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A good understanding of flow in a number of hydraulic structures, such as energy 

dissipators, among others, is needed to effectively control upstream and downstream flow 

conditions, for instance, high water depth and velocity to ensure, scouring, flow stability 

and control scouring, which is thus crucial to ensuring safe acceptable operation. Although 

some previous research exists on minimizing scouring and flow fluctuations after hydraulic 

structures, none of this research can fully resolve all issues of concern. In this research, 

three types of structures were studied, as follows: a) a vertical gate; b) a vertical gate with 

an expansion; and c) a vertical gate with a contraction. A Stability Concept was introduced 

and defined to characterize the conditions downstream of gated structures. When 

established criteria for stability are met, erosion is prevented. This research then 

investigated and evaluated two methods to classify the flow downstream of a gated 

structure to easily determine stability.  The two classification methods are: the Flow 

Stability Factor and the Flow Stability Number. The Flow Stability Factor, which is 

developed based on the Fuzzy Concept, is defined in the range of 0 to 1; the maximum 

value is one and indicates that the flow is completely stable; and the minimum value is zero 



 

vii 
 

and indicates that the flow is completely unstable. The Flow Stability Number is defined 

as the ratio of total energy at two channel sections with a maximum value of one, and it 

allows flow conditions to be classified for various hydraulic structures; the number is 

dimensionless and quantitatively defines the flow stability downstream of a hydraulic 

structure under critical and subcritical flow conditions herein studied, also allowing for an  

estimate of the downstream stable condition for operation of a hydraulic structure. This 

research also implemented an Artificial Neural Network to determine the optimal gate 

opening that ensures a downstream stable condition. A post-processing method 

(regression-based) was also introduced to reduce the differences in the amount of the gate 

openings between experimental results and artificial intelligence estimates. The results 

indicate that the differences were reduced approximately 2% when the post-processing 

method was implemented on the Artificial Neural Network estimates. This method 

provides reasonable results when few data values are available and the Artificial Neural 

Network cannot be well trained.  



 

viii 
 

TABLE OF CONTENTS 
 

CHAPTER          PAGE 

CHAPTER 1. INTRODUCTION ..................................................................................... 2 

CHAPTER 2. BACKGROUND ........................................................................................ 5 
2.1 LITERATURE REVIEW ........................................................................................... 5 

2.1.1 Geographic Distribution............................................................................... 6 
2.1.2 Timeline Distribution ................................................................................... 9 
2.1.3 Popular Subjects......................................................................................... 11 

CHAPTER 3. OBJECTIVES .......................................................................................... 21 
3.1 OBJECTIVES OF THE RESEARCH ...................................................................... 21 

CHAPTER 4. METHODOLOGY .................................................................................. 23 
4.1 FLOW STABILITY FACTOR ................................................................................. 23 
4.2 FLOW STABILITY NUMBER ............................................................................... 28 
4.3 ACCEPTABLE STABILITY RANGE .................................................................... 31 
4.4 HYDRAULIC SYSTEMS AND LABORATORIES ............................................... 33 
4.5 REQUIRED MEASUREMENT VARIABLES ....................................................... 46 

4.5.1 Discharge ................................................................................................... 46 
4.5.2 Depth .......................................................................................................... 48 
4.5.3 Velocity ...................................................................................................... 49 
4.5.4 Temperature ............................................................................................... 50 
4.5.5 Flow Pattern ............................................................................................... 51 

4.6 ARTIFICIAL INTELLIGENCE METHOD ............................................................. 53 
4.6.1 The Fuzzy Concept .................................................................................... 53 
4.6.2 Artificial Neural Network (ANN) .............................................................. 54 

4.7 DIMENSIONLESS PARAMETERS ....................................................................... 54 

CHAPTER 5. RESULTS & DISCUSSION ................................................................... 56 
SECTION 1. OPTIMIZING GATE OPENINGS FOR FLOW REGIME 
CONTROL: EXPERIMENTAL AND ARTIFICIAL NEURAL NETWORK 
DEVELOPEMENT......................................................................................................... 56 
 5.1.1 Introduction ................................................................................................ 57 

5.1.2 Theory ........................................................................................................ 58 
5.1.3 Experiments ............................................................................................... 61 
5.1.4 Neural Network .......................................................................................... 63 
5.1.5 Dimensional Analysis ................................................................................ 64 



 

ix 
 

5.1.6 Results and Discussion .............................................................................. 65 
SECTION 2. FLOW STABILITY NUMBER IN VERTICAL SLUICE GATES ......... 75 

5.2.1 Introduction ................................................................................................ 75 
5.2.2 Experiments (Set One) ............................................................................... 75 
5.2.3 Experiments (Set Two) .............................................................................. 84 

SECTION 3. THE FLOW STABILITY NUMBER IN A GATE WITH 
EXPANSIONS ................................................................................................................ 94 
 5.3.1 Introduction ................................................................................................ 94 

5.3.2 Experiments (Set One) ............................................................................... 94 
5.3.3 Experiments (Set Two) ............................................................................ 106 

SECTION 4. THE FLOW STABILITY NUMBER IN A GATE WITH 
CONTRACTIONS ........................................................................................................ 115 
 5.4.1 Introduction .............................................................................................. 115 

5.4.2 Experiments (Set One) ............................................................................. 115 
5.4.3 Experiments (Set Two) ............................................................................ 127 

SECTION 5. COMPARISON OF THE RESULTS OF A GATE, A GATE WITH 
EXPANSION, AND A GATE WITH CONTRACTION ............................................ 136 
 5.5.1 Introduction .............................................................................................. 136 

5.5.2 Comparison of Stabilities ......................................................................... 137 
5.5.3 Comparison of a Gate, a Gate with Expansion, and a Gate with  
Contraction ........................................................................................................ 141 
5.5.4 Choose an Appropriate Hydraulic Structure ............................................ 149 
5.5.5 Scale Effect .............................................................................................. 153 

SECTION 6. AN IMAGE PROCESSING TECHNIQUE TO DETERMINE THE 
EFFICIENCY OF ENERGY DISSIPATION IN HYDRAULIC STRUCTURES157 
 5.6.1 Introduction .............................................................................................. 157 

5.6.2 Digital Pictures......................................................................................... 158 
5.6.3 Model Preparation .................................................................................... 159 
5.6.4 Efficiency Index Calculation ................................................................... 160 
5.6.5 Laboratory Results ................................................................................... 160 
5.6.6 Case Study I ............................................................................................. 163 
5.6.7 Case Study II ............................................................................................ 166 

SECTION 7. LIMITATIONS ....................................................................................... 172 

CHAPTER 6. CONCLUSIONS AND RECOMMENDATION .................................. 174 
6.1 KEY FINDINGS AND CONCLUSIONS .............................................................. 174 
6.2 RECOMMENDATIONS FOR FUTURE WORK ................................................. 179 

BIBLIOGRAPHY ......................................................................................................... 180 

APPENDICES ............................................................................................................... 193 

VITA.............................................................................................................................. 227 



 

x 
 

LIST OF TABLES 

 

TABLE          PAGE 

2.1 Number of Publications and Researchers ................................................................... 7 

2.2 Contributing Countries, Number of Publications and Researchers in Asia ................ 7 

2.3 Number of Publications and Researchers in North America ...................................... 9 

2.4 Contributing Countries, Number of Publications and Researchers in Europe............ 9 

2.5 Countries’ Contribution from Each Decade ............................................................. 10 

2.6 Popular Topics in Gate Studies ................................................................................. 12 

2.7 Summary of Selected Gate Studies ........................................................................... 17 

4.1 Flow Stability Factor................................................................................................. 24 

4.2 Characteristics of Expansion and Contraction Structures ......................................... 36 

4.3 Tested Discharges ..................................................................................................... 47 

4.4 Validation Discharges ............................................................................................... 47 

4.5 Discharges ................................................................................................................. 48 

4.6 Structures and Measurement Sections ...................................................................... 49 

5.1.1 Acceptable Stability for Each Test Discharge ....................................................... 65 

5.1.2 Acceptable Stability for Validation Discharges ..................................................... 66 

5.1.3 Data Used to Train the Network ............................................................................ 68 

5.1.4 Data Used to Test the Network .............................................................................. 68 

5.1.5 Results of the Neural Network ............................................................................... 69 

5.1.6 Nonlinear Regression Methods .............................................................................. 71 

5.1.7 Results of Post-Processing on the Neural Network ............................................... 72 

5.1.8 Nash-Sutcliffe Coefficient Results Using Post-Processing Neural Network ........ 73 

5.2.1 Tested Discharges .................................................................................................. 76 

5.2.2 Control of the Flow Condition ............................................................................... 79 

5.2.3 Control of the Permissible Velocity ....................................................................... 79 

5.2.4 Depth Measurements ............................................................................................. 79 

5.2.5 Two-sided t-test ..................................................................................................... 80 

5.2.6 Check of Normality................................................................................................ 83 

5.2.7 Check of the Equality of Variances ....................................................................... 83 

5.2.8 Tested Discharges .................................................................................................. 85 

5.2.9 Control of the Flow Condition ............................................................................... 87 

5.2.10 Control of the Permissible Velocity ..................................................................... 87 

5.2.11 Depth Measurements ........................................................................................... 88 

5.2.12 Two-sided t-test ................................................................................................... 89 

5.2.13 Check of Normality.............................................................................................. 92 

5.2.14 Check of the Equality of Variances ..................................................................... 92 

5.3.1 Control of the Flow Condition ............................................................................... 98 



 

xi 
 

5.3.2 Control of the Permissible Velocity ....................................................................... 99 

5.3.3 Depth Measurements ............................................................................................. 99 

5.3.4 Two-sided t-test ................................................................................................... 100 

5.3.5 Check of Normality.............................................................................................. 103 

5.3.6 Check of the Equality of Variances ..................................................................... 103 

5.3.7 Tested Discharges ................................................................................................ 106 

5.3.8 Control of the Flow Condition ............................................................................. 108 

5.3.9 Control of the Permissible Velocity ..................................................................... 108 

5.3.10 Depth Measurements ......................................................................................... 109 

5.3.11 Two-sided t-test ................................................................................................. 110 

5.3.12 Check of Normality............................................................................................ 113 

5.3.13 Check of the Equality of Variances ................................................................... 113 

5.4.1 Tested Discharges ................................................................................................ 117 

5.4.2 Control of the Flow Condition ............................................................................. 119 

5.4.3 Control of the Permissible Velocity ..................................................................... 120 

5.4.4 Depth Measurements ........................................................................................... 120 

5.4.5 Two-sided t-test ................................................................................................... 121 

5.4.6 Check of Normality.............................................................................................. 124 

5.4.7 Check of the Equality of Variances ..................................................................... 124 

5.4.8 Tested Discharges ................................................................................................ 127 

5.4.9 Control of the Flow Condition ............................................................................. 129 

5.4.10 Control of the Permissible Velocity ................................................................... 129 

5.4.11 Depth Measurements ......................................................................................... 130 

5.4.12 Two-sided t-test ................................................................................................. 131 

5.4.13 Check of Normality............................................................................................ 134 

5.4.14 Check of the Equality of Variances ................................................................... 134 

5.5.1 Stabilities in a Gate .............................................................................................. 137 

5.5.2 Stabilities in a Gate with Expansion .................................................................... 139 

5.5.3 Stabilities in a Gate with Contraction .................................................................. 140 

5.5.4 Results for All Three Hydraulic Structures ......................................................... 144 

5.5.5 Results for All Three Hydraulic Structures (The Second Laboratory) ................ 148 

5.6.1 Downstream Efficiency Index ............................................................................. 162 

A.1 Permissible Velocities in Unlined, Earthen Channels ........................................... 194 

B.1 Grain Size Distribution........................................................................................... 196 

C.1 Experimental Measurements (Main Data) ............................................................. 199 

C.2 Experimental Measurements (Validation Data) ..................................................... 201 

D.1 Measurements in the First Laboratory ................................................................... 203 



 

xii 
 

D.2 Measurements in the Second Laboratory ............................................................... 205 

E.1 Measurements, Thickness Two Centimeters .......................................................... 207 

E.2 Measurements, Thickness 1.2 Centimeters ............................................................ 209 

E.3 Measurements, Thickness 0.7 Centimeters ............................................................ 211 

E.4 Measurements in the Second Laboratory ............................................................... 213 

F.1 Measurements, Thickness Two Centimeters .......................................................... 215 

F.2 Measurements, Thickness 1.2 Centimeters ............................................................ 216 

F.3 Measurements, Thickness 0.7 Centimeters ............................................................ 217 

F.4 Measurements in the Second Laboratory ............................................................... 218 

H.1 Validation Results .................................................................................................. 226 

 

 



 

xiii 
 

LIST OF FIGURES 

 

FIGURE          PAGE 

4.1. (a) Hydraulic jump at the end of the flume and far from the gate (St = 0) .............. 25 

4.1. (b) Hydraulic jump after the gate (St = 0)................................................................ 25 

4.1. (c) Submerged hydraulic jump after the gate (St = 0.2) .......................................... 25 

4.1. (d) Weak submerged hydraulic jump after the gate (St = 0.4) ................................ 26 

4.1. (e) Very weak submerged hydraulic jump after the gate (St = 0.5) ......................... 26 

4.1. (f) Strong wave after the gate (St = 0.6) .................................................................. 26 

4.1. (g) Wave after the gate (St = 0.7) ............................................................................ 27 

4.1. (h) Weak wave after the gate (St = 0.8) ................................................................... 27 

4.1. (i) Very weak wave after the gate (St = 0.9) ............................................................ 27 

4.1. (j) Stable condition after the gate (St = 1) ............................................................... 28 

4.2. (a) Sections in hydraulic jump ................................................................................. 30 

4.2. (b) Sections in subcritical flow ................................................................................ 30 

4.3 A method to calculate the Flow Stability Number.................................................... 31 

4.4. (a) Vertical gate........................................................................................................ 34 

4.4. (b) Gate with Expansion .......................................................................................... 34 

4.4. (c) Gate with Contraction......................................................................................... 34 

4.5 Flume and gate .......................................................................................................... 35 

4.6. (a) Gate with Expansion, section view .................................................................... 36 

4.6. (b) Gate with Expansion, plan view ......................................................................... 37 

4.7. (a) Gate with Contraction, section view .................................................................. 37 

4.7. (b) Gate with Contraction, plan view ....................................................................... 38 

4.8 The flume and lagoon, satellite view ........................................................................ 39 

4.9. (a) The first valve ..................................................................................................... 39 

4.9. (b) The second valve ................................................................................................ 40 

4.10 The flume ................................................................................................................ 40 

4.11 The mixture which covers the flume bed ................................................................ 41 

4.12. (a) An overview of the gate ................................................................................... 42 

4.12. (b) Details of the gate ............................................................................................. 43 

4.13. (a) Gate with Expansion, section view .................................................................. 44 

4.13. (b) Gate with Expansion, plan view ....................................................................... 44 

4.14. (a) Gate with Contraction, section view ................................................................ 45 

4.14. (b) Gate with Contraction, plan view ..................................................................... 45 

4.15 Digital flow meter ................................................................................................... 46 

4.16 Digital velocity meter ............................................................................................. 50 

4.17 Digital thermometer ................................................................................................ 51 

4.18. (a) A high-speed camera and tripod ....................................................................... 52 

4.18. (b) 1000 lumen LED portable work light .............................................................. 53 

5.1.1 Free flow under the vertical sluice gate ................................................................. 58 

5.1.2 Submerged flow under the vertical sluice gate ...................................................... 59 



 

xiv 
 

5.1.3 Neural Network, MLP ........................................................................................... 61 

5.1.4. (a) Hydraulic jump after the gate (St = 0) ............................................................. 66 

5.1.4. (b) Submerged hydraulic jump after the gate (St = 0.2) ....................................... 67 

5.1.4. (c) Strong wave after the gate (St = 0.6) ............................................................... 67 

5.1.4. (d) Stable condition after the gate (St = 1) ............................................................ 67 

5.1.5 h0/a - dc/h0 graph .................................................................................................... 69 

5.1.6 Post-processing - regression – ANN ...................................................................... 71 

5.1.7 RMSE – Post-processing ....................................................................................... 74 

5.2.1. (a) Supercritical flow after the gate ...................................................................... 77 

5.2.1. (b) Subcritical flow after the gate ......................................................................... 78 

5.2.2 Boxplots – sections 2 and 3 ................................................................................... 81 

5.2.3 Normal Q-Q plot – section 2 .................................................................................. 81 

5.2.4 Normal Q-Q plot – section 3 .................................................................................. 82 

5.2.5 Q-Q plot – section 2 versus section 3 .................................................................... 82 

5.2.6. (a) Sediment transport after the gate ..................................................................... 86 

5.2.6. (b) Surface flow fluctuations after the gate ........................................................... 86 

5.2.7 Boxplots – sections 2 and 3 ................................................................................... 90 

5.2.8 Normal Q-Q plot – section 2 .................................................................................. 90 

5.2.9 Normal Q-Q plot – section 3 .................................................................................. 91 

5.2.10 Q-Q plot – section 2 versus section 3 .................................................................. 91 

5.3.1 Sections in a gate with expansion .......................................................................... 96 

5.3.2. (a) Flow fluctuations after a gate with expansion ................................................. 97 

5.3.2. (b) Stable flow after a gate with expansion .......................................................... 97 

5.3.3 Boxplots – sections 2 and 3 ................................................................................. 101 

5.3.4 Normal Q-Q plot – section 2 ................................................................................ 101 

5.3.5 Normal Q-Q plot – section 3 ................................................................................ 102 

5.3.6 Q-Q plot – section 2 versus section 3 .................................................................. 102 

5.3.7 h0/a vs. dc/h0......................................................................................................... 105 

5.3.8. (a) Sediment transport in the presence of a gate with expansion ........................ 107 

5.3.8. (b) Flow pattern in the presence of a gate with expansion .................................. 107 

5.3.9 Boxplots – sections 2 and 3 ................................................................................. 111 

5.3.10 Normal Q-Q plot – section 2 .............................................................................. 111 

5.3.11 Normal Q-Q plot – section 3 .............................................................................. 112 

5.3.12 Q-Q plot – section 2 versus section 3 ................................................................ 112 

5.4.1 Sections in a gate with contraction ...................................................................... 117 

5.4.2. (a) Flow fluctuations in the presence of a gate with contractions....................... 118 

5.4.2. (b) Stable flow in the presence of a gate with contractions ................................ 118 

5.4.3 Boxplots – sections 2 and 3 ................................................................................. 122 

5.4.4 Normal Q-Q plot – section 2 ................................................................................ 122 

5.4.5 Normal Q-Q plot – section 3 ................................................................................ 123 

5.4.6 Q-Q plot – section 2 versus section 3 .................................................................. 123 

5.4.7 h0/a vs. dc/h0......................................................................................................... 126 



 

xv 
 

5.4.8. (a) Sediment transport in the presence of a gate with contractions .................... 128 

5.4.8. (b) Flow pattern in the presence of a gate with contractions .............................. 128 

5.4.9 Boxplots – sections 2 and 3 ................................................................................. 132 

5.4.10 Normal Q-Q plot – section 2 .............................................................................. 132 

5.4.11 Normal Q-Q plot – section 3 .............................................................................. 133 

5.4.12 Q-Q plot – section 2 versus section 3 ................................................................ 133 

5.5.1 Stability versus discharge in a gate ...................................................................... 138 

5.5.2 Stability versus discharge in a gate with expansion ............................................. 139 

5.5.3 Stability versus discharge in a gate with contraction ........................................... 140 

5.5.4 h0/a versus dc/h0 in all three hydraulic structures ................................................ 143 

5.5.5 Schematic of the river .......................................................................................... 151 

5.5.6 Benefits to each agency in different situations .................................................... 152 

5.5.7 Scale effect in gates ............................................................................................. 154 

5.5.8 Scale effect in a gate with expansion ................................................................... 155 

5.5.9 Scale effect in a gate with contraction ................................................................. 155 

5.6.1 Image histogram on a 0-1 scale ........................................................................... 159 

5.6.2. (a) Stepped spillway physical model, the Water Research Institute ................... 161 

5.6.2. (b) Top view, stepped spillway, the Water Research  Institute .......................... 161 

5.6.3. (a) Top view, Spillway Park – Lake Worth, FL, [Google Earth] ....................... 163 

5.6.3. (b) Image histogram – section one ...................................................................... 164 

5.6.3. (c) Image histogram – section two ...................................................................... 164 

5.6.3. (d) Image histogram – section three.................................................................... 165 

5.6.3. (e) Downstream flow condition .......................................................................... 165 

5.6.4. (a) Top view, Oroville Dam – CA, [Google Earth] ............................................ 167 

5.6.4. (b) Section one .................................................................................................... 168 

5.6.4. (c) Sections two and three ................................................................................... 168 

5.6.4. (d) Image histogram – section one ...................................................................... 169 

5.6.4. (e) Image histogram – section two ...................................................................... 169 

5.6.4. (f) Image histogram – section three .................................................................... 170 

B.1 Grain Size Distribution Curve ................................................................................ 197 

G.1 Gate hydraulic structure (S334) ............................................................................. 220 

G.2 Downstream of the hydraulic structure (S334) ...................................................... 220 

G.3 Upstream of the hydraulic structure (S334) ........................................................... 221 

G.4 Flow condition immediately after a gate (S334) .................................................... 221 

G.5 Depth measurement................................................................................................ 222 

G.6 Upstream of the hydraulic structure (S333) ........................................................... 222 

G.7 Flow in the canal .................................................................................................... 223 

G.8 The gate hydraulic structure (S355B) .................................................................... 223 

G.9 Details of the gate hydraulic structure (S355B) ..................................................... 224 

G.10 Upstream of the gate hydraulic structure (S355B)............................................... 224 



 

xvi 
 

SYMBOLS 

 

𝑋̅𝑜𝑏𝑠                   Average of observation data 

ℎ0                      Upstream depth  

ℎ1                      Depth before the hydraulic jump  

ℎ2                      Depth after the hydraulic jump  

𝑅2                     Coefficient of determination 

𝑋𝑚𝑜𝑑                 Data obtained from the model 

𝑋𝑜𝑏𝑠                   Observation data 

𝐶𝑑                      Discharge coefficient 

(𝑎, 𝑏, 𝑐)1,2,3       Power in dimensional analysis 

a                        Gate opening  

b                        Length of the gate (in width)  

dc                     Critical depth  

g                       Gravitational acceleration  

q                      Unit discharge  

Q                     Flow discharge  

w                    Gate opening  



 

xvii 
 

𝑦1                 Upstream flow depth  

𝑦3                 Downstream water depth  

𝑦3𝑡               Transitional value of tail water depth  

𝛼, 𝛽, 𝜂          Parameters in the DRF formula  

𝜌                  Density of water  

 



 

xviii 
 

ABBREVIATIONS AND ACRONYMS 

 

ANN            Artificial Neural Network 

DRF           Discharge Reduction Factor 

E                Nash-Sutcliffe Coefficient 

GPM          Gallons per minute  

L                Length in dimension analysis  

M              Mass in dimension analysis  

MLP         Multi-Layer Perceptron  

n               Number of observed data points used to calculate RMSE 

NLPCA    Nonlinear principal component analysis 

PCA          Principal component analysis 

r                Basic (main) parameters in the dimension analysis 

RMSE     Root mean square error 

St            Flow Stability Factor 

T             Time in dimension analysis  

𝑘             All parameters in dimension analysis  

𝜋             Buckingham Method 
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CHAPTER 1 

INTRODUCTION 

Streams, rivers, and canals are able to transfer flow from one point to another. Along 

their pathways, they can be used for different purposes, such as water supply, 

recreation, fisheries, and agricultural irrigation, etc. Hydraulic structures are usually 

built along streams, rivers, and canals to manage and control the flow, including, for 

instance, maintaining the upstream level to ensure that irrigation needs are met.  

Despite the advantages of hydraulic structures, they also have disadvantages that may 

be reduced by a better understanding of flow conditions and their control. A vertical 

gate is one type of hydraulic structure. When the gate opening is small, downstream 

the flow has a high velocity and flow fluctuation, which causes erosion downstream of 

the gate.    

If the main causes of erosion (and the resulting sediment transport) downstream of gates 

need to be controlled, a flow classification method is helpful in minimizing erosion. 

Although a few flow classification methods have been developed via past research, 

none has fully aided in minimizing erosion after gates. Consequently, there is a need to 

develop a new flow classification method that can aid in identifying desired flow 

conditions. This is stable flow.   

Two flow classification methods have been introduced in this research. The first one 

classifies flow based on the Flow Stability Factor and the second one classifies flow 

based on the Flow Stability Number (which is dimensionless). The gated structures 
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should be managed in a way that the downstream condition is very close to the stable 

condition, thus minimizing undesirable flow conditions. 

This research focuses on three gated structures including a gate, a gate with expansion, 

and a gate with contraction. These structures were investigated in two laboratories, and 

at different scales, to address a possible scale effect on the methodologies herein 

developed. These structures were investigated over a range of discharges and 

thicknesses (for both gates with expansion and contraction). Consequently, they can be 

compared under flow to select the best structure type to ensure a stable flow. 

Six chapters of this dissertation present and analyze numerous research questions.  The 

first chapter is an introduction and describes the needs, problems, and probable 

solutions; it also outlines the overall structure of the dissertation. The second chapter 

documents the literature review and defines gaps in the existing knowledge. Objectives 

are defined in the third chapter. The methods that are used in the research, laboratories, 

variables, instruments, and the accuracy of results are detailed in chapter four.  

The fifth chapter includes results and a discussion, covering seven sections. The Flow 

Stability Factor is defined in the first section and its application in vertical gates is also 

demonstrated in that section. The second, third, and fourth sections show the 

applications of the Flow Stability Number in a gate, a gate with expansion, and a gate 

with contraction, respectively. The accuracy of the Flow Stability Factor was compared 

with the Flow Stability Number in section five; the three studied structures were also 

compared in this section. A method that uses Game Theory and the Nash Equilibrium 

was implemented to select the best structure for specific flow conditions. A scale effect 

and the probable causes of a scale effect in this research were also discussed in the last 
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part of section five. Section six introduces the Efficiency Index as an innovative index 

which is practical, low-cost, and quick to apply. This index can be determined using an 

image processing technique and is able to estimate the overall efficiency of hydraulic 

structures. Two case studies were presented in this section to show the application of 

this method. Section seven, which is the last section of chapter five, documented the 

limitations of the methods used in these investigations.  

Chapter six, the last chapter, includes both conclusions and recommendations for future 

research. In addition, supporting data and information regarding permissible velocity, 

bed materials, and flow stability, as well as pictures of real scale structures, are 

provided in the Appendices. 
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CHAPTER 2 

BACKGROUND 

2.1 LITERATURE REVIEW 

Sluice gates are primarily used to control the upstream depth to provide required water 

for irrigation and to manage passing discharge below gates in channels [1 - 14]. A wide 

range of sluice gate characteristics has been considered by researchers in different parts 

of the world during past decades. The geographic distribution, as well as the timeline 

of these studies, are reported in the first and second parts of the literature review in this 

chapter (2.1.1 and 2.1.2). The geographical distribution includes a statistical analysis 

to show the contributing percentage of sluice gates studies from each country. The 

timeline distribution reports relevant research work on the sluice gate from the 19th 

century to the present day differentiated by continent and country. Gate studies can be 

categorized as either old or new studies. Old studies are those published before 1900 

and from 1900 to 1949. New studies are divided into three time periods: 1950 to 1979, 

1980 to 1999, and finally 2000 to 2017. The results indicate that most studies belong 

to the two most recent time periods (new studies). There are some old studies which 

were published prior to 1900 [15 - 18]. The oldest study was published in 1848 by 

Boileau [15]. Also, some other studies were published in the first half of the 20th century 

[19 - 29]. New studies started with Henry [30] in 1950 and were followed by other 

research from 1959 [31 - 36] and 1960 to 1969 [37 - 44]. The final part of this chapter 

illustrates the most popular subjects in sluice gate studies and briefly explains other 

researchers’ work. It should be noted that all data has been collected from research 
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scholars, including conference and journal papers, books, journal discussions, and 

closures to journal discussions and handbooks.   

In the initial stage, more than 150 pieces of research were collected and briefly 

considered to prepare the sluice gate research database; this was then narrowed down 

to 71 works for further consideration based on their relevance to this topic of study. 

 

2.1.1 Geographic Distribution 

Research has been conducted to show the geographical distribution of studies related 

to sluice gates. Each continent was considered separately and then a statistical analysis 

was conducted for each country based on the number of publications and the number 

of researchers.  

Based on the database which has been used in this research, in total 21 countries (the 

UK is counted as a single country) have contributed to sluice gate research studies. 

These countries are from all the continents. This means that the topic is important 

globally and that researchers are paying attention to gate issues. It should be noted that 

some gate research may have been conducted in other countries. However, these works 

are not found in research journals. The author did try to include all important and 

relevant work in the database. The criteria for considering the research in the statistical 

results are the first author and the institute/school of the first author when he/she 

published the work. Therefore, the nationality of the first author was not considered in 

the statistical analysis.  
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In total, 125 research works were selected to include in the statistical analysis. These 

works have been conducted by 94 researchers from around the world.  Table 2.1 listed 

the number of publications and the number of researchers from each continent. 

 

    Table 2.1 Number of Publications and Researchers 
Continent # Publications # Researchers 

Asia 23 18 
Africa 14 6 

Australia/ Oceania 4 4 
South America 1 1 
North America 37 28 

Europe 46 37 

 

 

In Asia, six countries contributed to sluice gate research. India and Iran with seven 

publications were considered the most active countries in Asia. Based on the number 

of researchers, again, these two countries placed first and second in Asia with six and 

four researchers, respectively. Table 2.2 reported the contribution of countries in Asia.  

 

   Table 2.2 Contributing Countries, Number of Publications and Researchers in Asia 
Number Continent # Publications # Researchers 

1 India [8,10, 45-49] 7 6 
2 Iran [5,12, 50-54] 7 4 
3 Taiwan [13, 55, 56] 3 3 
4 South Korea [9, 57, 58] 3 2 
5 Japan [59, 60] 2 2 
6 Saudi Arabia [61] 1 1 

 

 



 

8 
 

In Africa, the only country that contributed to sluice gate research was Egypt with 14 

published works [38, 62 - 74] and six researchers. Moreover, the same situation 

happened in South America. In this continent, the only country which contributed to 

research about sluice gates was Uruguay with just one publication [75] and one 

researcher.  On the other hand, in Australia/ Oceania, three countries contributed to 

sluice gate research. Australia had two publications [76, 77] and two researchers; 

Tasmania had one publication [78] and one researcher, and finally New Zealand had 

one publication [79] and one researcher who contributed to research. It should be 

mentioned that Tasmania is not considered its own country by the United Nations, but 

for the purposes of this research it is considered to be a separate country. 

Among all continents, Europe and North America have the greatest number of 

publications and researchers working on the sluice gate topic. In North America, two 

countries, the United States and Canada, contributed to the research with 21 and 16 

publications, respectively. Publications by American authors can be categorized into 

three levels based on the time at which they were published. First, studies before 1950 

[24, 28], those completed from 1950 to 1999 [6, 36, 42, 44, 80 - 86], and those done 

after 2000 [14, 87 - 93]. The same categories can be used for publications from Canada. 

It should be noted that no research was published by Canadian authors prior to 1950. 

However, there are some publications from 1950 to 1999 [39, 40, 94 - 101], and after 

2000 [2, 7, 102 - 105]. Table 2.3 listed the number of publications and the number of 

researchers in North America.  
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    Table 2.3 Number of Publications and Researchers in North America 
Number Continent # Publications # Researchers 

1 USA 21 19 
2 Canada 16 9 

 

In Europe, eight countries contributed to sluice gate research which was the maximum 

number of contributions among the continents based on the number of participating 

countries. In total, 44 published works were reported on sluice gate research. Also, 36 

researchers contributed to research from this continent. Table 2.4 illustrates the 

European countries that contributed to the research with the number of publications 

and the number of researchers from each country.  

 

Table 2.4 Contributing Countries, Number of Publications and Researchers in Europe 
Number Continent # Publications # Researchers 

1 France [11,15,26,29,106-110] 9 7 
2 Germany [16,17,19,22,23,34,111] 7 5 
3 UK [31,33,41,43,112,113] 6 6 
4 Italy [32, 114-118] 6 4 
5 Spain [121-124,143] 5 4 
6 Switzerland [1,25,119,120] 4 4 
7 Turkey [3,4,125,126] 4 3 
8 Netherland [127-129] 3 3 

 

 

2.1.2 Timeline Distribution 

In the previous section, the geographical distribution of sluice gate studies was 

considered. This section includes statistical analysis results to show the timeline 

distribution of sluice gate studies. The distribution of research is presented for each 
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country by decade. In total, 144 research works have been included in this statistical 

analysis. Table 2.5 shows the contribution of each country in different decades. 

 

  Table 2.5 Countries’ Contribution from Each Decade 
Country 2010-

2017 

2000-

2009 

1990-

1999 

1980-

1989 

1970-

1979 

1960-

1969 

1950-

1959 

1940-

1949 

1930-

1939 

Before 

1930 

USA 1 7 2 3 2 3 1 1 1 - 
Canada 2 4 2 4 2 2 - - - - 
Uruguay 1 - - - - - - - - - 
Egypt - 1 11 1 - 1 - - - - 
Australia - - 1 - 1 - - - - - 
Tasmania - - - - 1 - - - - - 
New 
Zealand 

- - 1 - - - - - - - 
India - 1 4 2 - - - - - - 
Taiwan - 2 - - 1 - - - - - 
South 
Korea 

2 1 - - - - - - - - 
Japan - - 1 - 1 - - - - - 
Iran 4 2 1 - - - - - - - 
Saudi 
Arabia 

- - 1 - - - - - - - 
France 2 4 - - - - - 1 1 1 
Germany - - - - 1 - 1 - 2 3 
UK - - 1 - 1 2 2 - - - 
Italy - 3 1 - 1 - 1 - - - 
Switzerland 1 - 2 - - - - - 1 - 
Spain 4 1 - - - - - - - - 
Netherland - 1 2 - - - - - - - 
Turkey 1 2 - 1 - - - - - - 

 

 

From Table 2.5, it can be inferred that Iran and Spain have the most contributions in 

the 2010-2017 period with four publications. The United States had the maximum 

number of contributions in the 2000-2009 period with seven publications, and Egypt 

had the greatest number of publications (11) during the 1990-1999 period. France and 

Germany had the most contributions in the initial stage of the studies (1930-1939 and 
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before 1930). Disregarding studies before 1930, the United States is the only country 

in the world that contributed to sluice gate research in all considered decades.  

 

2.1.3 Popular Subjects  

Among the 142 studies focused on gates, fourteen topics were the most popular subjects 

for gate research. Some of these topics have sub-topics. The most frequently used gate 

types are vertical [130] and radial gates, respectively; furthermore, some researchers 

used H-weir in their research [61, 74]. 

There are two distinguished flow types downstream from the gates. Free flow [131, 

132] and submerged flow [133, 134]. Both of these have been considered a lot by 

research scholars experimentally [135 - 139], numerically [140, 141, 142], and 

theoretically [138, 141]. In free flow, the tailwater depth is less than the gate opening. 

However, in submerged flow, the tailwater depth is more than the gate opening. Some 

researchers developed equations to determine the free and submerged flow condition 

[5, 103] based on dimensional analysis [117, 118, 144]. Ferro applied dimensional 

analysis [145] and self-similarity [146] in gate studies. 
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       Table 2.6 Popular Topics in Gate Studies 
Number Topic Sub-topic Number of 

Studies 

 

1 

 

Gate Type 

Vertical 66 

Radial 19 

Other Types 2 

 

2 

 

Flow Type 

Free 56 

Submerged 62 

3 Distinguishing Condition  - 62 

 

4 

 

Flow Classification 

Froude Number 1 

Fuzzy Concept 1 

Sub-free flow 1 

Partially Submerged Flow 1 

5 Dimensionless Numbers - 69 

6 Sediment Transport - 17 

 

7 

 

Depths and Gate Opening 

Upstream Depth 73 

Downstream Depth 72 

Gate Opening 74 

8 Depth Profile - 10 

9 Stage-Discharge - 5 

10 Energy Downstream - 4 

11 Velocity and Velocity 

Profile 

- 29 

12 Discharge Coefficient - 33 

13 Contraction Coefficient - 34 

 

14 

 

Research Type 

Experimental 67 

Numerical 23 

Theoretical 49 
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Upstream depth, tailwater, and gate opening are the most common variables which 

have been used in the dimensional analysis of gate studies [2, 5, 10, 14, 55]. Yen et al. 

[13] studied maximum gate openings in vertical gates in rectangular canals. They noted 

that supercritical flow occurs exactly after the gate in the downstream section when the 

gate opening is smaller than the critical depth. Furthermore, the Froude number has 

been considered by some researchers in dimensional analysis [9, 59, 62, 115].  

Some researchers have tried to classify the flow regime downstream of the gate. 

Hamedi and Fuentes used the Fuzzy Concept to classify the flow [14]. In their research, 

the number zero was assigned to a hydraulic jump. It means that the flow was 

completely unstable, and the number one was assigned to a stable condition. Belaud et 

al. [106] plotted the submergence ratio versus the relative gate opening and defined 

three flow types downstream of the gate. These three flow types are free flow, partially 

submerged flow, and submerged flow. The partially submerged flow can be seen 

between the other two flow types. Defina and Susin [115] related flow and gate opening 

under the vertical gates to the Froude number. With a Froude number greater than 0.8, 

the flow behavior is like a hysteresis, due to the contraction effect under the gate. 

Bhowmik [81], also, classified different types of a hydraulic jump based on the Froude 

number. Moreover, Vanden-Broeck [80] assumed an incompressible fluid. He 

mentioned that when the Froude number is large downstream, negligible waves occur, 

and the flow is mostly smooth upstream. However, when the Froude number is small 

downstream, large waves occur. 
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Sediment transport downstream of the gate is another topic which has been considered 

by some researchers. A moderate number of publications have paid attention to this 

topic. Bove et al. [75] used PIV (Particle Image Velocimetry) to consider sediment 

transport in non-cohesive particle sediment beds after the gate. They observed two 

holes downstream of the gate and reported that the first hole is made because of the 

shear stress of the jet flow, whereas the second hole is made because of turbulent 

fluctuations which happened due to jet flow destabilization. Therefore, the production 

mechanism of these holes is completely different. Furthermore, Kells et al. [102] 

considered the effect of grain size downstream of the gate on the dynamics of the local 

scour process in the submerged flow. They noted that the area and depth of the scours 

are dependent on grain size. Smaller grain size produces larger scours. They, also, 

reported that the smaller scour had been seen when a mixed bed was used (compared 

with a uniform grain). Moreover, in the presence of higher discharges and tailwater, 

the maximum scour depth is increasing.  

Another popular topic among researchers is determining stage-discharge relationships 

in gates. Shahrokhnia and Javan used dimensional analysis and presented some 

relationships for determining the stage-discharge relationship in radial gates for both 

free and submerged flow conditions. They pointed out that the Reynolds number has a 

negligible effect on average discharge. Therefore, it can be disregarded. They also 

claimed that their method was better than conventional ones for determining the stage-

discharge relationship in radial gates [12]. Bijankhan et al. determined that the methods 

to obtain the stage-discharge relationships under gates are suitable for free flow, but 

need to be reconsidered for a low submerged condition [5]. They presented a method 
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using the Buckingham Theorem and presented the Discharge Reduction Factor, DRF, 

which is defined as follows: 

 

𝐷𝑅𝐹 =  (
(𝑦1−𝑦3)/𝑤

𝛼 [(𝑦3−𝑦3𝑡/𝑤]𝛽+(𝑦1−𝑦3)/𝑤
)

𝜂

                                        (2.1) 

 

   Where, y1 is upstream flow depth, y3 is downstream water depth, y3t is the transitional 

value of the tail water depth and 𝛼, 𝛽, 𝜂  are parameters that should be determined 

experimentally. Moreover, to determine the discharge under the gates, Altan-Sakarya 

and Kökpınar presented two experimental relationships to estimate discharge under the 

gate in free flow situations. The relationships, based on the gate opening and the 

vertical difference between the weir bottom and the top of the gate, is quite accurate 

[4]. 

Little research has focused on the flow energy downstream of gates. Kim et al. [9] 

installed a sill after the gate in their experimental research and considered the effect of 

this hydraulic structure on the amount of energy downstream of the gate. They reported 

that a height equal to 10% of the tailwater is the most effective sill height to reduce the 

hydraulic jump and protect the river bed downstream of the sluice gates. Their results 

indicate that the presence of a sill raises the amount of energy lost about 50% compared 

to a gate without a sill when the sill height is approximately 10% of tailwater. 

   A number of investigations have been conducted to determine the discharge 

coefficient. Swamee [10] stated that in the case of free flow, the discharge coefficient 

of a sluice gate depends on the upstream depth and the amount of the gate opening, 
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whereas in a submerged flow, the discharge coefficient depends on the tailwater depth, 

as well as the factors mentioned for free flow. This researcher proposed a new method 

to attain the discharge coefficient as a function of the gate opening. He also believed 

that previous graphical methods that determined the discharge coefficient using the 

upstream depth to gate opening ratio graphs under free flow conditions were not strong 

enough to use in numerical and analytical methods. Habibzadeh et al. utilized formulas 

to determine the discharge coefficient under gates under both free and submerged flow 

conditions. They accounted for the energy lost between the upstream section and the 

venna section (immediately after the gate) in the discharge coefficient. They also 

acknowledged that energy loss is a function of gate geometry, and can thus change the 

discharge coefficient. Their formula can be used to determine the discharge coefficient 

in gates with different shapes [103].  

The contraction coefficient is one of the important parameters in sluice gate studies. 

Belaud et al. considered the contraction coefficient under gates in both free and 

submerged flow conditions. They determined that when the gate opening is small the 

contraction coefficient is approximately the same for free and submerged flow 

conditions.   However, the gate opening is larger [106].  

There are lots of studies on each topic. Therefore, a summary of important studies is 

listed in Table 2.7. This table illustrates the authors, the year, and the contribution of 

each selected publication to different popular topics of sluice gate studies. 
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Table 2.7 Summary of Selected Gate Studies 
Numbers Author(s) Year Gate 

Type  

Flow 

Type 

Dimensionless 

Numbers 

Sediment 

Transport 

Depth(s)/ 

Gate Opening 

Disch. 

Coef. 

Cont. 

Coef. 

Research 

Type 

1 Lin et al. 2002 1/2 1/2 • - 1/2/3 - • 1 
2 Kim et al. 2015 1 1 • - 1/2 - - 1 
3 Negm et al. 1998 1 2 • - 1/2/3 • - 1 
4 Bove et al. 2013 1 2 • • 1/3 - - 1 
5 Ferro 2000 1 1 • - 1/3 - - 1/3 
6 Ghodsian 2003 Side 1/2 • - 1/2/3 • - 1/3 
7 Kells et al. 2001 1 2 • • 1/2/3 - - 1 
8 Roth, Hager 1999 1 1/2 • - 1/2/3 • - 1 
9 Ohtsu, Yasuda 1994 1 1 • - 1/2/3 - - 1/3 
10 Wu, Rajaratnam 2015 1 1/2 • - 1/23 - - 2/3 
11 Swamee 1992 1 1/2 • - 1/2/3 • - 3 
12 Akoz et al. 2009 1 1 • - 1/3 - • 1/2 
13 Cassan, Belaud 2011 1 1 • - 1/2/3 - - 1/2 
14 Cho et al. 2016 1 - • - 2/3 - - 1 
15 Montes 1997 Planar - • - 1/2/3 - • 2 
16 Altan-Sakarya, Kökpınar 2013 H-weirs - • - 1/3 - - 1 
17 Belaud et al. 2009 1 1/2 • - 1/2/3 - • 1 
18 Bijankhan et al. 2013 2 1/2 • - 1/2/3 - - 1 
19 Defina, Susin 2003 1 1/2 • - 1/2/3 - • 1/3 
20 Habibzadeh et al. 2011 1/2 1/2 • - 1/2/3 • - 3 
21 Shahrokhnia, Javan 2006 2 1/2 • - 1/2/3 • - 1 
22 Shammaa 2005 1 - • - 1/3 - - 2/3 
23 Vanden-Broeck 

 

1997 1 1 • - 2/3 - • 2 
24 Yen et al. 2001 1 1/2 • - 1/2/3 • • 1/3 
25 Speerli, Hager 1999 1 1 • - 1/3 • • 1 
26 Allen, Hamid 1968 1 1 • - 1/2/3 - - 1 
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Table 2.7 Summary of Selected Gate Studies (Continued) 
Numbers Author(s) Year Gate 

Type  

Flow 

Type 

Dimensionless 

Numbers 

Sediment 

Transport 

Depth(s)/ 

Gate Opening 

Disch. 

Coef. 

Cont. 

Coef. 

Research 

Type 

27 Cozzo 1978 1 - • - 1/2/3 • - 1 
28 Garbrecht 1977 - 1 • - 1/3 • - 1 
29 Henry 1950 1 1/2 • - 1/2/3 • • 1 
30 Nago 1978 1/2 1/2 • - 1/2/3 • - 1 
31 Webby 1999 2 - • - 1/2/3 • • 3 
32 Isaacs, Allen 1994 2 1/2 • - 1/2/3 - • 3 
33 Subramanya 1982 1 1/2 • - 1/2/3 - • 3 

      34 Rajaratnam 1983 1 - • • 2 - - 1 
35 Bhowmik 1971 1 1 • - 2 - - 1 
36 Verma, Goel 2003 1 1/2 • - 1/2/3 - - 1 
37 Chatterjee et al. 1994 1 2 • • 1/2 - - 1 
38 Balachandar et al. 2000 1 2 • • 2/3 - - 1 
39 Bey et al. 2007 1 2 • • 1/2/3 - - 1 
40 Uyumaz 1988 1 2 • • 1/2/3 - - 1 
41 Ojha, Subbaiah 1997 1 - - - 1/2/3 • - 3 
42 Swamee et al. 1993 1 1/2 • - 1/2/3 • • 3 
43 Rajaratnam 1977 1 1 • - 1/2/3 - • 1/3 
44 Rajaratnam, Subramanya 1967 1 1 • - 1/2/3 - - 1/3 
45 Cassan, Belaud 2010 1 2 • - 1/2/3 - • 2 
46 Cassan, Belaud 2008 1 2 • - 1/2/3 - • 2 
47 Castro-Orgaz et al. 2010 1 2 • - 1/2/3 - - 1/3 
48 Lozano et al. 2009 1 2 • - 1/2/3 • - 1/3 
49 Sepúlveda et al. 2010 1 2 • - 1/2/3 • - 1/3 
50   Kim 2007 1 1 - - 1/2/3 • • 2 
51 Wahl 2005 2 2 • - 1/2/3 • - 3 
52 Binnie 1952 1 1 • - 1/3 • • 1/2 
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    Table 2.7 Summary of Selected Gate Studies (Continued) 
Numbers Author(s) Year Gate 

Type  

Flow 

Type 

Dimensionless 

Numbers 

Sediment 

Transport 

Depth(s)/ 

Gate Opening 

Disch. 

Coef. 

Cont. 

Coef. 

Research 

Type 

53 Budden, Norbury 1977 2 1 • - 1/2/3 • - 3 
54 Chung 1972 1 1 • - 1/2/3 - • 2/3 
55 Larock 1969 Planar - - - - - • 2 
56 Masliyah et al. 1985 1/2 1 • - 1/2/3 • - 2/3 
57 Alhamid 1999 H-weirs 1/2 • - 1/2/3 - - 1 
58 Altan-Sakarya et al. 2004 Weir 1 • - 1/2/3 - - 3 
59 Ansar 2001 1 1/2 • - 1/2/3 - - 1 

      60 Negm et al. 2002 H-weirs - • - 1/2/3 - - 1/3 
61 Fardjeli 2007 1 2 - - - - • 1 
62 Bijankhan et al. 2011 2 1/2 • - 1/2/3 - - 1/3 
63 Buyalski 1983 2 1/2 • - 1/2/3 • - 12 
64 Clemmens et al. 2003 2 1/2 • - 1/2/3 • • 1/2/3 
65 Ferro 2001 1 2 • - 1/2/3 - - 3 
66 Marcou 2010 1 2 • - 1/2/3 - - 1/2 
67 Wahl et al. 2005 2 1/2 • - 1/2/3 - - 3 
68 Alminagorta, Merkley 2009 1 1/2 • - 1/2/3 - • 1/3 
69 Asavanant, Vanden-Broeck 1996 1 1 - - 1/2/3 - - 2 
70 Vanden-Broeck 1986 1 1 • - 2 - - 2/3 
71 Hamedi, Fuentes 2016 1 1/2 • - 1/2/3 - - 1 

 

Table Guide: Gate Type: 1 = Vertical gate, 2 = Radial gate; Flow Type: 1 = Free flow, 2 = Submerged flow; Depth(s): 1 = Upstream Depth, 2 = Tailwater, 

3 = Gate Opening; Disch. Coef: Discharge Coefficient; Cont. Coef: Contraction Coefficient; Dimensionless Numbers, Sediment Transport, Disch. Coef, 

Cont Coef: • = Applied, - = Not applied; Research Type: 1 = Experimental, 2 = Numerical, 3 = Theoretical.  
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Dimensionless numbers and dimensional analysis have been used in studies, as 

reported in Table 2.6. Those studies highlight the importance of using dimensional 

analysis and dimensionless numbers in future studies. Furthermore, numerous studies, 

which have focused on upstream depth, downstream depth, and gate opening indicate 

the importance of these variables in gate studies. In addition, these studies also indicate 

that the discharge coefficient and contraction coefficient are also important factors in 

gate studies. 

On the other hand, based on the results in Table 2.6, flow classification, energy 

downstream, depth profile, and stage-discharge relationships have not been widely 

considered in the literature, and there is a resulting knowledge gap in these areas. 

Therefore, it is recommended that these topics receive greater focus in future studies. 

In addition, sediment transport should also be more strongly considered in future work. 

This research focuses on flow classification, developing the Flow Stability Factor and 

the Flow Stability Number. The Flow Stability Number is able to define the stability of 

the flow based on the ratio of total energy between two sections downstream of the 

structures; total energy includes bottom elevation (Z), flow depth (y), and velocity 

heads (v2/2g). This dimensionless number adds to knowledge in gate studies, 

addressing sediment transport in the condition of stability in flow.  
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CHAPTER 3 

OBJECTIVES 

3.1 OBJECTIVES OF THE RESEARCH 

The main goal of this research is the development of an improved understanding of the 

hydraulic characteristics of flow and the energy downstream of hydraulic structures, 

since this currently represents an information gap in knowledge about the hydraulics of 

gate studies. The flow was classified using the Fuzzy Concept and the Flow Stability 

Number as a dimensionless number; this number is obtained by dividing energy into 

the two sections downstream. Sediment transport also has been considered to determine 

the acceptable range of the Flow Stability number.  Therefore, this research is filling in 

parts of the knowledge gap in gate studies.  

The specific research objectives are listed next: 

● Introduce the Fuzzy-based Flow Stability Factor as an innovative factor to classify 

the flow downstream of hydraulic structures; also, the application of the Flow Stability 

Factor to determine flow stable conditions has been presented.  

● Show the application of the Artificial Neural Network (ANN) to determine the 

amount of the gate openings and introduce the post-processing technique to reduce the 

differences between the results of the ANN network and the experiment. 

● Introduce the dimensionless Flow Stability Number which can be used to classify the 

flow downstream of hydraulic structures; also, the application of the Flow Stability 

Number to determine flow stable conditions in gates, gates with expansions, and gates 

with contractions has been presented. 
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● Compare hydraulic performance of gates, gates with expansions, and gates with 

contractions. 

● Show the application of Game Theory and the Nash Equilibrium to determine the 

best hydraulic structure under different conditions. 

● Introduce an Efficiency Index as a Fuzzy-based index to determine the efficiency of 

hydraulic structures using image processing technique; moreover, the application of the 

Efficiency Index in a laboratory model, as well as two case studies from Florida and 

California have been presented. 

In addition to these topics, upstream depth, downstream depth, and gate opening have 

also been measured in this research, and the application and usefulness of these 

measures have been illustrated using dimensional analysis.  
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CHAPTER 4 

METHODOLOGY 

 Hydraulic, human-made structures are used to manage and control the flow in 

channels. For example, a vertical gate is used to control the upstream water level [1]. 

The flow condition may change after hydraulic structures. Therefore, it is necessary to 

classify the flow after these structures, then manage the structure to ensure safe and 

stable downstream flow conditions. Investigations on flow characteristics are one of 

the most interesting parts of hydraulic engineering. There are some methods that 

classify flow conditions. Some of these methods classify flow conditions based on 

dimensionless numbers. The Froude number and the Reynolds number are two 

examples of this kind, which are widely used in hydraulic engineering [36]. As 

mentioned in chapter 3, one of the objectives of this research is to find flow stability 

conditions downstream in hydraulic structures. Two methods have been presented in 

this research to estimate flow stability after hydraulic structures. The first method uses 

the Fuzzy Concept to categorize different flow conditions downstream based on 

engineering judgments and the second method utilizes a dimensionless value to 

determine flow stability. The stability definition in the second method is again based 

on the Fuzzy Concept.  

 

4.1 FLOW STABILITY FACTOR  

In this method, flow conditions downstream of the hydraulic structure are categorized 

based on the Fuzzy Concept. The optimum hydraulic structure is obtained when the 
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flow condition is stable in the downstream section. Consequently, it is necessary to 

define a stable condition in the downstream section. Depending on the type of hydraulic 

structure, different conditions can occur downstream, such as a hydraulic jump, a 

submerged hydraulic jump, a wave, or a stable condition.  

The Flow Stability Factor for the flow pattern is defined based on the Fuzzy Concept 

within a range between 0 and 1 (Table 4.1). This arbitrary range has been chosen 

because it is simple and easy to understand.  As an example, a stability parameter of 

0.2 means that the submerged hydraulic jump is just 0.2 or 20% close to the stable 

condition. Different hydraulic conditions, like a hydraulic jump and a submerged 

hydraulic jump, etc., should be determined based on engineering judgment. This is a 

weakness of this method, because a hydraulic expert is needed to determine the flow 

condition after hydraulic structures. Figures 4.1 (a to j) show the different flow 

conditions after the hydraulic structures, which are determined based on engineering 

judgment. 

 
    Table 4.1 Flow Stability Factor 

Numbers Downstream condition Flow Stability Factor  

1 Hydraulic Jump 0 
2 Submerged Hydraulic Jump 0.2 
3 Weak submerged H.J 0.4 
4 Very weak submerged H.J 0.5 
5 Strong wave 0.6 
6 Wave 0.7 
7 Weak wave 

Weak Wave 

0.8 
8 Very weak wave 0.9 
9 Stable 1 
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Figure 4.1. (a): Hydraulic jump at the end of the flume and far from the gate (St = 0) 

 

 

 

 

 

 

 

Figure 4.1. (b): Hydraulic jump after the gate (St = 0) 

 

 

 

 

 

 

 

Figure 4.1. (c): Submerged hydraulic jump after the gate (St = 0.2) 
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Figure 4.1. (d): Weak submerged hydraulic jump after the gate (St = 0.4) 

 

 

 

 

 

 

 

Figure 4.1. (e): Very weak submerged hydraulic jump after the gate (St = 0.5) 

 

 

 

 

 

 

 

                          Figure 4.1. (f): Strong wave after the gate (St = 0.6) 
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                               Figure 4.1. (g): Wave after the gate (St = 0.7) 

 

 

 

 

 

 

                          

Figure 4.1. (h): Weak wave after the gate (St = 0.8) 

 

 

 

 

 

 

 

Figure 4.1. (i): Very weak wave after the gate (St = 0.9) 
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                           Figure 4.1. (j): Stable condition after the gate (St = 1) 

 

      4.2 FLOW STABILITY NUMBER  

Unstable flow condition happens under some conditions. First, it occurs when the 

velocity is high after the gated structures, resulting in erosion and sediment transport. 

Second, it also happens when the depth of the flow is less than the critical depth and 

the flow is supercritical. Third, it may occur when the flow is wavy.  The change in the 

energy of the flow along a structure can be used to investigate flow stability. The total 

energy of the flow at a section includes bottom elevation, water depth, and the velocity 

head in its definition; therefore, the total energy content and its change along a structure 

is a good indicator of flow stability because it accounts for all the terms that relate to 

flow instability. Flow instability primarily happens due to energy changes between two 

sections along a stream, river, or channel. When the flow is “stable” in the first section, 

then the flow will be “stable” again in the second section, if energy loss is negligible. 

Regarding hydraulic behavior, a “stable” condition happens when the flow is sub-

critical in channels. Moreover, other factors, like surface flow fluctuations and bed and 

wall velocities, are important to determine the acceptable flow stability range. Hamedi 
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and Fuentes [14] classified downstream flow conditions based on engineering 

judgment to determine different flow conditions, like hydraulic jump, submerged 

hydraulic jump, and wave, etc. This study introduces the Flow Stability Number and 

the procedure to calculate this number. The study also considered other quantities (e.g. 

hydraulic gradient, change in specific energy, and velocity head) as possible indicators 

of flow stability; however, the change in total energy was selected given its full 

accounting of the total energy at the sections of concern within the structure; in fact, 

the change in total energy between sections within a structure is widely used in the 

common design and operation of energy dissipation via hydraulic jumps, among other 

structures 

 

Two sections should be selected in the same flow direction; then, the energy of each 

section is calculated and the two values are divided, that is the energy of the second 

section is divided by the energy of the first section, thus determining the value of the 

Flow Stability Number as a dimensionless number. The maximum value of the Flow 

Stability Number is one. The Flow Stability Number is based on the Fuzzy Concept and 

indicates the stability percentage of the flow in subcritical flows. For example, when 

the Flow Stability Number is 0.67, it means that the flow is 67% stable. It should be 

noted that both channel sections should be located after the hydraulic structure(s). The 

first section should be selected immediately after the hydraulic structure(s) (in gates 

after the vena-contracta) and the second section can be selected downstream of the first 

section where the flow is uniform.   Figure 4.2 shows the selected sections to calculate 

energies after the vertical gate. In Figure 4.2 a, the jump is not submerged and the vena-
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contracta happens after the gate. To select the depth, which is not impacted by vena-

contracta, the first section should be selected so that it is far enough away from the 

gate. 

 

Figure 4.2. (a): Sections in hydraulic jump (b): sections in subcritical flow 

 

Equation 4.1 presents the general concept of the Flow Stability Number. Equations 4.1 

can be used when the flow depth in both selected sections is not less than the critical 

depth. When the depth in at least one section is less than the critical depth, the Flow 

Stability Number is not defined. 

𝐹𝑙𝑜𝑤 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑁𝑢𝑚𝑏𝑒𝑟 =  
𝐻𝑗

𝐻𝑖
=

𝑍𝑗+𝑦𝑗+
𝑉𝑗

2

2𝑔

Z𝑖+𝑦𝑖+
𝑉𝑖

2

2𝑔

                                       (4.1) 

 

Where H is the total head, y is the depth, v is the velocity, and z is the distance from 

the datum to the bottom in sections i and j. There are two scenarios which happen in 

channels with equal Z, and which need more attention. The first scenario happens when 

the flow is supercritical in both sections. It means that the depth in both sections is less 
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than the critical depth. In this scenario, the Flow Stability Number is not defined, 

because flow is supercritical. The second scenario happens when the flow in the first 

section is supercritical, and the flow is subcritical in the second section (a hydraulic 

jump). In this scenario, again, the Flow Stability Number is not defined, because the 

flow is supercritical. Figure 4.3 shows the method to calculate the Flow Stability 

Number. 

 

Figure 4.3:  A method to calculate the Flow Stability Number 

 

4.3 ACCEPTABLE STABILITY RANGE 

Three criteria should be met in flow to have a stable condition downstream of the 

hydraulic structures. Erosion, fluctuations, and depths should be controlled in channels 

to make the flow stable. These criteria are described below: 

1) The velocity, which is used in the energy equation, should be less than the 

maximum permissible velocity (Vmax). If the velocity is greater than Vmax, sediment 

transport will be seen in the channel. Table A.1 in Appendix A presents the 

maximum permissible velocity values in different non-vegetated linings [147]. 
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2) After the hydraulic structures, the flow regime in both sections should be critical 

or sub-critical. It means that the Froude number should be equal or less than one.  

 

𝐹𝑟𝑜𝑢𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 =  
𝑉

√gD
                                         (4.2) 

 

Where V is the flow velocity, g is gravitational acceleration, and D is hydraulic depth 

[36].  

3) The flow has minimum fluctuations. In both sections after hydraulic structures, 

average depths should be measured by at least ten measurements. Then, a t-test 

[148] should be used to compare the average depth values in both sections after 

the hydraulic structures with the assumption of the equality of means and a 

confidence interval of 95%. The flow is completely stable when the assumption is 

not rejected. Based on the experimental results of this research, the Flow Stability 

Number could be considered as acceptable stability when the assumption is not 

rejected with a confidence interval of 80%. It means that there is not a meaningful 

difference between average depths and flow fluctuations. This limitation is 

proposed based on results from this study and the engineering judgment of the 

author, and it may change at different scales of application (e.g., laboratory, 

prototypes) or under different channel conditions. 

It should be noted that after using the t-test, the box plots [148] for each group should 

be plotted. Then, a normality test [149], like the Shapiro Test [150] or Q-Q plot [151], 

as well as an equality of variances test, like the F-test [152], should be done. If there is 

no outlier and data follows a normal distribution and variances are equal in all groups, 
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then a t-test can be applied. When outliers are seen or data doesn’t follow a normal 

distribution, then non-parametric tests should be applied. 

Based on the criteria for flow stability, stable flow should have the minimum level of 

erosion and sediment transport and surface flow fluctuations in the channels. This flow 

condition reduces aeration and helps operators to manage the hydraulic structures in a 

better way.  

 

4.4 HYDRAULIC STRUCTURES AND LABORATORIES 

A Gate, a gate with an expansion, and a gate with a contraction, are the three hydraulic 

structures that have been used in this research to investigate the downstream flow 

stability condition. These structures have been chosen due to the ease of manufacturing 

and installation and the lower construction cost compared with other hydraulic 

structures. The schematics of these hydraulic structures are depicted in Figures 4.4 (a, 

b, and c). In Figure 4.4 a, h0 is upstream flow depth, and h1 is the flow depth after the 

gate, h2 is downstream flow depth, and a is the gate opening. The vertical gate is 

presented in a section view, but the gate with expansion, as well as the gate with 

contraction, are presented in plan views. In Figures 4.4 (b and c), the hashed rectangle 

is the gate. Furthermore, the flow direction is illustrated. 
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 Figure 4.4. (a): Vertical gate 

 

 

 

 

 

Figure 4.4. (b): Gate with expansion 

 

 

 

 

 

Figure 4.4. (c): Gate with contraction 

 

Experiments have been conducted in two laboratories. The first series of experiments 

were conducted in a narrow flume located at the Fluid Mechanics Laboratory of the 

Civil and Environmental Engineering Department of Florida International University. 

The width of the flume is eleven centimeters; the length and height of the flume are 
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long and high enough for this research. The flume is made up of a steel frame with a 

glass wall. The flume was equipped with a pump which conducted the flow from the 

reservoir to the flume and circulated the flow into the flume and reservoir.  A vertical 

steel gate, which is completely sealed with rubber on both the right and left sides, was 

installed in the middle of this flume. Investigating the developed flow was the reason 

this location was chosen for the gate. A developed flow means a location which is not 

affected by flow circulation in the flume. Figure 4.5 shows the flume and the gate. 

 

 

 
 
 
 
 
 
 
   
   
 
 

The same structures, made from wood, have been used for expansion and contraction 

in this lab. For each of them, three thicknesses with the same length and the same height 

have been used to show the effect of the thickness on flow stability after hydraulic 

structures. These structures have been attached to the flume and completely sealed. 

Table 4.2 shows the characteristics of expansion and contraction structures. 

 

 

Figure 4.5: Flume and gate 
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    Table 4.2 Characteristics of Expansion and Contraction Structures 
Numbers Material Length (cm) Height (cm) Thickness (cm)  

1 Wood 28.5 9.2 2.0 
2 wood  28.5 9.2 1.2 
3 wood 28.5 9.2 0.7 

 

 

The expansion structures were installed in the flume exactly after the gate and the 

contraction structures were installed in the flume 25 centimeters downstream of the 

gate. Figures 4.6 (a) and (b) show the gate with an expansion structure in section and 

plan views, respectively. Moreover, Figures 4.7 (a) and (b) present the gate with a 

contraction structure in section and plan views, respectively. 

 

 

 

 

 

 

 

 

Figure 4.6. (a): Gate with expansion, section view 
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Figure 4.6. (b): Gate with expansion, plan view 

 

 

 

 

 

 

 

 

 

Figure 4.7. (a): Gate with contraction, section view 
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Figure 4.7. (b): Gate with contraction, plan view 

 

Some parts of the experiments were conducted at the Center for Research in Water 

Resources (CRWR) at the University of Texas at Austin, which is in the J.J. Pickle 

Research Campus, to consider the scale effect on this research. Flow is pumped from a 

big lagoon to the flume and then back to the lagoon. Two valves were used to manage 

the discharge into the flume. The first valve is close to the lagoon and lets the flow go 

back to the lagoon before entering the pipes. The second valve was installed after the 

pipe which connects the lagoon to the flume entrance and is located very close to the 

flume entrance. The flume is long enough for this research. It is also approximately 

63.5 centimeters high and 55 centimeters wide. One side of the flume is made of wood, 

and the other side is made of concrete. The flume bed is covered with a mixture of sand 

and gravel which includes brown pea gravel circled, white limestone (the coarsest), and 

dark basalt gravel (intermediate size). The Grain Size Distribution (GSD) of the 

mixture is presented in Appendix B, Table B.1.  Figure 4.8 shows a satellite view of 

the lagoon and the flume also presents flow direction in the flume. Figures 4.9 (a) and 
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(b) indicate the first and the second valve, respectively.  Figure 4.10 presents the flume 

and Figure 4.11 shows the mixture which covers the flume bed. 

 

 

 

 

 

 

 

Figure 4.8:  The flume and lagoon, satellite view 

 

 

 

 

 

 

 

 

 

Figure 4.9. (a): The first valve 
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                                       Figure 4.9. (b): The second valve 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: The flume 



 

41 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: The mixture which covers the flume bed 

The gate is made of wood with a steel frame. Two wooden parts were used in the gate; 

the fixed part and the sliding part. The fixed part is 51 centimeters high and is thicker 

than the sliding part to tolerate flow pressure and maintain the gate in a stable condition. 

This part can be seen from downstream of the gate and is fixed with bar #10 at an 

elevation of 78 centimeters from the bottom of the flume. The sliding part is 51 

centimeters high and is less thick than the fixed portion. Because of its thickness, it 

easily slides in the frame. This part can be seen from the upstream part of the gate. The 

frame is fixed to both sides of the flume, and the gate slides up and down in the frame. 

Therefore, the gate opening is easily managed. The sliding part of the gate is completely 
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sealed with rubber inside the frame, and the frame is carefully sealed with caulking 

cord. This gate was installed in the flume in less than one hour simply for this research, 

and it is considered to be a trustworthy, easy to use, low-cost, and somewhat portable 

gate. This gate can be easily uninstalled from the flume and promptly installed again at 

some point in the future. The gate is installed approximately in the middle of the flume 

where the flow is developed, and it is not affected by flume entrance fluctuations. After 

the gate, the wooden side of the flume is replaced by Plexiglas for some meters (Figure 

4.10). Therefore, the flow can be easily monitored for this section. In the current 

research, this section was used to monitor flow conditions and sediment transport after 

the gate and other hydraulic structures. Furthermore, some parts of pictures have been 

taken, and slow-motion movies have been recorded in this section. Figures 4.12 (a) and 

(b) show an overview of the gate and the gate and sealing details, respectively.  

 

 

 

 

 

 

 

 

 

 

                                  Figure 4.12. (a): An overview of the gate 



 

43 
 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.12. (b): Details of the gate 

 

Structures (blocks) which are of the same size and made of cement have been used for 

expansion and contraction in this lab. The length of the blocks is 40 centimeters, and 

the height and thickness of the blocks are 22.2 centimeters and 4 centimeters, 

respectively. The expansion structures were installed in the flume exactly after the gate 

and the contraction structures were installed in the flume downstream of the gate. 

Figures 4.13 (a) and (b) indicate the gate with expansion structure in section and plan 

views, respectively. Furthermore, Figures 4.14 (a) and (b) show the gate with the 

contraction structure in section and plan views, respectively. 
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Figure 4.13. (a): Gate with expansion, section view 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. (b): Gate with expansion, plan view 
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Figure 4.14. (a): Gate with contraction, section view 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. (b): Gate with contraction, plan view 
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4.5 REQUIRED MEASUREMENT VARIABLES  

Five variables including the discharge, velocity, depth, temperature, and gate opening 

have been measured in this research. Velocity and depth were used to calculate flow 

stability after hydraulic structures. This section introduces the devices which were used 

to measure these variables and also describes measurement sections. 

 

4.5.1 Discharge 

A digital flow meter with one digit accuracy (Figure 4.15) was used to calculate the 

discharge in gallons per minute, which was then converted to cubic meters per second 

and liters per second in the Fluid Mechanics Laboratory at Florida International 

University.  

 

 

 

 

 

 

 

 

Figure 4.15: Digital flow meter 

 

   Ten discharges were used in this research, ranging from low to high levels. The range    

of discharges has been applied to various hydraulic structures, allowing for their 
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hydraulic   comparison, performance, and most optimal application. Table 4.3 presents 

selected discharges for this research. 

 
     Table 4.3 Tested Discharges 

   Numbers          (GPM) 

 (GPM) 

 

m3/s (x103)    (m2/s) 
               1      10.0      0.63    0.0057 

        2      15.0      0.95    0.0086 
        3      27.7      1.75    0.0159 
        4      34.6      2.18    0.0198 
        5      41.4      2.61    0.0237 
        6      47.5      3.00    0.0270 
        7      53.2      3.36    0.0305 
        8      61.2      3.86    0.0350 
        9      70.2      4.43    0.0400 
       10      74.5      4.70    0.0427 

   
 

 These discharges have been used to train the ANN between discharge, upstream depth, 

gate opening, and stability. Four other discharges have then been used to validate the 

Neural Network (Table 4.4). Six discharges have been used in the second laboratory 

(i.e. CRWR, the University of Texas at Austin). Table 4.5 shows these discharges in 

detail. 

 
     Table 4.4 Validation Discharges  

Numbers (GPM) 

 

m3/s (x103)   (m2/s) 
1 29.9 1.89 0.0171 
2 38.8 2.45 0.0222 
3 56.8 3.58 0.0325 
4 72.3 4.56 0.0414 
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     Table 4.5 Discharges 

 

4.5.2 Depth 

Depth is needed to describe the water surface and also to define the total energy or 

specific energy. A point gauge of ±1millimeters reading accuracy was used as common 

depth measurement equipment in the laboratory, and to measure the water depth 

upstream and downstream (Figure 4.5) in the Fluid Mechanics Laboratory at Florida 

International University. Each depth was measured three times (in centimeters) to 

enhance statistical reliability, and the average value of these three measurements was 

used as the depth in calculations (in meters). A photo was taken for each test to enhance 

the accuracy of the work; then, if there were doubts about the depth, the picture was 

inserted into the ArcGIS and the required depths were determined with a high degree 

of precision. The point gauge was located at three sections in the gate structure and four 

sections in the gate with expansion and the gate with contraction structures. The first 

section was located 40 centimeters upstream of the gate for all measurements. The 

location of the other sections was related to the type of the hydraulic structure. In a gate 

with an expansion and a gate with a contraction hydraulic structure, the second section 

was in the structure, and the third and the fourth sections were located after the 

hydraulic structures. In the “gate” hydraulic structure, the second section was located 

after the gate (i.e. after the hydraulic structure), also the third section was located 

Numbers m3/s (x103)                                        Structures 
        1  18.94   Gate, Gate with expansion, Gate with contraction  
        2 25.66 Gate,  Gate with expansion, Gate with contraction 
        3 32.20 Gate, Gate with expansion, Gate with contraction 
        4 52.39                                          Gate 
        5 69.57                                          Gate 
        6 89.66                                          Gate 
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downstream of the second section. The same procedure was used to measure depth in 

the second laboratory. The depth measurement sections are presented in Table 4.6.  

 

     Table 4.6 Structures and Measurement Sections 
Structure type Section 1 Section 2 Section 3 Section 4 

Vertical gate Before 
the gate 

Middle of the 
jump 

- 
Downstream 

Contraction with vertical gate Before 
the gate 

Middle of the 
contraction 

After  
the 

contraction 
Downstream 

Expansion with vertical gate Before 
the gate 

Middle of the 
expansion 

After  
the 

expansion 
Downstream 

 

 

Furthermore, the amount of the gate opening was measured in all experiments. 

Estimating the optimum gate opening is the purpose of this research. The optimum gate 

opening happens when the flow downstream of the hydraulic structure is stable and is 

in a safe condition. This factor has been measured in the same way as the depth (in 

centimeters) and with a reading accuracy of ±1millimeters by a point gauge in both 

laboratories. The value of the gate opening indicates the distance between the bottom 

of the channel and the bottom part of the vertical gate. 

 

4.5.3 Velocity 

Velocity was measured in all experiments to find the total energy. Moreover, this 

variable was considered carefully and was compared with allowable velocity in 

channels to avoid sediment transport. A digital velocity meter with one digit accuracy 
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was used in this research to determine the velocity in meters per second (both 

laboratories). Figure 4.16 shows the digital velocity meter.  

 

Figure 4.16: Digital velocity meter (globalindustrial.com) 

 

The sections which were used to measure depth were also used to determine velocity 

(Table 4.6). Velocity was measured using two methods. When the depth was deep (high 

discharge), the velocity was measured at 0.2 and 0.8 depth from the surface and the 

average of these two values was used as velocity. On the other hand, when the depth 

was not deep enough, the velocity was only measured at 0.6 depth from the surface. 

All measurements were repeated three times to reduce the error and the average of these 

three measurements were used as velocity in the calculations. 

 

4.5.4 Temperature 

The Reynolds number is affected by temperature; therefore, this variable was measured 

in all the experiments. A digital thermometer with one digit accuracy was used in the 
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first laboratory (FIU) to measure the temperature in Celsius (oC). The thermometer is 

presented in Figure 4.17. In the second laboratory (CRWR – UT Austin), the velocity 

meter (Figure 2.16) was used to measure the temperature with one digit accuracy, again 

in Celsius (oC). This device can measure temperature as well as velocity. The sections 

which were used to measure depth were also used to determine the temperature in both 

laboratories (Table 4.6). 

 

Figure 4.17: Digital thermometer (homedepot.com) 

 

4.5.5 Flow Pattern 

The flow pattern is one of the most important factors in determining the downstream 

flow stability of the hydraulic structures based on both definitions previously presented 

in this chapter. Pictures and movies were captured and recorded by a high-speed camera 
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which can take pictures at 40 frames per second and record a movie at up to 1000 

frames per second to allow careful consideration of the flow pattern. Moreover, two 

kinds of tripods, long and short, with the flexibility to set in different angles, as well as 

a 1000 lumen LED portable work light, have been used in this study to enhance the 

quality of the pictures and movies. Figures 4.18 a and b illustrate the high-speed camera 

with the tripod and the portable work light, respectively. 

 

 

Figure 4.18. (a): A high-speed camera and tripod 
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Figure 4.18. (b): 1000 lumen LED portable work light (homedepot.com) 

 

4.6 ARTIFICIAL INTELLIGENCE METHODS  

Two artificial intelligence methods, the Fuzzy Concept and the Artificial Neural 

Network (ANN), have been used in this study to define the stability concept and predict 

the amount of the gate opening. 

 

4.6.1 The Fuzzy Concept 

The Fuzzy Concept has been used to define flow stability types (flow categories) 

downstream of the vertical gates in sections 4.1 and 4.2. When the flow experienced a 

hydraulic jump that means that the flow is completely unstable and the stability number 

is not defined in supercritical flow. On the other hand, when the flow is sub- critical 

and the velocity is low, the flow is completely stable (100%) and the assigned stability 
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number for this type of flow is “1.” Between these two flow types, there are some other 

types of flow with an assigned stability number of more than zero and less than one. 

This concept is borrowed from the Fuzzy Concept, which was introduced by Zadeh 

[153].  

 

4.6.2 Artificial Neural Network (ANN) 

In this research, the Artificial Neural Network toolbox in MATLAB was used to predict 

the amount of the gate opening. The stability parameter and the unit discharge are 

imported as inputs and the upstream depth over the gate opening is calculated as output 

using Multi-Layer Perceptron (MLP) in ANN. Two layers with ten neurons in each 

layer were used to create the network. This method, however, does not result in very 

accurate results when there is not a lot of data, and it needs some corrections to reduce 

error.  Therefore, a regression-based post-processing method has been introduced and 

applied in this study to reduce error. The results indicate that the post-processing 

method effectively works when fewer data points are available. Various statistical 

methods (e.g., RMSE and Nash-Sutcliff) have been used to determine model accuracy. 

The details of the ANN network and the post-possessing method which were used are 

presented in the results and discussion chapter. 

 

4.7 DIMENSIONLESS PARAMETERS  

The first step in calculating the optimum hydraulic structure is determining all relevant 

dimensionless parameters. The Buckingham Pi Theorem has been used to find effective 

dimensionless parameters. Some parameters like density, gravitational acceleration, 
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upstream depth, critical depth, gate opening, viscosity, downstream depth, and slope 

are important to develop the most effective dimensionless parameters. For each 

hydraulic structure, the set of dimensionless parameters has been determined and used 

in graphs, calculations, and relationships. These sets of dimensionless parameters are 

introduced and described in their specific sections in the results and discussion chapter.  

Moreover, two dimensionless numbers are important in this research. The Froude 

number and the Reynolds number. The Froude number is a ratio of inertia force to 

gravity force and the Reynolds number is a ratio of inertia force to viscosity force. 

 

𝐹𝑟2 =  
𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝐺𝑒𝑟𝑎𝑣𝑖𝑡𝑦 𝑓𝑜𝑟𝑐𝑒
=  

𝑚𝑎𝑠𝑠 × 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑠𝑠 × 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

=  

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑡𝑖𝑚𝑒

𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

(
𝑉
𝑡

)

𝑔
=  

𝑉

𝑡𝑔
=  

𝑉

𝐷
𝑉 × 𝑔

=  
𝑉2

𝐷𝑔
 → 𝐹𝑟 =

𝑉

√𝑔𝐷
                                 (4.3) 

   

𝑅𝑒 =  
𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒

𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 𝑓𝑜𝑟𝑐𝑒
=  

𝑚𝑎𝑠𝑠 × 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 × 𝑎𝑟𝑒𝑎

=  
𝑣𝑜𝑙𝑢𝑚𝑒 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
𝑡𝑖𝑚𝑒

𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 × 𝑎𝑟𝑒𝑎
 

𝑣𝑜𝑙𝑢𝑚𝑒

𝑡𝑖𝑚𝑒
 ×𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ×𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 ×𝑎𝑟𝑒𝑎
=  

𝑎𝑟𝑒𝑎 ×𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ×𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ×𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 ×𝑎𝑟𝑒𝑎
  

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠
=  

𝑉𝜌𝑉

𝜇 (
𝑑𝑉
𝑑𝑦

)
=  

𝑉𝜌𝑉

𝜇
𝑉
𝐿

=  
𝑉𝜌
𝜇
𝐿

=  
𝑉𝐿
𝜇
𝜌

                (4.4) 



 

56 
 

CHAPTER 5 

RESULTS & DISCUSSION 

SECTION 1 

OPTIMIZING GATE OPENINGS FOR FLOW REGIME CONTROL: 

EXPERIMENTAL AND ARTIFICIAL NEURAL NETWORK 

DEVELOPEMENT 

 

Vertical gates are important structures that control flow characteristics in both 

downstream and upstream flows in streams and canals. In this investigation, laboratory 

tests were conducted to find the optimum vertical gate opening as a function of the 

upstream water level to yield a stable downstream condition. Physical simulations were 

conducted within a range of discharges for the experimental flume. Fuzzy Concepts 

were also used to define the Flow Stability Factor. Experimental results were then 

analyzed via an artificial neural network (ANN) to estimate the optimum gate opening. 

The ANN results were post-processed via regression analysis to minimize estimation 

errors. This investigation highlights the potential for optimizing hydraulic performance 

based on regression-based post-processing ANN to define optimal design, analysis, and 

operating conditions for hydraulic structures (e.g., gates) in controlling stream flow 

conditions.  
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5.1.1 Introduction 

Numerous hydraulic structures can be used in rivers and canals to control flow and 

keep downstream water in a stable and safe flow condition. A common structure is a 

gate. There are various types of gates, such as vertical gates and radial gates, etc. 

Vertical gates are easier to design, deploy, and operate. Optimal gate performance will 

be achieved when the gate opening is set at an optimal value that avoids a hydraulic 

jump. In fact, small openings can cause a hydraulic jump (or a submerged hydraulic 

jump). A hydraulic jump is associated with unstable downstream flow conditions and 

can lead to downstream erosion. To ensure a stable downstream condition, various 

types of hydraulic jumps and wave flow conditions should be avoided. The best way to 

avoid this is by setting an optimum gate opening. A comprehensive literature review 

for sluice gates is presented in chapter two. 

Artificial intelligence has also been used in gate operations. Guven and Gunal [154] 

used genetic programming to predict the scour downstream of gates. They derived 

equations from linear and non-linear regression, using an analysis of dimensionless 

parameters. They compared their predictions with experimental results and concluded 

that the precision of their method is higher than for others. Guven et al. [155] used an 

artificial neural network method to predict pressure fluctuations during a hydraulic 

jump at the bottom of a sloped stilling basin. They used a feed forward model with a 

back propagation algorithm. This model was compared with models based on linear 

and non-linear regression that had been developed from testing physical models. The 

results show that the neural network outputs perform better than regression estimates, 

showing less error. Najafzadeh and Lim [156] used neuro-fuzzy GMDH (Group 
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Method of Data Handling) to estimate gates’ downstream scour. They used six 

dimensionless parameters and did sensitivity analysis, defining the effect of each factor 

on the amount of scour. They also compared the results of the model with regression 

equations, concluding that their model had less error than other methods.    

 

5.1.2 Theory 

The vertical gate is a hydraulic structure for conducting and controlling the flow of 

canals and rivers. Figure 5.1.1 shows a schematic vertical gate. 

 

 

Figure 5.1.1: Free flow under the vertical sluice gate 

 

Discharge can be obtained by the following formula: 

 

𝑄 = 𝐶𝑑𝑎𝑏√2𝑔ℎ0                                              (5.1.1)  

 

In this formula, “Q” is the discharge under the gate, “a” is the gate opening, “b” is the 

length of the gate, “h0” is the upstream depth, “g” is the gravitational acceleration, and 

“Cd” is the discharge coefficient. Submerged flow is presented in Figure 5.1.2. 
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Figure 5.1.2: Submerged flow under the vertical sluice gate  

 

For the submerged flow regime, Henry [30] presented a graph to calculate the discharge 

coefficient at gates. This researcher also suggested using equation (5.1.1) in submerged 

flow; Cd needs to be experimentally determined. 

An artificial neural network is a simulation of the human brain. It can be implemented 

by both electric and computer software. It learns new knowledge, stores this 

information in connection weights, and uses it to solve problems. Modern artificial 

neural network research (i.e., ANN) began about 60 years ago [157]. An artificial 

neural network typically consists of a large number of simple processing units (i.e., 

neurons) that are mutually interconnected. It learns to solve problems by adequately 

adjusting the strength of the interconnections according to input data. Moreover, the 

neural network adapts easily to new environments by learning. It can deal with 

information that is noisy, inconsistent, vague, or probabilistic [158]. 

The first ANN model was developed by McCulloch and Pitts [159]. They proposed a 

neuron model that performs a weighted sum of inputs to the element, followed by a 
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threshold logical operation. Hebb [160] proposed a learning scheme for adjusting a 

connection weight based on pre- and post-synaptic variable values. Minsky [161] 

developed a learning machine in which the connection strength could be automatically 

adapted. Rosenblatt [162] proposed that a perception model that has adjustable weights 

be the perception learning law. Minsky and Papert [163] produced a multilayer 

perceptron (MLP) to solve difficult problems. Hopfield [164] developed an energy 

analysis for feedback neural networks. 

The MLP is made up of elements or perceptrons that are based on the McCulloch and 

Pitts [159] model of a simple human neural. The perceptron units are made up of 

multiple inputs linked via weighted connections (synapses or weights) to summing and 

nonlinear squashing functions. When perceptrons are connected in a network with more 

than one layer, the subsequent structure is called an MLP (Figure 5.1.3). 

MLPs, with the correct weight configurations, can be used to solve many problems in 

pattern recognition, system identification, and time series prediction. The strength of 

the MLP is that the underlying rules of the function do not need to be known prior to 

network training (i.e., finding the relationship between inputs and outputs in a black 

box).  During the training process, assuming there is a representative training data set, 

the network extracts the mapping function in its internal representation, thus obtaining 

a solution. The simplicity of this solution adds to its usefulness. It is important to note, 

however, that in some applications it is necessary to know how the task has been solved. 

The black-box nature of the MLP can be a drawback rather than a strength [165].  
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Figure 5.1.3: Neural Network, MLP 

 

5.1.3 Experiments 

 A total of 73 experiments (14 discharges) were conducted in this research to find the 

optimum gate opening for each discharge, which leads to a stable downstream flow 

condition.These experiments were performed in a narrow flume, located at the Fluid 

Mechanics Laboratory of the Civil and Environmental Engineering Department of 

Florida International University. The details of the flume and measurement devices are 

presented in chapter 4. 

Ten discharges were tested in this research and are presented in Table 4.3, ranging from 

low to high levels. For each discharge, various gate openings (i.e., 59 tests) were looked 

at to determine the acceptable gate opening range. These discharges were used to train 

the Artificial Neural Network between discharge, upstream depth, and gate opening; 
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then, four other discharges (i.e., 14 tests) were used to validate the Neural Network 

(Table 4.4). 

Finding the optimum gate opening for each upstream depth and discharge is the purpose 

of this research. The optimum gate opening is obtained when the flow condition is 

stable in the downstream section, and consequently, it is necessary to define a stable 

condition in the downstream section. Depending on the gate opening, different 

conditions can occur downstream, such as a hydraulic jump, a submerged hydraulic 

jump, a wave, or a stable condition.  

The Flow Stability Factor is defined in chapter 4, based on the Fuzzy Concept, to 

classify the downstream flow condition and consequently determine the optimum gate 

opening (Table 4.1).   

For each discharge, various gate openings were examined. For each gate opening, the 

downstream flow condition was recorded. The first step in calculating the optimum 

gate opening is to determine all relevant dimensionless parameters. 

Unit discharges and dimensionless parameters were applied in this study; therefore, the 

results can be used in real streams and rivers. However, a scale effect should be taken 

into account to validate the results or to find a correction factor for the outcomes due 

to the small dimensions used in this research. Roth and Hager [1] noted that due to fluid 

viscosity, channel width has an effect on the minimum gate opening. They stated that 

for any channel width and with inviscid flow, for the Froude similarity to apply, a gate 

opening of at least approximately 50 millimeters is required. Also, they reported that 

narrower channels need a higher minimum gate opening. The flume which was used in 

this research was narrow (11 centimeters), and some gate openings were less than the 
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minimum gate opening reported by Roth and Hager [1]. It should be noted that Roth 

and Hager’s claim is based on fluid viscosity which can vary with temperature and 

water quality. The flow classification which is used in this research can be applied in 

larger scale models.  

 

5.1.4 Neural Network 

The neural network toolbox (i.e., nntool) in Matlab was used to create a network for 

predicting the optimum gate opening. The critical depth and upstream depth are 

network inputs, and “a” is the network output. First, stable conditions were separated 

from all the tests. A network was then generated for eight critical depths, and four other 

critical depths were used to validate the network. The characteristics of the neural 

network are as follows: 

 Multi-layer perceptron (MLP); 

 Inputs: unit discharge and  Flow Stability Factor; 

 Target: h0/a; 

 Network type: Feed-forward backprop; 

 Training function: TRAINLM; 

 Adaption learning function: LEARNGDM; 

 Performance function: MSE; 

 Number of layers: 2; 

 Property for the first layer: 10 Neurons; 

 Property for the second layer: 10 Neurons; and 

 Transfer function: PURELIN. 
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An artificial intelligence network was created to predict the optimum gate opening for 

each condition. Matlab software was used to create an artificial intelligence network. 

 

5.1.5 Dimensional Analysis 

The Buckingham Pi Theorem was used to find effective dimensionless parameters. 

Some parameters like density, gravitational acceleration, upstream depth, critical 

depth, gate opening, viscosity, downstream depth, and slope are important in 

developing the most effective dimensionless parameters. 

After proper consideration, the effect of viscosity is determined to be negligible. In 

addition, only one slope (the horizontal slope) was used as a parameter in this analysis; 

therefore, it can be disregarded. To determine the gate opening (a), density, 

gravitational acceleration, upstream depth, critical depth, and downstream depth are all 

important variables. 

The MLT (mass-length-time) system of fundamental variables was used here to 

develop a fundamental relationship among dimensionless parameters that should best 

represent the flow behavior of interest: 

 

𝑘 = 6 → (𝜌, 𝑔, ℎ0, 𝑑𝑐, ℎ2, 𝑎)                              (5.1.2) 

𝑟 = 3 → (𝜌, 𝑔, ℎ0)                                          (5.1.3) 

𝜋 = 𝑘 − 𝑟 = 3                                              (5.1.4) 

𝜋1 =
𝑑𝑐

ℎ0
                                                   (5.1.5) 

𝜋2 =
ℎ2

ℎ0
                                                   (5.1.6) 
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𝜋3 =
ℎ0

𝑎
                                                   (5.1.7) 

 (𝑑𝑐

ℎ0 
, ℎ2

ℎ0
 , ℎ0

𝑎
)                                               (5.1.8) 

 

Dimensionless parameters, dc/h0, and h0/a, were used to calculate “a.” 

 

5.1.6 Results and Discussion 

Fifty-nine (59) tests were conducted in the laboratory, and an additional 14 tests were 

carried out for validation. The outcomes of all experiments are reported in Tables C.1 

and C.2 in Appendix C. After measuring the upstream depth (h0) and the gate opening 

(a) for each discharge, the h0/a can then be determined. Tables 5.1.1 and 5.1.2 contain 

both the acceptable stability and the h0/a ratio for each discharge. 

 

    Table 5.1.1 Acceptable Stability for Each Test Discharge 
Unit Discharge Discharge (m3/s (x103))   Flow Stability Factor h0/a 

0.0057 0.63   
0.0086 0.93   
0.0159 1.75 0.8 4.16 
0.0198 2.18 0.8 1.96 
0.0237 2.61 0.8 1.60 
0.0270 3.00 0.8 1.57 
0.0305 3.36 0.9 1.55 
0.0350 3.86 0.9 1.45 
0.0400 4.43 0.9 1.37 
0.0427 4.70 0.9 1.31 
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   Table 5.1.2 Acceptable Stability for Validation Discharges 
Unit Discharge Discharge (m3/s (x103))   Flow Stability Factor h0/a 

0.0171 1.89 0.8 3.33 
0.0222 2.45 0.8 1.96 
0.0326 3.58 0.9 1.46 
0.0415 4.56 0.9 1.28 

 

As can be seen in Table 5.1.1, the first and second discharge stability cells are blank, 

because these discharges are too low, and for every gate opening (even those that are 

smaller than 1 centimeter), the downstream condition is stable. Figures 5.1.4 (a to d) 

illustrate some representative downstream conditions after the gate. 

 

 

 

 

 

 

 

 

Figure 5.1.4. (a): Hydraulic jump after the gate (St = 0) 
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Figure 5.1.4. (b): Submerged hydraulic hump after the gate (St = 0.2) 

 

 

 

 

 

 

 

Figure 5.1.4. (c): Strong wave after the gate (St = 0.6) 

 

             

 

 

 

 

 

                        Figure 5.1.4. (d): Stable condition after the gate (St = 1) 
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       Among the tests, eight tests were selected because they yielded a stable condition 

boundary for each discharge. They were used to create a neural network. Training data 

is highlighted in Table 5.1.3. Four discharges were used to test the network; specific 

data is provided in Table 5.1.4. A graph of h0/a versus dc/h0 is drawn (Figure 5.1.5). 

The dimensionless parameter dc/h0 determines discharge and upstream depth and 

provides an h0/a value; from h0/a, the size of the gate opening can then be obtained. 

 

    Table 5.1.3 Data Used to Train the Network 
Number q  

 (m2/s) 
h0 (cm) 
Input 

dc (cm) 
Input 

a (cm) 
Target 

1 0.0159 10.4 3.0 2.5 
2 0.0198 8.8 3.4 4.5 
3 0.0237 8.8 3.9 5.5 
4 0.0272 9.4 4.2 6.0 
5 0.0305 9.3 4.6 6.0 
6 0.0351 9.4 5.0 6.5 
7 0.0403 9.6 5.5 7.0 
8 0.0427 9.8 5.7 7.5 

 

 

    Table 5.1.4 Data Used to Test the Network 
Number q  

(m2/s) 
h0 (cm) 
Input 

dc (cm) 
Input 

a (cm) 
Target 

1 0.0171 10.0 3.1 3.0 
2 0.0222 8.8 3.7 4.5 
3 0.0321 9.5 4.8 6.5 
4 0.0415 9.6 5.6 7.5 
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Figure 5.1.5:  h0/a - dc/h0 graph  

 

An Artificial Neural Network has been used in this research to show that this powerful 

technique can be used in hydraulic engineering and predicting gate openings.  Data in 

Tables 5.1.3 and 5.1.4 were respectively used to both train the neural network and to test 

the created network. The average difference for the four discharges is 4.87%. The 

maximum difference is 12.00%, and the minimum difference is 0.00% (Table 5.1.5). 

 

      Table 5.1.5 Results of the Neural Network 
Number    q  

(m2/s) 
Real a a (A.N.N) Difference

% 
1 0.0171 3.0 3.00 0.00 
2 0.0222 4.5 5.04 12.00 
3 0.0326 6.5 6.16 5.23 
4 0.0415 7.5 7.33 2.27 
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   Some researchers have used pre-processing methods, like principal component analysis 

(PCA) for linear data and nonlinear principal component analysis (NLPCA) for linear or 

nonlinear data [166, 167, 168, 169] to reduce the number of components, upgrade the 

quality of learning for the network, and improve the network’s speed of learning. Post-

processing in the artificial neural network (ANN) was herein done by polynomial 

regression to reduce the difference percentage. The latter means that data obtained from 

experimental tests enter into the ANN and instead of pre-processing with PCA or NLPCA 

to obtain a better network or to reduce error, a regression-based post-processing method 

was used. Different types of regressions were applied to the results (outputs) of ANN. 

However, polynomial regression was ultimately selected because it shows the best fit and 

gives the minimum error. Although ANN sometimes has good predictive power with a 

small amount of data, the result of the prediction is much more accurate with more data 

because of better network learning [158]; as a result, ANN is not very accurate with a small 

amount of data. Applying the regression-based post-processing method to ANN results 

gives an accurate enough prediction with the available data. The h0/a-dc/h0 graph was 

drawn from the results of the neural network, and nonlinear regressions were then applied 

to the graph (Figure 5.1.6). Some nonlinear regression methods have been used to find the 

curve fit with a high coefficient of determination. Table 5.1.6 listed the regression methods 

which have been used in post-processing and reported the coefficient of determination for 

each of them. Based on the results of Table 5.1.6, Michaelis-Menten (Rectangular 

Hyperbola) with a coefficient of determination of 0.9978 was selected to use in post-

processing. 
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   Table 5.1.6 Nonlinear Regression Methods 
Number Method*  Type Formula 𝐑𝟐 

1 Four Parameter Logistic Curve Symmetrical Sigmoidal 
𝑦 = 𝑑 +

𝑎 − 𝑑

1 + (
𝑥
𝑐

)𝑏
 

0.9973 

2 Michaelis Menten Rectangular Hyperbola 
𝑦 =

𝑉𝑚𝑎𝑥𝑥

𝑘𝑚 + 𝑥
 0.9978 

3 Exponential Basic 𝑦 = 𝑎 + 𝑏𝑒−𝑐𝑥 0.9965 
4 Exponential Half-life 

𝑦 = 𝑎 +
𝑏

2
𝑥
𝑐

 
0.9965 

5 Exponential 

 

Proportional Rate Growth 

Decrease 

𝑦 = 𝑦0 −
𝑣0

𝑘
(1 − 𝑒−𝑘𝑥) 0.9965 

6 Power Power Curve 𝑦 = 𝑎𝑥𝑏 0.9656 
7 Gaussian Bell Curve 

𝑦 = 𝑎𝑒
(−

(𝑥−𝑏)2

2𝑐2 ) 
0.9297 

*mycurvefit.com 

 

 

 

Figure 5.1.6: Post-processing - regression – ANN  

 

0

1

2

3

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

h 0
/a

dc/h0

ANN

Model



 

72 
 

The ANN outcomes for the gate opening have been used in nonlinear regressions to 

determine the post-processed value for the gate opening in each discharge. Figure 5.1.5 

illustrates the ANN and the post-processed model in the dimensionless graph. Furthermore, 

Table 5.1.7 reported the amount of the gate opening after post-processing. The last column 

in this table shows the comparison of the real gate opening (column 3) and the gate opening 

which is obtained from post-processing (column 6) in percentage terms.  

 

      Table 5.1.7 Results of Post-Processing on the Neural Network 
Number dc/ h0 Real a h0/a Reg. (h0/a) Reg.(a) Difference% 

1 0.31 3.0 3.33 3.33 3.01 0.23 
2 0.42 4.5 1.96 1.80 4.89 8.74 
3 0.50 6.5 1.46 1.48 6.40 1.49 
4 0.58 7.5 1.28 1.32 7.28 2.88 

  

The average difference for the four discharges is 3.33%. The maximum difference is 

8.74%, and the minimum difference is 0.23%. Table 5.1.7 indicates that post-processing 

decreases the average difference percentage by approximately 1.54% compared with ANN 

outcomes. This method also decreases the maximum difference percentage.  

To determine the model that is more “effective” across all predictions, the Nash-Sutcliffe 

Coefficient was calculated for each model application. This coefficient varies from - to 

1. Effectiveness, E, which equals 1, defines a perfect similarity between predictions and 

observations [14, 170]. Effectiveness, E, which equals 0, defines a situation in which the 

predictions equal the mean of the observations (equation 5.1.9). Effectiveness within the 

range - < E < 0 happens when the mean of the observations is a better estimator than 

model predictions. In general, the closer the effectiveness of model predictions to 1, the 
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more accurate the model is [171]. The Nash-Sutcliffe Coefficient in the post-process neural 

network model is also slightly improved compared with ANN results. (Table 5.1.8). 

 

𝐸 = 1 −
∑ (𝑋𝑜𝑏𝑠,𝑖−𝑋𝑚𝑜𝑑𝑒𝑙)

2𝑛
𝑖=1

∑ (𝑋𝑜𝑏𝑠,𝑖−𝑋𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)
2𝑛

𝑖=1

                                               (5.1.9) 

          

       Table 5.1.8 Nash-Sutcliffe Coefficient Results Using Post-Processing Neural Network 
Indicator ANN Post-processing 

Nash-Sutcliffe Coefficient 0.964 0.983 
 
 

   The Root Mean Square Error (RMSE) (also called the root mean square deviation, 

RMSD) is a frequently used measure of the difference between the values predicted by the 

model and the values observed from the environment that is being modelled by equation 

5.1.10 [172]. To determine if the post-processed neural network model is good enough to 

simulate the gate opening or not, RMSE was used. The RMSE for the regression model is 

0.026 which shows slightly more correlation between ANN results and experimental 

results with RMSE equal to 0.054. This shows an acceptable agreement between data from 

the test results and the post-processed model. All points are around the 45-degree straight 

line. Figure 5.1.6 (a) show the test data and validation data used to obtain RMSE. The gate 

openings from experiments and the post-process gate openings are used to draw the RMSE 

graph (Figure 5.1.7). Although it is desirable to have many more points, the available 

number of points have been used to show the accuracy of the model.  
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𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑜𝑏𝑠,𝑖−𝑋𝑚𝑜𝑑𝑒𝑙,𝑖)

2𝑛
𝑖=1

𝑛
                                                   (5.1.10)

 

 

 

Figure 5.1.7: RMSE – Post-processing  
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CHAPTER 5 

RESULTS & DISCUSSION 

SECTION 2 

FLOW STABILITY NUMBER IN VERTICAL SLUICE GATES 

 

5.2.1 Introduction 

The Flow Stability Number was defined in chapter four as a dimensionless number to 

show the flow characteristics after hydraulic structures. The maximum value for this 

number is one. When the value is equal to one or very close to one, the flow may be 

stable. There are three conditions for the flow to be stable. These three conditions were 

presented in chapter four. When the flow is stable, it means that the channel is safe 

from surface flow fluctuations and also erosion. The experiments were conducted in 

two laboratories; the Fluid Mechanics Laboratory at Florida International University 

and the Center for Research in Water Resources at the University of Texas at Austin. 

Two laboratories were selected for this research to see the scale effect. Moreover, 

sediment transport was considered in the second laboratory to find an acceptable range 

for the Flow Stability Number. 

 

5.2.2 Experiments (Set One) 

 A total of 10 experiments (10 discharges) were selected from the gate results to find 

the Flow Stability Number. These experiments were performed in a narrow flume, 

located at the Fluid Mechanics Laboratory of the Civil and Environmental Engineering 
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Department of Florida International University. Flume details and measurement 

devices are presented in chapter 4.  

Ten discharges were tested in this research and presented in Table 5.2.1, ranging from 

low to high levels. For each discharge, numerous gate openings were considered to 

determine the Flow Stability. Finding an optimum gate opening for each discharge is 

the purpose of this research. The optimum gate opening is obtained when the flow 

condition is stable downstream. Therefore, it is necessary to define a stable condition 

in the downstream section. 

 

    Table 5.2.1 Tested Discharges 
  Discharges  
   Numbers Gallons Per Minute 

 (GPM) 

 

m3/s (x103)   q (m2/s) 

               1      34.6      2.18    0.0198 
        2      38.8      2.45    0.0223 
        3      41.4      2.61    0.0237 
        4      47.5      3.00    0.0272 
        5      53.2      3.36    0.0305 
        6      56.8      3.58    0.0326 
        7      61.2      3.86    0.0351 
        8      70.2      4.43    0.0403 
        9      72.3      4.56    0.0415 
       10      74.5      4.70    0.0427 

 

The Flow Stability Number is defined in chapter 4, based on the Fuzzy Concept, to 

classify the downstream flow condition in sub-critical flow. This number is defined 

based on total energy; therefore, total energy should be calculated in the downstream 

section. Velocity and depth were measured to calculate energy. In each test, the 
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downstream flow condition was recorded in two sections. The dimensionless numbers 

for gate studies are defined in chapter five-section one.  

Table D.1 in Appendix D reports the discharge, gate opening, critical depth, upstream 

depth, downstream depth in two sections, velocity upstream and downstream (for two 

sections), and downstream energy (for two sections) as well as the Flow Stability 

Number.  Section one is located upstream; section two is located immediately after the 

venna-section after the gate; and finally, section three is also located downstream after 

section two at the beginning of the uniform flow (Figure 4.2 (a)). Depths are reported 

as the average of all measurements. This can be seen in Table D.1. Appendix D, the 

Flow Stability Number is not defined in supercritical flows, whereas it is equal to the 

ratio of total energies (sections two and three) in critical and subcritical flows. Figures 

5.2.1 (a) and (b) show the supercritical and sub-critical flows after the vertical sluice 

gates. 

 

 

Figure 5.2.1. (a): Supercritical flow after the gate
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Figure 5.2.1. (b): Subcritical flow after the gate  

 

Test numbers 5 and 10 have been selected, from Table D.1 Appendix D, as an example 

to show the details of the calculation. It is not possible to see sediment transport in the 

flume which is in the FIU lab. Therefore, the bed is assumed to be alluvial silts, 

colloidal to find the permissible velocity (imaginary situation). Considering Table A.1, 

Appendix A for stable, unlined, earthen channels, the maximum permissible velocity 

for fine sand, non-colloidal in clear water is 0.457 m/s.  Tables 5.2.2 to 5.2.5 reported 

the details of the calculation to determine the acceptability of the stability. Table 5.2.3 

shows that in test 10 the velocity in the first section is more than the permissible 

velocity; therefore, this test cannot satisfy the stable condition. Consequently, the only 

test which remains to check the third assumption (surface flow fluctuations) is test 

number 5. Table 5.2.4 shows the depth measurements in sections two and three (test 
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number 5) downstream. These values should then be used in statistical analysis to 

determine if the flow is stable or not. 

 

    Table 5.2.2 Control of the Flow Condition 
Test Number a 

(cm) 
dc 

 (cm) 
h1 (cm) 

Section 2 
h2  (cm) 

Section 3 

5 6.0 4.56 8.71 8.70 

10 7.5 5.71 8.93 9.00 

 

   Table 5.2.3 Control of the Permissible Velocity 
Test Number Bed Material Permissible 

Velocity (m/s) 
V1 (m/s) 

Section 2 
V2  (m/s) 

Section 3 

5 Fine sand,  
non-colloidal 

0.457 0.3 0.3 

10 Fine sand, 
 non-colloidal 

0.457 0.5 0.4 

 

            Table 5.2.4 Depth Measurements 
Number h1 (cm) 

Section 2 
h2  (cm) 

Section 3 

1 8.70 8.70 

2 8.71 8.69 

3 8.70 8.72 

4 8.72 8.70 

5 8.70 8.69 

6 8.69 8.71 

7 8.68 8.68 

8 8.71 8.71 

9 8.70 8.72 

10 8.69 8.70 
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   Table 5.2.5 Two-sided t-test 
   t-test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

Section 2 versus 

       section 3 
*The average of 
section 2 is equal to 
the average of 
section 3 

H0 

    is false 
     0.7223 Do not 

reject 𝐻0  
 

There is no evidence to conclude that 
the average of section 2 is different 
from the average of section 3. So, it is 
reasonable to assume that the two 
averages are equal.   
  ●Assume 𝛼 = 0.005 

 
 ●Degree of 

freedom:  
n-2=18 

●t value : 

-0.36116 

●95% confidence interval  
-0.013648584    0.009648584 

*the mean of section 2 is 8.700 and the mean of section 3 is 8.702 
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Figure 5.2.2: Boxplots – sections 2 and 3  

 

 

Figure 5.2.3: Normal Q-Q plot – section 2  
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Figure 5.2.4: Normal Q-Q plot – section 3  

 

 

Figure 5.2.5: Q-Q plot – section 2 versus section 3
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     Table 5.2.6 Check of Normality 
   Shapiro-Wilk Test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

          h1 (cm) 

       Section 2 
Data follows a 
normal distribution 
 

H0 

    is false 
     0.7026 Do not 

reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume normality. 

          h2 (cm) 

Section 3 
Data follows a 
normal distribution 
 

       H0 

   is false 

     0.5745 Do not 
reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume normality. 

 

 

    Table 5.2.7 Check of the Equality of Variances 
   F Test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

Section 2 versus 

       Section 3 
The variance of 
section 2 is equal to 
the variance of 
section 3 

H0 

    is false 
     0.7023 Do not 

reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume the equality of 
variances. 

 ●Assume 𝛼 = 0.005 
 

 ●Degree of 
freedom  
n-1=9 

 ●95% confidence interval  
0.191066    3.096919 
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The t-test has been selected for the statistical analysis because there are just two data 

sets (section 2 and section 3). Table 5.2.5 shows the results of the t-test for these two 

sections. As can be seen from the results, the flow is completely stable.  

There are two assumptions for the t-test to be applied. The first assumption is normality; 

it means that the data (in both data sets) should follow a normal distribution. The second 

assumption is the equality of variances in both data sets. Boxplots of both sections have 

been drawn in Figure 5.2.2. Moreover, QQ-Plots (quantile-quantile plot) are presented 

(Figures 5.2.3 to 5.2.5). Furthermore, normality was checked via the Shapiro-Wilk test 

(Table 5.2.6). In addition, the equality of variances has been checked by an F-test 

(Table 5.2.7).  

All in all, two tests have been selected to show the details of the calculations. In the 

first step, the velocity was more than the allowable velocity in test number 10; 

therefore, this test did not meet the criteria of a stable condition. Test number 5 was the 

only test which was left for the second step of the analysis (surface flow fluctuations). 

Based on the results of the statistical analysis, the flow is completely stable in test 

number 5 which is compatible with the Flow Stability Number calculation; the 

dimensionless number is equal to one for this test number.  

 

 5.2.3 Experiments (Set Two) 

A total of six experiments (6 discharges) were selected to find the Flow Stability 

Number (Table 5.2.8).These experiments were performed in a flume, which is located 

at the Center for Research in Water Resources (CRWR) at the University of Texas at 

Austin. Flume details and measurements devices were presented in chapter 4.  
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    Table 5.2.8 Tested Discharges 

  Discharges  
   Numbers Gallons Per Minute m3/s (x103)   q (m2/s) 

               1      300.20      18.94    0.0344 
        2      406.72      25.66    0.0466 
        3      510.38      32.20    0.0585 
        4      830.40      52.39    0.0952 
        5      1102.71      69.57    0.1265 
        6      1421.14      89.66    0.1630 

 

Table D.2 Appendix D reported the discharge, gate opening, critical depth, upstream 

depth, downstream depth in two sections, upstream and downstream velocity (in two 

sections), and downstream energy (in two sections), as well as the Flow Stability 

Number.  Section one is located 0.4 meters upstream; section two is located 0.45 meters 

downstream of the gate; and finally, section three is also located one meter downstream 

from the gate. Depths are reported as the average of all measurements.  In addition, 

Figures 5.2.6 (a) and (b) show the sediment transport and surface flow fluctuations after 

the vertical sluice gates. 
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Figure 5.2.6 (a): Sediment transport after the gate  

 

 

Figure 5.2.6 (b): Surface flow fluctuations after the gate  
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Test number 6 was selected as an example to show the details of the calculation. The 

bed is a mixture of limestone pebbles, basalt pebbles, and brown pea gravel. 

Considering Table A.1. Appendix A, for stable, unlined, earthen channels, the 

maximum permissible velocity for coarse gravel, non-colloidal, and fine gravel in clear 

water are 1.220 and 0.762 m/s, respectively. The minimum value is taken in this study 

as a safety factor.  Tables 5.2.9 to 5.2.12 reported the details of the calculation to 

determine the acceptability of the stability. As can be seen from Table 5.2.9, the depths 

in both the second and the third section are more than the critical depth; therefore, the 

first assumption is satisfied. Table 5.2.10 shows that the velocities in both sections are 

less than the permissible velocity; consequently, the test is eligible for checking the 

third assumption (surface flow fluctuations). Table 5.2.11 shows the depth 

measurements in sections two and three (test number 6) downstream. These values 

should then be used in the statistical analysis to determine if the flow is stable or not. 

 

    Table 5.2.9 Control of the Flow Condition 
Test Number a 

(cm) 
dc 

 (cm) 
h1 (cm) 

Section 2 
h2  (cm) 

Section 3 

6 23.0 13.94 21.91 21.91 

 

 

   Table 5.2.10 Control of the Permissible Velocity 
Test Number Bed Material Permissible 

Velocity (m/s) 
V1 (m/s) 

Section 2 
V2  (m/s) 

Section 3 

6 Fine gravel 0.762 0.74 0.74 
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            Table 5.2.11 Depth Measurements 
Number h1 (cm) 

Section 2 
h2  (cm) 

Section 3 

1 21.91 21.89 

2 21.90 21.88 

3 21.89 21.89 

4 21.92 21.95 

5 21.94 21.91 

6 21.93 21.89 

7 21.89 21.90 

8 21.90 21.91 

9 21.94 21.93 

10 21.91 21.89 
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  Table 5.2.12 Two-sided t-test 
   t-test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

Section 2 versus 

       section 3 
*The average of 
section 2 is equal to 
the average of 
section 3 

H0 

    is false 
     0.1402 Do not 

reject 𝐻0  
 

There is not enough evidence to 
conclude that the average of section 2 is 
different from the average of section 3. 
So, it is reasonable to assume that the 
two averages are equal. 
  
 
 

 ●Assume 𝛼 = 0.005 
 

 ●Degree of 
freedom:  
n-2=18 

●t value : 

1.543 

●95% confidence interval  
-0.003615531    0.023615531 

*the mean of section 2 is 21.909 and the mean of section 3 is 21.899 
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Figure 5.2.7: Boxplots – sections 2 and 3  

 

 

Figure 5.2.8: Normal Q-Q plot – section 2  
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Figure 5.2.9: Normal Q-Q plot – section 3  

 

 

Figure 5.2.10: Q-Q plot – section 2 versus section 3
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    Table 5.2.13 Check of Normality 
   Shapiro-Wilk Test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

          h1 (cm) 

       Section 2 
Data follows a 
normal distribution 
 

H0 

    is false 
     0.3296 Do not 

reject 𝐻0  
 

 Fail to reject the null hypothesis. So, it 
is reasonable to assume normality. 

          h2 (cm) 

Section 3 
Data follows a 
normal distribution 
 

       H0 

   is false 

     0.2045 Do not 
reject 𝐻0  
 

 Fail to reject the null hypothesis. So, it 
is reasonable to assume normality. 

 

 

 

   Table 5.2.14 Check of the Equality of Variances 
   F Test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

Section 2 versus 

       section 3 
The variance of 
section 2 is equal to 
the variance of 
section 3 

H0 

    is false 
        1 Do not 

reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume the equality of 
variances. 

 ●Assume 𝛼 = 0.005 
 

 ●Degree of 
freedom  
n-1=9 

 ●95% confidence interval  
0.2483859    4.0259942 
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The t-test has been selected for the statistical analysis because there are just two data 

sets (section 2 and section 3). Table 5.2.12 shows the results of the t-test for these two 

sections. As can be seen from the results, the flow is completely stable.  

There are two assumptions for the t-test to be applied. The first assumption is normality; 

it means that the data (in both data sets) should follow a normal distribution. The second 

assumption is the equality of variances in both data sets. Boxplots of both sections have 

been drawn as Figure 5.2.7. Moreover, QQ-Plots (quantile-quantile plot) are presented 

in both sections (Figures 5.2.8 to 5.2.10). Furthermore, normality was checked by the 

Shapiro-Wilk test (Table 5.2.13). In addition, the equality of variances was checked by 

an F-test (Table 5.2.14).  

Based on the results of the statistical analysis, the flow is completely stable in test 

number 6 which is compatible with the Flow Stability Number calculation; the 

dimensionless number is equal to one for this test number.  
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CHAPTER 5 

RESULTS & DISCUSSION 

SECTION 3 

THE FLOW STABILITY NUMBER IN A GATE WITH EXPANSIONS 

 

5.3.1 Introduction 

The Flow Stability Number was calculated for vertical sluice gates in section 2. In this 

section, a combination of a gate with an expansion is considered as another type of 

hydraulic structure. The experiments were conducted in two laboratories; the Fluid 

Mechanics Laboratory at Florida International University and the Center for Research 

in Water Resources at the University of Texas at Austin. Two laboratories were 

selected for this research to see the scale effect. Moreover, sediment transport was 

considered in the second laboratory to find an acceptable range for the Flow Stability 

Number. 

Three thicknesses were considered in the first laboratory; 2 centimeters, 1.2 

centimeters, and 0.7 centimeters to determine the effect of thickness on the Flow 

Stability Number.  

 

5.3.2 Experiments (Set One) 

 A total of 30 experiments, including ten discharges and three thicknesses, were 

selected from the  gate with expansion results to find the Flow Stability Number for the 

first laboratory. The experiments were conducted in a narrow flume, located at the Fluid 
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Mechanics Laboratory at the Civil and Environmental Engineering Department of 

Florida International University. Flume details and measurements devices were 

presented in chapter 4.  

Ten discharges were tested in this research and presented in Table 5.2.1, ranging from 

low to high levels. Determining the optimum gate opening, as well as finding the effect 

of thickness on the Flow Stability Number for each discharge, are the purposes of this 

study. The optimum gate opening happens when the flow condition is stable 

downstream of the hydraulic structure.  

The Flow Stability Number is defined in chapter4, based on the Fuzzy Concept in sub-

critical flow, to classify the downstream flow condition. This dimensionless number is 

defined based on total energy. Velocity and depth were measured to calculate energy. 

In each test, measurements were performed in four sections; one section upstream of 

the hydraulic structure, one in the middle of the structure, and two downstream of the 

structure.  

Tables E.1 to E.3 Appendix E reported the discharge, gate opening, critical depth, 

upstream depth, downstream depth in two sections, upstream and downstream velocity 

(two sections), and downstream energy (two sections), as well as the Flow Stability 

Number for a gate with an expansion with different thicknesses. The results of the 

section in the middle of the hydraulic structure were not reported in these; therefore, 

section one is located upstream, section two is located immediately after the hydraulic 

structure, and finally, section three is also located downstream after section two at the 
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beginning of the uniform flow (Figures5.3.1). Depths are reported as the average of all 

measurements. 

 

 

Figure 5.3.1: Sections in a gate with expansion  

 

The Flow Stability Number is not defined in super-critical flows, whereas it is equal to 

the ratio of total energy (sections two and three) in critical and sub-critical flows. 

Figures 5.3.2 (a) and (b) show the flow fluctuations and the stable flow after the gate 

with expansion. 
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Figure 5.3.2 (a): Flow fluctuations after a gate with expansion 

  

 

Figure 5.3.2(b): Stable flow after a gate with expansion  
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Test numbers 2, 7, 8, and 10 from Table E.1 Appendix E have been selected as an 

example to show the details of the calculation. It is not possible to see the sediment 

transport in the flume which is at the FIU lab. Therefore, the bed is assumed to be 

alluvial silts, colloidal to find the permissible velocity (hypothetical situation). 

Considering Table A.1, Appendix A for stable, unlined, earthen channels, the 

maximum permissible velocity for fine sand, non-colloidal in clear water is 0.457 m/s.  

Tables 5.3.4 to 5.3.7 reported the details of the calculation to determine the 

acceptability of the stability. As can be seen from Table 5.3.1, the depths in the second 

section of tests 8 and 10 are less than the critical depth; hence, the flow is super-critical 

and cannot be stable. According to the results of Table 5.2.1, test numbers 8 and 10 

will be excluded from the rest of the calculations. Table 5.2.2 shows that in test 7 the 

velocity in the second section is more than the permissible velocity; therefore, this test 

cannot satisfy the stability condition. Consequently, the only test which remains to 

check the third assumption (surface flow fluctuations) is test number 2. Table 5.3.3 

shows the depth measurements in sections two and three (test number 2) downstream. 

These values should then be used in statistical analysis to determine if the flow is stable 

or not. 
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     Table 5.3.1 Control of the Flow Condition 
Test Number a 

(cm) 
dc 

 (cm) 
h1 (cm) 

Section 2 
h2  (cm) 

Section 3 

2 5.5 3.42 7.87 7.90 

7 5.5 4.76 8.50 8.60 

8 6.5 5.49 3.00 8.77 

10 7.0 5.71 3.77 8.50 

 

 

    Table 5.3.2 Control of the Permissible Velocity 
Test Number Bed Material Permissible 

Velocity (m/s) 
V1 (m/s) 

Section 2 
V2  (m/s) 

Section 3 

2 Fine sand,  
non-colloidal 

0.457 0.3 0.3 

7 Fine sand, 
 non-colloidal 

0.457 0.6 0.4 

 

 

             Table 5.3.3 Depth Measurements 
Number h1 (cm) 

Section 2 
h2  (cm) 

Section 3 

1 7.86 7.91 

2 7.88 7.88 

3 7.87 7.90 

4 7.89 7.88 

5 7.86 7.92 

6 7.88 7.87 

7 7.90 7.88 

8 7.90 7.89 

9 7.87 7.90 

10 7.89 7.87 



 

100 
 

 

 

 

 

 

   Table 5.3.4 Two-sided t-test 
   t-test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

Section 2 versus 

       section 3 
*The average of 
section 2 is equal to 
the average of 
section 3 

H0 

    is false 
     0.1792 Do not 

reject 𝐻0  
 

There is not enough evidence to 
conclude that the average of section 2 is 
different from the average of section 3. 
So, it is reasonable to assume that the 
two averages are equal.  
  ●Assume 𝛼 = 0.005 

 
 ●Degree of 

freedom:  
n-2=18 

●t value : 

-1.3988 

●95% confidence interval  
-0.025038257    0.005038257 

*the mean of section 2 is 7.88 and the mean of section 3 is 7.89 
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Figure 5.3.3: Boxplots – sections 2 and 3  

 

 

Figure 5.3.4: Normal Q-Q plot – section 2  
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Figure 5.3.5: Normal Q-Q plot – section 3  

 

 

Figure 5.3.6: Q-Q plot – section 2 versus section 3
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     Table 5.3.5 Check of Normality 
   Shapiro-Wilk Test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

          h1 (cm) 

       Section 2 
Data follows a 
normal distribution 
 

H0 

    is false 
     0.3411 Do not 

reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume normality. 

          h2 (cm) 

Section 3 
Data follows a 
normal distribution 
 

       H0 

   is false 

     0.3828 Do not 
reject 𝐻0  
 

 Fail to reject the null hypothesis. So, it 
is reasonable to assume normality. 

 

 

  Table 5.3.6 Check of the Equality of Variances 
   F Test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

Section 2 versus 

       section 3 
The variance of 
section 2 is equal to 
the variance of 
section 3 

H0 

    is false 
     0.7023 Do not 

reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume the equality of 
variances. 

 ●Assume 𝛼 = 0.005 
 

 ●Degree of 
freedom  
n-1=9 

 ●95% confidence interval  
0.191066    3.096919 
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The t-test has been selected for the statistical analysis because there are just two data 

sets (section 2 and section 3). Table 5.3.4 shows the results of the t-test for these two 

sections. As can be seen from the results, the flow is completely stable.  

There are two assumptions for the t-test to be applied. The first assumption is normality; 

it means that the data (in both data sets) should follow a normal distribution. The second 

assumption is the equality of variances in both data sets. Boxplots of both sections have 

been drawn as Figure 5.3.3. Moreover, the QQ-Plots (quantile-quantile plot) are 

presented in both sections (Figures 5.3.4 to 5.3.6). Furthermore, normality has been 

checked via the Shapiro-Wilk test (Table 5.3.5). In addition, the equality of variances 

has been checked by an F-test (Table 5.3.6).  

All in all, four tests were selected to show the details of the calculations. In the first 

step, the flow was super-critical in tests 8 and 10. Therefore, these tests were not 

selected for additional analysis. In the second step, the velocity was more than the 

permissible velocity in test number 7; therefore, this test did not meet the criteria for a 

stable condition. Test number 2 was the only test which was left for the third step of 

the analysis (surface flow fluctuations). Based on the results of the statistical analysis, 

the flow is completely stable in test number 2, which is compatible with the Flow 

Stability Number calculation; this dimensionless number is equal to one for this test 

number. Also, the Flow Stability Number for test number 2 is compatible with the Flow 

Stability Factor, at 0.9 for this test. Figure 5.3.7 shows the trend of h0/a to dc/h0 in 

different thicknesses at the gate with an expansion structure. 
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Figure 5.3.7: h0/a vs. dc/h0 

  

Figure 5.3.7 indicates that the largest thickness (2 centimeters) can produce stable flow 

conditions only at low discharge rates and the performance of this thickness is not 

acceptable for mid and high discharge ranges. The second thickness (1.2 centimeters) 

can produce stable conditions for low and mid discharge rates. However, its 

performance is not acceptable at high discharge rates. Finally, the performance of the 

narrowest thickness (0.7 centimeters) is acceptable for all test discharge ranges. The 

results indicate that this thickness can produce a stable condition across various 

discharges. 
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On the other hand, whenever the greatest thickness can produce a stable condition (low 

discharge rates), the upstream depth is higher than for the two other thicknesses (for 

the same discharge and gate opening); therefore, it is recommended that for low 

discharge rates a greater thickness be used to maintain the upstream flow at a high level. 

It should be noted that there is not a meaningful difference between the upstream depth 

results for the second and the third thicknesses. 

 

5.3.3 Experiments (Set Two) 

A total of three experiments (3 discharges) were selected to find the Flow Stability 

Number (Table 5.3.7).These experiments were performed in a flume, located at the 

Center for Research in Water Resources (CRWR) at the University of Texas at Austin. 

Flume details and measurements devices were presented in chapter 4.  

 
    Table 5.3.7 Tested Discharges 

  Discharges  
   Numbers Gallons Per Minute m3/s (x103)   q (m2/s) 

               1      300.20      18.94    0.0344 
        2      406.72      25.66    0.0466 
        3      510.38      32.20    0.0585 

 

Table E.4 Appendix E reported the discharge, gate opening, critical depth, upstream 

depth, downstream depth in two sections, upstream and downstream velocities (two 

sections), and downstream energy (two sections), as well as the Flow Stability Number.  

Section one is located 0.4 meters upstream, section two is located 0.45 meters 

downstream of the gate, and finally, section three is also located one meter downstream 

from the gate. Depths are reported as the average of all measurements.  In addition, 
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Figures 5.3.8 (a) and (b) show the sediment transport and surface flow pattern in the 

presence of a gate with an expansion. 

 

 

Figure 5.3.8. (a): Sediment transport in the presence of a gate with an expansion  

 

Figure 5.3.8. (b): Flow pattern in the presence of a gate with an expansion  
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Test number 3 has been selected as an example to show the details of the calculation. 

The bed is a mixture of limestone pebbles, basalt pebbles, and brown pea gravel. 

Considering Table A.1, Appendix A, for stable, unlined, earthen channels, the 

maximum permissible velocity for coarse gravel, non-colloidal and fine gravel in clear 

water are 1.220 and 0.762 m/s, respectively. The minimum value is taken in this study 

as a safety factor.  Tables 5.3.8 to 5.3.13 reported the details of the calculation to 

determine the acceptability of the stability. As can be seen from Table 5.3.8, the depths 

in both the second and the third sections are more than the critical depth; therefore, the 

first assumption is satisfied. Table 5.3.9 shows that the velocities in both sections are 

less than the permissible velocity; consequently, the test is eligible for checking the 

third assumption (surface flow fluctuations). Table 5.3.10 shows the depth 

measurements in sections two and three (test number 3) downstream. These values 

should then be used in the statistical analysis to determine if the flow is stable or not. 

 

    Table 5.3.8 Control of the Flow Condition 
Test Number a 

(cm) 
dc 

 (cm) 
h1 (cm) 

Section 2 
h2  (cm) 

Section 3 

3 14.00 7.04 12.38 12.38 

 

 

   Table 5.3.9 Control of the Permissible Velocity 
Test Number Bed Material Permissible 

Velocity (m/s) 
V1 (m/s) 

Section 2 
V2  (m/s) 

Section 3 

3 Fine gravel 0.762 0.50 0.50 
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            Table 5.3.10 Depth Measurements 
Number h1 (cm) 

Section 2 
h2  (cm) 

Section 3 

1 12.39 12.38 

2 12.40 12.38 

3 12.39 12.37 

4 12.38 12.39 

5 12.38 12.39 

6 12.38 12.38 

7 12.39 12.37 

8 12.37 12.37 

9 12.37 12.40 

10 12.39 12.39 
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  Table 5.3.11 Two-sided t-test 
   t-test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

Section 2 versus 

       section 3 
*The average of 
section 2 is equal to 
the average of 
section 3 

H0 

    is false 
     0.6601 Do not 

reject 𝐻0  
 

There is not enough evidence to 
conclude that the average of section 2 is 
different from the average of section 3. 
So, it is reasonable to assume that the 
two averages are equal.  
 

 ●Assume 𝛼 = 0.005 
 

 ●Degree of 
freedom:  
n-2=18 

●t value : 

0.44721 

●95% confidence interval  
-0.007398603    0.011398603 

*the mean of section 2 is 12.384 and the mean of section 3 is 12.382 
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Figure 5.3.9: Boxplots – sections 2 and 3  

 

 

Figure 5.3.10: Normal Q-Q plot – section 2  
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Figure 5.3.11: Normal Q-Q plot – section 3  

 

 

Figure 5.3.12: Q-Q plot – section 2 versus section 3
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     Table 5.3.12 Check of Normality 
   Shapiro-Wilk Test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

          h1 (cm) 

       Section 2 
Data follows a 
normal distribution 
 

H0 

    is false 
     0.2449 Do not 

reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume normality. 

          h2 (cm) 

Section 3 
Data follows a 
normal distribution 
 

       H0 

   is false 

     0.191 Do not 
reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume normality. 

 

 

 

    Table 5.3.13 Check of the Equality of Variances 
   F Test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

Section 2 versus 

       section 3 
The variance of 
section 2 is equal to 
the variance of 
section 3 

H0 

    is false 
        0.8456 Do not 

reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume the equality of 
variances. 

 ●Assume 𝛼 = 0.005 
 

 ●Degree of 
freedom  
n-1=9 

 ●95% confidence interval  
0.2173376    3.5227449 
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A t-test has been selected for the statistical analysis because there are just two data sets 

(section 2 and section 3). Table 5.3.11 shows the results of the t-test for these two 

sections. As can be seen from the results, the flow is completely stable.  

There are two assumptions that must be satisfied for a t-test to be applied. The first 

assumption is normality; it means that the data (in both data sets) should follow a 

normal distribution. The second assumption is the equality of variances in both data 

sets. Boxplots of both sections have been drawn as Figure 5.3.9. Moreover, the QQ-

Plots (quantile-quantile plot) are presented in both sections (Figures 5.3.10 to 5.3.12). 

Furthermore, normality was checked via the Shapiro-Wilk test (Table 5.3.12). In 

addition, the equality of variances was checked by an F-test (Table 5.3.13).  

Based on the results of the statistical analysis, the flow is completely stable in test 

number 3 (in the second lab) which is compatible with the Flow Stability Number 

calculation; this dimensionless number is equal to one for this test number. Also, the 

Flow Stability Number, for test number 2 (in the first lab), is approximately compatible 

with the Flow Stability Factor, which was determined to be 0.9 for this test.  
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CHAPTER 5 

RESULTS & DISCUSSION 

SECTION 4 

THE FLOW STABILITY NUMBER IN A GATE WITH 

CONTRACTIONS  

 

5.4.1 Introduction 

The Flow Stability Number was calculated for vertical sluice gates in section 2 and a 

gate with an expansion in section 3. In this section, a combination of gates with 

contractions is considered as another type of hydraulic structure. The experiments were 

conducted in two laboratories; the Fluid Mechanics Laboratory at Florida International 

University and the Center for Research in Water Resources at the University of Texas 

at Austin. Two laboratories were selected for this research to see the scale effect. 

Moreover, sediment transport was considered in the second laboratory to find the 

acceptable range of the Flow Stability Number. 

Three thicknesses were considered in the first laboratory; 2 centimeters, 1.2 

centimeters, and 0.7 centimeters to determine the effect of thickness on the Flow 

Stability Number.  

 

5.4.2 Experiments (Set One) 

A total of 16 experiments, including five discharges (in one case, six discharges) and 

three thicknesses, were selected from a gate with contraction results to find the Flow 
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Stability Number in the first laboratory.The experiments were conducted in a narrow 

flume, located at the Fluid Mechanics Laboratory at the Civil and Environmental 

Engineering Department of Florida International University. Flume details and 

measurements devices were presented in chapter 4.  

Six discharges were tested in this research and presented in Table 5.4.1, ranging from 

low to high levels. For the narrowest thickness, six tests were performed. Determining 

the effect of thickness on the Flow Stability Number for each discharge was the purpose 

of this study. The optimum gate opening happens when the flow condition is stable 

downstream of the hydraulic structure.  

The Flow Stability Number was defined in chapter 4, based on the Fuzzy Concept in 

sub-critical flow, to classify the downstream flow condition. This dimensionless 

number is defined based on total energy. Velocity and depth were measured to calculate 

energy. In each test, measurements were performed in four sections; one section 

upstream of the hydraulic structure, one inside the structure, and two downstream of 

the structure.  

Tables F.1 to F.3 Appendix F reported the discharge, gate opening, critical depth, 

upstream depth, downstream depth in two sections, upstream and downstream velocity 

(two sections), and downstream energy (two sections), as well as the Flow Stability 

Number for a gate with contractions with different thicknesses. The results of the 

section inside the hydraulic structure are not reported in these; therefore, section one is 

located upstream, section two is located immediately after the hydraulic structure, and 

finally, section three is also located downstream from section two at the beginning of 
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the uniform flow (Figures 5.4.1). Depths are reported as the average of all 

measurements. 

 

    Table5.4.1 Tested Discharges 
  Discharges  
   Numbers Gallon Per Minutes 

 (GPM) 

 

m3/s (x103)   q (m2/s) 

               1      34.6      2.18    0.0198 
        2      38.8      2.45    0.0223 
        3      41.4      2.61    0.0237 
        4      47.5      3.00    0.0272 
        5      53.2      3.36    0.0305 
        6      56.8      3.58    0.0326 

 

 

 

 

Figure 5.4.1: Sections in a gate with a contraction  
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The Flow Stability Number is not defined in supercritical flows, whereas it is equal to 

the ratio of total energies (sections two and three) in critical and sub-critical flows 

(Tables F.1 to F.3 Appendix F). Figures 5.4.2 (a) and (b) show the flow fluctuations 

and stable flow in the presence of a gate with contractions. 

 

 

Figure 5.4.2. (a): Flow fluctuations in the presence of a gate with contractions 

  

 

Figure 5.4.2. (b): Stable flow in the presence of a gate with contractions  
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Test number four from Table F.1 and test number five from Table F.3 (Appendix F) 

have been selected as examples to show the details of the calculations. It is not possible 

to see the sediment transport in the flume at the FIU Lab. Therefore, the bed is assumed 

to be alluvial silts, colloidal to find the permissible velocity (hypothetical situation). 

Considering Table A.1, Appendix A for stable, unlined, earthen channels, the 

maximum permissible velocity for fine sand, non-colloidal in clear water is 0.457 m/s.  

Tables 5.4.2 to 5.4.7 reported the details of the calculations to determine the 

acceptability of the stability. As can be seen from Table 5.4.2, the depths in the second 

section of both tests are more than the critical depth; therefore, the flow is sub-critical 

and satisfies the first assumption. According to the results of Table 5.4.2, test numbers 

four and five will not be excluded from the rest of the calculations. Table 5.4.3 shows 

that in test 4 the velocity in the second section is more than the permissible velocity; 

therefore, this test cannot satisfy the stable condition. Consequently, the only test which 

remains to check the third assumption (surface flow fluctuations) is test number 5. 

Table 5.4.4 shows the depth measurements in sections two and three (test number 5) 

downstream. These values should then be used in statistical analysis to determine if the 

flow is stable or not. 

 

    Table 5.4.2 Control of the Flow Condition 
Test Number a 

(cm) 
dc 

 (cm) 
h1 (cm) 

Section 2 
h2  (cm) 

Section 3 

4 6.0 4.56 8.50 8.60 

5 6.0 4.56 8.60 8.60 
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   Table 5.4.3 Control of the Permissible Velocity 
Test Number Bed Material Permissible 

Velocity (m/s) 
V1 (m/s) 

Section 2 
V2  (m/s) 

Section 3 

4 Fine sand,  
non-colloidal 

0.457 0.5 0.3 

5 Fine sand, 
 non-colloidal 

0.457 0.4 0.4 

 

 

 

            Table 5.4.4 Depth Measurements 
Number h1 (cm) 

Section 2 
h2  (cm) 

Section 3 

1 8.61 8.60 

2 8.61 8.60 

3 8.62 8.60 

4 8.61 8.59 

5 8.60 8.59 

6 8.59 8.60 

7 8.60 8.61 

8 8.59 8.61 

9 8.60 8.60 

10 8.60 8.61 

 

 

 

 



 

121 
 

 

 

 

 

 

  Table 5.4.5 Two-sided t-test 
   t-test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

Section 2 versus 

       section 3 
*The average of 
section 2 is equal to 
the average of 
section 3 

H0 

    is false 
         0.6055 Do not 

reject 𝐻0  
 

There is not enough evidence to 
conclude that the average of section 2 is 
different from the average of section 3. 
So, it is reasonable to assume that the 
two averages are equal.  
 

 ●Assume 𝛼 = 0.005 
 

 ●Degree of 
freedom:  
n-2=18 

●t value : 

0.52623 

●95% confidence interval  
-0.006019553    0.010019553 

*the mean of section 2 is 8.603 and the mean of section 3 is 8.601 
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Figure 5.4.3: Boxplots – sections 2 and 3  

 

 

Figure 5.4.4: Normal Q-Q plot – section 2  
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Figure 5.4.5: Normal Q-Q plot – section 3  

 

 

Figure 5.4.6: Q-Q plot – section 2 versus section 3
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     Table 5.4.6 Check of Normality 
   Shapiro-Wilk Test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

          h1 (cm) 

       Section 2 
Data follows a 
normal distribution 
 

H0 

    is false 
     0.1488 Do not 

reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume normality. 

          h2 (cm) 

Section 3 
Data follows a 
normal distribution 
 

       H0 

   is false 

     0.2869 Do not 
reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume normality. 

 

 

 

   Table 5.4.7 Check of the Equality of Variances 
   F Test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

Section 2 versus 

       section 3 
The variance of 
section 2 is equal to 
the variance of 
section 3 

H0 

    is false 
     0.4656 Do not 

reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume the equality of 
variances. 

 ●Assume 𝛼 = 0.005 
 

 ●Degree of 
freedom  
n-1=9 

 ●95% confidence interval  
0.410597    6.655215 
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A t-test has been selected for the statistical analysis because there are just two data sets 

(section 2 and section 3). Table 5.4.5 shows the results of the t-test for these two 

sections. As can be seen from the results, the flow is completely stable.  

There are two assumptions that need to be satisfied for a t-test to be applied. The first 

assumption is normality; it means that the data (in both data sets) should follow a 

normal distribution. The second assumption is the equality of variances in both data 

sets. Boxplots of both sections have been drawn as Figure 5.4.3. Moreover, the QQ-

Plots (quantile-quantile plot) are presented in both sections (Figures5.4.4 to5.4.6). 

Moreover, normality has been checked via the Shapiro-Wilk test (Table 3.4.6). In 

addition, the equality of variances was checked by an F-test (Table 3.4.7).  

All in all, two tests were selected to show the details of the calculations. In the first 

step, the flow was sub-critical in both tests, so, these tests were selected for additional 

analysis. In the second step, the velocity was more than the permissible velocity in test 

number 4; therefore, this test did not meet the criteria for a stable condition. Test 

number 5 was the only test which was left for the third step of the analysis (surface 

flow fluctuations). Based on the results of the statistical analysis, the flow is completely 

stable in test number 5 which is compatible with the Flow Stability Number calculation; 

this dimensionless number is equal to one for this test number. Also, the Flow Stability 

Number, for test number 5, is compatible with the Flow Stability Factor, which was 

found to be 0.9 for this test. Figure 5.4.7 shows the trend of h0/a to dc/h0 for different 

thicknesses in a gate with contraction structures. 
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Figure 5.4.7: h0/a vs. dc/h0 

 

In Figure 5.4.7, only tests with a Flow Stability Number equal or greater than 0.96 are 

plotted. This Figure indicates that the greatest thickness (2 centimeters) can produce a 

stable flow condition at only very low discharge rates and the performance of this 

thickness is not acceptable for mid and high discharge ranges. The second thickness 

(1.2 centimeters) can produce a stable condition for low, mid, and high discharge rates. 

Finally, the performance of the narrowest thickness (0.7 centimeters) is acceptable for 

all tested discharge ranges too. The results indicate that this thickness can produce a 

stable condition across various discharges. It should be noted that there is not a 

meaningful difference between the results yielded by the second and the third 

thicknesses. 
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Although the hydraulic performance of the two last thicknesses is acceptable to produce 

a stable condition downstream of a contraction, there is still a small unstable distance 

immediately after a gate with a contraction. This instability may produce a very weak 

wave in the flow.  

 

5.4.3 Experiments (Set Two) 

A total of three experiments (3 discharges) were selected to find the Flow Stability 

Number (Table F.4 Appendix F).These experiments were conducted in a flume, located 

at the Center for Research in Water Resources (CRWR) at the University of Texas at 

Austin. Flume details and measurements devices were presented in chapter 4.  

 
    Table 5.4.8 Tested Discharges 

  Discharges  
   Numbers Gallons Per Minute m3/s (x103)   q (m2/s) 

               1      300.20      18.94    0.0344 
        2      406.72      25.66    0.0466 
        3      510.38      32.20    0.0585 

 

Table F.4 Appendix F reported the discharge, gate opening, critical depth, upstream 

depth, downstream depth in two sections, upstream and downstream velocity (two 

sections), and downstream energy (two sections), as well as the Flow Stability Number.  

Section one is located 0.4 meters upstream, section two is located 0.45 meters 

downstream of the gate, and finally, section three is also located one meter downstream 

from the gate. Depths are reported as the average of all measurements.  In addition, 

Figures 5.4.8 (a) and (b) show the sediment transport and the surface flow pattern in 

the presence of a gate with contractions. 
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Figure 5.4.8 (a): Sediment transport in the presence of a gate with contractions  

 

 

 

Figure 5.4.8 (b): Flow pattern in the presence of a gate with contractions  
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Test number 1 was selected as an example to show the details of the calculation. The 

bed is a mixture of limestone pebbles, basalt pebbles, and brown pea gravel. 

Considering Table A.1, Appendix A, for stable, unlined, earthen channels, the 

maximum permissible velocity for coarse gravel, non-colloidal and fine gravel in clear 

water are 1.220 and 0.762 m/s, respectively. The minimum value is taken in this study 

as a safety factor.  Tables 5.4.9 to 5.4.14 reported the details of the calculation to 

determine the acceptability of the stability. As can be seen from Table 5.4.9, the depths 

in both the second and the third sections are more than the critical depth; therefore, the 

first assumption is satisfied. Table 5.4.10 shows that the velocities in both sections are 

less than the permissible velocity; consequently, the test is eligible for checking the 

third assumption (surface flow fluctuations). Table 5.4.11 shows the depth 

measurements in sections two and three (test number 3) downstream. These values 

should then be used in the statistical analysis to determine if the flow is stable or not. 

 

   Table 5.4.9 Control of the Flow Condition 
Test Number a 

(cm) 
dc 

 (cm) 
h1 (cm) 

Section 2 
h2  (cm) 

Section 3 

1 7.50 4.94 8.86 8.89 

 

 

   Table 5.4.10 Control of the Permissible Velocity 
Test Number Bed Material Permissible 

Velocity (m/s) 
V1 (m/s) 

Section 2 
V2  (m/s) 

Section 3 

1 Fine gravel 0.762 0.40 0.40 
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             Table 5.4.11 Depth Measurements 
Number h1 (cm) 

Section 2 
h2  (cm) 

Section 3 

1 8.86 8.88 

2 8.87 8.87 

3 8.89 8.87 

4 8.87 8.89 

5 8.86 8.89 

6 8.88 8.90 

7 8.89 8.87 

8 8.88 8.89 

9 8.85 8.91 

10 8.89 8.87 
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  Table 5.4.12 Two-sided t-test 
   t-test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

Section 2 versus 

       section 3 
*The average of 
section 2 is equal to 
the average of 
section 3 

H0 

    is false 
     0.1353 Do not 

reject 𝐻0  
 

There is not enough evidence to 
conclude that the average of section 2 is 
different from the average of section 3. 
So, it is reasonable to assume that the 
two averages are equal.  
 

 ●Assume 𝛼 = 0.005 
 

 ●Degree of 
freedom:  
n-2=18 

●t value : 

-1.5639 

●95% confidence interval  
-0.023434224    0.003434224 

*the mean of section 2 is 8.874 and the mean of section 3 is 8.884 
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Figure 5.4.9: Boxplots – sections 2 and 3  

 

 

Figure 5.4.10: Normal Q-Q plot – section 2  
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Figure 5.4.11: Normal Q-Q plot – section 3  

 

 

Figure 5.4.12: Q-Q plot – section 2 versus section 3



 

134 
 

     Table 5.4.13 Check of Normality 
   Shapiro-Wilk Test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

          h1 (cm) 

       Section 2 
Data follows a 
normal distribution 
 

H0 

    is false 
     0.2683 Do not 

reject 𝐻0  
 

 Fail to reject the null hypothesis. So, it 
is reasonable to assume normality. 

          h2 (cm) 

Section 3 
Data follows a 
normal distribution 
 

       H0 

   is false 

     0.0944 Do not 
reject 𝐻0  
 

 Fail to reject the null hypothesis. So, it 
is reasonable to assume normality. 

 

 

 

  Table 5.4.14 Check of the Equality of Variances 
   F Test   
   Value          H0  

 

       Ha     P-Value   Result             Explanation  

Section 2 versus 

       section 3 
The variance of 
section 2 is equal to 
the variance of 
section 3 

H0 

    is false 
        1 Do not 

reject 𝐻0  
 

Fail to reject the null hypothesis. So, it 
is reasonable to assume the equality of 
variances. 

 ●Assume 𝛼 = 0.005 
 

 ●Degree of 
freedom  
n-1=9 

 ●95% confidence interval  
0.2483859    4.0259942 
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A t-test has been selected for the statistical analysis because there are just two data sets 

(section 2 and section 3). Table 5.4.12 shows the results of the t-test for these two 

sections. As can be seen from the results, the flow is completely stable.  

There are two assumptions that must be satisfied for a t-test to be applied. The first 

assumption is normality; it means that the data (in both data sets) should follow a 

normal distribution. The second assumption is the equality of variances in both data 

sets. Boxplots of both sections have been drawn as Figure 5.4.9. Moreover, the QQ-

Plots (quantile-quantile plot) are presented in both sections (Figures 5.4.10 to 5.4.12). 

Furthermore, normality was checked via the Shapiro-Wilk test (Table 5.4.13). In 

addition, the equality of variances was checked by an F-test (Table 5.4.14).  

Based on the results of the statistical analysis, the flow is completely stable in test 

number 1 (in the second lab), also, the Flow Stability Number is approximately 

compatible with the Flow Stability Factor, which was determined to be 0.9 for this test. 
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CHAPTER 5 

RESULTS & DISCUSSION 

SECTION 5 

COMPARISON OF THE RESULTS OF A GATE, A GATE WITH 

EXPANSION, AND A GATE WITH CONTRACTION 

 

5.5.1 Introduction 

This research introduced the Flow Stability Factor as a new flow classification method, 

which works based on the Fuzzy Concept and can be used downstream of hydraulic 

structures. In addition, the Flow Stability Number — a ratio of energy in two sections 

— was introduced as a new dimensionless number. These sections are located 

downstream of the hydraulic structures. Due to the novelty of the Flow Stability Factor, 

as well as the Flow Stability Number, the results can not be compared with any previous 

studies. Therefore, in this section, the results of hydraulic structures which were used 

in this research were compared with each other. These hydraulic structures include a 

gate and a gate with expansion, as well as a gate with contraction. This section has four 

parts, not including the introduction. In the first part, the outcomes of the Flow Stability 

Factor and Flow Stability Number are compared with some experiments on a gate, a 

gate with expansion, and a gate with contraction. The second part shows the 

comparison between three hydraulic structures. In this part, the smallest thickness for 

a gate with expansion and a gate with contraction which are represented as the best 

results for these structures were compared with the results of gates in a dimensionless 
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graph. The application of Game Theory to select the appropriate hydraulic structure 

under different conditions is presented in the third part of this section. Finally, in the 

fourth part of this section, the results for each hydraulic structure in the first and second 

laboratory were drawn in dimensionless graphs to show the scale effect in this study. 

 

5.5.2 Comparison of Stabilities 

In this part, the Flow Stability Factor and the Flow Stability Number were compared in 

a stable condition to determine if these values show good enough agreement with each 

other (or not). The comparison was conducted for all three hydraulic structures. Table 

5.5.1 shows these two values in various discharges in gates and Figure 5.5.1 illustrates 

the discharges versus stability in gates. 

 

   Table 5.5.1 Stabilities in a Gate 
Number Discharge 

(l/s) 
Flow Stability 

Factor 
Flow Stability 

Number 
a 

(cm) 

 
1 2.18 1.00 0.99 5.5 

2 2.45 1.00 0.98 5.5 

3 2.61 1.00 0.98 6.0 

4 3.00 0.90 0.98 6.0 

5 3.36 0.90 1.00 6.0 

6 3.58 0.90 0.99 6.5 

7 3.86 0.80 0.97 6.5 

8 4.43 0.90 0.96 7.0 

9 4.56 1.00 0.96 7.5 

10 4.70 0.90 0.97 7.5 
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Figure 5.5.1: Stability versus discharge in a gate  

 

The results indicate that there is a good agreement between the Flow Stability Factor 

and the Flow Stability Number in gates. The same comparison has been done for a gate 

with expansion and a gate with contraction. The smallest thickness (i.e., 0.7 

centimeters) was selected for this comparison because the most stable conditions across 

various discharges were reported for this thickness. Table 5.5.2 and Figure 5.5.2 

represented the comparison of these two values in a gate with expansion. Moreover, 

Table 5.5.3 and Figure 5.5.3 show the results from comparing these two values in a 

gate with contraction. It should be noted that in the experiments related to a gate with 

contraction the stable condition could not be achieved under high discharges. Due to 

this fact, the last four rows of Table 5.5.3 are blank.  
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   Table 5.5.2 Stabilities in a Gate with Expansion 
Number Discharge 

(l/s) 
Flow Stability 

Factor 
Flow Stability 

Number 
a 

(cm) 

 
1 2.18 1.00 1.00 4.0 

2 2.45 1.00 0.99 5.5 

3 2.61 1.00 1.00 6.0 

4 3.00 0.90 0.99 6.0 

5 3.36 1.00 1.00 6.0 

6 3.58 0.90 0.99 6.5 

7 3.86 1.00 1.00 6.5 

8 4.43 1.00 1.00 7.0 

9 4.56 1.00 0.98 7.5 

10 4.70 0.90 0.97 7.5 

 

 

 

Figure 5.5.2: Stability versus discharge in a gate with expansion 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

St
ab

ili
ty

Discharge (l/s)

Flow Stability Factor

Flow Stability Number



 

140 
 

   Table 5.5.3 Stabilities in a Gate with Contraction 
Number Discharge 

(l/s) 
Flow Stability 

Factor 
Flow Stability 

Number 
a 

(cm) 

 
1 2.18 1.00 1.00 4.0 

2 2.45 1.00 0.99 5.5 

3 2.61 1.00 0.99 6.0 

4 3.00 0.90 0.99 6.0 

5 3.36 0.90 1.00 6.0 

6 3.58 0.90 1.00 6.5 

7 3.86 - - 6.5 

8 4.43 - - 7.0 

9 4.56 - - 7.5 

10 4.70 - - 7.5 

 

 

 

Figure 5.5.3: Stability versus discharge in a gate with contraction 
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It can be inferred from the results that the Flow Stability Factor and Flow Stability 

Number are in good agreement with each other for all three tested hydraulic structures. 

The depth and velocity measures are needed to calculate the Flow Stability Number. 

However, the determination of the Flow Stability Factor is based on visual engineering 

judgment. Therefore, Flow Stability Factor, instead of the Flow Stability Number, can 

be determined and used in practical works with a high degree of reliability without any 

measurements and calculations to find the flow stability condition downstream of 

hydraulic structures. Furthermore, the results indicate that the hydraulic gate with a 

contraction structure does not have a good hydraulic performance, and it is not able to 

establish a stable condition under high discharges. 

 

5.5.3 Comparison of a Gate, a Gate with Expansion, and a Gate with Contraction 

The performance of all three tested hydraulic structures, including a gate, a gate with 

expansion, and a gate with contraction, were compared based on the graph using 

dimensionless numbers. Some researchers developed and presented different 

dimensionless numbers in sluice gates [5, 114, 89]. Bijankhan et al. [5] developed and 

used dc/a and h0/a in his research to establish a new stage-discharge relationship in 

radial gates. Ferro [114] also developed and used the same dimensionless numbers to 

establish a stage-discharge relationship for the flow under gates in both free and 

submerged flows. Ansar [89] mentioned that the numbers that Ferro developed and 

used in his work are compatible with real scale data in free flow. Ansar [89] developed 

a new dimensionless number for the submerged flow in gates which includes the 
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tailwater. He proposed using (h1/h0)/a as a dimensionless number to find a stage-

discharge relationship in gates which are operating in a submerged condition.  

Comparing the performance of hydraulic structures is the purpose of this part of the 

research. Based on the results of the dimensional analysis which is presented in chapter 

five – section one,  the graph of h0/a versus dc/h0 is selected to show the results and do 

the comparison. Although Ansar suggested using (h1/h0)/a in a submerged and stable 

condition, the flow is submerged. However, this number can not directly show the 

upstream water level. Therefore, other dimensionless numbers have been used in this 

research to show the results. Figure 5.5.4 shows the results for stable conditions in a 

gate, a gate with expansion, and a gate with contraction at the first laboratory. It should 

be noted that to show the results of a gate with expansion and a gate with contraction 

only the outcomes for the narrowest thickness (0.7 centimeters) which provided the 

most stable conditions under various discharges were used. Furthermore, more details 

are provided in Tables 5.5.4 and 5.5.5 from the first and second laboratory, 

respectively.  

 

 

 

 

 

 

 

 



 

143 
 

 

 

 

 

 

 

 

 

 

Figure 5.5.4: h0/a versus dc/h0 in all three hydraulic structures 

0

0.5

1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

h 0
/a

dc/h0

Gate

Gate and Expansion

Gate and Contraction



 

144 
 

 
 
 
                Table 5.5.4 Results of All Three Hydraulic Structures 

Numbers Discharge  

(l/s) 

Hydraulic  

Structure 

a 

(cm)  

h0  

(cm) 

Flow Stability 

Number 

1 2.18 Gate 5.5 8.20 0.99 
2 2.18 Gate with Expansion 5.5 8.80 1.00 
3 2.18 Gate with Contraction 5.5 8.70 1.00 
      

4 2.45 Gate 5.5 8.50 0.98 
5 2.45 Gate with Expansion 5.5 8.90 0.99 
6 2.45 Gate with Contraction 5.5 9.00 0.99 
      

7 2.61 Gate 6.0 8.70 0.98 
8 2.61 Gate with Expansion 6.0 8.90 1.00 
9 2.61 Gate with Contraction 6.0 8.90 0.99 
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                Table 5.5.4 Results of All Three Hydraulic Structures (Continued) 
Numbers Discharge  

(l/s) 

Hydraulic  

Structure 

a 

(cm)  

h0  

(cm) 

Flow Stability 

Number 

10 3.00 Gate 6.0 9.40 0.98 
11 3.00 Gate with Expansion 6.0 9.30 0.99 
12 3.00 Gate with Contraction 6.0 9.50 0.99 

      
13 3.36 Gate 5.5 9.30 1.00 
14 3.36 Gate with Expansion 5.5 9.80 1.00 
15 3.36 Gate with Contraction 5.5 9.80 1.00 

      
16 3.58 Gate 6.5 9.50 0.99 
17 3.58 Gate with Expansion 6.5 10.40 0.99 
18 3.58 Gate with Contraction 6.5 10.70 1.00 
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                 Table 5.5.4 Results of All Three Hydraulic Structures (Continued) 

Numbers Discharge  

(l/s) 

Hydraulic  

Structure 

a 

(cm)  

h0  

(cm) 

Flow Stability 

Number 

19 3.86 Gate 6.5 9.40 0.97 
20 3.86 Gate with Expansion 6.5 9.80 1.00 
21 3.86 Gate with Contraction 6.5 - - 

      
22 4.43 Gate 7.0 9.60 0.96 
23 4.43 Gate with Expansion 7.0 10.20 1.00 
24 4.43 Gate with Contraction 7.0 - - 

      
25 4.56 Gate 7.5 9.60 0.96 
26 4.56 Gate with Expansion 7.5 10.10 0.98 
27 4.56 Gate with Contraction 7.5 - - 
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                Table 5.5.4 Results of All Three Hydraulic Structures (Continued) 

Numbers Discharge  

(l/s) 

Hydraulic  

Structure 

a 

(cm)  

h0  

(cm) 

Flow Stability 

Number 

28 4.70 Gate 7.5 9.80 0.97 
29 4.70 Gate with Expansion 7.5 10.30 0.97 
30 4.70 Gate with Contraction 7.5 - - 
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                Table 5.5.5 Results of All Three Hydraulic Structures (The Second Laboratory) 
Numbers Discharge  

(l/s) 

Hydraulic  

Structure 

a 

(cm)  

h0  

(cm) 

Flow Stability 

Number 

1 18.94 Gate 7.5 14.29 0.97 
2 18.94 Gate with Expansion 7.5 12.06 0.99 
3 18.94 Gate and Contraction 7.5 14.60 1.00 
      

4 25.66 Gate 11.5 13.65 0.98 
5 25.66 Gate with Expansion 11.5 13.65 1.00 
6 25.66 Gate with Contraction 11.5 14.60 0.97 
      

7 32.20 Gate 14.0 15.56 0.99 
8 32.20 Gate with Expansion 14.0 15.56 1.00 
9 32.20 Gate with Contraction 14.0 15.56 0.96 
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It can be inferred from Figure 5.5.4 and Tables 5.5.4 and 5.5.5 that the performance of 

a gate with expansion and a gate with contraction are better than the performance for a 

gate. With additional consideration, it can be concluded that for the same gate opening 

and the same discharge, a gate with contraction shows the highest upstream level and 

Flow Stability Number among these three hydraulic structures across a low range of 

discharges. However, the performance of a hydraulic gate with a contraction structure 

is not desirable for mid- and high-range discharges. On the other hand, a gate with 

expansion structures demonstrates excellent performance for low- to high-range 

discharges. The results indicate that a hydraulic gate with an expansion structure 

produces the highest upstream depth and Flow Stability Number across mid- and high-

range discharges among all three hydraulic structures. Moreover, the performance of a 

gate with an expansion structure for low-range discharges is just slightly less than the 

performance of a gate with a contraction structure. Therefore, the best hydraulic 

structure which can be used across all discharge ranges to achieve the highest upstream 

level, as well as the highest Flow Stability Number, is a hydraulic gate with an 

expansion structure. The gate hydraulic structure can also be used across all discharge 

ranges. However, its performance is less than the performance of a hydraulic gate with 

an expansion structure. 

 

5.5.4 Choose an Appropriate Hydraulic Structure 

In 5.5.3, it was mentioned that among the three tested hydraulic structures two of them, 

including a gate and a gate with an expansion, could be used for low to high discharge 

ranges. Therefore, these two hydraulic structures are evaluated in this part to determine 
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which one is preferable in which situation. Game Theory, initially presented by Nash 

[173], has been used to achieve this purpose.  

Based on these results, a hydraulic gate with  an expansion structure can produce a 

higher upstream water level, as well as a higher Flow Stability Number than a gate 

hydraulic structure under the same condition. As a result, a gate with an expansion 

hydraulic structure is better able to protect the environment than a gate. On the other 

hand, the construction cost of a gate hydraulic structure is lower than for a hydraulic 

gate with an expansion structure.  

A two-person game (a hypothetical game), with the involvement of a third-party, is 

presented below to show what hydraulic structure should be selected when two 

agencies try to build a hydraulic structure on the same river (at a specific distance) with 

different purposes.  

The assumptions in this problem are listed below: 

In this problem, two agencies decide to build a hydraulic structure on the same river. 

The first agency is an environmental agency and the second agency is an irrigation 

agency. The irrigation agency wants to build a hydraulic structure to provide water for 

agriculture, dissipate energy, and provide drinking water at a minimum cost (some of 

the purposes). An environmental agency wants to build a hydraulic structure which 

protects the ecosystem, avoids eutrophication, and keeps aquatic life in a normal 

situation (some of the purposes). A design with strong environmental protection and a 

higher cost is preferred to a design with less environmental protection and a lower cost. 

Moreover, a consulting engineering company designed the hydraulic structures. The 

first one is a gate hydraulic structure which is closer to the objectives of the irrigation 
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agency and the second is a hydraulic gate with an expansion structure which is closer 

to the objectives of the environmental agency. Figure 3.5.5 shows the schematic of the 

river and the agencies’ objectives. 

 

 

Figure 5.5.5: Schematic of the river 

 

Each agency derives some benefits from using one of these designs. In Figure 5.5.6, 

the benefits for each player of the game are reported on a 0-1 scale for an economic 

design, which is a gate hydraulic structure in this problem, and an environmentally-

friendly design, which is a hydraulic gate with an expansion structure in this problem. 

Zero means there is no benefit for the company and one shows the maximum benefit. 

The benefits are based on assumptions. 

As can be seen in Figure 5.5.6, the benefit for the environmental agency for building 

an environmentally-friendly design (a gate with an expansion structure) is equal to one, 
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whereas the benefit for the irrigation agency is equal to 0.4 in the same situation. A 

Nash Equilibrium should be investigated in this game. The Nash Equilibrium is defined 

as the solution concept for a non-cooperative game with two or more players, in a way 

that each player is assumed to be aware of the equilibrium strategies of other players. 

Also, none of the players has anything to gain by changing only their own strategy 

[174]. 

 

 

 Figure 5.5.6: Benefits to each agency in different situations 

 

Based on the definition of the Nash Equilibrium, in this game, none of the situations 

leads to a Nash Equilibrium. Therefore, each agency prefers to build a hydraulic 

structure with the highest benefit to them. In this problem, the environmental agency 

prefers to build an environmentally-friendly design, which is a hydraulic gate with an 
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expansion structure, whereas the irrigation agency prefers to build an economic design, 

which is a hydraulic gate.  

There is another interesting fact in this problem which is related to the existence of a 

third-party. Assume that the designer (the consulting engineering company) gains a 

benefit equal to one by selling the design to an agency. If both agencies ask the same 

designer (the consulting engineering company) to design a hydraulic structure for them, 

then the designer gains a benefit equal to two — one from the environmental agency 

and one from the irrigation agency. The designer is not a decision-maker in this game. 

However, based on the results of the game, the designer is the real winner — gaining a 

benefit equal to two. This is a great example that shows that the winner is not 

necessarily a decision-maker in the game. 

 

5.5.5 Scale Effect 

As previously mentioned, the experiments were conducted in two laboratories with 

different scales. In this part, the results of the first and second laboratory are compared 

to show the scale effect on the nature of the study. The graph which indicates the h0/a 

versus the dc/h0 was selected to compare the results from both laboratories. Figure 5.5.7 

illustrated the results of both laboratories in gates. 
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Figure 5.5.7: Scale effect in gates 

 

As can be seen from Figure 5.5.7, the outcomes from both laboratories follow the same 

trend. Moreover, there is a small amount of difference between the results from the first 

and second laboratory. This difference may be because of experimental mistakes or due 

to the scale effect. It is recommended that the experiments be extended to larger scale 

hydraulic structures (a prototype) to investigate the reason for this difference in more 

detail. It should be noted that based on the previous studies, the Reynolds number could 

be disregarded when its value is more than 104 [78]. In Figure 5.5.7, there is a point in 

the first laboratory with an h0/a of more than 4. There are no similar experiments in the 

second laboratory to compare with this point. This point is far from the other points 

and it may have occurred due to experimental errors. However, it is recommended that 

this point be compared with a similar point in the second laboratory before it is deleted 
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as an outlier. Figures 5.5.8 and 5.5.9 show the comparison of the results from both 

laboratories in a gate with expansion and a gate with contraction.  

 

 

Figure 5.5.8: Scale effect in a gate with expansion 

 

 

Figure 5.5.9: Scale effect in a gate with contraction 
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The Reynolds number was recorded in a range of 8816 to 27000 in this research (the 

first laboratory). Moreover, the Froude number was recorded in a range of 0.3 to 2.77 

in the first laboratory. The results of the experiments indicate that the Reynolds number 

is less than 104 in all stable conditions which provides a fundamental, reasonable 

explanation for the scale effect observed between the various experimental set-ups. 

Figures 5.5.8 and 5.5.9 show that, again, the results of both laboratories follow the same 

trend, but with a small amount of difference. Some researchers [5, 114, 89] selected 

one type of regression (like exponential) to develop a stage-discharge relationship in 

gates and suggested using this kind of regression with different coefficients for 

different scales. The coefficients should be determined separately in each structure. 

Due to the lack of data in this research, it is not reasonable to develop any kind of 

relationship based on the graphs. In Appendix G, some pictures of the real scale 

hydraulic structures are provided for better understanding. These structures are located 

in South Florida.   

 

 

 



 

157 
 

CHAPTER 5 

RESULTS & DISCUSSION 

SECTION 6 

AN IMAGE PROCESSING TECHNIQUE TO DETERMINE THE 

EFFICIENCY OF ENERGY DISSIPATION IN HYDRAULIC 

STRUCTURES 

 

5.6.1 Introduction 

A number of hydraulic structures can be operated as energy dissipators (e.g., a 

hydraulic jump). These structures dissipate energy, thus maintaining their downstream 

flow in a stable, safe condition. Experimental equations are available for the types of 

hydraulic structures that determine their energy loss based on in-situ measurements. 

The efficiency of these structures is directly related to their ability to dissipate energy. 

In this study, an image processing technique has been assessed to determine the 

efficiency of some of these structures. As a first step, the study obtained and used 

regular, top view pictures of the structure, including upstream and downstream views; 

the picture(s) was then imported into MATLAB software for further processing. Next, 

the picture was converted to a grayscale image (to ease processing). Then, using an 

innovative Fuzzy-based method, which is also presented in this study, an Efficiency 

Index (with a 0-100 scale) was calculated. The method uses image histogram 

information, which is extracted by the image processing technique. The approach 
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herein described offers an alternative technique that hydraulic structure managers may 

develop to support their operation. 

 

5.6.2 Digital Pictures 

Each picture is made from elements which are known as the pixel. There is some 

information in each pixel which represents a color. Simply put, the color in each section 

of the picture is represented by a pixel. The quality of the image can be determined by 

the intensity of the pixels; a higher quality picture needs more pixels and greater 

resolution [175]. 

Colored and black and white photos are two types of images. Colored pictures are made 

up of three basic colors (red, green, and blue (RGB)) in three layers with 16.7 million 

spectra, whereas black and white pictures are made by gray level with 256-color spectra 

ranging from 0 to 255 [176]. Some other types of color images, such as CMYK (cyan, 

magenta, yellow, and black),  have more than three basic colors with 4.3 billion spectra. 

With image processing techniques, some information can be extracted from the image. 

This process is known as digitization[178]. 

It is easier to extract data from black and white images than from colored images, 

because in colored images there is one layer for each basic color (in total, three layers) 

and millions and billions of spectra. The huge amount of information in colored images 

makes analyzing these pictures very difficult.Therefore, the black and white image is 

preferred, because it has just 256 spectra colors. In this research, black and white 

images are used to extract information. The image frequency histogram is extracted for 
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each picture. Then the mean and standard deviation of the image histogram were used 

to determine the Efficiency Index.  

 

5.6.3 Model Preparation 

 There are some steps to complete before using the proposed method to determine the 

Efficiency Index: 

●Prepare a top view image of the structure, including upstream and downstream views. 

The image can be taken by camera or extracted from Google Earth. 

● Cut three sections of the image; one upstream, one downstream, and a third one in the 

middle. 

● Import three new images into MATLAB software. 

● Convert the images to grayscale to ease processing. 

● Extract the grayscale images’ histogram in MATLAB. 

● Change the histogram type to double format. 

● Make the histogram’s scale 0-1 based on the Fuzzy Concept (Figure 3.6.1). 

● Extract the mean and standard deviation of the histogram.  

 

 

Figure 5.6.1: Image histogram on a 0-1 scale 
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5.6.4 Efficiency Index Calculation 

After extracting the mean and the standard deviation from the image histogram, these 

values should then be used in the proposed method to determine the Efficiency Index. 

The steps below are used to calculate the Efficiency Index: 

● Use the Mean and Standard Deviation (SD) obtained in the model preparation 

section. 

● If the mean is more than 0.5, subtract both the mean and the SD from 1 (one), 

otherwise do not subtract the mean and the SD from one. 

● Find the average of the mean and the SD for the last step. This number is 

representative of the Efficiency Index. 

● Compare the Efficiency Index between upstream and downstream and then estimate 

the efficiency of the structure. 

 

5.6.5 Laboratory Results 

The experiments were conducted at the Water Research Institute in Tehran, Iran to 

determine the Efficiency Index of a huge physical model of a stepped spillway (scale 

1:30). Figures 5.6.2 (a) and (b) show the physical model from the front and top view of 

the model, respectively. Table 5.6.1 reported the tested discharges, the extracted mean, 

and the standard deviation from the image histogram, the revised mean and the standard 

deviation, and the Efficiency Index downstream. The way to revise the mean and the 

standard deviation was explained in the proposed method. It should be noted that 
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discharges are reported as a prototype discharge, not for the physical model. The 

proposed method has been validated by the results of this physical model with an 

average of 96.45% agreement (Appendix H). The application of this proposed method 

is then shown in two case studies.  

 

Figure 5.6.2. (a): Stepped spillway physical model, the Water Research Institute 

 

 

Figure 5.6.2. (b): Top view, stepped spillway, the Water Research  Institute 
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           Table 5.6.1 Downstream Efficiency Index 
Discharge 

 (m3/s) 

 

 

Mean 

 

Standard 

Deviation 

Revised 

 Mean 

Revised Standard 

Deviation 

Efficiency Index 

Downstream 

          20 0.1974   0.0264        0.8026            0.9736               0.89 
   80 0.2525   0.0294 0.7475            0.9706               0.86 
  200 0.3129   0.0762 0.6871            0.9238 

 

              0.81 
  800 0.5577   0.0417 0.5571            0.0417               0.30 
 2100 0.5295   0.0377 0.5295            0.0377               0.28 
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5.6.6 Case Study I 

The Spillway Park in Lake Worth, Florida was selected as the first case study to show 

the application of the proposed method. As can be seen from Figure 5.6.3 (a), the top 

view of the structure is extracted from Google Earth which is free and available for use 

by everyone. All sections must be extracted from this image to prevent the light effect 

in the image processing technique.  Section one is selected upstream where the flow is 

completely stable. Section two is selected downstream of the structure, and section 

three is also selected downstream where the flow is expected to be in an approximately 

stable condition. Figures 5.6.3 (b) to (d) depict the image histogram of these three 

sections, as well as the estimated Efficiency Index for each of them. Figure 5.6.3 (e) 

shows the downstream flow condition. 

 

 

Figure 5.6.3. (a): Top view, Spillway Park – Lake Worth, FL, [Google Earth] 
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Figure 5.6.3. (b): Image histogram – section one 

 

 

Figure 5.6.3. (c): Image histogram – section two 
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Figure 5.6.3. (d): Image histogram – section three 

 

 

Figure 5.6.3. (e): Downstream flow condition 
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The efficiency of this hydraulic structure is the difference between section one and 

section three. Results show that the Efficiency Index is equal to 0.93 in section one and 

that it is equal to 0.89 in section three. Therefore, the efficiency of this structure is 96% 

based on the proposed method. As is clear from the histograms, the method uses the 

darkness and whiteness (brightness) of the image to estimate the Efficiency Index. 

In Figure 5.6.3 (b), the brightness of the image is in dark values. Dark values mean that 

the flow has no aeration or a small amount of aeration based on its brightness value. In 

Figure 5.6.3 (c), the brightness of the images distributed in both dark and white values. 

However, it is mostly in dark values. White values in the image histogram mean are 

representative of aeration in the flow which can be seen in Figure 5.6.3 (c). Finally, in 

Figure 5.6.3 (d), the brightness of the image is again mostly seen in dark values; 

therefore, a small amount of aeration is expected. As is obvious from the method, the 

number of pixels is not important in this method. Brightness only is used to determine 

the Efficiency Index. 

 

5.6.7 Case Study II 

The Oroville Dam in the northern part of California was selected as the second case 

study to show the application of the proposed method. As can be seen from Figure 5.6.4 

(a), the top view of the structure was extracted from Google Earth. All sections must 

be extracted from the same image to prevent the light effect in the image processing 

technique.  Section one is selected upstream (the reservoir) where the flow is 

completely stable (Figure 5.6.4 (b)). Section two is selected downstream of the 
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structure, and section three is also selected downstream (the river) where the flow is 

expected to be in an approximately stable condition (Figure 5.6.4 (c)). The image 

histogram for all these sections, as well as the estimated Efficiency Index for each of 

them, are depicted in Figures 5.6.4 (d) to (f). In this case study, the main spillway of 

the Oroville Dam is carefully considered to determine the efficiency of the structure. 

The main spillway of this dam is located on the right side of the dam (Figure 5.6.4 (a)) 

and conducts flow from the reservoir to the river downstream during a flood or when 

the water level should be decreased in the reservoir. 

 

 

Figure 5.6.4. (a): Top view, Oroville Dam – CA, [Google Earth] 

 



 

168 
 

 

Figure 5.6.4. (b): Section one 

 

 

Figure 5.6.4. (c): Sections two and three 
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Figure 5.6.4. (d): Image histogram – section one 

 

 

Figure 5.6.4. (e): Image histogram – section two 
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Figure 5.6.4. (f): Image histogram – section three 

 

The efficiency of this hydraulic structure is the difference between section one and 

section three. Based on the results, the Efficiency Index is equal to 0.94 in section one, 

whereas it is equal to 0.92 in section three. Consequently, the efficiency of this structure 

is 97.87% based on the proposed method.  

In Figure 5.6.4 (d), the brightness of the image is in the dark values. The dark values 

mean that the flow has no aeration or a small amount of aeration based on the brightness 

value. In Figure 5.6.4 (e), the brightness of the image is mostly in the white values. 

White values in the image histogram mean are representative of aeration in the flow. 

In Figure 5.6.4 (f), the brightness of the image is again mostly in the dark values; so a 

small amount of aeration is expected.  
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Section two can be used to determine the efficiency of the chute when the stilling basin 

or any other type of combination is available. Moreover, the results of this section can 

help engineers carefully monitor the performance of the hydraulic structure and find 

out what is happening exactly in the middle of the structure or immediately after the 

structure. Based on the results of this study, the following outcomes can be highlighted:  

● The proposed method effectively estimated the efficiency of the hydraulic structures 

in both the laboratory and the prototype. 

●The proposed method, which utilizes the Image Processing Technique, is a 

trustworthy, quick, low-cost, and practical method for engineers to monitor hydraulic 

structures. 

●  The proposed method is simple because the pictures can be easily obtained from 

Google Earth. 
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CHAPTER 5 

RESULTS & DISCUSSION 

SECTION 7 

LIMITATIONS 

 

The concepts and methods that have been introduced and developed in this research 

have limitations (or constraints) that must be acknowledged. These concepts and 

methods include the Flow Stability Factor, the Flow Stability Number, and the image 

processing technique. Moreover, there are some additional factors, like the impact of 

the Reynolds number, which limit the results. The limitations on this research are listed 

in this section.  

The Flow Stability Factor is a visual method and does not need any measurement, 

because it is based on observation. Therefore, the individual who uses this method 

should be an educated, trained expert in hydraulic engineering. This requirement is 

important to ensure the correct classification of the flow into a category. This method 

is based on surface flow fluctuations.  

 The Flow Stability Number is not defined for supercritical flow and, consequently, is 

only applicable to critical and subcritical flows. This method requires measuring depth 

and velocity. Thus, it is more elaborate and quantitative than the Flow Stability Factor. 

An expert using this method must be familiar with the concept of permissible velocity, 

the meaning and role of the energy equation, and basic statistical analysis. 
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The outcomes of this research indicate that scale has an effect on the results. The scale 

effect has been assessed using the differences in the experimental results at the two 

utilized laboratories and experimental flumes. The effect may be connected with the 

range of the Reynolds number. Based on the literature review, results from conditions 

of a Reynolds number of less than 104 cannot ensure Froude similarity, which was the 

case for this research. Conclusively, additional experimentation is needed to improve 

the understanding of the scale effect, and its implication in the transitioning laboratory 

and pilot conditions to real prototypes.  

The Efficiency Index method also has limitations. In this method, the top view picture 

should capture the entire structure, fully covering the upstream and downstream areas, 

in one picture. Then, three sections should be selected from the captured picture. The 

method works based on the image processing technique and is able to estimate the 

Efficiency Index for each selected section based on the darkness and whiteness of the 

picture. If different pictures (instead of one picture) are used for different sections, the 

quality of the pictures (resolution) may not be the same. Hence, the method cannot be 

applied. 

Because shadows have an effect on results, it is important to select areas without a 

shadow, or better yet, to use a picture without a shadow. Another limitation of this 

method is the availability of real time pictures. For instance, Google Earth provides 

“old pictures” most of the time, which does not support the online monitoring of 

structures. A person who uses this method should also be familiar with Matlab 

software, image processing, hydraulic structures, flow regime categories, and statistics. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 KEY FINDINGS AND CONCLUSIONS 

The focus of the research is to classify the flow condition downstream of the hydraulic 

structures by introducing the Flow Stability Factor, as well as the Flow Stability 

Number. These innovative factors are presented to easily classify the flow and help to 

manage the hydraulic structures to maintain downstream flow in a stable condition.  

Three types of structures were used in this research, including a vertical sluice gate, a 

gate and an expansion structure, and a gate and a contraction structure. Researchers 

have not paid a lot of attention to flow classification and energy loss investigations, and 

thus, there is an information gap. 

 Chapter four explained the methodology, laboratory details, and the devices which 

were used in this study. The experiments were conducted in two laboratories. The first 

one was the Fluid Mechanics Laboratory at Florida International University (FIU) and 

the second one was the Center for Research in Water Resources (CRWR) at the 

University of Texas-Austin. The Flow Stability Factor and the Flow Stability Number 

(as a ratio of two energies) are introduced in this chapter. 

 Chapter five includes seven sections, presented as results and a discussion. Section one 

shows the application of the Flow Stability Factor based on the Fuzzy Concept to 

classify the flow downstream of gates. Flow classification was conducted for 14 

discharges and the size of the gate opening to ensure a stable condition downstream is 
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reported using dimensionless numbers. Based on this classification method, the number 

one is assigned to a completely stable flow and the number zero is assigned to a 

hydraulic jump (a completely unstable flow). Other numbers between zero and one are 

assigned to various hydraulic conditions between a hydraulic jump and a stable 

condition, like a submerged jump, a wave, and a weak wave, etc. This research 

developed dimensionless parameters, using the Pi-Buckingham method that shows the 

h0/a versus dc/h0 trend, while securing a stable flow condition downstream. Two data 

series were used to train and validate the gate opening neural network in vertical sluice 

gates. Furthermore, a regression-based post-processing method was applied to the 

outputs of the artificial neural network to reduce the difference percentage in 

determining the gate opening. By considering difference percentages and average 

difference percentages, it can be inferred that the regression-based post-processing 

method results in less difference than ANN outcomes. The regression-based post-

processing method can be used with an average difference of roughly 3%. Therefore, 

it is a reliable and accurate method even if the data set is small. 

All in all, simply by measuring the depth and discharge before the gate, it is possible 

to find an acceptable gate opening using ANN.  Section Two shows the values of the 

Flow Stability Number in vertical gates. This dimensionless number is a ratio of total 

energies in two sections downstream of a gate. The results show that there is a good 

agreement between the Flow Stability Number and the Flow Stability Factor. 

Section three and section four represent the application of the Flow Stability Number 

in a gate and an expansion, as well as in a gate and a contraction hydraulic structures.  

Three thicknesses were used for these two structures. The results indicate that the 
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narrowest thickness (i.e., 0.7 centimeters) generates the best results in these hydraulic 

structures. Moreover, the outcomes show that there is not a meaningful difference in 

the hydraulic performance between 0.7 centimeters and 1.2 centimeter thicknesses in a 

gate and an expansion hydraulic structure. The greatest thickness (2 centimeters) can 

be used in low rate discharges; the 1.2 cm thickness can be used in low- and mid-rate 

discharges; and finally, the narrowest thickness (0.7 centimeters) can be used for all 

discharge rates to produce a stable condition downstream of a gate and an expansion 

hydraulic structure. 

In section five, the results of the Flow Stability Number and the Flow Stability Factor 

were compared. These two values demonstrate good agreement in determining the 

stable condition downstream of hydraulic structures. As a result, the Flow Stability 

Factor can be implemented in projects by hydraulic experts as a practical, quick, and 

reliable method to determine the stability condition. There is no need to measure any 

variables to determine the Flow Stability Factor; therefore, it is desirable for 

applications in practical work when measurements cannot be taken. Later in section 

five, three hydraulic structures were compared and the results indicate that a gate with 

an expansion structure has the best hydraulic performance among these structures 

across all discharge rates. Furthermore, a gate and an expansion with the smallest 

thickness can be used across a wide range of discharges, whereas a gate with a 

contraction hydraulic structure can only be used for low discharge rates. The flow 

immediately after a gate a contraction is somehow wavy, and this hydraulic structure 

is not recommended as a structure for producing a stable condition downstream.  
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Game Theory was used to select an appropriate hydraulic structure based on the 

objectives of different agencies. A gate with an expansion structure is presented as a 

desirable hydraulic structure for environmental agencies, because it provides the 

highest degree of downstream stability for the structure. However, the construction cost 

of this structure is more than the cost for a gate hydraulic structure. On the other hand, 

the gate structure is presented as a desirable option for irrigation agencies, because the 

construction cost is lower than for a gate with an expansion structure. Based on the 

results, a Nash Equilibrium cannot be achieved in this game; therefore, each agency 

should build their own most desired option. Moreover, the designer is presented as a 

third-party who is not a decision-maker in the game, but who can benefit from it. If 

both agencies select the same designer for their project, then, the designer is the real 

winner of the game. In addition, the graphs which show the results for both laboratories, 

in section five, illustrate that the flow in these structures is sensitive to a scale effect 

and more consideration should be taken about sluice gate studies. 

 An image processing technique has been assessed to determine the efficiency of some 

of the hydraulic structures in chapter five – section six. In this method, a grayscale 

image should be used for processing ease. MATLAB software was used to produce a 

grayscale image from a colored image (the top view of the structure) and to extract an 

image histogram. Then, an innovative Fuzzy-based method should be applied to 

calculate the Efficiency Index, across a 0-100 scale. The method uses image histogram 

information, which is extracted by the image processing technique, and determines the 

Efficiency Index based on the darkness and whiteness (brightness) of the picture in 

question. One laboratory physical model and two case studies were selected to show 
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the application of the method. The method was validated with the results of the physical 

method with an average 96.45% agreement. The efficiency of the structure was 

calculated at 96% in the Spillway Park, Lake Worth, Florida, and as 97.87% in the 

main spillway of the Oroville Dam, California. The outcomes show that this proposed 

method can be effectively used to determine the efficiency of hydraulic structures in 

both laboratory and real world situations. Moreover, this method can help engineers — 

offering a practical, low-cost, trustworthy, and quick way to monitor hydraulic 

structures. Simplicity is another advantage of this method, because the top view 

pictures can be obtained from Google Earth for free and quickly. 

Limitations on the methods which have been used in this research are listed in chapter 

five - section seven. There are some limitations to using the Flow Stability Factor, the 

Flow Stability Number, and the image processing technique. The Flow Stability Factor 

is a visual method and there is no need to measure any variable in this method. 

Therefore, the person who is using this method should be a hydraulic expert. The flow 

is classified in some categories, and there is the chance to select the flow in an incorrect 

category when the person using this method is not a hydraulic expert. The Flow 

Stability Number is not defined for supercritical flow and is only applicable in critical 

and subcritical flows. Also, to use this method, depths and velocities must be measured 

which makes it more expensive than the Flow Stability Factor. The proposed method 

to estimate the Efficiency Index and the overall efficiency of the structures also has 

some limitations. In this method, one picture should be captured for the whole structure, 

including both upstream and downstream. Then, three sections should be selected from 

the captured picture. When different pictures are used for different sections, the quality 
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of the pictures (resolution) are not the same. Hence, the method cannot be applied. 

Moreover, a shadow affects the results of the method. Therefore, when selecting the 

sections, the user should try to select an area without shadows or use a picture without 

shadows. Another limitation of this method is the lack of access to real time pictures. 

Most of the time, Google Earth offers only old pictures, whereas for the online 

monitoring of structures the most updated pictures are needed. 

 

4.2 RECOMMENDATIONS FOR FUTURE WORK 

Because of the scale effect, it is recommended that experiments be conducted in large- 

scale structures (in sections one to four) to better understand a scale effect and to find 

more reliable results and develop an equation which can be used to estimate the size of  

the gate opening. Also, it is recommended that expansion and contraction be used with 

different lenghths to find the effect of this factor on the hydraulic performance of these 

structures. 

Other types of structures, like stepped spillways, ogee spillways, and flip buckets, can 

be combined with a gate, and then the Flow Stability Number can be estimated for 

different discharges and gate openings. Therefore, the secenarios which lead to 

downstream stable conditions can be determined. 

The Efficiency Index is defined in chapter three – section six. However, the acceptable 

range of this index should be investigated by conducting some experiments. It is 

recommended that the acceptable range be found by measuring the energy and flow 

aeration in different hydraulic structures. 
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APPENDIX A 

PERMISSIBLE VELOCITY 

 

The table which was used to find the permisible velocity in an ulined, earthen channel is 

presented in this section. This table represents Fortier and Scobey’s limiting velocities in 

straight channels [147] after ageing in clear water, as well as in water transporting colloidal 

silts. The data in this table was used to determine permissible velocities in this research.     
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Table A.1 Permissible Velocities in Unlined, Earthen Channels 

  Clear Water Water Transporting  

Colloidal Silts  

 

Material Roughness 

 Coefficient, n 

Velocity 

(m/s) 

Velocity (m/s)  

Fine sand, colloidal 0.020 0.46                              0.76  
Sandy loam, noncolloidal 0.020  0.53                              0.76  

Silt loam, noncolloidal 0.020 0.61                              0.92  
Alluvial silts, noncolloidal 0.020 0.61                              1.07  

Ordinary firm loam 0.020 0.76                              1.07  
Volcanic ash 0.020 0.76                              1.07  

Stiff clay, very colloidal 0.025 1.14                              1.53  
Alluvial silts, colloidal 0.025 1.14                              1.53  
Shales and hardpans 0.025 1.83                              1.83  

Fine gravel 0.020 0.76                              1.53  
Graded loam to cobbles when noncolloidal 0.030 1.14                              1.53  

Graded silts to cobbles when colloidal 0.030 1.22                              1.68  
Coarse gravel, noncolloidal 0.025 1.22                              1.83  

Cobbles and shingles 0.035 1.53                              1.68  
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APPENDIX B 

GRAIN SIZE DISTRIBUTION 

 

The grain size distribution (GSD) of the mixture which was used in this research is 

presented in this section. The flume bed is covered with a mixture of sand and gravel, 

including brown pea gravel circled, white limestone (coarsest), and dark basalt gravel 

(intermediate size). 
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Table B.1 Grain Size Distribution 

Sieve Size  

 (mm) 

Limestone  

Pebbles (g) 

Basalt  

Pebbles (g) 

Brown Pea 

           Gravel (g) 

Bulk 

(g) 

Passing Rate 

(%) 

40.00 1680.07   46113.19 100.00 
31.50 9047.46    44433.12 96.36 
22.40 7544.9 101.66  35385.66 76.74 
16.00 1620.48 5490.48  27739.10 60.15 
11.20  717.33 371.21 20628.14 44.73 
8.00   1858.25 19539.60 42.37 
6.30   8735.58 17681.35 38.34 
4.00   5816.97 8945.77 19.40 
2.80   2075.56 3128.80 6.79 
2.00   1053.24 1053.24 2.28 
1.00   0.00 0.00 0.00 
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Figure B.1: Grain Size Distribution Curve 
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APPENDIX C 

EXPERIMENTAL MEASUREMENTS 

 

Experimental measurements in vertical sluice gates are presented in Table C.1 and C.2 for 

the main discharges and validation measurements. Gate opening, upstream depth, 

downstream depth, downstream flow condition, the Flow Stability Factor, and the h0/a 

ratio are reported in these tables.The data in these tables have been used in chapter three, 

sections one and two, to show the experimental results and to also determine the Flow 

Stability Number.      
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    Table C.1 Experimental Measurements (Main Data) 
   q  
(m2/s) 

     a             
(cm) 

   h0 
  (cm) 

    h1 
  (cm) 

        Downstream  
          Condition Stability    h0/a 

0.0057 1.0 5.9 5.9              Stable 1.0 5.90 
  1.5 5.5 5.5              Stable 1.0 3.67 
  2.0 5.5 5.5              Stable  1.0 2.75 
  3.0 5.5 5.5              Stable 1.0 1.83 
0.0086 1.5 12.4 7.6              Stable 1.0 8.27 
  2.0 10.0 7.6              Stable 1.0 5.00 
  2.5 8.9 7.6        Weak Waves 1.0 3.56 
0.0159 1.0 21.4 8.0       Submerged H.J 0.2 21.40 
  1.5 16.6 7.9             Wave 0.7 11.07 
  2.0 12.6 7.5             Wave 0.7 6.30 
  2.5 10.4 7.4        Weak Wave 0.8 4.16 
0.0198 2.0 17.1 8.4              H.J 0.0 8.55 
  2.5 13.2 8.1      Submerged H.J 0.2 5.28 
  3.0 10.8 8.1   Weak submerge H.J 0.4 3.60 
  3.5 9.9 8.1 Very weak submerge H.J 0.5 2.83 
  4.0 9.3 8.1            Wave 0.7 2.33 
  4.5 8.8 8.1       Weak Wave 0.8 1.96 
  5.0 8.4 8.1     Very weak wave 0.9 1.68 
  5.5 8.2 7.9            Stable 1.0 1.49 
  6.0 8.2 8.0            Stable 1.0 1.37 
0.0237 1.5 23.5 8.7                               H.J 0.0 15.67 
  2.0 16.6 8.7             H.J 0.0 8.30 
  2.5 14.4 8.7             H.J 0.0 5.76 
  3.0 12.3 8.7      Submerged H.J 0.2 4.10 
  3.5 11.3 8.7      Submerged H.J 0.2 3.23 
  4.0 10.3 8.7   Weak submerge H.J 0.4 2.58 
  4.5 9.9 8.5          Wave 0.7 2.20 
  5.0 8.9 8.2          Wave 0.7 1.78 
  5.5 8.8 8.2     Weak Wave 0.8 1.60 
  6.0 8.7 8.1           Stable 1.0 1.45 
0.0270 2.0 21.9 8.0            H.J 0.0 10.95 
  2.5 18.6 8.2            H.J 0.0 7.44 
  3.0 13.7 8.7            H.J 0.0 4.57 
  3.5 12.2 8.7            H.J 0.0 3.49 
  4.0 11.0 8.7    Submerged H.J 0.2 2.75 
  4.5 10.4 8.7     Strong Wave 0.6 2.31 
  5.0 9.9 8.8     Weak wave 0.8 1.98 
  5.5 9.4 8.8     Weak wave 0.8 1.71 
  6.0 9.4 8.8  Very weak wave 0.9 1.57 
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    Table C.1 Experimental Measurements (Main Data) (Continued) 
   q  
(m2/s) 

   a             
(cm) 

  h0 
 (cm) 

  h1 
(cm) 

        Downstream  
          Condition Stability    h0/a 

0.0305  3.0 15.3 8.5            H.J     0.0    5.10 
   3.5 13.7 8.7            H.J     0.0          3.91 
   4.0 11.5 8.7            H.J     0.0    2.88 
   4.5 10.6 8.7     Submerged H.J     0.2    2.36 
   5.0 10.0 8.7       Strong Wave     0.6    2.00 
   5.5 9.5 8.7       Weak wave     0.8    1.73 
   6.0 9.3 8.7    Very weak wave     0.9    1.55 
0.0350  3.5 15.2 8.8            H.J     0.0    4.34 
   4.0 11.9 8.8            H.J     0.0    2.98 
   4.5 11.9 8.9            H.J     0.0    2.64 
   5.0 10.8 8.9            H.J     0.0    2.16 
   5.5 10.4 8.9    Submerged H.J     0.2    1.89 
   6.0 9.9 8.9          Wave     0.7    1.65 
   6.5 9.4 8.9      Weak wave     0.8    1.45 
0.0400  6.0 10.8 8.8          Wave     0.7    1.80 
   6.5 10.6 9.3      Weak wave     0.8    1.63 
   7.0 9.6 9.3    Very weak wave     0.9    1.37 
0.0427  6.5 10.5 9.4         Wave     0.7    1.62 
   7.0 9.9 9.1      Weak wave     0.8    1.41 
   7.5 9.8 9.0    Very weak wave     0.9    1.31 
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    Table C.2 Experimental Measurements (Validation Data) 
   q  
(m2/s) 

   a                 
(cm) 

   h0 
 (cm) 

  h1 
(cm) 

        Downstream  
          Condition Stability    h0/a 

0.0171  2.5 11.2 7.8  Wave 0.7 4.48 
   3.0 10.0 7.9  Weak wave 0.8 3.33 
   3.5 9.0 7.9 Very weak wave 0.9 2.57 
   4.0 8.6 7.9 Stable 1.0 2.15 

0.0223  4.0 9.7 8.4  Wave 0.7 2.43 
   4.5 8.8 8.2  Weak wave 0.8 1.96 
   5.0 8.7 8.1 Very weak wave 0.9 1.74 
   5.5 8.5 8.1 Stable 1.0 1.55 

0.0326  5.5 9.8 8.7  Strong wave 0.6 1.78 
   6.0 9.7 8.7  Weak wave 0.8 1.62 
   6.5 9.5 8.7 Very weak wave 0.9 1.46 

0.0415  6.5 10.3 9.2 Weak wave 0.8 1.58 
   7.0 9.8 9.0 Very weak wave 0.9 1.40 
   7.5 9.6 9.0 Stable 1.0 1.28 
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APPENDIX D 

EXPERIMENTAL MEASUREMENTS 

 

Experimental measurements for the vertical sluice gates for the first and second 

laboratories are presented in Tables D.1 and D.2, respectively. Discharge, critical depth, 

gate opening, upstream depth, downstream depth (section 2), downstream depth (section 

3), upstream velocity, downstream velocity and energy (section 2), downstream velocity 

and energy (section 3), and the Flow Stability Number are reported in this table. The data 

in these tables have been used in chapter five, section two, for statistical analysis and to 

determine the flow stability.      
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Table D.1 Measurements in the First Laboratory 
Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0 (cm) h1  

(cm) 

h2  

(cm) 

V0  

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

      (m)                     

E2 

      (m) 

Flow 

Stability 

Number 

1 2.18 3.42 5.5 8.20 7.83 7.93 0.2 0.2 0.2 0.081 0.081 0.99 
             

2 2.45 3.70 5.5 8.50 7.63 7.66 0.3 0.3 0.2 0.080  0.079 0.98 
             

3 2.61 3.86 6.0 8.70 7.90 8.10 0.3 0.3 0.2 0.085 0.083 0.98 
             

4 3.00 4.23 6.0 9.40 8.73 8.80 0.3 0.3 0.3 0.093 0.092 0.98 
             

5 3.36 4.56 6.0 9.30 8.71 8.70 0.3 0.3 0.3 0.093 0.093 1.00 
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Table D.1 Measurements in the First Laboratory (Continued) 
Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0 (cm) h1  

 (cm) 

h2  

(cm) 

V0 

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

      (m)                     

E2 

      (m) 

Flow 

Stability 

Number 

6 3.58 4.76 6.5 9.50 8.60 8.70 0.3 0.4 0.3 0.095 0.094 0.99 
             

7 3.86 5.01 6.5 9.40 8.78 8.90 0.4 0.4 0.3 0.097 0.095 0.97 
             

8 4.43 5.49 7.0 9.60 8.86 9.10 0.4 0.5 0.4 0.099 0.097 0.96 
             

9 4.56 5.60 7.5 9.60 8.91 9.00 0.4 0.5 0.4 0.102 0.098 0.96 
             

10 4.70 5.71 7.5 9.80 8.93 9.00 0.4 0.5 0.4 0.102 0.099 0.97 
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Table D.2 Measurements in the Second Laboratory 
Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0 

(cm) 

h1  

(cm) 

h2  

(cm) 

V0  

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

(m)                     

E2 

(m) 

Flow Stability 

Number 

1 18.94 4.90 7.5 14.29 8.89 9.21 0.25 0.39 0.20 0.096 0.094 0.97 
             

2 25.66 6.05 11.5 13.65 10.48 10.79 0.34 0.44 0.30 0.115 0.112 0.98 
             

3 32.20 7.06 14.0 15.56 13.02 13.17 0.38 0.45 0.40 0.140 0.139 0.99 
             

4 52.39 9.74 16.0 16.83 14.29 14.43 0.57 0.67 0.64 0.165 0.165 0.99 
             

5 69.57 11.77 18.0 22.86 19.05 19.73 0.55 0.66 0.48 0.213 0.209 0.98 
             

6 89.66 13.94 23.0 23.18 21.91 21.91 0.70 0.74 0.74 0.247 0.247 1.00 
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APPENDIX E 

EXPERIMENTAL MEASUREMENTS 

 

Experimental measurements in a gate with an expansion hydraulic system at the first and 

second laboratories are presented in Tables E.1 to E.3 and E.4, respectively. Discharge, 

critical depth, gate opening, upstream depth, downstream depth (section 2), downstream 

depth (section 3), upstream velocity, downstream velocity and energy (section 2), 

downstream velocity and energy (section 3), and the Flow Stability Number are reported 

in this table. The data in these tables have been used in chapter five, section three, for 

statistical analysis and to determine the flow stability.      
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Table E.1 Measurements, Thickness Two Centimeters 
Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0  

(cm) 

h1  

(cm) 

h2  

(cm) 

V0  

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

(m)                     

E2 

(m) 

Flow 

Stability 

Number 

1 2.18 3.42 5.5 9.17 7.87 7.90 0.2 0.3 0.3 0.082 0.082 1.00 
             

2 2.45 3.70 5.5 10.07 7.97 7.97 0.2 0.3 0.3 0.084 0.084 1.00 
             

3 2.61 3.86 6.0 9.87 7.87 7.85 0.2 0.3 0.3 0.083 0.083 1.00 
             

4 3.00 4.23 6.0 10.67 7.96 8.00 0.3 0.3 0.3 0.085 0.084 0.98 
             

5 3.36 4.56 6.0 11.57 7.77 8.08 0.3 0.5 0.4 0.090 0.089 0.98 
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Table E.1 Measurements, Thickness Two Centimeters (Continued) 

Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0  

(cm) 

h1  

 (cm) 

h2  

(cm) 

V0 

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

(m)                     

E2 

 (m) 

Flow 

Stability 

Number 

6 3.58 4.76 6.5 12.00 8.45 8.57 0.3 0.5 0.4 0.097 0.094 0.96 
             

7 3.86 5.01 6.5 13.07 8.50 8.60 0.3 0.6 0.4 0.103 0.094 0.91 
             

8 4.43 5.49 7.0 14.57 3.00 8.77 0.3 1.3 0.5 0.122 0.098 - 
             

9 4.56 5.60 7.5 13.87 3.87 8.47 0.3 1.1 0.5 0.097 0.097 - 
             

10 4.70 5.71 7.5 14.80 3.77 8.50 0.3 1.1 0.5 0.103 0.098 - 
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Table E.2 Measurements, Thickness 1.2 Centimeters 

Numbers Discharge 

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0  

(cm) 

h1  

(cm) 

h2  

(cm) 

V0  

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

(m)                     

E2 

(m) 

Flow 

Stability 

Number 

1 2.18 3.42 5.5 8.87 7.87 7.90 0.2 0.3 0.3 0.082 0.082 1.00 
             

2 2.45 3.70 5.5 9.17 7.87 8.00 0.2 0.3 0.3 0.085 0.085 1.00 
             

3 2.61 3.86 6.0 9.17 7.99 8.03 0.3 0.3 0.3 0.086 0.085 0.99 
             

4 3.00 4.23 6.0 9.47 8.23 8.28 0.3 0.3 0.3 0.088 0.088 1.00 
             

5 3.36 4.56 6.0 9.90 8.07 8.57 0.3 0.5 0.3 0.093 0.090 0.97 
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 Table E.2 Measurements, Thickness 1.2 Centimeters (Continued) 
Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0  

(cm) 

h1  

 (cm) 

h2  

(cm) 

V0 

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

(m)                     

E2 

(m) 

Flow 

Stability 

Number 

6 3.58 4.76 6.5 10.17 8.37 8.77 0.3 0.6 0.4 0.102 0.096 0.94 
             

7 3.86 5.01 6.5 10.03 8.47 8.87 0.3 0.6 0.4 0.103 0.096 0.94 
             

8 4.43 5.49 7.0 10.90 8.37 8.77 0.4 0.7 0.5 0.109 0.100 0.92 
             

9 4.56 5.60 7.5 11.33 8.47 8.77 0.4 0.7 0.5 0.109 0.100 0.91 
             

10 4.70 5.71 7.5 11.10 8.65 8.99 0.4 0.7 0.5 0.111 0.102 0.92 
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 Table E.3 Measurements, Thickness 0.7 Centimeters 
Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0 

 (cm) 

h1  

(cm) 

h2  

(cm) 

V0  

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

(m)                     

E2 

(m) 

Flow 

Stability 

Number 

1 2.18 3.42 5.5 8.80 8.03 8.07 0.2 0.2 0.2 0.084 0.084 1.00 
             

2 2.45 3.70 5.5 8.90 8.13 8.20 0.3 0.3 0.3 0.087 0.086 0.99 
             

3 2.61 3.86 6.0 8.90 8.20 8.20 0.3 0.3 0.3 0.086 0.086 1.00 
             

4 3.00 4.23 6.0 9.30 8.43 8.50 0.3 0.3 0.3 0.090 0.089 0.99 
             

5 3.36 4.56 6.0 9.80 8.70 8.70 0.3 0.4 0.4 0.093 0.093 1.00 
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 Table E.3 Measurements, Thickness 0.7 Centimeters (Continued) 
Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0 

 (cm) 

h1  

 (cm) 

h2  

(cm) 

V0 

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

(m)                     

E2 

(m) 

Flow 

Stability 

Number 

6 3.58 4.76 6.5 10.40 8.67 8.70 0.3 0.4 0.4 0.095 0.094 0.99 
             

7 3.86 5.01 6.5 9.80 8.70 8.70 0.4 0.4 0.4 0.095 0.095 1.00 
             

8 4.43 5.49 7.0 10.20 8.90 8.90 0.4 0.5 0.5 0.099 0.099 1.00 
             

9 4.56 5.60 7.5 10.10 8.99 9.01 0.4 0.5 0.5 0.104 0.102 0.98 
             

10 4.70 5.71 7.5 10.30 8.74 8.80 0.4 0.5 0.5 0.102 0.099 0.97 
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Table E.4 Measurements in the Second Laboratory 

Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0 

(cm) 

h1  

(cm) 

h2  

(cm) 

V0  

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

(m)                     

E2 

(m) 

Flow Stability 

Number 

1 18.94 4.94 7.5 12.06 8.85 8.89     0.30   0.40 0.40 0.097 0.096 0.99 
             

2 25.66 6.05 11.5 13.65 10.79 10.79 0.30 0.40 0.40 0.117 0.117 1.00 
             

3 32.20 7.04 14.0 15.56 12.38 12.38 0.40 0.50 0.50 0.135 0.135 1.00 
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APPENDIX F 

EXPERIMENTAL MEASUREMENTS 

 

Experimental measurements in a gate with a contraction hydraulic system at the first and 

second laboratories are presented in Tables F.1 to F.3 and F.4, respectively. Discharge, 

critical depth, gate opening, upstream depth, downstream depth (section 2), downstream 

depth (section 3), upstream velocity, downstream velocity and energy (section 2), 

downstream velocity and energy (section 3), and the Flow Stability Number are reported 

in this table. The data in these tables have been used in chapter five, section four, for 

statistical analysis and to determine the flow stability.      
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Table F.1 Measurements, Thickness Two Centimeters 
Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0 (cm) h1  

(cm) 

h2  

(cm) 

V0  

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

(m)                     

E2 

(m) 

Flow 

Stability 

Number 

1 2.18 3.42 5.5 9.10 7.94 8.02 0.2 0.3 0.2 0.085 0.082 0.96 
             

2 2.45 3.70 5.5 9.70 7.95 8.02 0.2 0.3 0.2 0.085 0.082 0.96 
             

3 2.61 3.86 6.0 9.80 8.03 8.10 0.2 0.4 0.3 0.089 0.085 0.95 
             

4 3.00 4.23 6.0 10.80 8.50 8.60 0.3 0.5 0.3 0.097 0.090 0.92 
             

5 3.36 4.56 6.0 11.60 8.74 8.80 0.3 0.6 0.4 0.108 0.096 0.89 
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Table F.2 Measurements, Thickness 1.2 Centimeters 
Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0 (cm) h1  

(cm) 

h2  

(cm) 

V0  

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

(m)                     

E2 

(m) 

Flow 

Stability 

Number 

1 2.18 3.42 5.5 8.90 7.90 8.00 0.2 0.3 0.2 0.084 0.083 0.99 
             

2 2.45 3.70 5.5 9.30 8.31 8.40 0.2 0.3 0.2 0.089 0.086 0.97 
             

3 2.61 3.86 6.0 9.20 8.51 8.76 0.3 0.4 0.2 0.093 0.090 0.96 
             

4 3.00 4.23 6.0 9.70 8.91 9.00 0.3 0.4 0.3 0.098 0.095 0.96 
             

5 3.36 4.56 6.0 10.20 8.99 9.11 0.3 0.5 0.4 0.102 0.099 0.97 
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 Table F.3 Measurements, Thickness 0.7 Centimeters 

Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0 (cm) h1  

(cm) 

h2  

(cm) 

V0  

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

(m)                     

E2 

(m) 

Flow 

Stability 

Number 

1 2.18 3.42 5.5 8.70 8.25 8.25 0.2 0.2 0.2 0.085 0.085 1.00 
             

2 2.45 3.70 5.5 9.00 8.20 8.30 0.2 0.3 0.3 0.088 0.087 0.99 
             

3 2.61 3.86 6.0 8.90 8.30 8.40 0.3 0.3 0.3 0.089 0.088 0.99 
             

4 3.00 4.23 6.0 9.50 8.40 8.50 0.3 0.3 0.3 0.091 0.090 0.99 
             

5 3.36 4.56 6.0 9.80 8.60 8.60 0.3 0.4 0.4 0.092 0.092 1.00 
             

6 3.58 4.76 6.5 10.70 8.50 8.50 0.3 0.4 0.4 0.092 0.092 1.00 
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Table F.4 Measurements in the Second Laboratory 
Numbers Discharge  

(m3/s(x103)) 

dc 

(cm)   

a 

(cm)  

h0 

(cm) 

h1  

(cm) 

h2  

(cm) 

V0  

(m/s) 

V1 

(m/s) 

V2 

(m/s) 

E1 

(m)                     

E2 

(m) 

Flow Stability 

Number 

1 18.94 4.94 7.5 14.60 8.86 8.89     0.20   0.40 0.40 0.096 0.096 1.00 
             

2 25.66 6.05 11.5 14.60 10.21 10.47 0.30 0.50 0.40 0.116 0.113 0.97 
             

3 32.20 7.04 14.0 15.56 13.19 13.38 0.40 0.50 0.40 0.146 0.141 0.96 
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APPENDIX G 

PROTOTYPE IMAGES 

 

Pictures of the real-scale hydraulic structures (prototype) are provided in this section. The 

structures are located in South Florida, Miami-Dade County.       
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Figure G.1: Gate hydraulic structure (S334) 

 

 

Figure G.2: Downstream of the hydraulic structure (S334) 
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Figure G.3: Upstream of the hydraulic structure (S334) 

 

 

Figure G.4: Flow condition immediately after a gate (S334) 
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Figure G.5: Depth measurement  

 

 

Figure G.6: Upstream of the hydraulic structure (S333) 
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Figure G.7: Flow in the canal 

 

  

Figure G.8: The gate hydraulic structure (S355B) 
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Figure G.9: Details of the gate hydraulic structure (S355B) 

 

 

Figure G.10: Upstream of the gate hydraulic structure (S355B) 
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 APPENDIX H 

VALIDATION 

 

The proposed method to determine the Efficiency Index that is documented in section 6 of 

chapter 5 was validated with the results of the large physical model in the laboratory. The 

validation data is reported in this section. The overall efficiency of the structure is the 

difference between the total energies in the reservoir and the end of the stilling basin in 

percentage terms. 
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                              Table H.1 Validation Results 

Discharge 

 (m3/s) 

 

 

Overall Efficiency 

(Experimental Results)  

Overall Efficiency 

(Image Processing) 

Efficiency Index  

Basin 

          20 99%        98.7% 0.89 

   80 91% 90.2% 0.86 

  200 84.6% 81.7% 0.81 

  800 37.3% 34.2% 0.30 

 2100 33.1% 31.5% 0.28 
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