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ABSTRACT OF THE THESIS 

INVESTIGATING THE EFFECTS OF LAND-COVER CHANGE ON THE 

HYDROLOGIC CONDITIONS OF A RESTORED AGRICULTURAL AREA 

IN EVERGLADES NATIONAL PARK 

By 

Dillon Nicholas Reio 

Florida International University, 2017 

Miami, Florida 

Professor René M. Price, Major Professor 

 In the Florida Everglades, remodeling of natural wetlands to promote agriculture 

and human settlement, have profoundly altered its hydrologic regime. As a result of 

anthropogenic changes, many restoration programs have been initiated to restore 

hydrologically controlled wetland ecosystems. One such restoration project that has been 

ongoing for the past 27 years is the Hole-in-the-Donut restoration program in Everglades 

National Park. The restoration program is unique in that it utilized an unorthodox 

technique to restore the landscape. The viability of the restoration technique was assessed 

by coupling long-term hydrologic and evapotranspiration data with water chemistry 

analyses. Key results indicated that the restoration method did not change groundwater 

levels within and down gradient of the restored sites. Evapotranspiration rates were 

significantly reduced as a function of restoration. Concentrations of ions and nutrients 

were significantly different in groundwater and surface water within the restored areas 

compared to outside the restored areas.  
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I. INTRODUCTION 

Wetland ecosystems bridge the terrestrial biosphere and the hydrologic cycle. They 

support biodiversity for native flora and habitat for native fauna, as well as provide 

invaluable ecosystem services such as protection of water quality by absorbing and filtering 

out pollutants and sediments, altering and storing damaging floodwaters, nutrient 

processing, and recharging/discharging groundwater (Abtew & Melesse, 2013; Maltby & 

Dugan, 1994). Since the turn of the 19th century, these valuable and productive ecosystems 

have experienced a precipitous decline in total area, with the conservative estimate that 

50% of world-wide wetland area has been lost as a result of anthropogenic forces (Zedler 

& Kercher, 2005). In the Florida Everglades, one of the most important and diverse wetland 

ecosystems in the world, anthropogenic changes, specifically remodeling of natural 

wetlands to promote agriculture and human settlement, have profoundly altered the 

hydrology and thus services of the ecosystem (Light & Dineen, 1994).  

These anthropogenically induced changes to the region have reduced the pre-

drainage functions of the vast Florida Everglades wetland ecosystem by half (Graf, 2013). 

Alterations to the South Florida landscape, namely changes from natural vegetation to 

agriculture, water storage, and urban and suburban land use, have on a peninsula-wide 

scale, increased summertime maximum temperatures, decreased convective rainfall 

patterns, and on a regional scale, have changed surface hydrologic features, such as sheet 

flow (Marshall et al., 2004). The Everglades is currently undergoing a massive hydrologic 

restoration in an effort to rehabilitate the landscape to function as a more natural wetland, 

to increase historic water flow, and to decrease eutrophication associated with agricultural 

runoff (Fling et al., 2004). The Comprehensive Everglades Restoration Plan (CERP) was 
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passed by Congress in 2000 with the goal of restoring as much of the historic freshwater 

flow as possible, while continuing to protect urban establishments from wet season floods 

and ensure a robust water supply (Chimney & Goforth, 2001).  

The remaining Everglades is made up of the Everglades agricultural area (EAA) 

and water conservation areas (WCAs) in the north and Everglades National Park (ENP) 

in the south (Figure 1). The ENP is an oligotrophic wetland (Noe et al., 2001) at the 

southernmost reaches of the Florida Peninsula and embodies 1/5 of the historical 

Everglades (Light & Dineen, 1994; Childers et al., 2006). During the 20th century, 

humans contained the remaining portions of the northern Everglades by building the 

WCAs. The WCAs, along with the network of canals, levees, and spillways that bisect 

part of the landscape, have obstructed much of the southward water flow into ENP. 

Obstruction of historic water flow has deleterious impacts on wading bird populations, 

indicators of ecosystem health, spurs intrusion of cattail into native sawgrass and slough 

habitat, and facilitates invasion of exotic plant species (Light & Dineen, 1994; Rader & 

Richardson, 1992; Davis & Ogden, 1994; Thayer et al., 2000). The flora and fauna of the 

Everglades are adapted to the hydrologic and physio-chemical conditions characteristic of 

the region (Gunderson & Loftus, 1993). Changes in the quality, quantity, timing, and 

overall distribution of water to ENP are longstanding issues that have arisen because of 

the drainage and manipulation of the ecosystem (Chimney & Goforth, 2001).  

Although ENP is currently a 600,000 ha protected area, it includes former 

agricultural land that underwent and still to this day is undergoing restoration, and may 

have experienced different hydrologic conditions as its usage changed. The Hole-in-the-

Donut (HID) (Figure 1) is a 2670-ha parcel of abandoned farmland located within ENP 
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(Doren et al., 1990). The HID is located between the two major waterways of ENP, with 

larger Shark Slough bounding the western portion and smaller Taylor Slough bounding 

the eastern portion. Separating the two major waterways is a topographic high in ENP, a 

remnant of an oolitic limestone ridge, called the Miami Rock Ridge (Ewe & Sternberg, 

2002).  

Figure 1. Map showing the HID’s relative location to major hydrologic features in south 

Florida. 
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The Florida Department of Environmental Protection (FDEP) officially classifies 

the HID restoration program as a wetland mitigation bank. In 2001, The National 

Research Council (NRC) created wetland mitigation banks in order to reduce 

inefficiencies in permit performances, long-term monitoring, and high rates of 

noncompliance among previous compensatory wetland mitigation programs (NRC, 

2001). Thus, the HID has been designated for restoration with the intent of restoring the 

chemical, physical, and biological integrity of wetland resources prior to deterioration 

(Reiss et al., 2009). Of 29 permitted Florida wetland mitigation banks presented in the 

Reiss et. al (2009) case study, the HID ranked first in the number of potential credits (i.e., 

banking credits) issued, a testament to the magnitude of degradation experienced by this 

wetland ecosystem as a result of an extensive agricultural history spanning 50 plus years 

(O’Hare, 2008).  

Approximately 1700-ha of the 2800-ha HID was subjected to rock-plowing —

crushing of the limestone bedrock into fine grains to allow it to mix with marl or organic 

soil above—throughout its agricultural history to make the normally inundated land more 

suitable for farming (Loope & Dunevitz, 1981; Smith et al., 2011). Rock-plowing altered 

the physical characteristics of the natural soil in the HID (Smith et al., 2011). The HID 

was teeming with sawgrass and pines before farming began, but an exotic species of 

plant, Brazilian Pepper (Schinus terebinthifolius), came to dominate the HID where 

farming had been most intense (Dalrymple et al., 2003). The invasion by exotic species 

into the native biological mosaic poses a threat to natural biodiversity and can have 

deleterious effects on ecosystem functioning, specifically, geomorphological processes, 

biogeochemical processes, and hydrological processes, including water table depth and 
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surface-flow patterns (Macdonald et al., 1989; Gordon, 1998). Rock plowing of the 

substrate, decades of fertilizing, and high rates of vegetable production changed the soil 

substrate making it more hospitable to Brazilian Pepper (Li & Norland, 2001).  

In ENP, Brazilian Pepper is a major invader of disturbed areas (e.g., fallow 

farmlands) as well as natural communities like pinelands, hardwood hammocks, and 

mangrove forests (Ewel et al., 1982).  As recently as 2014, Brazilian Pepper occupied 

approximately 30,000-ha of land, making it the most widely distributed and abundant 

invasive species within ENP (Rodgers et al., 2014). Brazilian Pepper growth in the HID 

was originally thought to be stimulated by increased calcium carbonate concentrations—a 

product of rock plowing— reacting with phosphorus (P) fertilizers, leaving high levels of 

P available in a naturally oligotrophic environment (Orth & Conover, 1975). However, 

subsequent studies conducted by Meador (1977), Ewel (1986), and Aziz et al. (1995) 

found that the presence of arbuscular mycorrhizae (AM) fungi coupled with bird 

dispersal facilitated the establishment of Brazilian Pepper and had an essential role in 

fostering its foothold in the HID. To stop the proliferation of the invasive species, land 

managers explored different means of eradication, including mowing, burning, and 

substrate removal. Of all the methods examined the most effective in eradication of the 

Brazilian Pepper was complete soil removal (CSR) (Doren et al., 1990). Restoration of 

the HID has been ongoing since 1989, when the first plot of land had its entire soil 

substrate scraped down to the bedrock (Doren et al., 1990).  

Several studies of top soil removal as a restoration method in wetlands world-

wide have described positive effects on nutrient availability, groundwater levels, and 

recolonization of native species after restoration. For example, in Dutch fen-meadows, 
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removal of approximately 20 cm or more of top soil increased the influence of 

groundwater seepage and decreased nutrient availability, thereby allowing less 

competitive native fen-meadow species to reestablish themselves (Klimkowska et al., 

2007; Klimkowska et al., 2015). In German fen-meadows, removal of degraded peat top 

soils reduced the potential for P release after rewetting and promoted reestablishment of 

low nutrient conditions following prolonged rewetting (Zak et al., 2015). Furthermore, 

top-soil removal on former agricultural land in northeastern Ohio demonstrated increased 

water levels and removed invasive species seed banks, promoting obligate wetland 

species reestablishment (Hausman et al., 2007). Following those studies, the removal of 

the entire soil layer in the HID could a) increase groundwater seepage and b) decrease the 

nutrient concentrations found in groundwater underneath the restored area. 

There is a dearth of literature relating CSR as a restoration method to changes in 

local hydrologic conditions, as even the notion of top soil removal described above is 

considered a, “radical restoration method” (Klimkowska et al., 2015). Previous studies 

conducted by researchers in the HID region of ENP have primarily focused on 

understanding Brazilian Pepper ecophysiology and the mechanisms by which it colonized 

the landscape. For instance, Ewel et al. (1982), Loope & Dunevitz (1981), and Krauss 

(1987) reported on the relationships between native successional plant assemblages and 

invasive species on abandoned fallow farmland. Dalrymple et al. (2003) and O’Hare et al. 

(2008) examined hydroperiods to assess restoration success using stage recorders 

installed in wells on previously restored sites. O’Hare (2008) and Serra (2009) went 

further and used the same data to create Geographic Information System (GIS) maps of 

hydroperiod. More recent studies in the HID examining primary succession have found 
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biogeochemical mechanisms that cause wetlands restored by CSR to switch from 

Nitrogen (N)-limitation immediately after restoration to a co-limitation of P and N 

approximately 16 years post restoration (Inglett & Inglett, 2013). Conspicuously missing 

from these prior investigations are identification of long-term groundwater flow patterns, 

quantification of evapotranspiration, or assessment of groundwater chemistry. The 

previous studies are good starting points for a hydrologic analysis, but the other aspects 

outlined above must be adequately studied to provide restoration managers a more 

complete picture of the potential impacts of CSR to the surrounding wetland ecosystem.  

Restoring the hydrology and vegetation of a wetland back to its original state is 

the main goal of any wetland restoration project (Abtew & Melesse, 2013). Accordingly, 

one of the cornerstones in the hydrologic restoration of ENP is increased freshwater flow 

that mimics pre-drainage conditions. Therefore, providing detailed measurements on 

changes in groundwater levels, and thus groundwater flow patterns, is integral for 

assessing wetland restoration. However, identifying changes in groundwater levels is 

only part of the restoration equation. To fully understand how restoration has progressed, 

accurate quantification of evapotranspiration (ET) within the spatiotemporal domain must 

be addressed (Abtew & Melesse, 2013). Because ET represents the fraction of water lost 

from the system to the atmosphere, assessing its magnitude at different stages in the 

restoration is critical for understanding how well the system is recovering (Abtew & 

Melesse, 2013). Estimates of ET rates for Brazilian Pepper within the HID vary 

seasonally; during the wet season (October) ET reached a maximum of 5.48 mm day-1 

and during the dry season (May) had a minimum of 2.86 mm day-1 (Villalobos-Vega, 

2010). The removal of Brazilian Pepper is expected to decrease the amount of 
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evapotranspiration locally, because after its removal it can no longer transpire large 

quantities of water back to the atmosphere, thereby providing a mechanism for 

groundwater levels to increase (Mahmood et al., 2014; Villalobos-Vega, 2010). 

Additionally, identifying potential sources of water and constituents for ENP are a 

concern of restoration efforts. The Everglades is an oligotrophic environment and the 

inputs of additional nutrients and constituents can result in cascading ecological effects 

such as shifts in macrophyte and periphyton species compositions (Harvey & 

McCormick, 2009). Analysis of major ions (cations and anions) have been utilized as 

tracers to determine groundwater-surface water interactions in ENP (Price & Swart, 

2006). Although the restoration of the HID has been ongoing for the past 25 years, water 

chemistry analyses have not been conducted on surface water or groundwater samples, 

leaving the quality of the water flowing through this system unknown.  

Characterization of the HID’s hydrologic response to the CSR restoration 

technique is necessary for assessing the overall health of the wetland and for evaluating 

the progression of restoration. The goal of the present investigation is to understand how 

the CSR restoration method impacts major hydrologic parameters of a wetland and its 

associated hydrogeochemical constituents. Three main hypotheses were tested: (1) 

complete soil removal down to the bedrock increases groundwater levels after restoration, 

(2) ET rates decrease as a result of CSR, and (3) concentrations of dissolved ions and 

nutrients are higher outside of the HID where no restoration has taken place and where no 

Brazilian Pepper is found. To accomplish these objectives and to test the hypotheses, 

long-term water levels were integrated with GIS to produce groundwater flow maps. 

Furthermore, evapotranspiration was quantified, and geochemistry was analyzed to 
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discern if hydrologic functioning has changed as a result of restoration and whether 

dissolved chemical constituents in the groundwater have changed over time, respectively. 

The CSR restoration was expected to decrease ET, increase groundwater levels, partly 

due to a greater tendency for groundwater seepage and partly due to the decrease in ET, 

and finally, decrease the concentrations of major ions and nutrients in the restored area’s 

groundwater.    
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II. METHODS 

Site Description 

 The present research was conducted in the southeastern region of ENP, near 

Taylor Slough, in the HID (Figure 2). The HID is an approximately 2,800-ha parcel of 

land that prior to farming was a mixture of pine rockland to the north and marl prairie to 

the south (Krauss, 1987; Serra, 2009). According to historic aerial photography of land 

cover interpreted from 1940, agriculture occupied 21.6 %, marl prairie occupied 63.3 %, 

pine rockland occupied 14.7 % and hardwood hammock occupied 0.4%. (Serra, 2009). 

Classification of soils in the HID are dependent upon the depth to the bedrock. If the 

depth to the limestone bedrock was less than or equal to 51 cm then the soil was 

classified as a Biscayne marl, and if the depth to the bedrock was between 51-102 cm 

then it was classified as a Perrine marl (USDA, 1996). The average soil depth was found 

to be 56.3 cm in the unfarmed native vegetation, while the average soil depth in restored 

sites ranged from 5.8 cm to 9.5 cm (O’Hare, 2008).  

   The south Florida climate is similar to other tropical regions and is dominated by 

annual wet and dry seasons. Approximately 70% of the rain falls in the wet season (May-

October) and 30% falls during the dry season (November-April) (Duever et al., 1994; 

Kotun & Renshaw, 2014). Rainfall measured at the Royal Palm Ranger Station (RPL), 

which resides in close proximity to the HID, averages approximately 140 cm annually 

(Kotun & Renshaw, 2014). Evapotranspiration rates exhibit seasonal variability, 

paralleling solar irradiance as well as water availability. ET is highest in the summer wet 

months when solar irradiance is highest and surface water is available for evaporation, 

and are the lowest during the winter months (Duever et al., 1994). Evapotranspiration of 



11 
 

undisturbed wetlands in south Florida have been estimated to return 70-90% of the 

precipitation in these systems back into the atmosphere (Duever et al., 1994).  

 The characteristic karstic geology of south Florida exerts significant influence on 

the hydrology of the region. Much of south Florida is underlain by extremely porous and 

permeable limestone and calcareous sandstone units called the Miami Limestone and Fort 

Thompson Formations, respectively. These two units make up the majority of the 

unconfined Biscayne Aquifer, which forms the top of the surficial aquifer system (SAS) 

(Fish & Stewart, 1991). The SAS varies in lateral extent reaching depths of 

approximately 30 meters underneath ENP, while increasing in depth as it moves eastward 

towards the Atlantic Ocean to approximately 240 meters (Fish & Stewart, 1991). The 

Biscayne aquifer is the primary source of potable water for south Florida (Fish & 

Stewart, 1991). The astoundingly high transmissivity (3.4 x 107 m2 yr-1) and hydraulic 

conductivity (between 1.64 x 106 and 4.45 x 106 m yr-1) make it one of the most 

productive aquifers in the world. 

  On the basis of empirical measurements, the low elevation and flat topography of 

south Florida produces a gentle hydraulic gradient of 0.00005 for the Everglades region 

(Price & Swart, 2006). The near horizontal slope causes surface water to move slowly in 

the sloughs before it drains into Florida Bay and the Gulf of Mexico (Sandoval, 2016). 

The entirety of the HID is underlain by the Biscayne Aquifer, and overlain by mixtures of 

marl and peat soils. Peat and marl have much lower hydraulic conductivities than 

limestone (Fish & Stewart, 1991), and may act as an aquitard, restricting the interaction 

between groundwater and surface water. In the event of topsoil removal, in a case like the 

HID with CSR, interactions between groundwater and surface water could increase 
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because of the hydraulic connection in the SAS (Fish & Stewart, 1991; Price & Swart, 

2006).  
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Hydrologic Data Collection  
 

 Currently there are only two groundwater monitoring stations inside the HID 

(DO1 & DO3). In order to asses if local groundwater levels changed significantly over 

the periods of restoration, eight additional stations were strategically selected to create a 

boundary around the HID. The 10 well sites used in this project were: DO1, DO3, NP-67, 

TSB, NP-N14, NP-44, DO2, NP-72, NP-CY2, NP-CY3 (Figure 2). Mean daily stage data 

for all 10 wells were obtained through the SFWMD DBHYDRO database 

(http://www.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu).  As stage data 

from DBHYDRO were reported in feet referenced to National Geodetic Vertical Datum 

of 1929 (NGVD-29), the data were converted to meters referenced to the more updated 

North American Vertical Datum of 1988 (NAVD-88) using the National Geodetic 

Survey’s orthometric height conversion software, VERTCON 

(http://www.ngs.noaa.gov/TOOLS/Vertcon/vertcon.html#).  

 

Time-Series Analysis  

 The first hypothesis that complete soil removal down to the bedrock increases 

groundwater levels after restoration was addressed by investigating long-term water 

levels to ascertain if cyclical patterns, disturbance trends, and/or stresses could be 

detected in the 10 wells. Hydrographs of monthly averaged water levels were created for 

the 10 wells to observe changes in water level with respect to time. To smooth the 

cyclicity of the time series that results from the pattern of rainfall observed in south 

Florida, a six month moving average was computed for the monthly averaged time series 

to allow for the overall trends of the data to be observed. A 25-year time frame, from 

http://www.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu
http://www.ngs.noaa.gov/TOOLS/Vertcon/vertcon.html
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1991 through 2015 was selected to encompass the entire duration of the HID restoration 

(to date).  Data from 5 groundwater wells were available through those 25 years (Table 

1).  Other wells had available data spanning 16-22 years (Figure 3). In addition to 

filtering the time series data, linear regression was used at five year intervals to detect 

changes in water levels with respect to periods of interventions in the HID. Regression 

analysis was applied in five year intervals as follows: 1991-1995; 1996-2000; 2001-2005; 

2006-2010; 2011-2015.  Pertinent values collected from the regression analysis include: 

R2, p-value, slope, standard error, and number of observations. 

  

Linear Modeling 

 Two simple linear regression models were used to determine relative 

contributions of parameters that may have influenced groundwater levels in the HID. The 

parameters were computed from 1989-2014 and include: average annual water levels 

from DO1, total annual rainfall from RPL, and total annual acres scraped. The first model 

used total annual rainfall as the predictor variable and average annual water level as the 

response variable. The second model used the residuals from the first model as the 

response variable and total annual acres scraped across the HID as the predictor variable. 

Scatterplots were created for both models and include their respective regression lines. 

Pertinent values evaluated include the R2 value, the coefficients of both predictor and 

response variables, and the p-value.  
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Table 1. Period of record table for 10 data collection sites. 

 

 

Well 

Name 

Data Record Begins Years Active Data Record 

Ends 

Interval 

Measured 

NP-44 1960 56 Current Daily 

TSB 1960 56 Current Daily 

NP-67 1962 54 Current Daily 

NP-72 1966 50 Current Daily 

DO1 1989 27 Current Daily 

NP-N14 1994 22 Current Daily 

DO2 1996 20 Current Daily 

NP-CY3 1996 20 Current Daily 

NP-CY2 1996 20 Current Daily 

DO3 2000 16 Current Daily 

Figure 3. Period of record graph for the ten data collection sites. 
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GIS Groundwater-flow Modeling  

 Newly converted stage data were input into the GIS platform ArcMap in order to 

perform a linear interpolation using the Spatial Analyst Kriging tool.  Interpolation was 

necessary for this analysis as a result of the low density of wells where stage data was 

measured in the HID. Interpolation of the point well data provided estimates of stage 

values using a weighted sum of data values at surrounding locations.  Kriging works on 

the primary assumption that there is spatial continuity between data points. In other 

words, two wells that are closer together should have more similar stage values than two 

wells that are far apart (Isaaks & Srivastava, 1989). 

 The kriging surfaces generated model the expected stage contours for the HID and 

surrounding area. As a consequence of the lack of continuous data before 2000 in all ten 

of the wells, kriging maps were created for years: 2000, 2001, 2003, 2004, 2005, 2009, 

2010, 2011, 2013, 2014 on a monthly time step and then averaged in yearly intervals. 

Using these interpolated stage maps, historical groundwater flow directions were 

estimated, and then compared with the 2014 map to assess how hydrologic conditions 

vary with time in the HID.  

 

Water Balance 

 The kriging maps were also used to compute a water balance for the HID. 

According to Darcy’s Law: 

                                                          Q =  −KA
𝑑ℎ

𝑑𝑙
                                              (Eq. 1) 
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Where Q is discharge (m3 yr-1), K is hydraulic conductivity (m yr-1), A is the cross- 

sectional area (m2) at the inflow and outflow boundaries and 
𝑑ℎ

𝑑𝑙
 is the dimensionless 

hydraulic gradient. The K used was 3,048 m day-1 and was obtained from literature on the 

hydrogeology of the Biscayne aquifer and the Everglades and converted to m yr-1 

(Zapata-Rios & Price, 2012; Fish & Stewart, 1991). The length of the inflow and outflow 

boundaries were 12,229.73 m and 12,560.19 m, respectively, and were measured using 

ArcMap (Figure 4). The thickness of the Biscayne aquifer for the model domain was 9.6 

m as obtained from contour lines published by the USGS (Fish & Stewart, 1991). 

Multiplying the length of the inflow and outflow boundaries by the thickness of the 

aquifer results in A. The kriging maps were used to obtain the gradient from three 

transects at the inflow and three transects at the outflow (Figure 4). The inflow and 

outflow gradients computed for all transects were averaged to obtain one average inflow 

and outflow gradient for each year. From Darcy’s Law it is possible to obtain the inflow 

(Qin) and outflow (Qout) from the HID. A water balance equation was used to obtain the 

change in storage: 

 

(Pr + 𝑄𝑖𝑛) − (ET + 𝑄𝑜𝑢𝑡) =  ΔS                                    (Eq. 2) 

 

where Pr was average annual precipitation from RPL, Qin was groundwater inflow, ET 

was average annual evapotranspiration in the HID as determined by remote sensing data 

described in the next section, Qout was groundwater outflow, and S was change in storage. 

Before adding Pr and ET to the left and right sides of the water balance equation, 
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respectively, the area of model domain (41,023,784.19 m2) was divided by Qin and Qout to 

convert from volume (m3 yr-1) to length units (m yr-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evapotranspiration Modeling 

 The second hypothesis that ET rates decrease as a result of CSR was tested by 

collecting and analyzing remotely sensed data of ET in the HID. Remote sensing 

provides the most efficient means to monitor regional and global ET information that is 

spatially distributed over Earth’s surface (Mu et al., 2011). NASA’s Terra and Aqua 

satellites have the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard, 

Figure 4. Map showing the inflow (red) transects and outflow (blue) transects used to 

compute the average inflow and outflow gradients used in the water balance.   
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allowing them to provide groundbreaking information on vegetation dynamics and 

surface energy variations (Justice et al., 2002), which can then be utilized for estimations 

of regional and global scale ET (Mu et al., 2011). MODIS sensors record data to provide 

high radiometric sensitivity in 36 spectral bands ranging in wavelength from 0.4 to 14.4 

μm (https://modis.gsfc.nasa.gov/about/design.php). Wavelength of 29 spectral bands are 

collected at a resolution of 1 km, which was the resolution used for this project. A 

detailed list of all 29 spectral bands and their associated wavelengths are provided on the 

NASA MODIS website (https://modis.gsfc.nasa.gov/about/specifications.php). Remotely 

sensed parameters, including albedo, land cover, leaf area index (LAI), fraction of 

photosynthetically active radiation (FPAR), are combined with surface meteorological 

observations including air temperature, humidity, solar radiation, and wind speed (Mu et 

al., 2011). These parameters are input into an algorithm that uses the logic of the 

Penman-Monteith equation, which results in an estimate of land surface ET (Figure 5). 

The ET data has been calibrated and validated with ET measured at Eddy Flux towers 

from 232 watersheds around the world (Mu et al., 2011). One limitation of the method is 

that the algorithm doesn’t account for the vegetation age, disturbance history, or species 

composition, resulting in differences between tower ET measurements and ET estimates 

by the algorithm (Mu et al., 2011). 

 Evapotranspiration data were obtained from the Numerical Terradyanmic 

Simulation Group (NTSG) at the University of Montana. These data are available online 

through the NTSG data portal and can be accessed by following the link below 

(http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A3.105_MERRAGMAO

/). The data are provided in a 1 km x 1 km grid. Data were downloaded for 2000, 2001, 

https://modis.gsfc.nasa.gov/about/design.php
https://modis.gsfc.nasa.gov/about/specifications.php
http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A3.105_MERRAGMAO/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/MOD16A3.105_MERRAGMAO/
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2003, 2004, 2005, 2009, 2010, 2011, 2013, and 2014. These years were selected to 

correspond with active restoration in the HID. After the data were obtained from NTSG, 

it was transferred and stored in a geodatabase in ArcGIS for further analysis. Once in 

ArcGIS, the data were first converted to the “UTM_17_N” coordinate system using the 

Project Raster tool in the ArcToolbox. The coordinate system has units of meters, and 

preserves the original pixel size of the data. All maps created in the present study use this 

coordinate projection. After the data are projected to the new coordinate system, the 

image is clipped to only include the HID using the Extract by Mask tool in the 

ArcToolbox. Since the HID is a relatively small component of Everglades National Park 

and the cell size of the MODIS image is coarse, a resampling of the cell size was 

performed. The Resample tool in ArcToolbox allows for the pixel size to be changed to a 

smaller size. The cubic resampling method was selected to reduce the pixel size of the 

MODIS images to 46 m x 46 m. This pixel size corresponds with the pixel sizes of the 

kriging maps produced for water levels.  

 

 

 

 

 

 

 

 

 

Figure 5. Flowchart of the MOD16 ET algorithm. Adapted from Mu et al., 2011. 
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Groundwater and Surface-Water Chemistry 

 The third hypothesis that concentrations of dissolved ions and nutrients are higher 

outside of the HID where no restoration has taken place and where no Brazilian Pepper is 

found was addressed by collecting groundwater and surface water samples in and outside 

the HID.  A total of four groundwater and four surface-water sites were sampled four 

times a year in December, May, and September at the HID in 2015 and 2016. The four 

sites include: DO1, DO3, NP-67, and TSB. Wells DO1 and DO3 are located within two 

restored parcels of the HID wetland. Well NP-67 is located along Old Ingraham Highway 

amongst thickets of vegetation. Well TSB is adjacent to the Main Park Road, 

approximately 20 meters from Taylor Slough Bridge. Wells DO1, DO3, and NP-67 are 

cased in PVC pipe and are circumscribed into wooden platforms that are fitted with metal 

covers. Well TSB is flush mount with the ground surface and protected at the surface by 

a metal cover. The installation and depths of the three wells vary as such: DO1 is 7.5 

meters deep and installed in 1989; DO3 is 3 meters deep and installed in 2000; NP-67 is 

5.6 meters deep and installed in 1960; TSB is 4.1 meters deep and installed in 1997. 

 To collect groundwater and surface-water samples in the field, a gas powered 

pump was used to purge three well volumes before sampling and then a peristaltic pump 

was used to collect the samples. Surface water samples were collected adjacent to each 

well if present.  At each sampling location, two samples were filtered through a 0.45 μm 

membrane filter, and two unfiltered samples were collected and stored on ice at 4°C and 

transported back to Florida International University (FIU) for final storage. Samples for 

total phosphorus and cations were preserved with 10% hydrochloric acid. Measurements 

taken in the field included: pH, conductivity, and temperature, all of which were 
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measured with a Thermo Scientific OrionTM 3-star pH meter and an YSI 85TM meter, 

respectively.  

  The Southeastern Environmental Research Center (SERC) Nutrient Analysis 

Laboratory analyzed the groundwater and surface-water samples for total nitrogen (TN), 

total phosphorus (TP), and total organic carbon (TOC) using an Alpkem 300 Series 4 

Channel Rapid Flow Analyzer, an Alpkem Rapid Flow Analyzer with 2-Channel ER 

Detector, and a Shimadzu TOC-V, respectively. The FIU Soil/Sediment Biogeochemistry 

Laboratory analyzed the groundwater and surface-water samples for soluble reactive 

phosphorus (SRP), nitrate (NO3), and ammonium (NH4). The FIU Hydrogeology 

Laboratory analyzed the groundwater and surface-water samples for total alkalinity, 

major anions (chloride [Cl-] and sulfate [SO4
2−]) and cations (Calcium [Ca2+], Magnesium 

[Mg2+], Sodium [Na+], and Potassium [K+]) using a Brinkman TitrinoTM 751 Titrator and 

a Dionex-120TM Ion Chromatograph, respectively.  

 

Statistical Analysis 

 Box-and-whisker plots were created to graphically depict the statistical 

distribution of Ca2+, Mg2+, K+, Na+, SO4
2−, Cl-, HCO3

−, TN, TP, TOC, NO3
-, and NH4

+ 

concentrations as a function of sampling location. A one-way analysis of variance 

(ANOVA) was used to determine the statistical difference between chemical constituents 

at the different sampling locations. A Tukey honest significance difference (HSD) test 

was run after the ANOVA to asses if the means of the chemical constituents were 

statistically different.  

 



23 
 

III. RESULTS 

Time-Series Analysis 

 Regression analysis of the time series data from the 10 wells showed two distinct 

periods where significant changes in water levels were observed with respect to time 

(Table 2). During 1991-1995, there were statistically significant (p < 0.01) changes in 

mean water levels at wells NP-44, NP-67, NP-72, DO1, and TSB. The seasonally 

detrended hydrographs have a 12-point moving average superimposed that picked up the 

increasing water level signal during the 1991-1995 interval (Figure 6A, 6B, 6C, 6D, 6E). 

The hydrographs depict water levels that were generally lower than the mean at all 

stations rising slowly until 1995, where they reach a relative peak in the time series. The 

slopes of the regression lines for all wells during this period were positive indicating a 

general increase in water levels (Table 2). The other five wells, NP-CY2, NP-CY3, DO2, 

DO3, and NP-N14 did not have enough data for regression analysis to be applied in the 

1991-1995 interval.  

The second interval where significant water level changes were observed with 

respect to time was 2006-2010. In this period, all 10 wells had statistically significant 

changes in mean water levels (p < 0.1). The moving average for all hydrographs show 

that at the beginning of 2006 water levels were slightly above each well’s respective long 

term mean (Figures 7A, 7B, 7C, 7D, 7E). Water levels reach another relative peak in all 

hydrographs at the end of 2010. The overall observed trend for 2006-2010 is positive, as 

indicated by the positive slope of the regression coefficients (Table 2). 
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Figure 6. Hydrographs of monthly-averaged water levels as a function of time: A) NP-

44; B) NP-67; C) NP-72; D) DO1; E) TSB. The black line is the original signal, the 

red line is the six month moving average, and the green line is the 25-year mean water 

level. Blue and orange vertical lines demarcate 1991-1995 and 2006-2010, 

respectively. Elevation is given in meters relative to NAVD-88. 

 

A B 

C D 

E 
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Figure 7. Hydrographs of monthly-averaged water levels as a function of time: A) NP-CY2; 

B) NP-CY3; C) DO2; D) DO3; E) NP-N14. The black line is the original signal, the red line is 

the six month moving average, and the green line is the 25-year mean water level. Orange 

vertical lines demarcate 2006-2010. Elevation is given in meters relative to NAVD-88. 

 

A B 

C D 

E 
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Table 2. Major statistical parameters obtained from regression analysis. Only significant values 

are reported.  

Well Interval R-square Slope p-value Standard Error Observations 

NP-44 1991-1995 2.20E-01 3.22E-04 <0.001 0.32 60 

NP-67 1991-1995 3.82E-01 2.11E-04 <0.001 0.14 59 

NP-72 1991-1995 2.73E-01 3.28E-04 <0.001 0.31 51 

DO1 1991-1995 2.11E-01 2.35E-04 <0.001 0.24 60 

TSB 1991-1995 3.94E-01 3.44E-04 <0.001 0.23 60 

NP-44 2006-2010 4.56E-02 1.34E-04 0.1 0.33 60 

NP-67 2006-2010 6.15E-02 8.27E-05 <0.1 0.17 60 

NP-72 2006-2010 5.12E-02 1.27E-04 <0.1 0.29 60 

DO2 2006-2010 4.40E-02 1.00E-04 0.1 0.25 60 

NP-CY3 2006-2010 5.73E-02 8.96E-05 <0.1 0.19 60 

NP-N14 2006-2010 7.43E-02 1.93E-04 <0.1 0.37 60 

DO1 2006-2010 5.32E-02 1.08E-04 <0.1 0.24 60 

DO3 2006-2010 5.75E-02 1.09E-04 <0.1 0.24 60 

NP-CY2 2006-2010 7.77E-02 1.03E-04 <0.1 0.19 60 

TSB 2006-2010 1.06E-01 1.90E-04 <0.1 0.30 60 
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Linear Modeling 

 The results of the first model fit between water levels and rainfall showed a positive 

linear relationship (Figure 8A). The R2 value was 0.19, the intercept of the regression line 

was 0.0545, and the slope of the rainfall coefficient was 0.0002. Analysis of variance 

(ANOVA) of the model revealed that rainfall contributed significantly to the variance (p < 

0.05). A comparison of the residuals from the model fit between water levels and rainfall 

and the total acres scraped on a yearly basis (Figure 8B) produced a negative linear 

relationship with a low R2 value of 0.001, and a non-significant result.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Regression models for: A) water level and rain; B) residuals of A) and acres scraped.  

A B 
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GIS Groundwater-flow Modeling   

 The predominant direction of groundwater-flow for years 2000, 2001, 2003, 2004, 

2005, 2009, 2010, 2011, 2013, and 2014 were similar occurring from a NE to SW direction 

(Figure 9 & Figure 10). The mean water level observed inside the HID from the 10 annual 

maps was 0.39 m relative to NAVD-88. Water levels ranged from a minimum of 0.17 m 

(2004 and 2011) to a maximum of 0.66 m in 2013. The total drop in water level from NE 

to SW across the map domain was 0.60 m. Higher water levels, as indicated by blue on the 

maps, generally persisted in 2000, 2003, 2010, and 2013 (Figures 9A, 9C, 10B, 10D). 

Lower water levels have a greater proportion of red in the maps and were observed in 2004 

and 2011. While there were fluctuations in water levels observed for the ten annual kriging 

maps, regression analysis of the mean water levels with respect to time did not result in a 

statistically significant difference (p = 0.8). 

 While the annually averaged groundwater-flow patterns didn’t differ, there were 

differences in flow patterns observed between the wet season (Figure 11A) and dry season 

(Figure 11B). The wet season map illustrates higher water levels and a higher hydraulic 

gradient, approximately 0.00004, as depicted by more groundwater contours occurring 

throughout the map domain (Figure 11A). Alternatively during the dry season, lower water 

levels prevailed along with a lower hydraulic gradient, approximately 0.00002, as 

illustrated by fewer groundwater contours occurring across the map domain (Figure 11B). 
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Figure 9. Results of ordinary kriging interpolations: A) 2000; B) 2001; C) 2003; D) 2004; E) 

2005. Contour lines are indicated in purple. The contour interval is 0.05 m. Elevation is given 

in meters relative to NAVD-88.   
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Figure 10. Results of ordinary kriging interpolations: A) 2009; B) 2010; C) 2011; D) 2013; E) 

2014. Contour lines are indicated in purple. The contour interval is 0.05 m. Elevation is given 

in meters relative to NAVD-88.   
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Water Balance 

 The results of the water balance for 2000, 2001, 2003, 2004, 2005, 2009, 2010, 

2011, 2013, and 2014 revealed that a positive change in storage (when inflow exceeds 

outflow) was a function of the average annual rainfall in the HID (Figure 12). The 25-

year average of rainfall (1991-2015) at RPL was 1210.33 mm (Figure 13). For the 10 

years the water balance was calculated, there were four years (2001, 2005, 2011, and 

2013) where rainfall was above the 25-year average. Conversely, there were four years 

(2000, 2004, 2009, and 2014) were rainfall was below the 25-year average. For all years 

Figure 11. Seasonal maps computed from averaging all wet season rasters and dry season 

rasters using Spatial Analyst Raster Calculator tool: A) average wet season and B) average dry 

season.  

A B 
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except 2000, the mean annual rainfall exceeded the mean annual ET. Additionally, for all 

10 years, the inflow exceeded the outflow into the HID, leading to positive changes in 

storage. The magnitude of the change in storage was positively and linearly correlated 

with the amount of annual rainfall (R2 = 0.8683; p < 0.001; Figure 12). No significant 

relationship was observed between change in storage and mean ET (p = 0.3) or change in 

storage and acres restored (p = 0.2).  

  

 

 

 

 

 

 

 

  

Figure 12. Scatterplot showing the strong linear relationship between change in 

storage values and rainfall in the HID. 

p < 0.001 
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Area of 

Model 

Domain 

(m2) 4.10E+07 
K 

(m/yr) 1,131,500 

Inflow 

Xsectional  

Area (m) 12,229.73 

Outflow 

Xsectional 

Area (m) 12,560.19 
Thickness 

(m) 9.60 

Year 

Mean 

Rainfall 

(mm/yr) 

Mean 

ET 

(mm/yr) 

 Avg. 

Inflow 

dh/dl 

Avg. 

Outflow 

dh/dl Qin (m
3/yr) Qout (m

3/yr) 

Inflow 

(m/yr) 

Outflow 

(m/yr) 

Storage 

(m/yr) 

2000 1071.27 1083.40 4.14E-05 5.20E-05 -5.50E+06 -7.09E+06 0.94 0.91 0.03 

2001 1311.33 1079.62 4.14E-05 5.14E-05 -5.50E+06 -7.01E+06 1.18 0.91 0.27 

2003 1192.38 1025.99 4.11E-05 5.20E-05 -5.46E+06 -7.09E+06 1.06 0.85 0.21 

2004 954.22 950.48 3.57E-05 4.15E-05 -4.74E+06 -5.66E+06 0.84 0.81 0.03 

2005 1356.81 848.69 4.29E-05 5.22E-05 -5.70E+06 -7.12E+06 1.22 0.68 0.54 

2009 1122.64 872.57 4.11E-05 4.99E-05 -5.46E+06 -6.80E+06 0.99 0.71 0.28 

2010 1194.37 893.36 4.31E-05 5.10E-05 -5.73E+06 -6.95E+06 1.05 0.72 0.33 

2011 1372.35 909.90 3.22E-05 3.72E-05 -4.27E+06 -5.07E+06 1.27 0.79 0.48 

2013 1583.49 963.43 4.62E-05 5.24E-05 -6.13E+06 -7.15E+06 1.43 0.79 0.64 

2014 909.31 891.62 3.65E-05 3.84E-05 -4.85E+06 -5.24E+06 0.79 0.76 0.03 

Table 3. Water balance results. The top row in red boldface text is representative of the parameter values outlined in Eq.1.  
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Evapotranspiration Modeling 

 Annual ET maps from 2000-2014 resulted in a reduction in ET rates in each 

portion of the HID remediated by CSR (Figures 14 & 15). After CSR was employed to 

remove the invasive Brazilian Pepper, the ET rate was reduced approximately by a factor 

of two in each restored plot. For example, the restoration plot area restored in 2004 had a 

maximum ET of 1326.2 mm year-1 in 2003 the year prior to restoration, indicative of the 

high rates of ET associated with the Brazilian Pepper. After completion of restoration in 

2004, the maximum ET observed in Res2004 was 773.7 mm year-1. A similar trend in 

reduction of ET following restoration was observed in every plot restored in the HID, 

Figure 13. Bar graph of average annual rainfall at RPL for the 10-year water balance. 

25-year average computed from 1991-2015. 
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although the magnitude differed slightly. The highest mean ET obtained for the HID was 

1083.4 mm year-1 in 2000, when only 808 acres was restored. The lowest mean ET value 

observed was 848.7 mm year-1, after 3890 acres had been restored (Table 4). The 

downward trend in ET following restoration continued through the end of 2005. There 

was no restoration from 2006 through the end of 2008, thereby allowing natural 

vegetation to regrow. As a result of the break in restoration, increases in mean ET were 

observed from 2009 through 2013, although they were still lower than observed at the 

start of 2000. There was another observed downturn in ET following restoration in 2014. 

A linear regression between acres restored as the predictor variable and mean ET rate as 

the response variable (Figure 16), resulted in a significant negative relationship (R2 = 

0.77; p < 0.001).    
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 Figure 14. Maps quantifying the effect that CSR has on ET in the HID: A) 2000; B) 

2001; C) 2003; D) 2004; E) 2005. Notice how after each restoration the blue area, 

representative of Brazilian Pepper, decreases. 
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Figure 15. Maps quantifying the effect that CSR has on ET rates in the HID: A) 2009; B) 

2010; C) 2011; D) 2013; E) 2014. Notice how after each restoration the green and blue 

colors, representative of Brazilian Pepper, decreases. 
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Year Minimum Maximum Range Acres 

Restored 

Mean Standard 

Deviation 

2000 584.8 1450.7 865.9 808 1083.4 256.7 

2001 590.0 1442 852.0 1141 1079.6 263.1 

2003 698.6 1429.4 730.8 2051 1025.9 246.0 

2004 603.9 1490.8 886.9 2890 950.5 281.4 

2005 594.7 1437 842.3 3890 848.7 225.3 

2009 627.3 1442.6 815.3 4091 872.6 223.1 

2010 667.3 1434.6 767.3 4225 893.4 212.9 

2011 675.1 1419.9 744.8 4414 909.9 203.8 

2013 775.0 1425.2 650.2 4639 963.4 174.8 

2014 677.5 1447 769.5 4893 891.6 195.3 

Figure 16. Linear regression of acres restored and mean ET, showing a 

strong negative relationship. 

Table 4. Summary statistics of ET rasters. Values reported in mm yr-1. 
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Groundwater and Surface-Water Chemistry 

 Box-and-Whisker Plots 

 Graphical analysis of nutrient concentrations in the water samples displayed a 

tendency to cluster based on sampling locality and type, whether groundwater or surface-

water (Figures 17A, 17B, 17C, 17D, & 17E). For instance, the surface-water TN 

concentrations inside the HID were higher than the groundwater TN concentrations 

inside the HID. However, outside the HID the TN concentrations were higher in the 

groundwater as opposed to the surface water. Overall, water samples collected outside the 

HID had consistently higher TN concentrations apart from NP-67 surface-water. 

Conversely, TP concentrations were low (less than 0.5 μmol L-1) and similar at all 

sampling localities. Water collected at NP-67 had the highest TP concentrations in both 

groundwater and surface-water, while TSB had the lowest TP concentrations in both 

surface-water and groundwater, making it difficult to tell which area (inside or outside 

the HID) had the overall higher TP concentrations. 

  TOC concentrations were higher outside the HID in both the surface-water 

and groundwater. Surface-water TOC was always higher than groundwater TOC both 

inside and outside the HID. In general, NO3
- concentrations were higher outside the HID 

in both the surface-water and groundwater, with the only exception being TSB 

groundwater which was lower than DO3 groundwater. Conversely, NH4
+ concentrations 

were lower in the surface water outside the HID. In the groundwater outside the HID, 

NH4
+ on average had higher concentrations than the groundwater inside the HID. 
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Correlation matrices 

 Correlation matrices were developed separately for groundwater and surface 

water samples (Figure 18A & 18B). In groundwater samples, positive correlations were 

observed in the between TN and all ions. TOC also showed strong positive correlations 

with all ions in the groundwater. Negative correlations were observed in the groundwater 

between TP and all ions besides potassium. NO3 concentrations in groundwater also 

showed negative correlations with both bicarbonate and calcium ions. In surface water 

samples, TN was positively correlated with fewer ions than the groundwater and even 

negatively correlated with NH4. TP was positively correlated with bicarbonate and 

calcium as well as NO3 and potassium in the surface water. TOC was positively 

correlated with NO3, and all ions except bicarbonate and calcium. Overall, more ions and 

nutrients were negatively correlated with each other in the surface water samples than the 

groundwater samples. 

 

 

 

 

 

 

Figure 17. Box-and-whisker plots of total nutrients from inside and outside the HID:  

A) TN; B) TP; C) TOC; D) NO3
-; E) NH4

+. All values are reported in micromoles per 

liter.  

A B 

C D 

E 
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Statistical Analysis 

ANOVA & Tukey HSD Post-Hoc Analysis 

 Results of the ANOVA with respect to ions and nutrients revealed significant 

differences among sampling localities and TN (p < 0.05), TOC (p < 0.001), bicarbonate 

(p < 0.01), sodium (p < 0.001), potassium (p < 0.001), calcium (p < 0.001), and chloride 

(p < 0.01). No significant differences were observed among sampling locations in TP (p 

= 0.37), NO3
- (p = 0.26), and NH4

+ (p = 0.20).  To further ascertain the significant 

differences observed in the ions and nutrients at the sampling localities, a Tukey HSD 

post-hoc analysis was employed to tease out differences between sites (Appendix D). The 

main finding of the post-hoc test was that the mean groundwater concentrations of TN, 

TOC, Na+, K+ and Mg2+ were always significantly higher at TSB than at DO1 or DO3. 

Similarly, mean surface-water concentrations of TOC, Na+, K+, and Mg2+ were always 

significantly higher at TSB than at DO1 or DO3. 

 

 

 

 

 

 

 

 

 

 Figure 18. Correlation matrices for: A) groundwater; B) surface-water. Blue 

dots represent positive correlations and red dots represent negative correlations. 

The magnitude of the circle is proportional to the strength of the correlation.  

A B 
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IV. DISCUSSION 

Changes in Groundwater Levels as a Function of Restoration 

 In general, changes in groundwater levels were not significantly related to the 

amount of acres restored (p = 0.8) in the HID. The main driver of water level change in 

the HID was rainfall, as indicated by the significant positive linear relationship obtained 

from the water balance between change in storage and rainfall (Figure 12). Furthermore, 

a significant positive relationship was observed between the long-term water level data 

obtained from DO1 and rainfall measured at RPL (Figure 8A). Conversely, there was no 

significant change in the direction of groundwater flow with respect to restoration.  

 The influence of rainfall as the primary driver of water levels presented in this 

study are consistent with previous research conducted in the southern Everglades. For 

example, time-series demodulation using Fourier analysis was conducted at a variety of 

well sites in the northern and southern Everglades and revealed that stage levels are 

directly impacted by rainfall, with large fluctuations in rainfall directly translating to 

large fluctuations in stage levels (Foti et al., 2015). Likewise, a water balance constructed 

by Zapata-Rios & Price (2012) indicated that precipitation was the greatest source of 

water into Taylor Slough. Interestingly, previous research conducted in the HID has 

demonstrated that CSR increased the duration of standing water (hydroperiod) in the 

restored sites (Smith et al., 2011 & Dalrymple et al., 2003). The increase in amount of 

flooded water observed throughout the year was a function of decreased elevation, as a 

result of completely removing the upper soil layer in the treated area, and seasonal 

rainfall. In fact, when the first pilot study was ongoing, the authors recognized that the 
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HID was far removed from canal structures and that the only source of water available 

for surface flooding was rainfall (Dalrymple et al., 2003). 

 The first hypothesis predicted that the CSR technique employed in the HID would 

result in an increase in observed water levels. This was predicted based on an intuitive 

sense that by completely removing the soil substrate, water would be allowed to percolate 

freely into the groundwater table, without any interception at the surface. This notion was 

supported by findings in the literature that top-soil removal in Dutch fen meadows had in 

fact increased the influence of groundwater seepage (Klimkowska et al., 2007; 

Klimkowska et al., 2015). However, these results did not hold true upon comparison to 

the southern Everglades. Firstly, the Dutch soil horizon was much more developed in the 

fen meadows (approximately 125 cm to water table), making the depth to the water-table 

significantly deeper than observed in the marl prairie portion of the southern Everglades. 

Secondly, the geologic substrates of the two study areas were not alike. The Netherlands 

aquifers are comprised of mostly sand and gravel units of Holocene to Pleistocene age, 

and have reported transmissivity values of approximately 10,000 m2 day-1 (de Vries, 

2007).  In south Florida, one of the most productive aquifers in the world, the Biscayne 

Aquifer, is less than 50 cm from the soil surface in some areas and has reported 

transmissivity values of approximately 27,000 m2 day-1 (Fish & Stewart, 1991).  

 Groundwater levels, relative to NAVD88, in the HID did not change after 

restoration, most likely due to the high infiltration rates and high hydraulic properties of 

the Biscayne Aquifer, allowing for a rapid assimilation of percolating rainwater to the 

groundwater table. Additionally, restoration was carried out over the course of many 
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years, sometimes with several years in between treatments, so the influence of restoration 

on water levels could not be continuously monitored. The Dutch fen meadow case study 

may not have been the most appropriate analog to compare the HID restoration to, but it 

was one of the few studies available, since there is a dearth of literature on the subject of 

top-soil removal and the HID restoration is unique.  

 

Changes in Evapotranspiration as a Function of Restoration 

 Overall, a negative trend in annual ET was observed throughout the study period 

and revealed that acres restored contributed significantly (p < 0.001) to the decrease in 

mean annual ET in the HID. The mechanism that produced the net loss in ET was most 

likely the decreased transpiration associated with the removal of the Brazilian Pepper. 

The MODIS maps (Figures 14 & 15) clearly depict that after each annual restoration 

there was an associated decrease in ET until 2005. After 2005 there was a three-year 

break until the next restoration in 2009. The increase in ET observed from 2009-2013 

was probably a result of the previously restored areas regrowth of native plants, which 

could then contribute to the ET budget. Also, as restoration progressed, smaller plots 

were restored. For instance, the acres restored from 2000-2005 totaled 3082 acres. 

Conversely, from 2009-2014 only 802 total acres were restored. This would appear to 

explain why there was an observed increase up until 2013 followed by a decrease in 

2014, as 31% of the total restoration between 2009-2014 occurred in 2014 (254 acres).    

 The range of ET values for Brazilian Pepper were between 1,040 and 1450 mm 

yr-1 before restoration and after restoration the range of values for the restored plots were 
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between 585 and 1,030 mm yr-1. The range of ET values reported in the present study 

(585-1450 mm yr-1) were similar to values published for south Florida. For instance, 

Abtew (1996) used lysimeters to measure mixed marsh ET and open water/algae ET in 

south Florida over a one year period and found that mean ET rates for those ecosystems 

were 1277.5 mm year-1 and 1350 mm year-1, respectively. Furthermore, Douglas et al., 

(2009) measured ET rates from a variety of locations in south Florida, including two in 

the Everglades. The average ET for the two marsh sites, were 1410 mm year-1 (Douglas 

et al., 2009). Likewise, Villalobos-Vega (2010) estimated ET for the Brazilian Pepper 

forest in the HID using White’s method (1932) and found that the average ET was 1522 

mm year-1. While this estimate appears higher than predicted by the MOD16 algorithm, 

Villalobos-Vega (2010) cautioned that his ET measurements for the Brazilian Pepper 

forest may have been overestimated by the White method, as a result of the measurement 

taken in close proximity to a Hammock forest. We conclude that the MOD16 algorithm 

provides reasonable estimates of ET for the HID and for south Florida.  

 Land-cover change, especially deforestation, can decrease the amount of surface 

ET, and can even result in a decrease in the amount of precipitation over the deforested 

area (Mahmood et al., 2014). Furthermore, changes in vegetation type and density can 

cause changes in hydrologic fluxes and water storage (Bounoua et al., 2002). Likewise, 

land cover changes can alter the recycling of precipitation, with a reduction in 

evaporation leaving more water in the ground, thus altering the temporal distribution of 

precipitation, which may have an impact on climate (Bounoua et al., 2002). These 

examples illustrate that decreases in the mean annual ET can have profound impacts on 

climate in the area where the decrease in ET is observed. However, the findings from the 
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present study cannot be extrapolated to suggest that reduction of ET in the HID promoted 

changes in climatic conditions, like the aforementioned research demonstrated. Firstly, 

the HID represents a small fraction (2800-ha) of the greater Everglades ecosystem (177, 

965-ha), so it would not be reasonable to assume that such a localized change in ET could 

significantly impact the entire Everglades climate. Additionally, the amount of acres 

restored each year was small given the scope of the greater Everglades. The largest 

portion restored occurred in 2005 (404-ha), which represents 0.23% of the entire 

Everglades ecosystem. Finally, the HID restoration has been discontinuous, as large gaps 

between restoration episodes were observed throughout the years (e.g. 1990-1997; 2002; 

2006-2008; 2012). The gaps between restorations provided the barren landscape with the 

opportunity to regrow and thus contribute to the total ET in the HID.  

 

Changes in Groundwater Chemistry as a Function of Restoration 

 The water chemistry analyses indicate that groundwater and surface-water are 

significantly different inside the HID vs. outside the HID. The differences mainly occur 

between TSB and the HID wells, DO1 and DO3, with some differences occurring 

between NP-67 and the HID wells. In the groundwater, mean concentrations of TN, 

TOC, Na+, K+ and Mg2+ were always significantly higher outside the HID than inside the 

HID (Table 5). The surface-water followed a similar trend as mean concentrations of 

TOC, Na+, K+, and Mg2+ were always higher outside the HID than inside the HID. The 

only exception was between mean surface-water concentrations of HCO3
- and Ca2+, 

which were higher inside the HID vs outside HID. There were no significant differences 
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observed in both the groundwater and surface-water between TP, NO3
-, NH4

+, or Cl-. The 

chemical differences observed between TSB and the HID wells may indicate that 

groundwater does not exchange laterally between the wells even though they are 

adjacent. The HID may far enough into ENP to not be impacted by the release of canal 

water that is used to feed the headwaters of Taylor Slough. Additionally, removal of the 

Brazilian Pepper may facilitate lower concentrations of ions in the groundwater because 

of the absence of transpiration-driven ion accumulation (Sullivan et al., 2016).  

Furthermore, complete soil removal allows for rapid infiltration of rainwater to the karst 

aquifer with minimal contact time with geologic materials.  

 The third hypothesis was formulated around the idea that CSR would remove the 

elevated concentrations of nutrients previously found in the disturbed soils, thereby 

reducing concentrations in the groundwater and surface-water (Orth & Conover, 1975; Li 

and Norland, 2001). Research has been conducted domestically and around the world to 

evaluate the efficacy of top-soil removal as it pertains to reducing nutrient loads in soils. 

For example, Zak et al. (2015) showed that removal of highly decomposed peat soil 

layers on old agricultural lands supported wetland recovery to low nutrient conditions, 

especially with respect to P. Likewise, Klimkowska et al. (2015) and Verhagen et al. 

(2001) found that topsoil removal in Dutch fen meadows resulted in a decrease in nutrient 

availability, promoting reestablishment of less competitive fen-meadow species. Inside 

the HID, it has been established that removal of the altered, rock-plowed soil removes 

nutrients, thereby lowering nutrient availability (Smith et al., 2011). The chemistry data 

obtained from the present study supports the third hypothesis and also supports the 

literature that CSR reduces the nutrient availability in the restored wetland.
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Site 

HCO3
- 

(mg/L) 

Na+ 

(mg/L) 

K+ 

(mg/L) 

Mg2+ 

(mg/L) 

Ca2+ 

(mg/L) 

Cl- 

(mg/L) 

TN 

(μmol/L) 

TP 

(μmol/L) 

TOC 

(μmol/L) 

NH4 

(μmol/L) 

NO3 

(μmol/L) 

DO1 GW 256.52 9.3 0.42 1.99 81.89 18.43 32.84 0.24 246.75 18.01 0.06 

DO3 GW 245.56 11.22 0.29 2.01 77.65 22.69 22.43 0.34 277.46 8 0.16 

NP-67 GW 254.59 8.37 1.01 2.45 81.44 16.72 48.94 0.36 332.52 12.04 0.17 

TSB GW 276.3 19.36 0.47 3.67 85.23 33.88 56.61 0.16 411.52 21.3 0.11 

DO1 SW 264.07 10.29 0.41 2.18 81.35 21.45 44.69 0.24 393.26 7.17 0.05 

DO3 SW 244.34 12.23 0.26 2.16 77.85 25.06 41.3 0.26 481.39 5.55 0.07 

NP-67 SW 192.61 8.11 0.8 2.23 59.38 16.45 31.76 0.52 592.04 11.3 0.23 

TSB SW 179.44 22.9 1.19 4.26 49.67 34.56 45.99 0.2 699.94 2.25 0.37 

Table 5. Average concentrations of major ions and nutrients for groundwater and surface-water samples. Ion concentrations 

are reported in milligrams per liter and nutrient concentrations are reported in micromoles per liter. 
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Unfortunately, this is the first study that has attempted to ascertain the concentrations of 

ions and nutrients in the HID’s groundwater and surface-water and as a result must serve 

as a baseline for future temporal comparisons.  

 Inglett & Inglett (2013) evaluated the biogeochemistry of soils in the HID, 

specifically the ability of the soils to sequester macro-nutrients like N and P. They 

proposed that approximately 16 years post restoration, restored sites would undergo a 

shift from N-limitation to P-limitation (Figure 19) (Inglett & Inglett, 2013). The 

chemistry data from this study may support their claim. For instance, mean TN 

concentrations in groundwater and surface-water at DO1 were 32.8 μmol L-1 and 44.7 

μmol L-1, respectively, while mean TN concentrations in groundwater and surface-water 

at DO3 were 22.4 μmol L-1 and 41.3 μmol L-1, respectively. The higher concentrations of 

TN in both groundwater and surface-water at DO1 suggests that DO1 is P-limited. 

Conversely, mean TP concentrations in groundwater and surface-water at DO3 were 0.34 

μmol L-1 and 0.26 μmol L-1, respectively, while mean TP concentrations in both 

groundwater and surface-water at DO1 were 0.24 μmol L-1. The higher concentrations of 

TP in both groundwater and surface-water suggest that DO3 has yet to undergo the 

switch to P-limitation, or may be in the phase where it is co-limited with N. The land 

around DO1 was restored in 1989, 27 years before the time of this study. Conversely, the 

land around DO3 was restored in 2000, 16 years before this study. These results are 

consistent with Inglett and Inglett (2013) hypothesis and may be able to shed more light 

onto the topic of biogeochemical succession in subtropical calcareous freshwater 

wetlands like the HID. However, further groundwater and surface-water chemistry 
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sampling is needed to assess when and if DO3 does switch to becoming fully P-limited, 

as hypothesized by Inglett & Inglett (2013).  

  

 

 

 

 

 

 

 

 

 

  

 

 

Recommendations for Restoration Managers and Future Research 

 The HID is a unique case study in the field of restoration ecology. The CSR 

technique, even to this day, is considered a costly and radical way to restore degraded 

wetlands (Hausman et al., 2007: Klimkowska et al., 2015). The estimated total cost of the 

HID restoration is $90-$120 million (ENP, 2009). While the cost must be considered for 

a project of this magnitude, the research is clear that CSR is an effective way to restore 

and revive native wetlands that have been overrun by noxious invasive species 

(Dalrymple et al., 2003; Doren et al., 1990; Smith et al., 2011). Furthermore, the 

Figure 19. Conceptual model for biogeochemical succession in subtropical 

calcareous freshwater wetlands like the HID. Adapted from Inglett & Inglett 

(2013).  
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restoration has been successful in its two main goals: eradicating the Brazilian Pepper 

and reducing elevation to increase hydroperiods (Smith et al., 2011 & Dalrymple et al., 

2003). The present study has determined that the total number of acres scraped in the 

HID did not have a significant impact on groundwater levels, or groundwater flow 

direction. For restoration managers, this is an important result to consider. Before this 

study, it was unknown how the large-scale HID restoration impacted the surrounding 

wetland environment. The fact that restoration doesn’t appear to change groundwater 

flow directions down gradient gives further credence to the viability of this restoration 

method.  

 The present study determined that ET was significantly reduced in areas restored. 

Now that there is a baseline for remotely sensed ET measurements in the HID, future 

studies can look at the progression of ET changes with respect to the actual vegetation on 

the ground. For instance, coupling remotely sensed ET data with ground-based empirical 

measurements of vegetation communities could provide useful information on how 

successional communities ET rates change along the restoration gradient. Additionally, it 

would be interesting to asses if the changes in mean ET in the HID have any sort of 

impact on microclimate variation, specifically with regards to rainfall. Future research in 

these areas would prove beneficial not only to restoration managers, but also to research 

scientists interested in how extreme restoration methods can impact fundamental 

components of the hydrologic cycle.  

 The water chemistry data presented in this study represent an important baseline 

for the HID restoration. The present study has demonstrated that chemical concentrations 
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of nutrients and ions are significantly lower inside the HID vs. outside the HID. 

According to a technical report by O’Hare (2008), it was stipulated that for every 642 

acres restored in the HID that one monitoring well should be installed. Currently, only 

two such monitoring wells exist (DO1 & DO3). Based upon the acreage restored through 

2014 (~4893 acres), there should be 7 gauges on restored sites. If managers want more 

accurate measurements of water levels and wish to compare water chemistry between 

restored sites, these additional wells must be installed. The installation of these wells 

could allow future researchers the ability to interpolate water chemistry data to assess 

spatial variability solely inside the HID, with respect to major ions and nutrients. Besides 

the spatial component, these wells could provide temporal information that could be 

useful to see how the concentrations of major ions and nutrients change with respect to 

time. These data could provide valuable information pertaining to major ion and nutrient 

gradients that could expand the breadth of knowledge for restored subtropical calcareous 

wetlands. 
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V. CONCLUSIONS 

 Characterizing and quantifying the effects that the CSR restoration technique has 

on the hydrologic conditions of a restored wetland helped to support the long-term 

validity of the HID restoration program. A water balance model revealed that the 

controlling factor of groundwater level changes in the HID was rainfall and not acres 

restored. The total amount of acres restored did not significantly contribute to the changes 

in water levels observed. Additionally, the total amount of acres restored did not 

significantly alter the direction of groundwater flow to adjacent wetlands, suggesting that 

there are not harmful residual effects to the surrounding wetland environment as a result 

of restoration. The lack of an influence on groundwater levels and flow directions in the 

HID were most likely attributable to the small size of the HID compared to the extent of 

ENP, as well as to the high transmissivity of the Biscayne Aquifer. Caution should be 

given when applying the results obtained in this investigation with other CSR restoration 

sites having different geologic terrains.  

 Before the present study, it was not well understood how the effects of the CSR 

restoration technique impacted the mean annual ET rates in a restored wetland. In 

subtropical calcareous wetlands dominated by an invasive woody species, like in the HID 

with Brazilian Pepper, the CSR restoration technique reduced mean annual ET rates by 

approximately 18% from 2000 to 2014. The decrease in ET observed in the HID was 

likely too localized to have any significant impact on the amount of precipitation the 

central Everglades received annually, but this may be a topic for further research for 

other large wetlands undergoing long-term CSR restoration. Furthermore, analyzing how 
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successional vegetation mean ET rates change along the restoration gradient could 

provide valuable data for restoration managers interested in community level ecosystem 

dynamics.  

 Groundwater and surface-water chemical analyses revealed significant differences 

between wells inside the HID (DO1 & DO3) and outside the HID (TSB & NP-67). The 

differences observed between the groundwater and surface-water suggest that restoration 

has been effective in reducing the concentrations of ions and nutrients in the soils of the 

HID. The subsequent reduction of soil nutrients has promoted lower concentrations in the 

groundwater and surface-water in the restored sites. The lowered concentrations of ions 

and nutrients are ideal for the reestablishment of natural oligotrophic conditions that 

existed prior to anthropogenic induced degradation of the landscape.  
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APPENDIX A 

Water Chemistry Data I: Cations and Anions 
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Sample 

Name 

Collection 

Date 

Na+ 

(mg/L) 

 K+ 

(mg/L) 

Mg2+ 

(mg/L) 

Ca2+ 

(mg/L) 

HCO3
- 

(mg/L) 

 Cl- 

(mg/L) 

SO4
2- 

(mg/L) 

DO1 SW 12/22/2015 10.25 0.66 2.17 77.43 255.86 19.66 0.10 

DO1 GW 12/22/2015 9.37 0.54 2.03 78.59 250.78 17.59 0.01 

DO3 SW 12/22/2015 12.29 0.49 2.16 78.82 250.98 24.26 BDL* 

DO3 GW 12/22/2015 11.12 0.37 2.01 75.73 241.42 21.62 BDL 

NP-67 SW 12/22/2015 5.92 0.79 1.89 49.63 156.81 10.28 BDL 

NP-67 GW 12/22/2015 8.63 1.18 2.57 85.16 270.10 16.60 BDL 

TSB SW 12/22/2015 12.72 0.73 2.82 50.58 195.25 1.10 0.25 

TSB GW 12/22/2015 16.32 0.46 3.59 83.79 281.90 25.43 BDL 

DO1 GW 5/17/2016 9.32 0.46 2.03 79.49 248.14 17.72 BDL 

DO3 GW 5/17/2016 11.38 0.33 2.06 76.78 242.44 22.53 BDL 

NP-67 GW 5/17/2016 8.40 1.10 2.39 78.45 247.32 16.38 0.01 

NP-67 SW 5/17/2016 11.55 1.34 2.99 88.70 281.29 24.68 0.11 

TSB GW 5/17/2016 16.76 0.34 3.50 83.64 280.68 28.72 BDL 

TSB SW 5/17/2016 30.18 1.64 5.54 50.30 176.75 51.78 0.17 

DO1 SW 9/16/2016 9.52 0.14 1.95 78.34 247.32 18.86 BDL 

DO1 GW 9/16/2016 9.21 0.39 2.01 85.15 259.52 18.63 0.11 

DO3 SW 9/16/2016 11.85 0.02 2.06 76.01 230.64 24.46 BDL 

NP-67 SW 9/16/2016 6.85 0.26 1.81 39.80 139.73 14.39 BDL 

NP-67 GW 9/16/2016 8.02 0.87 2.27 79.61 244.68 16.73 BDL 

TSB SW 9/17/2016 23.19 1.23 3.99 37.22 132.00 39.13 BDL 

TSB GW 9/17/2016 21.33 0.46 3.66 83.75 256.68 38.85 BDL 

DO1 SW 12/16/2016 11.10 0.44 2.41 88.29 289.02 25.84 0.71 

DO1 GW 12/16/2016 9.30 0.27 1.92 84.35 267.66 19.77 BDL 

DO3 SW 12/16/2016 12.55 0.27 2.27 78.72 251.39 26.44 BDL 

DO3 GW 12/16/2016 11.18 0.18 1.97 80.45 252.81 23.93 BDL 

NP-67 GW 12/16/2016 8.44 0.89 2.56 82.56 256.27 17.17 BDL 

TSB SW 12/16/2016 25.53 1.17 4.69 60.58 213.76 46.24 BDL 

TSB GW 12/16/2016 23.01 0.62 3.94 89.73 285.97 42.51 BDL 

* = Below Detection Limit 
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APPENDIX B 

Water Chemistry Data II: Field Parameters  
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Sample 

Name 

Collection 

Date 

Time Temp 

(°C) 

Conductivity 

(μs/cm) pH 

DO1 SW 12/22/2015 9:14 AM 24.00 401 7.42 

DO1 GW 12/22/2015 9:30 AM 24.80 421 7.29 

DO3 SW 12/22/2015 10:54 AM 25.60 436 7.67 

DO3 GW 12/22/2015 11:54 AM 25.20 426 7.28 

NP-67 SW 12/22/2015 1:00 PM 24.70 284 7.3 

NP-67 GW 12/22/2015 1:05 PM 25.80 452 7.12 

TSB SW 12/22/2015 1:50 PM 25.80 325 7.91 

TSB GW 12/22/2015 2:40 PM 25.50 507 7.17 

DO1 GW 5/17/2016 9:40 AM 24.30 429 7.03 

DO3 GW 5/17/2016 11:20 PM 24.80 476 7.09 

NP-67 GW 5/17/2016 1:15 PM 25.40 487 7.06 

NP-67 SW 5/17/2016 1:40 PM 27.10 528 7.18 

TSB GW 5/17/2016 2:35 PM 26.20 505 7.01 

TSB SW 5/17/2016 2:50 PM 34.80 576 7.73 

DO1 SW 9/16/2016 8:57 AM 28.40 512 7.48 

DO1 GW 9/16/2016 9:30 AM 26.70 473 7.57 

DO3 SW 9/16/2016 10:40 AM 30.00 508 7.69 

DO3 GW 9/16/2016 11:10 AM 29.10 406 7.51 

NP-67 SW 9/16/2016 12:40 PM 30.70 298 7.49 

NP-67 GW 9/16/2016 12:50 PM 25.70 468 7.38 

TSB SW 9/17/2016 12:30 PM 33.60 419 7.99 

TSB GW 9/17/2016 12:14 PM 27.80 601 7.18 

DO1 SW 12/16/2016 9:00 AM 20.10 442 6.02 

DO1 GW 12/16/2016 8:50 AM 24.50 442 6.00 

DO3 SW 12/16/2016 11:15 AM 24.30 478 6.11 

DO3 GW 12/16/2016 11:30 AM 23.10 451 6.03 

NP-67 SW 12/16/2016 2:00 PM 22.10 406 6.02 

NP-67 GW 12/16/2016 2:10 PM 25.60 480 6.10 

TSB SW 12/16/2016 3:00 PM 25.40 594 6.24 

TSB GW 12/16/2016 3:30 PM 26.00 477 6.18 
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APPENDIX C 

Water Chemistry Data III: Nutrients 
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* = Below Detection Limit 

 

 

 

  

Sample 

Name 

Collection 

Date 

TN 

(μmol/L) 

TP 

(μmol/L) 

TOC 

(μmol/L) 

NO3 

(μmol/L) 

NH4 

(μmol/L) 

SRP 

(μmol/L) 

DO1 GW 12/22/2015 28.49 0.37 257.50 0.03 30.10 BDL* 

DO1 SW 12/22/2015 30.18 0.16 344.46 0.03 11.33 BDL 

DO3 GW 12/22/2015 17.72 0.40 217.42 0.08 15.95 BDL 

DO3 SW 12/22/2015 34.97 0.17 389.42 0.02 4.28 BDL 

NP-67 GW 12/22/2015 42.16 0.20 321.33 0.01 3.58 BDL 

NP-67 SW 12/22/2015 21.81 0.19 486.50 0.08 38.33 0.28 

TSB GW 12/22/2015 37.50 0.16 348.17 0.05 35.26 BDL 

TSB SW 12/22/2015 20.06 0.10 514.92 0.04 1.47 BDL 

DO1 GW 5/17/2016 30.81 0.23 235.33 0.17 14.86 0.14 

DO3 GW 5/17/2016 21.60 0.29 230.83 0.38 7.85 BDL 

NP-67 GW 5/17/2016 38.05 0.33 319.00 0.35 18.33 BDL 

NP-67 SW 5/17/2016 39.66 1.18 682.67 0.25 2.31 BDL 

TSB GW 5/17/2016 46.40 0.14 376.58 0.16 21.09 BDL 

TSB SW 5/17/2016 44.31 0.10 876.67 0.23 0.47 BDL 

DO1 GW 9/16/2016 40.65 0.19 242.17 0.00 17.80 0.04 

DO1 SW 9/16/2016 59.91 0.22 426.33 0.00 1.37 0.10 

DO3 GW 9/16/2016 28.12 0.53 437.33 0.16 2.01 BDL 

DO3 SW 9/16/2016 47.06 0.16 597.17 0.04 1.99 0.03 

NP-67 GW 9/16/2016 77.70 0.33 344.33 0.26 21.22 BDL 

NP-67 SW 9/16/2016 31.68 0.18 552.83 0.22 2.57 BDL 

TSB GW 9/16/2016 72.30 0.14 424.00 0.22 25.52 BDL 

TSB SW 9/17/2016 79.53 0.16 762.67 0.28 0.66 BDL 

DO1 GW 12/16/2016 31.41 0.18 252.00 0.03 9.29 0.06 

DO1 SW 12/16/2016 43.98 0.35 409.00 0.12 8.82 0.01 

DO3 GW 12/16/2016 22.29 0.15 224.08 0.01 6.21 0.04 

DO3 SW 12/16/2016 41.87 0.46 457.58 0.14 10.37 BDL 

NP-67 GW 12/16/2016 64.98 0.58 345.42 0.05 5.03 0.12 

NP-67 SW 12/16/2016 33.91 0.54 646.17 0.39 2.00 0.02 

TSB GW 12/16/2016 70.23 0.18 497.33 0.03 3.34 0.04 

TSB SW 12/16/2016 40.06 0.44 645.50 0.92 6.40 0.01 
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APPENDIX D 

Tukey HSD Table 
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Comparison Between 

Location Constituent p-value 

NP-67 SW-DO1 SW HCO3
- 0.10 

TSB SW-DO1 SW HCO3
- 0.03 

TSB GW-DO1 GW Na+ 0.01 

TSB SW-DO1 SW Na+ 0.00 

TSB GW-DO3 GW Na+ 0.07 

TSB SW-DO3 SW Na+ 0.01 

NP-67 GW-DO1 GW K+ 0.08 

TSB SW-DO1 SW K+ 0.02 

NP-67 GW-DO3 GW K+ 0.04 

TSB SW-DO3 SW K+ 0.00 

TSB GW-DO1 GW Mg2+ 0.00 

TSB SW-DO1 SW Mg2+ 0.00 

TSB GW-DO3 GW Mg2+ 0.01 

TSB SW-DO3 SW Mg2+ 0.00 

TSB SW-DO1 SW Ca2+ 0.01 

TSB SW-DO3 SW Ca2+ 0.02 

NP-67 GW-DO3 GW TN 0.06 

TSB GW-DO3 GW TN 0.05 

NP-67 SW-DO1 SW TOC 0.10 

TSB SW-DO1 SW TOC 0.00 

TSB SW-DO3 SW TOC 0.06 
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