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ABSTRACT OF THE DISSERTATION 

CORROSION DEGRADATION MECHANISM OF CBPC COATING SYSTEM FOR 

HIGHWAY BRIDGE STEEL COMPONENTS 

by 

Md Ahsan Sabbir 

Florida International University, 2017  

Miami, Florida 

Professor Kingsley Lau, Major Professor 

Coatings are widely used to mitigate corrosion of structural steel in aggressive 

humid environments. However, the service life is often diminished in aggressive 

environments. Repair of coatings can be costly due to materials, labor and environmental 

controls. So in search for novel coatings, Chemically Bonded Phosphate Ceramic (CBPC) 

coating was investigated for marine bridge application. The research on CBPC coating 

considered various exposure environments such as inland, beach, salt-fog, wet and 

alternate wet and dry exposure to identify the degradation mechanism of the CBPC 

coating for long-term application. To assess the corrosion damage due to exposure, the 

coating was evaluated by visual inspection, coating thickness, adhesion measurement, 

optical and electron microscopy and X-ray diffraction.  

The CBPC coating degraded initially due to the alternate wet and dry 

environmental exposures. The unreacted coating constituent reacted further in moist 

environment to form magnesium phosphate hydrate and enhanced the coating porosity for 

bulk coating degradation. That facilitated excess moisture to the coating substrate and 

formed apparent protective iron phosphate hydrate by interaction with steel substrate to 



vii  

the CBPC coating constituents. Passive-like conditions were observed in wet test of 

chloride-free solutions for the formation of hydration product of magnesium but that type 

of hydrate was not identified in chloride solution for the apparent high solubility. The 

resolved impedance coating parameters (solution resistance, coating pore resistance and 

coating capacitance) were introduced to characterize the bulk ceramic degradation. The 

solution resistance did show a decrease for all samples in both salt and salt-free solutions 

due to the leaching of minerals from the bulk material during exposure to the solution. 

The resolved pore resistance did not show any distinct change, though there was an 

indication of bulk coating degradation by MIP testing. Water saturation level during 

exposure was also calculated from the resolved capacitance value. An approach was 

proposed to transfer the pre-exponential term, Yo to coating capacitance, CC for ceramic 

coating. The estimated value of the coating capacitance from the developed technique 

indicated early saturation with water during exposure due to the porous nature of the 

coating. So, the extent of CBPC coating permeability and degradation could not be 

resolved only by conventional approaches for data analysis for conventional coating. 

However, the formation of iron hydrogen phosphate hydrate and iron phosphate hydrate 

for the reaction of the unreacted coating constituents was thought to provide apparent 

protection from enhanced corrosion but there is a probability of steel substrate corrosion 

in extended exposure in humid environment.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In United States, ~15% of the highway bridges were considered structurally 

deficient due to corrosion (Virmani & Payer, 2002). Out of the estimated $8.3 billion 

annual corrosion cost, half a billion dollars is spent on painting maintenance.  The 

majority of steel bridges in the interstate highway system was constructed prior to 1970 

and was generally coated by alkyd paint containing toxic lead and chromate (Federal 

Highway Association [FHWA], 2006).  Those coating systems became prohibited by the 

Environmental Protection Agency due to environment and health hazards. More robust 

and economic coating systems are important in consideration of the large size and 

intrinsic importance of the US transportation infrastructure to the vitality of the national 

economy. Further, it is a national responsibility to address the concerns of rising costs 

and global sustainability. Novel coatings have continuously been introduced but stringent 

evaluation for application in aggressive environments relevant to highway bridges has not 

necessarily been made. The evaluation of novel coating system will directly benefit the 

national economy by contributing to the engineering of sustainable national infrastructure 

(Murray, 1997).   

At present, the multilayered zinc-rich paint system (three-coat) is widely used but 

its rigorous application preparation and its required regular maintenance is not ideal for 

long-term bridge durability. Considering lifetime costs of the coating system, the major 

portion of the costs derives from the initial application. FHWA conducted a series of 

studies from 2006 to 2012 to identify robust and economic coated zinc-rich paint systems 
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that may augment three-coat systems (FHWA, 2006; FHWA, 2011 & FHWA, 2012). 

Those studies concluded that none of the tested one or two-coat systems could meet a 100 

years maintenance free requirement. Chemically bonded phosphate ceramics (CBPCs) 

coatings were selected for research in consideration of promising material properties and 

ease of application.   

1.2  Chemically Bonded Phosphate Ceramic (CBPC) 

CBPCs are a class of broadly defined geopolymers that have amorphous binding 

phases analogous to cement (Wagh, 2005). It is made by acid-base reactions between 

phosphoric acid and inorganic oxides. Aquasols from the dissolved metal oxides react 

with phosphate ions and condense to form a gel that proceeds to crystallize into 

monolithic ceramic (Wagh & Jeong, 2003). One example of CBPC developed with 

magnesium oxide at Argonne National Laboratory is represented by Eq.1.1 

 MgO + KH2PO4 + 5H2O = MgKPO4 · 6H2O  (Eq. 1.1) 

The two components of the coating, acid phosphate and metal oxides, are mixed 

together and sprayed on the metal surface with a dual component spray gun. The CBPC 

coating interacts with the metal substrate to form an insoluble passivation layer of stable 

oxides (~20-μm thick) that contains ~60% iron with phosphate, potassium, magnesium, 

hydrogen, and oxygen (Materials Performance, 2011).  

The CBPC coating was promoted as being compatible with aluminum, portland 

cement, gypsum, and steel. The CBPC can be used in environments with temperatures 

from 35° to 200°F and 0% to 99% humidity. Testing indicated that CBPC coating could 

flex up to 19% before fracture (Materials Performance, 2011). 
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1.3 Problem Statement and Research Objective  

The commercial availability, industry promotion, and early testing of CBPC by 

the US Navy have garnered interest by transportation departments. Appropriate 

evaluations and specifications are needed for novel coatings, such as CBPC, that have not 

been used for highway bridge applications. Pertinent testing and evaluation are needed, 

due to the limited available information from independent testing of the material in 

severe conditions, especially for consideration of adoption in aggressive environments 

associated with marine bridges.  

The first step to evaluate the CBPC coating is to identify the proper test method, 

which can give a proper understanding of the degradation and protective mechanism in 

relevant exposure environments. The results will also give the proper indication of the 

potential application of the CBPC coating. Further, the degradation and durability 

mechanism will eventually lead to predict the service life of the CBPC coating with their 

corresponding exposure conditions.  

The objective of this study is to identify the degradation mechanism, durability, 

and ability to mitigate corrosion of CBPC coated steel components in exposure relevant 

to highway bridge structural steel.  

Research Questions 

 How can CBPC coatings degrade in environment and exposure conditions 

relevant to marine environment? 

 What is the effect of coating damage on coating degradation, durability, and 

corrosion mitigation? 
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 What are the corrosion protection mechanisms of the CBPC coatings in 

atmospheric environment? 

 How can electrochemical techniques be used to assess the CBPC coating 

corrosion condition?  

 How can the corrosion damage of CBPC be predicted over time in atmospheric 

environment?  

Hypothesis 

The durability of the CBPC coating is strongly connected to its barrier property.  The 

durability of the material can be comprehensively assessed by a complete understanding 

of the microstructural property and electrochemical behavior of the barrier materials 

during degradation. 

1.4 Research Approach 

The proposed research approach includes to:  

1. Expose coatings with and without intentional defects to aggressive outdoor 

exposure at beach site and inland locations. 

2. Expose coating with and without intentional defects in accelerated corrosion salt-

fog environments. 

3. Identify corrosion behavior of coated steel in laboratory testing with aqueous 

solutions representative of pooled runoff water. 

4. Use electrochemical testing technique to identify coating and corrosion behavior 

during chemical exposure in aqueous solution.  
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5. Identify coating degradation and corrosion development by physical evaluation of 

exposed test samples as well as other material evaluation techniques such as 

metallurgical assessment, optical and electron microscopy and XRD. 

This study examined the CBPC coating degradation and corrosion development 

for the various aggressive exposures and identified important durability parameter that 

are responsible for later degradation. This study also aimed to evaluate the effectiveness 

of the electro-chemical techniques to assess the degradation of CBPC coating.  

1.5  Organization of the Dissertation 

This dissertation is organized as follows: 

Chapter 2 provides general overview of the coating systems for steel bridge 

application and basic concept of the electrochemistry related to coating evaluation.  

Chapter 3 represents the research methodology to achieve the objective of the 

research. The detail test procedures and evaluation technique of the tested samples is also 

documented in this chapter.  

Chapter 4 presents the results of the tested samples, which were exposed in 

different test exposure. A comprehensive discussion is also made based on the test results 

to describe the degradation process related to that environment.   

Chapter 5 presents the assessment of CBPC coating degradation by EIS 

measurement. The assessment indicates the important coating parameters to capture the 

coating response in aggressive marine bridge environment. 

Chapter 6 summarizes the findings from the outdoor, accelerated salt-fog and 

electro-chemical tests and the sequential steps of coating degradation during exposure is 

proposed. 
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Chapter 7 summarizes the general conclusion about the CBPC coating durability  

in exposure related to aggressive marine bridge environment.  

Some content in this dissertation has been published in report form to the 

sponsoring agency (Sabbir and Lau, 2014) and published in conference proceedings 

(Sabbir et al, 2017).  Those published contents have been in part reproduced here.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Current Coating Practices 

Some coating systems that are commercially available or recently introduced in 

the market are described next. 

2.1.1 Three Coat Systems 

Among accepted paint coatings, the three-coat system has been considered to 

have good long-term performance and durability with some case studies with bridges in 

non-marine environments cited to have been effective for over 40 years (Kline, 2009). 

The three-coat system typically consists of either an organic or inorganic zinc-rich primer 

(although other primers have been formulated) followed by an epoxy midcoat and a 

topcoat. 

The corrosion activity of zinc can provide cathodic protection of the steel 

substrate (Monlar & Liszi, 2001). Research has also described positive performance of 

the zinc primer material by reducing its permeability. For example, some types of zinc 

dust used in primers have a plate-like structure, which may decrease permeability of the 

zinc primer layer and consequently less steel corrosion. The highest anticorrosion 

efficiency of the lamellar zinc particles observed at a concentration around 20 vol% 

(Kalendova, 2003). Insoluble zinc corrosion products (such as zinc carbonate) developed 

by the sacrificial zinc material may fill the pores of the zinc primer layer and reduce 

moisture penetration (Calla & Modi, 2000).  The corrosion protection of the three-coat 

system with inorganic zinc primers was reported to be better for new construction than 



8  

with organic zinc primers. However, the sensitivity of inorganic zinc primers to surface 

conditions limits its application to controlled settings in shop. 

The midcoat (typically epoxy binders) is used to provide additional separation 

from the steel substrate/primer from the environment providing a layer over defects in the 

primer and to reduce moisture and chemical ingress to the steel surface.  Three types of 

epoxy intermediate coats are available including epoxy ester, epoxy lacquer, and a two 

components epoxy (Chang & Chung, 1999). Epoxy ester is an oil modified epoxy resin 

with superior alkali resistant. Epoxy lacquer is a high molecular weight epoxy with short 

curing time. Two component epoxies are epoxy polyamides with superior flexibility, 

durability and pot ability. Generally, these high build epoxy intermediate coating offers 

excellent resistance to water and alkali. The disadvantages of epoxy are poor resistance 

against chalking, poor rating for gloss retention and are not recommended for cold 

temperature because of its expansion and shrinkage rate (Chang & Chung, 1999).  

Finishes and topcoats are used to retain coating aesthetics and provide wear and 

UV resistance. Urethane and polyurethane binders are typically employed as oil-modified 

urethane, moisture-cured urethane, and two-component urethane (Chang, L. et al., 1999). 

Oil modified pigmented urethanes are not used for exposed structural steel for the lack of 

durability. Moisture-cured urethane use air moisture for curing and produces a hard and 

tough coating. Pigmentation is difficult, so it is used for clear finishes. Two-component 

urethane use polyols, polyethers, polyesters or acrylics. For three coat systems, 

hydroxylated acrylic or hydroxylated polyester binded urethanes are most commonly 

used as they have better UV resistance and fast drying property. 
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Of the lifetime costs of the coating system, the larger portion of the costs derives 

from the initial application (Kline, 2009) and coating systems with fewer layers are being 

evaluated to reduce those costs (Yao et al., 2011). 

2.1.2  Other Paint Coatings 

Two coat systems have been described eliminating the requirement of the 

intermediate coating (Chong & Yao, 2006). The zinc rich primer is topcoated with a 

polymer coating such as polyurea, polyurethane, polysiloxane, and polyaspartics. 

Polyurea is a rapid cure polymer for corrosion and abrasion mitigation. Polyurethane is a 

high-performance topcoat formed by reacting polyisocyanate with polyol or base resin. 

Polysiloxane is an inorganic polymer that offers resistance to water, chemicals, and 

oxidation; and has good color and gloss retention. Polyaspartics are a fast drying coating 

that builds on conventional polyurethanes with high thickness.  Inorganic zinc and vinyl 

system is a two-coat system. Interaction of the polyvinyl butyral (PVB) resins with zinc 

chromate pigments and phosphoric acid provide good adhesion. However, the inorganic 

zinc and vinyl system has been reported to perform poorly in terms of gloss and UV 

prevention (Chang et al., 1999). Indiana DOT experienced effective lifetime about 15 

years (Chang & Chung, 1999). 

The moisture cure urethane coating system is a single pack paint recently used in 

Wisconsin, Alaska, Maine, Vermont, New Hampshire, New York, Kentucky, and 

Minnesota with expected life time of 20 to 30 years. The moisture cure urethane is less 

sensitive to surface preparation and atmospheric moisture content. The reaction of the 

urethane with atmospheric water involves a two-stage process with the water and the 

isocyanate group first producing the unstable carbonic acid, which immediately 
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dissociates to form an amine and carbon dioxide. The carbon dioxide leaves the film by 

evaporation, and the amine reacts with a second group giving a urea (Chang & Chung, 

1999).  

Calcium sulfonate alkyd (CSA) is a one-coat package system that can be applied 

with minimum surface preparation with hand tool cleaning and solvent cleaning, and is 

ideal to overcoat-deteriorated painting. Use has been reported in Missouri (Myers et al., 

2010). The limitation is the long curing time and according FHWA, the soft material 

picks up dirt easily (Myers et al., 2010). One coat systems including polyaspartic, epoxy 

mastic, high ratio calcium sulfonate alkyd, glass flake reinforced polyester, high-build 

waterborne acrylic, waterborne epoxy, polysiloxane, and urethane mastic were evaluated 

by the Federal Highway Administration in 2011 (Yao et al., 2011). General descriptions 

of the tested one-coat systems after Yao et al., 2011 follow. The polyaspartic coating is 

produced by reaction of ester compounds providing fast drying time and weatherability. 

Epoxy mastic is an aluminum-pigmented high solid epoxy coating. The high ratio 

calcium sulfonate alkyd is an alkaline coating that forms ionic bonding with the 

underlying metal and may promote steel passivity. Glass flake reinforced polyester 

coatings have good mechanical properties and chemical resistance. High build 

waterborne acrylic and waterborne epoxy coatings have low flammability, odor and 

VOC. Polysiloxane coatings are an organic-inorganic siloxane binder. Urethane mastics 

are a high build acrylic-urethane system. 

2.1.3  Top Coat 

The top coat reduces moisture penetration, degradation due to UV, and covers 

local defect in the intermediate coats. Additionally, it provides aesthetics that may be 
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required in design (Chang & chung, 1999). As generally recommended coating thickness 

is 5 to 6 mils, the top coat in part helps to satisfy the thickness requirements (Chang & 

chung, 1999).  The wetting mechanism of a coating is a function of surface energy of the 

barrier layer and the topcoat dispersion. The performance of a top coat depends upon the 

compatibility with the base coating and some investigation strongly recommended this 

fact. Common top coats are described next.  

Two types of urethane are available: aliphatic and aromatic (which may have a binder of 

oil-modified urethane, moisture-cured urethane and two-component urethane). Oil-modified 

pigmented urethanes are not used for exposed structural steel for the lack of durability. Moisture-

cured urethane use air moisture for curing and produces a hard and tough coating. Pigmentation is 

difficult, so they are mainly used for clear finishes. Two component urethanes use polyols, 

polyethers, polyesters or acrylics. Hydroxylated acrylic or hydroxylated polyester binded 

urethanes are most commonly used as they have the better UV resistance and fast drying 

property. Polyurethane is another high-performance topcoat which formed by reacting 

polyisocyanate with polyol or base resin (FHWA, 2006). Calcium Sulfonate Alkyd (CSA) is a 

one-coat package system. It can be applied with minimum surface preparation with hand tool 

cleaning and solvent cleaning. CSA can be used to deteriorate overcoat painting but requires long 

curing time and may pick up dirt easily (Myers et al., 2010). 

2.1.4  Metallizing 

 Metallizing refers to the application of zinc, aluminum, or zinc aluminum alloy to 

steel surfaces by thermal spray for corrosion control (Chang et al., 1999; Koger et al., 

1998 & Bernecki et al., 1997). The steel surface is prepared by grit blistering or chemical 

etching for proper mechanical bonding. Aluminum requires more surface roughness than 

zinc (Chang & Georgy, 1999). Surface preparation specifications include SSPC-SP 5 
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White metal blast cleaning, NACE No 1 White metal blast cleaned surface finish 

(comparable to SSPC-SP 5), SSPC-SP 10 Near white metal blast cleaning, NACE No 2 

White metal blast cleaned surface finish (comparable to SSPC-SP 10) (Chang & Georgy, 

1999). Flame spraying and arc spraying among spraying techniques were developed. The 

coating porosity made by flame spraying may be around 20 percent due to the relatively 

low application velocity (Chang & Georgy, 1999). Arc spraying can be more expensive 

but can create layers with better adhesion, better cohesion, and lower porosity due to the 

higher application velocity. The molten zinc, aluminum, or zinc aluminum alloy in both 

processes are accelerated and the resultant droplets form as splats on the steel substrate. 

An example of a thermal spray coating of zinc/aluminum alloy on steel and the 

metallizing material is shown in Figures 2.1 and 2.2. The desired thickness is made by 

applying additional passes over the steel. The American Welding Society (AWS) issued a 

guide, ANSI/AWS C2.18-93 and a joint standard SSPC-CS23.00/AWS C2.23M/NACE 

No. 12 for thermal spray coatings on steel. Research by the US Navy showed better 

corrosion mitigation performance with thermally sprayed aluminum than zinc in marine 

environments (Chang & Georgy, 1999). Alloys 85 percent zinc/15 percent aluminum 

have also been used for thermal spray coatings. Cleanliness is of importance where 

moisture and contaminants may reduce bond of the coating to the steel (Chang & Georgy, 

1999). The expected life of metallization is 40 to 60 years if sealers are used (Chang & 

Georgy, 1999).  
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Figure 2.1. Thermal Spray Coating. 
(Figure by Lau and courtesy of FDOT.) 

 

Figure 2.2. Hypereutectic Microstructure of ZnAl15. 
(Figure by Lau and courtesy of FDOT.) 

  Sealers such as acrylic urethane, polyester urethanes, vinyls, phenolics, epoxy or 

thermal sprayed polymer can be used to enhance service life by sealing the pores in the 

coating. Seal coats are applied on the dry surface before visible oxidation and some 

protocol to remove moisture by heating (ie. 1200 C) have been suggested (Chang & 

Georgy, 1999). Seal coats are typically applied soon after metallizing (ie. after within 8 

hours for zinc and zinc alloys and within 24 hours for aluminum application) (Chang & 

Georgy, 1999). 

Zinc Alloy

Steel Substrate

Zinc Alloy 

Steel Substrate 
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2.1.5  Galvanizing 

 Batch hot-dip galvanizing (HDG) has been the most commonly used method of 

protecting steel products from corrosion for over 200 years (Zhmurkin, 2009). In this 

process an adherent, protective coating of zinc or zinc alloy is developed on the surfaces 

of iron and steel products by immersing them in a bath of molten zinc (Dallin, 2012).  

The galvanized steel develops a thick zinc-iron alloy coating with layers of different alloy 

composition (Figure 2.3); the properties of these layers are given in Table 1(Dallin, 

2012). 

                                                  

Figure 2.3: Microstructure of Hot Dip Galvanizing. 

The continuous process consists of feeding cold rolled steel through a cleaner, an 

annealing furnace, and then into molten zinc bath at speeds up to 200 rpm. As the steel 

exits the molten zinc bath, excess coating from the steel sheet are removed to the 

specified requirement. The coating is left to set as traditional galvanizing methods. 
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                 Table 2.1: Galvanizing Coating Layers (After Dallin,2012) 

Layer Alloy Iron % 
Crystal 

Structure 

Alloy 

Characteristics 

Eta, η Zinc 0.03 Hexagonal Soft, ductile 

Zeta, ζ FeZn13 5.7-6.3 Monoclinic Hard, brittle 

Delta, δ FeZn7 7-11 Hexagonal Ductile 

Gamma, Г FeZn10 20-27 Cubic Hard, brittle 

Steel Base Iron 99+ Cubic  

  

2.1.6  Galvanneal , Galvalume and Galfan 

If the hot deep galvanizing steel is future heated at 500-5500 C for 10 secs after 

exiting the molten zinc bath and passing through the wiping dies, iron inter diffuses from 

the steel substrate and zinc diffuses from the galvanized coating to form Galvanneal 

coating (Zhang,1996). The outermost ζ layer contains 6% Fe and intermediate δ layer 8-

12% Fe. The Г layer possesses significant different mechanical property, which controls 

the formation of the coating. 

Galvalume consists of 55% Al, 1.5% Si and 43.5% Zn (Zhang, 1996). It has 

higher corrosion resistance with less galvanic action than HDG. The coating consists of 

outer layer and inter metallic layer. The intermetallic layer is future subdivided into two 

layers- the inner sub layer, quaternary, AL-Fe-Si-Zn and outer sub layer, ternary, Al-Si-

Fe compound. The function of the silicon to control the reaction in hot dipping to 

maintain the thickness of inter metallic layer.  
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Galfan coating consists of 95% Zn, 5% Al and small amount of other elements 

with lamellar structure of alternating zinc rich and aluminum phase (Zhang, 1996). The 

addition of misch metal facilitates the formability by eliminating the brittle intermetallic 

layer.  

2.1.7 Thermal Diffusion Galvanizing (TDG) 

Thermal diffusion galvanizing (TDG) was introduced in 1904 (Isakaev et al., 

2010). Due to long processing time and difficulty in controlling thickness, use of TDG 

was diminished by 1950. Renewed interest was made by 1993 for coating steel fasteners 

and hardware. Specification of zinc alloy thermo-diffusion coatings for hardware was 

made in ASTM standard A1059 (ASTM, 2008). 

The coating process involves vapor diffusion of zinc into steel. The process 

creates a zinc/iron alloy by penetrating the surface on steel. The steel components and 

zinc powder are rotated within a closed cylinder inside of an oven and heated to a 

temperature of 7100
 -10920 F (3200 to 5000 C) (ASTM, 2008). Zinc sublimation occurs at 

5000 F and by penetrating the steel, produces Zn/Fe alloy. This process results in the 

formation of iron-zinc gamma (solid Zn ions inside Fe substrate), delta (Fe11Zn40), and 

zeta (FeZn7) layers, excluding the external eta layer of pure free zinc (ASTM, 2008). The 

coating metallurgy of zinc in thermal diffusion galvanizing (TDG) is analogous to hot dip 

galvanizing but the longer heat cycle associated with TDG allows much deeper 

penetration of zinc into the steel substrate. The thickness of the eta (pure zinc) in TDG is 

significantly thinner than in Hot Dip Galvanizing. The eta layer has much less corrosion 

resistance than the zinc/iron phases. The zinc/iron phases (zeta, delta, and gamma layers) 

can be thicker in TDG than hot dip galvanizing (Figure 2.4). 
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Figure 2.4: Microstructure of TDG. 

Some properties of TDG from industry literature are described. TDG produces a material that is 

hard, weld able, spark free, anti-galling, non-magnetic and has low coefficient of friction. The 

hardness can exceed 35 Rockwell C depending on coating parameters (ASTM, 2008). The coated 

parts can be operated at continuous temperature up to 12000 F (6500 C). The zinc layers has good 

adhesion to the steel substrate as the zinc penetrates the base metal about 1/3 of the coating 

thickness (ASTM, 2008), the coating consists mainly of the iron-zinc delta-phase as shown in 

Figure 2.4, containing 4 to 10 % of iron (ASTM, 2008). Adhesion of paint and top coats to the 

zinc has been promoted to be good due to the morphology of the TDG layer (ASTM, 2008). TDG 

has been suggested to not promote hydrogen embrittlement of the steel (ASTM, 2008). This 

feature can be beneficial to protect high tensile parts such as springs and fasteners as it offers a 

sufficient ductility (ASTM, 2008).  

2.1.8  Chemically Bonded Phosphate Coating 

Chemically bonded phosphate ceramics (CBPC) are a class of broadly defined 

geopolymers that have amorphous binding phases analogous to cement (Wagh, 2005). It 

is made by acid-base reactions between phosphoric acid (or acid phosphates) and 

inorganic oxides. Aquasols from the dissolved metal oxides react with phosphate ions 

and condense to form a gel that proceeds to crystallize into monolithic ceramic (Wagh & 

50 µm
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Jeong, 2003). Ceramic has high mechanical property than cement and performs better in 

acid and high temperature environment.  

Metal oxide forms cations, which react with the phosphate anions in an acid 

phosphate solution to produce phosphate gel. Ceramics are formed at near neutral pH. 

Basically, the sparsely soluble solids are the best materials for ceramic formation. Most 

of the sparsely soluble solids are divalent and trivalent. The dissolution of divalent metal 

oxide is greater than the solubility of trivalent metal oxide. The solubility should be in 

between these two metals (Jeong & Wagh, 2002) for the formation of the crystal. Among 

them, the divalent metals are suitable for crystal formation.  

The reaction steps to form magnesium, aluminum, or iron phosphate ceramic are 

briefly described next. For magnesium phosphate, the magnesium is calcined at 13000 C 

to reduce presence of micro pores from the grain. Then the calcined magnesium is 

reacted with acid phosphate solution (ammonium or potassium dihydrogen phosphate 

solution) to create ceramic magnesium ammonium phosphate or magnesium potassium 

phosphate following the equation 2.1. The solubility of the calcined magnesium is too 

high for the preparation of large sample due to high exothermic heat reaction. To reduce 

the solubility, less than 1% boric acid is added to form lunebergite. For the formation of 

aluminum phosphate ceramic, the temperature of the acid base solution should be 

maintained at 1500 C to increase the solubility of the alumina. For the formation of iron 

phosphate ceramic, the solubility of iron is increased by reducing iron trivalent to 

divalent cations. CBPC has been developed with magnesium oxide at Argonne National 

Laboratory to stabilize and encapsulate radioactive materials (Jeong & Wagh, 2002). 
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CBPC are now used in different fields like corrosion resistant coating, road repair, bone 

and dental cement in addition to waste stabilization.  

 MgO + KH2PO4 + 5H2O = MgKPO4 · 6H2O (Eq. 2.1) 

The CBPC coating consists of two component acid phosphate and water-based 

slurry that contains base minerals and metal oxides (eg. MgO). These two components 

are mixed together and sprayed on the metal surface with a dual component spray gun. 

The acid phosphate and oxides in the slurry interact with the metal substrate to form an 

insoluble passivation layer of stable oxides (~20-μm thick) that contains ~60% iron with 

phosphate, potassium, magnesium, silicon, hydrogen, and oxygen (Materials 

Performance, 2011). The exothermic reactions create a temperature rise of 7 to 400 F in 

the material. 

According to literature (Materials Performance, 2011) the passivation layer does 

not support oxidation of the steel substrate and the top dense ceramic outer layer protects 

the passivation layer and provides abrasion resistance. NACE 3 (commercial blast) or 5 

(water-jetting) surface conditions allows for sufficient bonding of the coating with steel 

structures if all of the old paint materials are removed (Materials Performance, 2011).  

The CBPC coating was promoted as being compatible with aluminum, Portland cement, 

gypsum, and steel; but cannot be chemically bonded with polymers. The CBPC can be 

used in environments with temperatures from 35° to 200°F and 0% to 99% humidity 

(Materials Performance, 2011). The coating cannot resist the strong acids such as 

hydrochloric acid (HCl) and sulfuric acid (H2SO4) (Materials Performance, 2011). 

Testing indicated that CBPC coating could flex up to 19% before fracture (Materials 

Performance, 2011). 
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2.2 Barrier Properties of Coating  

2.2.1 Geopolymer 

Geopolymers are generally classified in two major categories: inorganic and 

organic geopolymers (Kim et al., 2006; Duxson et al., 2005; He et al., 2011). The 

inorganic geopolymer is prepared by mixing an aluminosilicate source such as 

metakaolin or fly ash into a low temperature (~250-800 C) alkaline silicate solution for a 

relatively short period of time (~2-48 h) (Bell et al., 2009).  As described by Davidovits, 

the geopolymer with only inorganic components create a material in the form of ceramic 

crystals. Geopolymer coatings may contain a small amount of organic material added to 

the inorganic base. The organic content creates a crosslink between the organic and 

inorganic components, which in part improves the strength and durability (Kim et al., 

2006). Geopolymers are generally x-ray amorphous materials and converts to a ceramic 

structure upon heating (Bell et al., 2009). They are heat resistant because of their 

inorganic origin and they exhibit good adhesion with metal (Bell et al., 2009). The 

possible application field of geopolymers includes production of cements and coatings.  

Vitreous-ceramic coating is an inorganic geopolymer material used for reinforced 

concrete. It incorporates calcium silicates from Portland cement in an alkali-resistant 

glass to increase the bond between the concrete to the reinforcing steel and to protect the 

steel from corrosion. The observed bond strength was as strong as the plain bars. The 

coating incorporates self-healing capabilities by reaction of the glass components with 

cement particles. The application procedure is as cumbersome as the parceling enamel 

procedure.  
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Another potential inorganic geopolymer that can be used in reinforced concrete 

with ease of application is chemically bonded phosphate ceramic. Phosphate ceramic can 

make bond with ordinary Portland cement (Wagh, 2004). This important property could 

allow the possibility for repairing cracks in concrete structures such as buildings, 

geotechnical structures, and utility supply lines.  

2.2.2 Zinc-Fe Alloy Layers 

The thicknesses of the individual alloyed layer of galvanized coatings depend on 

the diffusion rate of zinc through the other layers (Zhang, 1996). The diffusion rate of the 

iron outward the steel surface is much slower compared to zinc diffusion. The 

composition of the different alloyed layers is described below- 

The Eta, η phase has a hexagonal close packed crystal structure that is zinc rich 

with 0.003 wt% Fe. This layer does not provide corrosion protection.  The Zeta, ζ layer 

forms first during the galvanizing process at a faster rate initially but the rate reduces 

significantly afterwards. The monoclinic crystal structure of this layer contains 5.7-6.3 wt 

% of Fe. This is an intermetallic layer formed between the eta and delta phase. The 

molecular structure formed by an iron atom and a zinc atom surrounded by 12 zinc atoms 

at the vertices of a slightly distorted icosahedron which link together to form chains in a 

hexagonal array (Marder, 2000). The delta, δ layer forms after the ζ layer. The initial 

formation rate is slower than the ζ layer but becomes faster with time. The hexagonal 

close-packed crystal structure of this layer contains 7.0-11.5 wt % of Fe.  The Gamma, Г 

Phase has a face-centered cubic crystal structure that contains 21.0-28.0 wt % of Fe. The 

rate of formation of this layer is much slower than the rate of the previous two layers. 
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This phase is produced due to the long heating at low temperature and has the highest 

reported micro hardness value (Marder, 2000). 

The cathodic protection is offered by the sacrificial nature of the zinc. Due to the 

high zinc activity, the freshly placed concrete reacts with HDG and forms calcium 

hyrdoxyzincate along with hydrogen gas. The calcium hyrdoxyzincate acts as passivation 

layer but hydrogen gas impairs the surface aesthetics of the concrete. The evaluation of 

the hydrogen gas depends on the alloyed layer. The electrode potential of these Zn-Fe 

layers is more noble than the zinc coating (Yadav et al., 2007). The intermetallic 

electrochemical behavior needs to be evaluated to identify the long-term performance of 

the galvanized coating.  Also, corrosion activities of these layers need to be evaluated 

when they are covered with zinc corrosion product.  

For use as reinforcement in concrete, rebar fabrication is ideally done prior to 

galvanizing to get the total benefit of corrosion protection. Extensive research on HDG 

demonstrates the fact that galvanizing does not adversely affect the tensile property of the 

base steel but the outer zinc eta, η layer is subjected to cracking depending on the 

thickness of the HDG and bend diameter. For fabrication, the minimum recommended 

bend diameter is 3d to minimize the damage of the microstructure where d is the diameter 

of the bar. Some research indicates longer time requirements for the development of the 

bond strength but all of the research findings confirm that the bond between zinc and 

cement paste is higher than iron and cement paste.  

The performance of the coating depends on the coating continuity and bond 

strength. The steel substrate needs to be cleaned carefully at the time of application. 

Adhesive failure of the coating can result in failure of the coating system. Zinc-iron alloy 
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layers not only provide barrier protection from the aggressive environment but also 

provide cathodic protection to the base steel.  

2.3  Performance Evaluations for Structural Steel 

2.3.1  Performance of Paint Coatings 

The Federal Highway Administration (FHWA), NASA, numerous transportation 

department and different coating manufacturers published several studies on paint 

coatings. The following sections contain a synopsis of those studies. 

FHWA conducted a study in 2006 on two coat systems to eliminate the 

intermediate epoxy layer for rapid paint application and economy (Brigham, 2009). The 

researchers investigated eight two-coat systems with comparison of three traditional 

three-coat systems. Testing consisted of cyclic environmental exposure to temperature, 

UV, moisture, and salt in accelerated laboratory testing and outdoor exposure. The study 

concluded that the two-coat systems performed comparably to the three-coat systems. 

The conventional three coat systems with aliphatic polyurethane performed better in 

terms of gloss retention. Two-coat systems with manufacturer design configurations 

performed well but systems with polyaspartic topcoats (not specified by manufacturers of 

organic-rich epoxy and inorganic zinc-rich alkyl silicate) had reduced performance 

including development of topcoat wrinkling and cracking. 

FHWA initiated a research program in August 2009 to identify coating systems 

that can provide long-term durability with minimal maintenance. Eight selected coating 

systems with promising performance in part based on prior experimental data from 

accelerated laboratory testing and outdoor exposure testing were evaluated (Kodumuri & 

Lee, 2012).  Evaluation consisted of accelerated laboratory testing (consisting of cyclic 
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environmental exposure to temperature, UV, and moisture, and salt) and outdoor marine 

and simulated salt exposure environments. The study concluded that the three coat 

systems with zinc rich epoxy and polyurethane top coats performed well but none of the 

coating system can meet the 100 years maintenance free coating application. The 

thermally sprayed zinc and zinc two coat systems had poor performance in the study.  

FHWA conducted a study in 2011 of eight one coat paint systems including 

polyaspartic, epoxy mastic, high ratio calcium sulfonate alkyd, glass flake reinforced 

polyester, high-build waterborne acrylic, waterborne epoxy, polysiloxane, and urethane 

mastic (Yao et al., 2011). The evaluation included accelerated laboratory testing for 6840 

hours and three outdoor exposure conditions including marine exposure for 24 months, 

mild natural weathering for 18 months and a mild natural weathering plus salt solution 

spray tests for 18 months. The evaluation procedure was based on VOC, pigment content, 

FTIR analysis, sag resistance, drying time, gloss, color, pencil scratch hardness, adhesion, 

detection of coating defects, blistering, and rust creepage. The study provided 

performance ranking of the eight one-coat systems as well as a three-coat (zinc-rich 

epoxy, epoxy, and polyurethane topcoat) and two-coat system (zinc-rich moisture-cure 

urethane and polyaspartic topcoat). It was concluded that the one-coat system did not 

perform as well as the three-coat system in accelerated laboratory and outdoor test 

conditions. The two-coat system (which showed promising results in the study by Chong 

and Yao in 2006 also showed development of coating defects, rust creepage and 

significant reduction in gloss. 
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2.3.2 Performance of Metal Coatings 

Many transportation departments have adopted metallization due to its 

performance but the high cost has been an important factor. Some transportation 

departments also include sealers and topcoats to thermal spray coatings for better 

protection. Thermal spray coatings also require greater control including strict surface 

preparation requirements, which may limit their efficacy for field application (Chang & 

Georgy, 1999). Of note, localized corrosion was observed in early use of metalized 

coating of a bridge in Connecticut due to improper surface preparation (Chang et al., 

1999 & Koger et al., 1998). 

The formation of the alloyed layer depends on the steel chemistry and the 

processing condition. Not all the layers may be formed depending on these conditions 

(Yeomans, 2004). Furthermore, hydrogen embrittlement due to the accommodation of 

hydrogen at the time of surface cleaning prior to HDG is another negative aspect. For 

reinforced concrete applications, the outer zinc layer is stretched after stress relief from 

the alloyed layers due to fabrication (Yeomans, 2004). This bending stress causes the 

flaking of the coating. Hence, excessive thick coating (> 250 microns) is not 

recommended for bending.  Furthermore, heat should be avoided for bending of the 

galvanized coating for the possibility of liquid metal embrittlement.  When a freshly 

placed concrete comes in contact with galvanized bars, it produces calcium 

hyrdoxyzincate and hydrogen gas.  This hydrogen gas may accumulate and rise to the 

surface of the concrete due to the buoyancy force. The accumulated gas may impair the 

surface aesthetics of the concrete (Yeomans, 2004).  Some research suggested that the 

evaluation of hydrogen gas is related to the Zn-Fe alloyed layer, and not the pure zinc 
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layer (Yeomans, 2004). By considering this fact, the thick eta layer of pure zinc on 

galvanized coating should have less hydrogen gas development compering to Galvanneal, 

Galvalume and Galfan coating without the eta layer. In environmental perspective, 

hexavalent chromium Cr6+ is found in the acid used in hot-dip galvanizing quench baths, 

which is a high toxic substance (Zhmurkin, 2009). 

Thermal diffusion galvanizing (TDG) was tested on lashing by the U.S. Navy and 

showed excellent corrosion protection (ArmorGalv, 2013). The Florida Department of 

Transportation did a cursory evaluation of TDG in 2013 (FDOT, 2013). The evaluation 

compared the corrosion development on steel reinforcement coated by TDG and hot-

dipped galvanizing after exposure to either partial immersion condition in 3.5% salt water 

or in 5% salt fog at 950 F. TDG performed better than the hot-dipped galvanizing. After 

3000 hours in salt-fog condition, no corrosion was observed on the samples coated with 

TDG and significant corrosion formed on the hot-dipped galvanized samples.  

2.3.3  Performance of Ceramic Coatings 

Testing of CBPC coated steel plate by NASA consisted of continuous cycles of 

four hours seawater spray (an average of 14 gal of seawater are sprayed on the samples) 

followed by four hours simulated sunlight (426-nm light waves) in a test chamber. 

Testing showed no sign of corrosion after 170 days (Materials Performance, 2011). 

Chemically Bonded Phosphate Ceramic coatings were of interest for study in 

consideration of the coating material characteristics, ease of application, environmental 

concern, installation cost, wide range of application and earlier promising investigation. 

Initial indication as described earlier provides some early indication for suitable 

application in reinforced concrete. 
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2.5 Electro Chemical Evaluation Basic Principles 

2.5.1 Corrosion Process  

Corrosion of steel involves electrochemical reactions including the oxidation of 

iron (Eq. 2.2) and typically the reduction of atmospheric oxygen (Eq. 2.3).  The total 

reaction can be written in the form of (Eq. 2.4)  

Fe → Fe2+ + 2e- (Eq. 2.2) 

O2 + 2H2O + 4e- → 4OH-  (Eq. 2.3) 

2Fe + O2 + 2H2O → 2Fe(OH)2  (Eq. 2.4) 

As oxygen is readily dissolved in water, the excess oxygen reacts with the iron hydroxide 

(Eq. 2.5) to form the rust 

4Fe(OH)2 + O2 = 2H2O +2Fe2O3•H2O (rust) (Eq. 2.5) 

2.5.2 Important Types of Corrosion 

Some important mechanism of localized corrosion is described in the following 

paragraphs. 

Galvanic corrosion is induced when two dissimilar materials are coupled together 

in a corrosive environment (Jones, 1996). One of them acts as an anode and another one 

act as a cathode. The alloy with more positive or noble potential will be protected by the 

other.  So for galvanic corrosion three conditions needs to be satisfied – 1) two electro 

chemically dissimilar materials, 2) electric connection and 3) electrolyte.  

Pitting corrosion is a localized form of corrosion which initiated by localized 

chemical or mechanical damage to the protective oxide film, low dissolved oxygen 

concentrations and high concentrations of chloride. Pitting corrosion is an autocatalytic 
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process. Rapid dissolution of metal ion occurs if the reduction of oxygen ion is supported 

by the surrounding surface. When the concentration of positive metal ion increases the 

negatively charged chloride ion is attracted by the pit and forms the metal chloride. This 

metal chloride forms hydrogen ion through hydrolysis process. Both the hydrogen and 

chloride ion accelerates the dissolution of metal ions with time. Pitting is considered to be 

more dangerous than uniform corrosion damage because of its difficulty to detect, predict 

and design.  A small, narrow pit with minimal overall metal loss can lead to the failure of 

an entire engineering system. 

Crevice corrosion is a type of localized corrosion with the presence of stagnant 

solution in the crevice. Crevice environment may be formed in the small sheltered 

volume of two similar or dissimilar materials, deposition of mud, sand or other insoluble 

solids or a non-metallic gasket or packing. Differential aeration and chloride 

concentration are the two important mechanisms for crevice corrosion. The mechanism of 

crevice corrosion (Rashidi et al., 2007) is described next.  

Corrosion occurs both inside and outside the crevice. The associated anodic and 

cathodic reactions are shown in Eq. 2.6 and Eq. 2.7 respectively. 

M→Mn+ +ne-   (Eq. 2.6) 

O2+2H2O+4e-=4OH- (Eq. 2.7)  

The positively charged metallic ions are electrostatically counter balanced by OH-. The 

cathodic reaction inside the crevice consumed most of the available oxygen. At the same 

time, Cl- and OH- diffuse into the crevice to maintain a minimum potential energy and 

metal chloride is formed. Finally, the hydrolysis of metal chloride lowers the pH.  More 



29  

metal ions attack more chloride ions, which lead to lower pH inside crevice and 

accelerate the metal dissolution. As a result, more metal ions will be produced that will 

lower pH again.  

Crevice corrosion of the coated steel forms due to defect, hole and the deposits of 

dirt. The opening of the defect should be sufficiently large for moisture to enter the 

solution and narrow enough to hold the stagnant solution. 

2.5.3 Test Procedure 

2.5.3.1 3-electrode system 

The 3-electrode configuration is an electrochemical test arrangement consisting of 

a working, counter and reference electrode. The electric current passes through the 

working and counter electrode to complete the electrochemical cell and the purpose of 

the reference electrode is to monitor the potential of the working electrode. 

Electrochemically stable materials are used as counter electrode to prevent formation of 

any product and for the measurement of the potential difference between working and 

counter electrode.  High impedance potentiometer is used for the measurement of the 

electrical potential. 

2.5.3.2 Open Circuit Potential 

When a metal is immersed in a solution, the tendency of metal ions to cross the 

metal/solution interface depends on the electrochemical energy of the metal. 

Conventionally only the positively charged cations can pass through the interface. The 

negatively charged electrons cannot pass into the solution, and the anions cannot pass 

into the metal. Consequently, charge accumulation occurs at the interface forming an 

electrical double layer. At electric double layer, the metal surface becomes negatively 
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charged because of the accumulation of the electrons and the solution layer near the metal 

surface becomes positively charged because of the accumulation of cations. The potential 

difference between the metal and the solution phases under these conditions is called the 

open circuit potential. In short, the potential (OCP) of a metal in solution is the energy 

released at the time of corrosion.  This potential difference cannot be measured directly 

because an electrical connection cannot be made to the solution phase without setting up 

another electrode potential. The electrode potentials are always measured against a 

reference electrode whose potential is known on an arbitrary scale such as hydrogen 

electrode. In other words, open circuit potential may be described as electric potential at 

zero current flow (McCafferty, 2010). 

2.5.3.3 Linear Polarization Resistance (LPR) 

Corroding system can be characterized by artificially changing its potential from 

its OCP by a small amount and measuring the corresponding current. From that Rp, 

polarization resistance, can be calculated as the ratio of change in potential to amount of 

required current. Then the corrosion currents, Icorr, is calculated by Faradic Conversion 

(Fontana & Greene, 1986).  using Eq. 2.8, 

Icorr = 
B

Rp
   (Eq. 2.8) 

where the Stern-Geary Coefficient, B, was assumed to be 26 mV for active corrosion 

conditions. To determine the corrosion rate for coated steel area from the linear 

polarization technique is complicated due to the actual affected steel area and other 

current confinement issues.  
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2.5.3.4 Electrochemical Impedance Spectroscopy 

Electrochemical impedance spectroscopy testing is a non-destructive method to 

assess the electrochemical properties of the corrosion system and a method to assess 

physical coating conditions by a range of sinusoidal signal frequency perturbation to their 

corresponding electrical analog (Barsoukov & Macdonald, 2005). 

Like other electrochemical system, the EIS measurement can incorporate the 

three-electrode system. The working electrode is the metal sample in interest and the 

potentiostat maintain a desire level of potential with respect to reference electrode. The 

uniform distribution of electric current for excitation is maintained by counter electrode, 

which eventually completes the full electric circuit. The acquired impedance spectra for a 

range of frequency is interpreted as that corresponding to an electrical analog to possible 

physio-electrochemical properties and processes in the corrosion system (Barsoukov & 

Macdonald, 2005).  

When an intact coating comes in contact with the electrolyte, the solution can 

enter the pores of that coating. The pore resistance, Rpo decreases with the passage of 

electrolyte intrusion. Initially the pore resistance is considered as infinite.  The entire 

system is represented in equivalent circuit as shown in the Figure 2.5 where Rs is the 

solution resistance and Cc is coating capacitance. 

 

Figure 2.5: Electrical Equivalent Circuit of an Intact Coating in Contact with an 

Electrolyte. 

Rs

Cc

Rpo
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A new phase is included with this equivalent circuit when corrosion reactions can 

take place at the metal electrolyte interface as shown in the Figure 2.6. This circuit 

incorporates a capacitor characterizing the double layer capacitance of the metal/solution 

interface, Cdl, and a resistor element describing the polarization resistance, RP, both 

proportional to the active metallic area in contact with the electrolyte and 

 

Figure 2.6: Electrical Equivalent Circuit of a Coating in Contact with an Electrolyte 

by Considering the Base Property of the Steel. 

 

Cc, the coating capacitance defined by Eq. 2.9,  

Cc =
εoεrA

d
    (Eq. 2.9) 

where 𝛆o is the vacuum permittivity or the permittivity of the free space, 𝛆r is the relative 

permittivity or coating dielectric constant, A is coating surface area and d its thickness. 

Rp, the pore resistance defined by Eq. 2.10, 

Rpo =
ρd

nπr2
 (Eq.2.10) 

where the coating defects can be idealized as a distribution of cylindrical pores 

(Grundmeier et al., 2000) of radius r, ρ is the electrolyte resistivity within the pore, d is 

the thickness, r is the pore radius, and n is the number of pores. 

Rs

Rpo

Cc

Cdl

Rp
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The decrease of Rpo, can be attributed to the penetration of electrolyte into the 

pores and the increase of Rpo may be due to delamination of the pore area or formation of 

new pores. 

Non-ideal capacitive behavior and other factors due to heterogeneities including 

non-uniform current distribution in the coating and metal-electrolyte interface were in 

part represented by constant phase elements. The total impedance on first approach was 

expressed as shown in Equation 2.11. 

Z = Rs + 
1

 Yoc(jω)nc + 
1

Rpo + 
1

Yom(jω)nm + 
1

Rp
   

 

 

  (Eq. 2.11) 

The solution resistance, Rs, is the resistance between the working and reference 

electrodes, the pore resistance, Rpo, is the resistance associated with pores and defects in 

the coating, the polarization resistance, Rp, is a function of the corrosion rate. The 

impedance of the electrical double layer and the coating capacitance are expressed in the 

form of constant phase elements ZCPE = 1/(Yo(jω)n  where Yo is the pre-exponential term, 

ω is the angular frequency, and n is a real number 0<n<1 (Orazem & Tribollet, 2008). 

The subscripts c and m refer to the impedance of the coating and double layer, 

respectively. 

The conventional interpretation of the impedance response of a coated metal 

interface was assumed as first approach represented by Nyquist diagram of two 

semicircles as shown in the Figure 2.7. The two semicircles represent two times constant. 
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The first semicircle with radius Rpo/2 represents the coating characteristics and the 

second semicircle with radius Rp/2 represents the steel/ coating interface property.  

 

Figure 2.7: Idealized Impedance Diagram of Coated Metal System with Coating 

Breaks and Equivalent Circuit Analog. 
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CHAPTER 3 

METHODOLOGY 

The corrosion performance of the CBPC coating was assessed in outdoor 

exposures, salt-fog exposure and wet environmental condition in laboratory set-up. The 

CBPC coated steel coupons (3 by 5 inch) were provided by the manufacturer for testing. 

Surface blasting was conducted by the coating applicators according to their best 

practices prior to application of the coating. Half of the panels had intentional damage by 

scribing to expose the underlying steel. The scribe was 25.4 mm in length and 0.5 mm in 

thickness.  The detailed test procedures are explained in the following sections  

3.1 Outdoor Testing 

Two outdoor exposure test sites and exposure racks generally conforming to 

ASTM G7-11 were prepared in South Florida for testing. The locations of the test sites 

are shown in Figure 3.1. Aluminum test racks approximately 10 feet in length and 5 feet 

in height were made available at both sites. The Beach Test Site at Tea Table Key in 

Islamorada, FL maintained by FDOT is situated immediately adjacent to the ocean with 

strong presence of warm humid salt air. The ground cover was typically limestone rock. 

The Inland Test Site was located on the Florida International University engineering 

campus in Miami, FL located approximately 10 miles from the coast. The ground cover 

at the Inland Test Site was short grass. Coated steel sample coupons were placed on the 

test rack and oriented at 450 to the horizon facing south per ASTM, 2011. Weather 

conditions such as temperature, relative humidity, and rainfall was monitored during the 

time of testing. Part of the samples was collected after 4-month, 8-month and the rest was 

after 24-month for destructive examination of the coating and corrosion development. 
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Testing included examination of coating degradation by visual observation, optical 

microscopy, and physical testing. Degradation such as corrosion product development 

and coating damage were assessed. Photo documentation after 4, 8 and 24-month was 

made for visual comparison of material degradation. Material testing such as chemical 

analysis for contaminants in corrosion product by XRD and EDS analysis of the coating 

was made as appropriate. 

 

Figure 3.1: Location of Outdoor Exposure Sites.  
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3.2 Salt Fog Exposure 

A salt-fog chamber conforming to ASTM B117-03 was setup as shown in the 

Figure 3.2. Tests included exposure in a salt fog chamber with use of 5% NaCl saturated 

salt solution for at least 2200, 5800 hours and 14600 hours to evaluate the effects of the 

various aggressive exposure conditions on the integrity of the coating and corrosion of 

the steel coupons. The salt-fog chamber temperature was maintained ~32oC. The samples 

were placed at a ~40o inclination with support along the bottom edge of the coupon and 

along an edge at the upper third of the sample.    Corrosion development was photo-

documented with time. The replicate panels were removed at previously mentioned 

duration from environmental exposure to identify degradation of the coating by physical 

testing and other material testing as discussed in section 3.4. 

  

Figure 3.2. Test setup for Salt Fog Exposure. 
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3.3 Electro Chemical Testing 

Samples of as received condition and with defect (scribed) were exposed in 

neutral pH solutions for ~30 days. Scribing was done to expose the underlying steel of 

25.4 mm in length and 0.5 mm in wide. Acrylic test cells as shown in Figure 3.3 was 

made to accommodate reference and auxiliary electrodes require for corrosion and 

electrochemical impedance spectroscopy (EIS) testing. Activated titanium was used as 

temporary reference and counter electrodes (Castro et al., 1992). The activated titanium 

reference electrode was calibrated with a saturated calomel reference electrode (SCE). 

The neutral pH solution simulating runoff and pooled drainage water was made from 

distilled water with and without 3.5% sodium chloride. Electrochemical testing included 

use of a Gamry Reference 600 potentiostat and impedance analyzer as well as an ECM8 

Multiplexer as shown in Figure 3.4. Corrosion testing was comprised of open-circuit 

potential (OCP) measurements, linear polarization resistance (LPR), and electrochemical 

impedance spectroscopy (EIS). LPR testing was done from the initial OCP to -25mV vs. 

OCP at a scan rate of 0.05mV/s. EIS testing was done at the OCP condition with 10mV 

AC perturbation voltage (Murray, 1997; El-Mahdy et al., 2000; & Mahdavian & Attar, 

2006) from frequencies 100kHz>f>1mHz for evaluation of the corrosion mechanism 

considering the steel interface and from frequencies 1MHz>f>1Hz for the evaluation of 

the coating surface property. Corrosion development was photo-documented by 

considering before and after exposure. Coating and steel damage was assessed by 

physical testing and other material testing as discussed in section 3.4. The same test was 

repeated for cyclic testing of alternate dry and wet condition up to 35 days to gage the 

performance of CBPC coating related to working environment.  
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Figure 3.3: Test Setup for Electrochemical Testing. 

 

Figure 3.4: Test Setup for Electrochemical Testing. 

3.4 Material Evaluation 

Material evaluation included measurement of thickness change and pull-off 

strength. The coating thicknesses and pull-off strength can be used to evaluate coating 

changes due to exposure conditions (Mittal, 1983). Optical microscopy evaluation test 

including XRD, SEM and EDS were conducted to examine material surface condition 

and composition. 
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The coating thickness or change of coating thickness from pre-exposure 

conditions was calculated from the average of multiple readings on the surface of the 

coated samples. For non-scribed samples, the coating thickness was measured at 9 

locations on the coupon front face. For scribed samples, the coating thickness was 

measured at 8 locations on the coupon front face as shown in the Figure 3.4. The coating 

thickness was measured using a DeFelsko Positector 6000 magnetic coating thickness 

gage. 

Pull-off strength measurement was made by using DeFelsko AT manual pull-off 

adhesion tester. Metal dollies were glued to the surface of the coated coupon using a two-

part epoxy and allowed to set for 24 hours. The perimeter around the fastened dolly was 

then scored down to the steel substrate prior to testing with a pull-off adhesion tester 

(O’Dea et al., 2016 & Seneviratne et al., 2000). The reported coating pull-off strengths 

are from at least three locations on the sample surface for both scribed and non-scribed 

samples as shown in the Figure 3.5.  

Mercury intrusion porosimetry was conducted on as-received and selected 

exposed duplicate samples in each exposure. Around 3 cm2 representative area was tested 

with a pressure range of 0.202 psia to 60000 psia.  MIP gave the information about pore 

number, size, area, and volume. The direct comparison with as-received sample to 

exposed sample was expected to give an indication of influence of pore characteristics on 

the degradation mechanism of the coating.  

Metallographic preparation of samples for optical microscopy examination of 

coating cross-sections were followed conventional methodologies. The grinding steps 

used 74, 20, and 10μm size abrasives followed by polishing with 3μm diamond paste and 
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0.03μm silica/alumina suspension. After exposure conditions were compared with the as 

received condition from these micrographs. It will give an indication of the level of 

deterioration of the coating surface and other coating interfaces at different exposure 

condition.  

 

Figure: 3.5 Sample Testing Surface Locations. 

 A) Approximate coating thickness locations for as-rec’d coupon.  

B) Approximate coating thickness locations for scribed coupon. C) Approximate 

coating pull-off locations. D) Approximate locations for metallographic sampling. 

 

X-Ray diffraction was conducted by using Diffraktometer D5000 along with data 

acquisition Diffrac Plus software. X-ray diffraction (XRD) was conducted on the coated 

steel coupons (50 X 50 mm) of as-received and exposed samples to identify any reaction 

products. The test procedure included diffraction scan with 2θ from 50 to 700 with 

20/minute scan rate. Exposed and as-received samples were selected for testing. Peak 

normalization, subtraction of the background and integration was performed with Origin 

Lab 7.5 software. The data base PDF 4 was used for crystalline material identification. 
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The XRD spectrum will help to identify any crystalline products on the surface that may 

form during exposure.  

Scanning electron microscopy and energy dispersive spectroscopy was used for 

coating characterization. A JEOL 6330F SEM with Energy dispersive X-ray 

spectroscopy (EDS) analytical software (Noran System Six) was used for the 

investigations. An accelerating voltage of 5 –15 kV was used for imaging to reduce 

charging of the ceramic coating. The nonconductive ceramic coating was coated with 

gold for 55s to build 5nm thickness of Au over the sample to make it conductive. A 

carbon tape was attached to the steel face to the mold for connectivity as the coating 

samples were epoxy mounted. The working distance was maintained at 15 mm for EDS 

analysis. The voltage was increased to 20 kV to increase resolution without concern of 

charge effect. From the SEM images and EDS spectrum the coating micro structure like 

different alloyed layers, pores, breakage along with elemental identification can be 

assessed. This will give supporting evidence about the durability of the material. 

Coating material, exposure and defect presence are the three important variables 

for this investigation. The focus is to identify influence of exposure and defect on the 

durability of the material and it’s protecting mechanism. To achieve this objective, the as 

received thickness, coating adhesion and alloyed layer property were identified by the 

previously mentioned test procedures. These properties were evaluated at subsequent 

time interval under the consideration of the individual exposure. Eventually it will give 

the indication of the deterioration mode and their propagation with time. Additionally, 

deterioration mechanism of the micro structure of the coating was evaluated by 

identifying physio-electrochemical parameters. For example, degradation of the coating 
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may be described by changes in coating resistance and capacitance by the 

electrochemical testing. In-situ electrochemical testing may also allow for determination 

of time scale associated with the modes of material degradation and corrosion 

development. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

This chapter represents the results (visual observation, thickness and pull-off 

strength) of the outdoor and salt-fog exposed samples along with as-received condition. 

The electro-chemical tests result of the wet exposure and alternate wet and dry exposure 

are also included in this chapter.  

4.1 As-received CBPC Coating Property  

The samples were coated by the manufacturer according to their best practice. 

Thus the desired coating thickness was to be based on the coating manufacturers best 

practice guidelines. However, a large variability in coating thickness was apparent in the 

received samples, indicating that the manufacturer’s coating process was not properly 

controlled. The micrographs in Figure 4.1 show the typical appearance of the CPBC 

coating. The cross section indicates existences of pores in as-received condition which 

will be further clarified by mercury intrusion Porosimetry (MIP) and scanning electron 

microscopy (SEM). As seen in Figure 4.2, the coating thickness ranged from ~250-1300 

µm. Product literature suggests that the coating thickness of the CPBC layer is dependent 

on the number of passes the sample receives during the spray application process. 

Samples also had local coating thickness variability with standard deviations ranging 

from 13 to ~ 150 µm. For testing, samples were sorted by similar coating thickness to 

avoid possible testing artifacts that may be associated with coating application. Presence 

of a protective phosphate rich layer on the steel substrate described in product literature 

as 2-20 µm thick was not readily visible by optical microscopy. At the highest 

magnification shown in Figure 4.1, there was visual indication of material of varying 



45  

textures with a layer between the ceramic and steel substrate. That intermediate layer did 

not appear to be continuous throughout the steel-to-ceramic coating interface. As will be 

described later, imaging with SEM also did not consistently reveal a continuous 

intermediate layer on the steel substrate. 

 

Figure: 4.1 CBPC Coating on Steel Cross-Section Micrographs. 

A) Rough Surface. B) Presence of Pores. 

 

 

Figure 4.2: CBPC Sample Coating Thickness. 
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Although variability in the thickness of the CBPC coating was observed, the as-

received pull-off strengths were not greatly affected by coating thickness. All pull-off 

testing of coatings in the as-received condition had removal of the CBPC coating and had 

strengths less than 1400 kPa as shown in Figure 4.3. The coating was typically separated 

at the coating/steel substrate but some residue of the CBPC typically remained on the 

steel substrate. It is noted that the pull-off strength may not directly indicate efficacy in 

corrosion mitigation. However, this parameter is expected to give insight on material 

performance after exposure in aggressive environments such as coating degradation or 

disbondment that may possibly be important in corrosion development. 

 

Figure 4.3: CBPC Coating Pull-off Strength. 

4.2 Coating Degradation after Out-door and Salt-fog Exposure 

The corrosion performance of the coating in outdoor exposures was assessed by 

placing CBPC steel coupons at a beach test site in the Florida Keys as well as at inland 
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times were proposed to identify coating degradation and corrosion development with 

time.  Coated steel coupons were initially installed on November 1, 2013. Sets were 

removed on February 28, 2014; on June 30, 2014 and on November 03, 2015. Record of 

environmental parameters of the test sites is shown in Figure 4.4. Temperature and 

relative humidity at the two outdoor test sites were comparable but the precipitation data 

for inland site was higher than the beach site. Samples were exposed to salt-fog 

conditions with 5% NaCl solution according to ASTM B 117 for 2200, 5800 or 14600 

hours to evaluate the effects of the aggressive exposure conditions on the integrity of the 

coating and corrosion durability of the steel coupons. Visual comparisons of the sample 

coating conditions and degree of corrosion were made. Assessment of coating thickness 

and coating adhesive strength before and after exposure were also made. The coating 

pull-off strengths and thicknesses were meant to evaluate changes due to test exposure 

conditions and not necessarily to prescribe quantitative values to degradation.  
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Figure 4.4: Environmental Conditions at Outdoor Test Sites. 

Black (Inland). Red (Beach). 
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4.2.1 Visual Observation 

 

 

Figure 4.5: Condition of the Samples after Exposure. 
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exposure and the surface staining appeared within 5800 hours in salt-fog exposure. The 

formed spot staining expanded severely during extended exposure of 14600 hours. No 

steel rust formation was observed along the scribed defect during this long exposure time 

even though significant coating degradation occurred. It was apparent that moisture from 

the environment is related to degradation of the outer ceramic coating. In outdoor 

conditions, the degradation after 2 years appeared to be mostly benign by outward visual 

inspection and only resulted in surface chalking and some spot staining. In several 

samples, severe localized coating blistering was observed. The continuous moist 

condition in the aggressive salt-fog exposure accelerated the degradation process of the 

CBPC coating.  
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4.2.2 Coating Thickness 

 

Figure 4.6: After Exposure Coating Thickness of CBPC Coating. 
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thought to facilitate loss of coating integrity and enhance porosity. Also prolonged 

exposure to moisture can contribute to coating degradation. Furthermore, available 

moisture may facilitate formation of intermediate hydrate product (Balasubramaniam, 

2000) that would in part account for the increase in coating thickness. Other mechanical 

explanations may include scouring and re-deposition of ceramic hydrate constituents. The 

coating thickness of samples exposed in salt-fog exposure increased in a similar manner. 

The initial coating thickness was ~550µm and it increased to ~700µm after 14600 hours 

of exposure. The constant high level of available moisture observed for degradation of 

the outer coating facilitated formation of the intermediate hydrate product. As mentioned 

earlier, even though severe coating degradation and staining was observed, there was 

limited evidence of steel rust formation in the high salt and moisture environment. 
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4.2.3  Pull-off Adhesion Strength  

        

 

Figure 4.7: Pull-off Strength of CBPC Coating.  

A) Outdoor Exposure B) Salt-Fog Exposure. 
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Figure 4.8: Coating Surface After Pull-off Testing.  

The pull-off test results and the photographs of the exposed surface after testing 

are shown in Figure 4.7 and Figure 4.8 respectively. The coating pull-off strength for 

CBPC was low (<2000 kPa) regardless of exposures. The as-received pull-off strength 

was less than 2000 kPa and the coating separated by removal of the ceramic from an 

intermediate hydrate layer (labeled as total coating failure) that appeared as surface 

discoloration. Pull-off testing never resulted in complete separation of the intermediate 

hydrate layer from the steel substrate. Pull-off testing of samples exposed in outdoor 

conditions sometimes showed similar modality of coating separation. In these samples 

however, the intermediate hydrate layer appeared to be thicker, especially with time of 

exposure. There was an overall apparent trend for the samples to exhibit cohesive 

weakening of the bulk coating (labeled as partial coating failure) that was exacerbated 

with longer exposure. Here the ceramic coating exhibited cohesive failure with low and 
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sometimes negligible pull-off strengths. Pull-off testing for salt-fog samples showed 

similar but enhanced development of the intermediate hydrate product and cohesive 

weakening of the bulk coating. The long-term exposures in salt fog resulted in severe 

staining but the coating always separated as partial coating failure. Even though the 

formation of an intermediate hydrate product (accounted by the discoloration) was 

thought to contribute to the overall low pull-off strength of the coating system, the 

degradation of cohesive strength of the bulk coating appeared to be more significant than 

adhesion loss relating to the development of the hydrate product. Indeed, the inland 

outdoor samples gave indication to thickening of the coating by hydrate formation yet the 

pull-off failure mechanism was characterized as partial coating failure after up to 24 

months of testing. The cohesive failure of the coating and the reduced pull-off strength is 

in part explained by the loss of coating integrity and degradation associated with the 

available moisture from the environment and is generally consistent with the observed 

bulk coating degradation. The interplay between bulk coating degradation and 

intermediate hydrate product formation was not directly assessed here but it is likely that 

the constituent materials of both are related.  

4.3 Assessment of CBPC Coating in Wet Exposure by Electro-Chemical Test 

Assessment of possible coating degradation and corrosion development was made 

by physical and electrochemical techniques (i.e. visual assessment, pull-off tests, open 

circuit potential (OCP), linear polarization technique (LPR) and electrical impedance 

spectroscopy (EIS). CBPC steel coupons were immersed in neutral pH solutions for ~30 

days. The neutral pH solution, simulated runoff and pooled drainage water, was made 

from distilled water with and without 3.5% sodium chloride (Lau & Sagues, 2009). A 1-
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in scribe was introduced on some samples by using a 0.5 mm cutter. Both non-scribed 

and scribed samples were introduced to identify the distinctive behavior of coatings with 

defects.  

LPR testing was made from the initial OCP to -25 mV vs. OCP at a scan rate of 

0.05 mV/s. The corrosion currents, Icorr, measured by a linear polarization method, were 

calculated using Equation 2.8. The polarization resistance, Rp, is defined as the ratio of 

change in potential to amount of required current (Vetter, 1967). EIS testing was made at 

the OCP condition with 10 mV AC perturbation voltage from frequencies of 100 kHz to 1 

mHz. The conventional interpretation of the impedance response of a coated metal 

interface was assumed as a first approach to evaluate possible degradation, and an 

equivalent circuit analog, as shown in Figure 2.6, was used to fit the impedance data to 

the physico-electrochemical parameters associated with that system. Non-ideal capacitive 

behavior and other factors due to heterogeneities, including non-uniform current 

distribution in the coating and metal-electrolyte interface, were in part represented by 

constant phase elements. The total impedance on first approach was expressed as shown 

in Equation 2.11. Finally, the results of the electrochemical parameters were justified 

with qualitative visual inspection. 

4.3.1 After Exposure Pull-off and Thickness Measurement 

All of the coupons exposed to solution with and without chlorides had some level 

of coating surface discoloration and surface roughening indicative of coating degradation. 

The as-received pull-off adhesion of the coating was low, < 1400 kPa, and no significant 

differentiation was observed after immersion testing. In some instances, the pull-off tests 

of samples after immersion resulted in adhesive strengths of 0 kPa due to the complete 
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separation of the coating from the steel substrate. Coating thickness measurements before 

and after exposure showed as much as a 13% decrease, but in some cases an increase in 

thickness was measured. This was in part attributed to the averaging of thickness values 

from several coupon locations when large coating thickness variance existed in the as-

received condition. Furthermore, as discussed later, undercoating hydration product 

developed in samples exposed to chloride solution, which would cause error in coating 

thickness measurements. No distinct trend in coating degradation could be deduced from 

the presence of the scribe.  

4.3.2 Visual Inspection 

As expected, no outward signs of rust were observed in any of the samples in 

chloride-free solution, and corrosion product was outwardly visible in all samples (both 

scribed and non-scribed) exposed in chloride solution. In the scribed samples, the 

corrosion product only emanated from the scribed location (Figure 4.9B) and showed 

localized bleed-out. In the non-scribed samples immersed in chloride solution, small 

corrosion pits were observed at locations around the periphery of the test-cell solution 

vessel (Figure 4.9A). Initial thought would attribute this corrosion product to crevice 

corrosion, but the behavior was not observed in the test cells with the scribed coupons.  

Observation of the steel surface that was exposed from pull-off testing showed no 

significant corrosion in any of the samples immersed in chloride-free solution. The steel 

substrate was clean even at locations directly adjacent to the scribe. In the samples 

immersed in chloride solution, no corrosion was observed on the steel directly adjacent to 

the scribes that showed oxide product and confirmed that the corrosion was localized 

directly within the defect. Outwardly, corrosion-like pits were observed in the periphery 
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of the exposed coating area in the non-scribed coupon, but it was apparent that significant 

under-coating hydration product developed within the entire area exposed to the chloride 

solution. Locations directly adjacent to the immersed area showed no corrosion. As 

mentioned earlier, conflicting results in coating thickness measurements were due to the 

combined effects of apparent coating degradation and undercoating hydration product 

formation. 

Severe cracking of the outer coating is illustrated in Figure 4.9 for the non-scribed 

samples immersed in chloride solution; however, the degradation eventually occurred for 

all samples. The cracks formed after samples were removed from the solution and 

allowed to dry.  

 . 

Figure 4.9: Coating Degradation for Exposure. 

A) Non-scribed Sample. B) Scribed Sample. 
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gradually increased to ~-300 mVSCE. The shift to more noble potentials with time 

indicated a trend towards passive-like conditions.  The role of any intermediate alloy 

layer on the corrosion activity was not ascertained. The samples (scribed and non-

scribed) in chloride solution maintained active corrosion conditions throughout the 30-

day test period. The corrosion currents determined from LPR measurements (Figure 4.11) 

were consistent with the trends described by the OCP measurements. As expected, 

moderate to high corrosion currents were initially observed in all test conditions. The 

corrosion current declined from ~15 µA to ~4 µA with time in chloride-free solution.   

For samples immersed in chloride solution, the corrosion current (~15 to 100 µA) 

remained constant throughout the test period. Of note, the absence of intentional surface 

coating defects did not result in mitigation of corrosion when immersed in chloride 

solution. The OCP measurements for the non-scribed samples, similar to the scribed 

samples, were indicative of active conditions throughout the test. Even so, the corrosion 

current for the scribed samples was initially assumed to be higher than the non-scribed 

samples since nominally 0.13 cm2 of steel was directly exposed at the scribe defect, and 

the CBPC coating was intact for the as-received condition. On the contrary, greater 

corrosion currents were measured for the non-scribed conditions. 
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Figure 4.10: OCP for CBPC Coating in Wet Exposure. 

 

Figure 4.11: Corrosion Current for CBPC Coating in Wet Exposure. 

The visual observations of coating degradation and oxide product formation were 

consistent with the OCP and LPR results. No significant corrosion developed where 

passive-like conditions were measured in the chloride-free solutions, and oxide product 

formation occurred in the chloride solutions where active corrosion conditions were 

measured. Therefore, a greater degree of oxide product formation throughout the coating 

exposure surface area was consistent with the measurement of larger corrosion currents 

compared to those obtained for localized corrosion within the scribe defect. These results 
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were indicative of the poor barrier properties of the ceramic coating. The ceramic coating 

was likely porous and allowed for significant penetration of solution to the substrate, 

allowing for electrochemical processes to occur at early exposure times, as indicated by 

the active potentials and high corrosion rates. Further, coating degradation, as 

exemplified by the visual discoloration and material loss, allowed enhanced corrosion 

development.  

The hydration product appeared localized to the scribe defect when present. In 

this case, it was thought the anodic region remained localized at the initially exposed 

steel area, and the remaining steel below the porous coating acted as a net cathodic 

region, and perhaps phenomena such as cathodic prevention may have hampered 

corrosion development elsewhere. In the non-scribed coated samples, local coating 

defects throughout the exposed surface would have initiated, causing the formation of 

hydration product throughout. It was noted that corrosion penetration into the steel 

substrate was minor and interaction with an apparent intermediate layer at the steel 

substrate, when present, may have mitigated substantial metal loss. Further investigation 

results will be presented later in this chapter.  

Representative impedances for the coatings are presented by a Nyquist plot in 

Figure 4.12. The resolved solution resistances are shown in Figure 4.13. As expected, low 

solution resistance representative of the chloride solution was resolved as compared to 

the choloride-free solution. The solution resistance did show decrease specially for salt-

free solutions. This was due to the leaching of minerals from the bulk material during 

exposure to the solution which will be discussed in the next chapter. The pore resistance 

resolved from the EIS analysis is shown in Figure 4.14. Generally constant pore 
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resistance was observed for non-chloride solution throughout the immersion period, but 

an increasing trend was identified for chloride solution. The constant pore resistance with 

time for the coating in chloride-free solution  corroborates previous discussion on early 

saturation of the coating pores with solution, but does not capture any possible physical 

degradation of the coating. Assessment of coating permeabiliy is in progress. The 

increase in pore resistance with time for the coated steel immersed in chloride solution 

was thought to be due to formation of hydration product within the pores or coating 

defects, as seen in Figure 4.9. The pre exponential term of the coaitng capacitance was 

also resolved from impedance analysis but the pre exponential term have to be transferred 

to coaitng capacitance to describe the coating degradation. This part is elaborated in 

chapter five.  

 

Figure 4.12: Nyquist Diagram for Non-scribed and Scribed CBPC Samples in 

Neutral pH with and without Chloride Solution (Representative Diagram). 
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Figure 4.13: Solution Resistance for Non-scribed and Scribed Samples. 

 

Figure 4.14: Coating Pore Resistance Non-scribed and Scribed Samples. 
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and dry exposure for up to 30 days (cumulative 15 days in wet condition and 15 days in 

dry condition). The samples were submerged in distilled water (with and without 3.5 % 

sodium chloride solution) to simulate the presence of accumulated runoff and pooled 

drainage water during the wet cycle and stored in a controlled humidity chamber (~75° F 

temperature and <20% relative humidity) during the dry cycle. Test cells were made for 

the wet cycle to accommodate reference and auxiliary electrodes required for 

electrochemical testing.  

EIS testing was made at the OCP condition with 10 mV AC perturbation voltage 

at frequencies from 1 MHz to 1 Hz to ideally capture the responses associated with a bulk 

coating. As a first approach, the impedance response of a coated metal interface relating 

to the physico-electrochemical parameters as shown in Figure 2.6 was assumed.  Non-

ideal capacitive behavior and other factors due to heterogeneities including non-uniform 

current distribution in the coating and metal-electrolyte interface were in part represented 

by constant phase elements. Photo documentation and coating thickness measurements of 

the samples were made prior to testing and after exposure to identify physical 

degradation.  

4.4.1 Visual Inspection 

Coating degradation as surface roughening and chalking was visually observed on 

coupons exposed in both salt and salt-free solution (Figure 4.15). Coupons exposed to 

cyclic testing in salt solutions exhibited severe surface cracking and fracturing of a highly 

friable material caused by the wet and dry exposure cycles of a weakened matrix of 

CBPC hydrates. On the outer surface, fracturing was less apparent on coupons exposed to 

salt-free solutions even with similar wet and dry cycling. This reduced degree of 
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fracturing may be due to formation of some hydration product of magnesium and 

phosphate that may act to either limit the extent of cracking or fill free spaces.  However, 

as shown in Figure 4.16, surface scouring and crack formation in the body of the coating 

can be significant regardless of salt presence.   

   

Figure 4.15: Coating Degradation after Wet and Dry Exposure. 

 
Figure 4.16: Micrograph of CBPC Samples.  

a) As-received b) Without Salt c) With Salt  
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4.4.2 Coating Thickness and Pull-off Strength Measurement 

The coating thickness increased for majority of the samples exposed to wet and 

dry exposure after 30 days of testing.  It was observed that the increase in thickness was 

somewhat larger when exposed in test conditions without salt (Figure 4.17). The average 

increment in coating thickness for salt-free and salt test cases was ~25 µm and ~7µm, 

respectively. Pull-off strength was relatively low, less than 2,000 kPa, and generally 

exposed the metal substrate with minor presence of residual hydrate coating materials for 

all samples in the as-received condition and in all test conditions (Figure 4.18). Pull-off 

testing typically resulted in apparent cohesive failure of a layer of coating near the steel 

interface, possibly related to interfacial products associated with reaction with the base 

iron (Figure 4.19) and the degraded coating integrity caused by the wet and dry 

exposures.  For the bulk material, the coating may be denser near the steel substrate when 

the ceramic material initially forms during the spray application.  Material layered during 

subsequent passes was thought to contain higher portions of unreacted constituent 

materials such as magnesium hydroxide and magnesium phosphate hydrate. Exposure to 

solution in the testing here would likely lead to subsequent reactions involving these 

materials including formation of hydrates leading to the increase in coating thickness 

described above. The expected reduced cohesion in bulk coating layers due to the wet 

and dry exposures was not well defined by the pull-off testing and was deemed to be due 

to the overall low cohesive strength. 
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Figure 4.17: CBPC Coating Thickness after Wet and Dry Exposure.            

 
    Figure 4.18: CBPC Coating Pull-off Strength after Wet and Dry Exposure. 

 

Figure 4.19: Visual Inspection of Coating Substrate after Pull-off Strength after Wet 

and Dry Exposure. 
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4.4.3 Electro-Chemical Test Results 

The initial open circuit potential (OCP) for non-salt solution was ~ -0.3 VSCE and 

the OCP gradually shifted to more novel potential of ~-0.2 VSCE during the exposure. The 

open circuit potential (OCP) was ~-0.4 VSCE at the beginning of the test of salt solution 

(Figure 4.20). The potential increased to ~-0.6 VSCE after 5 days of exposure and 

maintained that OCP for the rest of the exposure. The corrosion current determined from 

LPR measurement were consistent with the trends described by the OCP measurements 

(Figure 4.21). High corrosion current of 250 µA-300µA was observed for salt solution 

during the test period. Contrastingly, low corrosion current of less than 20µA observed 

for non-salt solution and the corrosion current was decreasing during exposure. However, 

active condition observed at the beginning of the test regardless of the type of solution. 

The early active condition was due to the characteristics porous nature which facilitated 

moisture to the steel substrate which were apparently observed in optical micrograph in 

as-received condition.  The observed passive like condition in non-chloride solution was 

due to the formation of proposed hydrate of magnesium and iron which will be discussed 

in the section of X-ray diffraction. The increase in thickness and reduction in pull-off 

strength in outdoor and salt-fog exposure also consistent with the electrochemical nature 

of the coating. Further, high corrosion current in chloride solution was associated with 

activity of the proposed iron phosphate hydrated and interaction of water with steel 

substrate due to the enhancement of the pores for high solubility of bulk magnesium 

coating in salt solution. 
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Figure 4.20: OCP for CBPC Coating during Wet and Dry Exposure. 

 

Figure 4.21: Corrosion Current for CBPC Coating during Wet and Dry Exposure. 
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consistent to the conductivity of the two test solutions (Figure 4.23 & 4.24). Low solution 
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The collected leachate was analyzed for potassium and magnesium which will be 

discussed later in this chapter. Otherwise resolved impedance coating parameters did not 

show any other distinct trends with time or exposure environment and it was evident that 

the extent of coating permeability and degradation could not be resolved by conventional 

approaches for data analysis for conventional coatings. 

 

Figure 4.22: Nyquist Diagram for Wet and Dry Exposure.  

A) W/O salt Sample (1MHz<f<1Hz) B) With Salt Sample (1MHz<f<1Hz) (Dot points 

for real data & Solid lines for fitted data) 
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Figure 4.24: Coating Pore Resistance for Wet and Dry Exposure. 
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for as-received sample 0.0902 cc/g at mode diameter 0.1126 µm, for salt-free solution 

test sample 0.09388 cc/g at mode diameter 0.567 µm and for salt solution test sample 

0.0606 cc/g at mode diameter 0.1829 µm. For the as-received condition, it was apparent 

that there was a significant volume of pores that had diameter less than 10 µm. When 

exposed to solution, there was apparent increase in pore volumes greater than 10 µm 

which would indicate enhancement in pore volume and size due to the environmental 

exposure. It is noted that the friable degraded bulk material from coupons exposed in salt 

solutions may have separated from the sample prior to MIP testing. 

 

Figure 4.25: Pore Volume for Modal Diameter.    

 

Figure 4.26: Pore Size Distribution.  
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4.5.2 Chemical Analysis 

The electrolytes that was used for electro-chemical analysis of alternate wet and 

dry exposer were chemically analyzed after 30 days of exposure. The electrolytes were 

stored in dry cycle and reused the same electrolyte for wet cycle. So, the chemical 

analysis was expected to give indication about the degradation mechanism of the coating 

by identifying the soluble coating constituents in the electrolyte.  The electrolytes were 

analyzed for iron, phosphorus and magnesium. Iron and magnesium were analyzed by 

following analytical method SW-846 6010 and EPA 365.4 for Phosphorus. The results 

are shown in Table 4.1. Negligible amount of iron was identified in both solution 

comparing to other two elements. Variation in amount of magnesium as 7.7 mg/L in non-

chloride and 93 mg/L in chloride solution was identified. The existence of magnesium 

was due to the apparent presence of the unreacted magnesium hydroxide during 

application process and formation of soluble magnesium product during exposure (Wagh, 

2004). The amount of magnesium is higher in salt solution because the magnesium 

hydroxide reacted with chloride solution to form highly soluble magnesium chloride 

which eventually increased the degradation of magnesium products (Xin et al., 2008 & 

Song and Atrens, 2003).  For total phosphorus (soluble and non-soluble) the amount in 

non-chloride sample is 109 mg/L and for chloride sample is 32 gm/L. The higher amount 

of phosphorus presence in non-chloride solution indicates the apparent higher 

degradation of the phosphate coating in non-chloride solution. Electrolyte pH and 

conductivity were also measured along with temperature during the test. The results are 

represented in Figure 4.27 & Figure 4.28. The pH changed from 7.85 to 9.8 in non-

chloride solution and 7.23 to 8.6 in chloride solution within 2 days of testing. The pH 
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remained stable at rest of the test period and the temperature was recored~750F at the 

time of measurements. The change of pH to ~9 also support the argument of ionic 

dissociation of magnesium product in aqueous solution (Wagh, 2004).  As expected very 

high conductivity as ~ 60 ms/cm was observed for chloride solution during the test period 

but initially low conductivity was identified for non-chloride solution. The conductivity 

gradually increased with time form 1.62 µs/cm to 1959 µs/cm. The increase in 

conductivity is an apparent indication of degradation of phosphate coating in neutral pH 

environment. From the above discussion, it can be opined that the degradation of the 

coating was due to the leaching of minerals from the bulk material during exposure to the 

solution.  

Table 4.1: Analytical Results of Electrolyte 

Sample 

Iron, Fe 

 (mg/L) 

Magnesium, Mg 

(mg/L) 

Phosphorus, P 

(mg/L) 

Without Salt 2.2 7.7 190 

With Salt 0.08 93 32 
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Figure 4.27: Electrolyte pH for Wet and Dry Exposure.          

 

Figure  4.28: Electrolyte Conductivity for Wet and Dry Exposure. 

4.5.3 X-ray Diffraction  

X-ray diffraction was conducted on as-received, inland, beach, salt-fog and 

alternate wet and dry exposed samples. The X-ray diffraction was performed in different 

time interval to identify any metallurgical change during exposure. The diffractograms of 

the representative samples are presented in Figure 4.29- Figure 4.32. Some of the 
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exposed samples degraded severely and sample preparation for X-ray diffraction was not 

possible. Therefore, testing was primarily made on the remnant coating substrate after 

pull-off testing. For simplicity, the remnant substrate coating is addressed here as under 

coating. Additional testing on the sample surface to verify CBPC bulk material 

constituency was also made. 

 Unreacted magnesium hydroxide [Mg(OH)2], magnesium hydrogen 

phosphate[Mg(H2PO4)2], iron and iron hydrogen phosphate hydrate [(Fe(H2PO4)32H2O] 

was identified along with potassium magnesium phosphate hydrate[KMgPO46H2O] in 

the as received condition for both the coating surface and under coating. In addition to 

those compounds, iron hydrogen phosphate hydrate was identified under the coating of 

the as-received sample. The product is likely associated with the intermediate hydrate 

layer. The results give indication of generally uniform initial distribution of constituent 

components from the bulk coating and indication of the iron rich components associated 

with the intermediate layer. This is to be expected as the coating application is an 

exothermic reaction made by spraying of two components onto the steel surface. It was 

reported that unreacted constituents of the CBPC coating can later react upon exposure to 

moisture to form a magnesium phosphate hydrate (Wagh, 2004). Moisture presence and 

further hydration of the coating constituents may lead to further differential distribution 

of material components. Testing primarily of under coating locations may not well 

represent the spatial variation in the possible subsequent reactions that may account for 

the observed coating degradation. Nevertheless, testing with time may provide some 

indicators of overall coating behavior after extended exposure periods. 
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As shown in Figures 4.29 and 4.30, the potassium magnesium phosphate hydrate 

constituent was observed at all times for the outdoor exposures indicating general 

stability of the CBPC component (Wagh, 2004). After up to 2 years of outdoor exposure, 

the initially unreacted components such as magnesium hydroxide hydrated to other forms 

that can possibly be amorphous (Balasubramaniam, 2000). The visual observation of 

surface chalking was thought to be related to this subsequent reaction. Other forms such 

as magnesium phosphate hydrate that may form on the coating surface where moisture 

was introduced were not detected in the undercoating testing. Also over time, it appeared 

that iron hydrogen phosphate hydrate remained stable and can be ascribed to the 

intermediate hydrate layer. 

XRD of samples from up to 2200 hours in salt-fog exposure as expected showed 

the potassium magnesium phosphate hydrate associated with the bulk coating and the 

iron hydrogen phosphate hydrate associated with the intermediate hydrate layer. Samples 

from the under coating at 5800 hours as described earlier had severe coating degradation 

and staining. Even though the sample was considered to have partial coating failure (i.e. 

coating residue remained on the substrate), the XRD did not identify the CBPC coating. 

The iron hydrogen phosphate hydrate appeared less prominent and iron corrosion 

products were detected. Samples from the under coating at 14600 hours also had severe 

surface damage but was still considered to have partial coating failure. XRD conducted 

on that surface only identified iron phosphate hydrate which would indicate that a change 

in morphology of the intermediate hydrate layer and little presence of CBPC. It is 

generally understood that these long-term salt-fog exposures cannot represent actual 
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environmental exposures or actual coating behavior in service. However, the results can 

be useful to understand possible degradation paths.  

The X-ray diffractogram of alternate wet and dry exposed samples are shown in 

Figure 4.32. The coating evaluation supports the previous discussions of formation of 

iron phosphate hydrate on the coating substrate but it is important to note that magnesium 

phosphate hydrate[Mg3(PO4)222H2O] was only identified in bulk coating of non-salt 

solution. That implies the unreacted constituents of magnesium hydroxide and 

magnesium hydrogen phosphate reacted further with presence of moisture and 

transformed to chalky magnesium phosphate hydrate. That type of hydrate was not 

identified in salt solution because of the high solubility of magnesium in chloride 

solution.  

The intermediate hydrate layer identified as iron hydrogen phosphate hydrate 

(Balasubramaniam, 2000) was thought to initially form during coating application 

involving the phosphoric acid. This layer was thought to provide beneficial corrosion 

mitigation characteristics (Balasubramaniam, 2000). However, the continued formation 

of the compound would require iron oxidation that could result in steel corrosion. In 

some situation, formation of a uniform intermediate hydrate layer may promote barrier 

protection but aggressive exposure conditions may disrupt this protection. Optical 

microscopy of samples discussed next provide further examination on the role of the iron 

phosphate intermediate layers. 
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Figure 4.29: X-ray Diffractogram for Inland Samples. 

        

Figure 4.30: X-ray Diffractogram for Beach Samples. 

         

Figure 4.31: X-ray Diffractogram for Salt-fog Samples. 
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Figure 4.32: X-ray Diffractogram for Alternate Wet and Dry Exposed Samples. 

4.5.4 Optical Microscopy  

 Optical microscopic evaluation of the exposed samples was done to evaluate the 

coating and steel substrate condition. Micrographs of samples exposed outdoor for 24 

months and salt fog up to 14600 hours are shown in Figure 4.33 and Figure 4.34. In 

comparison of cross-section from a sample in the as-received condition, it is evident that 

large pores are initially present in the bulk coating. The coating degradation that accounts 

for the observed surface chalking and loss of bulk cohesive strength was not well 

distinguished in the relatively low magnification from optical microscopy. Due to the 

wide distribution of pores in the bulk coating, SEM images will be presented in the next 

section to describe further coating degradation.  
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Figure 4.33: Optical Micrograph after Exposure.  

A) As-received and B) Inland Outdoor Exposure after 24-Months.  

 

          

Figure 4.34: Optical Image after 5800 Hours Salt-fog Exposure.  

 

However, general results from mercury intrusion porosimetry discussed in earlier 

laboratory testing to identify changes in coating physical structure after exposure to 

moisture are described here for discussion (Figure 4.26).  After cyclic exposure to wet 

and dry conditions, the pore size distribution indicated more numerous larger-sized pore.  

There remained a network of large and small pores in the coatings after testing that was 

associated with the large vestigial pores formed during initial spray location and a 

network of fine pores in the CBPC hydrate. The increase in pores between 1 and 10 µm 

were thought to be related to the coating degradation behavior described earlier. Images 
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of the intermediate hydrate product discussed earlier are seen in Figures 4.35 and Figure 

4.36. Figure 4.35 shows that there is a general increase in the thickness of the 

intermediate layer with longer times of exposure. The enhanced porosity could facilitate 

moisture to produce the intermediate hydrate product by reacting with the steel substrate. 

In Figure 4.35, cross section of a sample exposed in outdoor conditions for 24 months 

that formed a coating blister shows a layer that was identified by XRD to be iron 

hydrogen phosphate hydrate, like the intermediate hydrate layers observed elsewhere 

(Balasubramaniam, 2000). The extent of steel consumption occurring under the coating at 

the blister site was not consistent with the general lack of external steel rust accumulation 

as described earlier for the most of the samples. It was apparent that the layer here 

formed in relation to apparent significant corrosion of the steel substrate. The steel 

consumption at the blister site under the hydrate layer is disconcerting as there are 

apparent conditions where coating corrosion mitigation is compromised. The lack of 

visible iron rust accumulation in the scribe defects of samples exposed in aggressive salt-

fog environments also did not account for the level of hydrate product formation as 

observed in cross-section micrographs such as in Figure 4.37. It is apparent that the role 

of the intermediate hydrate layer requires further scrutiny to identify conditions where the 

coated system may be susceptible to steel corrosion. Though it was thought that 

intermediate iron phosphate hydrate could provide some level of corrosion mitigation, 

some instances indicated possibility of steel substrate corrosion.  
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Figure 4.35: Optical Micrograph of CBPC Coating at Salt-fog Exposure. 

 

Figure 4.36: Optical Micrograph of 24-Month Outdoor Exposed Samples. 

 

Figure 4.37: Optical Micrograph of CBPC Coating at Scribed Location. 
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4.5.4 Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray 

Spectroscopy 

 

Figure 4.38: SEM Picture on the Surface of the Coated Steel. 

The SEM micrographs of surface morphology of as-received, beach and salt-fog 

exposed samples are represented in Figure 4.38. The bulk ceramic of the as-received 

sample was removed for coating substrate evaluation. Sporadic red spots were visually 

observed on the remnant coating substrate. One of the red spots of the remnant coating 

was magnified and the SEM micrograph showed the formation of hydrated product on 

the steel substrate. The same type of spread out iron hydrogen phosphate hydrate was 

visually identified over coating surface after 24 months of beach exposure and 5800 

hours of salt-fog exposure. The SEM micrograph of those samples also showed 

significant coating degradation, especially the salt-fog exposed samples showed 

disintegration of ceramic compounds. Further, area scan was done over the 24-month 

beach exposed CBPC coating focused the hydrate product to identify its spatial 

distribution on coating substrate (Figure 4.39). There was a scattered existence of iron 

observed and this iron is related to formation of iron hydrogen phosphate layer. So, it can 
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be opined that though there was an apparent protection of iron phosphate hydrate layer, it 

was not continuous to provide enhance protection of the steel substrate.        

 

Figure 4.39: EDS Analysis for 24-month Beach Exposed Sample. 

SEM imaging also done for cross-section of as-received and 5800 hours salt-fog 

exposed samples for direct comparison between the bulk properties (Figure 4.40). Larger 

pores are present in as-received condition as discussed earlies in optical microscopic 

evaluation section and due to the wide distribution of pores in the bulk coating, SEM 

imaging of exposed salt-fog samples also could not readily provide comparisons to 

distinguish coating degradation. EDS analysis (Figure 4.41) also made on those cross 

sections for further clarification of that hydrate layer which was identified in XRD and 

surface EDS analysis. Iron was identified ~30 µm from the base steel for as received 

samples along with the other coating constituents. The identified ~20 µm carbon layer 

adjacent to steel substrate was due to penetration of mounting epoxy into the degraded 

coating. The identified iron in the ceramic matrix was attributed for the formation of iron 

phosphate hydrate. More wide spread dispersion of iron was observed for 5800 hours 

salt-fog exposed samples due to the enhanced formation of iron phosphate hydrate for the 

presence of moisture through the degraded coating.   
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Figure 4.40: SEM Cross Section of CBPC Coating. 

A) As-received. B) 5800 Hours Salt-fog Exposed.  

 

Figure 4.41: EDS Analysis on Cross Section of the Exposed Samples. 
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CHAPTER 5 

DEGRADATION ASSESSMENT OF CBPC COATING BY 

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 

Coatings can be degraded due to various environmental loads such as moisture, 

temperature, UV, etc. The environment supports chemical and electro-chemical reactions 

that can lead to degradation of the coating. Electrochemical impedance spectroscopy 

(EIS) has been used to characterize coating degradation for different materials including 

degradation of polymer coatings (Mertens et al., 1997).  Dissemination of information on 

the applicability of EIS for ceramic coatings was not readily discovered by the author. 

Therefore, development of electrochemical techniques for assessment of ceramic coatings 

was necessary as part of the overall work on application of CBPC for structural steel 

applications. Resolved electrochemical parameters such as coating capacitance and pore 

resistance from electrochemical impedance spectroscopy (EIS) are related to moisture 

activity and defect geometry of the degraded coating. It was envisioned to assess the 

applicability of electrochemical techniques including EIS to identify and predict 

degradation modality and progression for CBPC coating in aggressive humid 

environment.  

5.1 Coating Capacitance Measurement to Characterize Coating Degradation 

Capacitance of the coating is a water sensitive measurement. Coating capacitance 

is expected to change during exposure due to moisture penetration through the coating. 

Thus, the degradation of the coating can be inferred by the change of coating capacitance. 

The capacitance is expressed by  

Cc=
εoεrA

d

 (Eq. 5.1) 
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where: 

Cc      coating capacitance 

ε0      permittivity of vacuum or the permittivity of free space (8.854 X 10-12  F.m-1) 

(Weast, 1984) 

εr        relative permittivity or coating dielectric constant,  

A         coating surface area   

d          coating thickness.  

The dielectric constant of water is ~80 at 200 C and is less than 10 for typical coating 

(polymer coating). The coating capacitance increases due to the water absorption 

(assuming the other constant coating geometric dimensions) and the volume fraction of 

water absorbed can also be estimated by Equation 5.2 (Brasher and Kingsbury, 1954).  

Xv = 

 log 






C

Co

 log ( )εH2O

           (Eq. 5.2) 

where: 

Xv volume fraction of absorbed water 

C0 capacitance before water absorption   

  C capacitance at specific time, 

            εH2O  dielectric constant of water  

Coating capacitance is calculated by analyzing the impedance response with an 

equivalent circuit of the related systems. Due to testing artifacts, including coating 

heterogeneities and non-uniform current distribution the constant phase element (CPE) is 

commonly used to fit the impedance spectra. The impedance of CPE is 
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Z(CPE) = Y0
-1(jω)-n  (Eq. 5.3) 

where: 

Z(CPE) impedance of CPE 

Y0  pre-exponential term 

n  real number (0<n<1) 

The CPE element is useful in analog circuit fitting for systems that exhibit non-ideal 

capacitive behavior. However, the resolved parameter does not directly characterize 

capacitance. In ideal condition, when n=1 the capacitance can be directly calculated from 

the impedance of CPE. That implies that the CPE element behaves as ideal capacitor at 

n=1. Most of the electrochemical system shows deviation of n value from unity. So, to 

calculate the capacitance of a CPE system it needs to transfer the pre-exponential term, 

Y0 to capacitance, C by a logical mathematical expression. 

5.1.1 Conversion Technique (Yo to C) by Van Westing 

The conversion of Yo to C was first described by E. Van Westing in 1992. He 

proposed that at a given frequency ω, the imaginary part of the impedance of the CPE 

(ZCPE) and the impedance of the fitted capacitance (Zc) is equal. 

Im(ZCPE)=Zc (Eq. 5.4) 

Im(
1

Y0(jω)n
) = 

1

jωC
 (Eq. 5.5) 

where: 

 C capacitance 

 Yo pre-exponential term 

 ω radial frequency 
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 n real number (0<n<1) 

Solving for (jw)-n , the formula can be expressed as  

(jω)-n= ω-n (cos (-
nπ

2
) +jsin (-

nπ

2
)) (Eq. 5.6) 

Then the final relation between n and C was determined as  

C=
Yo(ω)

n-1

sin(
nπ

2
)

  (Eq. 5.7) 

5.1.2 Conversion Technique (Yo to C) by Hsu and Mansfeld 

Hsu and Mansfeld proposed a conversion equation in 2001. The work by Hsu and 

Mansfeld is based on the fact that at the frequency corresponding to the maximum 

imaginary impedance, there is no dependence of the CPE n parameter for the real part of 

the total impedance.  Therefore, the impedance of an  ideal capacitance Zc =(2πfC)-1 

equals the impedance of the CPE at that frequency. This can be represented by 

|Z|2=
1

Yo
2(ωm

″ )
2   = 

1

(ωm
″ )

2
 C2

  (Eq. 5.8) 

C=Yo(ω″m)n-1 (Eq. 5.9) 

where: 

 C capacitance 

 Yo pre-exponential term 

 ω″m radial frequency at maximum imaginary impedance 

 n real number (0<n<1) 

Hsu and Mansfeld applied the proposed equation for a simple Randle circuit and 

compared the results with Van Westing proposed equation. Comparatively, accurate 

results were observed by the proposed equation of Hsu and Mansfeld. For better 



91  

understanding, the model was elaborated in this dissertation for a wide range of n value in 

the following section. 

5.1.3 Comparison between Van Westing and (Hsu and Mansfeld) Approach for 

Single CPE 

 

Figure 5.1: Equivalent Circuit for Single CPE.  

Hsu and Mansfeld proposed a model for one CPE element where a parallel 

combination of Rpo and Cc is in series with Rs. The model was described for n values 

from 1 to 0.8. The model was further considered for the n values from 1 to 0.5 in the 

work here. The assigned values for the simulation parameters were Rs= 1Ω, Rpo= 1000 Ω 

and Cc = 1X10-5
 F for n=1. To fit the model with the pre-defined resistance values with 

different n value other than 1, the pre-exponential term Yoc required calibration. The 

simulated and fitted values are represented in Table 5.1 with their corresponding n 

values. The Bode and Nyquist plot are represented in Figure 5.2a and 5.2b for the fitted 

capacitance with constant resistance.   The frequency dependence of the imaginary and 

real part of impedenace is also represented in Figure 5.3a and Figure 5.3b, respectively. 

The imaginary part of the impedance has the maximum value at frequency f= 17.28 Hz, 

and at that frequency, the real part of the impedance was 500 Ω regardless of the change 

Rs

Cc

Rpo
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of n value. It was evident that there is no frequency dependence on the real part of the 

impedance at that frequency. Hence the conversion equation is based on the fact that at 

the frequency of maximum imaginary impedance the real part of the impedance is 

independent of n value. At that frequency, the real part of  impedance is equal to 

maximum imaginary part of impedance for n=1. The conversion of Yo to C was done by 

following equation 5.7. For comparison, the conversion was also done by following the 

Van Westing equation.  

The results are presented in Table 5.1. The coating capacitance was 1x10-5 F. The 

resolved coating capacitance from curve fitting was 0.938x10-5 F, 0.979x10-5 F, 0.931x10-

5F, 0.920x10-5F, 0.959 x10-5F respectively for n value 0.9, 0.8, 0.7, 0.6 and 0.5 by Hsu 

and Mansfeld approach and, by Van Westing approach was 0.950x10-5 F, 1.030x10-5 F, 

1.045x10-5F, 1.137x10-5F, 1.357 x10-5F. Comparable results were observed by both 

conversion technique at higher n values but the Hsu and Mansfeld technique gave more 

accurate results for lower n values. As shown in chapter 4, EIS response for CBPC in 

aqueous solution typically showed an apparent suppressed semi-circle at high frequencies 

typically between (1 Hz to 1000 Hz). The resolved CPE n parameter was 0.5 to 0.6. In 

order to determine suitability of applying of those techniques, Hsu and Mansfeld 

approach was reanalyzed for systems with lower CPE n values. It was envisioned to 

apply the proposed equation by Hsu and Mansfeld to elucidate degradation  of CBPC 

coating system. In the experimental work for CBPC, the resolved n value was typically 

between 0.5 to 0.6.  
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Figure 5.2: Single CPE Impedance.  

a) Bode Plot b) Nyquist Plot. 

 

Figure 5.3: Frequency Dependence of Single CPE Impedance.  

a) Imaginary, Z″ b) Real, Z′. 

 

 

 

 

a b 

a b 
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Table 5.1: Calculation of C from Yo for Single CPE 

n  Parameter Condition 

Capacitance Hsu and 

Mansfield 

Van Westing 

Y0(sn/Ω) 

C=Y0(ω″)n-1 

(F) 

C=
Yo(ω)

n-1

Sin (
nπ
2
)

 

1 
Simulation Parameter 1X10-5 - - 

Fit Parameter 1X10-5 1x10-5 1x10-5 

0.9 
Simulation Parameter 1X10-5 - - 

Fit Parameter 1.5X10-5 0.938X10-5 0.950X10-5 

0.8 
Simulation Parameter 1X10-5 - - 

Fit Parameter 2.5X10-5 0.979X10-5 1.030X10-5 

0.7 
Simulation Parameter 1X10-5 - - 

Fit Parameter 3.8X10-5 0.931X10-5 1.045X10-5 

0.6 
Simulation Parameter 1X10-5 - - 

Fit Parameter 6X10-5 0.920X10-5 1.137X10-5 

0.5 
Simulation Parameter 1X10-5 - - 

Fit Parameter 1X10-4 0.959 X10-5 1.357X10-5 

5.1.4 Conversion Approach (Yo to C) for Double CPE 

 

Figure 5.4: Equivalent Circuit for Double CPE. 

Rs

Rpo

Cc

Cdl

Rp
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The work by Hsu and Mansfeld on basic electrical parameters can be idealized by 

theRandle circuit. However, more complex systems, such as with coatings and other 

system complications are part of many engineering systems. The impedance response of 

those systems would directly introduce difficulties in interpretation of the impedance 

spectrum. It was envisioned that similar approaches to determine coating capacitance for 

degraded CBPC coating systems to evaluate the degradation process. When an intact 

coating is in contact with the electrolyte, the electrolyte enters the pore of that coating. 

The pore resistance, Rpo changes with the passage of electrolyte intrusion.  The entire 

system is represented as an equivalent circuit analog as shown in the Figure 5.4 where Rs 

is the solution resistance and Cc is coating capacitance. A new phase is included with this 

equivalent circuit where oxidation reaction takes place at the metal electrolyte interface 

as shown in the Figure 5.2. This circuit adds a double layer capacitance, Cdl proportional 

to the active metallic area in contact with the electrolyte and electric element, RP is the 

polarization resistance. The capacitance does not act as a pure capacitor due to surface 

roughness and other physical properties. Thus a CPE element was introduced instead of   

C where Yo, pre-exponential term and n, real number. The model is developed for the 

frequency range from 0.001 Hz to 1x108 Hz, Rs=1 Ω, Rpo=100 Ω and Rp=1000 Ω. The 

model was developed for n value 1 to 0.5. The Bode and Nyquist plot are represented in 

Figure 5.5a and 5.5b. The two CPE responses were clearly identified in this frequency 

range. The high frequency region (>100 Hz) represents the coating property and low 

frequency (<100 hz) represents the coating-substrate interface property. The impedance 

spectrum shifted to lower impedance value with decreasing n value where the resistive 

part of the model was assumed constant. Thus the pre-exponential term is calibrated to fit 
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the spectrum as presented in Table 5.2. The frequency dependence of imaginary and real 

part is presented in Figure 5.6a and 5.6b. The frequency dependence of two CPE systems 

satisfied the basic principle of Hsu and Mansfeld single CPE approach. The intention of 

the approach was to characterize the pore degradation of the coating. Thus, the discussion 

here will be concentrated for high frequency CPE response only, though the model was 

also fitted for low frequency CPE response.  

The imaginary part of the impedance has the maximum value at frequency f= 

1.563x106 Hz and at that frequency the real part of the impedance was 55 Ω regardless of 

the change of n value. So there is no frequency dependence on the real part of the 

impedance at that frequency. The conversion equation of Hsu and Mansfeld can be 

extended for systems that can be characterized by two nested parallel combinations of 

CPE and resistance elements based on the fact that at the frequency of maximum 

imaginary impedance, the real part of the impedance is independent of n value. At that 

frequency the real impedance is equal to imaginary impedance for n=1. Hence the 

conversion of Yo to C is 

C=Yo(ω″m)n-1 (Eq. 5.10) 

Resolved coating capacitance values from simulations of coated steel impedance were 

calculated by using this conversion equation and are presented in Table 5.2. The real 

coating capacitance is 1x10-9 F and the calculated coating capacitance is 0.9994x10-9 F, 

0.9988x10-9 F, 0.9983x10-9 F, 0.9578x10-9 F, 0.989 x10-9
 F respectively for n value 1, 0.9, 

0.8, 0.7, 0.6 and 0.5. The findings would suggest that similar conversion techniques may 

be adapted for coating systems.  
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Figure 5.5: Double CPE Impedance.  

a) Bode Plot b) Nyquist Plot. 

    

Figure 5.6: Frequency Dependence of Double CPE Impedance. 

a) Imaginary, Z″ b) Real, Z′. 
 
 
 
 
 
 
 
 
 
 

a b 

a b 
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Table 5.2: Calculation of C from Yo for Double CPE 

nm  

&  

nc 

Parameter Condition 

Coating 

Capacitance 

Interface 

Capacitance 

Calculated 

Coating 

Capacitance 

Y0C (s
n/Ω) Y0 (s

n/Ω) C=Y0(ω″)n-1 (F) 

 

1 

Simulation Parameter 1X10-9 1X10-5 - 

Fit Parameter 1X10-9 1X10-5 1X10-9 

 

0.9 

Simulation Parameter 1X10-9 1X10-5 - 

Fit Parameter 5X10-9 1.5X10-5 0.9994X10-9 

0.8 
Simulation Parameter 1X10-9 1X10-5 - 

Fit Parameter 2.5X10-8 2.5X10-5 0.9988X10-9 

 

0.7 

Simulation Parameter 1X10-9 1X10-5 - 

Fit Parameter 1.25X10-7 3.8X10-5 0.9983X10-9 

 

0.6 

Simulation Parameter 1X10-9 1X10-5 - 

Fit Parameter 6X10-7 6.1X10-5 0.9578X10-9 

 

0.5 

Simulation Parameter 1X10-9 1X10-5 - 

Fit Parameter 3.1X10-6 1X10-4 0.989 X10-9 

 

5.1.5 Methodology to Measure the Capacitance of CBPC Coating 

CBPC coated steel coupons were exposed to 2-day alternate wet and dry exposure 

for up to 30 days (cumulative 15 days in wet condition and 15 days in dry condition). The 

samples were submerged in distilled water (with and without 3.5 % sodium chloride 

solution) to simulate the presence of accumulated runoff and pooled drainage water 

during the wet cycle and stored in a controlled humidity chamber (~75° F temperature 

and <20% relative humidity) during the dry cycle. Activated titanium was used as 
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temporary reference and counter electrodes. The activated titanium reference electrode 

was calibrated with a saturated calomel reference electrode (SCE). EIS testing was made 

at the OCP condition with 10 mV AC perturbation voltage at frequencies from 1 MHz to 

1 Hz to ideally capture the responses associated with a bulk coating. Then the response of 

the EIS spectrum was interpreted by equivalent circuit fitting related to physical system. 

Non-ideal capacitive behavior and other factors due to heterogeneities including non-

uniform current distribution in the coating and metal-electrolyte interface were in part 

represented by constant phase elements. Then the pre-exponential term of CPE was 

converted to coating capacitance by the developed model for double CPE system. The 

capacitive value of the CBPC coating was expected to give indication about the water 

absorption behavior related to degradation process. 

5.1.6 Application of Conversion Technique (Yo to C) for CBPC System 

The developed conversion technique was introduced to CBPC coating system. 

The experimental impedance spectrum was tested for a frequency range from 1 Hz to 

1x106 Hz.  The impedance response was analyzed by commercially available software to 

obtain a best fit of the impedance parameters assuming that the electrical circuit analog 

shown in Figure X can be representative of the CBPC coating. The evaluated parameters 

included solution resistance, Rs= 1.66 Ω, pore resistance, Rpo = 0.588 Ω, coating pre-

exponential, Yoc = 9.11x 10-2 sn/Ω, Yom = 9.11x 10-2 sn/Ω, nc =0.565, nm=0.565.  

Then, a numerical simulation of the impedance behavior, keeping all values 

constant to the resolved values except for the coating CPE component, was made to 

identify modulation the coating pre-exponential term for different n values. The 

simulation was first run for n=1 and n =0.565. In Figure 5.7a, the high-frequency 
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impedance characteristic to coatings was much smaller than the low frequency interfacial 

impedance. Nevertheless, a crest in the imaginary impedance was present in the 

frequency range greater than 1Hz. At that frequency range the coating spectrum is visible 

and a peak value was identified at ~11 Hz for n=0.565 as shown in the Figure 5.7b. The 

capacitance C was calibrated for n=1 to match the frequency of high imaginary part. The 

model was also run for n=0.7 and 0.9 and calibrated the pre-exponential value to match 

that frequency. Then the frequency dependence of real part was plotted as shown in the 

Figure 5.8. As expected there was no frequency dependence of the real part at frequency 

~11.58 Hz. Hence, the transformation formula is applicable for CBPC coating system. 

The coating capacitance, C = 1.8x10-2 F was observed at n=1(Table 5.3). The apparent 

capacitance was calculated to be ~1.8x10-2 F for other n values and was is in close 

agreement with the expected values as shown in Table 5.3.   

 

Figure 5.7 Frequency Dependence of Impedance for CBPC Coating.  

a) Frequency Dependence of Z″(10-8 Hz -106 Hz) b) Frequency Dependence of Z″(1 Hz -

106 Hz). 
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Figure 5.8: Frequency Dependence of Real Part of Impedance, Z′ for CBPC 

Coating. 
 

Table 5.3: Calculation of C from Yo for CBPC 

nm & nc Parameter Condition 
Coating Capacitance 

Calculated Coating 

Capacitance 

Y0C (s
n/Ω) C=Y0(ω″)n-1 (F) 

1 
Simulation Parameter 1.8X10-2 - 

Fit Parameter 1.8X10-2 1.8X10-2 

0.9 
Simulation Parameter 1.8X10-2 - 

Fit Parameter 2.6X10-2 1.6934X10-2 

0.7 
Simulation Parameter 1.8X10-2 - 

Fit Parameter 5.65X10-2 1.5613 X10-2 

0.565 
Simulation Parameter 1.8X10-2 - 

Fit Parameter 

(Actual fit value) 
9.11X10-2 1.4111 X10-2 

 

5.1.7 CBPC Coating Capacitance and Water Absorption Capacity  

The capacitance of CBPC coating with and without chloride was calculated by 

using the developed model. The frequency at the peak imaginary part impedance was 
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used for calculation of capacitance of the coating. The initial coating capacitance was 

~1x10-5
 F for non-chloride solution and 1x10-3 F for chloride solution. The capacitance 

increased during the first 10 days of testing and then remained stables for the rest of the 

test period. The change in capacitive value can be explained by the water penetration 

during initial condition and the coating was apparently saturated with water within ten 

days. The dielectric constant of the electrolyte was also calculated for the initial and final 

day of testing. An expected increasing trend for the dielectric constant was observed 

although the resolved magnitude did not well characterize the water absorption for the 

assumed ideal geometry (Figure 5.10). The contributing factor for the discrepant results 

may include the apparent roughness and porosity of the CBPC ceramic. However, to 

support the argument of the coating degradation from its capacitive behavior, water 

absorption of CBPC coating was calculated by following the equation 5.2 (Figure 5.11). 

The coating reached the maximum water saturation level for the poor barrier protection  

offered by CBPC coating.   

     

Figure 5.9: CBPC Coating Capacitance.         
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Figure 5:10 Dielectric Constant of Electrolyte. 

 

Figure 5.11: Water Absorption of CBPC Coating. 

5.2 Calculation of Coating Defect Area from Coating Pore Resistance  

The coating pore resistance is related to coating defects such as holidays, cracks 

or holes which are assumed to be filled up by electrolyte (Haruyama et al., 1987). Thus, 

the resistance of the pore is a function of the resistivity of the electrolyte filling the pores 

and the geometry of the pores as shown in the Equation 5.11. This implies that the 

coating pore resistance decreases with the increase of coating defect. Thus, the 

interpreted pore resistance was intended to capture the delamination of the CBPC coating 

during exposure.  

Rpo=
ρd

Apo
 (Eq. 5.11) 
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Where: 

                        Rpo coating pore resistance (Ω) 

  Apo coating pore area (cm2) 

  ρ resistivity (Ω-cm) 

  d coating thickness (cm) 

5.2.1 Methodology 

CBPC coated steel coupons were exposed to 3-day alternate wet and dry exposure 

for up to 45 days (cumulative 24 days in wet condition and 21 days in dry condition). The 

samples were submerged in distilled water to simulate the presence of accumulated 

runoff and pooled drainage water during the wet cycle and stored in a controlled humidity 

chamber (~122° F temperature and <5% relative humidity) during the dry cycle. Test 

cells were made for the wet cycle to accommodate reference and auxiliary electrodes 

required for EIS measurement. EIS testing was made at the OCP condition with 10 mV 

AC perturbation voltage at frequencies from 1 MHz to 1 Hz to ideally capture the 

responses associated with a bulk coating. New electrolytes were used for each 

electrochemical measurement to maintain the constant resistivity.   Coating thickness was 

measured at the end of each dry cycle and coating pore resistance was also calculated for 

each cycle by fitting the impedance spectrum with an equivalent circuit. The aim of the 

test was to capture the coating degradation during exposure considering the coating pore 

area, coating pore resistance and coating thickness.      

5.2.2 Assessment of the Coating Degradation by Pore Resistance 

The variation of the coating thickness, coating pore resistance and calculated pore 

area with time are present in Figure 5.12 and Figure 5.13. The coating thickness 
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decreased for both of the samples but the coating pore resistance showed an inverse 

relation with coating pore area. The coating pore resistance was calculated by following 

Equation 5.11 where resistivity was assumed as constant. Generally coating pores are 

distributed through coating thickness. So, n number of pores are assumed to be 

distributed through the CBPC coating surface. Then the combined pore resistance Rpo in 

equation 5.9 can be rewritten by considering parallel combination as 

Rpo=
Rpo'

n
 (Eq. 5.12) 

Rpo=
ρd

nApo
  (Eq. 5.13) 

where: 

Rpo total coating pore resistance (Ω) 

Rpo′ coating pore resistance for single pore (Ω) 

Apo coating pore area for a single pore (cm2) 

ρ resistivity (Ω-cm) 

d coating thickness (cm) 

n number of pores  

 

Figure 5.12: Variation of Coating Pore Resistance and Coating Thickness with Time 

(Sample 1). 
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Figure 5.13: Variation of Coating Pore Resistance and Coating Pore Area with Time 

(Sample 2). 

       

Figure 5.14: Correction Factor for Coating Pore Resistance 

 
Figure 5.15: Calculation of Coating Pore Area 

For the variability of coating pore resistance with coating thickness, a correction factor 

was introduced for calculated pore resistance to determine the pore area of the CBPC 
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coating regardless of the thickness measurement (Figure 5.14). The ratio of the coating 

pore resistance to thickness (Rpo/ L) was plotted against pore resistance, Rpo. The 

coating pore resistance was normalized for thickness change and represented as a 

correction factor. Thus, for similar CBPC coating systems, the coating pore area can be 

calculated from the correction factor by following the equation 5.14.   

nApo =
ρ

R'po
  (Eq. 5.14) 

To verify the simplified formula, the coating pore area calculated from measured data 

was compared with the pore area by simplified formula as shown in the figure 5.15. The 

coating pore area calculated by the simplified formula was in good agreement with the 

resolved areas calculated incorporating the actual measured coating thickness data. It is 

important to note that there was no significant change observed in pore area measurement 

during the duration of test, though the MIP data showed deterioration of the pore 

geometry by the large pore size distribution. The discrepancy of the result was thought to 

be the apparent distribution of the pore in the ceramic and formation of the hydrated 

product. The MIP data was based on the volumetric measurement of an arbitrary part of 

the exposed volume but the pore resistance from the EIS was the resistivity of the 

interconnected pores on the coplanar surface between the exposed ceramic and steel 

substrate. Greater material loss occurred near the exposed surface than compared to the 

adjacent steel substrate location. The MIP measurement could capture that resolution of 

spatial distribution of pore geometry near exposed surface for its volumetric 

measurement where EIS was unable to capture that spatial distribution. Further, the 

electrolytic path for the EIS measurement could be hindered by formation of hydrated 
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product at the steel substrate. The apparent indicated constant porosity by EIS 

measurement of the CBPC provides indication of near similar exposed steel area despite 

of the bulk changes of the coating pore geometry.  

The resolved capacitance and pore resistance from EIS measurement indicated the 

coating degradation during exposure though the denotation of interpreted results are 

different from traditional interpretation of coating degradation. Further evaluation of 

CBPC coating is necessary to successfully implement the EIS technique to quantify the 

coating degradation related to the other geometric property and electro-chemical 

behavior.  
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CHAPTER 6 

PROPOSED DEGRADATION MECHANISIM OF CBPC COATING 

Much of the results and discussion presented earlier alluded to the difficulty in 

analyzing the data due to the inherent large variability of the coating thickness in the as-

received condition. Nevertheless, the findings lead to commonalities from the outdoor, 

accelerated immersion, salt-fog tests and electro-chemical test, where a sequence of steps 

for coating degradation can be proposed.  

Though some discrepant results observed for thickness and pull-off strength 

measurements during earlier exposure, general consistency of results in increment of 

thickness and reduction of pull-off strength is identified after long term exposure.  For 

environments with constant high humidity and moisture content (such as in the extreme 

case of the salt-fog environment), major pull-off strength reduction can occur regardless 

of significant thickness change. This suggests that the ceramic coating degrades by 

internal deterioration rather than only surface weathering in high moisture conditions. It 

is improtant to note that bulk coating anomaly was observed even in as received 

condition. The presented results and discussion indicated that the CBPC coating 

experienced initial degradation due to the alternate wet and dry environmental exposures 

as shown by the visual surface defects and the leaching of magnesium and phosphorus in 

solution. As shown by coating thickness measurements after exposure, it was apparent 

that later reaction of coating constituents may occur with the formation of hydrates of 

magnesium and phosphates. The x-ray diffraction of the exposed samples proved that 

argument of hydrate formation.  Such reactions may include reactions such as (Wagh, 

2004)  
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MgO + Mg(H2PO4)2·2H2O = 2MgHPO4·3H2O (Eq. 6.1) 

In chloride solutions, such reactions were less favorable. In any case, the weakening of 

the bulk material may be related to the exposure of moisture to these constituent 

components especially at the outer coating layers where the material may be less 

compact. Visual observations after testing showed discoloration of the outer surface layer 

that has been associated with magnesium phosphate hydrate in preliminary testing. It is 

posed that these reactions near the coating surface may not be able to form compact 

layers with cohesive integrity that would thus lead to the surface defects described earlier.  

MIP testing indicated that there remains a network of small pores in the as-received 

condition and exposed conditions and that some fraction of pores was enlarged during 

testing. It was thought that the network of fine pores is related to the stronger CBPC 

hydration products and the changes in porosity was due to further reactions of the 

constituent materials. The apparent porous nature of the coating would allow better 

transport of moisture and other chemical species. The availability of moisture within the 

coating would lead to degradation and significant cohesive strength loss. Observations of 

coating degradation in immersed conditions, where the ceramic became exfoliated from 

the substrate in flakes, further corroborates this finding. Interesting results relating to the 

intentional defect (scribed) sites exposing the substrate were observed. Corrosion at the 

defect sites on samples placed in outdoor and salt-fog exposure did not increase with time 

yet significant undercoating surface oxidation (similar to non-scribed samples) occurred 

throughout the samples. The electro-chemical testing of the non-scribed and scribed 

samples sowed identical behavior of electrochemical nature during testing. That findings 

also corroborate the apparent porous nature of the CBPC coating.  The apparent constant 
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to somewhat increasing trend of pore resistance also gave the indication about the 

differential porosity within the thickness and formation of hydration product that was 

susceptible for pore blocking. Earlier testing also indicated that reaction with the steel 

substrate may lead to formation of a possible beneficial intermediate layer of iron 

hydrogen phosphate hydrate that was identified by XRD. There was a general increase in 

thickness of that hydrated layer observed with longer exposure time. The enhanced 

porosity could facilitate moisture to produce the intermediate hydrate product by reacting 

with the steel substrate. Such reactions may include reactions such as (Wagh, 2004)  

2Fe3(PO4)2 +8H3PO4+1.5O2+21H2O=6(FePO4.H3PO4.4H2O)  (Eq. 6.2) 

 It was apparent that the layer here formed in relation to apparent significant corrosion of 

the steel substrate. The steel consumption at the blister site under the hydrate layer is 

disconcerting as there are apparent conditions where coating corrosion mitigation is 

compromised.  

The degradation process can be summarized in following steps 

Step 1: Initial degradation of barrier ceramic by alternate wet and dry cycle and 

interaction with moisture. 

Step 2: The degradation of barrier ceramic and characteristics porosity of the CBPC 

coating facilitates moisture within the coating. 

Step 3: The coating constituent further reacts and form magnesium phosphate hydrate 

with presence of moisture for the formation of intermediate product instead of phosphate 

ceramic during application. 

Step 4: The coating constituents also (phosphorus and magnesium) leaches out for its 

water solubility and enhances the porosity.  
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Step 5: The enhanced porosity further facilitates moisture to coating substrate and iron 

corrosion initiates at steel substrate.  

Step 6: The apparent formation of iron corrosion product reacted with phosphate 

compounds to form iron phosphate hydrate. 

It is noted again that the material used in testing was intended to be prepared and 

coated in accordance to manufacturer best practices, but indications of significant sample 

variability were observed. As with any test program with provided test materials, the 

findings described are solely based on the testing results for the materials received, and 

may not necessarily reflect material behavior due to any changes by the materials 

providers.  Also, the outdoor exposure periods used here were rather short to fully 

identify long term behavior, and accelerated tests in salt-fog and solution immersion were 

aggressive and not necessarily representative of field conditions. However, the findings 

from this study were meant to provide indicators of major material incompatibility with 

environments relevant to highway bridges. As such, the scope of the work was broad and 

did not focus on any particular application or environment.  
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CHAPTER 7 

CONCLUSION  

The CBPC coating was exposed in outdoor and salt-fog environment to access the 

integrity of coating system in humid and aggressive marine bridge environment. Electro 

chemical tests were also done in wet and alternate wet and dry condition to get advanced 

information about the degradation mechanism of CBPC coating. The findings of those 

test results are summarized in the following paragraphs  

CBPC coating degraded in moist environmental condition. The degradation was 

in the form of scouring and chalking on coating surface. That compromises the barrier 

protection for long-term durability of the steel bridges. So, bridge locations with high 

moisture presence should be avoided to reduce CBPC coating degradation. 

Poor coating adhesive and cohesive strengths were observed in as-received and 

exposed conditions. Major pull-off strength reduction can occur regardless of significant 

thickness change during exposure. This indicates that the ceramic coating degrades by 

internal deterioration rather than only surface weathering in high moisture conditions. 

The CBPC forms during the application of acid phosphate and magnesium 

hydroxide at pH 3-4 but the apparent deficiency in reaction, hydration product of 

magnesium form along with phosphate ceramic and some coating constituents remains 

unreactive.  Hence, subsequent reactions of those coating constituent materials occur 

during the exposure to moisture, which further accelerate the degradation process. 

The reaction of the unreacted coating constituents formed different forms of hydrates 

and leaches out the magnesium and phosphorus compounds from the CBPC matrix at 
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moist condition. That resulted a porous CBPC coating and facilitate more moisture within 

the coating to accelerate bulk ceramic degradation.  

Under coating corrosion of the steel substrate occurred for the availability of 

moisture at the steel substrate and the corrosion product reacted with the coating 

constituent to form apparent protective iron phosphate hydrate. The developed phosphate 

hydrate was not continuous. Therefore, the corrosion mitigation by phosphate hydrate 

may not be well manifested. The steel consumption under the hydrate layer is alarming as 

there are apparent conditions where coating corrosion mitigation is compromised in the 

long run.  

In chloride solution, extended undercoating surface hydration product formed in 

non-scribed samples, and the oxide product was within the exposed steel of scribed 

regions may be for the possible beneficial cathodic prevention which needs to be further 

investigated.  

Scribed and non-scribed samples had similar active OCP condition, which indicated 

the poor barrier property of the CBPC coating. Further, high corrosion rate in salt 

solution is possible indicative of steel substrate corrosion in marine environment. 

EIS analog circuit curve fitting of constant phase element can be used to determine 

capacitive behavior of porous CBPC coating. Numerical simulation for Yo to C 

conversion has shown satisfactory for condition of greater impedance dispersion (as low 

as n=0.5) and did not appear to convolute the Yo to C conversion.  

  Water sensitive response of CBPC coating was identified by EIS measurement. The 

deduced capacitive response of the samples indicates early saturation with water in very 

short exposure. Also, pore resistance measurements from immersion testing did not show 
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a major decreasing trend with time, but rather a constant to somewhat increasing trend 

with time. So, the resolved impedance coating parameters give some indication of pore 

activity but distinct trends with time or exposure environment cannot be captured by only 

EIS measurement for CBPC coating. 

MIP testing along with EIS measurement can give more advanced information about 

pore characteristics related to coating degradation process. The results indicated that there 

remains a network of small pores in the as-received condition and exposed conditions and 

that some fraction of pores is enlarged during testing due to further reactions of the 

constituent materials.  

A calibration factor was suggested to quantify the delaminated coating area. Results 

were consistent with MIP data indicating confluence of pore defects. 
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Figure A1: CBPC Samples Exposed at Inland Test Site 
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Continuation of Figure A1: CBPC Samples Exposed at Inland Test Site 

 

Figure A2: CBPC Samples Exposed at Beach Test Site 
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Continuation of Figure A2: CBPC Samples Exposed at Beach Test Site 
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Figure A3: CBPC Samples Exposed at Salt-Fog 

As-received 2200 Hrs
5800 Hrs

Front Back Front Back

14600 Hrs

Front Back



128  

 

 
Continuation of Figure A3: CBPC Samples Exposed at Salt-Fog 
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Continuation of Figure A3: CBPC Samples Exposed at Salt-Fog 
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Figure A4: Exposed Substrate after Pull-off Strength of Inland Samples after 4-

Month 

 

 

Figure A5: Exposed Substrate after Pull-off Strength of Inland Samples after 8-

Month 

 

 

Figure A6: Exposed Substrate after Pull-off Strength of Inland Samples after 24-

Month 
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Figure A7: Exposed Substrate after Pull-off Strength of Beach Samples after 4-

Month 
 

 

Figure A8: Exposed Substrate after Pull-off Strength of Beach Samples after 8-

Month 

 

 

Figure A9: Exposed Substrate after Pull-off Strength of Beach Samples after 24-

Month 
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Figure A10: Exposed Substrate after Pull-off Strength of Salt-Fog Samples after 

2200- Hours 
 

 

Figure A11: Exposed Substrate after Pull-off Strength of Salt-Fog Samples after 

5800- Hours 
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Figure A12: Exposed Substrate after Pull-off Strength of Salt-Fog Samples after 

14600-Hours 
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