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ABSTRACT OF THE DISSERTATION

CUSTOMIZED INTERFACES FOR MODERN STORAGE DEVICES

by

Leonardo Mármol Amador

Florida International University, 2017

Miami, Florida

Professor Raju Rangaswami, Major Professor

In the past decade, we have seen two major evolutions on storage technologies: flash 

storage and non-volatile memory. These storage technologies are both vastly different in 

their properties and implementations than the disk-based storage devices that current soft-

ware stacks and applications have been built for and optimized over several decades. The 

second major trend that the industry has been witnessing is new classes of applications 

that are moving away from the conventional ACID (SQL) database access to storage. 

The resulting new class of NoSQL and in-memory storage applications consume storage 

using entirely new application programmer interfaces than their predecessors. The most 

significant outcome given these trends is that there is a great mismatch in terms of both ap-

plication access interfaces and implementations of storage stacks when consuming these 

new technologies.

In this work, we study the unique, intrinsic properties of current and next-generation 

storage technologies and propose new interfaces that allow application developers to get 

the most out of these storage technologies without having to become storage experts them-

selves. We first build a new type of NoSQL key-value (KV) store that is FTL-aware rather 

than flash optimized. Our novel FTL cooperative design for KV store proofed to simplify 

development and outperformed state of the art KV stores, while reducing write amplifica-

tion. Next, to address the growing relevance of byte-addressable persistent memory, we 

build a new type of KV store that is customized and optimized for persistent memory. The

vi



resulting KV store illustrates how to program persistent effectively while exposing a sim-

pler interface and performing better than more general solutions. As the final component

of the thesis, we build a generic, native storage solution for byte-addressable persistent

memory. This new solution provides the most generic interface to applications, allow-

ing applications to store and manipulate arbitrarily structured data with strong durability

and consistency properties. With this new solution, existing applications as well as new

“green field” applications will get to experience native performance and interfaces that

are customized for the next storage technology evolution.
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CHAPTER 1

INTRODUCTION

Storage systems are becoming increasingly important in private, public, and hybrid

cloud data centers. Over time, interfaces to storage have evolved from being file ori-

ented, to block oriented, to key-value oriented, and now memory oriented. The block

interface established by early disk drives have sustained and dominated storage access

for enterprise storage arrays including disk-only, hybrid, and flash-only implementations.

Classic storage consuming applications such as SQL database have been increasingly op-

timized for the block interface over the years even as the underlying implementations have

changed. A parallel evolution in the storage stack is that the underlying device technology

has changed significantly as well. The industry has almost completely moved from disk

to flash-based storage for primary storage in the enterprise.

A recent evolution of the application interface to storage is the key-value interface [mema,

Mon14, Roc14, DSL11, MST+14] and a recent evolution in device technology is high-

performance flash devices. Key-value stores have become a very popular storage solution

for web services, NoSQL applications and distributed environments. The appeal of the

interface is the ease of storing and accessing data when associating a minimum amount

of semantic information with the data itself. One of the main reasons for the success of

key-value stores is their higher performance [BPPP09, DSL10] and scalability [DHJ+07],

when compared to traditional storage solutions like relational databases.

It is thus no surprise that modern key-value stores were particularly design for flash

storage as a way to provide an even higher performing storage solutions. In doing so,

developers often need to make assumptions about the internals of flash storage devices.

But these details are often not made available to the public, and optimizations that work

well for one vendor do not for others [YPG+14] To improve the situation, we propose
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that FTL-aware designs, that expose to the applications some of the internal mechanisms

of the flash storage, are necessary.

In this thesis, we explore the design of key-value store like solutions for a completely

different storage technology, non-volatile memory (NVM). NVM technologies offer a

unique duality that combines the byte-addressability and low latency of DRAM with the

durability of traditional storage. This eliminates the need to come up clever ways of

moving data back and forth between slow persistent storage and fast volatile memory.

However, programming directly onto NVM is non trivial, and recycling existing solu-

tions for managing memory or storage are not applicable to NVM. To bridge this gap, we

propose and build on top of a new, extended device interface to flash storage that allows a

custom library implementation to extract significantly higher performance from the stor-

age device. We empirically demonstrate that the use of this extended interface, that is

aware of the underlying flash management mechanisms not only simplify the design and

implementation of key-value stores but also significantly improve their performance.

While flash based storage technology has a stronghold on primary storage products

for primary data storage, we are currently at the beginning of the next evolution of stor-

age — from flash-based block storage to byte-addressable persistent memory. The next

generation of persistent storage devices are going to be memory oriented [Int15a]. The

emergence of byte-addressable persistent memory (PM) hardware, such as ReRAM, STT-

MRAM, PCM, and 3D-XPoint present a combination of properties of both memory and

storage. 3D-XPoint persistent memory from Intel is currently the most promising and it

is expected to provide storage access latencies in the order of tens of nanoseconds for

512-byte accesses. This is three orders of magnitude faster than state-of-the-art flash and

immediately brings into focus the overheads contained in the storage stack.

Just as the onset of disk-based storage provided the impetus for seek-optimizing work-

load shaping and flash-based storage have addressed capacity constraints and flash life-

2



time management, this next evolution of storage technology will usher in entirely new

class of applications and new mechanisms for application access to storage. Conven-

tional block I/O processing in the OS has shown to add as much as 300 µs of overhead to

each operation and even highly optimized software stacks that bypass the OS for device

access add as much as 20 µs of overhead [CME+12, CS13]. The memory-like proper-

ties of this new class of persistent memory storage open up the possible of using low-

latency load/store access. However, store interfaces were design with a much slower

medium in mind that operate a much coarse granularity [CLU+15, CME+12, VTS11b,

CCA+11b]. Moreover, memory interfaces to storage do not automatically provide the

consistency and durability properties that applications expect from traditional storage, and

the other hand, When an application consuming storage through a KV interface chooses to

utilize a persistent memory device, the existing solutions suffer an impedance mismatch

whereby they map the KV implementation to a memory oriented block device (e.g., a

RAMDISK) [CLU+15, CNF+09, DKK+14]. Alternatively, custom-built KV stores for

memory lose generality. In this thesis, we propose to consume NVM through a native

key-value interface with transactions support for updates. With our proposed solution, ap-

plications consume NVM without having to understand the details of NVM, and thereby

trading high performance for generality.

In the last part of this thesis we focus on a more general approach to NVM in order

to enable NVM for all types of applications. While key-value stores are very popular

alternative for data storage solutions, many application have requirements that are not

satisfy by the simple data model of key vale stores. In particular, having to access all

data through a key value interface may impose too much impedance mismatch, and for

some applications too much overhead. Additionally, hand-crafting point solutions for

storing data within persistent memory could quickly become too costly and time con-

suming. Then is becomes necessary to have a more generic abstraction that exposes the
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What is necessary is a generic abstraction that will expose the richness and performance

of the memory interface to the applications and support seamless persistence. To this

end, we propose LIBPM: a persistent memory library that implements the containers ab-

straction. The proposed persistent containers are self-contained data hosting units that

allow applications to directly store, fetch, and update arbitrarily complex data structures

at memory speeds. They provide a simple and light-weight transactional update capabil-

ities that simplify applications development. Additionally, LIBPM simplifies the porting

of legacy applications to NVM technologies by automatically discovering and persistent

applications’ in-memory data based on simple hints.

The next chapter outlines the main claims of this dissertation. It starts by listing the

proposed problems to study, followed by descriptions of our proposed solutions and their

significance. Each chapter of this dissertation is written to be as self contained as possible.

However, in order to better understand the material here presented, readers are encouraged

to get familiar with the terms and concepts described in the background chapter 3. The

rest of this document dedicates a chapter to each of the systems we have built to address

the proposed problems. We conclude the dissertation with a survey of related literature

and a detailed description on how our solutions differs from previous ones, concluding

statements, and directions for future work.
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CHAPTER 2

PROBLEM STATEMENT

This chapter introduces the proposed research problems and their significance. In

addition, this chapter also identifies the major challenges associated to the problems in

question and outline our unique contributions.

2.1 Thesis Statement

We propose building native storage solutions to applications that are tailor-made for the

underlying storage device technology by:

1. providing native integration between key-value stores and modern flash storage de-

vices,

2. building a key-value store with native, transactional update capabilities when using

non-volatile memory (NVM) devices, and

3. providing a new, generic application interfaces to NVM devices suitable for both

supporting new applications and for porting of legacy applications to NVM.

2.2 Thesis Contributions

This thesis addresses the challenges of building native storage support for applications

and makes three distinct contributions.

First, we build native support for accessing today’s advanced flash devices via a sim-

ple and commonly-used key-value interface. Existing key-value stores use flash storage

like any other block device. This approach is convenient because it requires no applica-

tion modifications, but it does not use the full potential of modern flash storage. Modern

Flash Translation Layers (FTL) implement many advanced capabilities that, if exposed to

5



the application layer, could significantly simplify application design and improve perfor-

mance. Because these interfaces are not exposed to the applications layer, key value stores

end up re-implementing some of these capabilities, incurring in additional resources con-

sumption, higher overhead and poorer performance. Examples of these capabilities in-

clude mapping from logical to physical addresses, logging, and atomic updates. In this

thesis, we propose extending traditional block device interfaces for flash storage, so that

these advanced capabilities are made available to the application layer.

Second, we build native support for using next generation non-volatile memory (NVM)

devices via a key-value interface. With the arrival of NVM device technologies new op-

portunities for improving the performance of applications become available. Of these

options, programming NVM directly is the most effective, yet also the most difficult and

error prone. To correctly program NVM, developers would have to become familiar with

the many subtleties of NVM that could only be expected from an expert in the subject.

For example, even though NVM is persistent, CPU caches are not. So in order to make

memory update persistent, CPU caches need to be carefully flushed to guarantee data

durability without impacting performance. And depending on the NVM technology and

the system architecture, additional instructions may be needed to avoid buffering on the

memory controllers. In addition, CPU caches perform out-of-order evictions at any time,

making the use memory fences a requirement to preserve applications data consistency.

Finally, physical characteristics of competing technologies are often not available to the

user, and optimizations for one type of NVM do not apply to others. For these reasons, we

propose applications to consume NVM through an indirection layer that hide all the com-

plexities of NVM. To this end, we build a key-value store with support for transactional

updates as a viable interface for this indirection layer.

Finally, we go beyond the key-value interface to build native support for accessing

NVM similar to how volatile memory is consumed today for increased generality and us-
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age. Using a key-value store to consume NVM trades generality for simplicity and high

performance. While the key-value interface is adequate for many applications, it is not

good enough for others applications with more complex data requirements. In addition,

the key-value store favors the development of new applications without providing a path-

way for legacy applications to consume NVM without a significant rewrite of their core

logic. To overcome these limitations, we propose LIBPM: a Persistent Memory Library

that implements Container as the main abstraction for consuming NVM. Containers are

a data hosting unit that can store arbitrarily complex data types while preserving their

integrity and consistency. This abstraction facilities the use of NVM without having to

navigate all the pitfalls of programming NVM directly. LIBPM provides a simple and

high performing transactional update semantics which allows applications to manipulate

persistent data at the speed of memory. In addition, LIBPM provides a mechanism to port

legacy applications to NVM with automatic data discovery.

2.3 Thesis Significance

This thesis addresses current problems related to developing and deploying applications

that consume storage with high-performance and correctness. The solutions discussed

in this thesis allow applications to consume storage using high-level API without being

concerned about the internals of the underlying storage device and storage software stack

implementations. These solutions, in effect, create a sophisticated layer of indirection

with native mechanisms for consuming the underlying storage device and exposing simple

abstractions to the application developer.
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2.3.1 NVMKV

Designing a key-value store that uses the capabilities of moderns FTL layers has multiple

benefits. Firstly, it significantly simplifies the design and implementation of the key-value

store because many of the internal mechanism needed by the key-value store are already

implemented by the FTL layer. Some of these mechanisms include data mapping, com-

paction/garbage collection, and sparse addressing. Secondly, it improves the performance

of the key-value stores by minimizing applications-level write amplifications and reduc-

ing the number of IOs per operations. Thirdly, it reduces the resource utilization by the

key-value layer because many of the internal in-memory mappings are maintained by the

FTL-layer and replaced by simple hashing schemes. Finally, it improves the life time of

the device as an consequence of the reduced write amplification and on average one IO

per operation.

2.3.2 METRADB

Piggy backing on the popularity of key-value stores, we propose the consumption of NVM

through key-value store interfaces with support for transactional updates. This approach

makes it easy for modern applications to use NVM without having to worry about the

internals of NVM or maintaining application’s data in a consistent state. The simplic-

ity of key-value stores interfaces eases the design and implementation of high perform-

ing transactional semantics. Additionally, it eliminates many challenges related to using

NVM directly such as managing persistent data structure integrity and data sharing. Fi-

nally, consuming NVM through an indirection layer facilitates the adoption of future

NVM technologies at low development cost because the core application logic remains

untouched.
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2.3.3 LIBPM

To address the limitations of the key-value store interface at address the needs of a lager

number of application, LIBPM exposes a familiar memory-like interface that operate on

Containers. At a high level, Container host persistent data and guarantee the durability

and consistent of the data it hosts. Unlike key-value stores, LIBPM allows unsupervised

access to the data it manages by memory mapping Container directly into the applica-

tion’s address space. This eliminates the impedance of having to access data in persistent

memory through a key value stores APIs. Another advantage of LIBPM over key value

stores is that LIBPM can manage arbitrarily complex data types and it’s aware of object

relations (pointers) which is typically not supported on key value stores. Once a LIBPM

Container is open, all of is data is readily available for the applications without having

to deal with any pointer swizzling. LIBPM also provide a simple transactional model

that allows developers to make in-memory updates durable with a single atomic API call

at the Container granularity. This atomic operations effectively mutates the state of the

Container from one consistent point in time to the next. Additionally, LIBPM implements

an automatic data discovery mechanism based on applications hints that facilitates port-

ing legacy applications to NVM technologies in an incremental fashion and without any

changes to their core logic. With LIBPM, applications effectively get to consume per-

sistent memory as if it were volatile memory, enabling developers to write applications

tailor-made for persistent memory with relative ease.
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CHAPTER 3

BACKGROUND

In this chapter we define concepts that are prerequisite for understating the problem

described in this thesis as well as the proposed solutions.

3.1 NAND Based Storage Systems

NAND flash memory is a type of non-volatile storage technology that does not require

power to retain data. There three types of operations that can be performed on NAND

flash: read, write and erase. Reads are typically faster than writes, and writes are faster

than erase by about an order of magnitude. Due to the physical characteristics of NAND,

data can not be overwritten without first erasing it. This unique characteristic of flash

storage has a major impact on how applications use flash storage.

3.2 Flash Translation Layer

NAND Flash storage devices have a software component known as the flash translation

layer. This software layer is in charge of presenting the flash storage device to the OS

as a regular block device. Additionally, the FTL is in charge or maintaining the mapping

between logical to physical addresses, reclaiming unused space in the device (this process

is also known as garbage collection), and placing data across the device in a way that

avoids uneven wear leveling.

3.3 Non-Volatile Memory

Non-volatile memory (NVM) or persistent memory is a type of memory that like NAND

flash does not required power to retain data, but unlike flash it allows data accesses at a
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byte (8 bits) granularity. NVM is also a random-access memory with latencies for reads

and write operations that are comparable to those of DRAM. In this document we will

use the terms non-volatile memory and persistent memory interchangeably.

3.4 NVM: Is it memory or storage?

Conventionally, applications have consumed memory and storage through different in-

terfaces. Memory is typically managed by an external library (e.g. libc) which adds

new mappings to an application’s address space, allowing direct access to data. Stor-

age, on the other hand, is traditionally managed by an external entity like a file sys-

tem or a database, which provides supervised access to data and guarantees data consis-

tency. Since the existing memory interface guarantees no data durability, it cannot be

used as-is for NVM. The well-established file interface can also fall significantly short

in utilizing the potential of NVM. The large granularity of block-oriented file system

induces high software and data transfer overheads making small reads and updates ex-

pensive [DKK+14, CME+12, CLU+15]. For these reasons, we believe that in order to

fully exploit the potential of NVM a software stack and developer interfaces will need to

be created.
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CHAPTER 4

NVMKV

In this chapter we examine flash storage devices and how to write applications for

this new type of media in a way to utilizes flash full potential. In order to do so, we take

a closer looks at the software component of flash storage, the Flash Translation Layer

(FTL), and illustrate how exposing some of the FTL internals to user space applications

could simplify applications design and improve applications performance. We demon-

strate this approach by implementing a high-performance Key-Value Store with transac-

tional update optimized for modern flash storage devices.

4.1 Introduction

Flash-based key-value (KV) stores are becoming mainstream, with the importance of

the KV interface to storage and flash technology have been well established through a

gamut of implementations [AFK+09, BPPP09, DSL10, DSL11, LFAK11]. However, best

utilizing the high-performance flash-based storage to drive the new generation of key-

value stores continues to remain a challenge. The majority of the existing KV stores use a

logging-based approach which induces significant additional write amplification (WA) at

the KV software layer in addition to the internal WA caused by the FTL while managing

physical flash. The recent LevelDB KV store from Google [GD11] also exhibits rather

dramatic auxiliary write amplification. Figure 4.1 reveals a minimum of 2.5x auxiliary

write amplification for sequential asynchronous writes and a maximum of 43x for random

synchronous writes.

Modern FTLs offer new capabilities that enable compelling, new design points for

KV stores [T1013, Ope14]. Integration with these advanced capabilities results in an op-

timized FTL-aware KV store [MST+14]. First, writing to the flash can be optimized to

significantly improve both device lifetime and workload I/O performance. Second, mod-
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Figure 4.1: A comparison of write amplification. LevelDB variants are RW: Random
asynchronous writes, RW-S: random synchronous writes, SW: sequential asynchronous
writes, SW-S: sequential synchronous writes.

ern FTLs already perform many functions that are similar to the functionality built into

many KV stores such as log-structuring, dynamic data remapping, indexing, transactional

updates, and thin provisioning [JBLF12, ONW+11, SSZ12]. Avoiding such replication

of functionality can offer significant resource and performance benefits.

Next we present the design, implementation, and evaluation of NVMKV, an FTL-

aware KV store. NVMKV has been designed from the ground up to utilize the advanced

capabilities found in modern FTLs. It implements a hashing-based design that uses the

FTLs sparse address-space support to eliminate all write amplification at the KV layer,

improving flash device endurance significantly relative to current KV stores. It is able to

achieve single I/O get/put operations with performance close to that of the raw device,

representing a significant improvement over current KV stores. NVMKV uses the ad-

vanced FTL capabilities of atomic multi-block write, atomic multi-block persistent trim,

exists, and iterate to provide strictly atomic and synchronous durability guarantees for
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KV operations.

Two complementary factors contribute to increased collocation requirements for KV

stores running on a single flash device. First, given the increasing flash densities, the per-

formance points of flash devices are now based on capacity with larger devices being more

cost-effective [YPG+14]. Second, virtualization supports increases in collocation require-

ments for workloads. A recent study has shown that multiple independent instances of

such applications can have a counterproductive effect on the underlying FTL, resulting

in increased WA [YPG+14]. NVMKV overcomes this issue by offering a new pools

abstraction that allows transparently running multiple KV stores within the same FTL.

While similar features exist in other KV stores, the FTL-aware design and implementa-

tion within NVMKV enables both efficient FTL coupling and KV store virtualization.

NVMKV’s design also allows for optimized flash writing across multiple KV instances

and as a result lowers the WA.

In the quest for performance, KV stores and other applications are trending towards an

in-memory architecture. However, since flash is still substantially cheaper than DRAM,

any ability to offset DRAM for flash has the potential to reduce Total Cost of Ownership

(TCO). We demonstrate how accelerating KV store access to flash can in turn result in

similar or increased performance with much less DRAM.

We evaluated NVMKV and compared its performance to LevelDB. We evaluated the

scalability of pools, compared it to multiple instances of LevelDB, and also found that

NVMKV’s atomic writes outperform both async and sync variants of LevelDB writes by

up to 6.5x and 1030x respectively. NVMKV reads are comparable to that of LevelDB

even when the workloads fit entirely in the filesystem cache, a condition that benefits

LevelDB exclusively. When varying the available cache space, NVMKV outperforms

LevelDB and more importantly introduces a write amplification of 2x in the worst case,

which is small compared to the 70x for LevelDB. Finally, NVMKV improves YCSB
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benchmark throughput by up to 25% in in comparison to LevelDB.

4.2 Motivation

In this section, we discuss the benefits of better integration of KV stores with the FTL’s

capabilities. We also motivate other key tenets of our architecture, in particular the support

of multiple KV stores on the same flash device and the need to increase performance with

smaller quantities of DRAM.

An FTL-aware KV store: A common technique for performance improvement in flash

optimized KV stores is some form of log structured writing. New data is appended

to an immutable store and reorganized over time to reclaim space [Aer, Roc14, GD11,

LFAK11]. The reclamation process, also called garbage collection or compaction, gen-

erates Auxiliary Write Amplification (AWA) which is the application level WA above that

which is generated by the FTL. Unfortunately, AWA and the FTL induced WA have a

multiplicative effect on write traffic to flash [YPG+13]. Previous work highlighted an

example of this phenomenon with LevelDB, where a small amount of user writes can be

amplified into as much as 40X more writes to the flash device [MST+14]. As another ex-

ample, the SILT work describes an AWA of over 5x [LFAK11]. NVMKV entirely avoids

AWA by leveraging native addressing mechanisms and optimized writing implemented

within modern FTLs.

Multiple KV stores in the device: The most recent PCIe and SAS flash devices can

provide as much as 4-6TB of capacity per device. As density per die increases with every

generation of flash driven by the consumer market, the multiple NAND dies required

to generate a certain number of IOPs will come with ever increasing capacities as well

as reduced endurance [GDS12]. Multiple KV stores on a single flash device become

cost effective but additional complexities arise. For instance, recent work shows how
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applications that are log structured to be flash optimal can still operate in suboptimal ways

when either placed above a file system or run as multiple independent instances over a

shared FTL [YPG+14]. NVMKV provides the ability to have multiple independent KV

workloads share a device with minimal AWA.

Frugal DRAM usage: The ever increasing need for performance is driving the in-

memory computing trend [Mem14, SAP14, DFI+13]. However, DRAM cost does not

scale linearly with capacity since high capacity DRAM and the servers that support it are

more expensive per unit of DRAM (in GB) than the mid-range DRAM and servers. The

efficacy of using flash to offset DRAM has also been established in the literature [BP11].

In the KV store context, similar arguments have been made showing the server consoli-

dation benefits of trading DRAM for flash [Aer]. A KV store’s ability to leverage flash

performance contributes directly to its ability to trade off DRAM for flash. NVMKV

operates with high performance and low WA in both single and multiple instance KV

deployments.

4.3 Building an FTL-aware KV Store

NVMKV is built using the advanced capabilities of modern FTLs. In this section, we

discuss its goals, provide an overview of the approach, and describe its API.

4.3.1 Goals

NVMKV is intended for use within single node deployments by directly integrating it

into applications. While it is not intended to replace the scale out key-value functionality

provided by software such as Dynamo and Voldemort [DHJ+07, SKG+12], it can be used

for single node KV storage within such scale out KV stores. From this point onward, we
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refer to such single node KV stores simply as KV stores. We had the following goals in

mind when designing NVMKV:

Deliver Raw Flash Performance: Convert the most common KV store operations, GET

and PUT into a single I/O per operation at the flash device to deliver close to raw flash

device performance. As flash devices support high levels of parallelism, the KV store

should also scale with parallel requests to utilize the performance scaling capacity of the

device. Finally, when multiple, independent KV instances are consolidated on a single

flash device, the KV store should deliver raw flash performance to each instance.

Minimize Auxiliary Write Amplification: Given the multiplicative effect on I/O vol-

ume due to WA, it is important to minimize additional KV store writes, which in turn

reduces the write load at the FTL and the flash device. Reducing AWA improves KV

operation latency by minimizing the number of I/O operations per KV operation as well

as improvement of flash device lifetime.

Minimize DRAM Consumption: Minimize DRAM consumption by (i) minimizing

the amount of internal metadata, and (ii) by leveraging flash performance to offset the

amount of DRAM used for caching.

Simplicity: Leverage FTL capabilities to reduce code complexity and development

time for the KV store.

4.3.2 Approach

Our intent with NVMKV is to provide the rich KV interface while retaining the perfor-

mance of a much simpler block based flash device. NVMKV meets its goals by leveraging

the internal capabilities of the FTL where possible and complementing these with stream-

lined additional functionality at the KV store level. The high level capabilities that we

leverage from the FTL include:

17



Category API Description

Basic
get(...) Retrieves the value associated with a given key.
put(...) Inserts a KV pair into the KV store.

delete(...) Deletes a KV pair from the KV store.

Iterate
begin(...) Sets the iterator to the beginning of a given pool.
next(...) Sets the iterator to the next key location in a given pool.

get current(...) Retrieves the KV pair at the current iterator location in a
pool.

Pools

pool exist(...) Determines whether a key exists in a given pool.
pool create(...) Creates a pool in a given NVMKV store.
pool delete(...) Deletes all KV pairs from a pool and deletes the pool from

NVMKV store.
get pool info(...) Returns metadata information about a given pool in a KV

store.

Batching

batch get(...) Retrieves values for a batch of specified keys.
batch put(...) Sets the values for a batch of specified keys.

batch delete(...) Deletes the KV pairs associated with a batch of specified
keys.

delete all(...) Deletes all KV pairs from a NVMKV store in all pools.

Management

open(...) Opens a given NVMKV store for supported operations.
close(...) Closes a NVMKV store.

create(...) Creates a NVMKV store
destroy(...) Destroys a NVMKV store.

Table 4.1: NVMKV API The table provides brief descriptions for the NVMKV API calls.
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Figure 4.2: NVMKV System Architecture
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Dynamic mapping: FTLs maintain an indirection map to translate logical addresses

into physical data locations. NVMKV leverages the existing FTL indirection map to the

fullest extent to avoid maintaining any additional location metadata. Every read and write

operation simply uses the FTL indirection map and thereby operates at raw flash device

performance by definition. This approach also reduces the additional DRAM overhead of

NVMKV.

Persistence and transactional support: FTLs access data and metadata, and in par-

ticular maintain the persistence of indirection maps, at the speed of raw flash. NVMKV

leverages this highly tuned capability to reduce the overhead for metadata persistence,

logging, and checkpointing operations. Further, as FTLs operate as non-overwriting

redirect-on-write stores, they can easily provide high performance transactional write se-

mantics [ONW+11]. NVMKV leverages these capabilities to limit locking and journaling

overheads.

Parallel operations: FTLs already implement highly parallel read/write operations while

coordinating metadata access and updates. NVMKV leverages this FTL feature to mini-

mize locking, thus improving scalability. We also define batch operations that are directly

executed by the FTL to enable parallel KV store requests to be issued with lower I/O stack

overhead [VKA12a].

4.3.3 NVMKV Architecture

NVMKV is a lightweight library in user space which interacts with the FTL through a

primitives interface implemented as IOCTLs to the device driver that manages the flash

device. Figure 4.2 shows the architecture of a system with NVMKV. Consumer appli-

cations, such as scale out KV stores, communicate with the NVMKV library using the
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NVMKV API. The NVMKV API calls are translated to underlying FTL primitives inter-

face calls to be executed by the FTL.

Category API Description

Basic
read(...) Reads the data stored in the Logical Block Address

(LBA).
write(...) Writes the data stored in buffer to destination LBA.
trim(...) Deletes (or discards) the mapping in FTL for the

passed LBA range.

Sparse

exists(...) Returns the presence of FTL mapping for the passed
LBA.

range exist(...) Returns the subset of LBA ranges that are mapped in
the FTL.

ptrim(...) Persistently deletes the mapping in FTL for the passed
LBA range.

iterate(...) Returns the next populated LBA starting from the
passed LBA.

atomic read(...) Executes read for a contiguous LBAs as an ACID
transaction.

Transactional atomic exists(...) Executes exists for a contiguous LBAs as an ACID
transaction.

Persistence atomic write(...) Executes write of a contiguous LBAs as an ACID
transaction.

atomic ptrim(...) Executes ptrim of a contiguous LBAs as an ACID
transaction.

Conditional
cond atomic write(...) Execute the atomic write only if a condition is satis-

fied.
cond range read(...) Returns the data only from a subset of LBA ranges

that are mapped in the FTL.
Batching Operations within each category can be batched and

executed in the FTL.

Table 4.2: FTL Primitive Interface Enhanced FTL capabilities that NVMKV builds upon.

4.3.4 NVMKV Consumer API

NVMKV’s consumer applications interact with the library through the NVMKV API. We

held discussions with the creators and vendors of several scale out KV stores to identify a

set of operations commonly needed in a KV store. These operations formed the NVMKV
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API and they fall under five broad categories based on the functionality they provide. The

categories are: basic, iterate, pools, batching, and management.

Table 4.1 presents the overview of the NVMKV API. We leverage the FTL’s ability

to provide enhanced operations such as Atomic Writes to provide transactional guarantees

in NVMKV operations. Most existing KV stores do not offer such guarantees for their

operations, and adopt more relaxed semantics such as eventual consistency to provide

higher performance. On the other hand, we found that our approach enabled us to provide

transactional guarantees with no loss of performance. We believe such guarantees can be

of use to specific classes of applications as well as for simplifying the store logic contained

within such applications. For instance, atomic KV operations imply that applications no

longer need to be concerned with partial updates to flash.

The Basic and Iterate categories contain common features provided by many KV

stores today. The Pools category interfaces allow for grouping KV pairs into buckets that

can be managed separately within an NVMKV store. Pools provide the ability to trans-

parently run multiple KV stores within the same FTL (discussed in more detail in § 4.6).

The Batching category interfaces allow for group operations both within and across Basic,

Iterate, and Pools categories, a common requirement in KV stores [BFPS11]. Finally, the

Management category provides interfaces to perform KV store management operations.

4.4 Overview and FTL Integration

NVMKV’s design is closely linked to the advanced capabilities provided by modern

FTLs. Before describing its design in more detail, we provide a simple illustrative ex-

ample of NVMKV’s operation and discuss the advanced FTL capabilities that NVMKV

leverages.

21



4.4.1 Illustrative Overview

To illustrate the principles behind NVMKV’s design simply, we now walk through how a

get, a put, and a delete operation are handled. We assume the sizes of keys and values

are fixed and then address arbitrary sizes when we discuss design details (§4.5).

By mapping all KV operations to FTL operations, NVMKV eliminates any additional

KV metadata in memory. To handle puts, NVMKV computes a hash on the key and uses

the hash value to determine the location (i.e., LBA) of the KV pair. Thus, a put operation

gets mapped to a write operation inside the FTL.

A get operation takes a key as input and returns the value associated with it (if the

key exists). During a get operation, a hash of the key is computed first to determine

the starting LBA of the KV pair’s location. Using the computed LBA, the get operation

is translated to a read operation to the FTL wherein the size of the read is equal to the

combined sizes of the key and value. The stored key is matched with the key of the get

operation and in case of a match, the associated value is returned.

To handle a delete operation, the given key is hashed to compute the starting LBA

of the KV pair. Upon confirming that the key stored at the LBA is the key to be deleted,

a discard operation is issued to the FTL for the range of LBAs containing the KV pair.

In this simplistic example, translating existing KV operations to FTL operations is

straightforward and the KV store becomes a thin layer offloading most of its work to the

underlying FTL with no in-memory metadata. However, additional work is needed to

handle hash collisions in the LBA space and persisting discard operations.

4.4.2 Leveraging FTL Capabilities

We now describe the advanced FTL capabilities that are available and also extended to

enable NVMKV. Many of these advanced FTL capabilities have already been used in
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other applications [DAT+14, JBLF12, ONW+11, SSZ12, YPG+13]. The FTL interface

available to NVMKV is detailed in Table 4.2.

Dynamic Mapping

Conventional SSDs provide a dense address space, with one logical address for every

advertised available physical block. This matches the classic storage model, but forces

applications to maintain separate indexes to map items to the available LBAs. Sparse

address spaces are available in advanced FTLs which allow applications to address the

device via a large, thinly provisioned, virtual address space [ONW+11, SSZ12, YPG+13].

Sparse address entries are allocated physical space only upon a write. In the NVMKV

context, a large address space enables simple mapping techniques such as hashing to be

used with manageable collision rates.

Additional primitives are required to work with sparse address spaces. EXISTS queries

whether a particular sparse address is populated. PTRIM is a persistent and atomic dele-

tion of the contents at a sparse address. These primitives can be used for individual, or

ranges of, locations. For example, RANGE-EXISTS returns a subset of a given virtual

address range that has been populated. The ITERATE primitive is used to cycle through

all populated virtual addresses, whereby ITERATE takes a virtual address and returns the

next populated virtual address.

Transactional Persistence

The transactional persistence capabilities of the FTL are provided by ATOMIC-WRITE and

PTRIM [DAT+14, JBLF12]. ATOMIC-WRITE allows a sparse address range to be written

as a single ACID compliant transaction.
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Optimized Parallel Operations

The FTL is well-placed to optimize simultaneous device-level operations. Two classes of

FTL primitives, conditional and batch, provide atomic parallel operations that are well-

utilized by NVMKV. For example, cond atomic write allows for an atomic write to

be completed only if a particular condition is satisfied, such as the LBA being written to

is not already populated. This primitive removes the need to issue separate exists and

atomic write operations. Batch or vectored versions of all primitives are also imple-

mented into the FTL (such as batch read, batch atomic write, and batch ptrim)

to amortize lock acquisition and system call overhead. The benefits of batch (or vector)

operations have been explored earlier [VKA12b].

4.5 Design Description

NVMKV implements novel techniques to make sparse addressing practical and efficient

for use in KV stores and for providing low-latency, transactional persistence.

4.5.1 Mapping Keys via Hashing

Conventional KV stores employ two layers of translations to map keys to flash device

locations, both of which need to be persistent [Mon14, Roc14, AFK+09]. The first layer

translates keys to LBAs. The second layer (i.e., the FTL) translates the LBAs to physical

locations in flash device. NVMKV leverages the FTLs sparse address space and encodes

keys into sparse LBAs via hashing, thus collapsing an entire layer.

NVMKV divides the sparse address into equal sized virtual slots, each of which stores

a single KV pair. More specifically, the sparse address space (with addressability through

N bits) is divided into two areas: the Key Bit Range (KBR) and the Value Bit Range
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LBA = hash(k, pid)

get(k, pid)

put(< k,v >, pid)

read(LBA, . . .)

write(LBA, . . .)

NVMKV VSL

LBA = [047|146| . . . |113|112︸ ︷︷ ︸
hash36(k,pid)

|011|110| . . . |001|100︸ ︷︷ ︸
hash11(pid)

]

Figure 4.3: Hash model used in NVMKV. The arguments to the functions represent k:key,
v:value, and pid:pool id.

(VBR). This division can be set by the user at the time of creating the NVMKV store.

The VBR defines the amount of contiguous address space (i.e., maximum value size or

virtual slot size) reserved for each KV pair. The KBR determines the maximum number

of such KV pairs that can be stored in a given KV store. In the expected use cases, the

sparse virtual address range provided by the KBR will still be several orders of magnitude

larger than the number of KV pairs as limited by the physical media.

The keys are mapped to LBAs through a simple hash model as shown in Figure 4.3.

User supplied keys can be of variable length up to the maximum supported key size. To

handle a put operation, the specified key is hashed into an address which also provides

its KBR value. The maximum size of the information (Key, Value, metadata) that can be

stored in a given VBR is half of the size addressed by the VBR. For example, if the VBR

is 11 bits and each address represents a 512B sector, a given VBR value can address 2

MB.

The above layout guarantees the following two properties. First, each VBR contains

exactly one KV pair, ensuring that we can quickly and deterministically search and iden-

tify KV pairs stored in the flash device. Second, no KV pairs will be adjacent in the sparse

address space. In other words, there is always unpopulated virtual addresses between ev-
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ery KV pair. This deliberately wasted virtual space does not translate into unutilized

storage since it is in virtual and physical space. These two properties are critical for

NVMKV as the value size and exact start location of the KV pair are not stored as part

of NVMKV metadata but are inferred via the FTL. Doing so helps in significantly reduc-

ing the in-memory metadata footprint of NVMKV. Non-adjacent KV pairs in the sparse

address space help in determining the value size along with the starting virtual address of

each KV pair. To determine the value size, NVMKV issues a range exist call to the

FTL.

A direct consequence of this design is that every access pattern becomes a random

pattern, losing any possible order in the key space. The decision to not preserve se-

quentiality was shaped by two factors: metadata overhead and flash I/O performance. To

ensure sequential writes for contiguous keys, additional metadata would be required. This

metadata would have to be consulted when reading, updated after writing, and cached in

RAM to speed up the lookups. While straightforward to implement, doing so is unnec-

essary since the performance gap between random and sequential access for flash is ever

decreasing; for current high performance flash devices, it is practically non-existent.

4.5.2 Handling Hash Collisions

Hashing variable sized keys into fixed size virtual slots could result in collisions. Since

each VBR contains exactly one KV pair, hash conflicts only occur in the KBR. To il-

lustrate the collision considerations, consider the following example. A 1TB Fusion-io

ioDrive can contain a maximum of 231 (2 billion) keys. Given a 48 bit sparse address

space with 36 bits for KBR and 12 bits for VBR, NVMKV would accommodate 236 keys

with a maximum value size of 512KB. Under the simplifying assumption that our hash

function uniformly distributes keys across the value ranges, for a fully-utilized 1TB io-
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Drive, the chances of a new key insertion resulting in a collision is 1/25 or a little under 3

percent.

NVMKV implicitly assumes that the number of KBR values is sufficiently large, rel-

ative to the number of keys that can be stored in a flash device, so that the chances of

a hash collision are small. If the KV pair sizes are increased, the likelihood of a colli-

sion reduces because the device can accommodate fewer keys while preserving the size

of the key address space. If the size of the sparse address space is reduced, the chances

of a collision will increase. Likewise, if the size of the flash device is increased without

increasing the size of its sparse address space, the likelihood of a collision will increase.

Collisions are handled deterministically by computing alternate hash locations using

either linear or polynomial probing. By default, NVMKV uses polynomial probing and

up to eight hash locations are tried before NVMKV refuses to accept a new key. With

this current scheme, the probability of a put failing due to hash failure is vanishingly

small. Assuming that the hash function uniformly distributes keys, the probability of

a put failing equals the probability of 8 consecutive collisions. This is approximately

(1/25)8 = 1/240, roughly one failure per trillion put operations. The above analysis as-

sumes that the hash function used is well modeled by a uniformly distributing random

function. Currently, NVMKV uses the FNV1a hash function [FNV91] and we experi-

mentally validated our modeling assumption.

4.5.3 Caching

Caching is employed in two distinct ways within NVMKV. First, a read cache speeds

up access to frequently read KV pairs. NVMKV’s read cache implementation is based

on LevelDB’s cache [GD11]. The read cache size is configurable at load time. Second,

NVMKV uses a collision cache to improve collision handling performance. It caches
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NVMKV layout on a sparse block layer
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Figure 4.4: NVMKV layout

the key hash (the sparse LBA) along with the actual key which is used during puts (i.e.,

inserts or updates). If the cached key matches the key to be inserted, the new value can

be stored in the corresponding slot (the key’s hash value). This significantly reduces the

number of additional I/Os needed during collision resolution. In most cases, only a single

I/O is needed for a get or a put to return or store the KV pair.

4.5.4 KV Pair Storage and Iteration

KV pairs are directly mapped to a physical location in the flash device and addressable

through the FTL’s sparse address space. In our current implementation, the minimum

unit of storage is a sector and KV pairs requiring less than 512B will consume a full

512B sector. Each KV pair also contains metadata stored on media. The metadata layout

is shown in Figure 4.4; it includes the length of the key, the length or the value, pool

identifier (to be discussed further in §4.6), and other information.

To minimize internal fragmentation, NVMKV packs and stores the metadata, the key,

and the value in a single sector whenever possible. If the size of the KV pair and the

metadata is greater than a sector, NVMKV packs the metadata and key into the first

sector and stores the value starting from the second sector. This layout allows for optimal
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storage efficiency for small values and zero-copy data transfer into the users buffer for

larger values.

NVMKV supports unordered iteration through all KV pairs stored in the flash device.

Key iteration is accomplished by iterating across the populated virtual addresses inside

the FTL in order. The iterator utilizes the ITERATE primitive in the FTL, which takes

in the previously reported start virtual address and returns the start address of the next

contiguously populated virtual address segment in the sparse address space. Note that

this approach relies on the layout guarantee that each KV pair is located contiguously in

a range of virtual addresses, and that there are unpopulated virtual addresses in between

each KV pair.

4.5.5 Optimizing KV Operations

NVMKV’s design goal is one I/O for a get or a put operation. For get, this is achieved

with the KV data layout and the CONDITIONAL-RANGEREAD primitive. The layout guar-

antees that individual KV pairs occupy a single contiguous section of the sparse address

space, separated from other KV pairs by unpopulated virtual addresses. Given this, a

CONDITIONAL-RANGEREAD can retrieve the entire KV pair in one operation without

knowing the size of the value up front. Second, collisions induce a minimal number

of additional operations. Since get and put operations for a given key map to hash ad-

dresses in a deterministic order, and since put places the new KV pair at the first available

hash address (that is currently unused) in this order, subsequent gets are guaranteed to

retrieve the most recent data written to this key. Finally, DELETE operations may require

more than one I/O per operation, since they are required to read and validate the key be-

fore issuing a PTRIM. It also needs to check multiple locations to ensure that previous

instances of a particular key have all been deleted.
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NVMKV is intended to be zero copy and avoid memory comparison operations wher-

ever possible. First, for any value that is large enough to start at its own sector, the data

retrieved from a get (or written during a put) operation will be transferred directly to

(or from) the user provided memory buffer. Second, no key comparisons occur unless

the key hashes match. Given that the likelihood of collisions is small, the number of key

comparisons that fail is also correspondingly small.

4.6 Multiple KV Instances Via Pools

Pools in NVMKV allow applications to group related keys into logical abstractions that

can then be managed separately. Besides simplifying KV data management for applica-

tions, pools enable efficient access and iteration of related keys. The ability to categorize

or group KV pairs also improves the lifetime of flash devices.

4.6.1 Need for Pools

NVMKV as described thus far, can support multiple independent KV stores. However, it

would need to either partition the physical flash device to create multiple block devices

each with its own sparse address space or logically partition the single sparse address

space to create block devices to run multiple instances of KV stores.

Unfortunately, both approaches do not work well for flash. Since it is difficult to pre-

dict the number of KV pairs or physical storage needed in advance, static partitioning

would result in either underutilization or insufficient physical capacity for KV pairs. Fur-

ther, smaller capacity physical devices would increase pressure on the garbage collector,

resulting in both increased write amplification and reduced KV store performance. Alter-

natively, partitioning the LBA space would induce higher key collision rates as the KBR

would be shrunk depending on the number of pools that need to be supported.
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4.6.2 Design Overview

NVMKV encodes pools within the sparse LBA to avoid any need for additional in-

memory pool metadata. The encoding is done by directly hashing both the pool ID and

the key to determine the hash location within the KBR. This ensures that all KV pairs are

equally distributed across the sparse virtual address space regardless of which pool they

are in. Distributing KV pairs of multiple pools evenly across the sparse address space

not only retains the collision probability properties but also preserves the get and put

performance with pools.

Pool IDs are also encoded within the VBR to optimally search or locate pools within

the sparse address space. Encoding pool IDs within the VBR preserves the collision

properties of NVMKV. The KV pair start offset within the VBR determines the Pool ID.

The VBR size determines the maximum number of pools that can be addressed without

hashing, while also maintaining the guarantee that each KV pair is separated from neigh-

boring KV pairs by unpopulated sparse addresses. For example, with a 12 bit VBR, the

maximum number of pools that can be supported without pool ID hashing is 1024. If

the maximum number of pools is greater than 1024, the logic of get is modified to also

retrieve the KV pair metadata that contains the pool ID now needed to uniquely identify

the KV pair.

4.6.3 Operations

Supporting pools requires changes to common operations of the KV store. We now de-

scribe three important operations in NVMKV that have either been added or significantly

modified to support pools.

Creation and Deletion: Pool creation is a lightweight operation. The KV store per-

forms a one-time write to record the pool’s creation in its persistent configuration meta-
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data. On the other hand, pool deletion is an expensive operation since all the KV pairs of

a pool are distributed across the entire LBA space, each requiring an independent PTRIM

operation. NVMKV implements pool deletion as an asynchronous background operation.

Upon receiving the deletion request, the library marks the pool as invalid in its on-drive

metadata, and the actual deletion of pool data occurs asynchronously.

Iteration: NVMKV supports iteration of all KV pairs in a given pool. If no pool is

specified, all key-value pairs on the device are returned by the iteration routines. Iteration

uses the ITERATE primitive of the FTL to find the address of the next contiguous chunk

of data in the sparse address space. During pool iteration, each contiguous virtual address

segment is examined as before. However, the iterator also examines the offset within the

VBR of each starting address, and compares it to the pool ID, or the hash of the pool

ID, for which iteration is being performed. Virtual addresses are only returned to the KV

store if the pool ID match succeeds.

NVMKV guarantees that each KV pair is stored in a contiguous chunk, and that adja-

cent KV pairs are always separated by at least one empty sector, so the address returned

by ITERATE locates the next KV pair on the drive (see §4.5.1). When the maximum num-

ber of pools is small enough that each pool ID can be individually mapped to a distinct

VBR offset, the virtual addresses returned by the ITERATE primitive are guaranteed to

belong to the pool currently being iterated upon. When the maximum number of pools is

larger, the ITERATE uses the hash of the pool ID for comparison. In this case, the virtual

addresses that match are not guaranteed to be part of the current pool, and a read of the

first sector of the KV pair is required to complete the match.
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4.7 Implementation

NVMKV is implemented as a stand-alone KV store written in C++ using 6300 LoC.

Our current prototype works on top of ioMemory VSL and interacts with the FTL using

the IOCTL interface [Fus]. The default subdivision for KBR and VBR used in the cur-

rent implementation is 36 bits and 12 bits respectively, in a 48 bit address space. The

KBR/VBR subdivision is also configurable at KV store creation time. To accelerate pool

iteration, we implemented filters inside the ITERATE/BATCH-ITERATE FTL primitives.

During the iteration of keys from a particular pool, the hash value of the pool is passed

along with the IOCTL arguments to be used as a filter for the iteration. The FTL ser-

vices (BATCH-)ITERATE by returning only populated ranges that match the filter. This

reduces data copying across the FTL and NVMKV.

4.7.1 Extending FTL Primitives

We extended the FTL to better support NVMKV. ATOMIC-WRITE and its vectored forms

are implemented in a manner similar to what has been described by Ouyang et al. [ONW+11].

Atomic operations are tagged within the FTL log structure, and upon restart, any incom-

plete atomic operations are discarded. Atomic writes are also not updated in the FTL map

until they are committed to the FTL log to prevent returning partial results. ITERATE

and RANGE-EXISTS are implemented as query operations over the FTL indirection map.

CONDITIONAL-READ and CONDITIONAL-WRITE are emulated within NVMKV in the

current implementation.
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4.7.2 Going Beyond Traditional KV Stores

NVMKV provides new capabilities with strong guarantees relative to traditional KV

stores. Specifically, it provides full atomicity, isolation, and consequently serializability

for basic operations in both individual and batch submissions. Atomicity and serializ-

ability guarantees are provided for individual operations within a batch, not for the batch

itself. The atomicity and isolation guarantees provided by NVMKV rely heavily on the

ATOMIC-WRITE and PTRIM primitives from the FTL.

Each put is executed as a single ACID compliant ATOMIC-WRITE, which guarantees

that no get running in parallel will see partial content for a KV pair. The get operation

opportunistically retrieves the KV pair from the first hash location using cond range read

to guarantee the smallest possible data transfer. In the unlikely event of a hash collision,

the next hash address is used. Since the hash address order is deterministic, and every

get or put to the same key will follow the same order, and every write has atomicity and

isolation properties, get is natively thread safe requiring no locking.

When ATOMIC-WRITEs are used, put operations require locking for thread safety be-

cause multiple keys can map to the same KBR. When a CONDITIONAL-WRITE (which

performs an atomic EXISTS check and WRITE of the data in question) is used, put oper-

ations can also be made natively thread safe. Individual iterator calls are thread safe with

respect to each other and to get/put calls; thus, concurrent iterators can execute safely.

The ITERATE primitive is also supported in batch mode for performance. BATCH-ITERATE

returns multiple start addresses in each invocation, reducing the number of IOCTL calls.

For each LBA range returned, the first sector needs to be read to retrieve the key for the

target KV pair.
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4.8 Evaluation

Our evaluation addresses a new set of questions:

(1) How effective is NVMKV in supporting multiple KV stores on the same flash de-

vice? How well do NVMKV pools scale?

(2) How effective is NVMKV in trading off DRAM for flash by sizing its read cache?

(3) How effective is NVMKV in improving the endurance of the underlying flash de-

vice?

(4) How sensitive is NVMKV to the size of its collision cache?

4.8.1 Workloads and Testbed

We use LevelDB [GD11], a well-known KV store as the baseline for our evaluation of

NVMKV. LevelDB uses a logging-based approach to write to flash and uses compaction

mechanisms for space reclamation. Our evaluation consists of two parts. We answer

question (1) above using dedicated micro-benchmarks for NVMKV and LevelDB. We

then answer questions (2), (3), and (4) using the YCSB macro-benchmark [CST+10]. We

used the YCSB workloads A, B, C, D, and F with a data set size of 10GB; workload E

performs short range-scans and the YCSB Java binding for NVMKV does not support this

feature currently. We also used a raw device I/O micro-benchmark which was configured

so that I/O sizes were comparable to the sizes of the key-value pairs in NVMKV. Our

experiments were performed on two testbeds, I and II. Testbed I was a system with a

Quad-Core 3.5 GHz AMD Opteron(tm) Processor, 8GB of DDR2 RAM, and a 825GB

Fusion-io ioScale2 drive running Linux Ubuntu 12.04 LTS. Testbed II was a system with

a 32 core Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz with 128 GB DDR3 RAM, and

a 1.2TB Fusion-io ioDrive2 running Linux Ubuntu 12.04.2 LTS.
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Figure 4.5: Microbenchmark comparing the throughput of LevelDB, NMVKV and Raw
Block Device (FIO) for small (1KB) IO operations.

4.8.2 Micro-Benchmarks

Our first experiment evaluates the overhead of the NVMKV stack and LevelDB relative

to the raw flash device. Figure 4.5 summarizes the results. Get and put used 512B values

and key sizes ranging from 1 byte to 128 bytes and for these sizes, NVMKV issues I/O

operations of size 1KB. The FIO tool was configured to generate 1KB I/Os to the raw

device. Figure 4.5 shows that as the thread count increases, the throughput for NVMKV’s

get operations tracks the FIO benchmark’s read rate. For put operations, NVMKV

significantly outperforms both the asynchronous and synchronous versions of LevelDB.

Additional overheads in NVMKV such as checking for collisions cause performance to

be lower than the underlying native device write performance extracted by FIO.

Next we ran a single instance of NVMKV and measured the throughput of reads and

writes as functions of the number of NVMKV pools. NVMKV also used as many threads

as pools. We compared its performance against multiple instances of LevelDB. Both KV

stores were configured to use the same workload, sizes of key-value pairs, and accessed a
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Figure 4.6: Comparing multiple identical instances of LevelDB with a single instance of
NVMKV with equal number of pools.

total of 500 MB of data. In addition, LevelDB used both its own user-level cache of size

1GB and the operating system’s file system cache as well. On the other hand, NVMKV

used neither. LevelDB provides two options for writes, a low-performing but durable sync

and the high performing async, and we include them both here. NVMKV, on the other

hand, performs all writes synchronously and atomically, and thus only a synchronous

configuration is possible.

Figure 4.6 provides a performance comparison. Due to its low-latency flash-level

operations, NVMKV almost equals LevelDB’s primarily in-memory performance for up

to 32 pools/instances. LevelDB continues scaling beyond 32 parallel threads; its opera-

tions continue to be memory-cache hits while NVMKV must perform flash-level accesses

(wherein parallelism is limited) for each operation. When writing, NVMKV outperforms

LevelDB’s sync as well as async versions despite not using the filesystem cache at all.

Even when LevelDB was configured to use async writes, it was about 2x slower than

NVMKV in the best case, and about 6.5x slower at its worst. For synchronous writes,
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a more comparable setup, NVMKV outperforms LevelDB between 643x (64 pools) and

1030x faster (1 pool).

4.8.3 DRAM Trade-off and Endurance

This second experiment using Testbed I addresses questions (2) and (3). NVMKV uses

negligible in-memory metadata and does not use the operating system’s page cache at

all. It implements a read cache whose size can be configured, allowing us to trade-off

DRAM for flash, thus providing a tunable knob for trading off cost for performance. To

evaluate the effectiveness of the collision cache, we evaluate two variants of NVMKV,

one without the collision cache and the other when it uses 64MB of collision cache space.

We used the YCSB benchmark for this experiment. We present the results from both the

load phase, that is common to all workload personalities implemented in YCSB, and the

execution phase, that is distinct across the workloads.

Figure 4.7 (top) depicts throughput as a function of the size of the application-level

read cache available to LevelDB and NVMKV. Unlike NVMKV, LevelDB accesses use

the file system page cache as well. Despite this, NVMKV outperforms LevelDB during

both phases of the experiment, load and execution, by a significant margin. Further, the

gap in performance increases as the size of the cache increases for every workload. This

is because YCSB’s workloads favor reads in general, varying from 50%, in the case of

workload A, all the way to 100% in the case of workload C. Furthermore, the YCSB

workloads follow skewed data access distributions, making even a small amount of cache

highly effective.

To better understand these results, we also collected how much data was written to the

media while the experiments were running. All workload were configured to use 10GB

of data, so any extra data that is written to the media is overhead introduced by NVMKV
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Figure 4.7: Throughput comparison between NVMKV and LevelDB using YCSB work-
loads (above). Write Amplification Comparison between NVMKV and LevelDB using
YCSB workloads (below).
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or LevelDB. Figure 4.7 (bottom) depicts the results of the write amplification. By the end

of each experiment, LevelDB has written anywhere from 42.5x to 70x extra data to the

media. This seems to be a direct consequence of its internal design which migrates the

data from one level to the next, therefore copying the same data multiple times as it ages.

NVMKV on the other hand, introduces a write amplification of 2x in the worst case. We

believe this to be the main reason for the performance difference between the two KV

Stores.

Finally, the effect of NVMKV’s collision cache is highly sensitive to the workload

type. As expected, for read-intensive workloads (i.e., B, C, and D) the presence of colli-

sion cache has little to no impact at all. On the other hand, the update heavy workloads

(i.e., A and F) benefit significantly from the collision cache, increasing the performance

up to 76% and 56% respectively. Surprisingly the load phase is negatively affected by the

collision cache, and performance decreases by up to 11%.

4.8.4 Effectiveness of the Collision Cache

We used Testbed II to address question (4). We measured YCSB workload throughput

when varying the size of the collision cache in NVMKV. During this experiment, the

read cache was disabled to eliminate other caching effects. As shown in Figure 4.8, the

presence of the collision cache benefits workloads A and F with a throughput improve-

ment of 28% and 10% respectively. Read-mostly workloads (B, C, and D) do not benefit

from the collision cache since the probability of collision is low and a single flash-level

read is necessary to service KV GET operations. A and F involve writes and these ben-

efit from the collision cache. The collision cache optimizes the handling repeated writes

to the same location by eliminating the reading of the location (to check for collisions)

prior to the write. Finally, the loading phase does not demonstrate any benefit from the
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Figure 4.8: Collision cache impact on YCSB workloads.

collision cache mainly because of YCSB’s key randomization during inserts.

4.9 Discussion and Limitations

Through the NVMKV implementation, we were able to achieve a majority of our de-

sign goals of building a flash-aware lightweight KV store that leverages advanced FTL

capabilities. We made several observations through the design and development process.

It is valuable for atomic KV operations, such as those described by Ouyang et al. [ONW+11],

to be fully ACID compliant. The usage described in Ouyang et al.’s work only required

the durable writes to have the atomicity property. We found that having isolation and

consistency enables reduced locking and in some cases, fully lock free operation, at the

application level. For example, updating multiple KV pairs atomically as a single batch

can help provide application-level consistent KV store state without requiring additional

locks or logs.
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Many primitives required by NVMKV are the same as those required by other usages

of flash. FlashTier, a primitives based solid state cache leverages the sparse addressing

model, and the EXISTS and PTRIM FTL primitives [SSZ12], as does DirectFS, a primi-

tives based filesystem [Dir, JBLF12].

NVMKV suffers from internal fragmentation for small KV pairs. Since we map indi-

vidual KV pairs to separate sectors, NVMKV will consume an entire sector (512B) even

for KV pairs smaller than the sector size. While this does not pose a problem for many

workloads, there are those for which it does. For the second group of workloads, NVMKV

will have poor capacity utilization. One way to manage efficient storage of small KV pairs

is to follow a multi-level storage mechanism, as provided in SILT [LFAK11], where small

items are initially indexed separately and later compacted into larger units such as sectors.

We believe that implementing similar methods within the FTL itself can be valuable.

4.10 Summary

Leveraging powerful FTL primitives provided by a flash device allows for rapid and stable

code development; application developers can exploit features present in the FTL instead

of re-implementing their own mechanisms. NVMKV serves as an example of leveraging

and enhancing capabilities of an FTL to build simple, lightweight but highly powerful

applications. Through the NVMKV design and implementation, we demonstrated the

impact to a KV store in terms of code and programming simplicity and the resulting

scalable performance that comes from cooperative interaction between the application

and the FTL. We believe that the usefulness of primitives for FTLs will only grow. In

time, such primitives will fundamentally simplify applications by enabling developers to

quickly create simple but powerful, feature-rich applications with performance compara-

ble to raw devices.
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CHAPTER 5

METRADB

In this chapter we propose a new type of key-value stored tailored for NVM. We de-

scribe the unique characteristics of this new type of storage technologies and highly their

potential for improving applications performance. More importantly, we also identify

the challenges associated with programming NVM and propose a solution that offers a

tradeoff that favors simplicity and performance over generality.

5.1 Introduction

Non-volatile memory, or NVM, is coming. Several technologies are maturing (FeRAM,

ReRAM, PCM, DWM, FJG RAM), and soon we expect products from Intel, Micron,

HP, SanDisk, and/or Samsung. Some of these products promise memory density close

to flash and performance within a reasonable factor of DRAM. This technology could

substantially improve the performance of software systems, especially storage systems.

Unfortunately, using NVM is hard: each technology has its quirks, and the details

of products are not yet available. We need a way to integrate NVM into our software

systems, without full knowledge of all the NVM product details and without having to

redesign every software system for each forthcoming NVM technology.

We advocate the use of customized key-value stores. Rather than programming di-

rectly on NVM, developers (1) design a key-value store customized for the application,

(2) implement the key-value store for the target NVM technology, and (3) program the

application using the key-value store. When new NVM products emerge, with similar per-

formance characteristics but different access mechanisms, developers need only modify

the key-value store implementation, which is simpler, faster, and cheaper than redesigning

the application. Thus, the key-value store serves as a middle layer that hides the details of
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the NVM technology, while providing a simple and familiar interface to the application.

Customization ensures that the design is performant and simple.

We illustrate this idea with an example, METRADB, a key-value store that we cus-

tomize for VSAN, a distributed storage system offered by VMWARE. Key-value stores

vary in functionality. Some provide rich data types; some have variable-length keys; and

some support transactions with various assurances. The ideal store for an application de-

pends on its needs. We explain the options, so that developers can decide what they need.

In METRADB, we chose these options to satisfy the needs of VSAN.

We report on an early performance evaluation, which compares METRADB against a

general solution provided by Intel, namely, the data structures in NVML [Rud]. We find

that METRADB’s performs 2.2x to 50x better in terms of latency, and its throughput scales

well with the number of threads. This performance advantage comes from the customized

functionality of METRADB. The trade-off of customization is that developers must build

a store for each application. This was not a significant issue for METRADB: it has only

2.3K lines of C code.

5.2 NVM: benefits and challenges

By NVM we mean memory that preserves its contents when power is lost and that can be

accessed at a granularity of bytes or words rather than blocks. While there are many NVM

technologies, the most mature and promising one is 3D XPoint from Intel and Micron.

This technology bring two key benefits relative to DRAM:

• Non-volatility. The memory survives power cycles, so software need not resort to slow

disks or flash.

• Density. DRAM is limited to a few terabytes per machine, but NVM can grow to tens of

terabytes.
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Relative to disks and SSDs, NVM has two advantages:

• Performance. Disks and SSDs can incur large write latencies. NVM has performance

closer to DRAM.

• Fine granularity. Disks and SSDs operate on 512- or 4096-byte blocks, making them

inefficient for small operations; NVM operates on individual words.

However, NVM brings many challenges to developers:

• Non-persistent caching: While memory is non-volatile, memory caches are not. When

the CPU stores data, it remains in a cache until it is flushed.

• Out-of-order flushes: Caches may be flushed without asking and out of order.

• Torn writes: Applications may explicitly flush data, but if power is lost during the flush,

only some parts will be persistent.

• Complex interface: To persist data, applications must follow a ritual of instructions:

flushing dirty cache lines, issuing a barrier, committing data, and issuing another barrier

(§5.6.3). This ritual is expensive, so developers must worry about how to minimize its

use.

• Non-uniform wear: As the hardware provides no wear leveling, if a word in NVM

changes more often than another, it will wear out more quickly. This can lead to re-

liability issues if the developer is not careful.

• Lack of details: We lack details about cost and performance of NVM.

The first four issues above relate to crash recovery, while the last two issues relate to

normal operation. We next describe a middle layer for accessing NVM that can mitigate

these issues.
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5.3 Main idea and rationale

Instead of programming on NVM directly, we believe developers should introduce a mid-

dle layer that hides the complexity of the NVM. When a new NVM technology emerges,

developers need not modify the application, just the middle layer. This layer consists of

a key-value store library with transactions. A key-value store offers operations to write

and read key-value pairs, and possibly more functionality, depending on the store. A key-

value store is a good abstraction: it is simple and familiar, it can be implemented easily,

and it can perform well.

But a plain key-value store does not suffice to address the above challenges (§5.2); it

must also provide transactions to avoid torn writes and facilitate crash recovery.

We propose that the key-value store be customized for an application. Many appli-

cations do not need all features possible in a key-value store (discussed next), and those

features may hinder performance and simplicity.

5.4 Features of key-value stores

Broadly, key-value stores permit users to put, get, and delete key-value pairs, but key-

value stores vary in their exact functionality and data models:

• Key length. Keys can be fixed- or variable-length, and fixed-length keys can be sparse

(e.g., 8-byte integers) or dense (e.g., 0..32K).

• Value length. Values can be fixed- or variable-length.

• Value types. Values can be typed or opaque. Typed-values can offer richer operations,

such as increment for numerical types or set union for set types.

• Operations. Besides gets and puts of key-value pairs, the store may support: (a) gets

and puts of partial values given by an offset and length, (b) multigets and multiputs of

many pairs at once, (c) key enumeration, ordered or not, and (d) read-modify-write.
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• Containers. If present, containers provide different namespaces to avoid key clashes

across users.

• Transactions. If present, transactions provide atomicity, isolation, or both. Atomicity

protects against crashes and torn writes. Isolation protects against concurrent access.

5.5 Case study: VSAN

We now explain how NVM can be used for a specific application, a VMWARE product

called VSAN. VSAN is a distributed storage system that provides logical volumes, where

each volume is partitioned and replicated across storage servers. A server stores the vol-

umes on disks or SSDs; in the former case, it can use SSDs as a server-side cache. In

addition, clients cache data in memory for efficiency. We envision three uses of NVM in

VSAN.

SSD cache metadata. Servers have an SSD block cache; this cache needs a map from SSD

to disk LBAs. The map can exceed the DRAM allocated to VSAN. Moreover, reconstruct-

ing the map upon recovery can be costly. NVM can avoid these problems. This use case

leverages NVM’s non-volatility and larger capacity than DRAM.

Client cache. VSAN clients can benefit from a larger cache than fits in DRAM. This use

case leverage’s NVM’s larger capacity.

Checksum storage. VSAN supports 32-byte checksums of 4 KB blocks for reliability.

Unfortunately, disk storage is block aligned, making it inefficient to store the checksum.

Various schemes are possible, but they cause fragmentation or increase the number of

disk operations. NVM solves the problem because it operates on words. This use case

leverages NVM’s fine access granularity and non-volatility.
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In all use cases, NVM accesses require low latency and high throughput since they

affect VSAN’s performance.

5.6 Key-value store design for VSAN

We now explain how we customize the design of METRADB for VSAN with 3D XPoint

as the NVM technology. Our design employs existing techniques or variations; our goal

is not to propose new mechanisms but rather to combine known mechanisms in a custom

way for a specific application.

5.6.1 Features of METRADB

Key-value stores vary in functionality (§5.4). VSAN needs the following features, which

we take as the requirements of METRADB:

Feature Choice for VSAN

Keys Fixed length

Values Variable length, untyped

Operations Get, Put, and Delete only

Containers Yes

Transactions Atomicity only, within one container

More precisely, in the VSAN use cases (§5.5), keys are always small binary identifiers,

and values can be small values or buffers with generic lengths—hence the choice of fixed-

length keys and variable-length untyped values. For the supported operations, it suffices

to be able to read, write, and delete keys. Containers are needed because different compo-

nents of VSAN will use the key value store. Finally, transactions with atomicity facilitate

crash recovery, but transactions need not support isolation and need not span multiple
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containers because each container will be accessed by one thread and each thread will

access one container at a time.

5.6.2 Application interface

The interface to the key-value store is below.

Operation Description

open(name,flags) open/create container, get handle

remove(name) remove container

close(h) close a handle

put(h,k,buf, len) put key-value pair

get(h,k,buf, len) get key-value pair

delete(h,k) delete key-value pair

commit(h) commit transaction

abort(h) abort transaction

Broadly, there are container operations (open, remove, close), key-value operations

(put, get, delete), and transactional operations (commit, rollback). Opening a container

returns a handle to that container, which is later used to put and get key-value pairs. Puts,

gets, and deletes are executed in the context of a transaction, which can be later committed

or aborted. A transaction is limited to operate on a single container.

5.6.3 Performance considerations

To achieve good performance with 3D XPoint NVM, we must be concerned about three

things: cache flushes, memory fences, and NVM commits. Specifically, the CPU caches

are volatile; if an application wants its writes to persist, it must flush the dirty cache lines

using CLFLUSH, CLFLUSHOPT, or CLWB instructions, then issue a memory fence using
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Figure 5.1: METRADB architecture

SFENCE to ensure the flushes are visible, then commit data to NVM using PCOMMIT.1

To ensure the writes are ordered before subsequent writes, the application then needs

to issue an additional fence using SFENCE. The challenge is that the flush, fence, and

commit instructions are expensive and must be avoided to obtain good performance.

5.6.4 Architecture

Figure 5.1 shows the architecture of METRADB. METRADB is a library that links to the

application. Internally, the library is organized as low-level back-end, which is specific

to NVM technology (3D XPoint), and a high-level front-end, which is independent. The

back-end includes modules for logging transactions, managing segments for memory al-

location, and implementing the data index as a hash table. The front-end components

manage the session with the application (open handles, in-memory indexes for perfor-

mance, etc), keep track of existing containers, and execute transactions.

1 Asynchronous DRAM Refresh could simplify matters, but it requires a special power supply
and its details are not yet available.
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Below, we give more details about the data structure (data index), the transaction

mechanisms (transaction manager), and memory allocation (segment manager).

5.6.5 Data structure

We store each container in a hash table where each bucket has a head pointer to a doubly

linked list. This is a simple and efficient data structure. Inserting a key-value pair re-

quires just two writes: one write to a data buffer containing the key-value pair, one to the

previous tail of the linked list. Minimizing writes is important in order to avoid expen-

sive cache flushes. We considered using balanced trees or skip lists, but they were more

complex and incurred additional writes.

Each hash table has a fixed size chosen at creation time. This is acceptable because

we know the number of keys, within an order of magnitude, of the containers needed for

each VSAN use case.

5.6.6 Transactions

We use logging to implement transactions, a well-known technique. There are two types

of logs: redo or undo. Redo logs store information to reproduce the writes of a transaction,

while undo logs store information to revert a transaction. Undo logs are simpler because

transactions can update the underlying data as they execute. However, with NVM, it turns

out that undo logs are much less efficient: they require multiple NVM commits per trans-

action because undo information must be committed to NVM prior to each transactional

write (otherwise a power failure may leave the data modified without undo information).

In contrast, a redo log need only be committed once to NVM, when the transaction com-

mits. This is much more efficient, so we choose a redo log.
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Specifically, as the transaction executes, we append its changes to the log. The log

does not store the actual buffers with newly written data, but rather references to the

buffers. This avoids subsequent copying overheads. When the transaction commits, we

append a commit record, commit the log to NVM, and update the hash table to point to

the written buffers.

METRADB uses transactions for two purposes: to provide user-level transactions

within a container, and to execute metadata operations on containers and segments (e.g.,

create container, create segment). There are separate logs for these: one log per container

for user-level transactions, and one global log for the metadata operations. We assume

there is at most one thread executing a user-level transaction per container; for meta-

data transactions, we support multithreading using a global lock, which suffices as these

transactions need not be efficient.

5.6.7 Memory allocation

We keep track of memory allocations using slabs stored in NVM. Each slab has buffers of

a given length and a bitmap indicating buffer availability. There are many slabs, to pro-

vide buffers of many different sizes. When a transaction executes and allocates a buffer, it

creates a DRAM copy of the bitmap of the appropriate slab. This copy is called a shadow

bitmap. The shadow bitmaps track the tentative allocations done by the transaction. Al-

locations within a container are done as part of the transaction that allocates the buffer.

When the transaction commits, we copy the modified shadow bitmaps into the real slab

bitmaps in NVM. Note that a transaction commit need not copy any data buffers.
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Figure 5.2: Data layout in METRADB

5.6.8 Data layout

Figure 5.2 shows the layout of data in NVM. Broadly, the NVM is organized as a super

block, a global log, containers, and segments. The super block indexes all containers and

their segments. The global log stores transactional updates on the super block, and the

allocation of containers and segments. Every container consists of a metadata segment

and several data segments. The metadata segment has a log for the transactions within its

container, and the buckets of the container’s hash table (pointers to the heads of doubly

linked lists). The data segments store the slabs with the actual data of the hash table

(elements in the doubly linked list), with each segment holding slabs of a fixed size; a

bitmap indicates the allocated slab entries.
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5.7 Evaluation

The evaluation of METRADB has three goals: (1) assess the latency of put, get, and

delete operations, (2) assess throughput scalability of these operations, and (3) identify

any bottlenecks in the design or implementation.

We compare METRADB against Intel’s NVML, which is a library for facilitating the

programming on NVM. The library provides atomic allocations of persistent objects, con-

current transactional updates, thread synchronization, and persistent pointers. It also con-

tains several persistent data structures, which we use as key-value stores for comparison.

5.7.1 Methodology

We measure operation latency using the benchmark provided by NVML. We configure the

benchmark to run lookup (get), insert (put), and delete operations on 250K key-value pairs
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with 1KB values. We compare METRADB against five data structures provided in NVML:

radix-tree (ctree), B-tree (btree), red-black tree (rbtree), and two hash-tables (htbl atomic

and htbl tx). These provide more features than METRADB (e.g., general transactions),

since METRADB is customized to the needs of VSAN (§5.6); our goal is to understand the

benefits of customization and the costs of generality.

We also measure throughput scalability of METRADB by running the benchmark with

a variable number of threads, each accessing its own container.

To analyze METRADB’s behavior, we run the benchmark under a profiler. We clas-

sify the execution time into five categories: Log (logging data), Lock (synchronization),

HT-ope (hash table operations), Mem-ope (memcpy operation), and Other (remaining

executing time).

5.7.2 Testbed

We run experiments on Linux with kernel v4.4, 24 GB of RAM, and an Intel XeonE5-

2440 v2 1.90GHz CPU with 8 cores, each with 2 hyper-threads. NVM is not yet available,

so instead we flush data (CLFLUSH) to a region of DRAM that is memory-mapped to a file.

5.7.3 Analysis

Figure 5.3 shows the latency of each system. The y-axis indicates average latency per

operation in µs. The first bar is METRADB; the other bars are the various NVML data

structures. On each operation, METRADB outperforms the best NVML data structure,

htbl atomic. The other NVML data structures are more powerful, but this power is not

needed for VSAN, reinforcing the benefit of customization. The advantage of METRADB

is greater on put and delete operations: 6.6–15x for puts and 12–50x for deletes, depend-

ing on the NVML structure. NVML is worse as it logs and commits to NVM many times
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per operation/transaction (and more for deletes than puts) due to the use of an undo log,

while METRADB can commit the log only once per operation/transaction due to the use

of a redo log. Using a redo log is feasible due to METRADB’s limited functionality:

redo logs in general cause complexity and overheads because the system needs special

mechanisms for transactions to see their own updates; with METRADB, however, these

mechanisms are straightforward and efficient since METRADB has only two simple up-

date operations—a benefit of customization. For get operations, METRADB is better than

NVML by 2.2–10.2x. This difference is due to the use of pointers with an extra level of in-

direction in NVML; these pointers permit the key-value store to be shared across different

address spaces, but this is not needed for VSAN—another benefit of customization.

Figure 5.4 depicts how METRADB’s throughput scales as the number of threads in-

creases, each thread accessing its own container. The y-axis is normalized to the through-

put of one thread, and the dashed line shows ideal scalability. We can see that METRADB

scales almost linearly up to 8 threads, which is the number of CPU cores. Beyond 8, scal-

ability suffers. Profiling information indicates that the main cause is kernel-level locks

that synchronize parallel updates to the memory-mapped file.

Figure 5.5 shows a breakdown of the execution of gets, puts, and deletes. For gets,

the cost is dominated by memcpy (Mem-ope) and the hash table (HT-ope). Puts spend

comparable time on memcpy, locking, and logging; locks are acquired when the operation

needs to create new data segments; logging is expensive because it writes to NVM. Deletes

do not incur the overheads of memcpy or locking, and therefore are dominated by the hash

table and logging. Overall, we see that the inherent cost of memcpy (for gets and puts)

is comparable to the overheads imposed by the store for the data structure, locking, and

logging. This indicates that there are no obvious bottlenecks in any of the operations.
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5.8 Summary

In this chapter we propose that applications consume NVM through a middle layer, rather

than programming it directly. Additionally, we argue that this middle layer should be

tailored to address the needs of specific types of applications instead of providing a one-

size-fits-all solution. In our case, the application in question was VSAN: a hyper-converge

storage solution from VMWARE. We concluded that for VSAN, a key-value store interface

with support for transactional updates was appropriated. We compared our solution to a

more general one [NVM15] and demonstrated that by making the necessary tradeoffs, a

higher performing solution could be created in about 2.3K LOC. Even though METRADB

was built specifically for VSAN, we believe it is relevant to other systems as well, and we

hope that the discussions around why we made certain design decisions help shape future

solutions.

METRADB has two main limitations that must be kept in mind. The first of these

limitation is related to its transactional model. METRADB only supports one active trans-

action per container that cannot span multiple containers. While this simple model is

adequate for our use case, it may not fit the needs of concurrent applications in the gen-

eral case. The second relevant limitation relates to the value data type. In particular,

METRADB treats all values as opaque arrays of bytes, which makes it unsuitable for ap-

plications that require more complex types such as records or relational objects. Finally,

the key-value model for storage is not a natural model when managing byte-addressable

memory. In particular, applications that desire the flexibility of treating NVM as CPU

addressable memory are not well served by METRADB. In the next chapter, we propose

a new solution for applications using persistent memory that aims to address several of

these limitations.
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CHAPTER 6

LIBPM

In the previous chapters we described our efforts to improve the design and perfor-

mance of key-value stores for flash storage devices by making designs FTL-aware. Then

we proposed a key-value store like approach for consuming NVM that hides the complex-

ities of managing NVM behind a simple interface with support for transactional updates.

In this chapter, we develop one final system that aims to address the shortcomings of

METRADB as the final piece of this dissertation. We provide some more background on

NVM, describe the guiding principles that shaped our solutions, list our core assumptions,

and evaluate our proposed solution, LIBPM.

6.1 Introduction

The need for high-performance data persistence is a cornerstone concern for application

development. Application developers continuously find new and clever ways to move data

between slow large persistent storage and fast volatile memory. All of this changes when

the mode of access to the persistent storage changes as is the case with byte-addressable

persistent memory (NVM). First, with NVM the dichotomy of byte-addressability and

persistence ceases to exist. Second, read/write latencies of NVM are expected to be com-

parable to those of DRAM. Their unique properties make them suitable candidates for

CPU bus attachment and accessibility through load and store instructions. Persistence

mechanisms of applications fundamentally deserve a revisiting.

In this chapter of the dissertation, we build the abstraction of persistent containers, a

new way for applications to consume NVM. Containers make NVM consumption signif-

icantly simple for applications through the use of familiar interfaces and implementing

consistency across updates all while retaining the performance benefits of NVM. Appli-

cations create containers and use in-memory data structures; a user-level library auto-
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matically discovers container-resident data to be made persistent using pointer chasing

techniques based on a single, simple application hint. With this model, most of the con-

ventional persistence operations are obviated. As a result, containers radically simplify

the porting of existing applications and creation of new applications that use NVM. Con-

tainer data are mapped to the process address space and data consistency is enforced

though a single, simple transactional operation exposed to the application. The container

library preserves relationships between the application’s objects (via pointers) within a

container upon application restart.

Containers are designed to address several goals which are critical to the adoption

of any software solution for NVM. First, it implements an interface that is familiar to

existing systems by borrowing the simplest elements from both the memory and file in-

terfaces. Second, it creates a simple yet effective transactional model that provided data

consistency when using NVM but with low runtime overhead and without requiring CPU

ISA changes. And lastly, the porting of existing applications is made extremely simple.

Containers thus fill critical software gaps needed to ensure the adoption of NVM tech-

nologies in the application marketplace.

6.2 Architecture

LIBPM is logically and architecturally divided into two components, core and back end.

These components address functionality visible to applications and interaction with per-

sistent memory management mechanisms within the OS respectively. All of LIBPM’s

functionality is available to applications via its API. LIBPM’s architecture is depicted in

Figure 6.1 and further discussed in the remainder of this section.
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Figure 6.1: LIBPM Architecture.

6.2.1 Application Propramming Interface

Category API Description

Container Management

open(...) Open / create container.
close(...) Close open container.
clear(...) Clear container contents.

delete(...) Delete all container data and metadata (persistently).

Memory Allocation
pmalloc(...) Allocate persistent object in container.

pfree(...) Free persistent objects.

Transactional Updates
commit(...) Atomically apply all pending updates to the container.
rollback(...) Undo all updates to the container.

Annotation
setroot(...) Set object as the root of the container.
getroot(...) Get address of root object.

exclude(...) Do not follow pointer during container closure.

Table 6.1: The LIBPM API.

We believe that a new API for persistent memory will emerge shaped by at least

two guiding principles. Foremost, a majority of the application developers will expect

the simplicity of the volatile memory API for persistent memory but will expect a user-

level library to handle many of the subtleties related to using persistent memory correctly.

Thus, the API should ideally provide capabilities to ensure that such access is done safely

so as to not corrupt persistent application state after a crash. Second, the library-layer that

implements the API must be sufficiently low-overhead so as to preserve the performance

61



advantages of using persistent memory over block-based persistent storage. Guided by

these design principles and our experiences from previous work on Software Persistent

Memory (SoftPM) [GMC+12], we propose an API that combines a memory like interface

with the container abstractions.

The proposed API, summarized on Table 6.1, is grouped into four main categories.

The first category, Container Management, handles container related operations. It allows

programmers to create or restore container with a simple API call, (open). Similarly, de-

veloper can close an opened container or delete an existing container, thereby reclaiming

the NVM used by the container, using (close) and (delete) API calls respectively.

The second category allows developers to create arbitrarily complex data structures within

a given container using (palloc) and free them from the containers using (pfree) with

familiar interfaces. It should be noted that in addition to hosting objects, containers also

preserve the relations between objects (pointers) by storing additional metadata. This ad-

ditional information makes it possible for the container to properly restore the persistent

objects at random memory locations while maintaining pointer correctness.

The third category illustrates the simplicity of our transactional model. The commit

operation atomically persists all the changes made to a given container, preserving its

consistent state. Alternatively, all the changes could be aborted by issuing a rollback

call. The last category defines a set of annotation operations on the container. These

allow the programmer to set and fetch the container’s root using setroot and getroot

respectively. The container root specifies the starting point when computing the memory

closure of the container to identify all data that needs to be made persistent.
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6.2.2 Core

The LIBPM Core manages the containers that applications create to provide transparent

persistent memory allocation and transactional persistence support. Four interconnected

components of the LIBPM Core—Memory Allocator, Transaction Manager, Pointer Man-

ager and Discovery—provide these capabilities. These components, together, implement

the LIBPM API.

The Memory Allocator is responsible for allocating persistent objects of arbitrary size.

It implements a variant of slab allocation [Bon94] whereby objects are grouped together

based on their size in order to minimize fragmentation. Besides speeding up allocation,

this slab-based allocation technique allows an efficient implementation for freeing persis-

tent memory.

The Transactions Manager ensures all-or-nothing persistence semantics for related

updates, i.e., all updates to persistent memory that are related from the application’s stand-

point are made atomically persistent. At a high level, this is accomplished by maintaining

two versions of persistent objects: a snapshot version which reflects the previous con-

sistent state and a current version wherein updates are performed in place. Once the

container is in a new consistent state after absorbing all necessary modifications into the

current version, then the application can either (i) make the current version persistent by

issuing a commit operation, or (ii) revoke all updates to the container by issuing a rollback

operation, which would restore the container to its previous, i.e., snapshot, version.

The Pointer Manager is responsible to ensuring that the relationship (pointers) be-

tween persistent objects get preserved at all times. To do so, it stores metadata that de-

scribes the locations and target addresses of persistent pointers so that these pointer values

can be corrected when objects are moved in memory, as well as restored correctly when

a container is reopened. The latter is particularly important in environments for which

LIBPM can not guarantee that the container will be mapped at the same offset within the
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a process’ address space [The].

Finally, the Discovery component implements automatic discovery of persistent data

based on application-specified annotations for the container’s root data structure, and au-

tomatically annotated information about pointers and memory allocations using static

analysis (e.g., CIL [NMRW02]). This component follows the basic approach for memory

closure discovery as described in the SoftPM work [GMC+12]. This component simpli-

fies the development of new applications as well as the porting of existing applications to

persistent memory.

6.2.3 Backend

LIBPM’s back-end is in charge of implementing persistence. The back-end is made up

of two subcomponents: the Page Allocator and the Flusher. The Page Allocator exports

an interface to the upper layers that allows them to allocate and free persistent memory

pages. The specific details about how to allocate or free persistent pages are handle by

Page Allocator modules. These modules are free to implement the interface whichever

way they see fit, allowing them to apply different approaches and optimizations specific

to the operating system in use.

The Flusher’s primary task is guarantee that writes are durable. Modern systems

use multiple levels of caches and memory controllers sitting between the CPU and the

memory. Because of these, synchronous updates must be treated with care in order to

guarantee that they make it to the persistent media. Based on the available instructions

and other details about the hardware, the Flusher customizes the data transfer between the

volatile CPU caches and NVM to optimize for performance.
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6.3 Design

In this section we describe many of the trade off we made when designing LIBPM. We

start by stating assumptions that shaped our design as well as predictions about hardware

trends. Then we describe the container abstraction and our transactional model which

are at the core of our library. We discuss how persistent memory pointers are managed

in LIBPM and contrast it against alternate approaches for managing persistent memory

pointers. Finally, we discuss the limitations of LIBPM.

6.3.1 Assumptions

We assume a class of persistent memories with byte addressability and sufficient per-

formance to enable direct CPU access via the memory bus. Further, we assume that

traditional CPU architectures for memory access remain fundamentally unchanged. In

other words, persistent memory will continue to be managed as pages, which are then

managed between the OS and the CPU complex via page tables with hardware accel-

erated accesses enabled by a hierarchy of volatile CPU caches. The CPU instruction

set may evolve to support persistent memory in the future [Cor14, LDK+14, VTS11a].

While these will likely impact the details of the mechanisms we develop, they will not

fundamentally change the core research questions that we address in this dissertation.

Further, while independently important, concerns such as improving the reliability and

durability properties of persistent memory technologies are being addressed by other re-

searchers [ICN+10, SLSB10] and are outside the scope of this dissertation.
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6.3.2 The PM Container Abstractions

Our previous work on Software Persistent Memory (SoftPM) [GMC+12] developed a

library that allow applications to create data containers for persistently storing arbitrary

data. SoftPM containers present a powerful abstraction for the developer who simply

identifies a single top-level container root data structure to persist and all data reachable

from this top-level data structure is automatically discovered and atomically persisted by

the library infrastructure. The root structure, for instance, may contain pointers to all

user-defined data structures in the persistent memory. Listing 6.1 depicts an example of

an in-memory Binary Search Tree being migrated to persistent memory using Containers

in only few lines of code.

1 struct container_root {

2 struct binary_search_tree *node;

3 } *c_root;

4 setroot(cid, c_root, sizeof(*c_root)); // cid: container id

5 c_root->node = tree_root;

6 commit(cid);

Listing 6.1: Migrating RB Tree into persistent memory using containers.

A container can be used to store a portion of an applications in-memory data per-

sistently and guarantee that such data is self-contained. The container provides refer-

ential (e.g., pointer-based) integrity and completeness as well as atomic data durability.

The primary design goal of SoftPM is to create an easy-to-use interface similar to how

volatile memory is used today, transactional consistency for updates to containers, and

low-overhead persistence. Application-specified persistence points represent consistent

states of application data in persistent memory and allow for straightforward failure re-

covery by the application.
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LIBPM implements SoftPM’s container abstraction for a hybrid memory system that

is composed of both volatile DRAM and other CPU-addressable persistent memory. In

comparison to the prior work, persistence requirements for byte-addressable PM pose re-

quirements that are distinct from those of block-based storage for which SoftPM was built.

The ordered durability of data spread across the volatile caches spread across multiple

cores of the system needs to be designed in a manner that allows easy developer control

over these operations but with minimal developer effort, and optimized for performance.

This requires careful use of CPU instructions for enforcing cache line flushes and write

barriers, and the use of newer PM-optimized instructions introduced by processor manu-

facturers (e.g., Intel’s recent clflushopt, pcommit, and clwb instructions [Int15b]).

Furthermore, the prior work does not support container data sharing across applications,

a capability that is important for managing persistent data abstractions in practice.

Segments

A LIBPM container is a collection of segments. Each segments is a set of contiguous

pages that get mmaped into the process address space for direct access. There are three

types of segments: Metadata, Data, and DLog. Every container has exactly one metadata

segment, in which all of the container’s self-describing information is stored. The meta-

data segment also hosts (i) the root pointer, from which all other objects in the container

can be found, and (ii) the data log, used to make all updates in the container atomic.

The data segments are responsible for hosting all persistent objects. Hence, allocation

sizes are limited by the size of data segments; this is a configurable parameter that can be

changed at container creation time. As more objects get allocated, more data segments

are created, growing the container as needed.

Each data segment hosts objects of a given size, making memory management simple

and fast. In order to reduce the number of data segments, memory allocations are rounded
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up to next multiple of 16 bytes. This is also a configurable property of the container. Fi-

nally, there are the DLog segments, which are used to consistent versions of objects stored

in data segments for crash recovery purposes. Just like data segments, Dlog segments are

allocated on demand. The more changes a transaction makes, the more Dlog segments

become necessary and get created. When a transaction is completed successfully, its Dlog

segments can be reused or garbage collected.

6.3.3 Transactions

When designing a transactional mechanism for LIBPM we wanted to strike a good bal-

ance between performance and ease-of-use. The result is a transaction model that com-

bines memory protection mechanisms with undo logging and operates at a page granu-

larity. This approach eliminates the need for the programmer to be explicit about what

data is about to be modified before modifying data, thus vastly simplifying development

in comparison to recent efforts in this space [VTS11b, CCA+11b]. LIBPM simply maps

segments into the process address space without write permissions and registers a fault

handler to track updates. Thus, memory protection allows updates to be logged by LIBPM

without developer involvement.

Figure 6.2 illustrates LIBPM handling of updates to containers starting from a recently

opened container using segments of size three pages. When a container is opened, all data

segments are write protected. First, the application tries to update an object allocated in

segment third segment 6.3. Since the page hosting the object is write protected, LIBPM’s

fault handler gets triggered. Then the entire page gets copy to a non-full Dlog segment 6.4

and a log entry is added 6.5. Finally, the page is made write-able 6.6 and the update

proceeds. Subsequent updates to the same page do not trigger additions faults and can

proceed without any overhead 6.8,6.9.
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Figure 6.2: LIBPM page logging. State of a container after a successful open.

Figure 6.3: LIBPM page logging. The application tries to update object D which is
mapped read-only.
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Figure 6.4: LIBPM page logging. The update triggers the fault handler, which initiates
the logging mechanism by making a copy of the page containing the faulting address.

Figure 6.5: LIBPM page logging. Next the update is logged.
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Figure 6.6: LIBPM page logging. Then the page is made writable.

Figure 6.7: LIBPM page logging. Since the page is writeable, the update takes place as
intended, all without user intervention.
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Figure 6.8: LIBPM page logging. Subsequent update to the same page proceed without
any overhead.

Figure 6.9: LIBPM page logging. State of the container after two updates.
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6.3.4 Persistent Memory Pointers

In addition to guaranteeing the consistency and durability of persistent objects, LIBPM’s

containers also need to preserve the relationships (pointers) among the objects they host.

To better understand what this means, let us consider a container hosting a linked list

of m nodes N1,N2, ...,Nm such that Ni points to Ni+1. When this container is opened,

there is no guarantee that the nodes will be mmap’ed at the same addresses they were

created. Modern systems implement address space randomization (ASLR) by default

and therefore it is likely that next pointers of the list would be broken. To solve this

problem, LIBPM stores enough metadata in the container about the objects it hosts so

that when a container is opened, all pointers are fixed before control is handed to the

application. Fixing a persistent pointer simply means updating the target address of the

pointer. These updates can be performed in O(n) time in the worst case, where n is the

number of persistent pointers in the container. In practice, however, we have seen that this

can be avoided by hinting the mmap system call about where container segments should

be mapped at runtime. Since this is a dynamic operation performed by the LIBPM at

runtime, ASLR constraints do not apply for mmap hinting in as much the same way as

they would to statically mapped persistent objects.

Previous works have proposed other solutions to the persistent pointer management

problem. Most of these can be categorized into three groups:

Fixed-map These solutions simply force all persistent objects to be mapped into the

same address space locations, accomplished by disabling ASLR. Disabling ASLR, how-

ever, is not recommended since it makes the OS more vulnerable to various types of

security attacks.
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Pointer swizzling This class of solutions make the programmer responsible for provid-

ing serialization methods for every data type that requires persistence. On the downside,

these serialization methods must be updated when data types are updated.

Fat pointers With this class of solutions, pointers do not contain the target address.

Instead, they contain enough information to compute the target address at runtime. This

method has the overhead of runtime pointer dereferencing but it allows persistent objects

to be mapped anywhere in the address space.

6.3.5 Limitations

LIBPM’s simple design comes with two key limitations.

Single active transaction

LIBPM’s transaction model only allows for a single active transaction per container.

Whereas this may be enough for many applications, some concurrent applications may

require more control on when the updates made by a specific thread of execution are made

durable.

Sharing containers across processes

A direct consequence of LIBPM’s persistent memory model is that containers cannot

be shared across multiple applications. Since the same container could be mapped at

different addresses for sharing processes, there is currently no simple way to track and fix

pointer locations and pointer values in a manner that is correct for both applications.
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Figure 6.10: Container Closure: Initial state

Figure 6.11: Container Closure: Moving all reachable nodes to the Container
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Figure 6.12: Container Closure: All nodes moved

Figure 6.13: Container Closure: Fixing back references
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6.4 Porting Legacy Application to NVM

LIBPM provides a mechanism to incrementally port legacy applications to NVM, without

having to change the core application logic. To illustrate this process we refer to Fig-

ure 6.10, depicting the migration of a Binary Search Tree (BST) from volatile memory

to NVM managed by LIBPM. First, the developer creates a new container and allocates

within it a root object pointing to the head of the tree. Then, on the next commit operation,

LIBPM will add to the container all the objects that are reachable from the root R′ hosted

in the container. Since node 4 is the first to be reached, it gets moved into the container

first, as depicted in Figure 6.11. Following a simple Breadth First Search approach, all

nodes reachable from the head of the tree get move into the container eventually, making

each one persistent. As nodes get move, their volatile allocations are freed so that the

total memory consumption remains the same within a O(1) factor. Figure 6.12 depicts

the state in which the entire tree has been made persistent. At this point, the entire tree is

in persistent memory and ready to use. However, both the old volatile root and iterator are

no longer valid since they point to freed memory. The last step of the container discovery

process takes care of fixing these dangling pointers so their target address is updated; now

on persistent memory. Figure 6.13 depicts the state of the memory after the commit

operation is completed. Migrating other data structures can be done in a similar fashion

in about the same amount of lines of code. See Listing 6.1 for details.

6.5 Evaluation

The evaluation of LIBPM has three goals: (1) verify the correctness of our implementa-

tion, (2) measure the ease-of-use of LIBPM when compared to previous solutions, and

(3) evaluate the performance of LIBPM and compare the results with previous solutions.
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6.5.1 Methodology

Given that persistent memory hardware is currently unavailable for purchase in the mar-

ketplace, we rely on both hardware and software emulation. All our experiments were

conducted on Intel’s persistent memory emulation platform (PMEP [LDK+14]) which

allows realistic evaluation of software that are intended to run on top of CPU-addressable

and byte-addressable NVM devices. The PMEP environment also allows for fine-grained

latency control over PM access times and supports Intel’s advanced x86 instructions

specifically developed for PM. The machine was equipped with a Intel(R) Xeon CPU

E5-4620 v2 @ 2.60GHz, 32 GB of volatile memory, 8 GB of persistent memory, and a

custom version of the Linux kernel v4.1.18.

6.5.2 Correctness

To verify the correctness of LIBPM we used two well known techniques: (1) test cover-

age analysis and (2) fault injection. Along with the implementation of LIBPM, we also

developed a test suite that exercises 100% of the LIBPM code, as reported by Clang/L-

LVM code coverage tools. This test suite consists of many unit tests as well as several

system tests. The unit tests verify the correctness of each individual component whereas

the system tests verify inter dependencies among closely related components.

In addition to code coverage, we also performed fault injection at several faulting

points contained within critical sections of the transaction and recovery logic. The faults

at various faulting points could be triggered both on demand or at random points in time,

allowing us to crash the application under examination and verify that the state of the

container is always equal to the version found at the most recent consistency point. In

every case, LIBPM managed to preserve the consistency of the containers, giving us

confidence that our implementation is sound.
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6.5.3 Ease of use

Directly programming NVM is challenging. And because of this, previous solutions have

all proposed higher level abstractions to hide all the quirks and complexities associated

with NVM. However, all of the previous solutions implement a transactional model that

makes the user responsible for logging updates manually [VTS11b, CCA+11b, Rud].

This model offers adequate control over persistence and performance, but it is also diffi-

cult to use correctly which makes it error prone and difficult to debug. For this reason,

we steered clear of conventional logging approaches and instead explored an automatic

logging technique that requires no user intervention. We quantify the easy of use of our

approach by counting the lines of code (LOC) that it takes to implement popular data

structures when compared to previous approaches.

Data Structure LIBPM NVML

Skiplist 192 264 (+27%)
Hash Table 285 337 (+15%)
RB Tree 387 417 (+7%)
B Tree 428 511 (+16%)

Table 6.2: Counting LOC need to persist popular data structures. Smaller values are
desirable.

As we can see from Table 6.2, implementing persistent data structures using NVML

requires more LOC than when using LIBPM. For the data structures that we considered,

the overhead varied from 7% to 27%. In order to fully understand why this is the case,

let us take a closer look at the code. As an example, we examine the rbtree rotate

function from the RB Tree implementation using LIBPM and NVML. This function serves

as a good example to base our qualitative comparison on because it takes about a dozen

lines of non trivial code to create a functional prototype. Furthermore, it illustrates how a
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non-NVML implementation not just requires additional lines-of-code, this additional code

has significant complexity, making the development error-prone.

The formal description of the rbtree rotate operation requirements can be stated

as: Given a node of the tree, and a type of rotation (see Figure 6.14), perform said rotation

to adjust the height of the RB Tree in O(1).

Listing 6.2 presents the code that rotates the persistent RB Tree when using LIBPM.

The keen reader will notice that this code would require no modifications if it were used

to rotate a volatile RB Tree. This is because LIBPM seamlessly takes care of logging

updates transparently and pointer dereferencing integrity without developer involvement.

In other words, converting an existing application to use LIBPM as well as writing new

applications to use LIBPM is very straightforward given that the manipulation of volatile

data structures is a required step for any non-trivial application.

Listing 6.3 shows the same function now implemented using NVML. The first thing

to notice is that the signature of the function (lines 2-3) has changed. Developer needs

to be aware of persistent data types in a more significant way and use this knowledge

continuously during program creation. The use of the macro TOID is required to create

persistent pointers. Persistent pointers, unlike regular pointers, do not store the value of

an absolute offset in the process address space. Instead, they store metadata and a relative

offset which are used to compute the target of the pointer at runtime. Throughout the rest

of the function, other persistent pointers are declared in a similar fashion.

In lines 7 and 8, we see the use of another macro TX ADD, which logs the values

of node and child as part of the ongoing transaction to handle recovery in case the

transaction fails to commit. These steps are necessary because both of these variables

eventually need to be modified. The user of NVML thus needs to be careful in keeping

track of the persistent data that they modify and must make sure that their original values

are stored safely in case there is a crash. In line 9 we encounter a new macro D RW used to
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Figure 6.14: Tree rotation

dereference the persistent pointer. At this point, it is safe to make the assignment because

the original values have been safely logged. At line 10, we see another dereference used

within a comparison operation for two persistent pointers. If the condition is satisfied,

then the parent pointer gets updated after its current value is logged using the TX SET

macro. For the remainder of the function more assignments and pointer dereferences are

made using the same macros.

The complexity of Listing 6.3 is not unique to NVML. It is simply a direct conse-

quence of the persistent pointer and transactional model used by NVML and shared by

other previous work [VTS11b, CCA+11b]. While these models do provide higher con-

trol and potentially better performance for the advanced user, it also make is very difficult

for non experts to use NVM. For these reasons, we believe that our solutions strikes a

good balance between performance and programming complexity.
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1 static void rbtree_rotate(struct rbtree *tree,

2 struct rbtree_node *node,

3 enum rb_children c)

4 {

5 struct rbtree_node *child = node->slots[!c];

6 struct rbtree_node *s = tree->sentinel;

7 node->slots[!c] = child->slots[c];

8 if (child->slots[c] != s)

9 child->slots[c]->parent = node;

10 child->parent = node->parent;

11 node->parent->slots[NODE_LOCATION(node)] = child;

12 child->slots[c] = node;

13 node->parent = child;

14 }

Listing 6.2: Implementing RBTree rotate method using LIBPM.
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1 static void rbtree_rotate(TOID(struct rbtree) tree,

2 TOID(struct rbtree_node) node,

3 enum rb_children c)

4 {

5 TOID(struct rbtree_node) child = D_RO(node)->slots[!c];

6 TOID(struct rbtree_node) s = D_RO(tree)->sentinel;

7 TX_ADD(node);

8 TX_ADD(child);

9 D_RW(node)->slots[!c] = D_RO(child)->slots[c];

10 if (!TOID_EQUALS(D_RO(child)->slots[c], s))

11 TX_SET(D_RW(child)->slots[c], parent, node);

12 child->parent = node->parent;

13 TX_SET(node->parent, slots[NODE_LOCATION(node)], child);

14 D_RW(child)->slots[c] = node;

15 D_RW(node)->parent = child;

16 }

Listing 6.3: Implementing RBTree rotate method using NVML.

6.5.4 Performance

We evaluated the performance of LIBPM and compared it against NVML, a state of the

art persist memory library from Intel. NVML provides a set of persistent data structures

with transactional support, which we ported to LIBPM as well and compared the latency

of each major operation. The data structures we considered were the following:

Hashmap A hashtable that solves collisions by linking entries together in the same

bucket.

BTree An in-memory version of a regular BTree with branching factor of eight.
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Figure 6.15: NVML vs LIBPM (Inserts)

RBTree A standard Red Back Tree (RBTree).

Skiplist A skiplist with a single value per node and eight levels.

These data structures were modified so that each operation exposed to the users is

atomic and durable. Special care was taken so each implementation had the same level of

consistency and durability with both libraries: LIBPM and NVML. Each one of these data

structures can create a mapping between a 64bit integer and a value of an arbitrary size.

For these experiments we simply stored a NULL value, to better measure the overheads of

utilizing the data structures’ core logic.

Figure 6.15 depicts the results of comparing the insert operations for all persistent data

structures for both LIBPM and NVML. We see that LIBPM outperforms NVML for every

data structure, from 51x in case of the Skiplist up to 195x for the BTree. For lookups,

on the other hand, the difference ranges from 1.3x in case of the Skiplist to 2.6x with the
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Figure 6.16: NVML vs LIBPM (Lookups)
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Figure 6.17: NVML vs LIBPM (Deletes)
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BTree. And finally, the performance difference for delete operations varies from 47x to

206x for the Skiplist and Hashmap respectively, both in favor of LIBPM.

At a first glance, these results seem counter intuitive. How is it possible that LIBPM

outperform NVML when LIBPM must log much more data for the average transaction?

The answer to this question has three parts: persistent pointer model, shadow data struc-

tures, and logging granularity.

1 struct pmemoid {

2 uint64_t pool_uuid_lo;

3 uint64_t off;

4 };

Listing 6.4: NVML’s definition of persistent pointer.

Persistent pointer model

NVML and LIBPM have very different models for persistent pointers. In the case of

NVML, a persistent pointer is defined as a type that contains metadata and offset. See

details on Listing 6.4. This means that for NVML, a persistent pointer is not simply an

offset in the process address space but rather an object with enough information to com-

pute the target address at runtime. Having this layer of indirection allows NVML to mmap

persistent object anywhere in the address space and more importantly easy sharing of per-

sistent object across multiple processes. For this reason, any workload that involves many

pointer dereferencing will take a hit on runtime performance.

LIBPM, on the other hand, has a much simpler approach to persistent pointers. For

LIBPM, a persistent pointer is no different from a regular pointer, with the exception

that persistent pointers must be fixed before used. The overhead of fixing the pointer is
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Figure 6.18: Allocation Latency

only paid when the container is opened. After that point, persistent pointer are used no

differently than regular pointers.

To measure the overhead of persistent pointer dereferencing, we created a large circu-

lar list, several orders of magnitude larger than the CPU cache, and linked the nodes in a

way that consecutive nodes are far apart in memory. Then we traverse the list many times

while measuring the time that it takes to move from one node to the next. For NVML,

latencies were, in average, 2x higher than LIBPM.

Shadow data-structures

A memory allocation on persistent memory must be performed atomically, so that in case

of a crash no memory is leaked. It is important to notice that when persistent memory is

leaked, it is leaked persistently. Unlike volatile memory, restarting the application is not

sufficient to reclaim a leak on persistent memory. For this reason, both NVML and LIBPM
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implement atomic memory allocations. NVML makes its memory allocations atomic in

the same way it makes memory updates atomic, by logging changes on state before the

changes are made. But these log entries must be durable in order to guarantee that the

state of the of the memory can be rollback if need be. To make log entries durable, NVML

must flush the cache lines containing the entries followed by memory fences, in order to

preserve order. Both the flush and the memory fences operation take place during the

application critical path, increasing the latency of transactions.

LIBPM implements atomic memory allocation using shadow bitmaps and slab alloca-

tors. LIBPM packs together persistent object of similar sizes into a slab, and keeps track

of slab availability with a persistent bitmap. Additionally, a shadow copy of the bitmap

is created on volatile memory that keeps track of all pending allocations and deletions.

When a pmalloc is called, LIBPM finds an available slab on the shadow bitmap, and

returns the correct address for that slab. After that pointer, the use of the LIBPM can

freely use the given memory address. The shadow bitmap keeps track of the cache lines

containing dirty bits with respect to the persistent bitmap, and flushes this cache lines

when a commit is issued. In the case of a crash before the commit is completed, nothing

need to be done since the persistent bitmap has net been modified. This approach effec-

tively delays cache line flushes and memory fence until the time of commit, reducing the

runtime overhead to a minimum.

Logging at a page granularity

Compared to NVML, LIBPM logs and flushes much more data, but in average creates

much fewer log entries. This is a direct consequence of logging at a page granularity.

However, logging and flushing cache lines is not as expensive as one may think. The

new Intel instruction called CLWB has similar semantics as CLFLUSH and CLFLUSHOPT

with the significant different that it does not invalidate the cache line it flushes. This has
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the advantage that subsequent accesses to the same cache line do not incur a cache miss.

Both NVML and LIBPM make use of this optimized instruction but the different lies on

the number of memory fences they issue. In order to make log entries durable, in addition

to flushing the cache line, once must also issue memory fences to force the flush to take

place and preserve the order of operations. The more memory fences are use, the more

negative impact it will have on the performance of the application, and since NVML log

many more smaller entries, it must also issue many more memory fences. This is the

reason for NVML high transaction latency when compared to LIBPM. LIBPM combine

several techniques that minimizes the number of memory fences for both updates and

memory allocations and deletions.

To better understand this phenomenon, we designed an experiment that measures the

latency of transactions while varying the number and size of updates per transaction.

Figure 6.19 summarizes the results. As a base line, we used the latency of transactions
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logging a single entry of one page (4KB) in size. Then we measured the latency of

transaction of of multiple updates (1 to 10 updates per transaction) and multiple sizes

(from 8 Bytes to 1KB). As we can see, transactions logging a single entry of small updates

(e.g. 8 bytes) do have lower latency than those logging an entire page. However, as the

number of update per transaction increases, the latency of the transaction also increases,

and for as many as two updates, the latencies of transaction with small update sizes is

higher.

Temporal locality

Logging at a page granularity has the advantage that updates to near by addresses (within

the same page) are very efficient because only the first update trigger the logging logic.

Subsequent updates to the same page take place at no extra cost. This is particularly

efficient for applications with access pattern characterized by temporal locality. However,

for transactional systems based on log-what-change do not benefit from temporal locality.

6.6 Summary

In this chapter we propose a new approach for consuming persistent memory based on the

container abstraction. Containers allow applications to program persistent memory very

much the same way they program volatile memory. This simplicity is achieved through a

combination of key design ideas and a simple-to-use API. First, containers are mapped di-

rectly to the process address space, so that applications access persistent memory without

any operating system supervision. Second, our proposed transactional model uses mem-

ory protection mechanisms to automatically track the pages that are updated at runtime.

This approach frees the programmer from the error prone task of explicitly logging every

byte before it is updated, as has been used in the recent open-source project, NVML. Third,
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containers are fully self-describing entities; they maintain enough information about the

data it hosts so that they can be migrated to a different machine. This chapter also de-

scribes in detail the architecture and design of our solution, LIBPM, and compares its

performance against NVML, a state-of-the-art persistent memory library from Intel. The

results show an improvement of performance for persistent data structures of up to 195x

for write intensive workloads and 2.6x for read intensive workloads.

91



CHAPTER 7

RELATED WORK

In this chapter we examine the body of related work for NVMKV, METRADB and

LIBPM. In each subsection, we list the most relevant work for each of the systems pro-

pose on this thesis and describe the difference between our solutions and previous works,

highlighting our unique contributions.

7.1 NVMKVS

Most previous work on FTL-awareness has focused on leveraging FTL capabilities for

simpler and more efficient applications, focusing on databases [ONW+11], file systems [JBLF12]

and caches [SSZ12]. NVMKV is the first to present the complete design and implementa-

tion of an FTL-aware KV store and explains how specific FTL primitives can be leveraged

to build a lightweight and performant KV store. NVMKV is also the first to provide sup-

port for multiple KV instances (i.e., pools) on the same flash device. Further, NVMKV

trades-off main memory for flash well as evidenced in the evaluation of a read cache im-

plementation. Finally, NVMKV extends the use of the FTL primitives in a KV store to

include conditional-primitives and batching.

There is substantial work on scale-out KV stores and many of the recent ones focus on

flash. For example, Dynamo [DHJ+07] and Voldemort [SKG+12] both present scale out

KV stores with a focus on predictable performance and availability. Multiple local node

KV stores are used underneath the scale out framework and these are expected to provide

get, put, and delete operations. NVMKV complements these efforts by providing a

lightweight, ACID compliant, and high-performance, single-node KV store.

Most flash-optimized KV stores use a log structure on block-based flash devices [Roc14,

AFP+08, BPPP09, BFPS11, DSL10, LFAK11]. FAWN-KV [AFP+08] focused on power-

optimized nodes and uses an in-memory map for locating KV pairs at they rotate through
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the log. FlashStore [DSL10] and SkimpyStash [DSL11] take similar logging-based ap-

proaches to provide high-performance updates to flash by maintaining an in-memory map.

SILT [LFAK11] provides a highly memory optimized multi-layer KV store, where data

transitions between several intermediate stores with increasing compaction as the data

ages. Unlike the above mentioned systems, NVMKV eliminates an entire additional layer

of mapping along with in-memory metadata management by utilizing the FTL mapping

infrastructure.

There are several popular disk optimized KV stores [memb, Mon14, GD11]. Mem-

cachedb [memb] provides a persistent back end to the in-memory KV store, memcached [mema],

using BerkeleyDB [OBS99]. BerkeleyDB, built to operate on top a black-box block layer,

caches portions of the KV map in DRAM to conserve memory and incurs read amplifi-

cation on map lookup misses. MongoDB, a cross-platform document-oriented database,

and LevelDB, a write-optimized KV store, are HDD based KV stores. Disk-based ob-

ject stores can also provide KV capabilities [GMC+12, LLOW91, LAC+96, SMK+93].

Disk-based solutions do not work well on flash because the significant AWA that they

induce reduces the flash device lifetime by orders of magnitude [MST+14].

Finally, we examine the role of consistency in KV stores in the literature. Anderson et

al. analyze the consistency provided by different KV stores [ALS+10]. They observe that

while many KV stores offer better performance by providing a weaker form of (eventual)

consistency, user dissatisfaction when violations do occur is a concern. Thus, while many

distributed KV stores provide eventual consistency, others have focused on strong trans-

actional consistency [SSR08]. NVMKV is a unique KV store that leverages the advanced

capabilities of modern FTLs to offer strong consistency guarantees and high-performance

simultaneously.
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7.2 METRADB

We are not the first to propose a key-value store over NVM. Prior work includes Echo [BHC+13],

CDDS [VTRC11], wB+Trees [CJ15], and the data structures provided with Intel’s NVML [Rud].

These are general solutions with broad scope, while we advocate a custom solution

for each application. Similarly, other ideas to facilitate the use of NVM include persis-

tent regions [VTS11b], persistent objects [CCA+11b, GMC+12], file systems [CNF+09,

DKK+14], persistent transactions [GDV15, VTS11b], memory management [MAK+13],

and durability of lock-based code [CBB14]. Again, these ideas target generality. Other

works propose relaxed ordering of writes to NVM [PCW14, LSSM14], non-volatile caches [ZLY+13],

and other software-hardware architectures [GDV13]. These idea are orthogonal to and

motivate our work, since they facilitate access to NVM by proposing alternative hardware.

7.3 LIBPM

Observing that writes to persistent memory should ideally be unsupervised for best per-

formance, several persistent heap abstractions have been proposed for block stores [BP09,

SMK+93, GMC+12, LC97, LLOW91, ver, JLR+94, WKRP02, ZW94]. Recent efforts

have applied the persistent heap approach to expose persistent memory to applications [CCA+11a,

VTS11a, ZYMS15]. We identify two significant drawbacks that stall their widespread

adoption. First is the significant reliance on the developer to annotate memory struc-

tures (e.g., variables, allocations, pointers etc.) as persistent; these requirements have

been reported to be the source of most programmer bugs when using RVM, a sem-

inal work on creating a persistent memory abstraction [MSSL97]. Second, the pro-

posed abstractions also rely on a static mapping reducing their portability across executa-

bles and making heap evolution (such as shrinking and expansion) problematic, besides

being too rigid for contemporary systems that demand flexibility in managing address
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spaces [LNBZ08, The]. We believe that the simplicity of the Container abstraction and

its transactional model will help developers overcome these limitations.
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CHAPTER 8

CONCLUSIONS

In this thesis we studied two types of storage technologies: NAND flash and persist

memory. These new storage media are fundamentally different from their predecessors,

the hard disk, for which the current I/O software stack was tailored made. Because of this

legacy, it is not easy for application developers to take full advantage of the potential that

these technologies have to offer. To address these issues, we proposed new interfaces for

both NAND flash and persistent memory, and showcase their merits by building systems

that use these new interfaces effectively.

We began by making that case that the traditional read and write interface of the

block layer is quite limiting for modern flash devices. In particular, modern FTLs im-

plements many advanced capabilities that are useful for user space applications as well.

Some of these capabilities include log structuring, creating and maintaining dynamic

mappings from logical to physical addresses, indexing, transactional updates, and thin

provisioning, among others [JBLF12, ONW+11, SSZ12]. Exposing these capabilities to

applications simplifies the design and development of applications, as well as improves

their performance. Moreover, having access to a richer interface allows applications to

make more informed decisions that reduces write amplification at the device and thereby

increases the life span of the devices. We built NVMKV as an example of what could be

done when better interfaces are available to applications.

Next, we focused our attention on persistent memory. Specifically, we studied how

persistent memory could be used to improve the performance of storage systems. We

proposed a solution that consumes persistent memory through a library layer that decou-

ples the application logic from the details of the programming persistent memory. For

our case study, we developed a key value store with transactional support that consumes

persistent memory and is designed specifically for VSAN, a hyper-converged storage so-
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lution from VMware. We argued that application tailored solutions could achieved higher

performance than more generic solutions and supported our case with an example key

value store we built called METRADB.

Lastly, we addressed some of the limitations of consuming persistent memory through

a customized key-value store interface by proposing a more general solution based on

persistent containers. The container abstraction allows developers to allocates persistent

objects using a familiar memory-like interface and automatically guarantees the dura-

bility and consistency of the objects it hosts through simple-to-use atomic transactions.

Additionally, containers allow unsupervised access to the data they host, making the pro-

gramming of persistent memory very much like that of traditional volatile memory. We

described and evaluated LIBPM, which is our persistent memory library and compared it

to NVML, a state of the art library for persistent memory developed by Intel.
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