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ABSTRACT OF THE THESIS 

HYDRODYNAMIC ASSESSMENT OF A PORCINE SMALL INTESTINAL SUB-

MUCOSA BIOSCAFFOLD VALVE FOR PEDIATRIC MITRAL VALVE 

REPLACEMENT  

by 

Omkar Mankame 

Florida International University, 2017 

Miami, Florida 

Professor Sharan Ramaswamy, Major Professor 

Valve replacement for critical heart valve diseases is in many cases not an option. Our 

clinical experience in pediatric compassionate care has shown robust function of porcine 

small intestinal submucosa (PSIS) valves. We assessed functional effectiveness of 4ply 

(~320µm) and 2ply (~166µm) PSIS mitral valves under pediatric-relevant hemodynamic 

pulsatile conditions. Key conclusions: (i)PSIS valves demonstrated statistically similar 

acute functionality in comparison to a commercially available valve. (ii)Energy losses were 

similar (p>0.05) under pediatric conditions which was not the case under adult aortic 

conditions. (iii)2ply valves were observed to be superior to 4ply, based on the robust 

hydrodynamic data, the mechanical properties suitable for pediatric applications and de-

novo tissue replacement potential with less demand on the body. Demonstrating somatic 

growth, valve tissue filling matching PSIS degradation and PSIS-valve fatigue assessment 

are critical endeavors that need to be carried out to ensure mid to long term function of 

these bioscaffold mitral valves.
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CHAPTER 1 Introduction 

Heart valves perform a very important role in regulating the forward flow of blood 

initiating from the four chambers of the heart (Fig. 1). Heart valves help in coordinating 

blood flow during the cardiac cycle. They have a direct effect on the overall efficiency of 

the cardiovascular system. Tissue leaflets in the valves open and close with each beat of 

the heart and in healthy states, permit robust hemodynamic conditions. Critical heart valve 

disease, a serious health issue, often requires valve replacement with a prosthetic valve. In 

the young, critical congenital valve anomalies have been a life-threatening condition and 

has frequently resulted in mortality [1]. In the United States, there are an estimated 650,000 

to 1.3 million children and adults living with congenital heart disease [2]. A common 

cardiac abnormality occurs with the cardiac valves, which accounts for 30% of all 

congenital heart problems [3].  

 

Figure 1: (a) Anatomy of heart valves (Ho S. Y, 2002). (b) The mitral apparatus: 
Continuity of the mitral apparatus and the left ventricular myocardium (Otto C.M, 2001). 
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Heart valves open and close due to the pressure difference between either side of the 

valve. Heart valve disease occurs if one or more of the valves function abnormally. The 

complications that can develop with these valves are mainly of two types: (a) stenosis and 

(b) regurgitation and prolapse [4, 5, 6]. Stenosis occurs when there is obstruction to the 

flow of blood in the forward direction. This may occur if the valves do not open fully or 

narrowing of the orifice area of the valve [7].  Alternatively, there may a narrowing of the 

vessel (e.g. aorta) at the site of the valve due to congenital causes. Stenosis can result in 

increased work load on the heart as the heart needs to pump harder to drive the blood 

through the stenosed region [8]. On the other hand, if the valve is diseased, such that it does 

not close completely or form a tight seal between leaflets, then there will be leakage that 

will cause the back-flow of blood [9]. This defect is called regurgitation. Regurgitation also 

puts an extra strain on the heart to pump the necessary volume of blood in the right 

direction. Congenital defects include atresia, which occurs if the heart valves are not 

formed properly or are partially or fully absent, causing loss of sufficient local control to 

permit unidirectional blood flow. All four valves can be prone to congenital problems 

and/or disease, but the aortic and mitral valves which are commonly affected [10] can lead 

to death very quickly owing to high hemodynamic blood pressures on the left side of the 

heart. 

Depending on the severity of the diseased heart valve condition, the valve is either 

treated with vasodilators, repaired or is replaced completely [11]. For mild valvular disease, 

clinicians may prescribe vasodilators or diuretics to assist in promoting enhanced blood 

flow. However, if the valves are severely damaged, valve repair/replacement surgeries are 

usually recommended [11]. Some of the valve repair procedures that a surgeon can perform 
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are decalcification, patching, balloon valvuloplasty, reshaping and leaflet extension 

techniques. Valve replacement surgeries are typically performed when the valves are 

beyond repair. Aortic and mitral valve replacement surgeries are common-place today with 

reasonably good outcomes.  However, some segments of the population are not suitable 

candidates for valve replacement either because valve sizing/growth issues exist (e.g. in 

pediatric patients) or because of complications that can occur with the surgery and/or 

specific prosthetic being used (e.g. women who wish to have children cannot have a 

mechanical valve since it requires lifelong anticoagulant therapy).  

Heart valves are surgically replaced when they fail to operate physiologically. Heart 

valve prostheses, like mechanical valves (caged ball, tilting disc, hinged bileaflet) which 

are made of artificial materials, chemically fixed animal tissue bioprosthetic valves 

(porcine or bovine tissue) and homografts (human cadaver valves) are generally used for 

valve replacement surgeries. Mechanical valves are very strong and durable and are 

functional for longer durations, in some patients they have lasted as long as 25 years 

without problems [12]. However, as previously mentioned, these valves constantly require 

continuous use of anticoagulants since the mechanical valves is prone to thrombus 

formation. Glutaraldehyde-fixed bioprosthetic valves or tissue valves have shorter life-

span as compared to the mechanical valves, generally a mean life-span of 10 years, but on 

the other hand, these valves do not require anticoagulant treatment. Bioprosthetic valves 

are similar to native human valves and also have better hemodynamic characteristics than 

mechanical valves.  Bioprosthetic valves are also a preferred candidate among the elderly 

(> 65 years of age) as it can also be implanted in a minimally invasive manner (e.g. 

transcatheter aortic valve replacement/TAVR). Typically, current available prostheses can 
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be utilized in adults, but for replacement procedures in infants and young patients they are 

not suitable.  

Utilization of currently available tissue and mechanical prosthetic valve substitutes in 

infants and children have restrictions in terms of the relatively large size of available 

prosthetic devices, somatic growth, durability, thrombogenicity and endocarditis or 

susceptibility to infection. All the mechanical valves involve permanent use of 

anticoagulation. This may present greater risk to infants and children who are prone to 

accidental injury during play [13]. Bioprosthetic valves degrade quickly in young patients 

and are prone to accelerated calcification. However, above all, sizing limitations and an 

inability to support valvular growth are the two major drawbacks of prosthetic heart valves. 

Over the past few years, better surgical approaches have aided children, suffering with 

congenital heart defects, to survive into adulthood [14]. Regardless of these developments, 

significant number of patients require multiple operations [14]. Of late it has been shown 

that after implantation, acellular porcine small intestinal submucosa (PSIS) scaffolds have 

potential capacity to support hemodynamic functions and permit PSIS bioscaffold 

replacement by organized collagen and colonization of cells similar to the endothelial cells 

[15, 16].  

PSIS is a biodegradable, naturally occurring scaffold material which degrades with 

time promoting in vivo tissue growth. These scaffolds support cell infiltration and tissue 

remodeling after implantation. Cardiovascular use of PSIS patches in vivo in animal models 

has been promising demonstrating restoration and integration [17, 18, 19]. PSIS valves 

have the potential to address the complications posed by conventional heart valve 

substitutes and thus, offer a possibility that they may be used as a permanent approach for 
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replacing defective heart valves, since somatic growth can in theory, be facilitated. Our 

collaborators at Joe DiMaggio Children’s Hospital (Hollywood, FL) have implanted 

custom-made PSIS valves in 4 infants with critical valve disease unable to receive standard 

valves, as compassionate care measures. The follow-ups (post-1 year) have been promising 

and have reported that the valves have performed well, with low transvalvular pressure 

gradients and no need for anti-coagulant therapy [15]. These are remarkable observations 

given that these patients would have died within a few days to weeks if left untreated and 

also again in recognizing that no current treatment option exists for these patients; if 

successful PSIS valves may offer the potential to revolutionize the treatment of critical 

congenital valve diseases. 

Although PSIS material possesses desirable cardiovascular traits, before this 

technology can be used on a wider scale for valve applications, an organized evaluation of 

PSIS valves functionality is needed so that any long-term complications beyond a few years 

post-implant can be identified. It is important to recall that the valve needs to function and 

grow for 18 years till adulthood. One way in which functionality can be evaluated is 

through hydrodynamic assessment with a pulse duplicator (Vivitro System, Vivitro 

Laboratories, Victoria, Canada).  

Previously we evaluated PSIS prosthetic bioscaffold valves in the aortic position in 

vitro by utilizing a pulse duplicator system (Vivitro Laboratories, Victoria, Canada) [20]. 

We analyzed the hydrodynamic functionality of PSIS trileaflet bio scaffold valves 

(CorMatrix Cardiovascular, Inc., Roswell, GA, USA) by comparing these valves with 

bioprosthetic valves (Medtronic Freestyle, Medtronic, Minneapolis, MN) under 

physiological adult conditions at a heart rate of 70 bpm and stroke volume of 80 ml/beat. 
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Here we chose Medtronic bioprosthetic valves as a control. Hydrodynamic testing results 

exhibited robust functionality of the PSIS valves and the valves preformed very close to 

the commercially available Medtronic freestyle bio-prosthetic valve [20]. However, the 

PSIS aortic valves exhibited a cause of concern in that significantly higher (p < 0.05) 

energy losses were observed, which could lead to longer term complications due to 

increased workload on the heart. 

The focus of this thesis was to evaluate the acute functionality of mitral 4ply PSIS 

valves (~ 320µm) under varying pediatric physiological conditions and compare the results 

with those of commercially available bioprosthetic valves (Edwards Lifesciences, Irvine, 

CA). The series of experiments were performed to determine the effects of varying 

physiologically-relevant pediatric heart rates and stroke volumes on in vitro hydrodynamic 

functionality of manually-assembled PSIS mitral valves. Subsequently we moved on to the 

thinner 2ply valves (~ 166µm) in order to test if the thinner PSIS valve maintained its 

hydrodynamic functionality. The end-goal of this work was to identify hydrodynamic 

metrics of PSIS bioscaffold mitral valves under pediatric conditions and thus contribute 

towards the optimization of these constructs for the potential treatment of critical valvular 

diseases. 
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CHAPTER 2 Specific Aims 

Currently there are no valve replacement strategies that can completely replace the 

defective human mitral valve, having the ability to grow with the patient. Commercially 

available prosthetic valves also have other shortcomings in terms of durability, 

thrombogenicity and endocarditis. This problem is more evident in infants and small 

children, as they grow with time but prosthetic valves remain the same size, thus requiring 

multiple reoperations. Tissue engineered heart valve (TEHV) development has the 

capability to offer growth, resistance to infection, self-repair and a permanent attempt for 

substituting diseased and defective heart valves and treat critical congenital valve disease 

in pediatric patients, which the current valve substitutes lack [1]. Nevertheless, a major 

challenge in this concept is to discover a scaffold which is biocompatible with in vivo 

hemodynamic conditions and biodegradable, which can provide for somatic growth in the 

longer term. 

In 2015, the Food and Drug Administration (FDA) approved valve replacement 

procedures of trileaflet PSIS valves (Cormatrix: April 2015) in up to 15 patients. The 

overall purpose of this work was to propose a simple and novel approach for the treatment 

of critical pediatric congenital heart valve disease by using an extracellular porcine small 

intestinal submucosa (PSIS) bioscaffold construct for valvular replacement. Our 

collaboration with our clinical colleagues at Joe DiMaggio Children’s Hospital 

(Hollywood, FL) has shown promising results with PSIS scaffolds working flawlessly in 

pediatric compassionate care patients, the longest follow up being around 2 years. PSIS 

has exhibited the ability to recruit endogenous cardiovascular cells, leading to 

phenotypically-matched tissue replacement when the scaffold degrades completely [2,3]. 
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This property to permit implantation of the scaffold without in vitro cell seeding and 

culturing is attractive specially for pediatric valvular applications and has a huge potential, 

where somatic growth is crucial. However, there are mixed clinical reports regarding PSIS 

bioscaffold with the key apprehensions being enduring inflammatory response and the 

absence of a tri-layered valve structure after some months of implantation [4, 5]. 

Nevertheless, no large-scale, organized valvular study to evaluate PSIS valve capability 

has been performed till date.   

The immediate objective of this study was to assess in vitro hydrodynamic functionality 

of PSIS bioscaffolds in mitral valve replacement application, especially for infants and 

small children. Our work combined assessing the hydrodynamic functionality of PSIS 

bioscaffold valve in an in-house pulse duplicator system (Vivitro Laboratories, Victoria, 

BC) under varying native pediatric conditions (aim 1) and then optimizing the PSIS 

bioscaffold dimensions to the best selected pediatric environment in the same simulator 

(aim 2) in order to establish the in vitro functionality of PSIS-valve as a strategy for the 

treatment of pediatric, critical congenital valve diseases. Our two specific aims are as 

follows: 

Specific Aim 1: Identifying the biofluid dynamics of novel 4ply PSIS bileaflet 

valves (~320µm) for functional assessment in the mitral position at varying pediatric 

conditions. By biofluid dynamics we aim to establish certain fluid mechanical 

parameters that will aid us towards understanding if the valves function 

appropriately. These include but are not limited to pressure gradient across the valve, 

forward flow, effective orifice area, regurgitation fraction and the systolic energy 
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losses. Insights into these parameters for PSIS valves will provide both acute as well 

as prediction on mid to long term performance. 

 We accomplished this by using a left heart simulator in our laboratory [6, 7]. This 

study was conducted by suturing a bi-leaflet valve configuration in the mitral position in 

the pulse duplicator system (Vivitro Laboratories, Victoria, BC) and exposing the valves 

to pediatric native mitral valve hemodynamic conditions in order to predict potential long-

term complications. Pediatric conditions had two sets of testing parameters; one at constant 

heart rate and other at constant stroke volume. Our current experience with PSIS 

bioscaffolds is based on constructs measuring 320 µm in mean thickness (n = 5 leaflets) 

and a leaflet radius of  8mm, using lobe-shaped leaflets. The leaflet width was scaled to 

fit into the vascular conduit into which the valve is sutured.  

Specific Aim 2: Establish the feasibility of 2ply PSIS mitral valves (~166µm) with 

~47% reduction in thickness and ~54% reduction in volume as compared to the 4ply 

valves (~320µm) in aim 1. The underlying goal of this aim is to reduce the burden on 

the body to produce de novo tissues since less biomaterial will be used. 

Owing to the unique material properties of PSIS, our hypothesis is that PSIS 

bioscaffold valvular dimensions can be further minimized, ideally by 50% of current 

bioscaffold thickness, while still allowing for robust functionality, and in addition, will 

support de novo valvular tissue formation and somatic growth in vivo From the 

hydrodynamic metrics measured, the leaflet thickness was fine-tuned through an iterative 

process to establish robust functionality for the mitral position with PSIS bioscaffold 

material. Thus, when implanted, this in turn will reduce the burden on the host since less 
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tissue is required to fill a smaller scaffold space. These valves were subjected to the best 

selected pediatric condition from aim 1 within the same pulse duplicator system. 
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CHAPTER 3 Literature Review 

3.1. Anatomy and Physiology of Heart Valves: 

The mitral valve is located on the left side of the heart connecting the left atrium and 

the left ventricle [1, 2]. On the contrary, tricuspid valve is located between the right atrium 

and right ventricular chambers. Together these valves are referred to as “atrioventricular 

valves”. The mitral valve has two leaflets unlike the other cardiac valves while the tricuspid 

valve has three cusps [2]. Similarly, there are two “semilunar valves” namely aortic and 

pulmonary valves and are correspondingly positioned in the left and right ventricular tract. 

Both these valves are tri-leaflet valves consisting of three semilunar cusps.  The mitral and 

the aortic valves are structured close to each other whereas the pulmonary and the tricuspid 

valves are separated by myocardium. Of specific interest to this study is the mitral valve. 

The mitral valve leaflets control the flow of blood at the orifice between the left atrium 

(LA) and the left ventricle (LV) and open during diastole to allow the blood flow from the 

LA to the LV. During ventricular systole, the left ventricle muscle contracts causing the 

mitral valve leaflets to close and prevents back flow to the LA. Blood is ejected through 

the open aortic valve. The mitral valve is a complex structure that depends on its 6 

components, which are the left atrial wall, the annulus, the leaflets, the chordae tendineae, 

the papillary muscles, and the left ventricular wall [3, 4]. Any congenital or acquired 

disorder as a result of rheumatic fever or degenerative change of individual components 

can disturb the synchronized mechanisms of the mitral valve and result in a malfunctioning 

heart valve [3, 5, 6].  

A single heart beat comprises of a cardiac cycle which can be thought to initiate with 

blood ejection from the left ventricle to the systemic circulation and is completed when the 
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heart is filled again with blood. There are two sub-phases in a single cardiac cycle; systole 

and diastole. During the diastolic phase, the ventricles are relaxed and the atria contract. 

This leads to the opening of mitral and tricuspid valves. On the contrary, aortic and 

pulmonary valves are closed during the diastolic phase. The opening of the atrioventricular 

valves allows the flow of blood from the atria to the ventricles (Fig. 2) and the closing of 

the semilunar valves prevents back flow of blood into the atria. During the systolic phase, 

the ventricles are contracted as the impulse from SA node spreads to the ventricles. This 

contraction opens the semilunar valves to allow ejection of blood into the arteries. At the 

same time, mitral and tricuspid valves snap shut, blocking the flow of blood into left and 

right ventricles. However, blood continues to enter the atria though the vena cavae and 

pulmonary veins. Each cardiac cycle is crucial for the proper functioning of the 

cardiovascular system.  

 

Figure 2: The heart in diastole (during relaxation of the left ventricle). In normal 
individuals, the heart valve opens to allow blood to flow into the left ventricle; notice the 

supporting structure of tendon and muscle (Turi A, 2004). 
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3.2. Mitral Valve Disease: 

The mitral valve is the most complex amongst the four valves of the heart and is the 

most commonly associated with disease [7]. Mitral valve disease can be acquired due to 

rheumatic fever, infections or due to ageing or this disease may occur before birth as the 

heart is developing. Congenital mitral valve abnormalities are either observed in seclusion 

or with other congenital heart disease. There are 3 different types of irregularities related 

to the mitral valve: mitral stenosis, mitral regurgitation, mitral prolapse (Fig. 3).  

 

 

Figure 3: (a) Extensive calcification of the mitral annulus (Cherry A.D, 2016). (b) In the 
patient with both prolapse and mitral regurgitation, the valve does not close completely 

and part of a leaflet bulges back into the left atrium (Turi A, 2004). 
 

3.2.A. Mitral Stenosis: 

Mitral stenosis prevents the proper opening of the valves during diastolic phase thus 

filling the ventricles with inadequate blood volume. It is a structural malformation of the 

mitral valve which results in hardening of the leaflets which prevents leaflet movement, 

thus obstructing cleft ventricular inflow. Rheumatic carditis is the main cause of mitral 

stenosis. Rheumatic carditis and mitral stenosis are interrelated as stenosis of mitral valves 
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occurs in 40% of all patients with rheumatic heart disease [8]. Congenital mitral stenosis 

was noted to affect multiple mitral valve segments as observed by Ruckman and van 

Praagh in 1978 [9]. 

3.2.B. Mitral Regurgitation 

Mitral regurgitation is divided into either primary (a structural or degenerative 

abnormality of the mitral valve apparatus) or secondary (a disease of the left ventricle, 

which interferes with the function and integrity of the mitral valve apparatus) mitral 

regurgitation [10]. This anomaly leads to backflow or leakage of blood from the left 

ventricular chamber to the left atrium through the mitral valve. During systole, the mitral 

valve suffering from regurgitation irregularity does not close properly and hence the 

contracting ventricles push blood back into the left atrium. Severe regurgitation increases 

the workload on the heart to maintain the forward flow and thus can lead to malfunction of 

the heart. Hemodynamically regurgitation is most common anomaly related to mitral valve 

as compared to mitral stenosis [9] 

3.2.C. Mitral Prolapse 

Bulging of mitral valves back into the left atrium is called as mitral valve prolapse. In 

mitral valve prolapse, during contraction of the left ventricle (systole), one or both the 

leaflets prolapse into the left atrium causing the leakage of blood back into the atrium 

through the open orifice area. The valve usually becomes floppy and does not close the 

valve tightly. This abnormality usually leads to palpitations, shortness of breath, pain in 

chest. Severe mitral prolapse raises the pressure in the left atrium to adjust the forward flow 

and thus can cause heart failure. Mild prolapse can be treated with medications which helps 
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to avert complications. Some people, however, need mitral valve repair or valve 

replacement surgeries if the problem is too severe. 

Generally, for mitral stenosis, a balloon valvotomy procedure is usually prescribed. It 

is a minimally invasive procedure in which a catheter tube is inserted through an artery in 

the arm or groin and upon reaching the mitral valve location, the balloon at the tip of the 

catheter is inflated swiftly. This helps in separating the narrowed valves and ultimately 

increases the forward flow of blood. Other valvotomy techniques have also been developed 

for mitral valve regurgitation. Valve repair techniques provide better morbidity, mortality 

and long-term outcomes as compared to the valve replacement procedures [11]. On the 

contrary, valve replacement is must for severe valve damage where valve repair is not an 

option. 

The European Association of Echocardiography and the American Society of 

Echocardiography Recommendations for Clinical Practice has defined the criteria for 

severity of mitral regurgitation and stenosis based on hemodynamics (Table 1). 

Table 1: Severity of mitral valve stenosis based on hemodynamics.  

Mitral 
Valve 

Regurgitation Fraction (%) [12] Mean transvalvular pressure gradient 
(diastole) (mmHg)* [13] 

Mild < 30 <5 
Moderate 30-49 5-10 

Severe ≥ 50 >10 
 
* At heart rates between 60 and 80 bpm. 

3.3 Prosthetic Heart Valves: 

Heart valve replacement surgery was introduced in the early 1960s which improved the 

outcome of patients with valve related abnormalities [14]. Original Starr-Edwards 

prosthesis were used in 1960s and the few of the patients who underwent valve replacement 
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surgeries with these valves are reported to be alive [11]. As explained by a pioneer cardiac 

surgeon, Dr. Dwight Harken, a model prosthetic valve to be used in humans should have 

outstanding hemodynamic properties, high resistance to thrombosis, long-term durability 

and also excellent implantability [15]. These valves should work excellently in 

coordination with the entire circulatory system. It should imitate the characteristics of a 

normal human native valve. 

3.3.A. Mechanical Valves: 

Mechanical valves are made of robust materials, primarily of metal or carbon alloy, 

and are most durable valves among the replacement valves, most lasting at least 20 to 30 

years [16]. However mechanical valves are thrombogenic in nature causing the blood to 

clot and thus involve long-term anticoagulant therapy to prevent valve associated 

thrombosis [17]. The blood clots can break off from one site and travel through the blood 

stream (embolism) where they may lodge in blood vessels and cause further heart related 

complications. Life-long warfarin therapy is necessary for the patients with mechanical 

valve prosthesis [8]. It helps to avoid blood to clot, as the mechanical valves promote 

clotting of blood which gets lodged in the flaps or hinges of the valves and thus cause 

malfunction. Mitral valve replacement by mechanical prostheses is associated with higher 

degrees of thromboembolism as compared to replacement in other valves [8, 16]. 

There are three types of mechanical valve designs that have been used in medical 

practice (Fig. 4): caged ball valves, monoleaflet or disc valves and bileaflet valves. These 

valves are described according to the shape of the occluder, that opens and closes the orifice 

area of the valve. The caged ball mechanical valves, the original Star-Edwards 6120 and 

1260 models, were developed as mitral and aortic valves respectively. These valves 
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included a silastic ball with a circular sewing ring and a cage made of 3 metal curvatures 

[11, 14]. The ball moves forward into the cage when open and seats back when closed. The 

Starr-Edwards prosthesis has the longest implant history and durability of around 40 years. 

However, these valves when implanted in patients reported very high thrombogenesis [16]. 

The patients needed very intensive anticoagulant therapy more than that required in any 

other mechanical valves. The caged ball mechanical valves are no longer utilized for valve 

replacement procedures as they are hemodynamically inferior to their more recent 

counterparts.  

 

 

Figure 4. (a) St Jude bileaflet mechanical valve. (b) Medtronic Hall monoleaflet 
mechanical valve. (c) Starr-Edwards caged ball valve (Pibarot P, 2009). 



20 
 

A monoleaflet valve has a single circular graphite disc, hence the name disc valve. The 

disc leaflet is fixed by a lateral or central metal strut that tilts to open and closes to block 

the valve orifice area. When the disc tilts open, it results in two different orifice areas of 

different sizes. The opening angle of this singular disc in relation to the valve annulus 

ranges from 60° to 80°.  Karl-Victor Hall, Arne Wolen and Robert Kaster developed a 

Hall-Medtronic single tilting-disc valves that was approved by US Food and Drug 

administration in 1977 [15]. This valve is one of the valves with the longest implant history. 

Hall-Medtronic valve prosthesis was later purchased by Medtronic, Inc.  

St Jude bileaflet valve is also a type of mechanical valve which was approved by FDA 

and introduced in 1977 [15]. Bileaflet valves have two semicircular leaflets or discs 

connected by hinges to a stiff metal valve ring. During the forward flow of blood, both the 

leaflets tilt open forming three orifices, two larger orifices on outer regions of the two 

leaflets and one small orifice between these leaflets. Both the leaflets close when the 

forward flow stops, thus obstructing the backflow of blood. These valves have the lowest 

possibility of thromboembolism and thus require less use of anticoagulant agents [11]. Tilt 

disc valves and bileaflet valves have similar properties. 

3.3.B. Bioprosthetic Valves: 

Bioprosthetic heart valves (Fig. 5) or biological valves are the tissue valves that are 

constructed from animal tissues. Generally, low intensity anticoagulant therapy with 

warfarin is suggested during the first 3 months after the bioprosthetic valves are implanted 

[8, 16]. This is necessary as there is a risk of thromboembolism during the 3 months’ time 

span. Nonetheless, compared to the mechanical valves, the bioprosthetic valves do not 

require long-term anticoagulant therapy. Bioprosthetic valves are fixed in glutaraldehyde 
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causing the crosslinking of collagen. This process masks the antigens and helps in chemical 

stabilization leading to lower the immunogenicity (immune response of the body). 

Bioprosthetic valves generally provide hemodynamic properties which are more similar to 

those of the native valves. These valves are less durable and can normally last for around 

10-15 years. 

  

 

 

Figure 5: (a) Carpentier-Edwards Perimount Bovine Pericardial Tissue Valve. (b) 
Carpentier-Edwards S.A.V. Porcine Stented Valve. (c) Edwards Prima Plus Porcine 

Stentless Valve (Edwards Lifesciences®). 
 

Autologous valves are constructed from the patient’s own tissue derived from deep 

fascia, layer of dense connective tissue, of the thigh or pericardium. During 1970s valves 
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were shaped by hand from patient’s own tissue during surgery [11]. However, these valves 

have been abandoned as they were technically challenging and had limited durability. 

Carpentier-Edwards Perimount pericardial prosthesis is an example of frame mounted 

valves created from the patient’s own pericardium using a commercially available kit 

which has been developed lately.  

Bioprosthetic valves obtained from human tissue valves are of two types: autografts 

and homografts. Autograft biological tissue valve replacement procedures generally 

involve acquiring patient’s own valve from one site and implanting at the site where the 

disease transpires. Usually this procedure is aimed at aortic valve defects, as described by 

Donald Ross in 1967, where pulmonary valve is grafted at aortic site and the pulmonic 

valve is replaced by homograft. This procedure provides children suffering with aortic 

valve abnormality a hemodynamically superior valve in place of diseased valve and also 

helps in facilitating somatic growth [18]. However, this technique requires double valve 

replacement surgery and thus increased invasive risk. Conversely, homograft is a cadaveric 

aortic valve which is sterilized using an antibiotic solution and cryopreserved in liquid 

nitrogen till the time it is required. Homografts are directly implanted without using a stent 

at the site of valve defect. 

Bioprosthetic heart valves constructed from animal tissue valves or from the tissue 

from pericardium of an animal are referred to as heterografts or xenografts. Most 

commonly, porcine aortic valves and bovine pericardial tissue are utilized to build the 

heterograft valves [19]. Before using the porcine valves, they are treated with varied 

concentration of glutaraldehyde which sterilizes the tissue and makes it biocompatible. The 

Medtronic Hancock II prosthesis and the St Jude Medical Biocor prosthesis are the example 
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of glutaraldehyde fixed porcine heterografts. The porcine heterograft valve tissue is 

mounted on metal stents (mostly cobalt-nickel alloy). These are called the stented valves 

where the valves are sewn on to a fabric which is in turn mounted on the stent ring. The 

Medtronic Freestyle valve is one of the stentless porcine bioprosthetic valves which are 

available more recently that have no supporting stents. The advantage of stentless 

bioprosthetic valve when compared to the stented one is that it has greater effective orifice 

area (EOA) improving hemodynamics and patient survival [20]. However, stentless valves 

are more prone to endocarditis, structural dysfunction and calcification and are also 

technically more complex to graft than the stented ones. Porcine heterografts with good 

durability can last for at least 10-15 years [18]. Pericardial valves are designed from bovine 

pericardium. These valves have similar design to that of porcine heterografts  

3.4 Porcine Small Intestinal Submucosa Bioscaffold: 
 

There have been recent developments in prosthetic valve design and surgical 

procedures in the past few years, but in spite of these improvements, there is no treatment 

option that can permanently relieve the patient suffering from severe heart valve defects. 

More specifically mechanical and bioprosthetic valves face major drawback when used as 

valve replacement options in atrioventricular section after valve failure specially in infants 

mainly due to size restrictions and inability to grow with the young patient [21]. Prosthetic 

valves used in children often require multiple reoperations. There is a much greater need 

for the development of prosthetic valves which can be used in infants and young population 

where valve repair techniques are not an option. 
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Extracellular matrix (ECM) derived from Porcine Small Intestinal Submucosa (PSIS) 

has shown successful results when used as a patch for tissue repair in valves, vessels and 

myocardium and also in the treatment of hernia, urinary system disease and refractory skin 

trauma [22, 23, 24]. The PSIS scaffolds in infants and young patients suffering from cardiac 

disorder has shown proof of possessing resorption properties, reendothelialization and also 

replacement of PSIS material with organized collagen with no evidence of pericardial 

effusions, calcification or intracardiac and intravascular thrombogenicity [24]. Tubular 

PSIS-ECM tricuspid bioprosthetic valves, in 7 out of 8 ovine models, demonstrated influx 

of mesenchymal cells, growth and cell-matrix configuration similar to that of mature native 

valves including normal valve function [22]. There was no evident inflammation or 

calcification. Lately, Cormatrix PSIS material (ECM®, CorMatrix Cardiovascular, Inc., 

Roswell, GA, USA), has obtained recognition by utilizing the scaffold in a variety of 

cardiovascular surgical procedures due to its simplicity, suitable mechanical properties, 

restoration properties, lower immunogenicity, absorbability and potential to promote 

native tissue growth [23, 24]. 

PSIS contains collagen, elastin, glycosaminoglycans, proteoglycans, and growth 

factors which helps in growth and healing [26]. PSIS material demonstrates FGF-2 and 

TGF- β associated activities [27]. FGF-2 is a fibroblast growth factor that is linked with 

limb and nervous system development, and wound healing. TGF-β belongs to the 

transformation growth factor family and assists in inducing transcription of different target 

genes that serve in differentiation, chemotaxis, proliferation and activation of numerous 

immune cells. Both these growth factors express tissue development and differentiation in 
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PSIS-ECM scaffolds and causes wound healing and tissue remodeling. PSIS closely 

mimics the normal ECM of the human dermis [26, 28]. 

The submucosa layer is present between the two layers, i.e. the mucosal and muscular 

layers of the small intestine. Submucosa provides strength to the small intestine through 

intricate fibrous matrix formed by collagen. The Cormatrix scaffold is constructed from 

porcine small intestinal submucosa (PSIS) which is extracted from the intestine by 

removing all the cells but keeping the complex extracellular matrix together. The scaffold 

is processed and manufactured in a way that maintains the fibrous nature and porous nature 

of the matrix. This helps in providing space for cell migration, proliferation, differentiation 

and growth, and also helps in safe implantation. Once manufactured the acquired material 

is carefully disinfected and finally decellularized. At the last phase, all the scaffolds 

undergo sterilization. 

In our previous study, in the Tissue Engineered Mechanics, Imaging and Materials 

Laboratory (TEMIM Lab) at Florida International University (FIU), involved utilization of 

Cormatrix PSIS bioscaffold valves (CorMatrix Cardiovascular, Inc., Roswell, GA, USA) 

in the aortic position. This study aimed at testing tri-leaflet PSIS bioscaffolds to evaluate 

their functional effectiveness by comparing them with the porcine bioprosthetic control 

valves (Medtronic Freestyle, Medtronic, Minneapolis, MN) in an in-house pulse duplicator 

system (Vivitro Laboratories, Victoria, Canada). Both the PSIS and bioprosthetic aortic 

valves were subjected to physiological flow conditions of that of an average adult human. 

The heart rate was set at 70 bpm and the stroke volume at 80 ml/beat. The results (Fig 6) 

showed physiologically shaped flow and pressure data (ventricular and aortic pressure) 

with no significant differences in flow and pressure when compared to that of the control 
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bioprosthetic valves [29]. However, the tri-leaflet PSIS valves demonstrated higher 

forward energy losses (Table 1), i.e. during the systolic phase of cardiac cycle when the 

aortic valves are open for the blood to flow, as compared to the control valves [29]. The 

PSIS scaffold presented some promising data however further in vitro and in vivo studies 

are required to validate the complete effectiveness of the PSIS bioscaffold. 

 

 Figure 6: (a) Flow and (b) Pressure waveforms (Ramaswamy S, 2016). 
 
 
 
Table 2: Mean ± SEM of Hydrodynamic Parameters of Aortic PSIS Valves (n=3) and 
Bioprosthetic Valves (n=2) during the Systolic Phase of the Cardiac Cycle (Ramaswamy 
S, 2016). 
 

     

 

Aortic Valves P 
(mmHg) 

Qrms 

(ml/s) 

EOA 
(mJ) 

Forward Flow 
Energy Loss* 

(mJ) 

RF* 
(%) 

PSIS (n=3) 24.0 ± 2.4 239.9 ± 44.4 0.96 ± 0.21 286.4 ± 16.7 13.8 ± 
9.8 

Bioprosthetic 
(n=2) 

18.1 ± 1.9 244.4 ± 3.6 1.12 ± 0.08 174.9 ± 17.4 51.3 ± 
0.8 
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(A) 

 

 

(B) 
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(C) 

 

Figure 7: (a) Trileaflet PSIS valves sutured into freshly collected porcine aortic root in 
place of native valves (Ramaswamy S, 2016). (b) Pulse Duplicator System (Vivitro 

Laboratories, Victoria, Canada) for assessing hydrodynamic characteristics of the valves 
(Ramaswamy S, 2016). (c) Positioning of aortic and mitral valves inside the duplicator 

system (Ramaswamy S, 2016). 
 

PSIS has demonstrated to be biocompatible and has no adverse response in cross-

species transplantations [30, 31]. PSIS has been approved by the Food and Drug 

Administration (FDA) for a variety of medical applications [32]. The PSIS bioscaffold 

valves have the potential to deliver a solution for replacement of diseased valves in adults 

and specially in infants and young patients. Nonetheless long-term effects of PSIS material 

for tissue repair and replacement is still unknown and needs further examination Tissue 

engineering technique in heart valves is challenging as bioscaffolds are required possessing 

material properties similar to those of the native valvular tissues. Tissue engineered 

materials are subjected to complex hemodynamic forces, high shear stresses and large 
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transvalvular pressures during the cardiac cycle. Thus, it is of utmost importance that the 

PSIS bioscaffolds are functionally optimized for the mitral valve position when critical 

mitral valve disease is present, in order for valve replacement to be facilitated. 
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CHAPTER 4 Methods 

An ideal heart valve substitute should have excellent hemodynamic functionality. It 

should possess  the following operational qualities: 1) adequate forward flow with 

reasonably small transvalvular pressure drop when open; 2) prevent backward flow with 

clinically acceptable small regurgitation values; 3) resist embolization 4) avoid thrombus 

formation; 5) resist hemolysis 6) be biocompatible; 7) be compatible with in vivo 

diagnostic techniques; 8) is deliverable and implantable in the targeted population; 9) 

continues to be secured once implanted; 10) permits reproducible function; 11) retains its 

functionality for an acceptable duration; 12) maintains sterility for a reasonable shelf life 

prior to implantation [1]. 

In this particular study, as our first aim, we sutured the current clinically used geometry 

of acellular PSIS bioscaffold valves in the analogous mitral position within the pulsatile 

simulator. The valves were contained within Dacron conduits. We then evaluated the 

hydrodynamic functionality of PSIS bioscaffold mitral valves at various native pediatric 

physiological hemodynamic conditions. This was achieved in vitro in a left heart simulator 

in our laboratory. Subsequently, in aim 2, the thickness of PSIS bioscaffold was fine-tuned 

to optimize the following hydrodynamic metrics: 1) valve pressure gradient, 2) forward 

flow, 3) energy losses and 4) regurgitation volume, with minimal PSIS material usage.  

Specifically, a thinner PSIS mitral valve (2ply) was evaluated as compared to the PSIS 

mitral valve assessed in aim 1 (4ply) 

4.1 Valve Preparation: 

PSIS  bi-leaflet bioscaffold valves (n=6) and porcine conduitless tri-leaflet bioprosthetic 

control valves (Edwards Lifesciences, Irvine, CA) (n=4) were tested in an in-house pulse 
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duplicator system (Vivitro Laboratories, Victoria, Canada). Bi-leaflet PSIS valves 

assembled from sheets of PSIS bioscaffold (Cormatrix, Roswell, GA) were manually 

sutured in Dacron conduits by referring to the procedure previously utilized in heart valve 

repairs [2] (Fig. 9). In short, to construct a bi-leaflet valve, a patch of extracellular matrix 

(Cormatrix, Roswell, GA) was folded over the top edge of the sheet to form a cuff. A dilator 

of the preferred size was then used to wrap the same sheet around it. The folded-over 

annulus of the bioscaffold valve was attached with a running stitch to create a sewing cuff, 

and the free edges of the wrapped material were cut to size over a dilator. The PSIS material 

was then sewn together in a continuous fashion to form a tube. Following this, a running 

5-0 Prolene suture was used to suture the bioscaffold to the proximal end of the Dacron 

tube. 

 

Figure 8: Appearance of the custom made bileaflet PSIS valve after construction 
(Bibevski S, 2015). 
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These constructs were subsequently immersed in a protease inhibitor cocktail (Sigma 

Aldrich, St. Louis, MO), with phosphate buffer solution (PBS) as the solvent. Valve 

holders were designed (Solidworks, Waltham, MA) and customized for each PSIS valve 

to improve the solidity of the valves during in vitro hydrodynamic testing (Fig. 11). Precise 

measurements of the dimensions of each valve were recorded and the computer-aided 

drawing (CAD) of the valve holder was custom-made to accurately accommodate the 

valves.  The valve holders were then fabricated using white-colored, Poly-L-lactic acid raw 

filament material (Dynamism, Chicago, IL) via 3-dimensional printing (Makerbot 

replicator series, Makerbot Industries LLC, Brooklyn, NY). Once the holders were printed, 

the valves were secured compactly to the holders by suturing around the annulus and sino-

tubular junction (STJ) of the valve. The secure valve was then press-fitted into the mitral 

location within the pulse duplicator system.  

 

 

Figure 9: Bileaflet Porcine Small Intestine Submucosa valve for mitral valve testing. The 
two leaflets are indicated by the arrows. 
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Figure 10: Edwards Lifesciences Bioprosthetic Valve serving as control valve. 

 

 

Figure 11: Valve Holder designed in SOLIDWORKS (Ramaswamy S, 2016). 

4.2 Hydrodynamic Assessment: 

We have utilized a commercially available pulse duplicator unit (Vivitro System, 

Victoria, BC) in our previous experiments to evaluate flexible-leaflet valve implants and 

to assess functionality of PSIS tri-leaflet aortic valves [3, 4] (Fig. 12). We used the same 

pulse duplicator system which accommodates bi-leaflet and tri-leaflet valve constructs and 

in-turn evaluates mitral and aortic valve hydrodynamic metrics respectively (e.g. energy 
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losses, regurgitation volume, etc.). The mechanical component of the pulse duplicator 

system comprises of atrial, ventricular and aortic units, which mimic those to left side of 

the heart, a piston pump, and a computer-based user interface (ViViTest Software, Vivitro 

Laboratories) for waveform specification and data acquisition/analysis. The system 

simulates physiologically-relevant circulatory environments defined by the user. To enable 

the measurement of flow and pressure data, a flow probe was positioned at the inlet of the 

mitral valve and two piezoresistive transducers (Model 6069, Utah Medical Products, Inc., 

Midvale, UT) pressure transducers at atrial and ventricular location in the system. To 

measure instantaneous flow rate, we placed an electromagnetic-based flow probe, 

connected to a flow meter (Carolina Medical Electronics), between the atrial and the 

ventricular chamber of the pulse duplicator just proximal to the inlet of the mitral valves. 

The spatial placement of the flow probe and pressure transducers was the same for all the 

valves tested.  

In the current study, for both the aims, PSIS valves were mounted in the mitral position 

within the test unit, whereas a bi-leaflet mechanical valve was mounted in the aortic 

position to complete the loop (Fig. 13). A bi-leaflet mechanical valve (St. Jude Medical, 

St. Paul, MN) was mounted in the aortic position for all valve tests conducted (Fig. 13). 

Finally, a 0.9% saline solution was introduced through the atrial chamber, to fill the loop 

with fluid, in accordance with hydrodynamic valve testing industrial practice using 

international Organization for standardization guidelines (ISO 5840). The system was 

checked to confirm there were no observable leaks. Before commencing the experiment, 

we calibrated the entire system.  
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Calibration was performed for accurate pressure and flow output readings, as per ISO 

5840 specifications for prosthetic valves [5]. The calibration process is a step-by-step 

procedure. It is very important to calibrate the entire system before using it every time. 

There are four different calibration steps. These steps involve zero offset measurements, 

pump calibration, calibration of the flow meter and flow probe, and calibration of the 

pressure sensors. The ViViTest software is used to accomplish this task leading the 

calibration values shown in the sensor calibrations panel. Before starting the calibration 

procedure, an open spacer ring was placed in the mitral position and the opposite side 

(aortic position) was closed using a solid plug. No valves were introduced during the 

calibration phase. We introduced the flow probe in the mitral location, i.e. site of interest. 

Once the system was set-up, we filled the assembly with 0.9% saline solution through the 

atrium chamber and the pump control was set using ViViTest software to desired levels 

(Heart rate = 70bpm and S50 waveform). 

The first step was to zero any offset of the sensor values. Zero values for the sensors 

were calculated for the pressure, pump and flow sensors on a static system open to 

atmosphere. After zeroing the values, pump calibration was carried out in order to scale 

the stroke volume displayed in the software to match the stroke volume displayed on the 

SuperPump Controller. This was done by dialing up the stroke volume on the SuperPump 

through the desired testing range. Once the pump was calibrated, we proceeded towards 

the calibration of the flow probe and flow meter. It involved two steps, an external 

adjustment of the flow meter prior to flow calibration in ViViTest and tuning of the flow 

probe using the ViViTest. The flow meter tuning was executed by switching ON the flow 

meter and then adjusting the ZERO, NULL, BALANCE, and + or – switches respectively 
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as per the system guidelines. After this step the flow probe was calibrated by pumping the 

saline solution through the probe lumen at heart rate of 70bpm and stroke volume of 80 

ml/beat. With this calibration, the flow rate through the transducer was made directly 

proportional to the piston displacement signal differentiated with respect to time (dL/dt). 

The dL/dt signal is an output from the SuperPump Controller. The last step was to calibrate 

the pressure sensors. The pressure transducers were mounted on a manifold and first 

exposed to the atmosphere to establish the lower end of the pressure range. The low and 

high pressures were chosen to span the expected working range of the transducers, in this 

case 0 to 200 mmHg. Then a large syringe and a digital manometer was used to apply and 

measure the upper range pressure, i.e. 200 mmHg. Subsequently the pressure sensors were 

introduced into the system in their specified location and were introduced to the static flow 

before saving the values. After all the calibration processes were completed, the calibration 

parameters were saved and used for data acquisition. 

A pulsatile waveform representing a physiological flow profile (S50 waveform, Vivitro 

Laboratories) and which has been previously utilized for hydrodynamic studies using the 

same pulse duplicator system [4, 6] was selected for all tests conducted. After switching 

on the flowmeter, the amplitude of the pump regulator was slowly increased until the stroke 

volume reached 80 mL/beat. 
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Figure 12: Pulse duplicator system (Vivitro Laboratories, Victoria, Canada).  

 

 

Figure 13: Mitral valve configuration in the Pulse Duplicator System. 

4.2.1 Aim 1: 

Our study was specifically designed to provide potential valve replacement alternatives 

for infants and small children. PSIS material has the ability to provide somatic growth 

along with biodegradation of the material, which is an important property for pediatric 
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populace. However, it was important to prove the hydrodynamic functionality of this 

bioscaffold. 

For Aim 1, we were interested in testing the PSIS bioscaffold mitral valves (n=5) at 

pediatric conditions as the main goal of this study is to potentially develop a valve 

replacement solution for infants and children. The established parameters incorporated two 

sets of flow profiles depicting left circulatory conditions in the pediatric (Table 2(a) & (b)). 

A physiological waveform representative of the pumping action of the left ventricle was 

selected (in the case of the Vivitro system the S50 waveform was chosen for all 

hydrodynamic tests) to drive flow through the loop [6]. At the end of each run, data was 

recorded over 10 continuous cycles  

Table 3(a): Varying heart rates at constant stroke volume = 40 ml/beat. 

 

Table 3(b): Varying stroke volumes at constant heart rate = 145 bpm. 

 

4.2.2 Aim 2: 

Motivation: The rationale behind this aim was to decrease the demand on body for 

native tissue replacement once the PSIS bioscaffold degrades. We conducted this study to 

test the efficacy of these 2ply PSIS valves against 4ply PSIS and bioprosthetic valves 

 
Pediatric Hemodynamic Conditions at 

Constant Stroke Volume 

Heart Rate (bpm) 
110 
125 
140 

 
Pediatric Hemodynamic Conditions at 

Constant Heart Rate 

Stroke Volume (ml/beat) 

20 
25 
30 
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Similar to Aim 1, the study for Aim 2 was conducted by suturing a bi-leaflet valve 

configuration in the mitral position in the simulator and exposing the valves to the best 

selected pediatric mitral valve hemodynamic conditions. For our first aim, we tested 4-ply 

PSIS mitral valves (n=5) which were at 100 % thickness. The leaflet thickness was fine-

tuned to establish robust functionality for the mitral position with minimal use of 

bioscaffold material. The thickness of the valves was reduced by half, that is we used 2-

ply valves as other set of valves (thickness reduced from 100% to 50%). This approach has 

the potential to reduce the burden on the host since less tissue is required to fill a smaller 

scaffold space. It is important to maintain robust functionality of PSIS-valves but with 

minimal use of material thereby reducing the demand for de novo replacement tissue 

growth in the patient. Therefore, it was critical to conduct functional hydrodynamic testing 

of these valves using the same pulsatile simulator that is used to evaluate clinically-

approved, flexible bio-prosthetic valves, to account for measurement differences that may 

be system dependent.  

4.3 Data Analysis: 

As mentioned before, we analyzed the data over 10 cycles for each PSIS and 

bioprosthetic valves. We investigated 40 runs (r = 40) for 4ply PSIS valves (n = 4), 40 runs 

(r = 40) for bioprosthetic control valves (n = 4) and 20 runs (r = 20) for 2ply PSIS valves 

(n = 2). Our pulse duplicator system (Vivitro Laboratories, Victoria, Canada) currently 

allows us to capture 10 cycles at a time. We have presented a table of mean +/- SEM of 

atrial, ventricular and forward flow values at one of the conditions (140 bpm, 40 ml/beat), 

over the above-mentioned runs (Table). 
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Table 4: Mean ± SEM of ventricular, atrial and forward flow values for the entire cycle at 
heart rate of 140 bpm and stroke volume of 40 ml/beat for 2ply valves (r = 20 runs), 4ply 
(r = 40 runs) and bioprosthetic valves (r = 40 runs). 
 

Valves Ventricular Pressure (VE) 
(mmHg) 

Atrial Pressure (AT) 
(mmHg) 

Flow (ml/s) 

2ply 67.8 ± 0.42 10.9 ± 0.3 83.9 ± 1.53 
4ply 55.2 ± 1.02 9.46 ± 0.49 78.9 ± 1.89 

Bioprosthetic 28.6 ± 0.87 6.5 ± 0.43 78.8 ± 1.64 
 

The mean pressure and flow calculations observed here are robust with very small 

errors. Therefore, we believe for short term predictions of hydrodynamic functionality 

across the valve, 10 cycles are adequate. 

We calculated the following hydrodynamic metrics for each of the valves tested; 

pressure gradient (ΔP; mmHg), root mean square flow rate (Qrms; mL/s), effective orifice 

area (EOA; cm2), closing energy loss, (mJ) and regurgitation fraction (% RF). Pressure 

gradient was directly computed from the mean pressure profiles during the diastolic phase 

when the mitral valve is open. Similarly, forward flow was computed during diastolic 

phase, directly from flow profiles of the mitral valves. However, RF and closing energy 

loss were computed during the systolic phase when the mitral valve is closed. The forward 

flow (Qrms), effective orifice area (EOA) [7, 10] and closing energy loss for the mitral 

valves [8, 9, 10] was defined as follows: 

Equation 1 

ܳ௥௠௦ = ඨܳଵ
ଶ + ܳଶ

ଶ + ⋯ + ܳ௡
ଶ

݊
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Equation 2 

ܣܱܧ =
ܳ௥௠௦

51.6 ∗ √∆ܲ
 

 

Equation 3 

ݏݏ݋ܮ ݕ݃ݎ݁݊ܧ ݈ܿ݅݋ݐݏݕܵ =  න ሻݐሺ݌∆ ∗ ݐሻ݀ݐሺݍ

೟భ

௧଴

 

 

where t0 = beginning and t1 = end respectively of the systolic phase of the cardiac 

cycle, ∆p(t) is the pressure gradient between atrial chamber and ventricular chamber over 

the cardiac cycle and q(t) is the pulsatile flow rate of the fluid. Ten cycles were recorded 

for each PSIS and bioprosthetic valve tested and data were averaged for each group. 

4.4 Statistics: 

The t test was used to establish any significant differences in hydrodynamic parameters 

between the 4ply PSIS bioscaffold group and the Control group in aim 1, while an ANOVA 

test was used for aim 2 where we compared 2ply PSIS bioscaffold valves vs 4ply PSIS 

bioscaffold valves vs bioprosthetic valves. A difference between the two groups was 

considered statistically significant when p<0.05. All hydrodynamic metrics were presented 

in Mean ± Standard error of the mean (SEM). 
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CHAPTER 5 Results and Discussion: Aim 1 

The mitral valvular system is an intricate anatomical and functional entity. Different 

congenital malformations may affect the mitral valve and can occur as an isolated defect 

or in combination with other complex left sided lesions [1]. In one echocardiographic 

study, congenital mitral valve malformation was detected in almost 0.5% of the 13,400 

subjects [2]. Mitral valve repair is always desirable when possible over replacement [3,4]. 

Generally critical congenital mitral valve pathology in infants and children poses frequent 

challenges to pediatric cardiac surgeons, as mitral valve replacement (MVR), being 

inevitable, increases the rate of morbidity in the pediatric population significantly [5]. 

When reconstruction fails or is not feasible, valve replacement becomes unavoidable. 

The pediatric and neonatal population with mitral valve disease has limited choices for 

prosthetic valve replacement because of the unavailability of suitable prosthetic valve 

alternatives and restrictions with respect to patient to prosthetic dimension [7]. The major 

drawback with the current prosthetics is their inability to grow with the patient, thus 

requiring multiple valve replacement surgeries as the child grows. Implantation of large 

prosthetic mitral valves in the supra annular position and Ross II procedure are the two 

available options for infants and children suffering from mitral valve defect. However, 

these options have their drawbacks specially in pediatric patients as use of prosthetic valves 

is associated with a high rate of thromboembolic adverse events. Mechanical prosthetic 

valves are durable but lead to clotting of the blood, thus requiring life-long anticoagulation 

treatment. Bioprosthetic valves and Homografts on the other hand do not require life-long 

anticoagulation, but are less durable as compared to mechanical valves. Also, these valves 

do not provide for somatic growth and thus there is always a need of multiple valve 
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replacement surgeries thus leading to further complications. The Ross II procedure also 

have limitations in terms of somatic growth [8, 9].  

For pediatric application, an ideal valve should support somatic growth, i.e., grow with 

the patient, have low risk of thrombosis and should fit into the small annular sizes of infants 

and children. In this study, we proposed a technique of mitral valve replacement with 

porcine small intestinal sub-mucosal bioscaffold (PSIS) valve, which is custom handmade 

and has the potential to be implanted in an infant and a small child. As previously stated, 

compassionate care cases involving neonates suffering with congenital critical valve 

disease, our collaborators have already employed this bioscaffold for valvular replacement. 

According to our understanding we are the only group to have utilized this technique in 

pediatric patients for the management of congenital heart valve disease in infants and 

children. In Vivo studies have reported that the valves have performed well, with lowered 

transvalvular pressure gradients and not necessitating anti-coagulant therapy [10, 11]. 

PSIS bioscaffold as described before is an extracellular matrix having acellular, 

biodegradable soft tissue material properties which has the potential to remodel itself after 

implantation and leave in its place a healthy and organized native tissue. PSIS possesses 

the molecular make-up of native cardiovascular structures, such as collagen and elastin. It 

also possesses fibronectin and laminin adhesion glycoproteins, glycosaminoglycans 

(GAGs) and matricellular proteins (e.g. thrombospondins, osteopontin, and tenascins). 

These properties make it suitable for cardiovascular regenerative applications especially in 

infants and small children. 

Although some results have been positive, substantial uncertainties still remain. There 

are reports that show adverse effects of PSIS bioscaffold. The first adverse results were 
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published by Weber and colleagues. The results exhibited pseudoaneurysm formation with 

disorganized collagen in patients who had undergone carotid artery patch angioplasty with 

PSIS bioscaffold [12]. In the other study, it has been reported presence of hemodynamically 

significant lesions at the site of the PSIS implantation which required reoperation, in 6 of 

25 patients receiving PSIS patches during cardiac operations [13]. Explanted specimens 

established an intense inflammatory response characterized by numerous eosinophils, 

histiocytes, and plasma cells, accompanied by granulation tissue and fibrosis [13]. Few 

studies have reported the inflammatory response to CorMatrix PSIS bioscaffold. In couple 

of studies PSIS scaffold inflammation was observed in the graft application. Similar 

findings of an intense inflammatory response to the material was noticed in the aortic patch 

along with early critical disintegration and aneurysm formation [14]. 

In one of the pediatric studies by Zaidi et al, histologic evaluation of 11 Cormatrix PSIS 

aortic and mitral valves was presented [15]. These valves were explanted due to fixation, 

thickening, prolapse of the leaflets, dehiscence and folded PSIS patch. The 9 months 

implantation results showed no remodelling in analogous to native valves having three 

layers along with the inflammatory response. In other study, implants obtained from 11 

pediatric patients relating to 2 mitral valves, 2 aortic valves, 8 outflow septal or conduit 

patches, tissue necrosis was observed in 5 cases along with chronic inflammation [16]. One 

of the surgical procedures reported delamination of the bioscaffold patches which caused 

continued washing of the PSIS material [17]. PSIS valves are scaffolds that are designed 

by laminating multiple layers together. The delamination can also lead to blood flow loss 

due to blood being potentially captured within the multiple laminations, resulting in failure 

of the valves. 
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Cardiovascular applications of CorMatrix PSIS patch is comparatively new. There are 

currently mixed reviews about this bioscaffold. However, these studies have certain 

limitations mainly with regards to lack numbers of subjects and organized reporting. In 

spite of these, the growth prospects and mid to long term potential has not been 

systematically, nor scientifically explored.  Here our aim was to assess the functionality of 

PSIS bioscaffolds in mitral valve replacement application. We understand and recognize 

the significance of performing a systematic assessment of PSIS mitral valve functionality 

in terms of its opening and closing properties, before this expertise can be made available 

widely for all the patients as a first choice and not just used for compassionate care cases. 

To achieve this purpose, PSIS bioscaffold valves were examined under the 

physiologically expected hydrodynamic conditions of native mitral valve from pediatric 

population. To best assess these bioscaffold valves in vitro under physiological conditions 

we utilized a Vivitro pulse duplicator available in our laboratory (Vivitro Laboratories, 

Victoria, BC). It has been modified to facilitate these testing and used before to test flexible 

leaflet valve and PSIS aortic bioscaffold valve implants [18, 19]. Thus, with this device, 

we could assess hydrodynamic functionality of sutured PSIS bioscaffold valves which were 

contained within a Dacron conduit. 

Bi-leaflet PSIS bioscaffold valve templates (Cormatrix, Roswell, GA) were assembled 

manually into the Dacron conduit as described in the methods section and which has been 

used to treat clinical cases for critical congenital mitral and aortic valve diseases 

respectively. The valves were then secured to the custom-made valve holder by progressing 

with suturing along the circumference of the holder. The holder with the sutured PSIS-

valve was mounted in the mitral position within the test unit, whereas a bi-leaflet 
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mechanical valve was mounted in the aortic position, within the pulse duplicator system 

(Vivitro Laboratories, Victoria, BC). A 0.9% saline solution was introduced through the 

atrium chamber, to fill the loop with fluid. To enable the measurement of flow and pressure 

data, a flow probe was positioned at the inlet of the mitral valve and two pressure 

transducers at atrial and ventricular location in the system. Calibration was performed to 

warrant for accurate pressure and flow output readings. After the system was checked for 

any observable leaks, testing was initiated. The established parameters (heart rate, stroke 

volume) incorporated two sets of flow profiles depicting left circulatory conditions in the 

pediatrics.  

A physiological waveform representative of the pumping action of the left ventricle 

was selected (in the case of the Vivitro system the S50 waveform was chosen for all 

hydrodynamic tests) to drive flow through the loop [19]. At the end of each run, data was 

recorded over 10 continuous cycles.  

Results and Discussion: 

Results were compared to commercially available porcine bioprosthetic mitral heart 

valves (control group).  
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Figure 14: Mean temporal (A, B) pressure and flow waveforms at 110 bpm and 40 
ml/beat, (C, D) pressure and flow waveforms at 125 bpm and 40 ml/beat, (E, F) pressure 
and flow waveforms at 140 bpm and 40 ml/beat, (G, H) pressure and flow waveforms at 
145 bpm and 20 ml/beat, (I, J) pressure and flow waveforms at 145 bpm and 25 ml/beat, 
(K, L) pressure and flow waveforms at 145 bpm and 30 ml/beat measured for 4ply PSIS 
valves (n=4) and Bioprosthetic valves (Edwards Lifescience) (n=4) tested in the mitral 

position in our pulse duplicator system (Vivitro Laboratories). 
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Upon completion of flow and pressure profiles we computed the following 

hydrodynamic metrics: pressure gradient, forward flow, effective orifice area of the valve, 

systolic energy losses and regurgitation volumes. Our findings were as following results. 

Results are summarized in Table 3(a), 3(b), 4(a) and 4(b). 

 
Table 5(a): Mean ± SEM of Hydrodynamic Metrics of PSIS Mitral Valves (n=4) at constant 
stroke volume of 40 ml/beat. 
 

 

Table 5(b): Mean ± SEM of Hydrodynamic Metrics of porcine trileaflet Bioprosthetic 
(Edwards Lifescience) (n=4) at constant stroke volume of 40 ml/beat. 

 

Note: ‘*’ indicates statistical significance. 

Heart Rate 
(bpm) 

ΔP(diastolic) 
(mmHg) 

Peak 
ΔP(systolic) 

(mmHg) 

Qrms 

(ml/s) 

EOA 
(cm2) 

Systolic 
Energy 

Loss (mJ) 

RF 

(%) 

110 4.64 ± 
0.45 

78.5 ± 
3.19 

135.6 ± 
17.3 

1.22 ± 
0.08 

20.6 ± 4.1 4.25 ± 
1.8 

125 6.02 ± 0.3 75.4 ± 
3.46* 

 

148.6 ± 
6.88 

1.26 ± 
0.03 

29.3 ± 5.87 3.54 ± 
0.64 

140 6.17 ± 
0.75* 

115.9 ± 
3.74* 

159 ± 
7.89 

1.31 ± 
0.2 

39.1 ± 3.12 4.38 ± 
0.25 

Heart Rate 
(bpm) 

ΔP(diastolic) 
(mmHg) 

Peak 
ΔP(systolic) 
(mmHg) 

Qrms 

(ml/s) 
EOA 
(cm2) 

Systolic 
Energy 

Loss (mJ) 

RF 

(%) 

110 4.32 ± 
0.15 

91.8 ± 5.47 127.1 ± 
4.21 

1.19 ± 
0.07 

14.5 ± 2.27 3.44 ± 
0.72 

125 5.92 ± 
0.32 

44.6 ± 
4.15* 

157.4 ± 
2.42 

1.35 ± 
0.05 

19.2 ± 4.8 3.2 ± 
0.37 

140 5.34 ± 
0.24* 

72.8 ± 4.4* 178.2 ± 
6.52 

1.56 ± 
0.09 

29.8 ± 3.76 3.71 ± 
0.68 
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Table 6(a): Mean ± SEM of Hydrodynamic Metrics of PSIS Mitral Valves (n=4) at constant 
heart rate of 145 bpm. 
 

 

Table 6(b): Mean ± SEM of Hydrodynamic Metrics of porcine trileaflet Bioprosthetic 
(Edwards Lifescience) (n=4) at constant heart rate of 145 bpm. 
 

 

Note: ‘*’ indicates statistical significance 

 

As stated, we assessed the PSIS bi-leaflet bioscaffold valves for acute functionality in 

the mitral position at 6 different pediatric physiological conditions of stroke volume and 

heart rate. We compared PSIS mitral valves with the bioprosthetic control group at all 

conditions. For pediatric conditions results demonstrated similar physiological pressure 

Stroke 
Volume 

(ml/beat) 

ΔP(diastolic) 
(mmHg) 

Peak 
ΔP(systolic) 
(mmHg) 

Qrms 

(ml/s) 

EOA 
(cm2) 

Systolic 
Energy 

Loss (mJ) 

RF 

(%) 

20 4.24 ± 
0.27 

28.4 ± 
2.12* 

99.4 ± 
2.80 

0.92 ± 
0.04 

8.88 ± 1.67 3.04 ± 
0.38 

25 4.99 ± 0.3 44.9 ± 
3.07* 

 

119.4 ± 
3.21 

0.99 ± 
0.07 

17.2 ± 4.11 3.59 ± 
0.51 

30 5.6 ± 0.38 54.6 ± 
2.66* 

 

137.3 ± 
1.35 

1.12 ± 
0.09 

30.82 ± 
2.77 

4.14 ± 0.4 

Stroke 
Volume 

(ml/beat) 

ΔP(diastolic) 
(mmHg) 

Peak 
ΔP(systolic) 
(mmHg) 

Qrms 

(ml/s) 
EOA 
(cm2) 

Systolic 
Energy 

Loss (mJ) 

RF 

(%) 

20 4.05 ± 0.7 17.7 ± 
2.56* 

103.2 ± 
4.6 

1.01 ± 
0.1 

6.29 ± 0.08 2.65 ± 0.5 

25 4.4 ± 0.32 27 ± 2.79* 120.9 ± 
2.85 

1.03 ± 
0.06 

11.8 ± 1.1 2.9 ± 0.49 

30 5.14 ± 
0.41 

28.2 ± 4.3* 145 ± 
3.56 

1.2 ± 
0.04 

20.68 ± 3.9 3.08 ± 1.7 
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and flow data when compared with trileaflet bioprosthetic valves. However, we see some 

discrepancies in the ventricular pressure between the two group as we increase the heart 

rate.  

At lower pediatric relevant heart rate of 110 bpm, the pressure and flow waveforms 

were very similar, but as we increased the heart rate keeping the stroke volume constant at 

40 ml/beat, we observed differences particularly in the ventricular pressure. In the case of 

varying stroke volume at the constant heart rate of 145 bpm, even at the lower stroke 

volume we saw some key difference in both the ventricular pressure and the flow rate. As 

we increase the stroke volume, we noticed these differences continued. Thus, at higher 

heart rates and higher stroke volume, the differences in the ventricular pressure and some 

differences in the flow rate were noticeable. Peak systolic pressure gradient for 4ply PSIS 

valves during constant stroke volume ranged from 78.5 mmHg to 115.9 mmHg and for 

bioprosthetic valve it ranged from 44.6 mmHg to 91.8 mmHg. At constant heart beat the 

systolic pressure gradient range for 4ply PSIS valves was from 28.4 mmHg to 54.6 mmHg 

and for bioprosthetic valve 17.7 mmHg to 28.2 mmHg. 

The normal systolic pressure for adult is 100-140 mmHg [20] and for child before 

adolescent is 60-120 mmHg which gradually increases as the child grows [21]. We 

observed that peak systolic pressure gradient for PSIS valves increased progressively with 

the increase in the cardiac output under pediatric conditions and were close to the reference 

values. Conversely, for the bioprosthetic valves we noticed that the peak systolic pressure 

gradient was relatively low. The peak systolic gradient for bioprosthetic valve was 

statistically lower than that of the PSIS valves at all conditions, except at 110 bpm at 40 

ml/beat. However, the mitral valves in both the groups were efficiently closed during the 
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systolic phase as can be observed from the RF (%), which was low for both PSIS and 

bioprosthetic valves. The low peak pressure gradient during the systolic phase may be due 

to the material properties of the bioprosthetic scaffold. In our previous publication [19], we 

reported mean Young’s modulus of both the PSIS and chemically-fixed bioprosthetic 

values. Mean Young’s modulus for bioprosthetic valves was ~43 MPa [24], whereas PSIS 

valve tissues were comparatively stiffer circumferentially with modulus of elasticity of 

101.99 ± 58.24 MPa (but only about 9.18 ± 1.81 MPa radially) [25, 26]. We speculate that 

the bioprosthetic valves being less stiff circumferentially may have potentially led to a 

lower peak systolic gradient. 

EOAs were comparable at all 6 different conditions (p<0.05) which permitted an 

objective comparison in acute hydrodynamic functionality between the two groups. ΔP was 

almost similar in both the groups and statistically insignificant in all the cases, expect at 

140 bpm and 40 ml/beat. Even though the ΔP was significantly higher at this condition, it 

was very close to the acceptable clinical value [22]. Forward flow was dominant in the 

diastolic phase when the mitral valve is open with relatively low to no forward flow during 

systole. Forward flow (Qrms) was found to be not significantly different (p>0.05) between 

the two groups thus resulting in robust flow data. We noticed slightly greater regurgitation 

fraction (RF) in PSIS group. However, RF was statistically insignificant (p>0.05) in 

comparison to the bioprosthetic group and also in the acceptable clinical range [23]. 

Although the systolic energy losses observed in both groups at 6 different conditions 

were not statistically significant, the PSIS-valves exhibited higher energy losses during the 

systolic period compared to the bioprosthetic controls. We noticed that as we increase the 

stroke volume or the heart rate (Fig 15 (a), (b)), the net effect of the energy loss was the 
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same in both the 4ply PSIS valves and the bioprosthetic valves. When we computed the 

cardiac output, and looked at the percent increase in the energy loss (Fig 15 (c)), the net 

effect of the energy loss in 4ply PSIS valves was again consistent as that of the 

bioprosthetic control group, i.e. increase by approximately 3.5 times with doubling of the 

cardiac output in both groups. 

 

(a) 
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(b) 

 

(c) 

Figure 15: % increase in PSIS and Bioprosthetic energy loss during systolic phase vs. (a) 
% increase in heart rate at constant stroke volume of 40 ml/beat. (b) % increase in stroke 

volume at constant heart rate of 145 bpm. (c) cardiac output (ml/min). 
 

Nevertheless, it is obligatory that the PSIS valves grow longitudinally and have 

symmetric growth after implantation. This accurate somatic growth is the must to mitigate 

or to support the normal rise in the energy losses. However, if the growth is inadequate and 

random or if there is improper growth of the PSIS bioscaffold, this will adversely affect 

the energy loss parameter, resulting in greater energy losses and subsequent failure of the 

PSIS mitral valve, ultimately causing increased workload on the heart. 

We evaluated energy loss during the systolic phase as most of the mitral valve disease 

is associated with mitral regurgitation or prolapse as compared to mitral stenosis. As 
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Energy loss may serve as a biomarker indicating improper closing of the mitral valve 

during the systolic phase and potentially long-term detriment to heart function. Sufficient 

energy applied by the contraction of the left ventricular chamber helps in the proper closing 

of the mitral valves, thus avoiding regurgitation or prolapse. The mitral valves that do not 

close aptly may lead to more vicious pumping of the left ventricle, thus resulting in higher 

energy losses. This may eventually lead to heart failure. 
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CHAPTER 6 Results and Discussion: Aim 2 

It is important for infants and children that a tissue engineered or biocompatible heart 

valve prosthesis possess appropriate hemodynamic profile, low thrombogenic potential, 

provide somatic growth and an integral part of patient’s native tissue over time [2]. One 

promising bioscaffold material for the assembly of such a valve is an acellular bioscaffold 

composed of non-crosslinked extracellular matrix (ECM) derived from porcine small 

intestinal submucosa (PSIS). This material has shown bioresorbable capabilities of in vivo 

native cellular recruitment and repopulation in a broad range of tissues, including cardiac 

tissue [3-7]. Promising in vivo growth, both circumferential and longitudinal, has also been 

reported in a study that utilized PSIS material as an interpositional vena cava graft in a 

growing piglet. The longitudinal growth of the PSIS graft was reported to be around 147% 

and circumferential around 184% over a 3-month time period [8]. 

When implanted in the body, it has been observed that the degradation of the ECM 

scaffold by immunomodulatory, pro-remodeling macrophages produces biochemical cues 

that attract progenitor cells. and, in concert with the surrounding biomechanical and fluid-

dynamic environment, induce progenitor-cell proliferation and phenotypic maturation [5, 

9, 10]. Products of matrix degradation also confer antimicrobial properties on the ECM 

material [11] and lack of crosslinking reduces its propensity for inflammation and 

calcification [5]. With respect to the physical architecture of a bioprosthetic heart valve, 

experimental and clinical studies over the past 2 decades have demonstrated the superiority 

of a tubular design in terms of restoring normal transprosthetic flow dynamics and stress 

distribution on the valve leaflets, regardless of the type of tissue or other material used to 

construct such tubular valves [12]. 
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As stated in the previous chapters in this thesis, the main focus of this study was the 

determine hydrodynamic function of a PSIS mitral valve design for valve replacement in 

infants and children suffering from severe congenital heart valve disease, which can 

accommodate somatic growth.  PSIS is a decellularized bioscaffold from the submucosal 

layer of the porcine small intestine. A key attractive feature of PSIS bioscaffold is its 

biodegradability with de novo replacement of tissues exhibiting the cardiovascular 

phenotype [13, 14]. The specific objective of aim 2 in this investigation was to reduce the 

thickness of the PSIS-assembled mitral valves from ~ 320 µm (4 ply) to ~ 166 µm (2 ply), 

which results in an overall percent volumetric reduction of ~ 54 %. In theory, this reduction 

contributes towards reduction in burden on the body to produce newer valvular tissues.  

Moreover, another potential benefit of a thinner valve would be a decreased risk of leaflet 

delamination which would be detrimental in the context of increased thrombus risk and 

interfering with unidirectional blood flow. 

 Nonetheless, an important aspect of thickness reduction, is the critical need to continue 

to improve upon or at least maintain robust hydrodynamic functionality of the bioscaffold 

with minimal use of PSIS material. To accomplish this task, it is important to conduct 

functional testing of 2ply bioscaffold mitral valves using the same pulse duplicator system 

(Vivitro Laboratories, Victoria, BC) that was used to evaluate PSIS bioscaffold of 4 ply 

mitral valve thickness in aim 1, which is routinely used in the FDA approval process for 

commercially-available mechanical and bioprosthetic valves. All the steps carried out were 

the same as mentioned before for the 4ply valves. However, the parameters selected were 

only 2; (i) Heart rate of 140 bpm and stroke volume of 40 ml/beat. (ii) Heart rate of 145 

bpm and stroke volume of 20 ml/beat. We sutured the 2ply PSIS valves into custom 
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adapters similar to that of the 4ply valves. The adaptor with the secured valves was then 

press-fit into the mitral position into the pulse duplicator system for subsequent testing. 

The testing was performed similarly as in first aim and 10 cycles were recorded for 

each valve and at each set of parameters. Figure 15 (A-D) depicts the pressure and flow 

waveforms for 4ply PSIS vs. 2ply PSIS mitral valves. Figure 15 (A, B) are the pressure 

and flow waveforms for the PSIS valves tested at heart rate of 140 bpm and stroke volume 

of 40 ml/beat. Likewise, pressure and flow plots for PSIS valves tested at heart rate of 145 

bpm and stroke volume of 20 ml/beat are illustrated by figure 15 (C, D). 

 

Results and Discussion: 

 

 

                     (A)                                                                         (B) 
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      (C)                                                                       (D) 

 

Figure 16: Mean temporal (a) pressure waveforms at 140 bpm and 40 ml/beat, (b) flow 
waveforms at 140 bpm and 40 ml/beat, (c) pressure waveforms at 145 bpm and 20 
ml/beat and (d) flow waveforms at 145 bpm and 20 ml/beat measured for 4ply PSIS 
valves (n=4) and 2ply PSIS valves (n=2) tested in the mitral position in our pulse 

duplicator system (Vivitro Laboratories). 
 
 

Table 7(a): Mean ± SEM of Hydrodynamic Metrics of 2ply PSIS mitral valve (n=2) vs 4ply 
PSIS mitral valve (MV) (n=4) vs porcine trileaflet Bioprosthetic valve (BPV) (Edwards 
Lifescience) (n=4) at heart rate of 140 bpm and stroke volume of 40 ml/beat. 
 

 

Note: ‘*’ indicates statistical significance. 

 

MV ΔP(diastolic) 
(mmHg) 

Peak 
ΔP(systolic) 
(mmHg) 

Qrms 

(ml/s) 

EOA 
(cm2) 

Systolic 
Energy Loss 

(mJ) 

RF 
(%) 

2ply 6.56 ± 
0.34 

137.4 ± 
1.59* 

262.3 ± 
29.8* 

1.97 ± 
0.18 

25.2 ± 2.81 7.03 ± 
0.82* 

4ply 6.17 ± 
0.75 

115.9 ± 
3.74 

159 ±  
7.89 

1.31 ± 
0.2 

39.1 ± 3.12 4.38 ± 
0.25 

BPV 5.34 ± 
0.24 

72.8 ± 
4.4 

178.3 ± 
6.52 

1.56 ± 
0.09 

29.8 ± 3.76 3.71 ± 
0.68 
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Table 7(b): Mean ± SEM of Hydrodynamic Metrics of 2ply PSIS mitral valve (n=2) vs 4ply 
PSIS mitral valve (MV) (n=4) vs porcine trileaflet Bioprosthetic valve (BPV) (Edwards 
Lifescience) (n=4) at heart rate of 145 bpm and stroke volume of 20 ml/beat. 
 

 

Note: ‘*’ indicates statistical significance. 

Hydrodynamic assessment of 2ply PSIS bioscaffold mitral valves also revealed 

hydrodynamically robust data both in terms of flow and pressure in both the cases. In the 

first set of data at heart rate of 140 bpm and stroke volume of 40 ml/beat, when compared 

with the 4ply PSIS mitral valves and the control group we noticed that the Qrms through the 

2ply PSIS valve was significantly greater (p<0.05) than the other two groups. Moreover, 

we found that the RF was significantly higher (p<0.05) in 2ply valves when compared to 

4ply and bioprosthetic valves but within clinical range [15].  

In the other data set at heart rate of 145 bpm and stroke volume of 20 ml/beat, we again 

observed significantly higher Qrms (p<0.05) in 2ply valves as compared to the 4ply valves 

and bioprosthetic valves. Likewise, similar to the first case, RF was significantly higher 

(p<0.05) in 2ply valves. Moreover, EOA was seen to be significantly larger (p<0.05) in 

2ply bioscaffold valves at 145 bpm and at 20 ml. More flow through 2ply valves as 

compared to 4ply valves may indicate more opening of the bileaflet valves during the 

MV ΔP(diastolic) 
(mmHg) 

Peak 
ΔP(systolic) 
(mmHg) 

Qrms 

(ml/s) 
EOA 
(cm2) 

Systolic 
Energy Loss 

(mJ) 

RF 
(%) 

2Ply 4.27 ± 
0.96 

55.1 ± 
1.4* 

165.4 ± 
14.2* 

1.49 ± 
0.21* 

6.18 ± 3.11 5.87 ± 
0.75* 

4Ply 4.24 ± 
0.27 

28.4 ± 
2.12 

99.4 ± 
2.80 

0.92 ± 
0.04 

8.88 ± 1.67 3.04 ± 
0.38 

BPV 4.05 ± 0.7 17.7 ± 
2.56 

103.2 ± 
4.6 

1.01 ± 
0.1 

6.29 ± 0.08 2.65 ± 0.5 
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forward flow. Even though RF is greater, but when compared to clinical values it’s still 

trivial [15]. 

Similar to aim 1, we again noticed significant differences in the peak systolic pressure 

gradients between 2ply and 4ply valves. The peak systolic pressure gradient for 2ply valves 

was significantly higher (p < 0.05) as compared to the 4ply valves and closer to the 

reference values [16, 17]. At heart rate of 140 bpm and stroke volume of 40 ml/beat peak 

systolic pressure gradient was 137.4 ± 1.57 mmHg and at 145 bpm and 20 ml/beat it was 

55.1 ± 1.4 mmHg. Both 2ply and 4ply valves had sufficient systolic pressure gradients to 

keep the mitral valve closed effectively.  It is possible however that the higher systolic 

pressure drop across the 2-Ply PSIS valve compared to 4-ply PSIS valve may maintain 

adequate valve sealing and closure while longitudinal somatic growth and remodeling 

occurs. 

The key factor behind the selection of these two set of parameters was considering the 

closing energy losses in 4-Ply PSIS mitral valves. Energy loss was highest for 4ply PSIS 

valves at heart rate of 140 bpm and stroke volume of 40 ml/beat and lowest at heart rate of 

145 bpm and stroke volume of 20 ml/beat. The closing energy losses for 2ply valves were 

observed to be less as compared to 4ply and bioprosthetic valves, although there was no 

statistical significance in both cases (p=0.083 for HR: 140 bpm and SV: 40 ml/beat; p > 

0.05). A limitation in our comparison of thinner PSIS mitral valve is the small sample size 

(n = 2 valves). We believe that testing more 2ply valves will give us statistical confidence 

regarding less closing energy losses in 2ply PSIS mitral valves as compared to the 4ply 

PSIS valves, in a statistically significant manner. The work presented here on acute PSIS 
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bioscaffold mitral valve hydrodynamic functionality results are early findings and more 

valves need to be assessed to obtain a tighter data set. 

With regards to 4ply PSIS valves we observed that 2ply valves performed efficiently, 

however since less material is used in 2ply valves, it is important to check its structural 

integrity under in vivo high press regions. The mechanical properties of these bioscaffolds 

will play an important role when implanted in patients, in the way they intend to remodel 

and handle stresses and strains. The collagen fibers present in cardiovascular tissues are 

oriented, rendering the mechanical behavior of these tissues nonlinear and anisotropic [18]. 

Structural analysis of the PSIS bioscaffold showed that the fibers are aligned in a single 

preferred direction along the longitudinal axis, however rarely fibers were aligned at ±30° 

to the longitudinal axis [19, 20, 21]. Biaxial testing performed on these scaffolds signified 

the mechanically anisotropic behavior of the material showing stiffness and strength [21, 

22]. 

It was observed that the mechanical behavior of a single layer of PSIS material is 

insufficient for most load bearing applications, however the strength of the material 

increases with the increase in the number of layers or by using multiple laminations [23]. 

In one of the studies assessing the ball-burst strength of multilaminate PSIS scaffolds, it 

was observed that increasing the PSIS layers from 2 to 4 resulted in an increase in failure 

load of nearly 150%, the strength of 2ply PSIS material being 42 ± 9 N [23, 24]. In other 

study using same techniques there was an increase in strength by 81 % when the number 

of layers of PSIS scaffold were increased from 2 to 4 [25]. A 25.4mm smooth steel ball 

was directed through the PSIS material at a constant rate of 25.4 mm/min. The mean ball-

burst strength of 2ply PSIS scaffold showed maximum loading of 73.67 ± 7.66 N and that 
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of 4ply was 133.53 ± 21.31 N [25]. Likewise, the 2 ply materials displayed higher stresses 

at equivalent strains compared to the thicker 4ply laminates. In the same study, prior to 

rupture, it was noted that 2ply and 4ply materials required comparable forces to deflect to 

similar indentations [25]. 

However, the 2ply Cormatrix PSIS material is proposed to be used in neonates, infants 

and children due to its handling and remodeling characteristics [26]. The performance 

assessment of these valves in the present study confirmed that the 2ply materials possesses 

adequate material properties and can endure the tension, suture tension, and hemodynamic 

forces exerted on the material when used for pediatric cardiovascular repair in the acute 

timeframe [26].  

In one of the papers, the 2ply PSIS bioscaffold was utilized for tricuspid valve 

replacement in an ovine model [27]. Echocardiography results exhibited normal forward 

flow with excellent coaptation of the bioscaffold leaflets from the day of implantation till 

the day of explant. When explanted, the 2ply PSIS valves showed distinctive trileaflet 

structure similar to native tricuspid valve. Considerable host-cell infiltration, structural 

reorganization of the bioscaffold, elastin generation at the annulus was confirmed upon 

histopathologic investigation by 3 months, and by 5 months’ time span, amplified collagen 

organization and glycosaminoglycan presence were detected in the leaflets.  

The ball-burst studies confirmed that 2ply material is weaker in comparison to the 4ply 

material. However, in one of the studies following implantation as a body wall scaffold in 

canine model, it was shown that approximately at day 45, after implantation, there was 

increase in the strength of the bioscaffold which was greater than the native tissue [28]. For 

pediatric applications, the 2ply valves are capable of enduring the hemodynamic forces and 
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tensions effectively, as mentioned above. For pediatric application, the performance testing 

established that 2ply material surpasses the required biomechanical properties [26]. But, if 

the degradation and the remodeling of the 2ply substrates is slow, it can be a concern for 

the proper functioning of the valves. Thus, it is necessary that the 2ply valves enable tissue 

infiltration at a faster rate as compared to 4ply valves and that the growth is appropriate 

once implanted.  

Nevertheless, we need to perform extensive mechanical and fatigue testing of both 2ply 

and 4ply material intended to be used as a mitral valve substitute. It is important that the 

2ply PSIS material maintain its integrity during initial period under high stress 

environment. 
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CHAPTER 7 Conclusion and Future Direction 

Our current study involving extracellular matrix PSIS bioscaffold mitral valves, has the 

potential to solve the limitations related to the conventional prosthetic mitral valves. PSIS 

in recent times has been reported as a candidate material for valve replacement and repair 

due to its capacity to support, bioscaffold degradation and allow tissue ingrowth [1, 2]. In 

this study, we describe in vitro results of acute hydrodynamic functionality of PSIS 

bioscaffold assembled mitral valvular constructs compared to commercially available 

trileaflet porcine bioprosthetic valves and relate findings to potential long-term 

complications. This study was designed particularly for pediatric populace as the need for 

alternate valve replacement substitutes providing somatic growth is more in them. 

Our two aims have investigated hydrodynamic functionality and characteristics of 4ply 

and 2ply PSIS bioscaffold mitral valves as compared to the porcine trileaflet bioprosthetic 

control group (Edwards Lifescience). Both these approaches had robust data sets and were 

physiologically similar to the control group, with some inconsistencies in the ventricular 

pressure between the two group, especially during the systolic phase, as we increase the 

heart rate.  

The major conclusions of this study were: 

 PSIS bileaflet valves appear to demonstrate acute functionality for treatment of 

critical mitral valve disease. The PSIS valves performed hydrodynamically similar to the 

bioprosthetic valves with regards to the opening and closing functionality in short term. 

This can potentially predict mid-term to long-term. However, we observed differences in 

the peak systolic pressure gradients between the two groups, potentially due to the material 
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properties. Nevertheless, both the valves closed effectively which is supported my minimal 

RF (%). 

 Energy losses were not significantly different (p > 0.05) between PSIS and a 

commercially available bioprosthetic valve for mitral valve pediatric application, but was 

for aortic valve under adult physiological conditions [3]. For the pediatric conditions, we 

observed that the percentage increase in the energy losses in the PSIS valves were similar 

to that of the bioprosthetic valves when we increased the heart rate or the stroke volume. 

However, doubling of cardiac output from child-to-adulthood increased the energy losses 

by more than 3.5 times for both the groups, which appears to be a natural increase with 

age, since this also occurred in the bioprosthetic valve control group. On the other hand, 

even though the PSIS valves have the ability to grow with the patient, it needs to be 

longitudinal as well as symmetric. Any abrupt changes to the growth factor may affect the 

PSIS valves adversely as well as the energy loss metric which could increase rapidly, thus 

overworking the heart. 

 2ply PSIS valves have shown early promising results by maintaining the pressure 

gradient across the valves, in the clinically acceptable range [4], during the forward flow 

when compared to the 4ply valves. There was increase in the forward flow in these valves 

providing greater flow rate. Here we observed that the forward flow during the diastolic 

phase when the mitral valve is open was significantly higher than both the 4ply PSIS valves 

and Edwards Lifescience bioprosthetic valves. However, we noticed significantly higher 

RF (%) (p<0.05), though clinically unremarkable [5]. Also, 2ply valves are attractive in 

terms of less usage of biomaterials. This will potentially reduce demand for de nevo tissue 

replacement when implanted in patients. Correspondingly, 2ply valves have the potential 
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to remodel faster when compared to their thicker counterparts, provided the growth is 

consistent with time and there is gradual degradation of the material along with the 

symmetric growth of the native tissue. 

 From the literature study of ball burst strengths of 2ply and 4ply PSIS material, we 

observed that the 2ply material is weak in comparison to the 4ply material. However, 2ply 

PSIS valves are intended to be used in infants and small patients having low cardiac 

pressure regions. Biomechanical testing and studies of the 2ply Cormatrix PSIS valves 

demonstrated adequate supporting material properties like tensile strength and endurance 

of hemodynamic forces exerted on the material when used in infants and children [6]. Also, 

in vivo study in ovine model demonstrated excellent coaptation of the 2ply leaflets along 

with proper growth.  

Limitations of our study: 

 Our study had certain limitations. One of them was the sample size in each group. 

We believe that by testing more valves we will get more robust data. Thus, we will be able 

to compare each hydrodynamic parameter more effectively. 

 The other limitation was considering the anatomy of the mitral valve. The mitral 

valve is a complex structure consisting of several components which function in harmony 

with each other in order to open and close in high pressure environment, during diastolic 

and systolic phase respectively [7]. Any changes in one or more of these components can 

have adverse effect on the leaflet closure thus resulting in regurgitation and more energy 

being lost during the systolic phase. Thus, normal mitral valve relies on each component 

for the efficient hydrodynamic functionality. However, the PSIS valve design in our study 
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does not reflect these complexities including the chordae tendinae and the papillary 

muscles and solely focuses on the leaflets. 

 Also, we didn’t compare the durability (i.e., fatigue properties) of the three groups, 

especially between the PSIS valves and the bioprosthetic valves. Durability is an important 

component of the valve design, since these scaffolds would perform in vivo under high 

pressure regions when used for valve replacement procedures. It is essential to observe the 

fatigue properties of 2ply and 4ply PSIS valves to reach more effective conclusion. 

 Lastly, we didn’t look at the growth component of the PSIS valves when implanted 

in high pressure region, in human body. Even though, remodeling of the implanted PSIS 

bioscaffold by fibrosis has been documented in the literature [8], but we are still unclear 

on the mechanism through which this bioscaffold degrades and permits tissue filling, and 

in this case valvular matrix tissue filling to be precise s. Correspondingly we didn’t look at 

the immune response of the PSIS bioscaffold valve when used as valve replacement in 

vivo. 

Future Directions: 

 Both the 2ply and 4ply valves still need to be further characterized at pediatric 

conditions. Our immediate focus after this work is to test more valves; 2ply, 4ply and 

bioprosthetic valves. Testing more valves will give us statistical confidence and will help 

us to complete our in vitro study more effectively. 

 After this we will like to conduct durability test of these 2ply and 4ply valves to 

show how the PSIS bioscaffold leaflets would survive hundreds of millions of cycles under 

physiological pulsatile conditions. This will help us to predict the long-term consequences 

of in vivo conditions on these bioscaffolds, i.e. if the valves will remain functional from a 
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structural standpoint, over several years and also aid us in determining at what time point 

the valves are prone to fatigue. 

 Our long-term goal is to see how these PSIS valves grow and its immune response 

in vivo under physiologically dynamic conditions. CorMatrix PSIS material is 

biodegradable and has the potential to act as a remodelling scaffold. Further investigation 

is required to determine how the PSIS material is being cellularized after it is implanted 

into the patient along with the rate of its degradation to warrant somatic growth. To achieve 

this knowledge, in vivo evaluation in an appropriate animal model is essential. We have 

proposed non-human primates for this study. Because of the anatomical and physiological 

closeness to humans, we have proposed Baboons as our in vivo model. This will give us 

an insight on longitudinal somatic growth, immune response, extent of PSIS 

biodegradation, de novo tissue regeneration and biochemical structure and phenotype of 

tissue growth. Thus, will help us interpret the long-term effectiveness of PSIS bioscaffold 

valves in vivo for critical congenital heart valve defects in infants and children. 

In conclusion, PSIS bi-leaflet valves appear to exhibit equivalent short term 

hydrodynamic functionality to standard bioprosthetic valves in the mitral position and also 

the 2ply PSIS valves have shown early promising results. Thus, on the basis of our 

hydrodynamic assessment, the supporting claims of adequate biomechanical properties of 

the 2ply materials for pediatric applications, the in vivo growth in ovine model and the 

potential of biodegradation of the material and tissue replacement with less demand on the 

human body, we can conclude that 2ply PSIS mitral valves are better when compared to 

the 4ply valves when used in infants and children.  Nonetheless, we need to assess how the 

bioscaffold degrades and need to check if the growth is rapid, sufficient and symmetric.  



78 
 

References: 

[1] Bibevski S, and Scholl F. G, Feasibility and early effectiveness of a custom, hand-made 
systemic atrioventricular valve using porcine extracellular matrix (CorMatrix) in a 4 
month-old infant, Ann. Thorac. Surg. 99(2):710–712, 2015. 
 
[2] Kalfa D and E. Bacha, New technologies for surgery of the congenital cardiac defect, 
Rambam Maimonides Med. J. 4(3):e0019, 2013. 
 
[3] Ramaswamy S, Lordeus M, Mankame O.V, et al., Hydrodynamic Assessment of Aortic 
Valves Prepared from Porcine Small Intestinal Submucosa, Cardiovasc Eng Technol. 2016 
Dec 19. 
 
[4] Baumgartner H, Hung J, Bermejo J, et al., Echocardiographic assessment of valve 
stenosis: EAE/ASE recommendations for clinical practice, J Am Soc Echocardiogr. 2009 
Jan;22(1):1-23; quiz 101-2. 
 
[5] Zoghbi W.A, Enriquez-Sarano M, Foster E, et al., Recommendations for evaluation of 
the severity of native valvular regurgitation with two-dimensional and Doppler 
echocardiography, J Am Soc Echocardiogr. 2003 Jul;16(7):777-802. 
 
[6] CorMatrix Cardiovascular Inc., Department of Health and Human Services, Food and 
Drug Administration, February 3, 2016, K152127, OMB No. 0910-0120. 
 
[7] Karen P, et at., Anatomy of the mitral valve: understanding the mitral valve complex 
in mitral regurgitation, Eur J Echocardiogr (2010) 11 (10): i3-i9. 
 
[8] Mosala Nezhad Z, Poncelet A, de Kerchove L, Gianello P, Fervaille C, El KG, Small 
intestinal submucosa extracellular matrix (CorMatrix(R)) in cardiovascular surgery: a 
systematic review, Interact CardioVasc Thorac Surg 2016;22:839–50. 


	Florida International University
	FIU Digital Commons
	7-6-2017

	Hydrodynamic Assessment of a Porcine Small Intestinal Sub-Mucosa Bioscaffold Valve for Pediatric Mitral Valve Replacement
	Omkar V. Mankame
	Recommended Citation


	Hydrodynamic Assessment of a Porcine Small Intestinal Sub-Mucosa Bioscaffold Valve for Pediatric Mitral Valve Replacement

