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ABSTRACT OF THE THESIS 

NANO-CONFINED METAL OXIDE IN CARBON NANOTUBE COMPOSITE 

ELECTRODES FOR LITHIUM ION BATTERIES 

by 

Alexandra J. Henriques 

Florida International University, 2017 

Miami, Florida 

Professor Chunlei Wang, Major Professor 

 

 Lithium ion batteries (LIB) are one of the most commercially significant secondary 

batteries, but in order to continue improving the devices that rely on this form of energy 

storage, it is necessary to optimize their components. One common problem with anode 

materials that hinders their performance is volumetric expansion during cycling.  One of 

the methods studied to resolve this issue is the confinement of metal oxides with the 

interest of improving the longevity of their performance with cycling. Confinement of 

metal oxide nanoparticles within carbon nanotubes has shown to improve the performance 

of these anode materials versus unconfined metal oxides.  Here, electrostatic spray 

deposition (ESD) is used to create thin films of nano-confined tin oxide/CNT composite as 

the active anode material for subsequent property testing of assembled LIBs. This thesis 

gives the details of the techniques used to produce the desired anode materials and their 

electrochemical characterization as LIB anodes. 
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CHAPTER I 

INTRODUCTION 

The key objective of this master’s thesis project was to create and test thin films of 

a lithium ion battery (LIB) anode active composite material made of tin oxide (SnO2) and 

carbon nanotubes (CNTs). The chosen thin film deposition method was electrostatic spray 

deposition (ESD). This composite active material was specifically chosen to create a 

nanostructure with tin oxide nanoparticles confined within the inner channels of the carbon 

nanotubes with the goal of improving electrochemical performance. The composite 

material was characterized using x-ray diffraction (XRD), scanning electron microscopy 

(SEM), and transmission electron microscopy (TEM). Electrochemical studies were 

carried out via cyclic voltammetry (CV), galvanostatic discharge-charge testing, rate 

capability testing, and electrochemical impedance spectroscopy (EIS). Electrochemical 

testing was used to determine the specific capacity of the active anode material of interest 

as well as the extent of retention of capacity with cell cycling. The research results show 

that the nano-confined SnO2-in-CNT composite materials are promising anodes for use in 

LIBs. Furthermore, the weight ratio of SnO2 to CNT that showed the best performance was 

20:80. 

 

1.1 Motivation 

The development of high capacity rechargeable lithium-ion batteries (LIBs) is 

crucial given the insatiable energy demands that come with the rapidly developing 

technological landscape that exists in modern society. From portable technologies and 

medical equipment to alternative energy sources, the continual improvement of batteries 
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and fuel cells has been rendered invaluable for society to continue improving. With the 

demand for renewable energy and electric vehicles, improved energy storage technology 

is necessary to enable an effective transition to more environmentally sound practices and 

energy infrastructure.1,2  

 

Figure 1: Specific capacities and potential vs. Li/Li+ for various anode materials3 

  

1.1.1 Metal Oxides as Anode Materials 

One of the major areas of research focus is the development of high performance 

advanced electrochemical materials for the electrodes of LIBs. Deviating from typical 

intercalation anodes such as graphite, metal oxides (MxOy) with conversion and/or alloying 

reaction mechanisms have become one of the areas of research focus in recent years 

because of their high theoretical capacities as active anode materials.1 Figure 1 shows the 



 3 

specific capacities and potentials vs. lithium of various anode materials that have been 

explored. Carbon, which is presently a widely commercially used anode material, has a 

relatively low specific capacity, where as metallic tin and metal oxides, including tin oxide 

(SnO2), have higher specific capacities. In this research, SnO2 was chosen as the metal 

oxide of interest because its theoretical capacity is more than twice that of the current anode 

of choice, graphite, with a theoretical capacity of ~790 mAh/g for SnO2 versus ~372 mAh/g 

for graphite.2,4,5 Additionally, anodes made with SnO2 active materials can be paired with 

a large variety of cathode materials because these anodes can work at a relatively low 

potential, similar to graphite and the material is inexpensive and nontoxic.4,5 The main 

drawbacks of the use of most metal oxides as an anode material in LIBs is their low 

electrical conductivity and their large volume change during cell cycling, which is true of 

SnO2 as well.1,2,4 Volumetric expansion of the anode material is associated with cracking, 

particle shuffling, and pulverization of the active material as well as its delamination from 

the current collector.1 Thus, a variety of solutions to these issues are being explored to 

better leverage the possible benefits of metal oxide anode materials. 

 

1.1.2 Nanostructure and Carbon Matrix 

 One of the methods considered to solve the issue of the volumetric expansion 

during the cycling of cells with metal oxide-based anodes is the nanostructuring of the 

active material.1,2,4,6,7 Nanostructured anode materials offer the advantage of a greater 

surface area to volume ratio versus bulk or larger particulate materials.2 This allows for 

room to accommodate volume change, reducing the issues that typically cause capacity 

fading and eventual failure.2 A carbon matrix, such as a carbon nanotube-based matrix, is 
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of interest given its improved electrical conductivity versus metal oxides and its good 

mechanical strength.8 

 

1.2 Research objectives 

 The overall goal of this project was to synthesize a LIB anode material that confined 

tin oxide within a CNT structure and test it electrochemically. The secondary goals 

included:  

(1) Testing of various weight ratios of SnO2 to CNTs in the composite active material 

to determine best electrochemical performance,  

(2) Optimization of ESD parameters to create a porous thin film of the active material,  

(3) Comparison of the electrochemical performance of the target material with control 

groups to validate the results, and  

(4) Evaluation of material structure characteristics via SEM, TEM, and XRD to 

determine structure effects on electrochemistry. 

 The research hypothesis was that the creation of a thin film of tin oxide 

nanoparticles confined within CNTs via ESD will improve the performance of the tin oxide 

active material as a LIB anode by increasing interfacial charge storage, limiting its 

volumetric expansion, improving electrical conductivity, reducing byproduct aggregation, 

and buffering stresses generated during battery cycling. 

The second chapter will present the relevant background information about LIB 

anode materials and the chemistry involved during the cycling of LIBs with carbon and tin 

oxide anodes as well as information about the chosen microstructure/nanostructure of the 

active anode material. Chapter three details the experimental methods used to create the 
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active anode material of interest, assemble cells containing this material, electrochemical 

testing carried out on these cells, and additional characterization of the materials. Chapter 

four gives the results of the electrochemical testing and material characterization that was 

done and chapter five elucidates the conclusions drawn from the results obtained.  
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CHAPTER II 

LITERATURE REVIEW 

 This chapter contains a review of the relevant literature pertaining to rechargeable 

battery technology, lithium ion batteries, anode materials common in LIBs, and studies 

conducted on materials used for electrochemical storage with similarities in nanostructure 

or composition to the work presented in the subsequent chapters. 

  

2.1 Rechargeable Batteries and Lithium Ion Batteries 

 Batteries are typically categorized as either primary or secondary based on their 

ability to be recharged.2 Primary batteries are those that are only used once and cannot be 

recharged.2 Secondary batteries, also called rechargeable batteries, are those that operate 

via a reversible chemical reaction that allows them to be discharged and recharged for 

repeated use.2  The four main types of rechargeable battery are lead-acid, such as those 

used in traditional vehicles, Ni-Cd, Ni-MH, and LIBs.2 Presently, one of the most 

commercially significant and widely used secondary batteries is the LIB.2 Figure 2 shows 

a comparison of the energy densities of the various common rechargeable batteries. From 

this plot it is evident that the higher gravimetric energy density and volumetric energy 

density associated with LIBs is a main factor in their commercial use. Additionally, LIBs 

generally tend to have a reasonably high cycle life (>1,000 cycles), making them an 

advantageous choice.2 
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Figure 2: Comparison of energy densities of various secondary batteries.2 

2.2 Metal Oxides as Anode Materials 

Metal oxides (MxOy) have become an area of research focus in recent years because 

of their high theoretical capacities as active anode materials. Table 1 shows a comparison 

of the theoretical capacities of some materials of interest both in the present work and the 

literature. 

 
Table 1: Selected theoretical specific capacities 

Metal Oxide or Metal Theoretical Specific Capacity (mAh/g) 

MnO2 1,233 2 

MnO 756 2 

NiO 718 2 

Sn 993 2 

SnO2 783 2 
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Currently, the most widely used anode is made of graphitic carbon. The theoretical 

capacity reported for carbon is relatively low, about 372 mAh/g.2,9 It is the standard, 

however, because of its stability as an anode, as it tends to retain its capacity for the lifetime 

of the battery.2,9 Some of the metal oxides of interest in this work, including MnO2 and 

SnO2 have theoretical capacities of 1,233 and 783 mAh/g respectively.2 The improvement 

in theoretical capacity, though promising, does not translate directly to a better LIB with 

use of the pure, bulk oxide material as the active component of a LIB anode, however. This 

is a result not only of their poor electrical conductivities, but also of the volumetric change 

that occurs in these materials during their reaction processes with lithium. In the case of 

SnO2, an expansion of the material during cycling of about 260% is observed.2 Such 

volumetric change can cause cracking and pulverization of the anode material, loss of 

contact with the current collector, and eventual failure of the LIB. The reactions for the 

two aforementioned materials of interest are shown in Equations 1-3. 

 SnO2 + 4 Li+ + 4 e-  Sn + 2 Li2O [1] 

 

 Sn + x Li+ + x e-  LixSn (0 ≤ x ≤ 4.4) [2] 

 

 MnO2 + 4 Li+ + 4 e-  Mn + 2 Li2O [3] 

 

SnO2 undergoes a two-step alloying reaction with lithium to form metallic tin as an 

intermediate species. Equation 1, for SnO2 is associated with a theoretical specific capacity 

of 711 mAh/g, and is followed by the reversible reaction listed as Equation 2, which has a 

theoretical capacity of 993 mAh/g, leading to an overall theoretical capacity of 783 mAh/g 

for SnO2. During the first reaction step, SnO2 reacts with lithium to form metallic tin and 

Li2O, which is also beneficial to the performance of SnO2 based electrode materials relative 

to Sn metal.2 This is caused by the buffering matrix formed by the Li2O that prevents the 
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aggregation of Sn during cycling, which tends to happen in pure tin electrodes.2 MnO2, like 

many transition metal oxides, undergoes a conversion reaction with lithium, as written in 

Equation 3.  

In the traditional literature, with bulk SnO2, the first reaction shown as equation 1 

was typically regarded as irreversible.10 More recent work, however, has shown that 

nanoparticulate SnO2 can exhibit some reversibility of the first conversion reaction step 

leading to an extension of the theoretical capacity to as much as 1490 mAhg-1.10  

 

2.3 Nanostructural Confinement of Metal Oxides in Carbon 

     Given the promising theoretical capacities of metal oxides and metals for use as 

anode materials in LIBs,2 it is particularly of interest to find a way to mitigate the issues 

encountered when using these materials in anodes. One method of doing so that has been 

explored and proven promising is nanostructuring of the materials in question.2,9,11–14 The 

nanostructuring of these materials not only has been shown to improve their resistance to 

failure due to volumetric change, but also have better performance because of their high 

surface area to volume ratio.2 

  In addition to nanostructuring the metal oxides, an additional approach to further 

improving the performance of the materials is by confining these nanostructures within a 

matrix.15–17 The chosen materials that show the most promise are carbon based because 

graphitic sp2 hybridized carbon, as in graphene and carbon nanotubes (CNTs), has 

excellent electrical conductivity and mechanical properties.8 Agrawal et al. showed that 

CNTs, specifically, have a significant damping effect, which is of interest to buffer the 
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stresses generated due to volumetric change in the metal oxide nanoparticles during 

reaction with lithium ions in the LIB.8  

 

2.3.1 Sn@Carbon Nanoparticles in Bamboo-like Hollow Carbon Nanofibers 

Yu et al. explored the use of a carbon structure to confine Sn@carbon nanoparticles 

for use as a LIB anode.16 In this study, the Sn@carbon particles were encapsulated within 

hollow carbon nanofibers (CNFs) via electrospinning and pyrolysis to address the issues 

of volume change and tin particle agglomeration.16 Figure 3 shows the TEM images 

confirming the encapsulation of the Sn@carbon particles within hollow CNFs.16  

 

 
Figure 3: (a) Bright field (BF) zero-loss filtered elastic TEM image of CNFs with Sn@carbon 

nanoparticles and (b) Elemental mapping confirming the tin and carbon content in the predicted 

locations.16 

 

In this study, it was shown that the composite material for the anode exhibited a 

reversible capacity, after cycling assembled cells 200 times at 5 C, of 737 mAh/g.16 Figure 

4 shows the representative cyclic voltammograms (CV) taken with a scan speed of 0.2 

mV/s and the electrochemical performance for electrode cycled between 0.01 and 3 V vs. 

Li+/Li with comparison to commercially available nanoscale tin.  
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Figure 4: (a) CV for Sn@carbon encapsulated in CNFs with scan speed of 0.2 mV/s (b-d) 

Electrochemical performance vs. Li+/Li with cycling between 0.01 and 3 V.16 

 

 

2.3.2 Comparison of SnO2 Based Anodes with Various Nanostructured Carbons 

 Guo et al. conducted work on monodisperse SnO2 particles on reduced graphene 

oxide (RGO) platelets and compared these results with those of a variety of tin oxide and 

carbon structured anode material work.10 Table 2 shows a summary of the work compared 

by Guo et al. in their review, indicating the current rates at which various studies tested 

their materials of interest, the observed discharge capacities reported, and their retention of 

capacity with cycling (indicating number of cycles used).10 From the work presented by 

Guo et al., the monodisperse SnO2 on RGO had the best discharge specific capacity of 

1057 mAh/g in the second cycle and best capacity retention of 1036 mAh/g after 400 cycles 

when tested at a current rate of 500 mAh/g. 
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Table 2: Comparison of various SnO2 and carbon composite electrode capacities for LIB anodes 

Sample Current 

Rate 

(mA/g) 

Discharge 

Capacity (mAh/g) 

Capacity Retention 

(mAh/g)/(cycles) 

Monodisperse SnO2 on RGO 500 1057 (2nd cycle) 1036/400 

SnO2/Graphene 100 931 718/200 

SnO2 nanosheets 156 762 534/50 

SnO2/Graphene 50 1080 649/30 

SnO2/CNF 100  383/30 

SnO2/CNT 200  497/300 

 

2.3.3 Nanoconfined MnO2 in CNTs 

 Interest in the nanoconfinement of metal oxides in carbon channels stems largely 

from the work of Chmiola et al. who used a carbon structure into which nanometer-scale 

pores were etched and subsequently filled with MnO2 particles.18 This work assessed the 

capacitance of such materials and found that gaps between the carbon structure and metal 

oxide particle smaller than 1.5 nm can contribute to charge storage far more than was 

previously thought.18 This improved charge storage is thought to stem from a 

pseudocapacitive effect, which could, in turn, be observed with confinement of particles in 

the inner channels of carbon nanotubes. 

The groundwork and proof-of-concept for the encapsulation of particulate metal 

oxides within carbon nanotubes, specifically, came from the work of Chen et al. in the 

nanoconfinement of MnO2 nanoparticles within CNTs for use in a capacitor application.15 

In this work, a reliable method was devised for the confinement of manganese dioxide 

nanoparticles within multiwalled (MW) CNTs and an improvement was shown for the 

material of interest, which contained the nanoparticles within the CNTs versus the particles 

outside CNTs, just the CNTs, or just the MnO2.
15 Figure 5 shows the TEM micrographs 
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indicating the presence of the MnO2 particles within the CNTs as well as the comparison 

with the samples made that had MnO2 outside the CNTs.15  

 
Figure 5: (a) BF TEM micrograph of MnO2 confined within CNT, (b) MnO2 outside CNT, (c-f) High 

angle area diffraction images and elemental analysis showing confinement of MnO2 within CNTs.15 

 

     The study showed improved reversibility and capacity of the composite material 

created in this study.15 Additionally, the procedure developed was able to reliably achieve 

up to 20% mass loading of the MnO2 nanoparticles within the MW CNTs.15 Figure 6 shows 

the comparison of the specific capacitance of the various samples tested, cyclic 

voltammetry, and tabulated data.15 From these results, it was found that the MnO2 confined 

within the CNTs gave a specific capacitance as high as 225 F/g and when normalized by 

MnO2 gave a specific capacitance of 1250 F/g.15 

In this study, electrostatic spray deposition (ESD) was used to form a thin film of 

the electrode materials of interest on a substrate that was used as the current collector for 

subsequent testing of the electrochemical performance of these anodes.15 This technique is 

of interest for use because of its versatility for film deposition of many different materials 

and morphologies, as well as its ability to allow for simultaneous heat treatment, if needed, 

up to moderate temperatures.9,15,19–21 
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Figure 6: (a) Specific capacitance comparison, (b) comparison of normalized specific capacitance 

between MnO2 outside vs. inside CNTs for composite anodes, (c) CV comparing CNTs without MnO2 

to CNTs with MnO2 both outside and inside, (d) Tabulated values of specific capacitance and MnO2 

normalized specific capacitance.15 

a) b) 

c) d) 
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CHAPTER III 

EXPERIMENTAL TECHNIQUES AND METHODS 

 This section details the experimental techniques used to prepare the active material 

of the anodes of interest for subsequent study as well as the analytical techniques used to 

characterize these materials and the electrochemical testing done to assess their 

performance for LIB anode use. The chapter also gives an overview of the process of 

electrostatic spray deposition (ESD), the method chosen to deposit the active material as a 

thin film onto a substrate that would serve as the current collector for the LIB anodes.  

 

3.1 Material Preparation 

 Preparation of the active material began with the acid treatment of multi-walled 

carbon nanotubes (MWCNTs) and subsequent filling with a precursor for the tin oxide. 

These procedures were based off those used by Chen et al. for a similar configuration that 

contained manganese oxide rather than tin oxide.15 The MWCNTs were purchased from 

Cheap Tubes Inc., made via a chemical vapor deposition (CVD) process and purified by 

the vendor prior to sale. The outer diameters of the CNTs were 8-15 nm and the inner 

diameters were 3-5 nm. The purity was listed as >95% and the tubes were 10-50 m in 

length. They had a specific surface area of 233 m2/g, an electrical conductivity greater than 

100 S/cm, a bulk density of 0.15 g/cm3 and a true density of ~2.1 g/cm3. For the desired 

nanoparticulate-filled MWCNTs to be produced, the CNTs first had to be treated with acid 

to open their ends, cut the tubes to a shorter length of ~0.2-1 m, and remove any possible 

metal catalyst residue. The acid treatment was carried out in refluxing apparatus with a 

condenser tower attached to a round bottom flask containing the MWCNTs and sufficient 
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nitric acid (HNO3, 70%) to completely cover and immerse the CNTs (~50 mL). The round 

bottom flask was immersed in a silicone oil bath to maintain even temperature distribution 

throughout the flask and the oil bath was raised to 140ºC and held at this temperature for 

14 hours. 

After the acid treatment of the CNTs was completed, the insertion of the tin oxide 

(SnO2) nanoparticles had to be carried out to obtain the final active material for the desired 

LIB anodes. In order to obtain the SnO2, tin (IV) acetate (Sigma Aldrich) was used as a 

precursor for subsequent oxidation to obtain the finished product. The tin (IV) acetate was 

dissolved in ethanol (50% w/w) and the acid treated CNTs were introduced to the mixture 

to obtain the desired weight ratio of SnO2 to CNT (10%, 20%, 25%, or 30%) with 

stoichiometric calculations used to obtain the correct output of SnO2 based on the quantity 

of tin (IV) acetate required. The weight fractions selected for this study were based on the 

values that would give a comparable molar ratio to those values used for the MnO2 study 

by Chen et al.15 The capillary forces of the CNTs were used to introduce the tin (IV) acetate 

precursor solution into the inner channels and the process was further aided with stirring 

and subsequent ultrasonic treatment for 2 hours. The resultant mixture was slowly dried at 

room temperature and the dried powder was heat-treated in air in a box furnace at 300ºC 

for four hours to allow oxidation of the tin (IV) acetate into SnO2. Throughout this text, the 

samples prepared this way will be referred to as SnO2-in-CNT. The control group samples 

that were used to compare confined vs. unconfined SnO2 are denoted SnO2-out-CNT. 

 

 

3.2 Electrostatic Spray Deposition (ESD) 
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 ESD is a thin film deposition method, originally detailed by J. Zeleny in 1914, 

which uses a voltage applied to the source of a solution and grounding of the substrate, on 

which the material is to be deposited, to atomize the solution via the applied field and draw 

it across a gap to create the final film.22 Here, a precursor solution is loaded into a syringe 

and then a syringe pump is used to dispense the solution at a constant flow rate through a 

syringe needle to which the voltage source is connected. The substrate is heated to a 

sufficiently high temperature to allow the evaporation of the solvent. The applied field 

serves to charge the surface of the droplet that forms at the tip of the syringe needle that is 

typically used in this procedure and it is this charging that overcomes the surface tension 

and causes atomization. The advantages of using this technique are numerous. It is 

inexpensive, efficient, simple, does not need to be carried out under vacuum, and can be 

used to create a variety of different microstructures. This is made possible by the many 

parameters that can be adjusted for the deposition of a film. Film deposition parameters 

using ESD include: substrate temperature, applied voltage, precursor solution flow rate, 

deposition time, needle-to-substrate distance, and precursor solution composition. Fine 

tuning and optimizing these parameters can allow for the creation of many different 

microstructures of the films.9,19–21 Figure 7 shows a schematic representation of the process 

of ESD and a photograph of the testing setup during use. The photograph shows the conical 

geometry of the atomized spray during thin film deposition. 
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Figure 7: (a) Schematic representation of the ESD process and (b) photograph of setup. 

 

 The precursor solution used for ESD contained the SnO2-in-CNT dissolved in a 60% 

ethanol, 40% 1,2 propanediol solvent mixture that was found to be the optimum for 

deposition of the active material of interest. Prior to use for ESD, the precursor solution 

was stirred and mixed ultrasonically for 1-2 hours until immediately prior to beginning 

ESD. For these tests, the parameters used for film deposition were a flow rate of ~4 

mL/hour and a voltage of 5-8 kV. The substrate was always heated to 300ºC using a 

thermocouple to verify temperature. ESD is carried out in air at atmospheric pressure. 

 

3.3 Structural and Morphological Characterization 

 In order to verify that the desired composition and structure of the active material 

of interest were obtained and that all the control groups were controlling for the correct 

parameters, several analytical techniques were used. The three main characterization 

methods used were x-ray diffraction (XRD), scanning electron microscopy (SEM), and 

(a) (b) 
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transmission electron microscopy (TEM), each of which served an important function in 

verification of the materials of interest. 

 

3.3.1 X-Ray Diffraction (XRD) 

 X-ray diffraction is a technique that uses an incident x-ray beam to study the 

crystallographic structure of materials and identify material composition. For this work, 

XRD data was obtained using a Siemens D-5000 diffractometer with Cu Kα radiation ( = 

1.542 Å). Specifically, in this work this technique was used to assess the efficacy of the 

heat treatment in the experimental procedure in producing the desired SnO2 in both the 

relevant control and experimental groups. Samples for XRD were collected as powder after 

deposition with ESD onto an aluminum plate without the nickel foam substrate. 

 

3.3.2 Scanning Electron Microscopy (SEM) 

 To characterize the microstructure and morphology of the thin films deposited on 

our substrates via ESD, SEM was employed. SEM images were taken with a JEOL JSM-

6330 field-emission scanning electron microscope (FESEM) working at 15.0 kV. The SEM 

is equipped with an energy dispersive x-ray spectrometer (EDS), which is used to identify 

the elemental composition of points or areas in an SEM image.  

 

3.3.3 Transmission Electron Microscopy (TEM) 

 TEM is a powerful tool for gaining very high-resolution images of materials’ 

microstructure and nanostructure, often even down to the level of atomic resolution for 

high resolution TEM (HRTEM). TEM imaging was carried out on a Phillips CM-200 200 
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kV Transmission Electron Microscope (TEM) with Energy Dispersive Spectroscopy 

(EDS). TEM was primarily used in this work to confirm confinement of SnO2 within the 

MWCNTs and compare the control samples to the experimental samples to ensure that 

particles were unconfined in the SnO2-out-CNT samples.  

 

3.4 Assembly of Cells 

 For the anode material of interest to be properly tested electrochemically, half cells 

were assembled containing the deposited film on the nickel foam substrate with lithium 

metal serving as the lithium source for testing and cycling of the cells. Cell assembly was 

carried out in a glove box filled with argon gas and maintaining both the atmospheric 

oxygen and water levels at less than 1 ppm. The cells were assembled as coin cells in CR 

2032 packaging. All half-cells contained a thin, permeable membrane polymer-based 

separator between the nickel foam substrate with active material and the lithium metal. All 

assembled cells used the same electrolyte, lithium hexafluorophosphate (LiPF6, Sigma 

Aldrich, battery grade, 99% trace metals basis), for consistency and comparability of 

results.  

 

3.5 Electrochemical Performance Testing 

 In order to compare the control and experimental group cells, various tests were 

carried out on the assembled half-cells. These tests include cyclic voltammetry (CV), 

galvanostatic charge-discharge testing, and rate capability testing. All electrochemical 

testing of the assembled coin cells was carried out after a delay of about 24-48 hours after 

cell assembly to give an adequate rest time for stabilization. 
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Cyclic voltammetry (CV) is useful to determine the reversibility of a reaction or 

reactions in the process of cycling an electrochemical cell or half-cell. It is carried out for 

a specified number of cycles within a fixed voltage window at a specified scan rate (mV/s) 

and measures the current response from electron transfer processes. Typically the first 

cycle differs most greatly from the subsequent cycles in any electrochemical test because 

of some irreversible capacity loss occurring after the first cycle. After this first cycle, most 

cells tend to stabilize. CV was carried out using a BioLogic VMP3 electrochemical testing 

setup. CV was carried out at rates of 0.1, 0.2, 0.5, 1.0, and 2.0 mVs-1. 

Galvanostatic charge-discharge tests are carried out by discharging and charging 

the half-cells for the desired number of cycles to determine overall trends in capacity 

retention, loss, or gain with use. A fixed current is chosen for charge and discharge of the 

cells and in this study discharging and charging were carried out for up to 200 cycles per 

half-cell. Rate capability testing operates similarly to the charge-discharge testing, but 

rather than test a half-cell for 100 cycles at one fixed current, different current values are 

tested for a number of cycles on a single cell to compare the capacity of the cell at different 

rates. All rate capability and charge-discharge tests were carried out on a Neware BTS-610 

battery testing apparatus.  

In order to determine the specific capacity of the active material of interest for all 

half-cells, masses were taken of the substrate before and after ESD was carried out to 

determine the mass deposited. That measured change in mass was used for all specific 

capacity calculations. All electrochemical testing was done on all half-cells at room 

temperature, ~25ºC. 
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3.6 Experiment Design and Controls 

 In order to accurately analyze the results of electrochemical performance obtained 

from testing the experimental group of interest, the study was designed to include necessary 

control groups for comparison. Specifically, this work hypothesized that the confinement 

of SnO2 nanoparticles within the inner channels of MWCNTs would result in cells with 

improved electrochemical performance. This performance, therefore, had to be compared 

versus SnO2 alone, MWCNTs alone, and unconfined SnO2, referred to as SnO2-out-CNT 

to differentiate from the confined samples. Therefore, SnO2 samples were prepared by 

mixing the tin (IV) acetate precursor with closed MWCNTs, drying and heat treating via 

the same process detailed in section 3.1, and depositing this active material via ESD 

similarly onto a Ni foam substrate. Samples containing SnO2 alone as the active material 

were prepared with ESD carried out using the tin (IV) acetate precursor dissolved in the 

same ratio combination of ethanol and 1,2 propanediol. The nickel foam substrate onto 

which the tin (IV) acetate was deposited was heated to 300ºC, above the oxidation 

temperature of 270ºC17, and carried out in air. Full oxidation of tin (IV) acetate to SnO2 

was confirmed using XRD and the results are shown in Chapter IV. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Characterization Results 

4.1.1 X-ray Diffraction (XRD) 

X-ray diffraction was used in this study with the primary objective of verifying that 

the tin (IV) acetate that was used as a precursor material for the SnO2 in both the control 

and experimental group samples had oxidized as expected to give the SnO2. Therefore, for 

each group some powder was taken and XRD was carried out to identify the composition. 

Figure 8 shows the comparison of the XRD patterns for SnO2 alone, SnO2-in-CNT, SnO2-

out-CNT, and CNTs alone. The XRD results showed that the SnO2 alone sample was 

indeed oxidized as desired from the tin (IV) acetate precursor, as were the experimental 

and control groups with SnO2, thus validating the heat treatment step of the experimental 

procedure. that there was very little difference between the SnO2-in-CNT and the SnO2-

out-CNT samples, as expected. The XRD pattern for the MWCNTs was typical and 

comparable to other XRD carried out on CNTs in prior literature.23 The patterns show some 

overlap between the main CNT peak and the SnO2 (110) peak. Additionally, the main 

contribution to the XRD patterns of the composite samples was the SnO2, which can be 

attributed to the crystallinity of this material. 
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Figure 8: XRD data for confined, unconfined, SnO2 alone, and CNT alone samples. 

 

4.1.2 Scanning Electron Microscopy (SEM) 

 SEM was utilized to verify the microstructure of the deposited thin films onto the 

nickel foam current collector (substrate) to ensure that the deposited film was even and 

sufficiently porous to allow improved Li+ ion diffusion into the active anode material. 

Figure 9 (a) shows an SEM image with 95x magnification where the larger structure of the 

porous nickel foam can be seen with an even thin film coating deposited on all visible 

surfaces. Figure 9 (b) at 550x magnification gives a more detailed image of one section of 

the nickel foam, highlighting both the porosity of the deposited film and its evenness at a 

10 m resolution. In Figure 9 (c), an enlarged view of the morphology is shown at a 

110 101 211 



 25 

magnification of 2,300x. The fourth SEM image, Figure 9 (d) was taken at 75,000x 

magnification, showing a representative region of the deposited film. In (d) individual 

CNTs are visible without any external agglomerated SnO2, further supporting confinement 

of the SnO2 particles within the CNTs. 

 
Figure 9: SEM of SnO2-in-CNT sample with (a) 97x, (b) 550x, (c) 2,300x and (d) 75,000x 

magnifications 

 

4.1.3 Transmission Electron Microscopy (TEM) 

 The purpose of TEM for this study was to confirm that confinement of SnO2 within 

the CNTs was successfully achieved. Figure 10 shows TEM images of SnO2-in-CNT 

sample where CNTs with SnO2 nanoparticle are visible. In the TEM images, the MWCNTs 

were identified by the layered structure of the wall and the inner and outer diameter sizing 

being in keeping with the expected diameters from the manufacturer’s specifications (8-15 

(b) (a) 

(c) (d) 
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nm outer diameter, 3-5 nm inner diameter. The SnO2 nanoparticles are the darker spots 

within the CNTs visible in Figure 10. Figure 10 (a) and (b) show a magnified view of the 

individual carbon nanotube and SnO2 particle with visible interplanar spacing. Figure 10 

(c) shows the profile taken of the SnO2 particle to confirm that the d-spacing was in-

keeping with the predicted value for SnO2, which was confirmed. Additional images with 

more carbon nanotubes and more SnO2 particles, showing particulate confinement, are 

shown in (d) and (e). 
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Figure 10: (a) and (b) TEM images showing an individual carbon nanotube, vertically oriented, with 

a tin oxide nanoparticle showing clear confinement with identification of the d-spacing between 

atomic planes (c) Profile of interplanar spacing for d = 2.6 Å corresponding to SnO2. (d), and (e), 

showing confinement of SnO2 particles within CNTs. 

 

 

(a) (b) 

(c) 

(d) (e) 
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4.2 Electrochemical Results 

In Figure 11 the results of cyclic voltammetry taken at a scan rate of 0.2 mVs-1 for 

the third cycle of the various sample groups are shown. For the tin oxide alone control 

sample, characteristic oxidation and reduction peaks are visible. The peak between 0.1 and 

0.5 V corresponds to Li ions alloying with the metallic Sn that is a product of the first 

reaction step. The peak at ~1.0 V is attributed to the SEI formation and the peak at 1.35 V 

corresponds to the reduction of SnO2 to metallic Sn in the first reaction step. The reverse 

reaction is represented by the peak at about 1.2 V, which is visible in the SnO2 alone, and 

the 20% and 30% SnO2-in-CNT samples. Finally, the de-alloying process of Li leaving 

the LixSn compound is visible at about 0.55 V. The current response seen for CNTs alone 

was very small, as was that of the unconfined sample, which does not show the redox peaks 

as noticeably as the confined samples. Though the SnO2 showed a large current response 

for the first few cycles, with subsequent cycles this response deteriorated greatly, resulting 

in high instability of the half-cell with cycling over time. 
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Figure 11: Cyclic voltammetry curves for experimental and control group samples 

Figure 12 shows the galvanostatic charge-discharge curves for 20% SnO2-in-CNT 

active material half-cell sample cycled at a rate of 100 mAg-1 through cycle 150 of 

discharging then charging the cell. With the first cycle, the cell shows the greatest value 

with the first discharge for specific capacity, with its maximum value falling at about 1300 

mAhg-1. For the discharge for cycle two, the specific capacity maximum fell at just under 

700 mAhg-1, about half the original value. This trend continues through cycle 10, however 

by cycle 40 the specific capacities steadily increased. In fact, the highest specific capacity 

measured on the charge side was seen with the charge step for cycle 150. The discharge 

cycles showed a gradual increase in the maximum measured specific capacity continuing 

through cycle 150 for which the value was greater than 900 mAhg-1. Such trends are 

sometime seen in metal oxide anode materials and attributed to an electrochemical milling 

effect in which the particle size becomes reduced with cycling of the LIB.24,25 A decrease 
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in the particle size then, consequently, results in an increased surface area of the metal 

oxide particles exposing a larger surface for reaction with Li+ ions. This, in turn, is thought 

to be the cause of the gradual increase in specific capacity with cycling.  

 
Figure 12: Galvanostatic charge-discharge curves for 20% SnO2-in-CNT sample  

A comparison of the cycle performances during discharge of the samples is 

presented in Figure 13 For the first 20 cycles, all of the samples showed a decreasing trend 

in specific capacities. By cycle 40, however, the confined samples (20, 25, and 30% SnO2-

in-CNT) showed some recovery of capacity, a trend that continued through the hundredth 

cycle. The unconfined sample initially had good performance but continued decreasing in 

capacity with cycling and did not see the recovery achieved with the confined samples. 

This recovery of capacity can be attributed to an electrochemical milling process that is 

sometimes observed with cycling of LIB electrode materials25 and also to the improved 

reversibility of the first reaction step of SnO2 reacting with Li+ ions to form metallic Sn 

1 10 2 100 150 

1 
150 10 
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and Li2O. In studies with nanoscale SnO2 anodes, it was found that there was a greater 

reversibility of this first reaction step, giving a theoretical capacity of 1490 mAh/g.10 With 

the electrochemical milling of SnO2 and metallic Sn in the anode material, there could be 

a reduction of the particulate size and exposure of unreacted surfaces allowing for an 

improvement in the observed specific capacity. The CNT alone, as expected, had a low but 

stable value for specific capacity. Of the groups, the best capacity is observed with the 20% 

SnO2-in-CNT sample. The values of specific capacity for the samples are tabulated in 

Table 3.  

 
Figure 13: Cycle performances for the various control and experimental group samples 
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Table 3: Tabulated values of specific capacity for various cycles. 

 

Figure 14 shows the cyclic performance during discharge of the 20% SnO2-in-CNT 

for 200 cycles with a testing rate of 100 mAhg-1 which very clearly shows the trend in 

initial specific capacity decrease for the first 15 cycles and subsequent increase for the 

remaining life of the cell through 200 cycles. The rate at which the specific capacity 

increased was fairly constant through cycle 100 and then increased slightly through cycle 

200. The values of interest for the specific capacities at various cycle numbers were 1312.3, 

686.5, 770.6, 943.1, and 1069.7 mAh/g at cycles 1, 2, 100, 150, and 200, respectively. 
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Figure 14: Cycle performance of 20% SnO2-in-CNT for 200 cycles at 100 mAhg-1 
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CHAPTER V 

CONCLUSIONS 

 This thesis investigated the electrochemical performance and structural 

characteristics of composite lithium ion battery (LIB) anode materials containing SnO2 

nanoparticles confined within the inner channels of multiwalled carbon nanotubes. The 

technique used to deposit the active anode material onto a current collector (nickel foam 

substrate) was electrostatic spray deposition (ESD). The parameters for ESD were 

optimized to obtain films with the desired microstructure. Various SnO2-to-CNT ratios 

were tested electrochemically (10%, 20%, 25%, and 30%) and the 20% SnO2 confined 

within the CNT inner channels (denoted 20% SnO2-in-CNT in this text) showed the most 

promising performance electrochemically. It was found with cycle performance testing that 

the specific capacity of the cells increased through 200 cycles with the 20% and 30% SnO2-

in-CNT samples, but with higher specific capacity for the 20% confined samples. 

 The third chapter of this manuscript detailed the experimental methods and 

techniques used to analyze the materials, including the optimized parameters for ESD for 

these materials and for the desired active material film morphology (porous). These 

parameters were a temperature of 300°C, a flow rate of ~4 mL/hour for the dispensing of 

the precursor solution from the syringe, and an applied voltage of 5-8 kV, adjusted to give 

the best spray of atomized solution (even, conical shape). 

 Chapter four detailed the results of the analytical methods, SEM, TEM, and XRD, 

and of the electrochemical tests that were carried out. XRD confirmed that the procedure 

used did give the desired output of SnO2, which had been created via oxidation of a tin (IV) 
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acetate precursor. Additionally, there was overlap between the main CNT peak and the 

SnO2 peaks and the main contribution to the XRD patterns of the SnO2-in-CNT and SnO2-

out-CNT groups was the SnO2. SEM was used to show that the films deposited had the 

desired morphology for electrochemical testing, showing an even, porous thin film material 

with good coating of the nickel foam substrate. TEM showed that there was confinement 

of the SnO2 particles within the inner channel of the MWCNTs using the procedure detailed 

in chapter three.  Finally, electrochemical testing was conducted for the various control and 

experimental groups and an interesting trend in initial capacity loss and eventual capacity 

recovery with cycling was observed for the SnO2-in-CNT confined samples. This same 

recovery of capacity was not observed with the control group samples, and the best 

performance was observed with the 20% confined sample. 

 The future work recommended is to continue trying other weight ratios of SnO2-in-

CNT to determine the absolute optimum value. Additionally, the cycled batteries should 

be disassembled and TEM and SEM analysis carried out to analyze the microstructure, 

morphology, and nanostructure of the anodes after cycling. This would allow a better 

observation and understanding of the changes taking place during increased cycling to 

prove the reason for the observed increase in capacity. The anodes should also be paired 

with a commercially relevant cathode material and tested as a full cell to observe full cell 

performance. Finally, the structure tested for this composite material, with metal oxide 

confined within a CNT should be tested with other metal oxides or metals that could be 

improved by this structure. 
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