across coral health states pertinent as well as intriguing. In the present 

study, bacteria from BBD as well as healthy corals were tested for production of AHLs 

and DPD, the precursor molecule of AI-2. The results presented in this chapter have been 

published as part of Zimmer et al. (2014). Additional data (AHL and DPD detection in 

Vibrio coralliilyticus BAA-450, DPD detection and quantitation of all cultures over eight 

additional time-points, t=1, 2, 3, 4, 5, 6, 7, 8 hrs) are also presented here. 

Materials and Methods 

Sample collection and isolation 

     Black band disease (BBD) mat, SML from apparently healthy coral (HSML) and SML 

from apparently healthy part of BBD infected coral (BSML) were collected as previously 
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described (Zimmer et al. 2014; Bhedi et al. 2017). Samples were collected with sterile, 

needleless syringes (60 ml), from the Water Factory reef site in Curaçao (12° 06.799’ N, 

68° 57.662’ W) from Pseudodiploria strigosa in February 2013 and from Colpophyllia 

natans at Horseshoe Reef, Florida Keys (25° 08.362’ N, 80° 17.641’ W) in September 

2012. Samples in syringes were held in zip lock bags containing seawater at ambient 

temperatures in coolers until transfer to the laboratory at Florida International University, 

Miami, FL. The BBD mat was then rinsed in sterilized artificial seawater (ASW) to 

reduce seawater microbial contamination.  

     Bacteria from BBD were isolated by performing a dilution series up to 10-6 in 

sterilized ASW followed by plating and isolation of bacteria on Difco Marine Agar (MA) 

plates and sterile seawater tryptone agar. The biomass from the BBD mat was also 

streaked directly onto both media. Plates were incubated at room temperature (25 °C) and 

colonies were chosen on the basis of unique colony morphology and other characteristics 

(Zimmer et al. 2014).   

Chromobacterium violaceum CV026 assay 

     A total of 46 bacterial BBD isolates were tested for detection of AHLs using the 

genetically modified Chromobacterium violaceum CV026 reporter strain. A bioassay 

with the reporter strain was conducted as described by (McClean et al. 1997) with slight 

modification (Zimmer et al. 2014; Bhedi et al. 2017) for testing the production of short 

and medium chain AHLs by the selected cultures. A 100 μl of freshly grown C. 

violaceum CV026 culture (18hrs at 35 rpm) was added to 5 ml of molten Luria Bertani 

(LB) medium (containing 0.7% agar) to create an overlay onto LB plates (1.5% agar). 

Test cultures grown on plates for 24-48 hrs were spotted onto the overlaid plates. Sterile 
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LB broth was spotted as a negative control onto each test plate while 0.01 μl of synthetic 

C6-AHL was used as a positive control (50 mM in ethanol). All assays were replicated 

thrice (Zimmer et al. 2014). 

Extraction and LC-MS/MS detection of AHLs 

     Of the 46 BBD isolates tested, two strains tested positive in the CV026 assay. These 

two cultures along with nine isolates from Zimmer (2012) that also tested positive for QS 

signal production via CV026 and other QS signal bioreporter strains were used for LC-

MS/MS analysis (Zimmer et al. 2014). Additionally, Vibrio coralliilyticus BAA-450 was 

investigated for its AHL production capacity.  

      The 12 cultures (6 BBD, 2 BSML, 3 HSML isolates and V. coralliilyticus BAA-450) 

were tested for AHLs via LC-MS/MS as described previously (Zimmer et al. 2014), at 

University of Tennessee, Knoxville in the laboratory of Dr. Shawn Campagna. Bacterial 

cultures were grown in duplicate for 24 hrs at 25 °C and 200 rpm in half strength marine 

broth (MB). After 24 hrs, aliquots of 10 ml were pipetted out and filtered through nylon 

filters (0.22 μm), in duplicate, to create four replicates per bacterial isolate tested. After 

passing the filtrate through a separatory funnel and washing the funnel with 1 ml water, 

5ml of acetic acid in ethyl acetate was added twice to extract the filtrate. Organic layers 

were then combined and filtered post drying with MgSO4. Concentration of the residual 

filtrate was achieved via vacuum and the residual oil was added to 300 μl of acetic acid in 

ethyl acetate in an autosampler vial for processing via LC-MS/MS (Zimmer et al. 2014). 

     Extracted AHLs were processed and analyzed as described (Zimmer et al. 2014) 

employing the AHL detection method originally documented by (May et al. 2012). Ten 

μl of the extract from the autosampler vials was injected onto a C18 reverse-phase core 
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shell column (5 μm, 100 Å, 100 mm ✕ 2 mm). 0.1% acetic acid in water and 0.1% acetic 

acid in acetonitrile were used for separation, at a 200μl min-1 flow rate. Eluent was passed 

into a TSQ Quantum Ultra Triple Stage Quadrupole mass spectrometer using 

electrospray ionization. Multiple reaction monitoring (MRM) in a positive ion mode was 

used for detection. The AHLs were identified based on their precedence from literature 

and LC retention times. MSconvert algorithm (Proteowizard) was employed to convert 

.RAW files to .mzML (Kessner et al. 2008). Detection of peak intensities and generation 

of extracted ion chromatograms for each MRM was achieved using MAVEN (Melamud 

et al. 2010). Peaks were envisioned via an extraction window of 200 ppm and 

percentages of the AHLs were calculated from the integrated areas (Zimmer et al. 2014).  

Detection and quantitation of DPD 

     The compound, DPD, was analyzed by methods described previously (Zimmer et al. 

2014) using a documented protocol with some modifications (Campagna et al. 2009) at 

t=24 hrs, at University of Tennessee, Knoxville. Eppendorf tubes containing 10 μl of 13C 

labeled DPD (used as the internal standard) were used for adding 300 μl of the sample 

culture in order to achieve a final 13C-DPD concentration of 500 nM. After vortexing the 

contents in Eppendorf tubes, bacterial cells were pelleted out by centrifuging at 16.1 rcf 

for 1.5 min. 260 μl of the supernatant was pipetted out into Eppendorf tubes containing 

25 μl of a DPD derivatizing solution (5 mg/ml) (Campagna et al. 2009). This was 

followed by vortexing the solution and resting for 45-60 min. Ethyl alcohol was used to 

extract the resulting solution twice. The extracts were combined and aliquoted into 

autosampler vials and stored at 4 °C until further analysis (Zimmer et al. 2014).  
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Samples over eight additional time-points were taken and analyzed for the present study 

(t=1, 2, 3, 4, 5, 6, 7, 8 hrs).  

DPD analysis by LC-MS/MS 

     DPD analysis by LC-MS/MS was carried out as described in (Zimmer et al. 2014) at 

University of Tennessee, Knoxville. Ten μl of extracted sample was injected onto a C18 

Kinetex column (5 μm, 100 Å, 100 mm ✕ 2.1 mm). Separation was achieved at a flow 

rate of 200 μl min-1 via an isocratic gradient of 5% HPLC grade acetonitrile and 95% of 

0.1% acetic acid in HPLC grade water. The subsequent eluent was passed through a TSQ 

Quantum Ultra Triple Stage Quadrapole mass spectrometer using electrospray ionization. 

Similar to AHL detection, multiple reaction monitoring selected via positive mode was 

used for DPD detection (Campagna et al. 2009). Specifically, 381 m/z-202 m/z and 382 

m/z-203 m/z were used as parent m/z-fragment m/z ratios and used for endogenous DPD-

13C-DPD. The collision energy used for both was 43 (Zimmer et al. 2014). 

     Peaks were integrated with Xcalibur (Thermo Electron) and the concentration of DPD 

was analyzed by comparing peak areas of DPD in each sample with 13C-DPD and 

multiplying the concentration of the internal standard. Additionally, a correction factor 

accounting for presence of natural isotopes was also employed (Campagna et al. 2009; 

Zimmer et al. 2014). 

Results 

AHL detection across isolates via LC-MS/MS 

     A total of 12 bacterial cultures were tested for AHLs via LC-MS/MS. Of these 12 



 29 

isolates, the AHL detection results of 11 isolates have been reported in (Zimmer et al. 

2014). The results of the AHLs detected via LC-MS/MS are depicted as percentages in 

Figure 1. C6 was the most abundantly and commonly produced AHL across all isolates 

tested. A total of five cultures out of 12 produced C6, while four isolates produced the 

next most abundant AHL, 3OC4. Both C14 and 3OHC10 were produced by three isolates 

each. The non-hydroxylated counterpart of 3OHC10, i.e. C10, was produced by two 

isolates. Similarly, AHLs 3OHC4, C19:1 and C20 were also produced by two isolates. 

The rest of the AHLs, specifically 3OHC18, 3OHC6:1, 3OHC5 and 3OC6, were each 

produced by one isolate.  

     C6 was the highest produced AHL by all isolates producing it. The production of C6 

by isolates ranged from 69-92%. BBD-CUR-3M8 was the highest producer of this AHL 

at 92%. 3OC4, the next most common AHL, was the most abundantly produced AHL by 

two out of four of its producing isolates and its percentage production ranged from 11-

52%. The ranges for the next most abundantly produced AHL, 3OHC10, varied between 

9% and 75% amongst three of its producing isolates. C14, which was also produced by 

three isolates, ranged in production between 19-45%. C10 was produced by HSML-FTL-

9i at 70% with C10 being its most abundant AHL while the other C10 producer, BSML-

FTL-61, contributed to its AHL production at 26%. 3OHC4 was produced by two isolates 

at 20% and 24% each while C19:1 ranged in its production between 12-19%. The longest 

chain AHL, 3OC20, was produced at 5% each by two isolates. The rest of the AHLs were 

produced just once across all 12 isolates. 

     One particular isolate from the apparently healthy part of the BBD infected coral, 

BSML-FTL-7l, produced 26 different AHLs that ranged in amounts between 0.6% and 
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14%. This was the only isolate tested which did not have any dominant AHL produced. 

All other isolates also produced several AHLs similarly in lesser amounts depicted as 

‘others’ in Figure 1.  

DPD detection and quantitation 

     Figure 2 shows DPD quantitation of the isolates tested across time-points (t=1 to t=8 

hrs) at one-hour intervals and a final time point at t=24. Nine of the 12 isolates tested 

showed production of DPD. At t=1, all isolates had similar concentrations of DPD. Along 

successive time-points, BBD-FLK-1M2 increased DPD production to the greatest extent 

followed by BBD-CUR-3M8. Out of the twelve isolates, four isolates (BBD-FLK-1M2, 

BB-CUR-3M8, HSML-FTL-9c, V. coralliilyticus BAA-450) showed a consistent 

increase in DPD concentration upto t=8, followed by a marked decrease leading upto 

t=24. The remaining eight isolates showed a consistent increase upto t=8 and maintained 

the DPD concentration upto t=24. 

Discussion 

     The results of the present study revealed, for the first time, the production of AHL and 

DPD molecules by cultured isolates from BBD heterotrophs (Zimmer 2012; Zimmer et 

al. 2014). Production of QSSs has been previously investigated in a number of other 

marine environments that include healthy corals (Van Houdt et al. 2007; Tait et al. 2010; 

Golberg et al. 2011; Ransome et al. 2014), diseased and bleached corals (Tait et al. 2010) 

sponges (Mohamed et al. 2008) and marine snow (Gram et al. 2002). The precise 

function of these QS systems within these marine environments, however, is not known. 

Within ocean waters, QSSs face several challenging environmental conditions with some 

being acutely unsuitable for signaling functions. For example, QSSs produced by 
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planktonic prokaryotic or eukaryotic cells are subjected to extensive dilution by mass 

transfer (Boyer and Wisniewski‐ Dyé 2009). This dilution increases the ‘calling distance’ 

amongst bacteria (Gantner et al. 2006) making it difficult for them to respond and 

activate QS-regulated genes. AHLs are particularly sensitive to alkaline environmental 

conditions as they undergo hydrolysis and are hence unable to function as a cue for 

microbes (Yates et al. 2002; Decho et al. 2009). AHLs with oxo- substitutions on the 

third carbon, as were detected in this study (3OC4, 3OC6, 3OC20), are capable of 

undergoing a condensation reaction to form tetrameric acids, that are inept of signaling 

capabilities (Kaufmann et al. 2005). Considering the oxygenated nature of the pelagic 

zone, AHLs may undergo these reactions and render themselves incapable of signaling. 

     Within the black band mat, the pH, redox potential and sulfide concentrations undergo 

diel fluctuations in concurrence with photosynthetic processes during the day and 

respiration during the night (Carlton and Richardson 1995; Zimmer et al., 2014; Sato et 

al. 2015). As a result of nocturnal accumulation of fermentation products within the mat, 

the pH in the mat drops, creating a more suitable environment for AHLs to function 

(Carlton and Richardson 1995; Decho et al. 2009). The diverse repertoire of AHLs 

detected, as produced by heterotrophs from the mat, may indicate the differential use of 

AHLs in conjunction with the diel chemical fluctuations within the mat. For instance, due 

to their higher structural stabilities, long chain AHLs may be employed more 

predominantly during the day when the pH is more alkaline (Decho et al. 2011). Redox 

flux may also possibly attenuate signaling capabilities of QSSs due to generation of 

reactive oxygen species created due to interaction of organic matter with sunlight 

(Cámara et al. 2002). Contradictory to the speculative fates of QSS molecules in the 
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ocean, studies have confirmed the relative stability of AHLs in sea-water (Hmelo and 

Van Mooy 2009). Additionally, the biofilm like properties of the mat may assist in 

concentrating the QSSs within BBD, facilitating a sufficient quorum of bacterial cells for 

signaling functions.  

     DPD was detected for all of the BBD isolates that were tested in this study. AI-2 has 

been implicated to be the universal signaling molecule allowing interspecies signaling 

amongst microbes (Miller and Bassler 2001). Although, in the present study, only 

heterotrophs were tested for their AI-2 production, it is reasonable to contemplate a role 

of interspecies communication amongst the different functional groups of prokaryotes 

within BBD via AI-2. The intricate and interconnected network of microbes is most 

likely necessary for disease proliferation in this polymicrobial disease. As was previously 

mentioned, AI-2 is the byproduct of a chemical reaction series of SAM in the AMC cycle 

(Schauder et al. 2001). Since SAM is the chief methyl donor for reactions involving 

growth and development within cells, production of AI-2 may be considered a fair 

indication of the metabolic standing of a cell (Xavier and Bassler 2003; Parveen and 

Cornell 2011). 

     The major AHL producers amongst marine bacteria across corals have been alpha- 

and gammaproteobacteria, specifically Vibrio sp. and members of the Roseobacter clade 

(Cude and Buchan 2013; Milton 2006). In agreement with these results, the QSS 

producing isolates from this study were all found to be alpha- and gammaproteobacteria 

(see Zimmer et al. 2014). While QSSs were detected in cultures isolated across all coral 

health states, a higher number of bacteria from BBD (six isolates) produced QSS as 

compared to HSML (three isolates) and BSML (two isolates) health states. AHLs were 
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detected across all three coral health state isolates, while DPD was detected in BBD and 

HSML isolates only.  

     The presence of QSSs in bacteria isolated from BBD leads us to postulate the 

conceivable responsibilities of QS within BBD. QS has been shown to be involved in 

gene expression of biofilm formation and or/maintenance (Irie and Parsek 2008). The 

biofilm-like characteristics of the BBD mat may be contributed by exopolysaccharides 

secreted by QS bacteria. QS may aid in initiation and/or maintenance of the virulence 

factors in the mat community required for progression of this disease mat.  

     BBD heterotrophs include a large population of vibrios (Arotsker et al. 2015), which 

are known to produce QSSs. Vibrios are also known to produce metalloproteases 

responsible for tissue degradation (Arotsker et al. 2009). QS may additionally be 

involved in the production of antimicrobials that kill probiotic microbes within the SML 

of healthy corals, creating a niche to be taken over by pathogenic microbes. Certain QS 

bacterial systems in BBD may also be involved in production of inhibitor substances that 

interfere with QS systems of healthy coral associated bacteria.  

     At this point we can only speculate upon the plausible roles for QS in this intricate 

coral disease. However, the results of this study pave the way for further exploration of 

QS within BBD, in an effort to comprehend the mechanism of pathogenicity of this 

globally distributed, devastating coral disease. 
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Figure 2-1: Production of AHLs in percentages across isolates as analyzed via LC-
MS/MS. ‘Others’ included AHLs that were produced at levels less than 14% of the total 
amount 
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Figure 2-2: DPD detection and quantitation across isolates over time as detected using 
LC-MS/MS. DPD concentration measured at 0 hour was subtracted from samples and all 
values were log10 transformed. Samples were taken at 0, 2, 4, 6, 8, and 24 hrs. 
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Abstract  

     Black band disease (BBD) of corals is a horizontally migrating, pathogenic, 

polymicrobial mat community which is active above a temperature threshold of 27.5° C 

on the reef. Bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of 

healthy corals, and SML of healthy areas of BBD infected corals were tested for 

production of short to medium chain acyl homoserine lactones (AHLs) using the 

Chromobacterium violaceum CV026 reporter strain. Of 110 bacterial isolates tested, 19 

produced AHLs and 15 of these were from BBD. Eight AHLs were identified using LC-

MS/MS, with 3OHC4 the most commonly produced, followed by C6. AHL-producing 

isolates exposed to three temperatures (24°, 27°, 30° C) revealed that production of three 

AHLs (3OHC4, 3OHC5, and 3OHC6) significantly increased at 30° C when compared to 

24°C. 16S rRNA gene sequencing revealed that all of the AHL producing BBD isolates 

were vibrios.  Metagenomic data of BBD communities showed the presence of AHL (and 

autoinducer-2) genes, many of which are known to be associated with vibrios. These 

findings suggest that quorum sensing may be involved in BBD pathobiology and 

community structure due to enhanced production of quorum sensing signal molecules 

(AHLs) above the temperature threshold of this globally distributed coral disease.  

Introduction 

       There has been a significant decline in coral cover and diversity on tropical and 

subtropical reefs worldwide and one of the foremost contributing factors has been coral 

disease (Bourne et al. 2009). Disease could affect the coral animal itself or one or more 

of its associates, including bacteria, fungi, endolithic algae, zooxanthallae, protozoa, and 

other partners, collectively termed the coral holobiont (Rowan 1998; Rohwer et al. 2002). 
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The diverse and host specific coral-associated microbial community is harbored within 

the tissue, skeleton, and protective surface mucopolysaccharide layer (SML) secreted by 

the coral epidermal mucus cells (Johannes 1967; Ritchie and Smith 2004). Interactions 

within this microbial community have been proposed to be cooperative as well as 

antagonistic in nature and its members have been proposed to be potentially pathogenic 

and/or probiotic (Rosenberg et al. 2007; Teplitski and Ritchie 2009).  

       The composition and taxonomy of microbial communities of the SML layer of 

apparently healthy corals have been well researched (Ritchie and Smith 1995; Rohwer et 

al. 2001; Frias-Lopez et al. 2002, 2004; Beleneva et al. 2005; Sekar et al. 2006; De 

Castro et al. 2010; Cróquer et al. 2013; Krediet et al. 2013; Lins-de-Barros et al. 2013; 

Lee et al. 2015; Glasl et al. 2016). Such studies have shown that there is a shift in the 

heterotrophic microbial population within the SML when corals are stressed, including in 

the case of disease (Ritchie and Smith 1995; Frias-Lopez et al. 2002; De Castro et al. 

2010; Mao-Jones et al. 2010; Cróquer et al. 2013). 

       One of the most destructive and intricate coral diseases is black band disease (BBD) 

(Richardson 2004). It is also one of the most widely distributed diseases, affecting sixty-

four species of corals and exhibiting coral host and geographic specificity (Frias-Lopez et 

al. 2003; Sutherland et al. 2004; Voss et al. 2007; Miller and Richardson 2011). The 

disease manifests as a dark pigmented (phycoerythrin) band volumetrically dominated by 

a dense population of the gliding, filamentous cyanobacterium Roseofilum reptotaenium 

(Casamatta et al. 2012; Richardson et al. 2014), and consists of a highly variable 

polymicrobial consortium of microbes that contains four known functional groups:  

photoautotrophs (cyanobacteria) (Rützler et al. 1983), sulfate-reducing bacteria (Garrett 
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and Ducklow 1975), sulfide-oxidizing bacteria (Ducklow and Mitchell 1979), and 

heterotrophs (Garrett and Ducklow 1975). By far, the heterotrophic bacteria have been 

found to be the most taxonomically rich and varied community within the disease 

consortium (Miller and Richardson 2011). Several research groups have proposed that 

this diverse set of microbes includes potential primary, as well as secondary, pathogens 

(Cooney et al. 2002; Frias-Lopez et al. 2002; Sekar et al. 2006, 2008; Mao-Jones et al. 

2010).  

       A number of studies have targeted BBD heterotrophic bacteria. Bacterial 16S rRNA 

gene clone libraries demonstrated shifts in bacterial ribotypes during transitions from 

cyanobacterial patches (CP) shown to develop into BBD on corals on the Great Barrier 

Reef (GBR) (Sato et al. 2010).  In these studies, α-proteobacteria-affiliated sequences 

were dominant in CP libraries, whereas γ-proteobacterial ribotypes became more 

abundant after transition to the BBD community (Sato et al. 2010). The CP-to-BBD 

transition has only been seen on reefs of the GBR. In other studies, α-proteobacteria were 

found to be the most diversely represented group of bacteria as determined by a meta-

analysis of clone libraries produced from 87 BBD samples collected on reefs world-wide 

(Miller and Richardson 2011).  

       BBD most actively infects corals when the sea water temperature rises above 27.5 °C 

(Edmunds 1991; Kuta and Richardson 1996; Voss and Richardson 2006; Sato et al. 

2015). Since bacterial species and communities have stringent tolerance thresholds 

regarding the environment (including temperature), any change in surroundings 

surpassing a threshold may lead to a perturbation of the delicate relationship with a host.  

Environmental factors can also lead to decreased host health and fitness, and an increase 
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in temperature has been shown to cause a switch from a symbiotic to a pathogenic role in 

some host-associated microbes (Webster et al. 2008). In several cases this transition has 

been shown to be controlled by quorum sensing (Jayaraman and Wood 2008). 

       Quorum sensing is a type of pheromone-based cell to cell communication system 

that is often density regulated and that allows bacteria to converse with the aid of 

chemically synthesized signal molecules called autoinducers (AIs) (Nealson et al. 1970; 

Nealson and Hastings 1979). It has been noted that QS systems in vibrios often integrate 

information, including environmental parameters, with cell density (Lyell et al. 2013). 

Quorum sensing as a phenomenon is responsible for regulating a wide range of bacterial 

behaviors that include virulence, bioluminescence, biofilm maintenance and maturation, 

motility, symbiosis, antibiotic synthesis, exoenzyme production, and swarming (Eberhard 

et al. 1981; Pirhonen et al. 1993; Zhang et al. 1993; Eberl et al. 1996; Davies et al. 1998; 

Bassler 1999). 

      Different bacteria synthesize different AIs and release them into the environment. 

After extracellular accumulation of AI molecules reaches a threshold (the "quorum" in 

quorum sensing), bacteria regulate their behavior to coordinate expression of specific 

genes to adapt and thrive in that specific environment. This is achieved by inducing 

production of an array of physiological and functional adaptations (De Kievit and 

Iglewski 2000; Miller and Bassler 2001; March and Bentley 2004; Jayaraman and Wood 

2008; Dobretsov et al. 2009; Li and Tian 2012; Lee and Zhang 2014).  

      Gram negative bacteria capable of quorum sensing primarily produce acyl 

homoserine lactone (AHL) signaling molecules which have a fatty acid (acyl) side chain 

attached to a homoserine lactone ring (Fuqua et al. 2001). The side chain varies on the 
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basis of length, saturation and presence/absence of functional groups, creating a suite of 

AHL molecules that bacteria use to communicate in complex environments (Fuqua et al. 

2001). While some bacteria synthesize unique AHLs, many different bacteria can also 

synthesize the same AHL, allowing for intra- and inter-species signaling and potential 

coordination between different bacterial genera as well as species (Miller and Bassler 

2001). Various factors such as temperature, pH, oxygen availability, and redox state have 

been known to affect QS regulation and QS regulatory gene expression (Decho et al. 

2010; Frederix and Downie 2011). Some of these factors also affect the AHL molecules 

themselves. For example, as the side chain length increases, the solubility of the AHL 

molecule decreases while the stability increases (Yates et al. 2002; Decho et al. 2009). In 

some cases the structural integrity of the homoserine lactone ring has been observed to be 

reversibly susceptible to alkaline conditions, affecting long chain AHLs to a lesser extent 

(Voelkert and Grant 1970; Yates et al. 2002; Decho et al. 2009). This is significant in 

terms of environmental influence  since  lactone ring hydrolysis disables the AHL 

molecule from signaling (Decho et al. 2009). 

       Recent studies have begun to investigate the role of QS within the coral holobiont 

(Van Houdt et al. 2007; Tait et al. 2010; Alagely et al. 2011; Golberg et al. 2011; Hunt et 

al. 2012; Kimes et al. 2012; Tello et al. 2012; Ransome et al. 2014; Zimmer et al. 2014) 

as well as other marine invertebrates (Britstein et al. 2016). Kimes et al. (2012) tested the 

effect of temperature on AHL production by coral-associated vibrios, and showed that 

different strains of vibrios varied their AHL production with temperature. Yates et al. 

(2002) had previously shown that increasing temperature increased the rate of 

homoserine lactone ring opening, resulting in reduction in the production of intact AHLs. 
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Healthy and diseased coral-associated bacterial isolates, particularly vibrios, were found 

to produce both AHLs and AI-2 (Tait et al. 2010), and the coral pathogen Serratia 

marcescens was shown to utilize AHL-QS systems for regulating a range of virulence 

factors, including biofilm formation (Van Houdt et al. 2007).  AHLs, mostly short and 

medium chain length, were recently shown to be produced by 6% of BBD bacterial 

isolates tested, as well being present in all samples of freshly collected BBD mat 

(Zimmer et al. 2014). 

       The nature of the complex polymicrobial BBD is one in which BBD microbial 

groups interact with one another as well as bacteria living in the coral SML, tissue and 

skeleton. To assess a potential role of quorum sensing in BBD etiology, both laboratory 

(physiological and analytical) and genetic approaches can be used. While this study 

focused on use of physiological and analytical methods, we recognize that metagenomics 

is also a powerful approach that can potentially reveal which quorum sensing genes are 

present in the BBD community, and which specific QS signal molecules are likely to be 

expressed as the result of genes present for complete biosynthetic pathways. A number of 

whole genome sequencing studies have been carried out to study coral metagenomics 

(Wegley et al. 2007; Dinsdale et al. 2008), coral stress conditions (Vega Thurber et al. 

2008, 2009), to identify specific microbes both inhabiting a coral host (Marhaver et al. 

2008; Carlos et al. 2013; Lesser and Jarett, 2014) and associated with coral diseases such 

as white plague (Garcia et al. 2013) and bleaching (Littman et al. 2011). However, to our 

knowledge, no metagenomics study has addressed the potential role of QS in BBD. 

       This study extends the research on BBD to examine the variation of QS (AHL) 

molecules produced by laboratory cultures of BBD and coral-associated bacteria in 
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response to environmental (temperature) changes, including a comparison of AHLs 

produced across different coral health states. As mentioned above, BBD is typically 

observed in summers when sea water temperatures exceed 27.5 °C (Kuta and Richardson 

1996; Voss and Richardson 2006). Therefore, we examined AHL production at 

temperatures close to, above, and below this threshold. Metagenomics data produced 

from BBD samples were also assessed to determine the presence and nature of quorum 

sensing genes in the BBD mat to supplement and interpret the results from the culture 

dependent methods. 

Materials and Methods 

Field sampling and isolation of bacteria 

     Samples of black band disease (BBD), apparently healthy SML from a BBD infected 

coral (BSML) and SML from an apparently healthy coral (HSML) were collected from 

colonies of Montastraea cavernosa located on Algae Reef in the northern Florida Keys, 

USA (N 25' 08.799’ W 80' 17.579’). Sterile needleless 60 ml syringes were used for 

sampling. BBD mat and SML were suctioned off of the coral host with slight agitation, 

after which the syringes were capped. BSML samples were collected at a minimum 

distance of 10 cm from the BBD mat. HSML samples were collected from an adjacent 

(healthy) colony of the same species. Once on the boat, syringes with samples were held 

in coolers containing sea water at ambient temperature and transported to the shore. BBD 

mat and SML were then transferred to sterilized artificial sea water (ASW) to minimize 

contamination from sea water bacteria. 
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Isolation of bacteria from three coral health states 

       Heterotrophic bacteria were isolated from samples of each of the three coral health 

conditions. Dilution series (10-1 to 10-6) of BBD, HSML and BSML samples were 

prepared using filtered sea water and incubated at both room temperature and 30° C 

under a 12 hours light:12 hours dark regime. 100 μl from dilution tubes 10-3, 10-4, 10-5 

and 10-6 were plated every day for a period of seven days and incubated at 30 ºC. Direct 

streaking from the original mat and SML samples was also carried out. All plating was 

onto Difco marine agar (MA) and sea water tryptone (SWT) agar plates (0.5% tryptone, 

0.3% glycerol, 0.3% yeast extract, 1.5% agar in 70% sea water) (Boettcher and Ruby 

1990), in triplicate. Uniquely distinct colonies were chosen based on colony color and 

morphology followed by streaking for purification via plating onto the same medium.  

Chromobacterium violaeum CV026 AHL reporter strain assay 

       QS signal production capabilities were tested using the reporter strain 

Chromobacterium violaceum CV026 using an agar overlay method with some 

modifications (McClean et al. 1997, Zimmer et al. 2014). This strain is used to detect the 

presence of short to medium chain AHLs, particularly C4-AHL, 3-oxo-C4-AHL, C6-

AHL, 3-oxo-C6-AHL, C8-AHL and 3-oxo-C8-AHL (McClean et al. 1997; Steindler and 

Venturi 2007), and was used based on earlier results (Zimmer et al. 2014) in which it was 

determined that BBD isolates produce mainly short/medium chain length AHLs. Test 

isolates were grown overnight (18 hrs) on MA at room temperature (25° C). The C. 

violaceum CV026 biosensor strain was also grown overnight in 5 ml Luria Bertani (LB) 

broth at 30° C with shaking at 35 rpm. Test plates consisted of a basal layer of LB 

medium overlaid with 5 ml of molten LB with 100 µl of the freshly grown overnight 
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broth culture of C. violaceum CV026. For a positive control 0.01µl of 50 mM synthetic 

N-hexanoyl-L-homoserine lactone solution in ethanol was used while sterile LB broth 

served as negative control. All assays were carried out in triplicate. All results were 

analyzed statistically using the proportion t-test for significance (p ≤ 0.05). 

AHL production and temperature variation  

       Isolates that tested positive for production of AHLs using the C. violaceum CV026 

assay were further tested for the effect of temperature on AHL production by exposing 

isolates to three different temperatures (24 ̊C, 27 ̊C and 30 ̊C). For each temperature, 25 

ml aliquots of freshly made half strength marine broth (MB) were prepared in 125 ml 

Erlenmeyer flasks. Half strength MB was used in order to avoid clogging of the LC 

column (see below) due to particulate matter in this growth media. Flasks were 

inoculated in duplicate with 500 µl of culture freshly grown (overnight) at each 

respective temperature (24 ̊C, 27 ̊C and 30 ̊C) with shaking (250 rpm). One ml of sample 

was then aliquoted every two hours from each flask at t = 0, 2, 4, 6, and 8, and 10 hours. 

At every time point for every sample, OD was measured (600 nm) and 500 µl of sample 

was added to an eppendorf tube containing deuterated AHL internal standards that 

consisted of (D2)C4, (D2)3OHC4, (D2)C6, (D2)C3OC6, (D2)C7, (D2)C8, (D2)C12, 

(D2)3OHC12:1 and (D2)C14 that were synthesized as previously described in (May et al. 

2012). This was done in duplicate to generate a total of four samples per isolate per time 

point per temperature. The eppendorf tubes were then centrifuged for 1 min at 20,000 ×g 

to spin down bacterial cells, after which 500 µl of the supernatant were placed in 

autosampler vials and kept at -80 ̊C until further processing.  

 



 51 

LC-MS/MS analysis of QS signals 

       AHL extraction and analysis were carried out using an LC-MS/MS method 

optimized for AHL recognition (May et al. 2012) using previously reported methods 

(Zimmer et al. 2014) with slight modifications. Briefly, each sample was kept in an 

autosampler (Thermo Electron Surveyor) at 4°C before injection of 10 μl of the sample 

onto a reverse-phase C18 core-shell column (5 µm pore size, 100 Å particle size, 100 mm 

x 2 mm or 2.1 µm pore size, 100 Å particle size, 100 mm x 2 mm). A gradient of 0.1% 

acetic acid in water and 0.1% acetic acid in acetonitrile at a 200 μl min-1 flow rate was 

used to elute and separate the analytes, which were then introduced into a TSQ Quantum 

Ultra Triple Stage Quadrupole mass spectrometer using electrospray ionization. Multiple 

reaction monitoring (MRM) in positive ion mode was used for compound detection, 

annotation and identification. Specifically, the method screened for 54 unique parent 

m/z–fragment m/z pairs based on neutral loss of the acyl chain giving common 102 m/z 

fragment corresponding to the common homoserine lactone of all AHLs. The method 

includes masses corresponding to chain lengths ranging from 4 to 20 carbons with the 

possibility of one hydroxyl or ketone at the 3-position as well as one double bond in the 

chain. Note: MRM alone is unable to differentiate between compounds with the same 

parent m/z-fragment m/z pairs (e.g., 3OC6-HSL and C7-HSL). To circumvent this, 

further chemical (such as LC retention time) and biological (precedence for the 

compound in the literature) information was used to annotate structures for AHLs for 

which standards were not available as previously reported (Zimmer et al. 2014). Unique 

parent m/z-fragment m/z pairs were assessed to confirm the presence of AHL molecules. 

       Using Proteowizard’s MSconvert algorithm, the .RAW files were converted to 
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.mzML (Kessner et al. 2008). MAVEN was used to detect and report peak intensities and 

to generate extracted ion chromatograms (EICs) for each MRM (Melamud et al. 2010). 

To envision the peaks, an EIC extraction window of 200 ppm was used and the area for 

each AHL was integrated, which was further used to detect relative abundance and 

percentage of each detected AHL. 

16S rRNA gene sequencing of isolates  

       The genomic DNA of cultured bacterial isolates was extracted using the FastDNA 

Spin Kit for Soil, according to the manufacturer’s protocol or alternatively by adding an 

individual purified colony in 100 µl of sterile phosphate buffered saline (PBS) heating at 

95 ̊C for 10 min followed by centrifugation for 10 min at 5000 g (modified from Zimmer 

et al. 2014). PCR amplification of DNA was carried out using the universal bacterial 

primers 27F 5’-AGA GTT TGA TCM TGG CTC AG-3’and 1492R 5’-TAC GGY TAC 

CTT GTT ACG ACT T-3’ in a Peltier Thermal Cycler. Amplified bacterial 16S rDNA 

was cleaned using the ExoSAP-IT PCR cleanup kit followed by sequencing with an ABI 

Prism™ 3100 genetic analyzer at the DNA Core Facility at Florida International 

University using the BigDye® Terminator. Sequence trimming and cleaning, followed by 

alignment and assembly was carried out using DNA Baser Sequence Assembler (Zimmer 

et al. 2014). The sequences (1300-1500 bp) were then queried using the BLAST queuing 

system (Altschul et al. 1990) in order to find their closest relatives from NCBI GenBank. 

Sequences have been submitted to GenBank database under the accession numbers 

KX146440- KX146449 and KX353776-KX353778.  
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Phylogenetic tree  

      All 16S rRNA sequences of isolates used in the present study and their closest hits in 

NCBI GenBank were aligned using MUSCLE (www.ebi.ac.uk/Tools/msa/muscle/) 

(Edgar et al. 2004). The aligned FASTA sequences of isolates and their closest relatives 

were manually edited using M7 Alignment explorer featured in MEGA version 4 

(Tamura et al. 2007). A maximum likelihood phylogenetic analysis was carried out with 

bootstrap analysis using MEGA (Tamura et al. 2007). 

Metagenomics 

      Samples of BBD for metagenomics were collected from BBD infected Colpophyllia 

natans (Horseshoe Reef, northern Florida Keys, August 2013) and Pseudodiploria 

strigosa (Curaçao, off shore of the CARMABI research station, May 2013). Samples 

were collected with sterile 10 ml syringes and placed in RNA-later, frozen at -80̊ C and 

sent for whole genome sequencing. A paired end sequencing was performed in a single 

lane on the Illumina HiSeq. The paired ends were sequenced with an insert size of 500 

bp. We obtained an average of 12 million reads per sample with a read length of 150 base 

pairs. The metagenomics datasets were uploaded onto the Metagenomics RAST (MG-

RAST) server (http://metagenomics.anl.gov/). MG-RAST is a public resource for the 

automatic phylogenetic and functional analysis of metagenomes (Meyer et al. 2008). The 

presence of QS genes was assessed by using subsystems with MG-RAST (Max. e-value 

cutoff = 10-5, Min. % identity cutoff = 60%, Min. alignment length cutoff = 40 amino 

acids) with averages calculated as per Wilke et al. 2013. 

http://www.ebi.ac.uk/Too
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Results 

Bacterial isolates and detection of short to medium chain AHLs  

      A total of 110 pure cultures of heterotrophic bacteria were isolated from BBD 

infected and healthy coral colonies (Table 1). Of these, 36 were from the BBD mat, 36 

from the apparently healthy part of the BBD infected coral (BSML), and 38 from an 

apparently healthy coral (HSML). Each isolate was tested for QS signal production using 

the Chromobacterium violaceum CV026 bioassay.  Among the 110 isolates, 19 tested 

positive in the QS assay, consisting of 15 BBD isolates and two each from HSML and 

BSML (Table 1). HSML and BSML isolates had similar percentages of isolates that 

tested positive for QS, 5.3% (2 out of 38) and 5.6% (2 out of 36) respectively. The 

percentage of QS positive isolates from BBD in comparison was approximately seven 

times higher at 41.7% (15 of 36).  When comparing QS producing isolates between BBD 

vs. HSML and BBD vs. BSML, a significant (p ≤ 0.05) difference in proportions was 

detected. 

Variety and abundance of AHLs across different temperatures 

       Isolates that tested positive for AHL signal production were investigated further 

(Tables 2 and 3). Data are reported for 13 of the 15 BBD isolates and one of the two 

BSML isolates that tested positive in the C. violaceum assay since these three isolates did 

not grow during the additional experiments. The isolates tested were identified by 16S 

rRNA gene sequencing (Table 2) and analyzed using LC-MS/MS to identify specific 

AHLs (Table 3). All of the isolates that were able to be grown for sequencing were found 

to be Vibrio species (Table 2 and Figure 1). It should be noted that although several 
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Vibrio harveyi and Vibrio spp. are listed in Table 2, they are different strains with 

different 16S rRNA gene sequences.  

AHLs produced by the isolates were identified and quantified across three 

temperatures (24 ̊C, 27 ̊C and 30 ̊C) across six time points (t = 0, 2, 4, 6, 8, and 10 hours). 

Data (Table 3) are reported in amounts of relative abundance of AHLs per isolate, with 

relative amounts also indicated in Figure 1. 3OHC4 was found to be produced by the 

highest number of isolates (14 out of 16), followed by C6 (6 out of 16), 3OHC5  and 

3OHC6 (each 5 out of 16). Comparing relative quantities (per isolate), the production of 

3OHC4 was approximately 10 times more than that of the next most abundantly 

produced AHL, C6 (data not shown), followed by 3OHC5 and 3OHC6. The longest chain 

AHL (3OC12) detected in this study was produced by two isolates (isolates 15 and 16), 

both from HSML. C5, 3OC5:1 and 3OHC8 were the rarest, each with one isolate 

producing it in combination with other AHLs. 

Of the 16 isolates, one isolate produced only one AHL, identified as C6 (Table 3). 

Eleven isolates produced two AHLs and four isolates produced three AHLs.  The two 

HSML isolates produced the same three AHLs (3OHC4, 3OHC6 and 3OC12) but in 

varying percentages. Most of the AHL production by the sole BSML isolate tested was 

contributed by 3OHC4 (99.2%).  

At each sampling, the OD for each isolate was measured to assess any correlation 

between AHL production and the stage of growth of that isolate. There was no 

correlation between AHL production and growth phase (data not shown). 

Table 4 compiles statistically significant results (p ≤ 0.05) from univariate ANOVA 

analysis of all isolates, and the AHLs produced by each isolate, based on comparing 
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temperatures. In each case, all AHLs produced were pooled for each isolate, and AHL 

production values across all time-points were taken together across all replicates. Isolates 

with non-significant differences in AHL production across temperature, and temperature 

comparisons that were non-significant for a particular AHL, are not shown in Table 4. 

AHLs 3OHC4, 3OHC5, 3OHC6, and 3OC5:1 had significant differences within all three 

temperature comparisons for 10 of the 16 AHL positive isolates. All isolates that 

produced 3OHC4 and 3OHC5 showed significantly higher production at 30ºC as 

compared to 24 ºC, while 3OHC6 did so inconsistently across the isolates that produced 

this AHL. 3OC5:1 had a significant difference only when comparing temperatures 24 ̊C 

vs. 27 ̊C (Table 4) with production higher at 24 ̊C; however, it is noteworthy that this 

result pertained to only one isolate that produced this AHL (isolate no. 2).   

Table 5 shows relative AHL production among isolates (all time-points pooled) when 

comparing production at 24 ̊C vs 30 ̊C (below and above the temperature threshold of 

BBD on the reef). Only data that were significant (p ≤ 0.05) are shown, representing six 

of the 16 tested.  Of these six, five were from BBD and one from BSML (isolate no. 14).   

In each case, AHL production was significantly higher at 30 ̊C when compared to 24 ̊C. 

The elevated production above the BBD temperature threshold was seen for three AHLs, 

with 3OHC5 by far the most common.  

Comparison of short to medium chain AHLs across three coral health states 

        BBD isolates, in addition to constituting the sample group with the highest 

number of QS producing isolates (Table 2), produced the largest variety of AHLs when 

compared to isolates from the other two coral health states (Table 6).  AHLs 3OHC4 and 

3OHC6 were produced by isolates from all three health states. These AHLs were also 
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two of the three that varied significantly in terms of temperature (Table 5).  As noted 

above, 3OHC4 was the most commonly produced AHL among all isolates (Table 3). 

 Metagenomics  

       Table 7 presents all proteins and their ascribed functions associated with QS genes 

that were identified using MG-RAST within the BBD metagenome samples from the 

Florida Keys and Curaçao. As is evident, many of the identified QS genes were found to 

be those associated with vibrios. The luxI, rhlL and luxR genes identified under the subset 

of ‘AHL autoinducer QS’ are not associated with any particular bacterial genus.  

       QS associated functional sequences were differentially found within the two BBD 

metagenomes. Both luxI and luxR genes associated with AHL synthesis were found in 

both samples, while rhlL, another AHL synthase, was found to be present only in the 

Florida Keys BBD metagenome. Four Vibrio-associated QS genes were found 

exclusively in the Florida Keys metagenome, specifically cqsA, luxP, luxM and hapR. 

Other QS genes (luxI, luxR, luxO, luxS and uvrY) were found in both metagenomes. A 

particular N-homoserine lactone hydrolase (associated with QS in Yersinia) was uniquely 

present in the Curaçao metagenome. One Pseudomonas associated QS gene was 

exclusively present in either of the two metagenomes (vfr in Curaçao metagenome and 

rhlR in Florida Keys metagenome). The results of the QS genes in the BBD 

metagenomes correlated with the identification of the AHL-producing isolates used in 

this study (mainly vibrios) in that a high number of Vibrio-associated QS genes were 

present in the metagenomes. 
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Discussion 

      One of the most interesting findings of this study was the fact that, by far, isolates 

from BBD had a significantly higher proportion of members that produced AHLs when 

compared to isolates from the SML of apparently healthy and BB-diseased corals. Only 

four of 74 (5.4%) isolates from BSML and HSML combined tested positive using the 

reporter strain whereas 15 of 36 (41.7%) of BBD isolates did so. This shows that short to 

medium chain AHL-producing isolates are more active in BBD bacterial communities as 

compared to SML bacterial communities. Overall, BBD is a pathogenic polymicrobial 

consortium and bacteria living in the coral SML are believed to have probiotic 

characteristics.  Both of these types of microbial communities (pathogenic and probiotic) 

have been proposed to involve QS on a functional basis.  

       A second very interesting result of this study was that 10 of the 16 short to medium 

chain AHL producing isolates exhibited a significant difference in AHL production in 

terms of temperature. For six of the ten isolates there was significantly increased AHL 

production at the higher temperature (30 ̊C) compared to the lower temperature (24 ̊C). 

Five of the six isolates that varied AHL production significantly above and below the 

temperature threshold of BBD (27.5ºC) were all isolates from the BBD community. 

Three (3OHC4, 3OHC5 and 3OHC6) of the eight AHLs detected in this study showed 

this pattern. Interestingly, the production of 3OHC5 consistently increased from 24 ̊C to 

27 ̊C to 30 ̊C across all five isolates that produced it, and for two of the five isolates 

producing this AHL, all three temperature comparisons were statistically significant. 

Considering the fact that 3OHC5 consistently increased at higher temperatures, it is 
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plausible to hypothesize a role of some importance for this AHL in the etiology of this 

temperature dependent coral disease.  

       Previous studies of AHL production in terms of temperature and disease revealed 

varying effects for different AHLs. For example, AHL production by some sub-species of 

Erwinia, which causes soft rot in plants above a threshold temperature of 20 ºC, was 

increased at 34.5 ºC compared to 28 ºC, whereas production decreased at the elevated 

temperature for other, non-pathogenic sub-species of the same genus (Hasegawa et al. 

2005).  Pecobacterium atrosepticum, which causes soft rot in potatoes at and above 20 

ºC, produces four AHLs, all of which increased from 4 ºC to 24 ºC, but decreased at 28 

ºC (Latour et al. 2007). More recently, it was shown that the concentration of eight AHLs 

produced at 16 ºC by Allivibrio salmonicida, which causes cold water vibriosis in 

Atlantic salmon, was reduced to less than 5% in concentration at 6 ºC  (Hansen et al. 

2015). These findings, along with the results of this study, implicate temperature as an 

environmental factor that influences the role of QS in disease. 

       AHLs are affected by other environmental factors in addition to temperature.  These 

include pH, redox state and oxygen concentration (Horswill et al. 2007; Frederix and 

Downie 2011). Alkaline pH causes degradation of AHLs by rendering the molecule 

incapable of signaling (Yates et al. 2002). In general, it has been shown that the longer 

the AHL chain length, the more stable the molecule is to external factors and hence, 

lower the turnover rate (Yates et al. 2002; Hmelo and Van Mooy 2009). The pH of sea 

water is around 8.2, hence one can argue that marine AHL producing bacteria must have 

long chain AHLs to be capable of signaling in an alkaline pH (Huang et al. 2008). 

However, several studies have found that both short and long chain AHLs are produced 
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by bacteria in marine environments (Gram et al. 2002; Taylor et al. 2004; Wagner-

Döbler et al. 2005; Mohamed et al. 2008; Tait et al. 2010; Alagely et al. 2011; Golberg et 

al. 2011; Biswa and Doble 2013; Ransome et al. 2014; Zimmer et al. 2014). It may be 

that the small chain AHLs are produced at high quantities to counteract breakdown due to 

external factors. Decho et al. (2009) proposed that differential degradation of AHLs 

likely affects signal reception by bacteria, and that this could result in variation of 

chronological windows in which signaling can occur.  

       A greater abundance of AHLs has also been observed in buffered media as compared 

to unbuffered media, which could be the result of increased pH as a growing culture 

becomes more alkaline (Yates et al. 2002). Although buffered media were not utilized in 

the present study, growth periods were short (on the order of hours) and samples were 

extracted and immediately frozen at - 20 ºC to minimize any breakdown and/or 

degradation of AHL molecules. 

      In terms of BBD, the results of this study showed that temperature had an effect on 

the relative abundance of AHLs produced by BBD isolates with more AHL produced 

above the BBD temperature threshold. It may be that pH is involved as well, as pH 

fluctuates widely within BBD over each 24 hour period. The pH in the band can decrease 

to 7.2 during the night due to release of CO2 during respiration and increase to 8.2 during 

the day due to CO2 uptake during photosynthesis (Carlton and Richardson 1995; Decho 

et al. 2009; Glas et al. 2012). Yates et al. (2002) showed a pH dependent lactonolysis of 

AHLs that was higher at 37 °C than at 22 °C. Sea water temperatures above 27.5°C 

promote BBD infections in corals. Healthy SML has an acidic pH of 5.5 (Philips, 1963), 

and within the BBD mat the average pH recorded is 7.5 (Glas et al. 2012). Sea water pH 
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fluctuates between 8-8.2. Hence theoretically, coral-associated AHLs could be most 

stable in healthy SML, followed by BBD mat and lastly the surrounding sea water. 

However, an increase in surrounding sea-water temperature could cause pH and 

temperature to influence each other in a way that they start affecting the stability of 

AHLs (as was shown in Yates et al. 2002). Furthermore, as shown in Decho et al. (2009), 

the half-life of most AHLs significantly reduces over a pH of 8.2. As the pH of sea water 

varies between 8-8.2, some influence of sea water pH on stability of AHLs on a coral, 

healthy or diseased, cannot be denied. However, in the case of corals, the effect of the 

immediate environment likely has a greater influence on the stability of AHLs rather than 

sea water pH.  

     In our study we did not investigate the effect of pH or temperature on AHLs as we did 

not isolate (purify) the AHLs. They were identified, using analytical techniques, solely 

for the purpose of determining their presence and identification. Experiments targeting 

the effects of pH and temperature on AHLs purified from BBD are well worth doing in 

future studies. 

      All of the isolates that produced AHLs in this study were identified to be Vibrio 

species, which is interesting in that many vibrios exhibit QS. Vibrio species are also 

known pathogens in several coral diseases. For example, Vibrio coralliilyticus and Vibrio 

shiloi both cause coral bleaching (Kushmaro et al. 1996, 1997; Ben-Haim et al. 2003), 

Vibrio harveyi and other Vibrio species have been implicated in white syndrome disease 

(Sussman et al. 2008; Luna et al. 2010) and V. alginolyticus is a proposed pathogen of 

yellow blotch/band disease (Cervino et al. 2008). Several studies have found Vibrio 

species to be present in higher abundance in diseased corals as compared to healthy 
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corals (Tait et al. 2010; Arotsker et al. 2015; Tout et al. 2015) and vibrios have been 

proposed to be, in general, opportunistic pathogens of corals (Bourne and Munn 2005), 

including BBD (Arotsker et al. 2009). Several vibrios that have caused disease in corals 

have done so at a temperature of above 26 ºC, close to the temperature threshold of BBD. 

In our study all six of the BBD isolates that produced significantly more AHLs at 30°C 

compared to 24°C were vibrios. The vibrios could be either opportunistic colonizers or 

opportunistic pathogens. Arotsker et al. (2009) showed that between 26-28 °C vibrios 

increase their proteolytic activity in the black band mat, either by increasing the number 

of proteases produced per bacterial cell or by enhancing the activity rate of the previously 

manufactured proteases. This observation led to a speculation that the proteolytic activity 

of the mat is possibly augmented by temperature increase due to increased activity of the 

Vibrio spp. (Arotsker et al. 2009). Proteases may assist infiltration of the coral tissue, 

followed by lysis, thus enhancing disease progression (Ben-Haim and Rosenberg 2002; 

Arotsker et al. 2009). 

      The presence of many well-known and common QS genes in the BBD metagenome 

dataset indicates a very high potential for active quorum sensing within the black band 

mat. Both AHL and AI-2 genes were found to be present in the BBD metagenome, many 

of which are Vibrio associated, which agrees with the high proportion of vibrios among 

the BBD isolates tested.  Overall, a greater variety of QS genes were exclusively present 

in the Florida Keys metagenome. 

      In summary, our findings reveal that temperature has a significant effect on the 

production of specific short to medium length quorum sensing signal molecules (AHLs) 

produced by isolates of BBD bacteria and that production of three of the eight AHLs 
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detected is increased above the BBD temperature threshold. Notably the production of 

3OHC5 increased from the lower temperatures to the higher temperatures without 

exception. The significance and role of this particular AHL in BBD initiation and/or 

advancement requires further investigation. Furthermore, we found that when comparing 

QS signal production by BBD bacteria vs. bacteria isolated from coral SML, the 

proportion of QS sensing by BBD bacteria was significantly higher with a greater variety 

of AHL production. Our results further imply a particular importance of BBD vibrios in 

the functioning of BBD community quorum sensing, both in the laboratory experiments 

using bacterial isolates and in our investigation into the BBD metagenome. Whether 

vibrios and specific quorum sensing signal production capabilities are directly involved 

in BBD disease etiology necessitates further study targeting specific mechanisms of BBD 

pathobiology that are linked to QS.  
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Table 3-1: Bacterial isolates from three coral health states that were positive for QS 
signal production assayed using the C. violaceum CV026 biosensor strain. 
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Table 3-2: Identification of AHL producing isolates used in this study based on 16S 
rRNA gene sequencing. 
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Table 3-3: Percentages of AHLs produced by each isolate across three temperatures and 
six time points (pooled and averaged replicate sample values) as analyzed by LC-
MS/MS. 
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Table 3-4: Results of univariate ANOVA analysis of pooled AHL production by all 
isolates based on temperature. 
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Table 3-5: Comparison of AHL production by isolates at 24 ̊C vs 30 ̊C. 
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Table 3-6: Comparison of AHLs produced by isolates in terms of isolate origin across 
three coral health states. 

  



 79 

 
Table 3-7: Functional annotations of two BBD metagenomes within the subsystem 
category of Regulation and Cell Signaling in MG-RAST. 
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Figure 3-1: Maximum likelihood phylogenetic tree based on 16S rRNA gene sequences 
of isolates used in this study and their closest relatives in GenBank. Shaded squares 
indicate the isolates used in this study, hollow squares indicate closest relatives of the 
isolates in GenBank, and hollow triangles indicate sequences that were used for rooting 
the phylogenetic tree. Values at the nodes are bootstrap values after 1000 resamplings. 
AHLs produced by the isolates are indicated next to the isolate designation in order of 
AHL production, from highest to lowest. 
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CHAPTER 4 

  EXPLORING THE PRESENCE AND POTENTIAL INFLUENCE OF  

SECONDARY METABOLITES PRODUCED BY BLACK BAND DISEASE 

HETEROTROPHS WITHIN BBD 
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Abstract 

     Black band disease (BBD) of corals, an infectious polymicrobial mat disease, is 

dominated in biomass by cyanobacteria, accompanied by other functional groups that 

include sulfate reducers, sulfide oxidizers and an exhaustive collection of heterotrophs. 

The heterotrophs within BBD have been proposed to harbor primary and secondary 

potential pathogens. In the present study, culture dependent and culture independent 

approaches were employed to evaluate the production and implication of two significant 

secondary metabolites potentially produced by BBD heterotrophs, antimicrobial 

compounds and quorum sensing (QS) signal molecules. Antimicrobial production by 

heterotrophs isolated from healthy, diseased and the healthy part of BBD infected corals 

were tested against two ecologically relevant and possibly significant bacterial strains in 

BBD, Roseovarius crassostreae and Ferrimonas sp. Isolates from BBD were also tested 

for acyl homoserine lactone production, a signaling molecule that enables quorum 

sensing (QS) amongst bacteria. Additionally, four BBD metagenomes were evaluated for 

the presence of genes associated with antimicrobial production. Quorum sensing, 

antimicrobial synthesis, and antimicrobial resistance genes were compared with other 

non-diseased publicly available coral metagenomes. The proteobacterial populations 

across all the metagenomes were also compared. In the antimicrobial assays, isolates 

from the healthy portion of BB-diseased corals, as compared to isolates from healthy 

corals, displayed greater inhibition against test strains. When comparing metagenomes, 

both BBD as well as non-diseased coral metagenomes contained comparable gene 

sequences for ‘Secondary metabolism’ with no significant differences across groups. 

Isolates from BBD displayed AHL production, which corroborated with the presence of 
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gene sequences for QS and biofilm formation in BBD metagenomes. A vast repertoire of 

genes for resistance against antibiotics and toxic compounds was also revealed and an 

increase in fluoroquinolone resistance genes in BBD metagenomes was detected. The 

presence of alpha- and gammaproteobacteria was detected in all metagenomes while 

delta- and epsilonproteobacteria were found only in BBD metagenomes. The 

observations from this study are aimed at improving the understanding of the structure 

and community dynamics within the BBD heterotroph population, with the overall goal 

of elucidating the mechanisms of this intricate coral disease. 

Introduction 

     The global decline in coral reefs as an effect of climate change and coral disease has 

made the study of coral associated microbes increasingly crucial (Rosenberg and Ben 

Haim 2002; Weil et al. 2006; Bruno and Selig 2007; Harvell et al. 2007). Black band 

disease of corals is one such coral disease causing damage to colossal reef building corals 

(Kuta and Richardson 1997; Richardson 2004). First reported in 1973, (Antonius 1973) 

the polymicrobial mat BBD constructs a toxic microenvironment on the coral colony with 

the assistance of photosynthetic cyanobacteria, sulfate reducing and sulfide oxidizing 

bacteria and a sizeable catalogue of heterotrophic bacteria to eventually cause tissue lysis 

leading to coral death (Garrett and Ducklow 1975; Ducklow and Mitchell 1979; Rützler 

et al. 1983; Miller and Richardson 2011). The rate of infection of this highly virulent 

global disease has a minimum temperature threshold of 27.5 °C (Edmunds 1991; Voss 

and Richardson 2006a). The heterotrophic population of BBD has often been estimated to 

shelter potentially significant pathogens capable of structuring bacterial communities 
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2002; Frias-Lopez et al. 2002; Miller and Richardson 2011). 

     A vast and varied microbial population resides within the surface mucopolysaccharide 

layer (SML) of healthy as well as diseased corals (Brown and Bythell 2005). The SML 

itself is a good source of nourishment for probiotic as well as pathogenic/opportunistic 

invaders (Kvennefors et al. 2012). Owing to the close vicinity of the water column to 

coral SML, bacteria from the column are regularly recruited into the mucus, permitting 

transferals to and from these two habitats (Rohwer et al. 2002; Kuek et al. 2015). 

     Microbes in the coral SML perform a variety of functions such as occupying the entry 

niche to prevent overgrowth of undesirable organisms, scavenging limiting nutrients in 

the oligotrophic environment (Rohwer et al. 2002), and production of secondary 

metabolites such as antimicrobials and signaling molecules (Hunt et al. 2012; Kvennefors 

et al. 2012). Since bacteria attached to healthy coral mucus are not subjected to mucus 

regulated bacterial selection, they could behave opportunistically under stressful 

conditions such as increased temperatures (Ritchie 2006; Kuek et al. 2015). Such an 

environmental change causes a shift in coral bacterial community and dynamics (Reshef 

et al. 2006). A modeling approach by Mao-Jones et al. (2010), demonstrated that 

exposure to thermal stress shifted the microbial community from being dominated by 

antibiotic producing microbes to being governed by pathogens, and that long after the 

stress was removed, the shift in microbial community persisted (Mao-Jones et al. 2010). 

Glasl et al. (2016) recently demonstrated that exposure of coral colonies to a blend of 

antibiotics rendered them vulnerable to disease and bleaching, demonstrating the 

significance of the resident probiotic microbiota of healthy coral SML. Furthermore, 

multiple studies have presented the potential of healthy and diseased coral microbial 

required for formation and progression of the migrating mat community (Cooney et al. 
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communities to produce quorum sensing (QS) signal molecules (Skindersoe et al. 2007; 

Tait et al. 2010; Golberg et al. 2011; Alagely et al. 2011; Taylor et al. 2013; Ransome et 

al. 2014; Munn 2015), suggesting the potential for cell-cell signaling within the coral 

holobiont. The density dependent signaling phenomenon has been evidenced in a vast 

selection of bacteria worldwide (Nealson et al. 1970; Nealson and Hastings 1979; Waters 

and Bassler 2005a), through induction of genes for enhanced bacterial features, including 

production of antimicrobials, biofilm formation, resistance to antimicrobials and toxic 

compounds, and induction of virulence genes (Williams et al. 2000; Irie and Parsek 2008; 

Bandara et al. 2012; Hmelo 2017). 

     The heterotrophic population within BBD is comprised of numerous classes of 

proteobacteria including alpha, gamma, epsilon, and delta (Frias-Lopez et al. 2004; Sekar 

et al. 2006; Sekar et al. 2008; Sato et al. 2017). Several reports have discovered the 

incidence of an interesting alphaproteobacterium, Alliroseovarius crassostreae, 

consistently associated with the BBD mat (Cooney et al. 2002; Sekar et al. 2006; Sekar et 

al. 2008; Sato et al. 2010; Miller and Richardson 2011; Miller 2012; Richardson 2012). 

An OTU with 94-97% identity to the 16S rRNA gene of A. crassostreae was disclosed to 

be the second most abundant OTU across 87 BBD clone libraries (Miller and Richardson 

2011). This alphaproteobacterium is the causative agent of Juvenile Oyster Disease 

(JOD), now known as Roseovarius Oyster Disease (ROD), causing conchiolin deposits in 

juvenile oysters, resulting in mass mortalities (Bricelj et al. 1992; Ford and Borrero 2001; 

Maloy et al. 2007). The occurrence and role of such a distinctive sequence within BBD 

advocates further study. Another bacterial species, Ferrimonas sp., has also been detected 

in BBD clone libraries (Sekar et al. 2006). Along with known antimicrobial properties, 
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several Ferrimonas strains are iron reducing. Iron reduction is a known virulence factor 

(Wooldridge and Williams 1993), making this species of specific interest within the 

virulent BBD community. 

     Black band disease progresses as a polymicrobial consortium of several operative 

participants, wherein the metabolism and by-products of individuals from each functional 

category affect one another. Cyanobacteria from the mat have displayed inhibition as 

well as stimulation of growth of heterotrophic bacterial isolates from the BB-diseased 

mat in in-vitro studies (Gantar et al. 2011). Bacteria from healthy and black band 

diseased corals were shown to inhibit as well as stimulate growth in varying percentages 

of isolates when tested against each other (Zimmer et al. 2014). The same study also 

revealed the AHL and AI-2 producing capabilities of BBD bacterial community (Zimmer 

et al. 2014). A significantly higher number of bacterial isolates from BBD have been 

shown to produce AHLs as compared to bacteria isolated from apparently healthy corals 

(Bhedi et al. 2017).  

      BBD heterotrophic bacteria, the most phylogenetically diverse group in the disease 

mat, are likely to exhibit variety in their metabolic functioning, facilitating disease 

progression. In the present study, the antimicrobial and QS molecule production 

capabilities of cultured heterotrophs from BBD are explored. Additionally, BBD 

metagenomes are screened for secondary metabolism sequences including antimicrobial 

production, quorum sensing and antimicrobial resistance. 

Materials and methods 

Sample collection and bacterial isolation 

    Samples of BBD, SML from apparently healthy coral (HSML), and SML from 
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apparently healthy portions of BBD infected coral (BSML) were collected from 

Montastrea cavernosa (Table 1) as previously used and described in Bhedi et al. 2017. 

Additionally, in the present study P. strigosa isolates (N = 119) were used for AHL 

screening using a reporter strain (CV026 assay) and LC-MS/MS (AHL detection). Both 

P. strigosa and M. cavernosa isolates were used for antimicrobial assays (N = 229) 

(Table 1). Bacterial cultures from the BBD samples were isolated as explained previously 

(Bhedi et al. 2017).  

Antimicrobial production assays  

    The antimicrobial production proficiencies of isolates were verified by an agar overlay 

technique against the strains Ferrimonas sp. EF3B-B688 (isolated from BBD) and A. 

crassostreae CV919-312 (ATCC strain) as targets. For antimicrobial testing, Difco MA 

basal plates (containing 1.5% agar) were overlaid with 5 ml molten MA (containing 0.7% 

agar) seeded with 100 µl of freshly grown broth culture of either A. crassostreae or 

Ferrimonas. Overlaid plates were allowed to dry for 15 min and spot inoculated with 

freshly grown isolates. Each plate contained a known antimicrobial producing strain as a 

positive control and sterile Difco Marine Broth (MB) as negative control. The plates were 

incubated at 25 °C and monitored for zones of inhibition (ZOI) over a period of 48 hrs. 

To compare results across health states, in each case, ZOI from isolates from BBD as a 

health state was compared against HSML or BSML via a proportion z-test for 

significance (p ≤ 0.05). 

Testing for AHL producing isolates 

     A total of 119 isolates from BBD were tested for production of AHLs with an agar 

overlay method using Chromobacterium violaceum CV026 as described in chapter 3 
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(‘Chromobacterium violaceum CV026 AHL reporter strain assay’ under Materials and 

Methods) (Bhedi et al. 2017). R. crassostreae CV919-312 and Ferrimonas sp. EF3B-

B688, strains used for the antimicrobial assay were also tested via LC-MS/MS for AHL 

production. 

AHL detection via LC-MS/MS 

     All isolates positive for production of AHLs via the CV026 assay were analyzed using 

LC-MS/MS for AHL identification and abundance variation across three temperatures 

(24, 27 and 30 °C) as described in chapter three (Bhedi et al., 2017) in the laboratory of 

DR. Shawn Campagna at University of Tennessee, Knoxville.  

16S rRNA gene sequencing of AHL producing isolates 

     16S rRNA gene sequencing was performed on the five isolates that produced AHLs as 

described in chapter three. Isolates 1 and 2 (Figure 2) were previously described in 

Zimmer et al. 2014. Isolates 3 and 4 were submitted under the accession numbers 

KX353778, KX353777 to GenBank. Isolate 5 failed to grow during 16S rRNA gene 

sequencing. 

Metagenomic analysis 

     Black band disease samples were collected from Horseshoe Reef in the Florida Keys 

and Curaçao (CARMABI station) from Colpophyllia natans (samples 1, 2 and 4) and 

Pseudodiploria strigosa (sample 3) and used for metagenomic analysis. All samples post 

collection were added into tubes containing RNA later, stored at -80 °C, and sent to the 

Microbiome Analysis Center to Dr. Patrick Gillevet at George Mason University in 

Fairfax, Virginia. Metagenomic analysis was carried out as described in chapter three 

(Bhedi et al., 2017). 
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Metagenomic analysis from publicly available metagenomes 

     For comparison of the metagenomes of BB-diseased vs. non-diseased samples, the 

four BBD samples described above were analyzed and compared with six publicly 

available metagenomes using MG-RAST (http://metagenomics.anl.gov/) (Meyer et al. 

2008). ‘Coral atoll samples 1-5’ (4466596.3, 4466597.3, 4466810.3, 4466812.3, 

4466844.3 respectively) were used from Dinsdale et al. (2011) (samples with the most 

coral cover were selected for analysis) and the ‘Apparently healthy coral’ metagenome 

(4445756.3) was used from Littman et al. (2011) (Dinsdale et al. 2008; Littman et al. 

2011). Analyses were compared across levels 1, 2, 3 and 4 categories of subsystems 

database following a hierarchical classification of annotation (level 4 ‘also denoted as 

‘function’ in subsystem). For functional metagenomic analysis throughout the study, the 

following parameters were used: Databases = Subsystems for functional analysis, RDP 

for phylogenetic analysis; Maximum e value = 10-5; Minimum alignment length = 40 aa 

for protein databases, 90 bp for RNA databases; Minimum percentage identity = 60% for 

protein databases, 98% for RNA databases. 

Results 

Antimicrobial production of by isolates from HSML, BSML, and BBD  

    A total of 229 isolates were tested for antimicrobial production against Ferrimonas sp. 

EF3B-B688 and Alliroseovarius crassostreae CV919-312. Of these, 155 were isolated 

from the black band mat, 38 from HSML and 36 from BSML (Table 1). Twenty-three 

isolates across health states inhibited A. crassostreae CV919-312 (14.8% of isolates 

tested) (Figure 1). Of these 23 isolates, 14 (9.0%) were BBD isolates, five (13.9%) were 

from the healthy part of BBD infected coral (BSML) and four (10.5%) were from the 
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SML of apparently healthy coral (HSML). Inhibition of growth of Ferrimonas sp. 

(EF3B-B688) was caused by 15 (6.6%) of the isolates across all health states. Of the 15 

isolates, nine (23.7%) were from HSML, two (5.6%) were from BSML and 4 (2.6%) 

were from BBD. Sixteen (6.9%) of the isolates inhibited the QS reporter strain, 

Chromobacterium violaceum CV026. Within these 16, nine (23.7%) isolates originated 

from HSML and seven (19.4%) from BSML. None of the isolates from BBD inhibited 

the reporter strain.  

     For R. crassostreae CV919-312, both comparisons of BBD vs. HSML and BBD vs. 

BSML were not significantly different at p ≤ 0.05.  For isolates inhibiting Ferrimonas 

EF3B-B688, BBD vs. BSML was not significant while the comparison between BBD vs. 

HSML was significant (p ≤ 0.05) with a greater number of isolates from HSML 

inhibiting Ferrimonas EF3B-B688 as compared to BBD.  

AHL production  

     The results for AHL detection across three temperatures (24, 27 and 30 °C) are 

presented in Figure 2. Along with five isolates that tested positive in the CV026 assay, 

AHL production by R. crassostreae CV919-312 and Ferrimonas sp. EF3B-B688 was 

also tested. Four AHLs were detected as produced by these seven isolates (Figure 2). C6 

was the most frequently produced AHL, followed by 3OHC4. All seven bacterial strains 

showed some variation with temperature, however none of the variations were 

statistically significant at p ≤ 0.05 (data not shown). Isolate five and Ferrimonas sp. both 

produced 3OHC4 dominantly as opposed to the other five bacteria.  

Metagenomic analysis 

      Gene sequences identified in the Subsystems database (level 1) categories of 
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‘Regulation and cell signaling’ (including genes for QS), ‘Secondary metabolism’ 

(including genes for antibiotic and antimicrobial synthesis) and ‘Virulence, disease and 

defense’ (for antimicrobial resistance genes) were compared (Figure 3) across the four 

BBD samples. In each of the four BBD metagenomes, the gene sequences for ‘Virulence, 

disease and defense’ were higher than genes for ‘Secondary metabolism’ and ‘Regulation 

and cell signaling’ categories. The fewest number of gene sequences were observed in the 

‘Regulation and cell signaling’ categories across BBD as well as non-diseased 

metagenomes (data shown only for BBD). 

     The percentage of gene sequences detected in the ‘Secondary metabolism’ Subsystem 

category among the BBD and publicly available metagenomes (Figure 4) included those 

for ‘Bacterial cytostatics, differentiation and antibiotics’ (level 2 category). These were 

higher in BBD samples two and three as compared to the atoll samples. Gene sequences 

for ‘Biosynthesis of phenylpropanoids’ were equivalent in BBD-Sample two and Coral 

atoll-Sample one and less or absent amongst the other samples. The ‘Apparently healthy 

coral’ sample (Littman et al. 2011) had no gene sequences in the category of ‘Secondary 

metabolism’ within the MG-RAST Subsystems database. After pooling hits to compare 

all diseased (four BBD metagenomes) vs. all non-diseased metagenomes (coral atoll 

samples), sequences under level 1 category of ‘Secondary metabolism’ had no significant 

difference. However, sequences under level 2 categories of ‘Bacterial cytostatics, 

differentiation and antibiotics’ and ‘Biosynthesis of phenylpropanoids’ were significantly 

higher in the BBD metagenomes (z-proportion test, p ≤ 0.05).  

     Figure 5 shows the level 1 category of ‘Regulation and cell signaling’ displayed as 

gene sequences annotated under level 4, also denoted as ‘function’ in susbsystems 
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hierarchial classification. Sequences for S-adenosyl methionine synthase (level 4) were 

most dominant and present across most samples investigated. As with ‘Secondary 

metabolism’, sequences under ‘Regulation and cell signaling’ were also perceived to be 

of larger variety in non–diseased metagenomes as compared to BBD metagenomes. Apart 

from BBD-Sample 3, all BBD metagenomes had S-adenosyl methionine synthase 

sequences in great abundance. Sequences for biofilm synthesis (PgaA, PgaB, PgaC) 

(level 4) were also noted in a few analyzed metagenomes (Coral atoll-Samples 1, 3, 5). 

     Figure 6 indicates the vast range of level 3 sequences under level 2 category of 

‘Resistance to antibiotics and toxic compounds’, a subcategory under level 1 of 

‘Virulence, disease and defense’. Most of the sequences represented were indicative of 

metal resistance genes including zinc, mercury, copper, cobalt, cadmium and arsenic. 

Several other sequences represented the ability to breakdown antimicrobials, specifically 

sequences for resistance to antibiotics such as fluroquinolones, vancomycin, methicillin, 

and erythromycin. Four types of multidrug efflux pumps/system sequences were also 

unveiled. Other than the ‘Apparently healthy coral’ metagenome (Littman et al. 2011), all 

other metagenomes had sequences for resistance to fluoroquinolones in higher 

percentages, with BBD metagenomes having a higher percentage of sequences in the 

category in contrast to coral atoll metagenomes.  

     Figure 7 shows the taxonomic affiliation and sequence abundance (percentages) of 

proteobacteria across all analyzed metagenomes using the RDP database. Alpha and 

gammaproteobacteria were most abundant in all metagenomes. BBD samples 

additionally contain delta- and epsilonproteobacteria, while these were markedly absent 

in the other metagenomes.  
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Discussion 

Antimicrobial assays 

      The results of the antimicrobial assays using the Ferrimonas strain showed that the 

strain was inhibited by a significantly higher number of isolates from HSML (13.9%) as 

compared to BBD (2.6%). Species from the Ferrimonas genus have been previously 

isolated from the mucus of healthy Acropora millepora (Kvennefors et al. 2012). One 

particular strain, Ferrimonas sp. A3B-64-2, isolated from the mucus of a healthy coral, 

demonstrated the ability to inhibit the pathogen of coral bleaching, Vibrio shiloi 

(Nissimov et al. 2009). Ferrimonas marina has been isolated previously from a black 

band diseased colony of Siderastrea sideria (Sekar et al. 2006). BBD metagenomes used 

in this study also showed presence of several strains of Ferrimonas (data not shown). The 

presence of Ferrimonas under both healthy and diseased conditions in corals may 

indicate its functionality as an opportunistic pathogen in BBD.  

     Isolates from the BSML community had the highest number of inhibitors of R. 

crassostreae (13.9%), followed by HSML isolates at 10.5% and BBD isolates at 9.0%. 

Comparing inhibitors across the BBD community, R. crassostreae had a greater number 

of inhibiting isolates than Ferrimonas. R. crassostreae, apart from being consistently 

present in BBD clone libraries (Miller and Richardson 2011), has additionally been 

associated with several other coral diseases, such as white plague-like disease (Pantos et 

al. 2003), white band disease (Pantos and Bythell 2006) and lately, Australian tropical 

white syndrome (Godwin et al. 2012). Along with R. crassostreae, R. nubinhibens has 

been isolated from BBD infecting Siderastrea sideria (Sekar et al. 2006). BBD 

metagenomes used in this study also showed the presence of R. nubinhibens (data not 
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shown). Several members of marine Rhodobactereceae have demonstrated pathogenic 

traits, including QS (Cude and Buchan 2013). Both the cases of inhibition against 

Ferrimonas and R. crassostreae that are exemplary of isolates from the healthy coral 

SML/healthy portion of BBD infected coral suggest inhibition of putative 

pathogenic/opportunistic bacteria.  

AHL analysis 

     From the QS results of this study, it was found that AHL C6 was manufactured by all 

seven bacterial cultures tested. Of these seven cultures, five bacterial strains produced C6 

dominantly, as compared to the other three identified AHLs (3OHC4, C5, 3OHC5). 

These observations are in agreement with findings from previous studies, where C6 

(Zimmer et al., 2014) and 3OHC4 (Bhediet al., 2014) were the predominantly produced 

AHLs. However, due to the small number of isolates tested, a statistically significant 

change of AHL production with varying temperature was not detected in this study.  

     Quorum sensing assisted by AHLs has been symptomatic of pathogenicity in a vast 

number of bacteria in across various habitats. The precise and targeted functionality of 

AHLs in BBD pathogenicity remains to be studied further. Nevertheless, the ability of 

these isolates to produce AHLs suggests a role of some prominence of bacterial cell 

signaling in BB-disease etiology.  

Metagenomic analysis of QS, antimicrobial synthesis, and antibiotic resistance 

sequences 

     The percentage of sequences associated with ‘Virulence disease and defense’ was 

higher than that for ‘Secondary metabolism’ and ‘Regulation and cell signaling’ across 

BBD metagenomes (Figure 3). Additionally, a great variety of sequences associated with 
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‘Resistance to antibiotics and toxic compounds’ was detected in BBD as well as non-

diseased coral metagenomes. Several of these included sequences for metal resistance 

encompassing zinc, chromium, mercury, copper, cobalt, cadmium and arsenic. Genes for 

heavy metal resistance in BBD, particularly metallothionein, were recently revealed in a 

metagenomic and transcriptomics study (Sato et al. 2017). Some studies have indicated 

an association between heavy metal resistance and higher antibiotic resistance (Pal et al. 

2015). A great variety of antibiotic and antimicrobial resistance gene sequences were also 

observed in the present study, along with the occurrence of several multidrug efflux 

pumps, within BBD. In comparison to the coral atoll metagenomes, BBD metagenomes 

had a greater percentage of sequences for resistance to fluoroquinolones. Gene sequences 

for fluoroquinolone resistance have been previously been detected in microbes of corals 

(Wegley et al. 2007). The increased percentage of antibiotic resistance sequences in BBD 

metagenomes likely benefits the BBD microbial population. Such gene sequences may be 

active in counteracting antimicrobials produced by the resident probiotic community, and 

therefore may aid in establishing/maintaining a virulent, antimicrobial resistant mat 

consortium (Nogales et al. 2011).  

     Biofilms are known to increase resistance of microbes to antimicrobials and 

antibiotics (Irie and Parsek 2008). The migrating BBD mat functions analogous to a 

complex biofilm, where enclosed microniches in the mat biofilm enable concentration of 

secondary metabolites such as antimicrobials and QS signals. The concentration of these 

molecules in BBD may influence structuring of the BBD community, speculatively 

facilitating disease progression. Additionally, horizontal gene transfer of antimicrobial 
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development and/or advancemnet.  

Proteobacterial abundance across metagenomes 

     Assessment of the types of proteobacteria within the metagenomes revealed the 

abundance of alpha- and gammaproteobacteria in metagenomes of both corals from atolls 

and BBD. However, delta- and epsilonproteobacteria were present only within BBD 

metagenomes. Previous studies have reported higher abundances of deltaproteobacteria 

sequences in BBD in comparison to healthy coral SML (Sekar et al. 2006; Meyer et al. 

2017). In a recent study comparing the progression of lesions of relatively benign 

cyanobacterial patches (CP) to BBD mat, both delta- and epsilonproteobacterial 

sequences were reportedly higher in BBD metagenomes in contrast to CP datasets (Sato 

et al. 2017). The presence of sulfate reducing deltaproteobacteria in BBD likely 

represents the difference in abundances of these sequences between diseased and non-

diseased metagenomes.  

Potential implications of secondary metabolites in BBD 

     This study assessed the antimicrobial and AHL production of cultivable bacteria from 

healthy and BB-diseased coral health states and evaluated BBD and healthy coral 

metagenomes for sequences related to production of secondary metabolites and 

resistance. Production of these secondary metabolites is anticipated to directly affect the 

microbial community dynamics, structure and organization of BBD. However, the nature 

of the surrounding reef environment as well as the growth condition of the bacteria can 

also affect production and interaction of these molecules with each other (Bruhn et al. 

2007; Horswill et al. 2007). BBD infects corals at warmer water temperatures, which 

possibly influences the production and abundance of these secondary metabolites. Bhedi 

resistance genes may augment mat virulence, also encouraging black band disease 
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et al. (2017) recently showed an increase in the abundance of specific AHLs (3OHC4, 

3OHC5 and 3OHC6) at higher temperatures by BBD isolates (Bhedi et al. 2017).  

     From the metagenomic analysis targeted at antimicrobial synthesis and antimicrobial 

resistance genes, no significant difference in pooled sequences for ‘Secondary 

metabolism’ was detected across BBD vs. non-diseased coral metagenomes. However, a 

significantly higher number of sequences in BBD metagenomes were detected under 

level 3 categories for production of antibiotics and phenypolyprenoids (categories 

‘Bacterial cytostatics, differentiation and antibiotics’ and ‘Biosynthesis of 

phenylpropanoids’). One can contemplate that although the BBD metagenomes showed 

gene sequences that indicate an ability to produce antimicrobials, these compounds may 

degrade due to warmer temperatures, as has been shown previously (Mao-Jones et al. 

2010; Rypien et al. 2010; Glasl et al. 2016). It would be interesting to examine the effect 

of temperature on antimicrobial production by experimentally quantifying their 

abundance while being produced by BBD isolates in an attempt to investigate their fate 

under ecological conditions mimicking BBD. QS has also been known to induce 

expression of antimicrobial production and antimicrobial resistance genes in several 

bacteria (Bandara et al. 2012). Presently, the influence of QS on antimicrobial production 

in BBD microbes is not known.  

      Summarizing the results of the present study, the antimicrobial assays indicated that, 

comparatively speaking, the fewest number of BBD isolates inhibited all three strains, R. 

crassostreae, Ferrimonas and C. violaceum CV026. Although only three strains were 

examined, these observations suggest that the BBD community exhibits lesser inhibition 

than bacteria within coral SML. There were more antimicrobial producing isolates from 
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HSML and BSML than from BBD, likely important in maintaining the probiotic role of 

SML bacteria, both in terms of preventing colonization and of killing invaders that 

successfully colonize this niche. On the other hand, under conditions of temperature 

stress, the abundance of antimicrobials may decrease (Mao-Jones et al. 2010; Rypien et 

al. 2010; Glasl et al. 2016), paving way for over-growth of opportunistic pathogens or 

invasion of new pathogens from the water column.  

     In the present study, production of QS signals by BBD isolates was detected and this 

result was shown to correlate with the presence of QS gene sequences in BBD 

metagenomes. QS in BBD may lead to the abundance of a highly diverse population of 

opportunistic heterotrophic secondary pathogens and may control the transition of non-

pathogenic to pathogenic bacteria via expression of QS controlled pathogenic traits. QS 

may also facilitate horizontal gene transfer of antimicrobial resistance genes, enabling 

maintenance of the virulent and toxic mat. In this manner, the production of secondary 

metabolites, antimicrobial compounds, QS signaling molecules and antimicrobial 

resistance genes may play interactive roles in structuring the BBD community. Targeted 

studies need to be undertaken to investigate the precise role of these secondary 

metabolites in BBD pathogenesis. 
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Tables 

Table 4-1: Sampling dates, locations and bacterial isolates used in this study. All 229 
isolates were used in the antimicrobial assays against R. crassostreae CV919-312, 
Ferrimonas sp. EF3B-B688 and C. violaceum CV026. All isolates form P. strigosa 

colonies (N=119) were additionally tested for AHL production via C. violaceum CV026 
agar overlay assay. BBD = black band disease mat sample, HSML= sample taken from 
apparently healthy coral of the same host species, BSML= sample taken from the 
apparently healthy part of the BBD infected coral. The QS production capabilities of 
isolates from M. cavernosa have been previously used and described in Bhedi et al. 2017. 

Date of 
sample 

collection 
Coral host  Location Sample 

type No. of isolates  

9/30/2012 Pseudodiploria 

strigosa 

Horseshoe Reef, Florida 
Keys, FL, USA  

(N 25°08.362’ W 
80°17.641’) 

BBD 8  
 
 
 
   119 2/23/2013 Pseudodiploria 

strigosa 

Water Factory, Curaçao, 
Netherlands Antilles  

(N 12° 06.779′ W 68° 
57.662′) 

BBD 44 

5/25/2013 Pseudodiploria 

strigosa 

Water Factory, Curaçao, 
Netherlands Antilles  

(N 12° 06.779′ W 68° 
57.662′) 

BBD 67 

8/19/2013 Montastraea 

cavernosa 

Algae Reef, Florida 
Keys, FL, USA 

(N 25' 08.799 W 80' 
17.579) 

BBD 36 
HSML     38 

BSML     36 

Total number of isolates      229 
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Figures 

Figure 4-1: Differences in percentages of isolates from three coral health states, black 
band disease mat (BBD), apparently healthy portion of a BB-diseased coral (BSML) and 
apparently healthy coral SML (HSML), inhibiting Ferrimonas EF3B-B688 and 
Roseovarius crassostreae CV919-312 and the AHL reporter strain Chromobacterium 

violaceum CV026 (p ≤ 0.05). 
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Figure 4-2: AHL production by BBD isolates, R. crassostreae CV919-312, Ferriomonas 
EF3B-B688 and influence of temperature on AHL abundance profiles. 
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Figure 4-3: Differences in gene sequences of BBD metagenomes as annotated against 
Subsystems database, under categories of ‘Regulation and cell signaling’, ‘Secondary 
metabolism’ and Virulence, disease and defense’. 
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Figure 4-4: Examining secondary metabolites in metagenomes of BBD and comparing 
with coral atoll (Dinsdale et al. 2008) and apparently healthy coral metagenomes 
(Littman et al. 2011) with using subsystems database. 
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Figure 4-5: Sequences annotated using susbsystems database as level 4 functions of ‘QS 
and biofilm formation’ while comparing BBD metagenomes, coral atoll metagenomes 
(Dinsdale et al. 2008) and apparently healthy coral metagenome (Littman et al. 2011). 
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Figure 4-6: Sequences annotated using susbsystems database at level 3 under level 2 
category of ‘Resistance to antibiotics and toxic compounds’ comparing BBD, coral atoll 
(Dinsdale et al. 2008) and apparently healthy coral metagenomes (Littman et al. 2011). 
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Figure 4-7: Taxonomic affiliations of proteobacteria as compared across 
metagenomes annotated using RDP database. 
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     The principal goal of this dissertation was to evaluate the presence of quorum sensing 

(QS) signals in BBD heterotrophs and assess their potential implication in BBD 

pathogenicity employing culture dependent and independent methodologies.  

     The results of Chapter two revealed that DPD, the precursor for the universal 

signaling molecule AI-2, was produced by nine bacterial isolates from three coral health 

states. Twelve AHL producing bacteria were also detected and the AHLs produced were 

identified by LC-MS/MS (Zimmer et al. 2014).  

     The results of Chapter three revealed a significantly higher number of BBD isolates 

that produce QS signals (short- to medium chain AHLs) in contrast to isolates from 

healthy corals and the healthy part of BBD infected corals. Furthermore, these AHLs 

were identified and it was shown that the production of three of them (3OHC4, 3OHC5, 

3OHC6) increased significantly at 30°C, above the observed BBD threshold temperature 

on the reef. This chapter also exhibited QS related sequences in BBD metagenomes 

across two geographic locations (Bhedi et al. 2017).  

     Chapter four examined the antimicrobial production capabilities of isolates across 

coral health states, tested against two possibly significant BBD isolates, showing the 

fewest number of isolates inhibiting the two test stains. This chapter also evaluated the 

AHL production capabilities of seven bacteria (including BBD isolates) with varying 

temperature, although no significant difference in production was detected across 

temperatures. The metagenomic aspect of this chapter revealed the presence of QS, 

antimicrobial synthesis and antimicrobial resistance genes in BBD metagenomes as 

compared with non-diseased coral metagenomes from publicly available databases 
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(Dinsdale et al. 2008; Littman et al. 2011). BBD metagenomes were shown to display a 

large selection of antimicrobial resistance genes. The proteobacterial affiliations of 

sequences across metagenomes showed the exclusive presence of delta- and 

epsilonproteobacteria in BBD metagenomes. 

     Based on the results obtained from this study, and supported by a review of the 

literature, a model is proposed (Figure 1) for BBD heterotrophic interactions as primarily 

influenced by QS. In this model, beginning from the top of Figure 1, the bacteria 

inhabiting the healthy coral SML are exposed to thermal stress due to an increase in 

surrounding sea-water temperature. This leads to a change in the bacterial community 

and dynamics, as discussed in (Reshef et al. 2006; Ainsworth and Hoegh-Guldberg 2009; 

Ainsworth et al. 2010; Krediet et al. 2013). Under these conditions, new pathogens are 

recruited from the water column near the corals, and existing resident bacteria undergo 

shifts to adapt to the change in the environmental condition, as per the coral probiotic 

hypothesis (Reshef et al. 2006). Antimicrobial production by bacteria inhabiting healthy 

SML then decreases due to the warmer temperatures (Mao-Jones et al. 2010; Rypien et 

al. 2010; Glasl et al. 2016). Concurrently, specific bacteria increase their abundance 

(population density) with the increase in temperature, leading to initiation of QS. Quorum 

sensing then leads to gene expression of virulence factors in opportunistic pathogens like 

vibrios as well as selection of antimicrobial resistant microbes. QS signals have been 

known to also function as cues for bacterial recruitment (Joint et al. 2002; Huang et al. 

2008), further increasing chances of recruiting pathogens from the water column. 

Decreased antimicrobial production by SML bacteria allows growth of putative 

pathogens capable of QS. The collective effect of these exchanges facilitates 
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establishment of the BBD heterotrophic population, leading to dominance by 

proteobacteria. QS by vibrios (and other potential QS microbes) within BBD results in 

production of AHLs (3OHC4, 3OHC5 and 3OHC6) shown to be induced at warmer 

temperatures (Bhedi et al. 2017). As BBD progresses, the production of these AHLs 

directly or indirectly influences secretion of proteases (Munn 2015), potentially involved 

in coral tissue degradation. AHL aided QS additionally enables acquisition and/or 

expression of antimicrobial resistance genes (Jain et al. 1999). The overall effect of these 

microbial interactions escalates the virulence of the BBD mat community and encourages 

maintenance of the community dynamics. 

     The primary findings from this dissertation provide evidence that specific QS 

molecules are produced by BBD heterotrophs and that their production is affected by 

temperature, known to be a controlling factor of coral diseases on the reef. These findings 

are supported by the presence of virulence genes and their potential expression as 

revealed by analysis of BBD metagenomes. The results of this dissertation also provide 

insights into antagonistic interactions within the BBD bacterial population based on 

antimicrobial production and/or resistance. It is likely that these microbial and 

environmental (temperature) interactions are involved in the establishment and 

maintenance of BBD infections. The results from this dissertation offer further 

information to elucidate the mechanism of one of the most complex, destructive and 

intricate coral diseases. 

 



 117 

References 

Ainsworth TD, Hoegh-Guldberg O (2009) Bacterial communities closely associated with 
coral tissues vary under experimental and natural reef conditions and thermal stress. 
Aquatic Biology 4:289-296. 

Ainsworth TD, Vega Thurber R, Gates RD (2010) The future of coral reefs: a microbial 
perspective. Trends in Ecology & Evolution 25:233-40. 

Bhedi CD, Prevatte CW, Lookadoo MS, Waikel PA, Gillevet PM, Sikaroodi M, 
Campagna SR, Richardson LL (2017) Elevated temperature enhances short to 
medium chain acyl homoserine lactone production by black band disease associated 
vibrios. FEMS Microbiol.Ecol. 93. 

Dinsdale EA, Pantos O, Smriga S, Edwards RA, Angly F, Wegley L, Hatay M, Hall D, 
Brown E, Haynes M, Krause L, Sala E, Sandin SA, Vega Thurber R, Willis BL, 
Azam F, Knowlton N, Rohwer F (2008) Microbial ecology of four coral atolls in the 
Northern Line Islands. PLoS One 3:e1584. 

Glasl B, Herndl GJ, Frade PR (2016) The microbiome of coral surface mucus has a key 
role in mediating holobiont health and survival upon disturbance. The ISME Journal 
10:2280-2292. 

Huang Y, Ki J, Case R, Qian P (2008) Diversity and acyl-homoserine lactone production 
among subtidal biofilm-forming bacteria. Aquat Microb Ecol 52:185-193. 

Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the 
complexity hypothesis. Proc Natl Acad Sci U S A 96:3801-3806. 

Joint I, Tait K, Callow ME, Callow JA, Milton D, Williams P, Cámara M (2002) Cell-to-
cell communication across the prokaryote-eukaryote boundary. Science 298:1207. 

Krediet CJ, Ritchie KB, Paul VJ, Teplitski M (2013) Coral-associated micro-organisms 
and their roles in promoting coral health and thwarting diseases. Proceedings of the 
Royal Society of London B: Biological Sciences 280:20122328. 

Littman R, Willis BL, Bourne DG (2011) Metagenomic analysis of the coral holobiont 
during a natural bleaching event on the Great Barrier Reef. Environmental 
microbiology reports 3:651-660. 

Mao-Jones J, Ritchie KB, Jones LE, Ellner SP (2010) How microbial community 
composition regulates coral disease development. PLoS Biology 8:22-26. 

Munn CB (2015) The role of vibrios in diseases of corals. Microbiology spectrum 3:1-12. 



 118 

Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic 
hypothesis. Environ Microbiol 8:2068-2073. 

Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated 
bacteria. Environ Microbiol 12:28-39. 

Zimmer BL, May AL, Bhedi CD, Dearth SP, Prevatte CW, Pratte Z, Campagna SR, 
Richardson LL (2014) Quorum sensing signal production and microbial interactions 
in a polymicrobial disease of corals and the coral surface mucopolysaccharide layer. 
PLoS One 9:e108541. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 119 

Figure 5-1: Model of microbial interactions for establishment and maintenance of BBD 
heterotrophic population, primarily based on quorum sensing. 
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