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ABSTRACT OF THE THESIS
A COMPARISON OF SOME CONFIDENCE INTERVALS FOR ESTIMATING THE KURTOSIS
PARAMETER
by
Guensley Jerome
Florida International University, 2017
Miami, Florida

Professor B.M. Golam Kibria, Major Professor

Several methods have been proposed to estimate the kurtosis of a distribution. The three com-
mon estimators are: g, G2 and b,. This thesis addressed the performance of these estimators by
comparing them under the same simulation environments and conditions. The performance of
these estimators is compared through confidence intervals by determining the average width and
probabilities of capturing the kurtosis parameter of a distribution. We considered and compared
classical and non-parametric methods in constructing these intervals. Classical method assumes
normality to construct the confidence intervals while the non-parametric methods rely on boot-
strap techniques. The bootstrap techniques used are: Bias-Corrected Standard Bootstrap, Efron’s
Percentile Bootstrap, Hall’s Percentile Bootstrap and Bias-Corrected Percentile Bootstrap. We have
found significant differences in the performance of classical and bootstrap estimators. We observed
that the parametric method works well in terms of coverage probability when data come from a
normal distribution, while the bootstrap intervals struggled in constantly reaching a 95% confi-
dence level. When sample data are from a distribution with negative kurtosis, both parametric and
bootstrap confidence intervals performed well, although we noticed that bootstrap methods tend
to have smaller intervals. When it comes to positive kurtosis, bootstrap methods perform slightly
better than classical methods in coverage probability. Among the three kurtosis estimators, G,

performed better. Among bootstrap techniques, Efron’s Percentile intervals had the best coverage.
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CHAPTER 1

INTRODUCTION

1.1 Kurtosis and Misconception

Kurtosis is one of the more obscure statistics parameters and has not been discussed by many. To
begin, we would first want to define what kurtosis is. The historical misconception is that the
kurtosis is a characterization of the peakedness of a distribution. In various books, the kurtosis is
described as the "flatness or peakedness of a distribution" (Van Belle et al., 2004) when in reality,
the kurtosis is directly related to the tails of a given distribution. The paper aptly titled: Kurtosis
as peakedness, 1908 - 2014, R.I.P. (Westfall, 2014) strongly addressed said misconception. He wrote:
“Kurtosis tells you virtually nothing about the shape of the peak — its only unambiguous interpretation is
in terms of tail extremity.” His claims were backed up with numerous examples of why you cannot
relate the peakedness of the distribution to kurtosis. So now, we can define kurtosis: it is related
to the tails of the distribution, not the peakedness or flatness. It simply measures how heavy the
tail of a distribution is. With longer tails, we get more outliers while shorter tails produce a lot
fewer to no outliers. Distributions with positive kurtosis, or leptokurtic, have long tails (Ex: a
Student t Distribution) and distributions with negative kurtosis, or platykurtic, have short tails (Ex:
Uniform Distribution). Distributions with zero kurtosis are referred to as mesokurtic (Ex: Normal

Distribution) (Van Belle et al., 2004)

1.2 Population Kurtosis and Estimators

Kurtosis, k, is known as one of the shape parameters of a probability model. The kurtosis parameter

of a probability distribution was first defined by Karl Pearson in 1905 (Westfall, 2014) to measure



departure from normality. He defined it:

K,(X) _ M4 ]E(X — ,LL)4

B
(ECx - w2)

where E is the expectation operator, u is the mean, p4 is the fourth moment about the mean, and o

is the standard deviation. The Normal distribution with a mean 1 and variance o2 has a kurtosis of

3. Often statisticians adjust this result to zero, meaning the kurtosis minus 3 equals zero. When an

adjustment is made, it is usually referred to as Excess Kurtosis. In the present thesis, excess kurtosis

is defined as

_ 4
Kurt(X):&—?):M—&

o4 2
E(X —p)?
The excess kurtosis defined above is the parameter of a given distribution. To estimate the distri-

bution’s parameter, three kurtosis estimators have been proposed. They are go, G2 and b,.

1.2.1 Estimator g

By replacing the population moments with sample moments, we can then define the first estimator

of the excess kurtosis, usually referred to as g.

for a given sample size n with

with variance

24n(n — 2)(n — 3)
n+1)2(n+3)(n+5)

var(gs) = ( (Cramér, 1947).

6

Fisher showed that the excess kurtosis estimator g> is an biased estimator since E(g2) = —75

(Fisher, 1930). To make g, an unbiased estimator, we can simply apply the correction of — 2L, but

according to Joanes and Gill(1998), it is preferred to use ratios of unbiased cumulants to construct



unbiased estimators of kurtosis.

1.2.2 Estimator Go

First, we describe a cumulant-generating function, K (¢). In statistics, cumulants are values that
provide an alternative to the moments of a probability distribution. The moments can determine
the cumulants and vice versa. This means that two probability distributions that have the same
moments will also have the same cumulants. Before we give a more rigorous definition of the cu-
mulant generating function, let us recall that the moment generating function for a random variable

x is defined as:

Mx(t) = E[e'¥] (1.1)
t2X? trXr
:]E<1+tX+ ot +> (1.2)
2! 7!
o0 4T
= Z aia |t , where pu,=E(X"). (1.3)
r.
r=0

From the moment generating function, we now define the cumulant generating function as the
natural log of an MGE

Kx(t) = In(Mx(t)).
From this definition, we can calculate the first cumulant k1, as:

att = 0 we would get

K’ (0) = 0 (1.4)
= M;(0) = E(X) (1.5)
=EX) =1 (1.6)



This is easy to see:

2

2!

M(0) =E(1+0z+ —— +...)=1.

We also can calculate the second cumulant as follows:

" _ / 2
KX (t) = MX(t)M]\Z(:()t)z il
at t=0
K% (0) = M¥(0) — M (0)? (17)
=EX? - (EX)? (1.8)
= b — i’ (1.9)
= Var(X). (1.10)

Therefore, the k-th cumulant of the k-th terms in the Taylor series expansion at 0 is

1 dr

Fu(X) = — 2 Kx(0) (Watkins, 2009)

Based on the general formula above, If we continue to get the cumulant generating function

where we can show that

ki = 2401 — Byl + (1.11)

ko = —6py "+ 1204y — 3ph” — Api puly + . (1.12)

After deriving k; and k3, we can see that they are equivalent to

Ki=u

Ko = ps.



If we write the other cumulant generating functions in terms of the central moments, we would

get:

K3 = U3 and (113)

Ky = pa — 3413 (1.14)

As it was previously defined, the excess kurtosis is

Kurt(X) = 'u—i - 3.
o

Then, in terms of the population cumulant, the excess kurtosis can also be defined as

v=— —3 (Joanes and Gill, 1998).

Assume an unbiased cumulant estimator, c;, for which E(¢;) = K. Then, Cramer(1947) shows

that the unbiased sample cumulants c; are

R R (1.15)
n2
c3 = mmg and (1.16)
2
= DD {<”+ Ly =3(n - 1>m3}~ (117)

We now construct the kurtosis estimator, G, solely using cumulant estimators (Joanes and Gill,

1998)
Cy=2 (1.18)
€3
n—1

G, estimator we derived above is the excess kurtosis estimator adopted by statistical packages

such as SAS and SPSS (Bruin, 2011). It is generally biased, but unbiased for the normal distribution.



Its variance is:

var(Gs) = var <(n_"2>(nl_3){(n +1)g + 6}> (1.20)
_[te=D+)*

The following approximation can be used to estimate the var(Gz) : var(Gz) ~ (1 + 10/n) - var(gs)

forallmn > 3

1.2.3 Estimator by

If we consider how g is defined, m3 derived from the sample moment, is a biased estimator of the
sample standard deviation. Using the unbiased standard deviation of the sample instead would

give us the third excess kurtosis estimator. We refer to it as by, and it is used by computer software

packages such as MINITAB and BMDP (Joanes and Gill, 1998). It is defined as

where

b _ e 3 1.22
2—< 2(5111)2)4_ ( )
(n=1\" Y(wi—2)!

(nn ) (Z(i—;)Qg (1.23)
(”;1)2.%3 (1.24)

which also is an alternative way of defining b,.



In order to get the variance of by, let us first rewrite bs in terms of go. We would have:

= (15) w5

Then variance of by is

n—1

var(by) = ( >4var(g2). (1.25)

We use the following approximation var(by) ~ (1 — 4/n) - var(gz) forall n > 1.

From the approximations of var(Gz) &~ (1+ 10/n) - var(gz) and var(bs) ~ (1 —4/n) - var(gz), it's
easy to see that var(Gz) will always be greater than both var(g,) and var(bz) since the term 1+10/n
will always be a value greater than 1. In that same manner, var(b,) estimation will be less than
var(gs) and var(G2) since the term 1 — 4/n will always be a value between 0 and 1. Therefore, we
can write

var(by) < var(gz) < var(Gaz).

The objective of this paper is to compare several confidence intervals using both classical and boot-
strap methods for the kurtosis and find which interval methods that would best estimate the kurto-
sis parameter of distributions with zero, positive or negative kurtosis. Since a theoretical compar-
ison is not possible, a simulation study has been made. Average width and coverage probabilities
are considered as criterion of good estimators. The organization of this thesis is as follows: we de-
fine both parametric and non-parametric confidence intervals in Chapter 2. Chapter 3 we discuss
some distributions and compare their kurtosis. A simulation study is described in Chapter 4. Two

real life data sets are analyzed in Chapter 5. Last, some concluding remarks are given in Chapter 6.



CHAPTER 2

CONFIDENCE INTERVALS

Let X1, Xs,..., X, be independent and identically distributed random sample of size n from a
population with mean p and variance 0. Given a specific level of confidence, we can construct
confidence intervals to estimate a given parameter of the distribution of concern. As we are study-
ing kurtosis in my paper, then the excess kurtosis parameter Kurt(X) of the population will be
the value we will want to estimate. We will rely on two main approaches, parametric and non-

parametric approaches, to construct confidence intervals with (1 — «)100% confidence level

2.1 Parametric Approach

The general format of parametric confidence intervals is

estimator = critical value x standard error of estimator

Given this general format, to construct confidence intervals for excess kurtosis parameter of a given
population, we will use one of the three estimators g2, G2 and b, for a sample of size n, with their
respective standard error and critical value z, /, which is the upper a/2 percentile of the standard

normal distribution (Joanes and Gill, 1998).

e For estimator go with sample size n, the (1 — @)100% confidence interval will be:

g2 2472 - \/var(gz) (2.1)
24n(n — 2)(n — 3)
gQiZ&/Q'\/(n—1)2(n+3)(n+5)' (2.2)



e For estimator G, with sample size n, the (1 — «)100% confidence interval will be:

Go £ 24/2 - V/var(Ga) (2.3)

24n(n —1)2

Gﬁza“'\/(n2)(n3)(n+3)(n+5)‘ @4)

e For estimator by with sample size n, the (1 — a))100% confidence interval will be:

24n(n — 1)*(n — 2)(n - 3)
bgiza/Q\/ (m+1)2n+3)(n+5)

2.2 Bootstrap Approach

DiCiccio and Efron (1981) argued that parametric confidence intervals can be quite inaccurate in
practice since they rely on asymptotic approximation. Meaning that the sample size n used to
estimate parameter of a population is assumed to grow indefinitely (Efron, 1987) while the boot-
strap process does not need to worry about such assumption. The basic idea of the bootstrap is
re-sampling from a sample of size n with replacement in order to derive the different bootstrap
statistics. The process goes as follows: assume x = (x1,%2, - ,,) be a sample of size n. Let
there be a bootstrap sample z* = (x7,z5,...,2}) obtained by randomly sampling, with replace-
ment, from the original sample z, of size n. We then calculate the bootstrap statistics from xx.
The bootstrap statistics in question in this paper is the kurtosis. Repeat this process B-time, where
B is expected to be at least 1000 to get reliable results(Efron, 1979). The original sample where
bootstrap samples are drawn through re-sampling is referred to as the empirical distribution. The
bootstrap method is a non-parametric tool where we do not need to know much about the under-
lying distribution to make statistical inference such as constructing confidence intervals to estimate
the parameter of a population. Bootstrapping process is best used through the aid of a computer
since the number of bootstrap samples needed, B, are expected to be large. We will consider the

following bootstrap confidence intervals.



2.2.1 Bias-Corrected Standard Bootstrap Approach

Let 6 be one of the three point estimators for kurtosis previously defined. Then the bias-corrected

standard bootstrap confidence intervals is

0 — Bias(&) + Za/ga'B

20— 0+ 2,265

i=1"1

where 65 = \/ 55 38 (7 — 0)? is the bootstrap standard deviation, § = 4 >>7 47 is the boot-
strap mean and Bias(#) = 6 — 0 (Sergio and Kibria, 2016).

2.2.2 Efron’s Percentile Bootstrap Approach

Introduced by Efron (1981) , Efron’s Percentile Bootstrap approach is to construct a 100(1 — «)%
percentile confidence interval. Let 67 , , represents the value for which (a/2)% bootstrap esti-

mates are less than and 07, , , the value for which (@/2)% bootstrap estimates exceed. Then the

confidence interval would have the following lower and upper bounds:
L= G?Q/Q)xB and U = QT—(Q/Q)va

in order to get the following interval
[az,a/% 9?{,&/2]

2.2.3 Hall’s Percentile Bootstrap Approach

Introduced by Hall (1992), the method uses the bootstrap on distribution of §* — 6. For any of the
estimators previously defined, we sample from the empirical distribution, calculate estimates from
the B bootstrap samples

* * * *
1,05,05,...,0%.
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The difference between each bootstrap estimate and the population parameter is taken to get
07 —0,05—-6,05—0,....05—0
We can label each 0 — 6 as §; to have
01,02,03, 0

Like Efron’s method, for a value 67 , , which (a/2)% of the ds are less than and for a value 63, , »
for which (a/2)% of the ds exceed. The lower and upper bound of the confidence interval will be
given by:

L=20—-00_nxp and U=20-0,, 5.

2.2.4 Bias Corrected Percentile Bootstrap

Efron (1981) proposed the method when sample estimators consistently under or over estimate
its parameter. Efron suggested that instead of using the usual 0.025 and 0.975 percentiles of the

bootstraps, we should use b g25 and by 975 instead. They are calculated as:

p* +1.96

m) and  bo.025 = (I’(P* + 1.9 ))7

boors = 2o + G - 199
where:

e &(-) is the standard normal cumulative distribution function (CDF)

e p* is the bias-correction that is calculated as ! (@) which is the inverse normal cdf of

the proportion of bootstrap statistics values that are less than the empirical sample statistics.
e a is the "acceleration factor". For normal bootstrap processes, a = 0.000

We calculate the confidence intervals as:

L= 631;(217*71.96) and U= 6%(2p*+1.96)
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CHAPTER 3

DISTRIBUTIONS AND THEIR KURTOSIS

To compare the performance of the kurtosis estimators previously defined, we want to construct
confidence intervals using either parametric or bootstrap methods. The data that are to be used
will be coming from different distributions with kurtosis of zero, positive and negative to properly
gauge the performance of g;, G2 and by kurtosis estimators. Recall that we are concentrating with
finding the Excess Kurtosis, Kurt(X) = x — 3. We know that sample size is an important factor
in constructing confidence intervals, so we consider performing our simulation using a range of
possible sample sizes. We use n = 10, 20, 30, 50, 100 and 300, which represent small to large sample
sizes. Since we want to capture positive, zero and negative kurtosis, the distributions used are the

following:

e Zero Kurtosis:

- Normal Distribution: X ~ N (u, o)
* Mean: u
* Variance: o

* Excess Kurtosis: 0

A Normal Distribution With Zero Excess Kurtosis Is Shown In Figure 3.1

12



e Negative Kurtosis:

- Uniform Distribution X ~ U(a,b)
* Mean: (a+b)

2

* Excess Kurtosis: —2

A uniform distribution with excess kurtosis is shown in Figure 3.2

- Beta Distribution: X ~ Beta(2,2)
* Shape Parameter: 2

* Shape Parameter: 2

* Excess Kurtosis: —0.8571429

A beta distribution with excess kurtosis of —0.8571429 is shown in Figure 3.3a

- Beta Distribution: X ~ Beta(2,5)
* Shape Parameter: 2
* Shape Parameter: 5

x Excess Kurtosis: —0.12

A beta distribution with excess kurtosis of —0.12 is shown in Figure 3.3

e Positive Kurtosis:

- Logistic Distribution: X ~ logis(u, o)
* Location Parameter:
x Scale Parameter: o

* Excess Kurtosis: ¢

A logistic distribution with excess kurtosis of 6/5 is shown in Figure 3.5
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— Student t-distribution X ~ T, _;
* Mean: 0, forv > 0
* Degree of Freedom: 10

x Excess Kurtosis: 1 forv > 4

A t-distribution with excess kurtosis of 10 is shown in Figure 3.6a

— Student t-Distribution X ~ T, _g4
* Mean: 0, forv > 0
* Degree of Freedom: 64

x Excess Kurtosis: 0.1 for v > 4

A t-distribution with excess kurtosis of 64 is shown in Figure 3.6b

- Double Exponential X ~ DExp(u, 3)

* Location Parameter: y
x Scale Parameter: 3

* Excess Kurtosis: 3

A double exponential distribution with excess kurtosis of 3 is shown in Figure 3.4

3.1 Zero Kurtosis

The excess kurtosis was defined so that the Kurtosis of the normal distribution is 0. Therefore the

only distribution that will be presented under this section is that of the normal distribution.

3.1.1 Normal Distribution

The normal distribution is probably the most commonly used and well studied probability distri-

bution in statistics. Given a mean p and variance o2, the normal distribution is defined as follows:
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A random variable X has a normal distribution if and only if its probability density is given by

2
L (=)
o(x; p,0) = e 2\ 7 —o<x <00, —00<u< oo,

oV 2

We refer to standard normal distribution, a normal distribution with mean ¢ = 0 and variance

02 = 1 written as:

8(:) = e ¥

Then, from basic derivative of exponential functions we have:

1 1,2

¢(2) = =z ——e 3 = —2. g(2).

From above, we can show some properties of the standard normal.

Property 3.1.1.1: ¢(z) - 0 as z — £o0

Proof. Itis clear to see that as z — £00, then

lim ¢(z) = ——- lim e 2% =0

z—+o0 \2r z—Eoo

O

Property 3.1.1.2: For a standard normal distribution Z and for n € N, then E(Z""!) = nE(Z" 1)

Proof. Recall that ¢'(z) = —z - ¢(z) and ¢(z) — O as z — +oo

Calculating the expected value of Z"*! of the standard normal distribution gives us:

E(Zz") = /OO 2" (2)dz

— 00

_ / T a(2)d

— 00

_ _/OO M (2)dz

— 00

let u = 2" and dv = ¢'(z)dz, integrating by part gives us

E(Zz") = —z"d)(z)‘oo + /OO nz*"1g(2)dz

-0 —o0

=nE(Z")
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From proving the first two properties, we now can show that the excess kurtosis of a normal

distribution is Kurt(X) = 0

Proof. Recall that any normal distribution can be written as a standard normal distribution. Then

for
X—p

g

X ~N(p,0) = Z =

with
Z ~ N(0,1)

then Kurtosis definition is Kurt(Z) = E(Z%) then
E(Z*) =3E(Z*)  from Property 3.1.1.2
and because

var(Z) =1 3.7)
E(Z%) - (E(2))* =1 (3.8)

because E(Z) = 0, then E(Z?) = 1 ,therefore,

With excess kurtosis, then

3.2 Negative Kurtosis

We now consider the different distributions with negative excess kurtosis. Recall that, a distribution
that has a Kurt(X) < 0 are distributions with little to no outliers. Here are some of the distributions

we studied in this paper with negative kurtosis.

3.2.1 Uniform Distribution

In statistics, the continuous uniform distribution such that for each member of the family, all inter-
vals of the same length on the distribution’s support are equally probable. The support is defined

by the two parameters, a and b, which are its minimum and maximum values. The distribution is
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Normal(o,1)

FIGURE 3.1: A Normal Distribution Illustrating Zero Excess Kurtosis

defined as:

1

57— forxelab] —oo<a<b<oo.

fz) =

0, otherwise

As for this paper, we concentrate on the standard uniform distribution defined as

We prove the following

Property 3.2.1.1 If X ~ 1/(0, 1), then the nth moment is E(X") = ——

Proof. Since X € [0, 1] for a standard uniform, then

1
]E(X"):/ x"dx (3.9)
0
l,n+1 1
= b @10
1
=1 (3.11)
O
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It is also easy to see that the E(X) of the standard uniform distribution is § since

and its variance is:

var(X) = E(X?) — (EX)? (3.12)
_ /O " de—1/4 (3.13)
=1/3-1/4 (3.14)
= 1/12. (3.15)

Next, we can show that the excess kurtosis of the standard uniform distribution is: -6/5. First,

we begin with the definition of the excess kurtosis:

E(X —p)*

ot 3

Kurt(X) =
We evaluate the numerator of the excess kurtosis definition to have:

BE(X —p)* =122 /1(:10 —1/2)%dx
0

with a U-substitution, having u =  — 1/2, then

1/2
=122 / utdu (3.16)
—-1/2
5,1/2
—192. Y 17
5 1-1/2 (3.17)
2 1
= =_ 1
160~ 80 (3.18)
(3.19)
Therefore
w9
5

~~
ol
—
N
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which leads to an excess kurtosis of —g

UniformO,1)

1.00+

5 o0.50+

FIGURE 3.2: A Uniform Distribution With Kurtosis = -6/5

3.2.2 Beta Distribution

In probability theory and statistics, the beta distribution is a family of continuous probability dis-
tributions defined on the interval [0, 1] parametrized by two positive shape parameters, denoted by

a and 3, which control the shape of the distribution. It is defined as

xa—l —x B—1
fla) = S =)
where
_ T()T'(B)
Bleh) =161 p)

and for any given variable z
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We will omit showing the proof of the kurtosis of the beta distribution, but a sketch of calculating
its kurtosis is to generate E(z2") moments for n € {1,2,3,4}.

The excess kurtosis of a beta distribution with parameters o and 3 is the following (Weisstein, 2003):

6[(a = p)*(a+B+1) —afla+B+2)]

Kurt(X) = aBlatB+2)(atB+3)

To obtain a negative kurtosis from this, we chose our parameters o = § = 2, which yielded an
excess kurtosis

Kurt(X) = —0.8571429.

And to obtain an excess Kurtosis value of —0.12, we choose « = 2and 8 =5

Beta(2,2) Beta(2,5)

pdf
pdf

0.00 0.25 0.50 0.75 1.00 0.00 025 050 075 100
X x

(A) A Beta Distribution Illustrating Short Tails or Neg-(B) A Beta Distribution Illustrating Short Tails or Neg-
ative Excess Kurtosis (Beta(2,2)) ative Excess Kurtosis (Beta(2,5))

FIGURE 3.3: Two Beta Distributions With Kurtosis of —0.8571429 and —0.12 Respec-
tively
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3.3 Positive Kurtosis

Distributions with positive kurtosis are those that have long tails, which subsequently yield many
outliers. They are the distribution with excess kurtosis greater than zero. Here are some of the

distributions analyzed in this paper with positive kurtosis.
3.3.1 Double Exponential Distribution
Double exponential distribution also known as Laplace distribution. This distribution is often re-

ferred to as Laplace’s first law of errors. Given a location parameter p and scale parameter 5 > 0, a

double exponential Distribution is defined as

lz—p|
B

f2) = e

= 55¢ x € (—00,00).

We refer to a standard double exponential distribution that with location parameter 1 = 0 and scale
parameter 3 = 1. We want to derive the kurtosis of the Laplace distribution but first, we define the

following property.

Property 3.3.1.1: Assume X ~ DExp(u,3) for parameters 1 and /5. For any n even € N, then its
moment E(X") = n!

Proof. Given a function f(X), the moment of X about 4 of order n is defined as
E[(X = p)]".

Because the location parameter of a standard double exponential function is zero and its scale
parameter 3 = 1, then the double exponential distribution can be rewritten as:

1
f(z) = 56_”
Its moment about the mean y = 0 gives us:
n 1 > n, —|z|
E(X™) = 3 x"e "ldx.

Because of the symmetric nature of the standard double exponential, » and the existence of the

absolute value, we must split the function into two parts since the function is increasing on the left
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side of 0 and decreasing in the right side of zero. We have:

I L[
E(X™) = 5/ x"e*dx + 5/ z"e dx
0

— 00

1 oo
= 2x 3 / e Due to symmetry.
0

And we recognize the above function as the gamma function which is also equal to

/ z"e™? =n! (Miller, 2004a)
0

From there, we may now derive its excess kurtosis value.

Property 3.3.1.2: X ~ DExp(0, 1), then its excess kurtosis is Kurt(X) = 3.

Proof. By definition,
E(X — p)*
e

Kurt(X) = 3

g

For a standard double exponential distribution, it suffices to show that

From Property 3.3.1.1, we showed E(X™) = n!. Then

B(XY)
EXH]2

4!
RCIE
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Double Exponential mu = 0, b=1

o.a-

0.3-

pf

o.2-

0.1-

0.0-

—io -5

X0
ad
o

FIGURE 3.4: A Double Exponential Distribution of Kurtosis = 3
3.3.2 Logistic Distribution

In probability theory and statistics, the logistic distribution is a continuous probability distribution
which resembles the normal distribution in shape but has heavier tails (higher kurtosis). For a
location parameter 1 and scale parameter o > 0, then the logistic distribution is defined as

z—p
e o

T — 2
0’(1 + e*T”)

In this paper, we consider the standard logistic distribution for a location parameter ;1 = 0 and

fz) =

scale parameter o = 1, which we write as

el}

f($)=m~

The excess kurtosis of the standard logistic distribution is

Kurt(X) = 6 (Gupta and Kundu, 2010)
5 P
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logistic(mu = 0,s = 1)

pf

FIGURE 3.5: A Standard Logistic Distribution of Kurtosis = 6/5

3.3.3 Student’s t Distribution

In probability and statistics, Student’s t-distribution (or simply the t-distribution) is any member
of a family of continuous probability distributions that arises when estimating the mean of a nor-
mally distributed population in situations where the sample size is small and population standard
deviation is unknown. Let Z has a standard normal distribution and V' a chi-squared distribution
with n degrees of freedom with n € (—o0,00) and Z and V are independent. Then for a random

variable X for which

with n degrees of freedom is defined as:

Tl 1)/2) | a?\ e |
F@) = mtinr (1 + Z) z € (—00,00)  (Miller, 2004b).

To find the excess kurtosis of t-distribution, we first define the gamma distribution as follows:

a random variable X is referred to as a gamma distribution if and only if its probability density
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function is

1

=—— 2% %P for >0, a>0 and B>0
Bl (a)

f(x)

For 8 = 2 and a = n/2 the gamma distribution we get from substituting these values is called a

chi-square distribution since its probability distribution is

1
xn/Zflefx/Q

m fOI‘ I>0, a>0 and /8>0

where n is referred to as the degree of freedom. The kth moment about the origin of the gamma

distribution is given by

BT (a + k)

e (Miller, 2004b)

Hi =
which directly implies that the kth moment for a chi-square distribution with n degree of freedom

is
LLT(n/2+k)

BV =2

It is easy to show that the t-distribution has a mean of 0 since, by independence of Z and V/,
BE(T) =E(Z) - v/n- E(V—1/2)
and because the mean of the standard normal is 0, then
E(t) = 0- \/E]E(V‘W) =0

aslong as n > 1 to satisfy the restriction on E(V~1/2)

We now derive the kth moment of the t-distribution

k
By 7
E(”‘E<¢v7n>
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then by independence, we get

E(tF) = nkPE(ZF)E(VF/2).
First, we can quickly show that

“k/2y _ o-ks2L(n/2—k/2)
B(V /%) =2/

from the kth moment of the chi-square previously shown. Next we work with E(Z*)

Recall that we showed that
Vn € NJE(Z"™!) =nE(Z""')  Property 3.1.1.2

then:

E(Z%) = (k1) - E(ZH) (3.20)
= (k—1)- (k- S)E(Z’““‘) (3.21)
—(k—1)-(k—3)-(k—5)- E(Zk—ﬁ) (3.22)

and so on to have
:(k—1)-(k—3)-(k_5).....E(zk—21) for 1€N
From there, we can see that for any k odd, E(Z*) will always be 0. For k even, we get
1-3:5-...-(k=1)

We finally get to the kth moment of the t-distribution with n degree of freedom as:

nk/2.1.3.5....-(k—1)-T((n—k)/2)

E(Tk> = 2(k/2)F(n/2)
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Let there be a random variable X that has a t-distribution with n degree of freedom, then its

excess kurtosis is given as

Kurt(X) = - E 1
Proof.
4
Kurt(X) = W - 3.

We did show that the mean of a t-distribution must be 0 for n > 1. We can then rewrite the kurtosis

as

E(X)*
(02)?
n?.1.3-0((n—4)/2)

S N 72— (3.24)

(n-lI‘((n—2)/2) )
2-T(n/2)

3(n — 2)2T[(n — 4) /2]

Kurt(X) = -3 (3.23)

= AT (n/2) - 3. (3.25)
One of the well known property of the gamma function is
INa)=(a—1I'(a—1) a>0
Then
I'(n/2) =(n/2—-1)T'(n/2-1) (3.26)
=(n/2-1)(n/2 —2)'(n/2 - 2). (3.27)
Substitute equation (3.27) in equation (3.25), we get:
B 3(n —2)?
Kurt(X) = 21 n3=9) 3 (3.28)
_3(n—2)
R 3 (3.29)
6
= (3.30)
O
We simulated the following t-distributions
X ~ tag=64
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to get an excess kurtosis of Kurt(X) = 0.1 (figure 3.6b) and

X ~tar=10

To get an excess kurtosis of Kurt(X) = 1 (See figure 3.6a).

t(df = 10) t(df = 64)

pdf
d
°
S

“ 8 ; s 4 8 ; ;
x x

(A) A T-distribution Hlustrating Fat Tails or Positive(B) A T-distribution Illustrating Moderately Fat Tails
Excess Kurtosis Tyr—10 or Positive Excess Kurtosis Tgr—64

FIGURE 3.6: T-Distribution Kurtosis
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CHAPTER 4

SIMULATION STUDIES

Since a theoretical comparison among estimators is outside the scope of my thesis, a simulation
study to compare the performance of each estimators in capturing the true kurtosis parameter is
conducted in this chapter. We aim to compute confidence estimates using each estimator and then
compare coverage probability and mean width of these intervals for each one of the distributions

we introduced in Chapter 3 in capturing either zero, negative or positive excess kurtosis.

4.1 Simulation Techniques

The main objective of this paper is to compare the performance of the estimators. The criteria in
judging performance is derived from the coverage probability and average width of constructed
confidence intervals. In order to get these intervals, we had to simulate our dataset. Simulation

was done the following way:

For sample size n = 10, 20, 30, 50, 100, 300 we generate the distributions discussed in Chapter

3 using the Statistical Software R.

Standard normal distribution to capture zero kurtosis

Beta(2,2), Beta(2,5) and standard uniform to capture negative kurtosis

Standard logistic, standard double exponential and two Student t distributions with respec-

tive degrees of freedom 10 and 64 to capture positive kurtosis.

In constructing confidence intervals with 95% confidence level using the parametric method, for
any of the given distribution we discussed in Chapter 3, we generate n sample size for each of the

sample sizes mentioned above. Confidence intervals are calculated for each of the estimators g2, G2
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and by. The data was simulated 3,000 times to generate 3,000 lower and upper bound values for
each of the three estimators. We then take the average width of each estimators and then calculate
the percentage of times when the true kurtosis parameter of a given distribution is within the 3000
constructed intervals.

For the construction of confidence intervals with 95% confidence level using the bootstrap
method, from any of the distributions discussed in Chapter 3, given a sample size n and an es-
timator 6, we generate the bootstrap confidence intervals using 1, 000 bootstrap statistics. Based on
one of on the three estimators. We then simulate the process 3000 times to construct the bootstrap
intervals using the various bootstrap confidence interval techniques we discussed in Chapter 2. We
then take the average width of each intervals as well as the percent coverage every time the true
kurtosis parameter is within the 3000 constructed bootstrap intervals. Refer to Kibria and Banik

(2001) for more on simulation techniques.

4.2 Results and Discussion

As mentioned, for a given estimator, we are to construct confidence intervals using both parametric
and bootstrap methods. We would then calculate the coverage probability as well as the average
width of these intervals as our criteria to compare the performance of these interval estimators.
We constructed confidence intervals for all 7 distributions we discussed in Chapter 3 as they were
chosen to capture zero excess kurtosis, positive and negative excess kurtosis. R-Software was used

to complete the simulation procedures.

4.2.1 Standard Normal Distribution: Zero Kurtosis

The average width and coverage probability for all confidence intervals when data are generated
from N(0, 1) were reported in table 4.1 and figure 4.1. As expected, the larger the sample sizes, the

smaller the average width of the intervals regardless of confidence interval methods. On the other

hand, we observed that the only time the average widths of the intervals using classical method is
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smaller is for when sample size is n = 10. In all other sample sizes, the classical method does have
higher average width comparing to all other non-parametric method. Another observation is that
when we compare all three estimators by confidence interval construction methods, in every case,
the average width of b, is always less than or equal to that of g,. Furthermore, the average with
of g, is also always less than or equal to G, regardless of sample sizes. Such inequality was first
mentioned in equation (2.5), where I showed that var(b2) < var(gz) < var(Gz). As for the coverage
intervals, the classical method started achieving 95% coverage for sample sizes n = 30 or higher, for
all three estimators although we should mention that the estimator G has achieved 94% coverage
or higher on every method, regardless of sample sizes. We also noticed that the classical method
does show higher coverage probability comparing to all non parametric intervals for sample sizes
50 or higher. And as sample sizes increase, coverage probability of parametric methods slightly
decreases. Last, we see that G5 tends to also have the highest coverage or ties for highest coverage
comparing to the other two estimators regardless of sample sizes as well as confidence interval
construction method. g, performs the worst every time. From these observations, we can say that
for the normal distribution, the best method in estimating the true kurtosis parameter is to use the

classical method with G5 estimator.

4.2.2 Negative Kurtosis

To assess performance of estimators with negative kurtosis, we simulated data from X ~ Beta(2, 2)
with excess kurtosis Kurt(X) = —0.8571429. We also simulated data from X ~ Beta(2,5) with
excess kurtosis Kurt(X) = —0.12. Last from a standard uniform X ~ 1[0, 1] distribution with
excess kurtosis Kurt(X) = —6/5. All results are reported on Tables 4.3, 4.4 and Figures 4.2 and
4.3 for the Beta(2,2) and Beta(2,5) respectively. In Table 4.2 and Figure 4.4 for the standard uniform
distribution. As for interval average width, whether it is from either the Beta(2,2), Beta(2,5) or

Uniform[0,1], their behavior is similar. The higher the sample size, the shorter the intervals, as
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expected. Also, regardless of methods, the average width of b, < g2 < G5. For large sample sizes
(n > 30), the parametric method has higher average width than non parametric methods

In terms of coverage probability, if we look at the Standard Uniform distribution, the classi-
cal method reached at least 95% threshold for all three estimators regardless of sample sizes or
the interval construction method. If we now look at the Beta(2,2) Distribution, Efron’s Percentile
Bootstrap performs well and sometimes better than the classical method. The advantage of Efron’s
Percentile Bootstrap is that its average interval is always less than that of the classical method re-
gardless of sample size or estimators. Therefore, from these observations, we can say that for the
uniform distribution, the classical method is better for constantly reaching that 95% threshold, with
Efron’s percentile bootstrap being a close second. For Beta(2,2), Efron’s Percentile Bootstrap is bet-
ter because of to the fact that, in comparison to the classical method, its average interval widths
is smaller while constantly reaching that 95% coverage threshold. As for Beta(2,5), the classical
method appears to be the best approach in constructing confidence intervals as bootstrap methods

struggle to constantly get to that 95% threshold.

4.2.3 Positive Kurtosis

To assess performance of estimators with positive kurtosis, we simulated data from t distribution
with degree of freedom n = 10, 64 respectively (See Tables 4.5, 4.6 and Figures 4.6 and 4.5). We
also simulated data from the standard logistic distribution (see Figure 4.7 and Table 4.7). Last from
double exponential (see Figure 4.8 and Table 4.8)

To address performance of estimators with positive kurtosis. Data from standard double expo-
nential, logistic, and t-distributions were simulated to achieve that goal. We first look at X ~ Tg¢—¢4
which yielded an excess kurtosis value of Kurt(X) = 0.1. The t-distribution was specifically chosen
to see how well our confidence interval methods would properly capture the true kurtosis param-

eter as t-distribution with 64 degrees of freedom. The excess kurtosis of t4r—¢4 is close to a normal
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distribution with a kurtosis of 0. Our observation does suggest that the interval constructions with
coverage parameter reflects the results we get from the normal distribution. Like that of the kurto-
sis of a normal distribution, average width of the classical method is longer comparing to all other
bootstrap confidence interval methods for large sample size (n < 50) and its coverage probability
is also slightly higher than all other bootstrap method. We need to mention that the coverage of
such method is significantly lower than the marginal 95% level, even for large sample sizes. In
constructing bootstrap intervals, G5 is always greater than or equal to the next highest estimator in
terms of coverage probability. In terms of average width, for all other estimators, we noticed that,
for large sample n > 50, the classical method performs a lot worst comparing to all other bootstrap
methods, if we compare similar estimators. And in every case, we see that the coverage probability
rarely meets its 95% threshold only occasional for small sample size. But, with small sample sizes,
interval lengths are expected to be quite wide, thus the possible chance of capture the true kurtosis
parameter many times. Comparing the classical method and bootstrap methods, we did notice that
the bootstrap methods do have higher coverage probability, but none of these confidence interval
methods consistently meet their 95% threshold. So, when it comes to positive kurtosis parameter,
if sample size is small, it is best that estimator G5 with Efron’s Percentile Method is used. For large
sample size, there are not a clear winner since most of them failed to meet the 95% threshold due
to poor performance. But Efron’s method as well as Bias Corrected Percentile bootstrap does get
closer than most. Last, in choosing an estimator, it is recommended to always use G since it is
consistently higher than all other estimators even when they all perform poorly. g, performs the

worst is almost all cases.
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Table 4.1
Average Width and Coverage Probability of The Intervals When The Data Are Gen-
erated from N(0, 1)

10

11

12

13

14

15

16

17

18

19

20

21

Method Coverage Probability Width Estimator Sample Size
Bias Corrected Standard Bootstrap 0.79 3.60 g2 10.00
Bias Corrected Standard Bootstrap 0.93 6.36 Go 10.00
Bias Corrected Standard Bootstrap 0.56 291 bo 10.00
Bias Corrected Percentile Bootstrap 091 3.79 20 10.00
Bias Corrected Percentile Bootstrap 0.97 6.71 Go 10.00
Bias Corrected Percentile Bootstrap 0.80 3.08 bo 10.00
Classical 0.94 2.96 g9 10.00
Classical 0.95 5.23 Go 10.00
Classical 0.53 2.40 bo 10.00
Efron’s Percentile Bootstrap 1.00 3.43 g2 10.00
Efron’s Percentile Bootstrap 1.00 6.05 Go 10.00
Efron’s Percentile Bootstrap 0.86 2.77 ba 10.00
Hall’s Percentile Bootstrap 0.57 3.44 2o 10.00
Hall’s Percentile Bootstrap 0.77 6.09 Go 10.00
Hall’s Percentile Bootstrap 0.37 2.79 b 10.00
Bias Corrected Standard Bootstrap 0.80 2.80 <) 20.00
Bias Corrected Standard Bootstrap 0.88 3.65 Go 20.00
Bias Corrected Standard Bootstrap 0.67 2.53 bo 20.00
Bias Corrected Percentile Bootstrap 091 3.44 g2 20.00
Bias Corrected Percentile Bootstrap 0.93 4.49 Go 20.00
Bias Corrected Percentile Bootstrap 0.85 3.11 bo 20.00
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Average Width and Coverage Probability (Continued)

Table 4.1

Method Coverage Probability Width Estimator Sample Size
22 Classical 0.96 2.98 g 20.00
23 Classical 0.95 3.89 Go 20.00
24 Classical 0.93 2.69 bo 20.00
25 Efron’s Percentile Bootstrap 0.94 2.80 20 20.00
26 Efron’s Percentile Bootstrap 0.99 3.66 Go 20.00
27  Efron’s Percentile Bootstrap 0.84 2.53 bo 20.00
28 Hall’s Percentile Bootstrap 0.67 2.79 g2 20.00
29 Hall’s Percentile Bootstrap 0.79 3.64 Go 20.00
30 Hall’s Percentile Bootstrap 0.55 2.52 b 20.00
31 Bias Corrected Standard Bootstrap 0.80 2.38 g2 30.00
32 Bias Corrected Standard Bootstrap 0.87 2.83 Go 30.00
33 Bias Corrected Standard Bootstrap 0.72 2.22 ba 30.00
34 Bias Corrected Percentile Bootstrap 0.88 2.76 g2 30.00
35 Bias Corrected Percentile Bootstrap 0.92 3.29 Go 30.00
36 Bias Corrected Percentile Bootstrap 0.83 2.59 bo 30.00
37 Classical 0.96 2.75 g2 30.00
38 Classical 0.95 3.26 Go 30.00
39 Classical 0.96 2.57 ba 30.00
40 Efron’s Percentile Bootstrap 0.90 2.37 g2 30.00
41 Efron’s Percentile Bootstrap 0.96 2.81 Go 30.00
42 Efron’s Percentile Bootstrap 0.82 2.21 bo 30.00
43  Hall’s Percentile Bootstrap 0.74 2.35 g2 30.00
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Table 4.1
Average Width and Coverage Probability (Continued)

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Method Coverage Probability Width Estimator Sample Size
Hall’s Percentile Bootstrap 0.82 2.79 Go 30.00
Hall’s Percentile Bootstrap 0.63 2.20 ba 30.00
Bias Corrected Standard Bootstrap 0.83 1.94 g2 50.00
Bias Corrected Standard Bootstrap 0.87 2.15 Go 50.00
Bias Corrected Standard Bootstrap 0.78 1.86 bo 50.00
Bias Corrected Percentile Bootstrap 0.88 2.12 <0 50.00
Bias Corrected Percentile Bootstrap 0.91 2.34 Go 50.00
Bias Corrected Percentile Bootstrap 0.85 2.03 bo 50.00
Classical 0.96 2.34 go 50.00
Classical 0.95 2.59 Ga 50.00
Classical 0.96 2.25 ba 50.00
Efron’s Percentile Bootstrap 0.88 1.90 g2 50.00
Efron’s Percentile Bootstrap 0.92 2.10 Go 50.00
Efron’s Percentile Bootstrap 0.82 1.82 ba 50.00
Hall’s Percentile Bootstrap 0.76 1.85 g2 50.00
Hall’s Percentile Bootstrap 0.81 2.04 Go 50.00
Hall’s Percentile Bootstrap 0.70 1.77 ba 50.00
Bias Corrected Standard Bootstrap 0.84 1.46 g2 100.00
Bias Corrected Standard Bootstrap 0.87 1.54 Go 100.00
Bias Corrected Standard Bootstrap 0.81 1.43 bo 100.00
Bias Corrected Percentile Bootstrap 0.89 1.52 20 100.00
Bias Corrected Percentile Bootstrap 0.91 1.60 Go 100.00




Table 4.1
Average Width and Coverage Probability (Continued)

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Method Coverage Probability Width Estimator Sample Size
Bias Corrected Percentile Bootstrap 0.87 1.49 bo 100.00
Classical 0.96 1.78 g9 100.00
Classical 0.96 1.88 Go 100.00
Classical 0.96 1.75 bo 100.00
Efron’s Percentile Bootstrap 0.87 143 g2 100.00
Efron’s Percentile Bootstrap 091 1.51 Go 100.00
Efron’s Percentile Bootstrap 0.85 1.41 ba 100.00
Hall’s Percentile Bootstrap 0.82 1.43 g2 100.00
Hall’s Percentile Bootstrap 0.85 1.51 Go 100.00
Hall’s Percentile Bootstrap 0.78 1.41 b 100.00
Bias Corrected Standard Bootstrap 0.88 0.96 <) 300.00
Bias Corrected Standard Bootstrap 0.89 0.98 Go 300.00
Bias Corrected Standard Bootstrap 0.87 0.96 bo 300.00
Bias Corrected Percentile Bootstrap 091 0.97 g2 300.00
Bias Corrected Percentile Bootstrap 0.91 0.99 Go 300.00
Bias Corrected Percentile Bootstrap 0.90 0.97 bo 300.00
Classical 0.95 1.08 g2 300.00
Classical 0.95 1.10 Go 300.00
Classical 0.95 1.07 b 300.00
Efron’s Percentile Bootstrap 0.89 0.93 g2 300.00
Efron’s Percentile Bootstrap 0.90 0.95 Go 300.00
Efron’s Percentile Bootstrap 0.87 0.92 b 300.00
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Table 4.1
Average Width and Coverage Probability (Continued)

Method Coverage Probability Width Estimator Sample Size
88 Hall’s Percentile Bootstrap 0.86 0.95 g 300.00
89 Hall’s Percentile Bootstrap 0.88 0.96 Go 300.00
90 Hall’s Percentile Bootstrap 0.85 0.94 bo 300.00
Table 4.2
Average Width and Coverage Probability of The Intervals When The Data Are Gen-
erated from U0, 1]
Method Coverage Probability Width Estimator Sample Size
1 Bias Corrected Standard Bootstrap 0.98 3.33 <) 10.00
2 Bias Corrected Standard Bootstrap 0.98 5.89 Go 10.00
3 Bias Corrected Standard Bootstrap 0.99 2.70 bo 10.00
4 Bias Corrected Standard Bootstrap 0.97 0.54 g2 100.00
5 Bias Corrected Standard Bootstrap 0.97 0.57 Go 100.00
6 Bias Corrected Standard Bootstrap 0.94 0.53 bo 100.00
7  Bias Corrected Standard Bootstrap 1.00 1.96 g2 20.00
8 Bias Corrected Standard Bootstrap 1.00 2.55 Go 20.00
9 Bias Corrected Standard Bootstrap 0.95 1.77 ba 20.00
10  Bias Corrected Standard Bootstrap 0.99 1.37 g2 30.00
11 Bias Corrected Standard Bootstrap 0.99 1.63 Go 30.00
12 Bias Corrected Standard Bootstrap 0.94 1.28 ba 30.00
13 Bias Corrected Standard Bootstrap 0.96 0.28 g2 300.00
14 Bias Corrected Standard Bootstrap 0.96 0.28 Go 300.00
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Average Width and Coverage Probability (Continued)

Table 4.2

Method

Coverage Probability Width Estimator

Sample Size

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Bias Corrected Standard Bootstrap

Bias Corrected Standard Bootstrap

Bias Corrected Standard Bootstrap

Bias Corrected Standard Bootstrap

Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap

Bias Corrected Percentile Bootstrap

0.95

0.97

0.97

0.93

0.95

0.94

0.93

0.96

0.96

0.95

0.96

0.96

0.94

0.96

0.96

0.95

0.95

0.95

0.95

0.96

0.96

0.96

0.28

0.89

0.98

0.85

3.05

5.39

247

0.52

0.55

0.51

1.79

2.34

1.62

1.24

1.47

1.16

0.27

0.28

0.27

0.82

091

0.79

by

g2

Go

by

g2

Go

b

g2

Go

b

g2

Go

bs

g2

Go

by

g2

Go

b

g2

Go

b

300.00

50.00

50.00

50.00

10.00

10.00

10.00

100.00

100.00

100.00

20.00

20.00

20.00

30.00

30.00

30.00

300.00

300.00

300.00

50.00

50.00

50.00
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Average Width and Coverage Probability (Continued)

Table 4.2

Method Coverage Probability Width Estimator Sample Size
37 Classical 0.96 2.96 g 10.00
38 Classical 0.96 5.23 Go 10.00
39 Classical 0.98 2.40 bo 10.00
40 Classical 1.00 1.78 20 100.00
41 Classical 1.00 1.88 Go 100.00
42  Classical 1.00 1.75 bo 100.00
43  Classical 0.99 298 g2 20.00
44 Classical 0.99 3.89 Go 20.00
45 Classical 1.00 2.69 b 20.00
46 Classical 1.00 2.75 g2 30.00
47  Classical 1.00 3.26 Go 30.00
48 Classical 1.00 2.57 b 30.00
49 Classical 1.00 1.08 g2 300.00
50 Classical 1.00 1.10 Go 300.00
51 Classical 1.00 1.07 ba 300.00
52 Classical 1.00 2.34 20 50.00
53 Classical 1.00 2.59 Go 50.00
54  Classical 1.00 2.25 bo 50.00
55 Efron’s Percentile Bootstrap 1.00 3.26 g2 10.00
56 Efron’s Percentile Bootstrap 1.00 5.77 Go 10.00
57  Efron’s Percentile Bootstrap 1.00 2.64 bo 10.00
58 Efron’s Percentile Bootstrap 0.96 0.54 g2 100.00
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Table 4.2
Average Width and Coverage Probability (Continued)

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Method Coverage Probability Width Estimator Sample Size
Efron’s Percentile Bootstrap 0.96 0.56 Go 100.00
Efron’s Percentile Bootstrap 0.97 0.53 ba 100.00
Efron’s Percentile Bootstrap 0.99 1.93 g2 20.00
Efron’s Percentile Bootstrap 0.99 2.52 Go 20.00
Efron’s Percentile Bootstrap 1.00 1.74 ba 20.00
Efron’s Percentile Bootstrap 0.98 1.32 <0 30.00
Efron’s Percentile Bootstrap 0.98 1.57 Go 30.00
Efron’s Percentile Bootstrap 1.00 1.24 bo 30.00
Efron’s Percentile Bootstrap 0.96 0.28 g2 300.00
Efron’s Percentile Bootstrap 0.96 0.28 Go 300.00
Efron’s Percentile Bootstrap 0.96 0.28 bo 300.00
Efron’s Percentile Bootstrap 0.97 0.88 g2 50.00
Efron’s Percentile Bootstrap 0.97 0.97 Go 50.00
Efron’s Percentile Bootstrap 0.99 0.84 ba 50.00
Hall’s Percentile Bootstrap 0.87 3.23 g2 10.00
Hall’s Percentile Bootstrap 0.88 5.71 Go 10.00
Hall’s Percentile Bootstrap 0.64 2.61 ba 10.00
Hall’s Percentile Bootstrap 0.95 0.54 g2 100.00
Hall’s Percentile Bootstrap 0.95 0.56 Go 100.00
Hall’s Percentile Bootstrap 0.91 0.53 by 100.00
Hall’s Percentile Bootstrap 091 1.89 20 20.00
Hall’s Percentile Bootstrap 0.91 2.47 Go 20.00
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Table 4.2
Average Width and Coverage Probability (Continued)

Method Coverage Probability Width Estimator Sample Size
81 Hall’s Percentile Bootstrap 0.77 1.70 bo 20.00
82 Hall’s Percentile Bootstrap 0.93 1.33 g2 30.00
83 Hall’s Percentile Bootstrap 0.93 1.58 Go 30.00
84 Hall’s Percentile Bootstrap 0.83 1.24 bo 30.00
85 Hall’s Percentile Bootstrap 0.95 0.28 g2 300.00
86 Hall’s Percentile Bootstrap 0.95 0.28 Go 300.00
87 Hall’s Percentile Bootstrap 0.94 0.28 ba 300.00
88 Hall’s Percentile Bootstrap 0.94 0.88 g2 50.00
89 Hall’s Percentile Bootstrap 0.94 0.97 Go 50.00
90 Hall’s Percentile Bootstrap 0.87 0.84 ba 50.00

Table 4.3
Average Width and Coverage Probability of The Intervals When The Data Are Gen-
erated from Beta(2,2)

Method Coverage Probability Width Estimator Sample Size

Bias Corrected Standard Bootstrap 0.98 3.33 g2 10.00

Bias Corrected Standard Bootstrap 0.97 5.89 Go 10.00

Bias Corrected Standard Bootstrap 0.86 2.70 bo 10.00

Bias Corrected Percentile Bootstrap 0.97 3.32 g2 10.00

Bias Corrected Percentile Bootstrap 0.96 5.87 Go 10.00

Bias Corrected Percentile Bootstrap 0.91 2.69 bo 10.00

Classical 0.97 2.96 g2 10.00
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Average Width and Coverage Probability(Continued)

Table 4.3

Method Coverage Probability Width Estimator Sample Size

8 Classical 0.96 523 Go 10.00

9 Classical 0.99 2.40 b 10.00
10  Efron’s Percentile Bootstrap 1.00 3.24 g2 10.00
11  Efron’s Percentile Bootstrap 1.00 571 Go 10.00
12 Efron’s Percentile Bootstrap 1.00 2.62 ba 10.00
13 Hall’s Percentile Bootstrap 0.80 3.22 <0 10.00
14 Hall’s Percentile Bootstrap 0.87 5.70 Go 10.00
15 Hall’s Percentile Bootstrap 0.56 2.61 ba 10.00
16  Bias Corrected Standard Bootstrap 0.97 217 g2 20.00
17  Bias Corrected Standard Bootstrap 0.98 2.83 Go 20.00
18 Bias Corrected Standard Bootstrap 0.89 1.96 bo 20.00
19 Bias Corrected Percentile Bootstrap 0.95 2.29 g2 20.00
20 Bias Corrected Percentile Bootstrap 0.96 2.98 Go 20.00
21 Bias Corrected Percentile Bootstrap 0.93 2.07 ba 20.00
22 Classical 0.99 2.98 g2 20.00
23 Classical 0.99 3.89 Go 20.00
24 Classical 0.99 2.69 b 20.00
25 Efron’s Percentile Bootstrap 1.00 211 g2 20.00
26 Efron’s Percentile Bootstrap 1.00 2.75 Go 20.00
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Table 4.3
Average Width and Coverage Probability(Continued)

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Method Coverage Probability Width Estimator Sample Size
Efron’s Percentile Bootstrap 1.00 1.90 bo 20.00
Hall’s Percentile Bootstrap 0.87 2.10 g2 20.00
Hall’s Percentile Bootstrap 0.91 2.75 Go 20.00
Hall’s Percentile Bootstrap 0.73 1.90 bo 20.00
Bias Corrected Standard Bootstrap 0.96 1.58 g2 30.00
Bias Corrected Standard Bootstrap 0.97 1.88 Go 30.00
Bias Corrected Standard Bootstrap 0.90 1.48 ba 30.00
Bias Corrected Percentile Bootstrap 0.96 1.62 g2 30.00
Bias Corrected Percentile Bootstrap 0.95 1.92 Go 30.00
Bias Corrected Percentile Bootstrap 0.94 1.51 ba 30.00
Classical 1.00 2.75 g2 30.00
Classical 1.00 3.26 Go 30.00
Classical 1.00 2.57 bo 30.00
Efron’s Percentile Bootstrap 1.00 1.56 g2 30.00
Efron’s Percentile Bootstrap 0.99 1.86 Go 30.00
Efron’s Percentile Bootstrap 0.99 1.46 bo 30.00
Hall’s Percentile Bootstrap 0.90 1.57 g2 30.00
Hall’s Percentile Bootstrap 0.93 1.86 Go 30.00
Hall’s Percentile Bootstrap 0.79 1.46 ba 30.00
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Table 4.3
Average Width and Coverage Probability(Continued)

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Method Coverage Probability Width Estimator Sample Size
Bias Corrected Standard Bootstrap 0.96 1.11 g 50.00
Bias Corrected Standard Bootstrap 0.97 1.23 Go 50.00
Bias Corrected Standard Bootstrap 0.92 1.07 bo 50.00
Bias Corrected Percentile Bootstrap 0.96 1.11 20 50.00
Bias Corrected Percentile Bootstrap 0.95 1.23 Go 50.00
Bias Corrected Percentile Bootstrap 0.95 1.06 bo 50.00
Classical 1.00 2.34 g2 50.00
Classical 1.00 2.59 Go 50.00
Classical 1.00 2.25 bo 50.00
Efron’s Percentile Bootstrap 0.99 1.10 g2 50.00
Efron’s Percentile Bootstrap 0.99 1.22 Go 50.00
Efron’s Percentile Bootstrap 0.98 1.05 ba 50.00
Hall’s Percentile Bootstrap 0.92 1.09 g2 50.00
Hall’s Percentile Bootstrap 0.94 1.21 Go 50.00
Hall’s Percentile Bootstrap 0.85 1.05 by 50.00
Bias Corrected Standard Bootstrap 0.95 0.71 g2 100.00
Bias Corrected Standard Bootstrap 0.96 0.75 Go 100.00
Bias Corrected Standard Bootstrap 0.93 0.70 bo 100.00
Bias Corrected Percentile Bootstrap 0.95 0.71 g2 100.00




Average Width and Coverage Probability(Continued)

Table 4.3

Method

Coverage Probability Width Estimator

Sample Size

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Classical

Classical

Classical

Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap

Hall’s Percentile Bootstrap

Hall’s Percentile Bootstrap

Hall’s Percentile Bootstrap

Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Classical

Classical

0.95

0.95

1.00

1.00

1.00

0.97

0.97

0.96

0.94

0.95

0.90

0.95

0.95

0.94

0.95

0.95

0.95

1.00

1.00

0.75

0.70

1.78

1.88

1.75

0.71

0.74

0.69

0.71

0.75

0.70

0.38

0.39

0.38

0.38

0.39

0.38

1.08

1.10

Go

b

g2

Go

b

g2

Go

bs

g2

Go

by

g2

G

b

g2

Go

b

g2

Go

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

300.00

300.00

300.00

300.00

300.00

300.00

300.00

300.00
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Average Width and Coverage Probability(Continued)

Table 4.3

Method Coverage Probability Width Estimator Sample Size
84 Classical 1.00 1.07 bo 300.00
85 Efron’s Percentile Bootstrap 0.95 0.38 g2 300.00
86 Efron’s Percentile Bootstrap 0.95 0.39 Go 300.00
87  Efron’s Percentile Bootstrap 0.95 0.38 bo 300.00
88 Hall’s Percentile Bootstrap 0.94 0.38 g2 300.00
89 Hall’s Percentile Bootstrap 0.94 0.39 Go 300.00
90 Hall’s Percentile Bootstrap 0.93 0.38 ba 300.00
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Average Width and Coverage Probability of The Intervals When The Data Are Gen-

Table 4.4

erated from Beta(2,5)
Method Coverage Probability Width Estimator Sample Size
1 Classical 0.94 2.96 g2 10.00
2 (lassical 0.94 5.23 Ga 10.00
3 Classical 0.54 2.40 ba 10.00
4 Classical 0.95 2.98 20 20.00
5 Classical 0.93 3.89 Ga 20.00
6 Classical 0.92 2.69 ba 20.00
7  Classical 0.95 2.75 g9 30.00
8 Classical 0.94 3.26 Go 30.00
9 C(lassical 0.95 2.57 bo 30.00
10 Classical 0.95 2.34 g2 50.00
11 Classical 0.94 2.59 Go 50.00
12 Classical 0.96 2.25 b 50.00
13 Classical 0.95 1.78 2o 100.00
14 Classical 0.95 1.88 Go 100.00
15 Classical 0.95 1.75 b 100.00
16 Classical 0.95 1.08 <) 300.00
17 Classical 0.95 1.10 Go 300.00
18 Classical 0.95 1.07 ba 300.00
19 Bias Corrected Standard Bootstrap 0.79 3.69 g2 10.00
20 Bias Corrected Standard Bootstrap 0.94 6.52 Go 10.00
21 Bias Corrected Standard Bootstrap 0.57 2.99 bo 10.00
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Average Width and Coverage Probability (Continued)

Table 4.4

Method

Coverage Probability Width Estimator

Sample Size

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Hall’s Percentile Bootstrap

Hall’s Percentile Bootstrap

Hall’s Percentile Bootstrap

Hall’s Percentile Bootstrap

Hall’s Percentile Bootstrap

Hall’s Percentile Bootstrap

Hall’s Percentile Bootstrap

0.78

0.86

0.67

0.80

0.86

0.73

0.80

0.84

0.75

0.86

0.88

0.83

0.90

0.91

0.89

0.54

0.71

0.34

0.66

0.77

0.54

0.69

3.16

4.12

2.85

2.65

3.15

248

2.13

2.36

2.04

1.64

1.72

1.61

1.03

1.05

1.02

3.52

6.21

2.85

2.98

3.88

2.68

2.58

g2

Go

bs

g2

Go

by

g2

Go

by

g2

Go

b

g2

Go

bo

g2

Go

bs

g2

Go

bs

g2

20.00

20.00

20.00

30.00

30.00

30.00

50.00

50.00

50.00

100.00

100.00

100.00

300.00

300.00

300.00

10.00

10.00

10.00

20.00

20.00

20.00

30.00
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Average Width and Coverage Probability (Continued)

Table 4.4

Method

Coverage Probability Width Estimator

Sample Size

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap

Efron’s Percentile Bootstrap

0.77

0.60

0.75

0.79

0.69

0.81

0.84

0.78

0.87

0.88

0.86

1.00

1.00

0.93

0.93

0.99

0.83

0.90

0.95

0.83

0.89

0.93

3.07

241

2.09

231

2.01

1.59

1.67

1.55

1.03

1.04

1.02

3.50

6.17

2.83

2.97

3.88

2.68

2.60

3.09

243

2.09

2.31

Go

b

g2

Go

b

g2

Go

bo

g2

Go

by

g2

Go

bo

g2

Go

b

g2

Go

bo

g2

Go

30.00

30.00

50.00

50.00

50.00

100.00

100.00

100.00

300.00

300.00

300.00

10.00

10.00

10.00

20.00

20.00

20.00

30.00

30.00

30.00

50.00

50.00
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Average Width and Coverage Probability (Continued)

Table 4.4

Method

Coverage Probability Width Estimator

Sample Size

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap

Bias Corrected Percentile Bootstrap

0.85

0.89

091

0.87

0.92

0.93

0.92

0.90

0.95

0.79

0.88

0.91

0.82

0.89

091

0.84

0.90

091

0.87

0.89

091

0.88

2.01

1.60

1.69

1.57

1.02

1.04

1.02

3.74

6.61

3.03

3.65

4.76

3.29

3.07

3.66

2.88

2.38

2.63

2.28

1.70

1.78

1.66

by

g2

Go

by

g2

Go

b

g2

Go

b

g2

Go

bo

g2

Go

by

g2

G

b

g2

Go

b

50.00

100.00

100.00

100.00

300.00

300.00

300.00

10.00

10.00

10.00

20.00

20.00

20.00

30.00

30.00

30.00

50.00

50.00

50.00

100.00

100.00

100.00
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Table 4.4
Average Width and Coverage Probability (Continued)

Method Coverage Probability Width Estimator Sample Size
88 Bias Corrected Percentile Bootstrap 091 1.04 g 300.00
89 Bias Corrected Percentile Bootstrap 0.92 1.06 Go 300.00
90 Bias Corrected Percentile Bootstrap 0.91 1.03 bo 300.00
Table 4.5
Average Width and Coverage Probability of the intervals when the data are gener-
ated from t(4r—10)
Method Coverage Probability Width Estimator Sample Size
1 Bias Corrected Standard Bootstrap 0.53 3.75 <) 10.00
2 Bias Corrected Standard Bootstrap 0.81 6.63 Go 10.00
3 Bias Corrected Standard Bootstrap 0.34 3.04 bo 10.00
4 Bias Corrected Standard Bootstrap 0.65 2.47 g2 100.00
5 Bias Corrected Standard Bootstrap 0.68 2.60 Go 100.00
6 Bias Corrected Standard Bootstrap 0.62 242 bo 100.00
7  Bias Corrected Standard Bootstrap 0.57 3.41 g2 20.00
8 Bias Corrected Standard Bootstrap 0.72 4.44 Go 20.00
9 Bias Corrected Standard Bootstrap 0.46 3.07 ba 20.00
10  Bias Corrected Standard Bootstrap 0.58 3.15 g2 30.00
11 Bias Corrected Standard Bootstrap 0.67 3.75 Go 30.00
12 Bias Corrected Standard Bootstrap 0.51 2.95 ba 30.00
13 Bias Corrected Standard Bootstrap 0.71 2.16 g2 300.00
14 Bias Corrected Standard Bootstrap 0.73 2.20 Go 300.00
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Average Width and Coverage Probability (Continued)

Table 4.5

Method

Coverage Probability Width Estimator

Sample Size

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Bias Corrected Standard Bootstrap

Bias Corrected Standard Bootstrap

Bias Corrected Standard Bootstrap

Bias Corrected Standard Bootstrap

Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap

Bias Corrected Percentile Bootstrap

0.70

0.60

0.67

0.56

0.79

0.92

0.64

0.72

0.75

0.69

0.78

0.87

0.70

0.73

0.82

0.67

0.77

0.78

0.75

0.72

0.77

0.68

2.15

2.77

3.07

2.66

4.00

7.06

3.24

245

2.58

2.40

425

5.53

3.83

3.78

4.50

3.53

2.03

2.06

2.01

3.14

3.48

3.01

by

g2

Go

by

g2

Go

b

g2

Go

b

g2

Go

bs

g2

Go

by

g2

Go

b

g2

Go

b

300.00

50.00

50.00

50.00

10.00

10.00

10.00

100.00

100.00

100.00

20.00

20.00

20.00

30.00

30.00

30.00

300.00

300.00

300.00

50.00

50.00

50.00
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Average Width and Coverage Probability (Continued)

Table 4.5

Method Coverage Probability Width Estimator Sample Size
37 Classical 0.44 2.96 g 10.00
38 Classical 0.92 5.23 Go 10.00
39 Classical 0.17 2.40 by 10.00
40 Classical 0.57 1.78 20 100.00
41 Classical 0.63 1.88 Go 100.00
42  Classical 0.54 1.75 bo 100.00
43 Classical 0.61 2.98 g2 20.00
44  Classical 0.86 3.89 Go 20.00
45 Classical 0.39 2.69 ba 20.00
46 Classical 0.64 2.75 g2 30.00
47  Classical 0.82 3.26 Go 30.00
48 Classical 0.50 2.57 b 30.00
49 Classical 0.52 1.08 g2 300.00
50 Classical 0.54 1.10 Go 300.00
51 Classical 0.51 1.07 ba 300.00
52 Classical 0.63 2.34 20 50.00
53 Classical 0.73 2.59 Go 50.00
54  Classical 0.54 2.25 bo 50.00
55 Efron’s Percentile Bootstrap 0.78 3.58 g2 10.00
56 Efron’s Percentile Bootstrap 1.00 6.32 Go 10.00
57  Efron’s Percentile Bootstrap 0.43 2.90 bo 10.00
58 Efron’s Percentile Bootstrap 0.65 2.35 g2 100.00
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Table 4.5
Average Width and Coverage Probability (Continued)

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Method Coverage Probability Width Estimator Sample Size
Efron’s Percentile Bootstrap 0.70 247 Go 100.00
Efron’s Percentile Bootstrap 0.62 2.30 ba 100.00
Efron’s Percentile Bootstrap 0.65 3.22 g2 20.00
Efron’s Percentile Bootstrap 0.83 421 Go 20.00
Efron’s Percentile Bootstrap 0.53 2.91 b 20.00
Efron’s Percentile Bootstrap 0.65 3.07 <0 30.00
Efron’s Percentile Bootstrap 0.77 3.66 Go 30.00
Efron’s Percentile Bootstrap 0.56 2.87 ba 30.00
Efron’s Percentile Bootstrap 0.71 1.99 g2 300.00
Efron’s Percentile Bootstrap 0.73 2.02 Go 300.00
Efron’s Percentile Bootstrap 0.70 1.97 bo 300.00
Efron’s Percentile Bootstrap 0.64 2.67 g2 50.00
Efron’s Percentile Bootstrap 0.72 2.96 Go 50.00
Efron’s Percentile Bootstrap 0.58 2.57 ba 50.00
Hall’s Percentile Bootstrap 0.36 3.55 g2 10.00
Hall’s Percentile Bootstrap 0.61 6.28 Go 10.00
Hall’s Percentile Bootstrap 0.21 2.87 ba 10.00
Hall’s Percentile Bootstrap 0.59 2.34 g2 100.00
Hall’s Percentile Bootstrap 0.63 2.46 Go 100.00
Hall’s Percentile Bootstrap 0.56 2.29 ba 100.00
Hall’s Percentile Bootstrap 0.45 3.26 20 20.00
Hall’s Percentile Bootstrap 0.60 4.25 Go 20.00
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Table 4.5
Average Width and Coverage Probability (Continued)

Method Coverage Probability Width Estimator Sample Size
81 Hall’s Percentile Bootstrap 0.35 2.94 bo 20.00
82 Hall’s Percentile Bootstrap 0.50 2.98 g2 30.00
83 Hall’s Percentile Bootstrap 0.59 3.54 Go 30.00
84 Hall’s Percentile Bootstrap 0.42 2.79 bo 30.00
85 Hall’s Percentile Bootstrap 0.69 1.97 g2 300.00
86 Hall’s Percentile Bootstrap 0.71 2.00 Go 300.00
87 Hall’s Percentile Bootstrap 0.68 1.96 ba 300.00
88 Hall’s Percentile Bootstrap 0.53 2.69 g2 50.00
89 Hall’s Percentile Bootstrap 0.61 2.98 Go 50.00
90 Hall’s Percentile Bootstrap 0.48 2.58 ba 50.00
Table 4.6
Average Width and Coverage Probability of The Intervals When The Data Are Gen-
erated from *(4r—ga)
Method Coverage Probability Width Estimator Sample Size
1 Bias Corrected Standard Bootstrap 0.78 3.58 g2 10.00
2 Bias Corrected Standard Bootstrap 0.94 6.34 Go 10.00
3 Bias Corrected Standard Bootstrap 0.54 2.90 bo 10.00
4 Bias Corrected Standard Bootstrap 0.83 1.55 g2 100.00
5 Bias Corrected Standard Bootstrap 0.86 1.63 Go 100.00
6 Bias Corrected Standard Bootstrap 0.80 1.52 bo 100.00
7  Bias Corrected Standard Bootstrap 0.79 2.93 g2 20.00
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Average Width and Coverage Probability (Continued)

Table 4.6

Method

Coverage Probability Width Estimator

Sample Size

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap

Bias Corrected Percentile Bootstrap

0.88

0.66

0.78

0.85

0.69

0.88

0.88

0.86

0.79

0.84

0.73

0.89

0.96

0.79

0.88

0.89

0.86

0.89

0.93

0.83

0.88

0.91

3.81

2.64

2.47

2.94

2.31

1.06

1.08

1.05

2.02

2.23

1.94

3.86

6.83

3.13

1.62

1.71

1.59

3.54

4.62

3.20

2.87

341

Go

b

g2

Go

b

g2

Go

bo

g2

Go

by

g2

Go

b

g2

Go

b

g2

Go

bo

g2

Go

20.00

20.00

30.00

30.00

30.00

300.00

300.00

300.00

50.00

50.00

50.00

10.00

10.00

10.00

100.00

100.00

100.00

20.00

20.00

20.00

30.00

30.00
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Average Width and Coverage Probability (Continued)

Table 4.6

Method

Coverage Probability Width Estimator

Sample Size

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Classical
Classical
Classical
Classical
Classical
Classical
Classical
Classical
Classical
Classical
Classical
Classical
Classical
Classical

Classical

0.82

0.90

091

0.88

0.86

0.89

0.83

091

0.95

0.45

0.95

0.95

0.95

0.96

0.95

0.89

0.96

0.95

0.93

0.93

0.94

0.93

2.68

1.07

1.09

1.06

2.19

242

2.10

2.96

523

240

1.78

1.88

1.75

2.98

3.89

2.69

2.75

3.26

2.57

1.08

1.10

1.07

by

g2

Go

by

g2

Go

b

g2

Go

b

g2

Go

bs

g2

Go

by

g2

Go

b

g2

Go

b

30.00

300.00

300.00

300.00

50.00

50.00

50.00

10.00

10.00

10.00

100.00

100.00

100.00

20.00

20.00

20.00

30.00

30.00

30.00

300.00

300.00

300.00
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Table 4.6
Average Width and Coverage Probability (Continued)

Method Coverage Probability Width Estimator Sample Size
52 Classical 0.96 2.34 g 50.00
53 Classical 0.95 2.59 Go 50.00
54 Classical 0.95 2.25 bo 50.00
55 Efron’s Percentile Bootstrap 1.00 3.44 20 10.00
56 Efron’s Percentile Bootstrap 1.00 6.08 Go 10.00
57  Efron’s Percentile Bootstrap 0.82 2.79 bo 10.00
58 Efron’s Percentile Bootstrap 0.86 1.53 g2 100.00
59  Efron’s Percentile Bootstrap 0.89 1.61 Go 100.00
60 Efron’s Percentile Bootstrap 0.82 1.50 ba 100.00
61 Efron’s Percentile Bootstrap 0.91 2.83 g2 20.00
62 Efron’s Percentile Bootstrap 0.98 3.69 Go 20.00
63 Efron’s Percentile Bootstrap 0.80 2.55 ba 20.00
64 Efron’s Percentile Bootstrap 0.88 2.39 g2 30.00
65 Efron’s Percentile Bootstrap 0.94 2.84 Go 30.00
66 Efron’s Percentile Bootstrap 0.80 2.23 by 30.00
67 Efron’s Percentile Bootstrap 0.88 1.03 g2 300.00
68 Efron’s Percentile Bootstrap 0.90 1.05 Go 300.00
69 Efron’s Percentile Bootstrap 0.87 1.02 bo 300.00
70  Efron’s Percentile Bootstrap 0.87 1.98 g2 50.00
71 Efron’s Percentile Bootstrap 0.92 2.19 Go 50.00
72 Efron’s Percentile Bootstrap 0.80 1.90 bo 50.00
73 Hall’s Percentile Bootstrap 0.55 3.45 g2 10.00
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Table 4.6
Average Width and Coverage Probability (Continued)

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

Method Coverage Probability Width Estimator Sample Size
Hall’s Percentile Bootstrap 0.75 6.11 Go 10.00
Hall’s Percentile Bootstrap 0.35 2.80 ba 10.00
Hall’s Percentile Bootstrap 0.81 1.54 g2 100.00
Hall’s Percentile Bootstrap 0.84 1.62 Go 100.00
Hall’s Percentile Bootstrap 0.77 1.51 b 100.00
Hall’s Percentile Bootstrap 0.66 2.87 <) 20.00
Hall’s Percentile Bootstrap 0.79 3.75 Go 20.00
Hall’s Percentile Bootstrap 0.52 2.59 ba 20.00
Hall’s Percentile Bootstrap 0.71 2.42 g2 30.00
Hall’s Percentile Bootstrap 0.80 2.88 Go 30.00
Hall’s Percentile Bootstrap 0.62 2.26 bo 30.00
Hall’s Percentile Bootstrap 0.86 1.04 g2 300.00
Hall’s Percentile Bootstrap 0.87 1.06 Go 300.00
Hall’s Percentile Bootstrap 0.84 1.03 ba 300.00
Hall’s Percentile Bootstrap 0.75 1.96 g2 50.00
Hall’s Percentile Bootstrap 0.80 2.17 Go 50.00
Hall’s Percentile Bootstrap 0.68 1.88 b 50.00
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Average Width and Coverage Probability of The Intervals When The Data Are Gen-
erated from Logistic(0,1)

Table 4.7

Method

Coverage Probability Width Estimator

Sample Size

10

11

12

13

14

15

16

17

18

19

20

21

Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Standard Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap

Bias Corrected Percentile Bootstrap

0.50

0.80

0.30

0.66

0.69

0.63

0.57

0.70

0.47

0.58

0.68

0.51

0.76

0.78

0.75

0.62

0.69

0.57

0.79

0.91

0.63

3.80

6.71

3.07

2.65

2.79

2.60

3.62

473

3.27

3.33

3.96

3.11

2.15

2.19

2.14

3.09

3.42
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b
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Go
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10.00
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100.00

100.00

20.00

20.00

20.00

30.00

30.00

30.00

300.00

300.00

300.00

50.00

50.00

50.00

10.00

10.00

10.00
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Average Width and Coverage Probability (Continued)

Table 4.7

Method

Coverage Probability Width Estimator

Sample Size

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Classical

Classical

Classical

Classical

Classical

Classical

Classical

0.74

0.77

0.71

0.76

0.85

0.67

0.75

0.82

0.69

0.79

0.81

0.78

0.73

0.78

0.68

0.37

0.89

0.13

0.57

0.61

0.53

0.54

2.71

2.85

2.65

4.39

5.73

3.97

4.04

4.82

3.78

2.16

2.19

2.14

3.38

3.75

3.25

2.96

523

240

1.78

1.88

1.75

2.98

g2

Go

bs

g2

Go

by

g2

Go

by

g2

Go

b

g2

Go
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g2

Go
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by

g2

100.00

100.00

100.00

20.00

20.00

20.00

30.00

30.00

30.00

300.00

300.00

300.00

50.00

50.00

50.00
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10.00

10.00

100.00

100.00

100.00

20.00
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Average Width and Coverage Probability (Continued)

Table 4.7

Method Coverage Probability Width Estimator Sample Size
44 Classical 0.80 3.89 Go 20.00
45 Classical 0.36 2.69 ba 20.00
46 Classical 0.59 2.75 g2 30.00
47  Classical 0.76 3.26 Go 30.00
48 Classical 0.46 2.57 bo 30.00
49 C(Classical 0.51 1.08 <0 300.00
50 Classical 0.53 1.10 Go 300.00
51 Classical 0.49 1.07 bo 300.00
52 Classical 0.58 2.34 g2 50.00
53 Classical 0.69 2.59 Go 50.00
54 Classical 0.50 2.25 ba 50.00
55 Efron’s Percentile Bootstrap 0.71 3.61 g2 10.00
56 Efron’s Percentile Bootstrap 1.00 6.37 Go 10.00
57  Efron’s Percentile Bootstrap 0.36 292 ba 10.00
58 Efron’s Percentile Bootstrap 0.68 2.55 g2 100.00
59 Efron’s Percentile Bootstrap 0.72 2.69 Go 100.00
60 Efron’s Percentile Bootstrap 0.65 2.50 b 100.00
61 Efron’s Percentile Bootstrap 0.65 3.43 g2 20.00
62 Efron’s Percentile Bootstrap 0.82 4.48 Go 20.00
63 Efron’s Percentile Bootstrap 0.51 3.09 bo 20.00
64 Efron’s Percentile Bootstrap 0.62 3.23 20 30.00
65 Efron’s Percentile Bootstrap 0.74 3.84 Go 30.00
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Average Width and Coverage Probability (Continued)

Table 4.7

Method

Coverage Probability Width Estimator

Sample Size

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82
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84

85

86

87

Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Efron’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap
Hall’s Percentile Bootstrap

Hall’s Percentile Bootstrap

0.54

0.75

0.76

0.74

0.64

0.72

0.58

0.34

0.61

0.20

0.62

0.66

0.59

0.46

0.61

0.36

0.51

0.61

0.44

0.72

0.74

0.72

3.02

2.04

2.08

2.03

291

3.23

2.80

3.62

6.41

2.93

2.53

2.66

248

3.44

4.49

3.10

3.24

3.85

3.03
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b
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b
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b
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b
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300.00

300.00

50.00
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100.00
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20.00
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Table 4.7
Average Width and Coverage Probability (Continued)

Method Coverage Probability Width Estimator Sample Size
88 Hall’s Percentile Bootstrap 0.56 2.95 g 50.00
89 Hall’s Percentile Bootstrap 0.63 3.27 Go 50.00
90 Hall’s Percentile Bootstrap 0.52 2.84 bo 50.00
Table 4.8
Average Width and Coverage Probability of The Intervals When The Data Are Gen-
erated from Exponential(0,1)
Method Coverage Probability Width Estimator Sample Size
1 Bias Corrected Standard Bootstrap 0.33 4.31 <) 10.00
2 Bias Corrected Standard Bootstrap 0.65 7.61 Go 10.00
3 Bias Corrected Standard Bootstrap 0.18 3.49 bo 10.00
4 Bias Corrected Standard Bootstrap 0.61 4.36 g2 100.00
5 Bias Corrected Standard Bootstrap 0.66 4.59 Go 100.00
6 Bias Corrected Standard Bootstrap 0.59 4.28 bo 100.00
7  Bias Corrected Standard Bootstrap 0.45 4.83 g2 20.00
8 Bias Corrected Standard Bootstrap 0.60 6.30 Go 20.00
9 Bias Corrected Standard Bootstrap 0.38 4.36 ba 20.00
10  Bias Corrected Standard Bootstrap 0.51 491 g2 30.00
11 Bias Corrected Standard Bootstrap 0.60 5.84 Go 30.00
12 Bias Corrected Standard Bootstrap 0.45 4.58 ba 30.00
13 Bias Corrected Standard Bootstrap 0.70 3.71 g2 300.00
14 Bias Corrected Standard Bootstrap 0.72 3.77 Go 300.00
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Average Width and Coverage Probability (Continued)

Table 4.8

Method

Coverage Probability Width Estimator

Sample Size

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Bias Corrected Standard Bootstrap

Bias Corrected Standard Bootstrap

Bias Corrected Standard Bootstrap

Bias Corrected Standard Bootstrap

Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap
Bias Corrected Percentile Bootstrap

Bias Corrected Percentile Bootstrap

0.70

0.55

0.62

0.51

0.61

0.87

0.26

0.68

0.72

0.66

0.69

0.82

0.62

0.67

0.74

0.62

0.75

0.76

0.74

0.68

0.73

0.64

3.69

4.66

5.16

4.47

4.48

7.92

3.63

4.56

4.81

4.48

5.88

7.67

5.32

5.95

7.08

5.57

3.55

3.61

3.53

5.52

6.13

5.32

by

g2

Go

by

g2

Go

b

g2

Go

b

g2

Go

bs

g2

Go

by

g2

Go

b

g2

Go

b

300.00

50.00

50.00

50.00

10.00

10.00

10.00

100.00

100.00

100.00

20.00

20.00

20.00

30.00

30.00

30.00

300.00

300.00

300.00

50.00

50.00

50.00
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Average Width and Coverage Probability (Continued)

Table 4.8

Method Coverage Probability Width Estimator Sample Size
37 Classical 0.12 2.96 g 10.00
38 Classical 0.50 5.23 Go 10.00
39 Classical 0.03 2.40 bo 10.00
40 Classical 0.28 1.78 20 100.00
41 Classical 0.32 1.88 Go 100.00
42 Classical 0.24 1.75 ba 100.00
43 Classical 0.21 2.98 g2 20.00
44  Classical 0.43 3.89 Go 20.00
45 Classical 0.15 2.69 ba 20.00
46 Classical 0.25 2.75 g2 30.00
47  Classical 0.38 3.26 Go 30.00
48 Classical 0.19 2.57 b 30.00
49 Classical 0.27 1.08 g2 300.00
50 Classical 0.28 1.10 Go 300.00
51 Classical 0.26 1.07 ba 300.00
52 Classical 0.29 2.34 20 50.00
53 Classical 0.35 2.59 Go 50.00
54  Classical 0.24 2.25 bo 50.00
55 Efron’s Percentile Bootstrap 0.31 4.01 g2 10.00
56 Efron’s Percentile Bootstrap 0.83 7.09 Go 10.00
57  Efron’s Percentile Bootstrap 0.03 3.25 bo 10.00
58 Efron’s Percentile Bootstrap 0.59 4.07 g2 100.00

67



Table 4.8
Average Width and Coverage Probability (Continued)

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Method Coverage Probability Width Estimator Sample Size
Efron’s Percentile Bootstrap 0.64 4.29 Go 100.00
Efron’s Percentile Bootstrap 0.57 3.99 ba 100.00
Efron’s Percentile Bootstrap 0.49 4.67 g2 20.00
Efron’s Percentile Bootstrap 0.69 6.08 Go 20.00
Efron’s Percentile Bootstrap 0.38 4.21 b 20.00
Efron’s Percentile Bootstrap 0.51 4.67 <0 30.00
Efron’s Percentile Bootstrap 0.64 5.56 Go 30.00
Efron’s Percentile Bootstrap 0.44 4.37 bo 30.00
Efron’s Percentile Bootstrap 0.71 3.54 g2 300.00
Efron’s Percentile Bootstrap 0.73 3.60 Go 300.00
Efron’s Percentile Bootstrap 0.70 3.52 bo 300.00
Efron’s Percentile Bootstrap 0.56 4.51 g2 50.00
Efron’s Percentile Bootstrap 0.63 4.99 Go 50.00
Efron’s Percentile Bootstrap 0.51 4.33 ba 50.00
Hall’s Percentile Bootstrap 0.23 4.01 g2 10.00
Hall’s Percentile Bootstrap 0.48 7.08 Go 10.00
Hall’s Percentile Bootstrap 0.13 3.24 ba 10.00
Hall’s Percentile Bootstrap 0.56 4.09 g2 100.00
Hall’s Percentile Bootstrap 0.60 4.30 Go 100.00
Hall’s Percentile Bootstrap 0.54 4.00 ba 100.00
Hall’s Percentile Bootstrap 0.37 4.69 20 20.00
Hall’s Percentile Bootstrap 0.51 6.11 Go 20.00
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Table 4.8
Average Width and Coverage Probability (Continued)

81

82

83

84

85

86

87

88

89

90

Method Coverage Probability Width Estimator Sample Size
Hall’s Percentile Bootstrap 0.30 4.23 bo 20.00
Hall’s Percentile Bootstrap 0.42 4.65 g2 30.00
Hall’s Percentile Bootstrap 0.53 5.53 Go 30.00
Hall’s Percentile Bootstrap 0.37 4.35 bo 30.00
Hall’s Percentile Bootstrap 0.68 3.49 g2 300.00
Hall’s Percentile Bootstrap 0.69 3.55 Go 300.00
Hall’s Percentile Bootstrap 0.67 3.47 ba 300.00
Hall’s Percentile Bootstrap 0.49 441 g2 50.00
Hall’s Percentile Bootstrap 0.56 4.88 Go 50.00
Hall’s Percentile Bootstrap 0.46 423 b 50.00
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FIGURE 4.1: Average Width and Coverage Probability of The Confidence Intervals
When Data Were Generated from Standard Normal Distribution of Sample Size n =
10, 20, 30, 50, 100 and 300
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FIGURE 4.2: Average Width and Coverage Probability of The Confidence Intervals
When Data Were Generated from Beta(2,2) Distribution of Sample Size n = 10, 20, 30,
50, 100 and 300
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FIGURE 4.3: Average Width and Coverage Probability of The Confidence Intervals
When Data Were Generated from Beta(2,5) Distribution of Sample Size n = 10, 20, 30,
50, 100 and 300
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FIGURE 4.4: Average Width and Coverage Probability of The Confidence Intervals
When Data Were Generated from Standard Uniform Distribution of Sample Size n =
10, 20, 30, 50, 100 and 300
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FIGURE 4.5: Average Width and Coverage Probability of The Confidence Intervals
When Data Were Generated from T(df=64) Distribution of Sample Size n = 10, 20, 30,
50, 100 and 300
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FIGURE 4.6: Average Width and Coverage Probability of The Confidence Intervals
When Data Were Generated from T(df=10) Distribution of Sample Size n = 10, 20, 30,
50, 100 and 300
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FIGURE 4.7: Average Width and Coverage Probability of The Confidence Intervals
When Data Were Generated from Standard Logistic Distribution of Sample Size n =
10, 20, 30, 50, 100 and 300
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FIGURE 4.8: Average Width and Coverage Probability of The Confidence Intervals
When Data Were Generated from Standard Exponential Distribution of Sample Size
n = 10, 20, 30, 50, 100 and 300
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CHAPTER 5

APPLICATIONS

5.1 Box Office Documentary Films

To illustrate the findings of this research, data set of lifetime gross revenue of documentaries are
analyzed in this chapter. The following data are of the top 40 highest grossing movies of all time

according to Box Office Mojo (Data Source:Documentary). The goal is to find the kurtosis of the

sample.

$119194771.00 $77437223.00  73013910.00 $72091016.00 $33449086.00  32011576.00
$28972764.00 $28873374.00 $25326071.00 $24540079.00 $24146161.00 $21576018.00
$19422319.00 $17780194.00 $16432322.00 $15428747.00 $15012935.00 $14444502.00
$14363397.00  $13099931.00 $13011160.00 $11689053.00 $11536423.00  10101037.00
$8413144.00  $8117961.00  $8020721.00  $7830611.00  $7720487.00  $7718961.00
$7320323.00  $7128031.00  $7033803.00  $6706368.00  $6417135.00  $6206566.00

$6047363.00  $5728581.00  $5705874.00

Some preliminary data analysis showed that the data is heavily skewed with major outliers in
the tails, creating the case of positive kurtosis. Even with simply glancing at the available values,
we see that the accumulated income of the first five entries is higher than that of the next 20 movies.
We were able to fit a 3-parameter gamma distribution with shape and rate values of o = 0.5563,
B = 1/27787166 and a threshold of 5677456 (See Figure 5.1). We tested our hypothesis with a
Komolgorov Smirnov test yielding a ks statistics of ks = 0.0094 with a p-value of p = 0.7724

The mean is $21136186 and standard deviation $23927505 with sample kurtosis 6.40537. Since

we fit a gamma distribution to the sample, then its kurtosis parameter is that of gamma which is

6 —g.044

S

We noticed that in Table (5.1) only the classical method had cases where the population kurtosis
was not captured and this was to be expected. When we analyzed the results of our simulations,

we noticed that classical cases had a harder time performing when it comes to capturing kurtosis
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Method Lower Bound Upper Bound Width

1 Bias Corrected g2 -1.3299 15.0839 16.4138
2 Bias Corrected G2 -1.3744 17.3646 18.7389
3 Bias Corrected b2 -1.1783 14.0568 15.2351
4 Hall’s Percentile g2 -2.086 12.3123 14.3983
5 Hall’s Percentile G2 -2.4384 14.0096 16.4479
6 Hall’s Percentile b2 -2.7883 11.5547 14.343
7 Efron’s Perntile g2 0.2838 15.5396 15.2559
8 Efron’s Percentile B2 0.6955 17.0933 16.3978
9 Efron’s Percentile b2 0.1357 14.2165 14.0808
10 Bias Corrected Percentile g2 1.7751 23.3973 21.6222
11 Bias Corrected Percentile G2  2.3075 26.3801 24.0727
12 Bias Corrected Percentile b2  1.5728 22.4045 20.8318
13 Classical g2 5.1428 7.6679 2.5251
14 Classical G2 6.0152 8.8869 2.8717
15 Classical b2 4.7408 7.1412 2.4004
TABLE 5.1:

capitaliseswordsUpper and Lower Confidence Interval Bounds trying to estimate the
population parameter 8.044

parameters of distributions with positive kurtosis. Classical G2 had the smallest interval that con-
tained the kurtosis parameter followed by Efron’s Percentile b,. Bias Corrected Percentile G5 had

the largest interval.
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FIGURE 5.1: Histogram of Top 40 Highest Gross Documentaries of All Time
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5.2 Bonds Return Over Time

Another real life example is to model the data from stock market and to calculate the average gain
per day during a certain period. The funds we considered was a bond named GMO Opportunistic
Income Class IV (Ticker name: GMODX). Table 5.2 represents the daily growth of the funds from

August 8, 2016 to the September 26, 2016—A total of 35 business days within that period.

2471 2471 2472 2473 2473 2473 2474 2475
2475 2476 2477 2477 2479 2480 2481 24.81
2482 2483 2484 2485 2485 2486 2487 2490
2489 2492 2493 2493 2496 2496 2496 24.96
2494 2495 25.00

TABLE 5.2: GMODX Data from 08/08/2016 to 09/26/2016

Preliminary data analysis suggests that the data can be modeled by a uniform distribution since
there is little to no growth between the time period we looked at. A ks test yielded a p-value of
0.7952, meaning that we do not have enough evidence against the assumption that our sample data
is uniform. See Figure (5.2) for a histogram representation of the data. Since we were able to fit a
uniform distribution, then its kurtosis parameter is -6/5. As we first mentioned, when it comes
to distributions that are fairly symmetric, the confidence interval methods used in this paper do
a great job in estimating the population parameter. Based on the results obtained in Table 5.3, we
see that all methods, parametric or non-parametric, have the kurtosis -6/5 within the constructed
intervals. Bias Corrected Percentile b, had the lowest interval width while classical G5 had the

highest.
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Histogram of GMODX

Frequency

24.70 24.75 24.80 24.85 24.90 24.95 25.00

GMODX

FIGURE 5.2: Histogram of Daily Return Between 08/08/2016 to 09/26/2016

Method Lower.Bound Upper.Bound Width

1 Bias Corrected g2 -1.8431 -0.8587 0.9844
2 Bias Corrected G2 -1.9629 -0.7821 1.1808
3 Bias Corrected b2 -1.9141 -0.9857 0.9284
4 Hall’s Percentile g2 -1.968 -0.9801 0.9878
5 Hall’s Percentile G2 -2.0721 -0.9514 1.1207
6 Hall’s Percentile b2 -2.0342 -1.092 0.9422
7  Efron’s Percentile g2 -1.5675 -0.6239 0.9436
8 Efron’s Percentile B2 -1.6202 -0.4435 1.1767
9 Efron’s Percentile b2 -1.6529 -0.7462 0.9067
10 Bias Corrected Percentile g2 -1.6252 -0.7786 0.8466
11 Bias Corrected Percentile G2  -1.6567 -0.6932 0.9635
12 Bias Corrected Percentile b2  -1.6646 -0.8843 0.7804
13 Classical g2 -2.5859 0.0445 2.6304
14 Classical G2 -2.8042 0.2447 3.0489
15 Classical b2 -2.6093 -0.127 2.4823

TABLE 5.3: Upper and lower confidence interval bounds trying to estimate the pop-
ulation parameter —6/5
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CHAPTER 6

SUMMARY AND CONCLUSION

In this research, we explored the performance of three kurtosis estimators. Said performance was
measured through the construction of confidence intervals. We first introduced what is kurtosis,
its definition as well as misconceptions propagated over the years. Given the normal distribution
as the basis of a zero kurtosis; a distribution with positive kurtosis tends to have a lot more outliers
comparing to that of a negative kurtosis. We then introduced and derived the three main sample
kurtosis that are wildly used in books and statistical software. While all three estimators gz, G
and b, are generally biased, 3 is an unbiased estimator for the normal distribution. Next, we in-
troduced the different distributions that were studied in the paper and we derived many of their
kurtosis parameters. After, we described our simulation process on how we generated our data for
various sample sizes. We then analyzed with recommendations as to which kurtosis estimator and
confidence interval construction method performed better on different distribution with positive
and negative kurtosis. The criteria of performance were judged on which had shorter intervals
with coverage probability of at least meeting the 95% confidence threshold. We saw that when
dealing with a normal distribution with kurtosis 0 or a distribution that has kurtosis close to zero,
then the classical method with parameter G; is always best to use in constructing confidence in-
tervals. When dealing with negative kurtosis distribution, the classical method did perform well.
But we noticed that Efron’s Percentile Method performed equally as well, but with smaller inter-
vals. For skewed distributions, it is best to use Efron’s Percentile Method with sample estimator
G». Last, for distributions with positive kurtosis, almost all methods had a hard time reaching that

95% threshold of confidence intervals. Efron’s percentile method got close but rarely reached a 95%
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confidence level. The construction of confidence intervals using the classical method for distribu-
tions with high positive kurtosis had poor performance of capturing the kurtosis parameter of a
given distribution. We then gave two real life examples of how we can use the different confidence
intervals for each of the three estimators in capturing the kurtosis parameter of a distribution. We
used a sample data from the highest grossing documentaries and was successful in capturing the
kurtosis parameter in 13 out of the 15 constructed intervals. We also explored data from the stock
market, where we looked at daily returns of bonds in over a month. We were able to fit the data to
a uniform distribution. When we attempted in estimating its kurtosis parameter, every confidence
interval techniques with all three estimators succeeded in estimating the true parameter.

The kurtosis is one of the least used data characterization if compared to its sisters the mean
and variance. But in the financial industry, the kurtosis plays an important role in calculating risks,
also known as the "Kurtosis Risk". This is the risk when a statistical model assumes the normal
distribution but most of its returns, or worst losses are not clustered around the mean as expected.
This issue was extensively researched by Mandelbrot. In his book, he argued that relying too much
on the normal distribution is a serious flaw on many models (Mandelbrot and Hudson, 2010).
This nightmare came to reality when Long-Term Capital Management, a hedge fund that went
bankrupt because they understated the kurtosis of many of their financial securities (Krugman,
2012) Yes, even when the kurtosis is not as wildly used, there are some important life situations
when being able to estimate the kurtosis parameter is necessary. So, knowing which confidence
interval methods to use as well as which estimator best estimates the true kurtosis parameter could

be very useful.
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