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ABSTRACT OF THE THESIS 

THREE-DIMENSIONAL GRAPHENE FOAM REINFORCED EPOXY COMPOSITES 

by  

Leslie Embrey 

Florida International University, 2017 

Miami, Florida 

Professor Arvind Agarwal, Co-Major Professor 

Professor Benjamin Boesl, Co-Major Professor 

 
Three-dimensional graphene foam (3D GrF) is an interconnected, porous structure 

of graphene sheets with excellent mechanical, electrical and thermal properties, making it 

a candidate reinforcement for polymer matrices. GrF’s 3D structure eliminates nanoparticle 

agglomeration and provides seamless pathways for electron travel. The objective of this 

work is to fabricate low density GrF reinforced epoxy composites with superior mechanical 

and electrical properties and study the underlying deformation mechanisms. Dip coating 

and mold casting fabrication methods are employed in order to tailor the microstructure 

and properties. The composite’s microstructure revealed good interfacial interaction. By 

adding mere 0.63 wt.% GrF, flexural strength was improved by 56%. The addition of 2 

wt.% GrF showed a surge in glass transition temperature (56oC), improvement in damping 

behavior (150%), and electrical conductivity 11 orders of magnitude higher than pure 

epoxy. Dip coated and mold casted composites showed a gauge factor of ~2.4 indicating 

electromechanically robust composite materials. 
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CHAPTER I 

INTRODUCTION 

The overall objective of this research is to create high strength, low density, 

electrically conductive nanocomposites by reinforcing epoxy polymer with three-

dimensional graphene foam (3D GrF).  Two facile synthesis techniques are used in order 

to vary the GrF content within the polymer matrix. By controlling the GrF to polymer ratio, 

the mechanical, thermal, and electrical properties may be engineered for the desired 

applications.  

1.1.   Motivation for this Research 

The discovery of graphene (Fig. 1.1) has sparked intense research interest in recent 

years due to its superior strength, electron mobility, and thermal properties [1]. Over the last 

few decades, graphene and other carbon-based reinforcements, such as carbon nanotubes 

(CNTs) and graphene nanoplatelets (GNPs), have been studied extensively for potential 

use in high performance polymer composites for a range of applications. Although one and 

two-dimensional carbon-based polymer composites have many benefits, there are some 

problems associated with the nanoparticle reinforcements that compromise the integrity of 

the resulting composite material. Major challenges arise when utilizing carbon fiber, CNTs, 

and GNPs as matrix reinforcements such as the tendency of the nanoparticles to 

agglomerate or restack and high inter-sheet contact resistance between graphene sheets 

due to the strong intermolecular π-π interactions and interlayer van der Waals forces. These 

issues can lead to detrimental composite performance because the agglomerated particles 

act as stress concentration sites and can inhibit polymer chain movement resulting in a 
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decrease in material flexibility[2]. The electrical and thermal properties are diminished due 

to the discontinuity of reinforcement pathways within the composite. The two-dimensional 

structure of GNPs also results in a composite material that is anisotropic which may be an 

unfavorable property depending on the intended application of the material. These 

challenges are addressed in this study through the use of ultra-low density 3D GrF (0.004 

g/cm3) [3-5] as a polymer reinforcement. By reinforcing polymers such as epoxy with 3D 

GrF, electrical and thermal conductivities can be enhanced due to the three-dimensional 

network which provides more seamless pathways for electron and phonon transport. 

Furthermore, the longevity and survivability of the composite material can also be 

improved by enhancing mechanical strength and damping behavior.   

 

Fig. 1.1. Schematic of graphene’s two-dimensional, hexagonal lattice.  
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1.2.   Significant Impacts on Society 

1.2.1. Aerospace 

The aerospace industry heavily relies on polymer composite materials for improved 

aircraft performance (Fig. 1.2) while maintaining reasonable operating and maintenance 

costs. Some of the main concerns of the aerospace industry is overall aircraft weight 

reduction, improved engine efficiency, electromagnetic interference (EMI) shielding, and 

extreme weather resistance [6]. GrF-polymer composites may be the key to address each of 

these problems (Fig. 1.3) with their remarkable mechanical, electrical, and thermal 

properties. Replacing heavier aircraft components with strong, lightweight composite 

materials will not only achieve weight reduction but will also result in decreased fuel 

consumption, improved engine efficiency, and better payload agility [7-9]. GrF-polymer 

fuselage and wing coatings would protect against extreme weather conditions such as 

lightning strikes and freezing rain encountered during flight due to their superior electrical 

and thermal conductivities. GrF-polymers are known to be shock, vibration, and noise 

dampening materials leading to safer and more comfortable transit [10]. The notable 

flexibility of GrF-polymeric materials could lead into an era of morphing and self-healing 

fuselages, airplane wings, landing gear, and unmanned aerial vehicles which would 

improve survivability of commercial and military aircraft. By enhancing performance and 

overall lifespan of aircraft systems, manufacturing and operating costs would decrease. 

This would ultimately drive down costs for passengers which would open opportunities for 

more frequent and distant travel. Providing a more comfortable trip and ensuring passenger 

safety against extreme weather would spark more interest in air travel while generating 

revenue and strengthening the economy.  
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Fig. 1.2. Polymer composites commonly used for commercial aircraft vehicles [11]. 

 

Fig. 1.3. Concept aerospace applications for GrF-epoxy composites [12].  

1.2.2. Medical 

GrF and its composites have potential applications in the medical field. Flexible, 

wearable strain sensors made of GrF-polymer composites are a major research focus as 

these devices have the capabilities to monitor pulse, blood pressure, and respiration rates, 
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as well as patient medical devices such as insulin and infusion pumps [8, 13-14]. Studies have 

repeatedly shown that polymers such as hydroxyapatite (HA) and polylactic acid–poly-ε-

caprolactone copolymer (PLC) serve as musculoskeletal scaffolds as well as scaffolding 

for neural stem cells [15-16]. The porous structure of GrF-polymer composites serves as 

biocompatible and electrically conductive growth media for osteoblasts, myocytes, 

chondrocytes, and neuronal cells. Not only do the large surface area and porous nature of 

these GrF-polymer composites provide stable microenvironments for cell proliferation, the 

GrF itself may be used as electrodes to stimulate the tissue in order to verify cellular 

functionality [17-18]. GrF-polymer composites are effectively providing a foundation for 

large-scale cell and tissue bioengineering, musculoskeletal regeneration, and neurological 

prostheses. 

1.2.3. Electronics 

The electronics industry undeniably has an impact on the health of the economy, 

and GrF-polymer composites have great potential at revolutionizing the electronics world. 

Owing to GrF’s outstanding electrical charge and discharge rate, GrF composites have a 

promising role as supercapacitors and chemical-free batteries. Recently, a 1 mm2 integrated 

circuit has been fabricated via standard complementary metal-oxide semiconductor 

(CMOS) compatible processes with a graphene-based field effect transistor and inductors 

revealing the probability to develop scalable, ultrafast electronics which would allow 

people to feel more connected than ever before [19-21]. Continued research and development 

of GrF and its polymer composites have the ability to change the world of electronics siting 



 

6 

 

profound impacts on the energy, aerospace, automotive, and entertainment markets across 

the world.   

1.2.4. Environmental 

Environmental concerns are on the rise, and GrF-polymer composites could 

contribute significantly to environmental cleanup, pollution management, and general 

awareness efforts. The porous nature of GrF along with its ability to effectively move 

phonons give rise to thermal energy storage applications such as solar cells and other 

electronic heat sinks [22]. Harnessing the hydrophibicity and adhesion energies of GrF’s 

surface may foster more advanced environmental cleanup procedures. By controlling the 

pore size and wettability characteristics of GrF and its composites, water desalination, oil-

water separation, and gas filtration have been achieved experimentally [23-25].  

GrF and GrF-polymer composites have many promising applications across a 

variety of diverse fields. The development of scalable GrF-polymeric materials would have 

profound global impacts considering the applications span entertainment and leisure, travel, 

national and international security, healthcare, and environmental cleanup. These micro 

and nanoscale materials will inevitably have important macroscopic impacts on the global 

community.  

1.3.   Research Objectives 

The overall objective of this thesis is to reinforce epoxy with three-dimensional 

graphene foam (3D GrF) to create high strength, low density, thermally and electrically 
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conductive nanocomposite for various applications. The following points outline the 

approach taken to meet the overall objective: 

 Graphene foam based composites require good interfacial interaction for 

achievement of superior mechanical, thermal, and electrical properties – Wettability 

studies of epoxy against graphene foam are used to investigate contact angle 

hysteresis.   

 Effective use of GrF as a reinforcement material requires homogeneous distribution 

of GrF into the epoxy matrix – Dip coated and mold casting synthesis techniques 

are employed to produce 3D GrF-epoxy composites efficiently and effectively. 

 Effects of GrF on strengthening and damping behavior of GrF-epoxy composites 

are evaluated through mechanical testing and nanoindentation experiments – 

Microstructural observation is used to illustrate GrF strengthening mechanisms.  

 Superior thermal and electrical conductivities are required of multi-functional 

aerospace fuselages, wings, skins, and coatings – Effects of GrF addition on 

thermal and electrical properties are investigated through differential scanning 

calorimetry and 4-probe electrical conductivity experimentation.  

 

In the following chapter, Chapter 2, a review of the state of the art is presented. An 

evaluation of the evolution of carbon-based polymer reinforcements is presented as GrF is 

the polymer reinforcement used in this study. Additionally, the progression of synthesis 

techniques and processing parameters is discussed.  Chapter 3 describes the materials and 

experimental procedures used in the fabrication and evaluation of GrF reinforced epoxy 
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composites. Chapter 4 presents the results of these experiments and a detailed discussion 

of the underlying mechanisms governing the observed phenomena. Chapter 5 reviews the 

major findings and conclusions of this research. Chapter 6 offers suggestions for future 

directions and further research on 3D GrF-polymer composites. 
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CHAPTER II  

REVIEW OF THE STATE OF THE ART 

2. Evolution of Carbon-Based Polymer Composites 

Carbon-based polymer matrix composites (PMCs) have been extensively 

researched since their technical and commercial introduction in the late 1960s [26-27]. Due 

to their flexible nature, high strength-to-weight ratio, and excellent heat, chemical, and 

corrosion resistance, carbon-based polymer composites are ideal for many applications [6-

7, 22, 28-31]. Polymer composites are easy to manufacture which leads to lower production 

costs and more complex design freedom. Carbon-based reinforced polymer composites, 

specifically graphene-polymer composites, are on the forefront of current research interests 

globally [8, 22]. Fig. 2.1 shows the evolution of composites over time, including the 

importance of carbon fiber reinforced polymer (CFRP) composites in the engineering field 

starting at around the year 1980. Published by Ashby [27] in 1987, the diagram also shows 

how the importance of high modulus polymers and conducting polymers composites are 

projected to gain much popularity leading up to the year 2020. Furthermore, the associated 

research on carbon-based composites is shown in Fig. 2.2. Represented in the graph are the 

number of peer-reviewed journal articles published on carbon fiber, carbon nanotubes, and 

graphene since 1975. The following sections review the evolution of advanced, high-

performance, carbon-based polymer composites from carbon fiber reinforced polymer 

composites to graphene-based polymer composites. 
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Fig. 2.1. Diagram illustrating the relative importance as a function of time of four classes 

of materials in the engineering field (metals, polymers, ceramics, and composites [27]. 

 

 

Fig. 2.2. The number of peer-reviewed articles published yearly on carbon fiber, carbon 

nanotubes, and graphene composites since 1975. Data obtained from Web of Science. 
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2.1.   1D and 2D Carbon-Based Polymer Composites 

The first carbon-based nanofillers, carbon fibers, were introduced commercially in 

the late 1960s. Carbon fibers, CNTs, and graphene have many appreciable characteristics, 

but each also have their drawbacks. The characteristics, material properties, composite 

synthesis method, and polymer composite challenges of carbon fiber, CNTs, and graphene 

are displayed in Table 2.1. Subsequently, an SEM micrograph of each of the three carbon-

based materials are shown in Fig. 2.3. 
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Table 2.1. A comparison of the properties, synthesis methods, and drawbacks of carbon 

fiber, CNTs, and graphene. 

 Carbon Fiber Carbon Nanotubes Graphene 

Year of 

Introduction 

Late 1960s  

(Technical/commerci

al introduction) 
[32] 

 

1991  

(Confirmed by SEM) 
[33-35] 

2004 
[36] 

Dimensions -1D  

-Semicrystalline 

polymeric fibers 

-Diameter of ~7 

microns 
[30, 37-38] 

 

-1D 

-Diameters ranging 

from 1 nm to several 

centimeters 
[39] 

-2D 

-Graphene:1 atom 

thick 

-GNP: 5-10 nm 

thickness 
[40] 

Aspect 

Ratio 

Greater than 100 
[41-42] 

Up to 1000 
[39] 

Greater than 1200 
[43] 

 

Geometries -Hollow 

-Patterned 

-Porous 
[41] 

-Cylindrically shaped 

-Single-walled 

geometries:  

(armchair, chiral, 

zigzag) 

-Double-walled 

-Multi-walled 

-End cap morphologies 
[7, 44] 

 

-Single atomic layer 

-Stacked platelets 
[41] 

Synthesis 

Techniques 

-Pyrolysis of 

stabilized precursor 

(Polyacrylonitrile 

(PAN), petroleum 

pitch, or rayon) 
[42] 

-Arc-discharge 

evaporation 

-Plasma-enhanced 

CVD 
[33, 39, 44-46] 

-Scotch tape method 

-Chemical synthesis 

-Exfoliation 

-Epitaxial growth 

-Pyrolysis 

-CVD on Ni foam 
[40, 47-49] 

 

Mechanical 

Properties 

-Tensile strength 7 

GPa 

-Tensile modulus 900 

GPa 

-Compressive 

strength 3 GPa 

-Density 2 g/cm3
 

Along the axial length 

(not across tube 

diameter): 

-Tensile strength 100 

GPa 

-Elastic modulus 1-1.3 

TPa 

-Tensile strength 130 

GPa 

-Elastic modulus 0.5-

1 TPa 

-Density 1.8 g/cm3 
[52-56] 
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[9, 30, 38, 42, 50] -Density 1.3 g/cm3
 

[33, 44, 51] 

 

Electrical 

Properties 

-Conductivity 900 

S/m 
[42, 50] 

-Conductivity 5x105 

S/m 
[39, 44] 

-Conductivity 2x104 

S/m 
[22, 57] 

 

Thermal 

Properties 

-Conductivity 1100 

W/mK 
[42] 

-Conductivity 2000 

W/mK 
[58] 

-Conductivity 5000 

W/mK 
[28, 59] 

 

Composite 

synthesis 

-Filament winding 

-Pultrusion 

-Liquid, compression, 

and injection molding 

-Vacuum-assisted 

resin transfer molding 
[38, 42, 60] 

-Bulk mixing 

-Melt mixing 

-Solution blending 

-Film casting 

-In situ polymerization 

-CVD on polymer 

substrate 
[45-46, 51, 58, 61-62] 

 

-Melt mixing 

-In situ 

polymerization 

-Hot pressing 

-Solution mixing 
[26, 40, 63-64] 

Application

s (Polymer 

Composites) 

 

-Auto bodies and seat 

frames 

-Sporting goods 

-Military vehicles and 

armor 

-X-ray imaging 

medical equipment 

-Water purification 

-Chemical absorption 

Emerging Applications 

-Sporting goods 

-Energy storage 

-Conductive adhesive 

-Molecular electronics 

-Air and water filtration 

Potential 

Applications 

-Flexible, foldable 

airplane wings 

-Flexible electronics 

-EMI and microwave 

shielding 

-Anti-ice coatings 

-Acoustic backing 

material 

-Supercapacitors 

 

Challenges -Nanoparticle 

agglomeration 

-Moisture absorption 

-Brittle fibers fracture 

-Fiber delamination 
[9, 30, 38, 50] 

-CNT alignment 

-Nanoparticle 

agglomeration 

-Need for surface 

modification 

-CNT curling and 

entanglement 

-Difficult to 

strategically orient 

within polymer matrix 
[7, 44, 46, 51, 61] 

-Nanoparticle 

agglomeration 

-Restacking of 

graphene sheets 

-Discontinuity of 

reinforcement in 

polymer matrix 

-High intersheet 

junction contact 

resistance between 

layered graphene 

sheets 
[4-5, 16, 65-66] 
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Fig. 2.3. SEM micrographs of (a) a single carbon fiber [67], (b) controlled growth of CNTs 
[51], and (c) GNP powder [40].  

 

All previously mentioned carbon-based polymer composites have many benefits, 

but they also have some disadvantages. Carbon fiber reinforced polymer composites are 

durable, and the carbon fibers may even be recycled. However, the fiber synthesis process 

is expensive and time-consuming. Carbon nanotubes are now more easily processed 

leading to lower composite fabrication costs, but the CNTs are difficult to manipulate 

within the polymer matrix and have the tendency to curl, tangle, and agglomerate. GNPs 
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have less tendency to agglomerate and have larger surface area than CNTs allowing for 

enhanced composite performance. However, GNP’s two-dimensional nature leads to 

material anisotropy resulting in inferior through-plane properties as compared to the in-

plane properties.  

Lastly, while GrF reinforced polymer composites seem to effectively address the 

problems associated with 1D and 2D carbon-based reinforcements, large-scale 

manufacturing of GrF is hindering the broader impacts its composites could be having for 

many structural and multifunctional applications. Concentrated, continuous research is 

needed to achieve more innovative, cost-effective reinforcement and composite fabrication 

processes in order to realize the full implications of graphene, GrF, and their associated 

polymer composites.  

2.2.   Three-Dimensional Graphene Foam  

2.2.1. Properties of 3D Graphene Foam 

Three-dimensional graphene foam (3D GrF) is a free-standing, multilayer, cellular 

structure which retains many of graphene’s desirable properties, such as high strength-to-

weight ratio, flexibility, elasticity, hydrophobicity, and thermal and electrical 

conductivities [68-72]. Composed of individual layers of graphene sheets, which are made of 

sp2 hybridized carbon atoms with short carbon-carbon bond lengths (~1.418 Å), GrF 

possesses high strength and elasticity. The out-of-plane, weak van der Waals forces 

between layers of graphene sheets (separation of ~3.347 Å) allow GrF’s surprisingly 

flexible nature. The ultra-low density of 4 mg/cm3 [5, 15, 17, 73-74] is due to GrF’s hollow 

interior as well as its porous, foamy, node-branch anatomy. Seamless pathways for rapid 
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phonon and electron transport are provided by GrF’s 3D interconnected network [4, 15-16, 25, 

58-59, 74-75]. The regularly-spaced, free-standing structure in addition to the unique 

mechanical, thermal, and electrical properties make GrF a candidate reinforcing material 

for composite matrices, eliminating the need for dispersion techniques typically required 

when using other 1D and 2D carbon-based reinforcement materials.   

2.2.2. Fabrication of 3D Graphene Foam 

Many synthesis methods of GrF have been reported since its introduction in 2011, 

including mechanical and chemical exfoliation, hydrothermal synthesis, chemically-driven 

self-assembly [76-77], lithographic patterning [78], freeze drying [73], and air bubble and silica 

sphere template-guided synthesis [3, 79]. Among the most common is template-guided 

growth by chemical vapor deposition (CVD) [4, 57, 80-81]. The CVD method begins with a 

metal template foam, such as nickel or copper.  The foam is placed in a methane or ethylene 

environment and heated to approximately 700-1000oC. Carbon falls onto the nickel foam 

as the gaseous molecules dissociate. Following the carbon deposition onto nickel foam, the 

nickel-graphene foam is removed from the furnace and coated with a stabilizing polymer 

such as polymethylmethacrylate (PMMA). The nickel is then removed with a wet etchant, 

followed by completely dissolving away the polymer with acetone. The result is a three-

dimensional, porous, freestanding graphene foam [57, 80]. A flowchart of the GrF synthesis 

process is illustrated in Fig. 2.4. Fig. 2.5. shows SEM images of carbon deposited nickel 

foam, free-standing 3D GrF, and high magnification images of GrF branches and GrF 

surface features [17].  
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Fig. 2.4. Flowchart of the synthesis of freestanding 3D GrF by CVD method [4]. 
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Fig. 2.5. SEM images of (a) carbon deposition on nickel foam, (b) free-standing 3D GrF, 

(c) high magnification images of GrF branches, and (d) surface features of GrF [66]. 

 

Another synthesis method involves combining two synthesis techniques: traditional 

powder metallurgy and the CVD method [53, 82]. The powder metallurgy template-assisted 

CVD (PMT-CVD) method is a facile and scalable technique in which sucrose (carbon 

source) is mechanically mixed with nickel powder in deionized (DI) water and heated to 

120oC until the water is completely evaporated. This leaves behind tiny spherical carbon-

coated nickel shells which are vacuum dried at 80oC overnight then ground into a fine 
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powder with a mortar and pestle. The hybrid powder is pressed in a die at 1120 MPa for 

five minutes to produce pellets which are then loaded into a quartz tube furnace with a 

H2/Ar (200 sccm/500 sccm) environment at a pressure of 9 Torr in order to grow graphene. 

The furnace temperature is raised to 1000oC and the pellets are annealed for 30 minutes. 

After removing the pellets and cooling to room temperature, the nickel is etched with 1 M 

FeCl3 aqueous solution for one week, with the solution changed daily. The foam is 

subsequently soaked in DI water for one week, changing the water daily. A critical point 

dryer is used to completely dry the PMT-CVD GrF (Fig 2.6). SEM images of PMT-GrF at 

high and low magnifications are shown in Fig. 2.7. 

 

Fig. 2.6. Schematic of the preparation of 3D GrF by powder metallurgy template-assisted 

CVD method [82]. 



 

20 

 

 

Fig. 2.7. SEM images of PMT-GrF at (a) high magnification and (b) low 

magnification [82]. 

 

 Silica sphere template-guided fabrication method is unique in that it allows growth 

of nano GrF (NGrF) since many CVD template-guided approaches result in GrFs with 

pores on the scale of several hundred microns. The simple fabrication technique starts by 

mixing silica spheres (27.7 nm average diameter) modified with methyl groups with 

graphene oxide (GO) in a neutral aqueous solution. The silica spheres and the GO are both 

hydrophobic which induces self-assembled lamella structures which is a result of the silica 

spheres being wrapped between the GO. The GOs are reduced to graphene in an inert 

environment, and HF etching to remove silica spheres yields NGrF with pore sizes of 32.5 

nm, foam thickness of 0.89 nm, and high surface area (851 m2/g). Fig 2.8 illustrates the 

fabrication process for NGrF. SEM and TEM images of NGrF are shown in Fig. 2.9. 

 



 

21 

 

 

Fig. 2.8. Schematic of fabrication method for free-standing NGrF.  

  

Fig. 2.9. (a) SEM image of NGrF and (b) HR-TEM of NGrF with black arrow 

differentiating flat foam from raised foam indicating that the NGrF is grown from single 

graphene sheets.  

 

Other GrF synthesis methods include mechanical and chemical exfoliation [83], 

hydrothermal synthesis [84], chemically-driven self-assembly [76-77], lithographic patterning 
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[78], freeze drying [73, 85], breath figure method [85], and air bubble template-guided synthesis 

[3, 79]. Additional synthesis methods will undoubtedly be discovered as the need for large-

scale graphene and GrF production intensifies. 

2.3.   3D Graphene Foam-Polymer Composites 

2.3.1. Synthesis of 3D Graphene Foam-Polymer Composites 

The explosion of interest generated by the discovery of GrF has brought about novel 

composite materials with remarkable properties. Facile and effective fabrication methods 

employed for synthesizing GrF include dip coating and vacuum-assisted infiltration. Nieto, 

et al. [15] used simple dip coating method to synthesize graphene foam-polylactic acid and 

poly-ε-caprolactone (GrF-PLC) hybrid polymer composites. GrF grown by CVD method 

was dipped in acetone-diluted PLC solution for controlled time periods and allowed to cure. 

This facile synthesis technique resulted in GrF branches with uniform PLC coating, and 

the resulting composite retained GrF’s porous, foamy structure.  

Dip coating is also carried out in another way to obtain GrF-polymer composites. 

Chen et al [5] synthesized graphene foam-polydimethylsiloxane (GrF-PDMS) composites 

by carrying out the CVD approach to grow GrF but eliminating one of the final steps of 

the process. After depositing carbon on nickel foam, the entire structure was dipped into 

PDMS. The nickel was etched away, but the stabilizing polymer was not dissolved off of 

the foam with acetone or similar agent. This approach utilizes the stabilizing polymer as a 

composite component eliminating further composite synthesis techniques and leaving 

behind a GrF-PDMS porous, foamy structure.  
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Vacuum-assisted infiltration has been used to incorporate polymer into GrF’s 

cellular structure. Vacuum-assisted resin transfer molding (VARTM) has long been used 

to make carbon-based polymer composite laminates. With GrF-polymer composites, 

vacuum-assisted infiltration may be used in one or two stages of the fabrication process. 

Samad et al. [86] used vacuum-assisted infiltration of graphene oxide (GO) onto nickel foam 

before the reducing the GO to GrF. Etching of the nickel substrate resulted in pure GrF 

which was permeated with PDMS again via vacuum-assisted infiltration and cured.  

Typically, a combination of synthesis techniques are used to achieve the most 

successful composites. Jia et al. [80] combined immersion techniques, vacuum-assisted 

infiltration, and hot-pressing to fabricate GrF-epoxy composites. Prepregs were made by 

infiltrating graphene-nickel foam with epoxy resin and curing under vacuum environment. 

The individual prepregs were stacked and hot-pressed in an aluminum mold. Nickel was 

subsequently etched away resulting in GrF-epoxy composites.  

The same research group utilized hot-pressing to create GrF-glass fiber-epoxy 

sandwich structure composites. Jia et al. [65] formed prepregs by immersing GrF into epoxy 

and curing under a vacuum environment. The prepregs were encased into glass fiber-epoxy 

fabric to form sandwich structures and again underwent vacuum infiltration. Finally the 

GrF-epoxy/glass fiber-epoxy sandwich structures were hot-pressed in a mold to reveal GrF 

interleaved glass fiber-epoxy laminate composites.  

Centrifugal stirring, application of vacuum force, and a type of mold casting was 

employed to synthesize 3D GrF-tungsten-epoxy (GrF-W-Ep) composites. Qiu et al. [10] 

used centrifugal mixing to enhance infiltration of epoxy polymer containing tungsten 



 

24 

 

spheres as a secondary nanofiller into GrF’s cellular structure [10]. Epoxy was placed in the 

bottom of a test tube to create a smooth, flat surface on which the 3D GrF was to be placed. 

Small circular pieces of 3D GrF were placed in the bottom of a test tube. A mixture of 

dilute epoxy and W spheres was vacuumed to remove trapped air bubbles and injected into 

the bottom of the tubes. The test tubes were centrifuged to embed the W spheres into the 

GrF cells, and the ethanol was evaporated. Polishing to desired thickness resulted in a GrF-

W-Ep film composites.  

2.3.2. Properties of 3D Graphene Foam-Polymer Composites 

GrF-polymer composites have shown impressive mechanical, thermal, and electrical 

properties as a result of the synergistic interplay of the individual composite components. 

Polymers’ heat, corrosion, and impact resistance along with their varying degrees of 

flexibility make them ideal matrix materials. GrF’s unique, 3D structure in conjunction 

with its superior intrinsic properties suggest it to be a candidate reinforcing material. The 

combination of GrF and polymeric matrices give rise to a promising class of new composite 

materials to be used for a variety of structural and multifunctional applications. A review 

of GrF-polymer composites’ mechanical, thermal, and electrical properties are presented 

in detail below.  

2.3.2.1.Mechanical Properties  

GrF’s high strength, flexibility, and deformation mechanisms are primarily 

responsible for its polymer composites’ impressive mechanical properties. Recent studies 

report enhanced mechanical performance of GrF composites with various polymers as 

matrix materials. GrF-PDMS composites outperformed pure CNT, pure GrF, and CNT-
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PDMS composites (Fig. 2.10) in terms of peak stress, compressive strength (6 times that 

of CNT-PDMS), and elastic modulus (twice that of CNT-PDMS). Additionally, GrF-

PDMS demonstrated highly reversible mechanical behavior up to 100 cycles of 

compression, including complete elastic recovery and retained energy absorption 

capabilities at strains of up to 70%. [87]. These impressive findings are attributed to the 

infiltration of PDMS into GrF porous structure as well as the collapsing of GrF walls under 

stress leading to higher graphene density. Also, GrF’s 3D interconnected structure and its 

ability to bend and flex in response to applied load allowed effective energy dissipation. 

Elastic recovery is attributed to the strong interfacial interactions between GrF and PDMS.  

           

 

Fig. 2.10. Graphical comparison of (a) peak stress, (b) energy absorption, and (c) elastic 

modulus among pure GrF, pure CNT, CNT-PDMS, and GrF-PDMS. 
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Composite strength and ductility were evaluated in another study to understand the 

effects of GrF on PLC copolymer. Nieto et al. [15] found that GrF-PLC had higher 

compressive strength, a 3700% increase in ultimate tensile strength, and a 3100% increase 

in ductility when compared to pure GrF. The compression strengthening mechanisms are 

owed to the excellent wettability of PLC onto GrF substrate causing a sort of defect healing 

in which the PLC polymer filled microcracks and voids of GrF upon curing leading to 

enhanced structural integrity of GrF prior to testing. Furthermore the enhanced strength 

under tension of the composite are due to the GrF to PLC strong interfacial adhesion 

resulting in effective load transfer from PLC to GrF. The extreme elasticity of the 

composite material comes from PLC bridge formations. As the composite system is 

stretched, the polymer lining the GrF surface and internal cavities demonstrates a “rubber 

band” type of deformation in which the load is transferred back to the PLC polymer before 

ultimately fracturing. SEM images of GrF-PLC failure mechanisms are shown in Fig. 2.11.  
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Fig. 2.11. GrF-PLC composite under tension. (a) Initial stretching of PLC bridge. (b) PLC 

coated GrF branches elongate without fracturing. (c) Branch composed of multiple aligned 

PLC bridges. (d) Elongated PLC bridges break one-by-one, GrF branch to left has fractured 
[15].  

 

2.3.2.2.Thermal Properties  

 PDMS has been utilized as the matrix material for many GrF-polymer composite 

thermal properties studies. Graphene sheets (GrS) and GrF are incorporated separately into 

PDMS, and their effects on thermal conductivity and coefficient of thermal expansion of 

PDMS are investigated [59].  GrF-PDMS composites with mere 0.7 wt% loading drastically 

enhanced the thermal conductivity of pure PDMS a staggering 300% and proved to be 20% 
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higher than that of GrS-PDMS at the same graphene loading. This is due to GrF’s 3D 

contingent pathways providing fast phonon transport throughout the composite.  

Furthermore, the coefficient of thermal expansion (CTE) was found to be much lower than 

GrS-PDMS and pure PDMS, and the thermal stability of GrF-PDMS was also improved 

over the pure PDMS and GrS-PDMS materials as seen in Fig. 2.12. For the composite 

materials, the CTE increased with increasing temperature because the internal stresses 

accumulated during the curing cycle are released as the materials are heated. The internal 

stresses within the composites occur because the reinforcement materials interfere with 

crosslinking during polymerization causing the polymer chains to uncharacteristically bend 

and twist in order to connect. The CTE of pure PDMS was relatively temperature-

independent due to the minimal internal stresses acquired during polymer solidification. 

Also during heating to higher temperatures, the polymeric materials start to decompose, 

and the products from the decomposition reaction tend to diffuse throughout the sample in 

an attempt to escape the material, hence resulting in overall weight loss of the sample. GrF-

PDMS enhanced thermal stability is a function of the uniform interconnected architecture. 

The GrF structure hinders the path of the decomposition products and as a result, they get 

trapped inside the sample. This leads to an overall improvement in thermal stability over 

the GrS-PDMS and pure PDMS materials. 
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Fig. 2.12. Graphical representations of (a) thermal conductivity and (b) thermal stability 

of pure PDMS, GrS-PDMS, and GrF-PDMS materials [59]. 

 

 In another similar study, multilayer graphene flakes (MGrF), GrF, and PDMS were 

used to make thermally conductive polymer composites. Zhao et al. [88]reports notable 

synergy between MGrF and GrF to improve thermal conductivity of PDMS. Addition of 

mere 2.7 vol.% MGrF showed dramatic improvement in thermal conductivity of 80%, 

184%, and an astounding 440% over MGrF-PDMS, GrF-PDMS, and pure epoxy, 

respectively. This is a result of the MGrF adding continuity between the conductive filler 

materials and by providing higher graphene surface area enhancing contact area for which 

the PDMS polymer may interact.  

2.3.2.3.Electrical Properties  

 Electrical characterization of GrF-polymer composites has been of high interest due 

to GrF’s ability to rapidly transport electrons effectively and efficiently. Jun et al. [57] 

prepared GrF from graphite powder, small flake graphite (SFG) and large flake graphite 

(LFG), and subsequently infiltrated with PDMS. The in-plane and out-of-plane electrical 
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conductivity values were measured using 2-probe method using a current sweep of -1.0 

ampere to +1.0 ampere. The results are summarized in Table 2.2. The GrF-PDMS grown 

from LFG precursor (0.4 wt.% GrF) proved to be the most successful composite with an 

in-plane electrical conductivity twice that of the SFG grown GrF-PDMS composite 

although the composite with GrF grown from SFG had 5 times the GrF content than GrF-

PDMS composite with LFG. Additionally, the LFG composite showed 4 times the 

electrical conductivity of composites with GrF made from graphite powder although the 

graphite powder composite had 10 times the graphene foam content than the composite 

with GrF made from LFG owing to the more efficient pathways provided for fast electron 

mobility through the composite. The GrF grown from LFG underwent fewer defects during 

GrF production. The graphene sheets showed increasing overlapping areas, indicating less 

contact resistance and enhanced nanofiller continuity within the PDMS matrix. Finally, 

due to the larger size of graphene sheets, less contact junctions within the GrF were 

observed allowing for a more seamless transport of electrons within GrF.  

Table 2.2. A summary of the test samples’ GrF precursor, composite materials tested with 

weight percent GrF, and electrical conductivity values.  

GrF 

Precursor 

Precursor 

Particle Size 

(μm) 

Sample with  

wt.% GrF 

In-Plane 

Electrical 

Conductivity 

(S/m) 

Out-of-Plane 

Electrical 

Conductivity 

(S/m) 

 

LFG > 100   0.4 - 0.5 wt.%  

GrF-PDMS 

 

3.2  3.2x10-2 

SFG 2-15 1.9 wt.%  

GrF-PDMS 

 

1.4x10-2 5x10-3 

Graphite 

Powder 

Crushed SFG  

(< 15) 

4 wt.%  

GrF-PDMS 

 

4.2x10-5 4.2x10-5 
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GrF-PDMS composites were synthesized and tested for electrical properties under 

bending stress to provide insight on potential large-scale strain sensor applications. As 

expected, as bending curvature increased, so did electrical resistance. An additional 

polymer film, poly (ethylene terephthalate) (PET), was used as a substrate for one side of 

the GrF-PDMS to improve sensitivity to bending deformation. Xu et al. [89] observed that 

upon bending in the direction of PET, the electrical resistance would increase, but when 

bending in the direction of GrF, the resistance would decrease. It was found that the GrF-

PDMS-PET (Fig. 2.13) composite yielded six times higher relative variation of electrical 

resistance than GrF-PDMS. The principle of mechanics of the material is employed to 

understand the baseline resistance variation (GrF-PDMS) as well as the GrF-PDMS-PET 

behavior in both bending directions. When GrF-PDMS is bended, one side of the GrF is in 

compression and the other side is in tension, with the resistance effects opposing one 

another, resulting in almost zero resistance sensitivity. When the GrF-PDMS-PET is 

bended toward the GrF side, the GrF is put entirely in a state of compression resulting in a 

resistance sensitivity lower than the GrF-PDMS composite. When the PET substrate is 

added to one side of the GrF-PDMS material and the entire composite is bended toward 

the PET side, the GrF is wholly under a state of tension resulting in strain sensor material 

with high sensitivity (Fig. 2.14). 

 



 

32 

 

 

Fig. 2.13. Optical image of GrF-PDMS-PET composite bended over a beaker [89]. 

 

 

Fig. 2.14. Sensitivity to electrical resistance as a function of bending curvature where ρ is 

bending radius [89]. 
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Many studies have been carried out with GrF-PDMS composites but, very few 

works have been published on GrF-epoxy composites specifically. A summary of these 

studies is presented in Table 2.3. 

Table 2.3. Summary of the studies previously done on 3D GrF reinforced epoxy 

composites.  

 

Materials Synthesis 

Method 

Major Findings Discussion Ref 

0.1 and 0.2 

wt.% GrF-

Epoxy 

Hot-press 

stacked 

prepregs 

-Composite electrical 

conductivity of 3 S/cm 

-Tg increased by 31oC 

over pure epoxy  

-Fracture toughness 

enhanced 70% over 

pure epoxy 

-3D network and high 

quality GrF 

-GrF hinders polymer 

chain mobility 

-Interfacial de-bonding 

yields energy 

absorption  

-Roughening of 

surface, deflection of 

advancing cracks due 

to presence of GrF 

[80] 

2.5 vol.% 

GrF-Epoxy 

Dip coat of 

GrF into DMF 

diluted epoxy  

-GrF electrical 

conductivity 125 S/cm 

-Composite electrical 

conductivity of 2 S/cm 

-Large size and high 

crystallinity of 

graphene sheets 

-3D network allowing 

fast electron transport 

[74] 

Glass 

Fiber-

Epoxy / 

GrF-Epoxy 

Laminates 

Hot-press 

stacked 

prepregs 

-Mode I and II 

interlaminar fracture 

energies increased by 

70 and 206%, 

respectively 

-36% enhancement of 

interlaminar shear 

strength  

-GrF deflects and twists 

advancing cracks, 

yielding tortuous crack 

paths with higher 

surface areas 

-Interfacial de-bonding 

allows for more energy 

absorption during crack 

propagation  

[65] 

GrF-W-

Epoxy 

Sedimentation 

and 

centrifugal-

assisted 

assembly 

-Densely packed W 

spheres yield higher 

impedance and 

attenuation than loosely 

packed W spheres 

inside pores of GrF 

coated epoxy 

-W spheres scatter or 

reflect acoustic waves 

-GrF allows for 

conversion of acoustic 

waves to thermal 

energy 

[10] 
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GrF-epoxy has demonstrated extraordinary properties, and these materials have 

many promising potential applications. Further research on GrF-epoxy composites could 

advance many fields including aerospace, medical, environmental, electronics, and 

communications.  

2.4.   Potential Applications of 3D Graphene Foam Polymer Composites 

GrF has been reported to have many potential applications such as electromagnetic 

interference (EMI) shielding,  excellent shock and sound absorption, bio-sensing, and gas 

sorption [5, 8, 24, 75, 90], ultrathin and foldable electronics, large scale strain sensors, 

indestructible military armor, flexible and self-healing airplane wings, air and water 

purification filters, and many other advanced multifunctional applications [8, 22]. These 

notable material properties in conjunction with ever-accelerating research efforts make GrF 

a promising matrix reinforcement allowing potential rapid realization of future visions.  
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CHAPTER III 

EXPERIMENTAL DETAILS 

In this chapter, the experimental procedures used to synthesize and characterize 

graphene foam reinforced epoxy composites are discussed. Two facile synthesis techniques 

were used for composite fabrication, and both methods are described in detail. 

Microstructural characterization and evaluation techniques of material properties are 

discussed. Additionally, equipment, software and equations utilized for calculations are 

presented in the following sections.  

3. Materials and Synthesis Techniques  

Three-dimensional graphene foam (3D GrF), was obtained from Graphene 

Supermarket, Calverton, NY, USA.  GrF was synthesized using the CVD method on nickel 

foam substrate [91]. The GrF has a density of 4 mg/cm3, a thickness of approximately 1.2 

mm, and an average pore size of 580 microns. The carbon content of the GrF is 99%. A 

low magnification SEM image of the as-received GrF is shown in Fig. 3.1.  
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Fig. 3.1. Low magnification SEM image of as-received GrF. 

The polymer matrix material used is a multifunctional, two-component, 

thermosetting epoxy resin and cycloaliphatic hardener system obtained from AeroMarine 

Products, Inc., San Diego, CA, USA. The epoxy has a mixed viscosity of 600 mPa-s and a 

working life of up to 30 minutes.  

3.1.   Wettability Studies of Epoxy Against 3D Graphene Foam 

 

Wetting is indicative of how the GrF reinforcement and polymer matrix will adhere 

to one another or interact at the interface. Since strong interfacial interaction is crucial to 

achieving a successful composite with superior properties, wetting studies may provide 

valuable information. The epoxy system was mixed at a 2:1 volume ratio of resin to 



 

37 

 

hardener. A sessile drop of epoxy was carefully released onto a 1 x 1 cm2 piece of GrF. 

The contact angle as a function of time was measured until the contact angle reached 0 

degrees.  Sessile drop test was conducted using a KYOWA Contact Angle Meter (model 

DM-CE1, Saitama, Japan) using FAMAS software. 

3.2.   3D Graphene Foam-Epoxy Composite Synthesis 

Two facile synthesis techniques were used for composite fabrication. Both methods 

are described in detail below. 

3.2.1. Dip Coat Technique 

 

A facile dip coating method was used to synthesize GrF-epoxy composites.  The 

as-received GrF was cut into five 10 x 4 mm pieces. Each GrF piece was weighed then 

clipped to a holding device. The epoxy was mixed at a 2:1 volume ratio of resin to hardener 

and stirred for 20 minutes to initiate polymerization. Each piece of GrF was immersed into 

the mixed epoxy for varying times of 1, 3, 5, 7, and 9 seconds as a means to vary the weight 

fraction of GrF in the composite. The clips holding the GrF pieces were suspended from a 

horizontal cylindrical rod and cured at room temperature for 96 hours. Upon completion of 

curing process, the composite material samples were removed from the holding clamps and 

weighed again to compute epoxy content. A schematic of the dip coat method is shown in 

Fig. 3.2. 
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Fig. 3.2. Schematic of the dip coat synthesis technique [15].  

3.2.2. Mold Cast Technique 

 

 SolidWorks CAD software was utilized to design a casting mold for the GrF-epoxy 

composites. The CAD design was uploaded to a Form 1+ SLA 3D printer (Formlabs, 

Somerville, MA, USA), and the casting mold was fabricated with a photo-reactive flexible 

resin. The mold was coated with mold release agent, and the release agent was allowed to 

air dry. Multiple strips of GrF were cut into 30 x 4 mm pieces, and each piece was weighed 

individually. The epoxy was mixed at a 2:1 volume ratio of resin to hardener and stirred 

for 20 minutes to induce polymerization. A syringe was used to dispense a thick layer of 

epoxy into the bottom of the casting mold. The GrF strip was placed over the epoxy into 

the gauge length of the mold (Fig. 3.3). Another layer of polymer was dispensed over the 

top of the GrF, and the samples were cured for 96 hours at room temperature. To further 

alter the GrF content, samples were also made with two GrF layers suspended into the 

gauge length. In this case, a syringe was used to dispense a small amount of polymer onto 
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the bottom of the mold. GrF and polymer were layered in an alternating fashion until two 

slightly separated layers of GrF were suspended into the center of the sample mold. 

Additionally, control samples were synthesized by casting pure epoxy without GrF into the 

mold. Upon curing for 96 hours at room temperature, the samples were removed from the 

mold and weighed for further calculations. The GrF contents of each sample for each 

fabrication method is displayed in Table 3.1.  

 

Fig. 3.3. Schematic of GrF-epoxy mold casted composite. 

 

Table 3.1. Weight percent of GrF within the dip coated and mold casted GrF-epoxy 

composite samples.  

Composite Sample Weight Percent GrF 

Dip Coated Samples (s)  

9 1.55 

7 1.64 

5 1.85 

3 1.91 

1 1.99 

Mold Casted Samples 

(Number of GrF Layers) 

 

1 0.07 

2 0.13 
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3.3.   Microstructural Characterization 

 

A helium gas pycnometer (Accupyc 1340, Micrometrics Instrument Corporation, 

Norcross, GA, USA) was used to measure the true density of all samples synthesized by 

dip coating and mold casting methods. Low magnification top views of the samples were 

observed with a digital microscope (Dino-Lite, Dunwell Tech, Inc., Torrance, CA, USA). 

Scanning electron microscopy (JEOL JSM-6330F, JEOL USA, Inc., Peabody, MA, USA) 

was used at an operating voltage of 15 kV to observe fracture surfaces for GrF-epoxy 

interfacial interaction analysis and mechanical testing failure mechanisms. ImageJ 

software was used to analyze the SEM micrographs of the composite samples in order to 

measure the interfacial spacing between GrF and epoxy.  

3.4.   Material Properties Characterization 

Thermal transformation, mechanical testing, and electrical conductivity 

characterization were carried out on dip coated and mold casted samples. All tests were 

run in parallel in terms of fabrication methods except in the case of 3-point bend flexural 

testing. This test requires sample rigidity, and the dip coated samples were too flexible to 

perform a successful test. The results for all characterization tests performed are presented 

and analyzed in the following sections.  

3.4.1.   Glass Transition Temperature 

 

Glass transition temperature is one of the most important properties for polymers 

and their composites in order to determine the thermal stability of the material. Thermal 

analysis was done by using simultaneous Thermogravimetric Analysis and Differential 
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Scanning Calorimetry (SDT Q600, TA Instruments, New Castle, DE, USA) in an argon 

environment at a heating rate of 10ºC per minute up to a maximum temperature of 250 oC. 

The TGA graphs were plotted using Origin Pro 8 software. The glass transition (Tg) 

temperatures were obtained as a function of GrF concentration. 

3.4.2.   Damping Behavior 

Understanding the damping behavior of a material is important for reducing or 

eliminating shock, noise, and other vibrations through effective energy dissipation. 

Damping tests were carried out using a Universal Surface Tester (UST) (INNOWEP 

GmbH, Wurzburg, Germany) using a 0.8 mm spherical steel tip. The pure epoxy and dip 

coated samples were tested at lower loads of 1, 10, 25, and 50 mN due to the thin nature of 

the material with high GrF content. The pure epoxy and the thicker, more rigid mold casted 

composites were tested at relatively higher loads of 10, 25, 50, 75, and 90 mN. For each 

sample, ten trials were performed at each load. The logarithmic decrement values from 

each trial were recorded, and those values were averaged. The damping behavior was 

analyzed by calculating the loss tangent (tan δ) using equation 3.1 [60]: 

𝑡𝑎𝑛 𝛿 =
𝛥

𝜋
    Eqn. 3.1 

where 𝛥 = logarithmic decrement.  

3.4.3.   Flexural Strength 

Flexural strength of cast samples was  determined by performing 3-point bend testing 

using a mechanical testing stage (SEMtester 1000, MTI Instruments, Inc., Albany, NY, 

USA) as shown in Fig. 3.4 [92]. Due to the high flexibility of the dip coated samples, they 
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were not tested for flexural strength since sample rigidity is required to obtain meaningful 

3-point bend flexural strength data. The mechanical testing stage low load cell (440 N) is 

used to perform flexural testing. The stage is controlled using MTEST Quattro software 

(ADMET, Norwood, MA, USA). The tests were carried out by holding the sample between 

2 contact locations and applying a force at a third central contact location (Fig. 3.5) at a 

rate of 1 mm per minute.   

 

Fig. 3.4. Schematic of the mechanical testing stage used for flexural testing and for 

electrical testing as a function of tensile strain [93]. 
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The flexural strength was calculated by the following equation: 

𝜎𝑓 =
3𝐹𝐿

2𝑏𝑑2    Eqn. 3.2 

where 𝜎𝑓 = flexural stress, 𝐹 = force applied, 𝐿 = length of tested sample, 𝑏 = width of 

sample, and 𝑑 = thickness of sample. The flexural strain was calculated using the following 

equation: 

𝜀𝑓 =
6𝐷𝑑

𝐿2
    Eqn. 3.3 

where 𝜀𝑓= flexural strain, 𝐷 = maximum deflection of the sample during testing, 𝑑 = 

thickness of sample, and 𝐿 = length of tested sample. The setup for the 3 point bend tests 

is shown in Fig. 3.5. 

 

Fig. 3.5. Experimental set up of flexural testing of GrF-epoxy cast sample. Arrows 

denote points of contact and directions of applied force. 
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3.4.4.   Electrical Conductivity 

3.4.4.1. Intrinsic Electrical Properties 

The electrical resistance for all GrF-epoxy samples were tested using a four-probe 

technique. Keithley 2401 SourceMeter Source Measure Unit (SMU) Instrument (Tektronix, 

Inc., Beaverton, OR, USA) in conjunction with LabVIEW software was used. A four-probe 

setup was achieved by mounting each sample between copper wires using silver paste. The 

silver paste was allowed to cure for 24 hours at room temperature. A current of 100 mA 

was swept through the samples and the resulting voltage was measured. Ohm’s law was 

used to calculate the resistance values: 

𝑉 = 𝐼𝑅     Eqn. 3.4 

where V = voltage, I = current, and R = resistance.  The electrical resistivity of each sample 

were calculated by using the following equation: 

𝜌 =  𝑅 (𝐴
𝑙⁄ )    Eqn. 3.5 

where ρ = resistivity, A = cross sectional area, and l = length of the sample. Lastly, 

electrical conductivity, σ, was calculated using  

𝜎 =  1
𝜌⁄     Eqn. 3.6 

The results were compiled and analyzed using Origin Pro 8 software.  

 

3.4.4.2. Electrical Properties as a Function of Tensile Strain 

Electrical conductivity as a function of deformation must be measured in order to 

better understand the electrical behavior of GrF-epoxy composite under different operating 

conditions. Dip coated and cast GrF-epoxy composite samples were tested under tensile 
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strain using a mechanical testing stage (Fig. 3.6) with MTEST Quattro software. The 

samples were stretched at 1 mm per minute and the electrical conductivities were measured 

at small incremental displacements based on previous strain analysis which showed similar 

dip coated samples failing at approximately 5% strain and mold casted samples failing at 

roughly 10-15% strain. In order to obtain at least 5 data points for each sample tested, 

electrical resistance was measured at increments of 0.1 mm, and mold casted sample was 

measured at increments of 0.5 mm.   The samples were tested until mechanical failure 

occurred. Equations 3.4 through 3.6 were used to calculate electrical conductivity values. 

The results were compiled and analyzed using Origin Pro 8 software.  

 

Fig. 3.6. Experimental setup showing a GrF-epoxy dip coated sample being tested for 

electrical resistance as a function of tensile strain by 4 probe method.  
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To understand the effects of the synthesis techniques on GrF-epoxy composites, 

characterization tests were performed in parallel for dip coated and cast samples. Samples 

fabricated by both techniques were tested for density, interfacial spacing, thermal 

transformation, damping behavior, and electrical properties. The dip coated samples could 

not be tested for flexural strength, due to the lack of rigidity of the sample. The completion 

of the characterization tests for both dip coated and cast samples are presented in Table 3.2. 

Table 3.2. Summary of experiments performed for dip coat and mold cast GrF-epoxy 

composites.  

 Experimental Studies Dip Coated Cast 

Density   

Differential Scanning Calorimetry   

Damping Studies   

3-Point Bend X  

Electrical Conductivity   

Resistance Retention as a Function of Tensile 

Strain 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 The overall objective of this research is to reinforce epoxy with 3D GrF to create 

high strength, low density, and electrically conductive nanocomposites. In order to achieve 

this goal, uniform dispersion of the reinforcement within the matrix material as well as 

good interfacial interaction must be accomplished. This investigation will reveal how the 

two facile synthesis techniques employed for this study allow controllability of the GrF to 

epoxy content therefore affecting the microstructure, properties, and performance of GrF 

reinforced epoxy composites. The use of GrF’s continuous, three-dimensional network 

aims to alleviate particle agglomeration, restacking, and composite material anisotropy 

oftentimes observed when using 1D and 2D carbon-based polymer matrix reinforcements.  

The composite densities and microstructures as well as the mechanical and electrical 

properties are evaluated. Thermal transformations as a function of GrF content are also 

investigated. The findings are presented and thoroughly discussed in the following sections.  

4.1. Microstructure of 3D Graphene Foam-Epoxy Composites 

The microstructure of a material is the direct result of the synthesis techniques and 

processing parameters employed during fabrication. As a result, the microstructure may be 

intentionally manipulated by controlling which materials are used, the quantity and ratios 

of materials used, and the environments in which they are processed. Strongly influencing 

the material’s properties and performance capabilities, the microstructure essentially 

governs the applications for which the material may be used.  
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GrF is a porous, ultra-lightweight material (Fig. 4.1 a) with a node-branch anatomy 

having a density of 4 mg/cm3. GrF’s intrinsic rippled or wrinkled surface features as well 

as a few slight defects on the surface are observed in Fig 4.1 b. The branches of GrF have 

a hollow triangular structure (Fig. 4.1 c) assuming the shape of the nickel foam on which 

it was grown during the chemical vapor deposition (CVD) process. There is also interlayer 

separation between the stacks of graphene layers in the GrF used for this study as seen in 

Fig. 4.1 d.  

 



 

49 
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Fig. 4.1. SEM micrographs of (a) top surface of as-received GrF showing the pores, 

branches, and nodes, (b) GrF’s wrinkled surface features and surface defects, (c) hollow, 

triangular multilayered GrF branch, and (d) high magnification image of stacked graphene 

sheets which make up the GrF walls. 

 

To understand the interfacial interaction between GrF and epoxy polymer, contact 

angle studies were performed to investigate the wetting characteristics of epoxy against 

GrF. The sessile drop method was used and the contact angles as a function of time were 

recorded. The initial angle upon contact was 67o and the angle quickly diminished to nearly 

0o in only 4 seconds (Fig. 4.2).  
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Fig. 4.2. Contact angles of epoxy against GrF at time (a) t = 0 s and (b) t = 4 s.  

Good wetting characteristics between GrF and epoxy suggest the potential for good 

interfacial interaction in future composite fabrication. The results are displayed in Fig. 4.3.  

 

Fig. 4.3. Interfacial contact angle made by epoxy resin against GrF substrate as a function 

of time.  
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To demonstrate that the wetting characteristics are a function of the surface energies 

rather than the porosities of the GrF, comparative wetting tests were also run with deionized 

water against GrF substrate. The GrF proved to be very hydrophobic with the sessile water 

droplet having a contact angle greater than 90 degrees.  

4.1.1. Dip Coat Technique 

The microstructure of a material is determined by the processing parameters and 

strongly influences the physical, chemical, thermal, and electrical properties of the material. 

To achieve a successful composite material, the absence of particle agglomeration and 

uniform dispersion of reinforcing material is key. Optical microscopy (Fig. 4.4) is utilized 

to observe uniform dispersion and seemingly complete polymer filling of GrF’s cellular 

structure suggesting the potential for superior properties and performance.  

 

Fig. 4.4. Optical microscope image of dip coated sample showing uniform GrF 

dispersion within the epoxy matrix. Blue dye was added to epoxy for enhanced 

visualization. 
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Dip coated samples showed a decrease in density with increasing GrF content (Fig 

4.5). Defects, porosities, and the intrinsic materials of the properties themselves may 

greatly affect the material’s density. The increased porosities of the GrF, including the 

interlayer spacing within the GrF itself and the high content of the ultra-low density 

material within the composite is responsible for the declining density measurements as seen 

in Fig. 4.6.  

 

Fig. 4.5. Density values of pure epoxy and GrF-epoxy composites synthesized by dip 

coating technique.  
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SEM micrographs of the fracture surfaces of the composite samples are shown in Fig. 4.6.  

The interfacial spacing between GrF reinforcement and epoxy matrix was measured for 

each sample and plotted as a function of GrF content in Fig. 4.7.  
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  Fig. 4.6. SEM images showing GrF-epoxy matrix interfacial separation in dip coated 

samples for processing times (a) 1 s (1.99 wt.% GrF), (b) 3 s (1.91 wt.% GrF), (c) 5 s 

(1.85 wt.% GrF), (d) 7 s (1.64 wt.% GrF), and (e) 9 s (1.55 wt.% GrF). 
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Fig. 4.7. Average interfacial spacing of dip coated GrF-epoxy composite samples. 

 

The dip coated samples show decreasing average interfacial spacing with 

increasing polymer content. This is strictly attributed to polymer shrinkage, also known as 

cure shrinkage. After the components of the thermosetting polymer were mixed, an 

exothermic polymerization reaction was initiated. Initially, the polymer “swells” due to 

rigorous movement of the polymer chains as they start to connect and lock into place. As 

the reaction continues, more polymer chains settle onto one another and consequently take 

up less space than before. As a result, more initial polymer chain cross-linking leads to 
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greater movement at the beginning of the reaction, leading to increased polymer shrinkage 

by the end of the reaction. As the polymer chains settle in, a retraction of material away 

from the GrF occurs, resulting in increased interfacial spacing. The dip coating synthesis 

technique facilitates capillary filling of GrF branches by epoxy polymer which is clearly 

shown in Fig. 4.8. Epoxy is drawn up into the interior of the triangular GrF branches 

although the central portion of the branches are hollow. Furthermore, the high GrF weight 

percent in dip coated samples acts as barriers against polymer chain formation, leading to 

less heat generation and therefore less swelling during the polymerization process. 
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Fig. 4.8. Capillary pulling of epoxy into GrF branches demonstrated by (a) epoxy lining 

the corners of triangular GrF branches and (b) central circular hollow region formed by 

epoxy within GrF branch.   

 

4.1.2. Mold Cast Technique 

The mold casting technique allows for further GrF content controllability with an 

altogether different microstructure while maintaining uniform dispersion and polymer 

infiltration into GrF epoxy cellular structure as shown in Fig. 4.9.  
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Fig. 4.9. SEM image of cross-sectional fracture surface demonstrating uniform dispersion 

of GrF inside epoxy matrix in mold casted sample. 

 

The GrF-epoxy cast samples in Fig. 4.10 show almost no change in density with 

added GrF content. This can be attributed to the extremely small addition of mere 0.07 and 

0.13 wt.% GrF to the epoxy. The density of pure epoxy (1.331 g/cm3) is much higher than 

the GrF (4 mg/cm3), and therefore, the extremely small GrF addition results in almost no 

change in overall composite density.  
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Fig. 4.10. Density of pure epoxy and GrF-epoxy composites synthesized by mold casting 

technique. 

 

GrF-epoxy cast composites were synthesized and the average interfacial spacing 

was approximately 10 microns for both 0.07 and 0.13 wt.% GrF-epoxy samples. Fig. 4.11 

shows SEM images of the GrF-epoxy cast samples. The average interfacial spacing for 

GrF-epoxy cast samples is roughly the same as seen in Fig. 4.12. The increased interfacial 

spacing as compared to the dip coated samples is a result of polymer shrinkage due to the 

further increased polymer content in the composite. As shown in Fig. 4.11 a, not every GrF 



 

63 

 

branch will be completely filled with epoxy. Epoxy polymer infiltrates through broken 

branches, however, many of the pristine GrF branches are still structurally sound.  
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Fig. 4.11. Comparative SEM images demonstrating near equal interfacial separation 

between (a) 0.07 wt.% and (b) 0.13 wt.% GrF-epoxy cast composites. 
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Fig. 4.12. Average interfacial spacing observed for GrF-epoxy cast composites.  

Further analysis is done to characterize the mechanical, thermal, and electrical properties 

of both sets of GrF-epoxy composites.  

4.2. Effect of Graphene Foam Addition on Thermal Stability of Epoxy  

In a polymer or polymer composite, the glass transition temperature (Tg) describes 

a thermal stability or polymer chain movement. In this study, the glass transition 

temperature is evaluated as a function of GrF content for both processing techniques. Pure 

epoxy’s Tg was measured to be 106oC. Upon evaluating the GrF-epoxy dip coated samples, 
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a remarkable 43oC enhancement was observed with the addition of only 1.5 wt. % GrF. 

The Tg also continued to rise to above 160oC with further GrF addition of up to 2 wt.% 

(Fig. 4.13). An impressive 12oC rise in Tg was observed with addition of just over 0.1 wt.% 

GrF in cast samples (Fig. 4.14). 

 

Fig. 4.13. Glass transition temperature of dip coated GrF-epoxy composites as a 

function of GrF weight percent. 
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Fig. 4.14. Glass transition temperature as a function of weight percent GrF for mold 

casted GrF-epoxy composites. 

  

This demonstrates GrF’s ability to inhibit polymer chain movement. The polymer 

molecules may wiggle in place or wrap around the branches of the GrF, but the pre-defined 

3D GrF architecture does not move in response to increasing temperature, especially 

considering graphene is stable at temperatures up to 2300oC [94].  The 53% enhancement in 

Tg with mere 2 wt.% GrF is also attributed to GrF’s ability to transport phonons away from 

the polymer matrix through its seamless, three-dimensional network. Interfacial interaction 

enhances epoxy to GrF phonon transport, with the GrF acting as a heat vessel absorbing 

thermal energy from the polymer. This interaction allows the GrF-epoxy composite to be 

used at elevated temperature as compared to pure epoxy. By controlling the GrF content 
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within the epoxy matrix and therefore controlling the composite’s Tg, the material may be 

tailored to fit the necessary applications for particular operating temperature conditions.  

4.3.   Mechanical Properties of 3D Graphene Foam-Epoxy Composites 

4.3.1. Damping Behavior  

Vibrations are often problematic for materials requiring dynamic integrity as well 

as fatigue and impact resistance ranging from large aircraft structural components down to 

small, functional, precision electronics. Damping behavior is essentially a viscoelastic 

material’s ability to absorb and dissipate energy by converting mechanical energy to 

thermal energy. In order to quantify damping behavior, the loss tangent, or tan δ, value 

must be calculated. Tan δ is the ratio of the material’s loss modulus to the storage modulus 

exhibited in response to impact loading: 

𝑡𝑎𝑛 𝛿 =
𝐸"

𝐸′
       (Eqn. 4.1) 

The storage modulus (E’) is a measure of the material’s stored energy and 

represents the elastic portion, while the loss modulus (E”) represents the material’s viscous 

portion and is responsible for the mechanical energy dissipated in the form of heat [95]. A 

schematic for understanding damping behavior is illustrated below in Fig. 4.15. 
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Fig. 4.15. Visualization of damping behavior in terms of storage and loss moduli.  

 

 GrF was tested for damping behavior at a number of loads varying from 1-10 mN, 

and the results are shown in Fig. 4.16. GrF possesses impressive damping capabilities, with 

tan δ values as high as 0.57 (for 1 mN load). Previous studies have found that damping in 

graphene is a result of weak van der Waals forces between graphene sheets as well as 

graphene’s intrinsic ability to form waves, or ripples, in response to applied compressive 

loading [90]. As the waves propagate through the material, mechanical energy is absorbed 

and dissipated as thermal energy. The free-standing 3D node-branch network of GrF 

provides additional damping mechanisms since the wave propagation is not confined to a 

single plane as with graphene. The uniformity of GrF’s cellular structure encourages nodal 
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splitting of the propagating wave, quickly and effectively diminishing the wave’s 

amplitude.  

 

Fig. 4.16. Loss tangent values for GrF tested at various loads from 1-10 mN. 

 

 A type of beam “deflection damping” may be another mechanism employed by GrF 

during impact loading [96]. The GrF branches are likened to structural beams being 

supported at each end, with the nodes being the fixed supports. Upon impact loading, the 

“beam” or branch undergoes deflection where the impacted surface experiences 

compression and the lower surface is put in tension. The inherent structure of GrF allows 

for bending, kinking, and buckling in response to compressive loads. Studies done on 3D 

graphene sponge found that energy absorption in response to compressive strain is 
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dissipated by the load transfer bending to and reversible buckling of graphene sponge 

sidewalls [97].  

 As the graphene sheets in GrF undergo compression during impact loading, the 

inherent interlayer separation is reduced. To absorb the mechanical energy from the applied 

load, the ~3.4 Å interlayer spacing is utilized to produce an oscillating “spring-like” motion. 

At higher loads, the compression reduces the interlayer spacing to the extent the van der 

Waals forces no longer can accommodate the impact loading. With the out-of-plane 

graphene interlayer spacing at a minimum, the stress of the load is transferred to graphene’s 

in-plane direction. However, the in-plane sp2 hybridized bonding (bond length ~1.4 Å) 

being much stronger than the out-of-plane van der Waals forces does not contribute 

towards energy dissipation. In this case, GrF’s in-plane elastic behavior dominates the out-

of-plane viscoelastic behavior, leading to diminished loss tangent values and therefore 

reduced damping capabilities.  

Highly impressive damping properties of GrF makes it a promising nanofiller for 

polymers to induce superior damping. It is noteworthy that unlike pure GrF, which is a 

free-standing nanomaterial, the composite structure is capable of withstanding higher 

impact loads due to rigid polymer matrix. Hence, dynamic behavior of composites is 

examined at higher loads than pure GrF, to gauge the true structural damping. The dynamic 

tests were conducted for dip coated samples for loads varying from 1 to 50 mN (Fig. 4.17). 

For the dip coated samples, with increasing GrF content, enhanced loss tangent values were 

observed. When compared with pure epoxy, at low loading (1 mN), 140% increase in loss 

tangent was observed with addition of mere 2 wt.% GrF to the epoxy matrix. At higher 
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loading of 50 mN and at same 2 wt.% GrF content, an 80% enhancement in loss tangent 

values was measured when compared to pure epoxy. The increase in damping behavior is 

due to the weak van der Waals forces allowing a spring like action between GrF layers in 

addition to the good GrF-epoxy interfacial interaction facilitating effective epoxy to GrF 

load transfer. The drastic increase in loss tangent values at higher loads is a result of the 

epoxy’s infiltration into GrF providing GrF with structural support yielding repeated up-

and-down motion of GrF without collapsing its branches. Furthermore, the enhanced 

energy dissipation comes from the fact that there is simply more energy introduced into the 

system by the impact load. Effective energy dissipation of 50 mN load means that GrF-

epoxy dip coated composites are primarily tapping the van der Waals forces without 

needing to dissipate any of the energy into GrF’s planar direction. No shear sliding is 

indicated by the excellent energy dissipation exhibited by the damping behaviors up to 50 

mN.   
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Fig. 4.17. Loss tangent values for pure epoxy and GrF-epoxy dip coated samples at 

loadings of 1, 10, 25, and 50 mN. 

 

Unlike dip coated samples which are rich in graphene content, cast composites are 

rich in polymeric phase. Hence, to be able to truly capture the damping mechanics due to 

graphene foam reinforcement, the damping tests for mold casted samples (Fig. 4.18) were 

conducted for higher loads (up to 90 mN). The same trend was observed for cast GrF-

epoxy composites. Higher GrF loading facilitated higher loss tangent values. Although the 

cast samples had much lower GrF content than the dip coated samples, the damping 

capabilities were nonetheless impressive. At same impact loading, mere 0.06 wt.% and 
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0.17 wt.% GrF resulted in 30% and 60% enhancement in loss tangent values, respectively. 

Minimal interfacial separation of only 10 microns in the synthesized composites allows 

effective transfer of mechanical energy from polymer to GrF reinforcement. Hence, 

superior damping properties of GrF is effectively harnessed, allowing impressive 

improvement in epoxy’s damping capability even when nanofiller content is very low. 

Progressive enhancement in loss tangent with increasing load signifies excellent high load 

impact tolerance of these composites. 

 

Fig. 4.18. Loss tangent values of pure epoxy and GrF-epoxy cast samples at loadings of 

10, 25, 50, 75, and 90 mN. 
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Multilayer graphene has intrinsic damping capabilities owing to its interlayer weak 

van der Waals forces between stacked graphene sheets allowing a “spring-like” motion in 

response to compressive loading. Intrinsic ripples in the pure GrF structure welcome wave 

propagation from impact loading which results in effective energy dissipation away from 

the impact site.  

The polymers themselves have good damping properties due to the polymer chains’ 

hysteresis properties promoting polymer chain settling onto and sliding past one another in 

response to applied loads [98-99]. The composite components may also work together to 

exhibit excellent damping behavior by reinforcement to matrix boundary sliding [100]. As 

the polymer chains crosslink around the GrF during curing process, they are lengthening 

and taking up a lot of space. Upon curing, the polymer chains settle and result in an overall 

shrinking. The GrF works as a heat conductor to remove some of the heat away from the 

polymer chains, ultimately reducing the polymer shrinkage. This leads to minimal 

interfacial spacing between the GrF and epoxy. Good interfacial interaction between the 

composite components allows effective transfer of mechanical energy from polymer to GrF 

reinforcement. The small separation between the GrF and polymer allows the GrF to move 

adjacent to the applied load, permitting wave propagation through the sample, further 

dissipating the mechanical energy.  

The polymer chains’ abilities to bend, flex, and slide in conjunction with the in-

plane and out-of-plane movements of the carbon atoms of the GrF employ wave ripple 

propagation as the primary dampening mechanism for effective energy absorption and 

dissipation. The pure polymer’s damping capabilities are highlighted because the tan delta 

values for pure epoxy also proved extraordinary. However, the combined notable damping 
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characteristics of both GrF and epoxy led to the highest loss tangent value observed in this 

study. The synthesis techniques of the cast samples allowed more GrF branch infiltration 

with epoxy, providing the branches with added structural integrity. Additionally, with more 

epoxy infiltration, there is added GrF to epoxy surface area which leads to improved epoxy 

to GrF stress transfer upon compressive loading.  

Although GrF suggests to have superior damping capabilities, pure GrF cannot 

withstand large impact loads as a free-standing structure. If the impact loading compresses 

the graphene layers too much, the van der Waals forces will be overly stressed and a shear 

sliding will begin to take effect. Since graphene has intermolecular strong π-π bonds, they 

will resist the shear sliding, leading to diminished damping behavior of GrF. Pure epoxy 

can withstand higher impact loadings due to the long chains’ ability to move and slide to 

accommodate stress from impact loading.  

The composites in this study demonstrated potential for use for high vibrational 

applications as the tan delta continually increased with not only added GrF content but also 

with increased impact loading. By selecting specific fabrication methods and tailoring the 

reinforcement to polymer ratio, the Tg and composite toughness may be enhanced to 

further improve damping behavior for the desired operating conditions of the material.  

4.3.2. Flexural Strength 

Flexural strength of GrF-epoxy cast composites are evaluated by 3-point bend 

flexural testing.  Evaluation of flexural strength by 3-point bend testing requires materials 

with rigidity, therefore the flexible dip coated samples were not characterized for flexural 

strength. 3-point bend testing revealed that with mere 0.30 and 0.63 wt.% GrF addition to 
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epoxy, a remarkable 25% and 56% enhancement in flexural strength as compared to pure 

epoxy was observed (Fig. 4.19). The flexural stress-strain curve demonstrates that the 

flexural strength is enhanced with increasing GrF content. Although the pure epoxy fails 

at a higher strain, the addition of GrF has an obvious effect on the strength of the epoxy 

matrix. 

 

Fig. 4.19. Flexural stress-strain curve resulting from 3-point bend test for pure epoxy and 

GrF-epoxy mold casted composites. 

 

The marked improvement is a result of the synthesis technique, good interfacial 

interaction, high polymer content within the GrF branches and nodes, GrF compromising 

its structure in response to applied load, and GrF deflecting crack propagations of the 

epoxy.   
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The mold casting synthesis technique gives rise to a microstructure which provides 

for enhanced flexural properties with minimal GrF content. By allowing the GrF to “soak” 

in the epoxy during the curing cycle, there is higher infiltration into the pores, branches, 

and nodes (Fig. 4.20) of the GrF providing the nanofiller with added structural stability.   

 

Fig. 4.20. Epoxy filling the nodes and cells of GrF. 

Filled with epoxy, the GrF branches are more likely to bend, rotate, and twist rather 

than crush or collapse under loading conditions (Fig. 4.21 a-c). Minimal interfacial 

separation allows effective stress transfer from epoxy to GrF in response to the applied 

flexural load. GrF tends to wrinkle or kink as a means to alleviate the stress from the epoxy 
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matrix. Fig. 4.22 shows GrF’s ability to stretch in order to resist failure. Note the inside of 

the GrF is lined with a thin layer of epoxy, allowing the GrF fragment to withstand higher 

flexural stress upon loading as shown in Fig. 4.20.  
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Fig. 4.21. SEM micrographs at (a) low magnification and (b-c) high magnification of 

epoxy filled GrF branches bending, kinking, twisting, and buckling in response to applied 

load. 
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Fig. 4.22. Fragment of GrF lined with epoxy stretching to resist failure. 

   

  Micrographs of the post-tested composite reveal multi-directional fracture surface 

features caused by the GrF reinforcement blunting the advancing polymeric crack 

propagations. Fig. 4.23 shows the paths of the advancing cracks are forced to travel around 

GrF branches due to the crack deflection. .  
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Fig. 4.23. SEM image of GrF-epoxy composite with fracture surface features revealing 

GrF deflecting polymer crack propagations. 

 

The many strengthening mechanisms demonstrated in the flexural tests 

demonstrate the magnitude of the potential GrF can have as an epoxy reinforcement. The 

polymer’s intrinsic failure mechanisms are blunted by GrF’s crack deflection capabilities. 

The properties of each composite component synergistically work together to yield 

enhanced flexural properties for a variety of applications requiring lightweight, flexible, 

and structurally sound materials.  
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4.4.   Electrical Properties of 3D Graphene Foam-Epoxy Composites 

4.4.1. Electrical Conductivity 

 Insulating epoxy matrix was made electrically conductive by reinforcing 

with 3D GrF. Pure GrF, pure epoxy, and each of the GrF-epoxy samples were tested for 

electrical resistivity, and the electrical conductivity was calculated. The pure GrF as well 

as the epoxy composites showed superior electrical conductivity over pure epoxy. Fig. 4.24 

shows epoxy to have a very low electrical conductivity of 10-9 S/m. The addition of mere 

1.55 wt.% GrF boosted the electrical conductivity to 164 S/m, 9 orders of magnitude higher 

than pure epoxy in dip coated composite samples. As expected, as electrical properties 

improved with increasing GrF content. There are multiple reasons for the excellent 

electrical conductivity exhibited by the dip coated samples. First, the GrF itself displays 

excellent intrinsic electronic properties due to the unique bonding structure of the carbon 

atoms and the relativistic electron transport as previously discussed. The large surface area 

of GrF maximizes the contact made between the GrF and epoxy. The three-dimensional 

network allows for effortless electron mobility in all directions, reducing the probability of 

electron collision and scattering. Good interfacial interaction confirmed through SEM 

imaging of cross-sectional surfaces also contributes to the notable electronic properties of 

the GrF-epoxy composites. Easily observed is the decrease in electrical conductivity as 

GrF content decreases, or in other words as polymer content increases. Added polymer 

content results in increased interfacial spacing, and although the spacing is not significant, 

the result is slightly diminished electrical conductivity. As electrons scatter away from the 

GrF, they enter a void which slows them down until they experience a collision with the 

polymer molecules. Higher spacing at the interface gives the electrons more time to slow 
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down prior to the collision, leaving less energy for the electrons to bounce back to the GrF. 

Therefore, less interfacial spacing means the electrons do not slow as much before hitting 

the polymer interface, resulting in a higher chance of traveling back onto the GrF network. 

The inexpensive dip coat synthesis technique does not require costly equipment, and it also 

preserves the three-dimensional structure, minimizing damage to GrF’s branches and 

nodes. The percolation limit of GrF-epoxy seems to occur starting at approximately 5 

seconds dipping time.  

 

Fig. 4.24. Electrical conductivity measurements of dip coated GrF-epoxy composites 

with pure epoxy and pure GrF as comparison. 
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The 0.07 and 0.13 wt.% GrF-epoxy samples made by casting were also tested for 

electrical conductivity and found to be 85 and 109 S/m, respectively. This synthesis 

technique proved to be effective in achieving a comparable electrical conductivity 

measurement to the dip coated samples even at a much lower GrF content. This method 

allows the GrF nodes and branches to be more fully filled with epoxy throughout the 

sample, maximizing GrF to polymer contact, resulting in impressive electrical conductivity 

values despite the extremely low GrF content. The two synthesis techniques proved to be 

successful in achieving high electrical conductivity while allowing tailorable GrF to epoxy 

polymer ratios.  

4.4.2. Electrical Resistance Retention as a Function of Tensile Strain 

It is important for a structural, electrically conductive material to maintain its 

electrical performance under various mechanical stresses.  Electrical conductivity of dip 

coated and cast epoxy/GrF composites samples was measured under tensile strain. Since 

the microstructure and interfacial spacing did not change much after 7 seconds of dipping, 

the 1.91 wt.% GrF sample was used for this particular testing. Therefore, the upper limits 

of a stabilized microstructure were taken into consideration when choosing which samples 

to test. The 1.91 wt.% GrF-epoxy dip coated sample impressively showed only a 12% 

increase in electrical resistance at 5% tensile strain (Fig. 4.25). In Fig. 4.26 the 0.1 wt.% 

GrF-epoxy mold cast composite demonstrated a 41% jump in electrical resistance at 17% 

tensile strain.  
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Fig. 4.25. Resistance retention as a function of tensile strain for 1.91 wt.% GrF-epoxy dip 

coated composite. 

 

 

Fig. 4.26. Resistance retention as a function of tensile strain for 0.13 wt.% GrF-epoxy 

mold casted composite. 
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The dip coated sample retained its electrical properties under tensile strain, while 

the mold casted composite showed high sensitivity to deformation. This finding is 

impressive in both regards. While it is important for a structural material to retain its 

properties while undergoing deformation (such as the dip coated sample), the high 

sensitivity of the mold cast composite could prove beneficial for applications such as strain 

sensors. The mold cast sample shows impressive deformation capabilities since GrF and 

GrF-polymer composites have repeatedly demonstrated failure at only 5% tensile strain [15, 

101]. Although the mold casted sample’s electrical properties were not highly preserved as 

seen in the dip coated sample, the composite allowed 17% tensile strain before reaching 

failure. In the first case, the composite material demonstrates the ability to effectively 

conduct electricity despite undergoing deformation. Although the GrF-epoxy composite 

was being stretched, GrF compromised its hexagonal lattice shape but not its electrical 

capabilities. Furthermore, the mold casted composite continued to conduct electricity while 

accommodating significant tensile strain through effective polymer to reinforcement stress 

transfer. This demonstrates the material’s ability to undergo higher strains before failure, 

indicating the possibility for impressive properties at high deformation. The electrical tests 

further prove GrF-epoxy composites as candidate materials to be used in conditions calling 

for a variety of multi-functional purposes. Different synthesis techniques and more precise 

GrF reinforcement to polymer ratio may be chosen based on the specific applications for 

which the materials must be utilized.  
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The electro-mechanical sensitivity of the composite was determined by evaluating 

the gauge factor, which is defined as: 

Gauge factor =
∆R/𝑅𝑜

ε
      (Eqn. 4.2) 

Both dip coat and mold cast composites showed similar sensitivities, with gauge 

factors 2.4 and 2.411, respectively. This suggests that the electromechanical sensitivity of 

GrF based polymer composites is independent of composite fabrication method. These 

findings are evident that GrF-epoxy composites synthesized by facile dip coating and mold 

casting methods are electromechanically robust materials with a wide range of potential 

applications.  
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CHAPTER V 

CONCLUSIONS AND MAJOR FINDINGS 

 In this thesis, graphene foam reinforced epoxy composites are successfully 

synthesized using facile dip coating and mold casting processing methods. GrF 

demonstrates the ability to provide a structurally intact, three-dimensional continuous 

network eliminating issues such as nanoparticle agglomeration and material anisotropy 

typically observed in polymer composites reinforced with 1D and 2D carbon-based 

materials. The addition of GrF is shown to increase the polymer’s glass transition 

temperature, damping behavior, and 3-point bend flexural strength. Electrical properties 

are characterized, and the addition of GrF to epoxy matrix allows accomplishment of epoxy 

polymer composites with high electrical conductivity even when subjected to deformation 

by tensile strain. The specific outcomes of reinforcing epoxy matrix with 3D GrF are 

presented below: 

 Composite materials with tailorable structural and functional characteristics may be 

achieved by employing facile dip coating and mold casting synthesis techniques. 

 Hollow GrF branches and interlayer spacing between stacks of graphene layers induce 

capillary filling of epoxy resin inside the GrF providing more polymer to reinforcement 

interfacial interaction. 

 Predetermined GrF structure within the epoxy matrix hinders polymer chain movement 

with increasing temperatures resulting in as high as a 51% enhancement in glass 

transition temperature (2 wt.% GrF-epoxy surged to 160oC Tg from the 106oC Tg of 

pure epoxy). 
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 Mechanical energy dissipation and absorption upon impact loading occurs due to 

graphene’s interlayer van der Waals forces and intrinsic ripple wave propagation as 

well as epoxy’s polymer chain flexion and shear sliding. With mere 2 wt.% GrF content 

addition, 140% and 80% enhancements in loss tangent were observed at low impact 

loads (1 mN) and higher impact loads (50 mN), respectively. 

 Effective load transfer from epoxy to GrF reinforcement takes place when undergoing 

tensile and compressive loading as demonstrated by bending, twisting, and kinking of 

GrF within the epoxy matrix. Mere 0.6 wt.% GrF addition increased flexural strength 

65% as compared to pure epoxy. 

 GrF’s 3D regularly spaced, interconnected network provides continuous pathways 

within the composites allowing effective electron transport. Addition of 1.5 wt.% GrF 

improved electrical conductivity by 11 orders of magnitude over pure epoxy. 

 Both dip coated and mold casted composites showed gauge factors of 2.4 and 2.411, 

respectively. Therefore, the electromechanical sensitivity of GrF based polymer 

composites is independent of composite fabrication method. The impressive gauge 

factor indicates dip coated and mold casted GrF-epoxy to be an electromechanically 

robust composite material.  
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CHAPTER VI 

FUTURE RESEARCH 

Based on the conclusions and major findings of this research, following 

recommendations for continuing research may be made.  

 For both synthesis techniques employed, observation of interfacial spacing was 

observed throughout the samples. Surface treatment of GrF and/or chemical 

modification of epoxy resin could eliminate interfacial spacing by inducing 

stronger bonding between reinforcement and matrix materials.  

 Alternate sample preparations as well as variations in curing conditions should 

initially be explored. Further optimizing curing temperature and time may lead to 

reduced polymer shrinkage which would reduce the interfacial separation.   

 In situ mechanical testing could be performed to understand the deformation 

mechanisms of GrF-epoxy composites in real time at high magnifications.  

 The electrical resistance retention for mold casted composites could be evaluated 

as a function of cyclic bending, further investigating the possibility of potential high 

sensitivity strain gauge applications.  

 A potential application for GrF-epoxy is anti-ice fuselage and wing coatings for 

aerospace applications. Carrying out testing and characterization on cooled or 

frozen composite samples to simulate icy conditions could provide crucial 

information regarding the feasibility of this application.  
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