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ABSTRACT OF THE THESIS 

GREEN SEA TURTLES (CHELONIA MYDAS) IN BERMUDA EXHIBIT AN 

ONTOGENETIC DIET SHIFT DESPITE OVEREXPLOITATION OF RESOURCES IN 

THEIR DEVELOPMENTAL HABITAT 

by 

Claire Margaret Burgett 

Florida International University, 2017 

Miami, Florida 

Professor James W. Fourqurean, Major Professor 

 Green sea turtles in Bermuda are overgrazing the seagrasses on which later life 

stages are thought to specialize. I hypothesized that larger green turtles in Bermuda 

would display individual diet specializations during seagrass scarcity. Stable isotope 

methods were used to determine the diet composition of green sea turtles from the 

Bermuda Platform as a function of size class and in turtles captured in successive years. 

Individual turtles had a wide range of diets, however, the variation in diets was driven by 

differences among size class rather than within the size classes of larger turtles, indicating 

that green turtles undergo a dietary ontogenetic shift during their residency on the 

Bermuda Platform and no clear specialization of diets among late-stage individuals. The 

apparent lack of dietary specialization of larger turtles indicates that older turtles are not 

diversifying their diets in response to the drastic reductions in seagrass in Bermuda. 
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I. INTRODUCTION 

Ontogenetic shifts in diet can reduce intraspecific competition, and are shaped by 

body size, resource availability and size-dependent predation rates; they are a common 

feature of the life history of many diverse organisms (Werner and Gilliam 1984). 

Ontogenetic diet shifts are often coupled with changes in both the organism’s size and the 

spatial domain of different life history stages. Theory predicts that if early life stage 

individuals come from a low-resource environment and subsequent stages recruit to high-

resource environments, then the later stages in high-resource environments should not 

saturate or overexploit the resources in the high-resource habitat (Mittelbach, Osenberg & 

Liebold 1988; Polis et al. 1996).  

While ontogenetic shifts in diet can minimize intra-specific competition for food 

among organisms of different age classes (Werner & Gilliam 1984), extreme population 

diet specialization makes populations susceptible to declines in the life-stage-specific 

specialized food choices if all individuals in a population exhibit the same food 

preferences. Individual diet specialization within a population can arise if 1) cognitive 

constraints allow individuals to recognize alternate food sources, 2) individuals can only 

forage efficiently if they specialize in a subset of the potential food resources, 3) different 

habitats have different resource pools and individuals only inhabit a subset of habitats, 4) 

ecological tradeoffs (e.g., food for safety) result in variability in the way individuals 

access food resources, or 5) if food resources are scarce (Estes et al. 2003; Svanback & 

Persson 2004; Araujo et al. 2009; Araujo, Bolnick & Layman 2011). 

Ontogenetic shifts from carnivorous and omnivorous juveniles to herbivorous 

adults are common in reptiles, including turtles (Werner & Gilliam 1984; Polis et al. 
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1996), and the ontogenetic diet shift often seen in green sea turtles (Chelonia mydas) is 

particularly well-studied. While most marine organisms that exhibit ontogenetic diet 

shifts have young that feed in more productive (littoral) habitats with adults feeding in 

less productive pelagic habitats (Barnes & Hughes 1988; Polis et al. 1996), green turtles 

display the opposite pattern. Juvenile green turtles recruit to productive, neritic, nearshore 

habitats at a size of about 25 cm – 35 cm straight carapace length (SCL) after spending 3-

6 years in unproductive, oceanic, pelagic habitats (Carr 1987; Zug & Glor 1998; Reich, 

Bjorndal & Bolten 2007), and stable isotope diet studies show an ontogenetic shift from a 

pelagic to a neritic, often seagrass-based, diet after the juveniles arrive in the neritic 

habitats (Reich, Bjorndal & Bolten 2007; Arthur, Boyle & Limpus 2008; Howell et al. 

2016). But, evidence from areas with few seagrass resources suggest that subadult green 

turtles can and do exploit non-seagrass resources when seagrasses are not available 

(Cardona, Aguilar & Pazos 2009; Carman et al. 2012; Russell & Balazs 2015; Santos et 

al. 2015; Howell et al. 2016). Substantial individual specialization in the diets of adult 

green turtles, including specialization on animal food resources, from a habitat with 

abundant seagrass resources and very high predation rates on turtles suggest that 

individual green turtles can make different choices that balance food abundance and risk 

(Burkholder et al. 2011). Individual turtles with specialized diets remain specialized over 

many years (Vander Zanden, Bjorndal & Bolten 2013). 

While green turtles remain a CITES-listed protected species (Cheloniidae, 

Appendix 1) (https://cites.org/eng/app/appendices.php, 2017), the successes of 

conservation measures has resulted in rapid increases in the number of nesting turtles 

laying eggs on nesting beaches in many areas of the world, including Florida and 
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Tortuguero, Costa Rica in the Western North Atlantic (Chaloupka et al. 2008). 

Concomitant with these population increases, the number of reports of overgrazing of 

seagrasses by green turtles have increased (e.g. (Williams 1988; Fourqurean et al. 2010; 

Lal et al. 2010; Kelkar et al. 2013; Christianen et al. 2014). Such overgrazing events may 

be partially explained by the lack of top-down control on green turtle populations because 

of global overfishing of their predators, large sharks (Heithaus et al. 2014).   

The green turtle population on the Bermuda Platform (ca. 32.4ºN, 64.8ºW) 

provides an ideal system to test general theories about ontogenetic diet shifts and dietary 

specialization. Compared to the oligotrophic western North Atlantic waters that surround 

the islands, Bermuda is a productive neritic habitat with seagrass meadows, coral reefs 

and mangroves (Coates et al. 2013). Bermuda is also an important developmental habitat 

for green turtles from many nesting populations throughout the NW Atlantic. The turtles 

arrive as juveniles on the Platform at about 22 cm Straight Carapace Length (SCL), and 

depart the Platform many years later when they are 65-75 cm sub-adults (Meylan, 

Meylan & Gray 2011). The seagrass resources on which they may depend are in 

precipitous decline (Murdoch et al. 2007), and it has been experimentally demonstrated 

that overgrazing by sea turtles is at least partly responsible for these declines (Fourqurean 

et al. 2010). Because of the declining abundance of seagrasses, as well as the documented 

capacity of green turtles to consume foods other than seagrasses after their settling in 

neritic habitats, we expected that dietary analyses would illuminate a diversity of diet 

strategies among individuals within the green turtle population rather than a population-

wide ontogenetic diet shift to a seagrass-based diet. Specifically, we posed these three 

questions: 1) What is the green turtle diet composition in the neritic developmental 
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habitat on the Bermuda Platform?  2) How does diet composition differ across green 

turtle size classes? 3) How do sites with potentially different resource availability or 

resource quality affect green turtle diet composition? We employed stable isotope 

techniques to address these questions, specifically measuring d13C and d15N composition 

of green turtles and potential food sources. We then used isotope mixing models (Parnell 

et al. 2013) to determine turtle diets. Mixing model outputs were used to indicate the 

importance of different potential food sources in the turtles’ diets as a function of their 

size class. Marked gradients in the stable isotopic composition of seagrasses across the 

Platform (Fourqurean et al. 2015) also provided the potential to refine stable-isotope-

derived diet composition measurements using site-specific values of these food sources. 

 

II. MATERIALS AND METHODS 

A. FOOD WEB SAMPLE COLLECTION 

  In order to establish the stable carbon and nitrogen isotopic composition of 

potential food for green turtles, samples of a variety of primary producers (macroalgae 

and seagrasses) and animals (scyphozoans, ctenophores, octocorals, tunicates, sponges, 

and crustaceans) that had been identified as prey in other studies (Burkholder et al. 2011) 

were haphazardly collected by divers during turtle capturing sessions. Seagrasses were 

sampled across the entire Platform as part of another contemporaneous study (Fourqurean 

et al. 2015). Each seagrass sample was a composite of 5-20 shoots collected from a 3×3 

m area.  Seagrass species found at our sampling sites included Thalassia testudinum, 

Syringodium filiforme, and Halodule sp. (the taxonomic identity of the Halodule 

encountered is an unresolved question). Samples were stored on ice in the field and then 
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frozen at -20°C until processing.  Prior to isotope analyses epiphytes were removed from 

seagrass leaves by scraping them with a razor blade. 

 

Figure 1.  Capture Locations of Green Turtles (Chelonia mydas) on the Bermuda 
Platform.  Inset shows location of Bermuda within the Atlantic Ocean. 
 

B. TURTLE TISSUE COLLECTION 

 Green turtles were captured from 12 locations on the Bermuda Platform by the 

Bermuda Turtle Project (BTP) and at an additional four locations by the Department of 

Environment and Natural Resources using the entrapment net procedure described by 

Meylan et al. (2011, Figure 1).  Captured turtles were transferred to a nearby vessel for 

measurement and tissue sampling. Individual net sets produced between 1 and 20 turtles. 

One of the capture locations was Chub Heads, an intensely grazed site at which a turtle 

grazing exclosure experiment was conducted (Fourqurean et al. 2010). Epidermal tissue 
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samples were collected from a total of 159 individual turtles captured in 23 net sets over 

the period July 30 to August 17, 2012 and in 7 net sets between August 6 and 16, 2013. 

All turtles were tagged following Bermuda Turtle Project procedures (Meylan, Meylan & 

Gray 2011), allowing recaptures in 2013 of turtles caught in 2012 to be recognized. All 

turtles were measured for straight carapace length (SCL) with calipers.  Skin samples 

from the turtles were collected from a standardized location on the trailing edge of the 

rear flippers, which had been swabbed with ethanol. Skin samples were collected using a 

stainless steel 5 or 8 mm biopsy punch, placed on ice in the field, and transported to the 

lab, where they were frozen (-20°C) until processed. 

 

C. STABLE ISOTOPE ANALYSIS 

 All samples (seagrass, macroalgal, potential animal prey, and turtle tissue) were 

dried at 50°C to constant weight and each sample was ground for homogenization.  

Macroalgal and animal prey samples were decalcified by placing moistened, powdered 

samples in a sealed chamber over concentrated hydrochloric acid until they reached 

constant weights. Variation in lipid concentrations of organisms and tissue types has been 

shown to bias stable isotope analyses (Post et al. 2007). Nonetheless, lipids were not 

extracted from any samples as our previous work with green turtle stable isotope ratios 

concluded lipid extraction was not necessary for this tissue type (Burkholder et al. 2011). 

Samples were analyzed for stable isotopic content of C and N using standard EA-IRMS 

techniques at the Florida International University Stable Isotope Laboratory. Analytical 

reproducibility of the reported δ values, using sample replicates, was better than ±0.2‰ 

for δ15N and ±0.08‰ for δ13C. 
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D. STATISTICAL ANALYSES 

 Potential food species were pooled into isotopically indistinguishable groups 

(which we call food groups) by pooling all observations within 10 broad categories and 

then using ANOVA (SPSS 23) to define homogenous subsets of the broad categories. We 

tested for relationships between the haphazardly-collected non-seagrass potential foods 

and the more dense and spatially comprehensive data on spatial patterns in seagrass 

stable isotopic signatures (Fourqurean et al. 2015) by comparing non-seagrass food 

signatures to the seagrass signatures by site with linear regression.  For analysis of 

population-level descriptions of the variability among turtles in isotopic signatures and 

the relationship between SCL and isotope values, data from the second observation of 

recaptured turtles in 2013 were excluded. Turtle size classes were defined by 10 cm 

increments in SCL in order to maintain an adequate sample size in the groups of our 

larger turtles and to facilitate direct comparisons to other studies. Differences in turtle 

isotope ratios between size classes of turtles were determined using ANOVA (SPSS 23).   

 

E. DIET MIXING MODELS 

Diet composition was determined using the SIAR Bayesian diet mixing model 

program package in R (Parnell et al. 2008; Parnell et al. 2013) using an average of 

published discrimination of epidermal tissues from diet values for juvenile green turtles 

((Seminoff et al. 2006); δ15N = 2.80 ± 0.11‰, δ13C = 0.17 ± 0.03‰ and (Vander Zanden 

et al. 2013); δ15N = 3.77 ± 0.40‰, δ13C = 1.87 ± 0.56‰).  Diet composition mixing 

models were performed on the population as a whole, for each size class, and for each 

individual. Site-specific seagrass isotope values for the large seagrass species (Thalassia 
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testudinum, Syringodium filiforme, Halodule sp.) were determined using interpolated 

seagrass δ15N and δ13C values from the results presented in (Fourqurean et al. 2015) 

because of high variation between sites for seagrass stable isotopes.  Mixing models were 

run twice for each individual turtle using the seagrass isotope values associated with the 

site at which the turtle was collected, as well as using the average from the entire 

Bermuda Platform.  The diet compositions determined using the site-specific values and 

the Platform average were compared to determine if knowledge of small-scale spatial 

variability in seagrass isotopic values could improve diet composition analyses.  We 

analyzed the form of the ontogenetic diet shift as a function of turtle size by a series of 

model fitting exercises using regressions and Akaike’s information criterion to describe 

the relationship between the amount of seagrass in each turtle’s diet and SCL. 

 

III. RESULTS 

A. POTENTIAL TURTLE FOOD SOURCES 

Samples of 21 different taxa of potential turtle food items were collected, 

including four genera of seagrasses, 13 genera of macroalgae, and 15 taxa of animals (see 

Table S1 in Supporting Information). The potential foods grouped into three isotopically-

distinct food groups: seagrasses, macroalgae, and animals (ANOVA results for 

differences among groups: δ15N: F=25.16, p<0.001, δ13C: F=211.8, p<0.001). These food 

groups had considerable variability in their stable isotopic compositions (Figure 2), In 

general, seagrasses had the lowest δ15N (1.7 ± 3.5 ‰, confidence intervals associated 

with means expressed as one standard deviation throughout the paper) and animals had 

the highest (5.5 ± 2.1 ‰, Table 1). Conversely, seagrasses had the highest average d13C (-
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7.4 ± 1.9 ‰) and animals had the lowest (–17.9 ± 1.4 ‰, Table 1). Note that seagrasses 

from the Platform-wide survey (Fourqurean et al. 2015) reported in Table 1 had a very 

broad range in δ15N, from -10.1 ‰ to 8.8 ‰. However, the d15N of seagrasses from turtle 

capture sites had a much narrower range (!	 = 2.9 ± 1.6 ‰, with a range of 0.1 – 6.3 ‰) 

since the capture sites were generally close to shore where δ15N of seagrasses varied less 

than they do across the whole Platform. There were no significant relationships between 

seagrass δ15N and the δ15N of macroalgae and animals across sites as assessed by linear 

regression, indicating that macroalgae and animal prey did not have the same spatial 

pattern in nitrogen isotope values as documented for seagrasses across the Bermuda 

Platform (Fourqurean et al. 2015). 

 

Table 1:  Descriptive statistics of the carbon and nitrogen isotope values for the focal 
consumers (turtles) and the three food groups (animals, seagrass, and macroalgae).  
 

 d15N   d13C  

 Mean Min Max SD Mean Min Max SD 

Turtles 7.2 2.4 12.6 1.7 -9.5 -17.9 -4.1 3.2 
Animals 5.5 2.0 10.6 2.1 -17.9 -20.9 -15.3 1.4 
Seagrass 1.7 -10.1 8.8 3.5 -7.4 -12.9 -3.3 1.9 
Macroalgae 3.8 -2.3 9.0 2.1 -14.3 -20.3 -8.3 2.5 
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Figure 2.  Isotope Ratios for All Groups. Nitrogen and carbon stable isotope ratios (in 
standard δ notation in ‰) for all green turtles (Chelonia mydas) and potential food 
groups (macroalgae, animals, and seagrass) on the Bermuda Platform.  Descriptive box 
and whisker plots in the margins show the distribution of the values for each group, with 
median at the central line, first to third quartile in the boxes, and the 95% confidence 
interval in the whiskers. 
 

B. SIZE DISTRIBUTION AND STABLE ISOTOPE RATIOS OF CAPTURED       

TURTLES 

The 157 turtles measured in 2012 ranged in size from 25.1 to 68.9 cm SCL.  The size 

distribution was skewed towards smaller turtles (Fig. 3); the mean SCL was 38.4 ± 10.5 

cm.  Skin samples from the captured turtles had an average d15N of 7.3 ± 1.6 ‰ and 

average d13C of -9.3 ± 3.1 ‰ (Table 1), but there was considerable variation in both  

isotope ratios (Figure 2). Plotted as a function of the size of individual turtles, a clear 

trend in increasing d13C with size was evident, no similar clear trend was evident in d15N 
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with length, but the scatter in d15N was larger for smaller turtles (Figure 4). When 

analyzed using 10 cm size classes as groups (Figure 5), there were significant differences 

among size classes in d13C (F=35.6, p<0.001), but no significant differences in d15N 

(F=1.6, p=0.173).  

 

Figure 3. Size Distributions of Green Turtles (Chelonia mydas) Captured in 2012. Size 
distribution of the green sea turtles (Chelonia mydas), given in the frequency of 
observations within 10 cm categories of Straight Carapace length (SCL). 
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Figure 4.  Green Turtle (Chelonia mydas) Stable Isotope Ratios in Relation to Turtle Size. 
Stable isotopic ratios (A: d13C, B: d15N, both in ‰) for skin samples from green sea 
turtles (Chelonia mydas) in relation to turtle size (Straight Carapace Length, SCL) on the 
Bermuda Platform.  Samples shown in these graphs are non-recaptures collected in 
August 2012 or August 2013.  

A 

B 
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Figure 5. Variation in Green Turtle (Chelonia mydas) Stable Isotope Ratios as a Function 
of Size Class. Variation in stable isotope ratios (d13C and d15N, in ‰) of skin samples as 
a function of size class for captured green turtles (Chelonia mydas). There were 
significant differences among size classes in d13C (F=35.6, p<0.001), but no significant 
differences in d15N (F=1.6, p=0.173). Letters denote homogenous subsets of the data 
(Tukey post-hoc test). 
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A.  

B.  

 

Figure 6.  Isotope Ratios in Relation to Size for Recaptured Green Turtles (Chelonia 
mydas). A. Straight carapace length in relation to change in d15N for all recaptured green 
turtles (Chelonia mydas) from Bermuda.  B.  Straight carapace length in relation to 
change in carbon isotope values for all recaptured turtles from Bermuda.  Y-axis indicates 
difference in stable isotope ratios between years or each individual. 
 

We recaptured 12 of the turtles sampled in 2012 again in 2013. Eleven out of 12 

of our recaptures were captured at the same site as the previous year’s capture, while the 

other turtle was caught at a site 1 km away. All recaptured turtles had longer SCL in 

2013, compared to 2012, but the fractional increment in growth was not a linear function 
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of initial SCL (linear regression, r2 = 0.28, p = 0.41). On average, recaptured turtles had 

6.4 ± 2.6 % greater SCL in 2013 than in 2012, with individual growth increments ranging 

between 1.6 % y-1 and 9.2 % y-1 for turtles that ranged between 27.2 cm and 51.9 cm 

SCL.  Smaller turtles had large changes in d13C from 2012 to 2013, while turtles above 

40 cm in SCL showed no change over the year, while year-on-year changes in d15N were 

small in magnitude, variable, and not a function of the size of the turtles in 2012 (Figure 

6).   

 

C. DIET MIXING MODELS 

Averaged across all size classes and using Platform-wide averages of the isotopic 

composition of potential food sources, the isotope mixing model indicated that seagrasses 

were the most important component of the diet of the Bermudian green turtle population.  

For the population as a whole, 53% of the C and N assimilated came from seagrasses, 

22% came from macroalgae, and 24% came from animal sources. A clear ontogenetic 

diet shift was apparent when the mixing model was applied to turtles grouped by size 

class, as the diets of the largest sampled turtles were dominated by seagrass and the diets 

of the smallest sampled turtles were dominated by animal prey (Figure 7).  Using 

seagrass data from each site in our mixing models rather than the Platform averages led 

to predictions of lower proportions of seagrass in turtle diets compared to using the 

Platform average seagrass data.  The range in seagrass proportions in turtle diets 

calculated for individual turtles using site specific data, was 5% to 80% with an average 

of 47% while the range in seagrass proportions in turtle diets calculated using Platform 

average data was 6% to 83% with an average of 51%. 
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Figure 7.  Diet Composition Across Green Turtle (Chelonia mydas) Size Classes. The 
gray stacked boxes represent 50%, 75%, and 95% credibility intervals for the mixing 
model outputs of the turtle diet proportions.   The thick black line represents the mean, 
the dotted line represents the median, and the dot represents the mode of the mixing 
model iterations for each group. 
 

 When plotted as a function of SCL, the predicted fraction of seagrasses in the 

diets of turtles increased with size, asymptotically approaching a maximum value (Figure 

8). We determined the rational function with the formula Si = 1 + SMax – (SCLi/(SCLi-V)) 

best described our data (see Table S3 and Figure S2 in Supplementary Information for 

details of candidate models), where Si was the proportion of seagrass consumed for 
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individual i, Smax was the horizontal asymptote which represents the average highest 

fraction of seagrasses in the diet of individuals, SCLi is the straight carapace length or 

size of the individual i, and V is the vertical asymptote for the relationship necessary to 

shift the line away from zero as these individuals have no access to seagrass during their 

pelagic life phase. The x-intercept represents the size of turtles when entering the 

Bermuda Platform. We found SMax= 0.90 and V=10.71, which solves for an x-intercept of 

22.6 cm SCL. The Smax of 0.90 shows that the percentage of seagrass in the diet of even 

our largest sampled turtles was likely to still be increasing, albeit slowly. Our largest 

sampled turtle (68.9 cm SCL) was expected to consume 71% seagrass based on this 

relationship and was observed at 76% seagrass. The average-sized turtle in our sample 

(39.0 cm SCL) is predicted to consume 52% seagrass by this relationship. The halfway 

point between the effective maximum of the relationship for our population (71%) and 

the minimum (0%) is reached at 30.5 cm SCL, reflecting the decrease in the rate of diet 

change over the time an individual turtle is on the Platform.  

Mixing model outputs for diet compositions showed large variations in diets 

within the turtle populations at most sites and indicated that there were differences in 

foraging preferences based on site (See Figure S3 in Supplemental Materials). However, 

there were differences in the distribution of size classes among sites, and the size classes 

had different diet compositions (Figure 7). Plotting the average seagrass percentage in the 

diet by the average size of the turtles captured at a site generally followed the relationship 

between individual turtle diets and size (Figure 9). The most significant site-wise 

deviation from this relationship was seen at Chub Heads, our turtle capture site at which 

seagrasses were known to be overgrazed (Fourqurean et al. 2010).  
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Figure 8. Relationship Between Green Turtle (Chelonia mydas) Size and Seagrass 
Consumption for All Individuals. The line was determined using non-linear regression in 
SPSS using the relationship Si = 1 + SMax – (SCLi/(SCLi-V)) where Si is the proportion of 
seagrass consumed for individual i, Smax is the horizontal asymptote which represents the 
average highest seagrass consumption by individuals, SCLi is the straight carapace length 
or size of the individual i, and V is the vertical asymptote for the relationship necessary to 
shift the line away from zero as these individuals have no access to seagrass during their 
pelagic life phase.  The resulting equation was Si = 1 + 0.897 – (SCLi/(SCLi-10.709)), 
#$%&'  = 0.40. 
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Figure 9.  Relationship Between Green Turtle (Chelonia mydas) Size and Seagrass 
Consumption by Site.  The line plotted represents the relationship between straight 
carapace length and proportion of turtle diet comprised of seagrass determined using 
individual values.  The means of the turtle size and the seagrass consumption data were 
calculated in order to visualize how each site varied from this relationship.  AB= Annie’s 
Bay, BB= Bailey’s Bay, BH= Blue Hole, CH= Chub Heads, CG= Cow Ground, FR= 
Ferry Reach, FB= Frank’s Bay, FSC= Fort Saint Catherine’s, GB= Grotto Bay, PB= 
Pilchard Bay, SLB= Somerset Long Bay, SH= Stock’s Harbour, TH= Tudor Hill, Vix= 
Vixen, Wal= Walsingham, and WH= Wreck Hill. 
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IV. DISCUSSION 

The isotopically-distinct nature of food sources available to green sea turtles on 

the Bermuda Platform and the broad ranges in the d15N and d13C of turtle skin tissues 

indicate that individual turtles had a wide range of diets. However, the variation in diets 

was driven by diet differences among size class rather than within the size classes of 

larger turtles, indicating that there is a clear ontogenetic shift in the diets of green sea 

turtles during their residency on the Bermuda Platform. With the possible exception of 

turtles collected from one location, the apparent lack of dietary specialization of larger 

turtles indicates that older turtles are not diversifying their diets in response to the recent, 

drastic reductions in the seagrass communities in Bermuda.  

Theory predicts that a population of organisms that have evolved an ontogenetic diet 

shift that accompanies a habitat shift from an early juvenile, low resource availability 

habitat to a later life stage, high resource availability habitat should not deplete resources 

in the later life stage habitat (Mittelbach, Osenberg & Liebold 1988; Polis et al. 1996). 

However, given the decline in seagrass communities being driven by sea turtle 

overgrazing on the Bermuda Platform (Murdoch et al. 2007; Fourqurean et al. 2010), 

older turtles that have undergone an ontogenetic shift to a seagrass-based diet are indeed 

overexploiting the seagrass beds. This apparent contradiction of a theoretical prediction is 

likely driven by the large disparity in the area of the early life stage, low-resource, 

pelagic habitat of the early life stage turtles compared to the very small, neritic, high-

resource availability later life stage habitat. The area of the western North Atlantic is vast 

compared to the small size of the Bermuda Platform (502 km2 shallower than 30m) and 

the even smaller area of seagrass meadows on that platform (no more than 24% of the 
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area of the shallow Platform, (Manuel et al. 2013)). Hence, there is a large discrepancy 

between per-capita resource availability and the total stock of resources between the 

early- and later-stage habitats. 

In other locations where seagrass resources are scarce, sub-adult and adult turtles 

have been shown to incorporate higher proportions of macroalgal and animal food in 

their diets (e.g. (Hatase et al. 2006; Cardona, Aguilar & Pazos 2009; Shimada et al. 2014; 

Santos et al. 2015; Howell et al. 2016), and surveys of the benthic habitats of the 

Bermuda Platform indicate that macroalgae and benthic animals known to be consumed 

by turtles are plentiful (Coates et al. 2013; Manuel et al. 2013). We may have detected an 

early indicator that Bermuda turtles have the capacity to switch from a seagrass diet in 

later life stages: the turtles captured at Chub Heads, a site with known overexploitation 

and recent collapse of the seagrass beds (Fourqurean et al. 2010), consume less seagrass 

as a percentage of their total diet than would be predicted based on their size classes. 

Future sampling will be needed to detect whether the population of turtles on the 

Bermuda Platform respond to decreasing seagrass abundance by shifting their food 

preferences and specializing on macroalgae or animal foods. 

Of course, it seems possible that turtles whose seagrass meadows decline could find 

unexploited ones elsewhere instead of shifting diets, but this does not seem very likely in 

this case. Bermuda is at least 1000 km from any other seagrass habitats in the western 

North Atlantic, making foraging trips off of the Bermuda Platform to other neritic 

habitats impossible for Bermuda-resident turtles. Further, green turtles establish strong 

site fidelity following migration to a neritic foraging ground (Reich, Bjorndal & Bolten 

2007; Arthur, Boyle & Limpus 2008; Howell et al. 2016) and evidence suggests that 
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green turtles on the Bermuda Platform have very small home ranges. Bermuda green 

turtles have high site fidelity as 88% of recaptured turtles in the long-term BTP are 

recaptured over the same small (less than 1 Ha) seagrass beds as their initial capture 

(Meylan, Meylan & Gray 2011). Our recapture data further corroborate that green sea 

turtles in Bermuda have small home ranges and high site fidelity, only 1 in 12 of our 

recaptured turtles was caught at a different location in the second year, and that one turtle 

was recaptured only 1 km from the site of original capture.  As such, it appears that 

Bermuda sea turtles forage over very restricted home ranges. 

The small home ranges of Bermuda green turtles make understanding spatial 

variation in potential food sources incorporated into diet mixing models very important. 

Very steep spatial gradients in seagrass d15N are present on the Bermuda Platform, 

ranging -10.1 ‰ to 8.8 ‰ over a linear distance of only 8 km (Fourqurean et al. 2015). 

Given the average food-web d15N  fractionation of ca. 3 ‰ per trophic level (Wada 

1980), and the measured d15N  fractionation during assimilation by green turtles of  2.8 – 

3.8 ‰ (Seminoff et al. 2006; Vander Zanden et al. 2013) we used in our mixing models, 

using values of seagrass d15N  from the wrong end of a spatial gradient from a turtle’s 

small home range could lead to an apparent change of 3 trophic levels for the green turtle 

diets and the severe under- or overestimation of the importance of animal foods in their 

diet. While we did find that mixing models gave different predictions of the amount of 

seagrasses consumed by turtles when Bermuda average seagrass isotope values or site-

specific isotope values were used in the models, the differences were small in our case 

because all of our turtles were collected from locations where the d15N of the seagrasses 

(0.1 – 6.3 ‰) fell in the middle of the total range for Bermuda. Spatial patterns in stable 
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isotopic composition of primary producers are common around the world (e.g. south 

Florida (Fourqurean et al. 2005) and the Mediterranean Sea (Fourqurean et al. 2007) so 

they should be considered when designing stable isotope food web investigations.   

Interestingly, we saw a clear pattern in the d13C of skin of Bermuda turtles that is 

consistent with an ontogenetic change from an early omnivorous diet to a later sub-adult 

seagrass-based diet, but no consistent pattern in decreasing d15N as they became more 

seagrass-based. Mixing models consistently predicted a high probability that animal 

foods play a role in green turtle diets both in our study and elsewhere (e.g. (Hatase et al. 

2006; Cardona, Aguilar & Pazos 2009; Shimada et al. 2014; Santos et al. 2015; Howell et 

al. 2016). Perhaps the lack of a trend in d15N with age is driven by more variability in 

d15N in the diets of early life stage omnivores than in the later life-stage, predominantly 

seagrass grazing, subadults. Our d13C -SCL relationship for Bermuda green turtles is 

remarkably similar in shape to the relationship found along the southern Texas coastline 

of the western Gulf of Mexico (Howell et al. 2016) where seagrass meadows were 

abundant; however, from the northern part of their study area (op. cit.), green turtles in 

the 30-60 cm SCL size classes had isotopic signatures indicative of a variety of diet 

specializations, from macroalgal- to seagrass-based, which the authors hypothesized to be 

caused by decreased seagrass abundance and faunal diversity in that part of their 

sampling range. 

The derived parameters of our rational function model of the d13C-SCL suggests that 

for most of their residency on the Bermuda Platform, most of the diet of green turtles is 

composed of seagrasses. Solving the model equation for the size at which green turtles 
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first arrive on the platform estimated an SCL of 22.6 cm for new recruits. This estimate is 

similar to the minimum SCL of sea turtles captured in the BTP (22.3 cm, (Meylan, 

Meylan & Gray 2011), and the smallest recorded neritic green turtle reported globally 

(20.8 cm SCL, (Bressette, Gorham & Peery 1998). Both the relationship between d13C 

and SCL for the population and the change in d13C with size in recaptured turtles suggest 

that the ontogenetic diet change occurs between the time the turtles appear on the 

Platform at ca. 22.6 cm SCL, and 40 cm SCL. Using our average growth rates of our 

recaptured turtles of 6.4% y-1, turtles converge on a consistent, seagrass-derived diet d13C 

signature by 9 years after they arrived on the platform. Using the reported average growth 

rate of Bermuda turtles of 2.5 cm SCL y-1 (Meylan, Meylan & Gray 2011), produces an 

estimated time of diet stabilization of 7 years following recruitment. These estimates are 

similar to the timing of the ontogenetic diet change in other green turtle populations. 

Green turtles from Australia exhibit changes in d13C  for 4 years post-recruitment to 

neritic seagrass beds, while their d15N stabilizes at an herbivorous signal after 6 years 

(Arthur, Boyle & Limpus 2008). Our calculations suggest that turtle diets are dominated 

by seagrasses for the majority of their residency on the Bermuda Platform (longest 

recorded residency from recapture data is 14 years and estimated to be as long as 20 

years; (Meylan, Meylan & Gray 2011).  While it is possible that the rapid increase in 

carbon isotope values at small turtle sizes seen in our study is reflective of slow turnover 

within turtle tissues of pelagic recruits, a study of green turtles fed a controlled diet 

showed that turtle tissue isotopes stabilized and reflected their new diet within 371 days 

(Seminoff et al. 2006).  This indicates that turtles would undergo a full turnover of their 

epidermal tissues many times during their residency on the Bermuda Platform. 
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Resource supply and predation risk interact to determine if ontogenetic shifts will 

maximize a population’s fitness, because food availability is not the sole factor driving 

the diet of animals (Werner & Gilliam 1984). The non-lethal effects of predators create 

landscapes of risk that can have marked influences over the feeding behavior and food 

selection of foraging animals, resulting in alterations to the structure and function of plant 

communities (Estes et al. 2011).  It has been shown that green turtles avoid high-risk, 

high-quality seagrasses and forage in lower quality habitat in the face of predation risk 

(Heithaus et al. 2007), and it is likely that the high risk of foraging in seagrass meadows 

drives some green turtles to specialize on non-seagrass foods (Burkholder et al. 2011). 

Tiger sharks are the primary predator of large green turtles (Heithaus et al. 2008), and 

tiger shark populations near Bermuda have apparently declined drastically since the 

1980’s (Baum et al. 2005). The continued reliance of Bermuda’s turtles on a declining 

seagrass resource base instead of switching to non-seagrass foods may be partially caused 

by lack of predation risk, leading to low cost of vigilance and a resulting low giving up 

density (GUD, sensu (Brown 1988). As green turtles abandon feeding patches when 

biomass falls below GUD (Lacey, Collado-Vides & Fourqurean 2014), it is possible that 

low cost of vigilance reduces GUD so low as to lead to seagrass loss. Lack of top-down 

pressure on rebounding sea turtle populations may be contributing to ecosystem crash in 

some of the world’s seagrass meadows (Heithaus et al. 2014). 

 Given our documentation of the large dependence of Bermuda’s green sea turtles 

on seagrass diets and the recent decline in Bermuda’s seagrasses, the sustainability of 

Bermuda as a developmental habitat for green sea turtles needs to be quantitatively 

assessed. As the Bermuda green turtle population is believed to be an important 
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developmental habitat for green turtles from a mixed stock of nesting beaches throughout 

the North Atlantic and Caribbean (Meylan, Meylan & Gray 2011), further collapse of this 

habitat could have wide ranging effects on green turtles in the NW Atlantic. 

   

V. DATA ACCESSIBILITY 

Data available at the Florida Coastal Everglades LTER Data Resources website 

(http://fcelter.fiu.edu/data/)  
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SUPPLEMENTAL FIGURES 

 
 
Figure S1. Diet Composition of Green Turtles (Chelonia mydas) for Each Capture 
Location. The gray stacked boxes represent 50%, 75%, and 95% credibility intervals for 
the mixing model outputs of the turtle diet proportions. The thick black line represents 
the mean, the dotted line represents the median, and the dot represents the mode of the 
mixing model iterations for all individuals at each site. 
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Figure S2. Relationship Between Green Turtle (Chelonia mydas) Size and Seagrass 
Consumption with Multiple Candidate Models. Proportion of seagrass in the diets of 
individual turtles, as predicted by the isotope mixing models, as a function of turtle size 
in Straight CarapaceLength, with the best-fit lines of the 6 candidate models described in 
Supplementary Materials Table S3. Black solid line is the chosen rational model, Blue 
small-dashed = our rational model excluding Chub Heads data,  Green dotted= 
Michaelis-Menton model, Purple long dashed= Michaelis-Menton model with a non-zero 
y intercept, and Red two-dashed= linear relationship. 
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Figure S3. Comparison of Model Outputs for Site-Specific Seagrass Values and 
Platform-Average Seagrass Values. Outputs based on site-specific seagrass values are 
shown in red circles with the corresponding non-linear regression shown as a solid red 
line. Outputs based on Platform-average seagrass values are shown as blue X’s with the 
corresponding non-linear regression shown as a dashed blue line. 
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SUPPLEMENTAL TABLES 

Table S1. d15N and d13C of potential green turtle food organisms from the Bermuda Platform, summarized by subgroup and the 
Food Groups used in the diet mixing models. SD = Standard Deviation. 
 

 δ15N (‰) δ13C (‰) 
Food Group Sub group Lowest Identified Taxon n Min  

 
Max   Mean  SD  

 
Min  
 

Max   Mean  SD  

Seagrass Seagrass  455 -10.1 8.8 1.7 3.5 -12.9 -3.3 -7.4 1.9 
  Halodule 96 -8.9 6.1 1.5 3.3 -12.4 -6.7 -9.7 1.1 
  Halophila 75 -1.2 7.5 2.1 2.0 -12.9 -5.7 -8.4 1.4 
  Syringodium 169 -7.7 8.8 1.2 4.0 -10.0 -3.3 -5.6 1.2 
  Thalassia 115 -10.1 8.0 2.3 3.7 -9.9 -5.5 -7.4 0.9 

Macroalgae   60 -2.3 9.0 3.7 2.1 -20.3 -8.3 -14.4 2.5 
 Calcareous Green Algae  27 -2.3 5.6 3.6 2.0 -17.0 -10.2 -13.7 2.0 
  Halimeda 13 0.1 5.3 3.0 1.9 -17.0 -14.1 -15.2 0.9 
  Penicillus 5 -2.3 5.6 3.8 3.4 -15.0 -12.5 -13.5 0.9 
  Udotea 9 3.1 5.2 4.3 0.8 -13.7 -10.2 -11.5 1.2 
 Non-Calcareous Green Algae  17 1.7 9.0 5.1 2.2 -20.3 -8.3 -14.2 3.0 
  Avrainvillea 1   1.7    -20.3  

  Caulerpa 11 3.3 9.0 4.8 1.5 -16.9 -8.3 -13.0 2.7 
  Chaetomorpha 2 7.3 7.9 7.6 0.4 -18.7 -14.6 -16.7 2.9 
  Cladophora 2 7.8 8.0 7.9 0.1 -15.0 -14.3 -14.6 0.5 
  Dictyosphaeria 1   1.7    -14.9  

 Brown Algae  8 -0.1 3.5 1.9 1.3 -17.0 -11.4 -14.9 2.5 
  Dictyota 3 1.0 3.5 2.4 1.3 -17.0 -16.3 -16.6 0.3 
  Padina 3 2.0 3.4 2.6 0.8 -12.6 -11.4 -11.9 0.6 
  Sargassum 2 -0.1 0.3 0.1 0.3 -17.0 -16.6 -16.8 0.3 
 Red Algae  8 2.2 4.4 3.2 1.0 -18.8 -14.2 -16.7 1.6 
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  Amphiroa 2 4.0 4.4 4.2 0.3 -17.8 -17.8 -17.8 -17.8 
  Laurencia 6 2.2 4.0 2.9 0.9 -18.8 -14.2 -16.4 1.7 

Animals   52 2.0 10.6 5.4 2.1 -20.9 -15.3 -17.9 1.4 
 Gelatinous Zooplankton  11 2.6 9.7 5.8 2.0 -20.5 -15.3 -18.0 1.8 
  Aurelia 2 5.1 5.1 5.1 0.1 -18.1 -15.4 -16.7 1.9 
  Cassiopea 5 2.6 9.7 5.6 3.0 -20.5 -15.3 -17.5 1.9 
  Ctenophore 3 5.4 6.3 6.0 0.5 -20.2 -19.3 -19.7 0.5 
  Unknown Jellyfish 1   7.1    -18.2  

 Gelatinous Benthic  3 3.2 4.9 4.3 1.0 -19.7 -17.4 -18.8 1.3 
  Other Tunicates 2 3.2 4.9 4.1 1.2 -19.7 -17.4 -18.6 1.7 
  Ascidians 1   4.8    -19.3  

 Sponges  20 2.0 10.6 6.9 1.9 -20.8 -15.8 -17.7 1.2 
  Chondrilla 1   7.0    -17.8  

  Unknown Sponge 19 2.0 10.6 6.9 1.9 -20.8 -15.8 -17.7 1.2 
 Gorgonians and Bryozoans  14 2.3 5.3 3.7 1.0 -20.9 -15.6 -17.8 1.5 
  Gorgonian (Sea Whip) 12 2.3 5.3 3.6 1.0 -19.3 -15.6 -17.6 1.2 
  Gorgonia (Sea Fan) 1   5.1    -15.9  

  Wiry Bryozoan 1   3.4    -20.9  
 Crustaceans  4 2.7 4.4 3.5 0.7 -18.7 -10.3 -13.1 3.8 

  Lobster 1   4.4    -17.5  
  Sargassum Crab 1   8.0    -18.2  
  Sargassum Shrimp 1   2.9    -16.8  
  Unknown Crab 1   2.7    -18.7  
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Table S2. Raw data from the collection of green turtles from the Bermuda Platform. Stable isotope values are from epidermal 
tissue. 
 

     2012 
 

2013 
 

Primary 
Tag 

Left tag Right tag Pit tag Location SCL d15N d13C Location SCL d15N d13C 

MB1050 MB1050 MM919 65629026 Chub Heads 59.7 6.29 -7.83      

M6080 M6080 M6081 65770841 Chub Heads 37.5 8.21 -14.93      

   65770858 Pilchard Bay 26.7 8.57 -15.24      

   65624372 Pilchard Bay 26.0 9.73 -14.90      

   65778268 Pilchard Bay 26.9 9.94 -14.26      

   65636785 Pilchard Bay 28.9 8.87 -15.20      

   65622033 Pilchard Bay 31.3 9.39 -11.49      

   65625566 Pilchard Bay 32.0 9.72 -10.87      

   65630769 Pilchard Bay 32.9 9.89 -10.58      

M6082 M6082 M6083 65773532 Pilchard Bay 36.7 9.82 -8.59      

M6084 M6084 M6085 65782123 Pilchard Bay 38.1 9.80 -13.77      

M6068 M6086 M6087 65781612 Pilchard Bay 36.0 12.56 -13.87      

M6088 M6088 M6089 65770033 Pilchard Bay 39.1 10.65 -9.26      

M6090 M6090 M6091 65622376 Pilchard Bay 44.5 10.08 -9.54      

MB1051 MB1051 M6092 65628022 Pilchard Bay 46.9 11.19 -8.85      

MB1052 MB1052 MM920 65630008 Pilchard Bay 53.0 9.20 -7.37      

   65775065 Frank's Bay 32.9 8.45 -7.58      

M6093 M6093 none 65781020 Frank's Bay 42.2 8.12 -5.60      

F7260 F7260 F7261 65781043 Stock's Harbour 32.3 6.02 -8.23      

 M6094 M6095 18269017 Bailey's Bay 35.5 8.75 -6.38 Bailey's Bay 37.7 9.56 -5.58 
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 F7262 F7061 38855032 Bailey's Bay 27.2 8.20 -10.74 Bailey's Bay 29.7 8.78 -7.82 

 F7263 F7264 65624778 Bailey's Bay 30.6 8.17 -10.24 Bailey's Bay 32.4 7.78 -8.52 

 F7265 F7267 65628376 Bailey's Bay 30.5 9.35 -13.21      

F7357 F7052 F7057 38822276 Bailey's Bay 28.7 4.56 -17.95 Bailey's Bay 30.6 8.24 -13.27 

 F7177 F7178 39075028 Bailey's Bay 32.3 8.38 -8.38      

 F7268 F7269 65638811 Bailey's Bay 25.1 8.32 -12.84      

 F7270 F7271 65628274 Bailey's Bay 29.1 9.37 -14.44      

 F7272 F7273 65777022 Bailey's Bay 31.2 9.10 -11.74      

 F7274 F7275 65638867 Bailey's Bay 29.4 9.65 -12.87      

 M6301 M6302 18267589 Walsingham 43.3 8.13 -9.39      

 M6096 M6097 18299804 Walsingham 38.6 7.64 -6.66      

 M6099 M6100 39093302 Walsingham 35.2 8.21 -8.66      

 M6098 M5451 97814101 Walsingham 41.0 8.15 -7.35      

 F7278 F7279 65778868 Walsingham 27.6 8.00 -13.75      

 F7280 F7281 65626873 Walsingham 27.6 8.02 -9.99      

 M6303 M6304 65772329 Walsingham 31.9 8.24 -9.92 Grotto Bay 34.9 7.53 -7.71 

 M6305 M6306 65778342 Walsingham 34.5 8.47 -11.44      

 M6307 M6308 65778072 Walsingham 37.5 7.91 -14.41      

 M6309 M6310 65782567 Walsingham 32.8 8.60 -12.29      

 M6311 M6312 65772350 Walsingham 33.9 7.86 -8.75      

 M6313 M6314 65622373 Walsingham 33.0 8.05 -10.52      

 M6315 M5107 39101380 Blue Hole 56.7 7.55 -5.32      

 F7282 F7283 65780092 Blue Hole 30.2 8.53 -14.65 Blue Hole 31.2 8.59 -12.87 

 F7284 F7285 65778575 Blue Hole 29.4 7.84 -17.33      

 M6316 M6317 65629048 Blue Hole 34.8 8.33 -11.65      

 M6318 M6319 65781000 Blue Hole 31.8 8.75 -13.47      



 
 

39 

 M4836 M4837 98123588 Ft. St. Catherine's 38.7 7.22 -8.15      

 MM980 MM979 39102571 Ft. St. Catherine's 68.2 6.43 -8.14      

 F7286 F7287 65776792 Ft. St. Catherine's 32.0 7.05 -10.18 Ft St Catherine’s 32.5 6.52 -7.52 

M4834 M6320 M6321 99087517 Ft. St. Catherine's 49.2 6.86 -7.02      

 M6322 M6323 65777532 Ft. St. Catherine's 41.9 7.98 -10.85      

 M4957 M4958 18294291 Ft. St. Catherine's 58.6 6.90 -6.59      

 M5563 M5564 65782268 Ft. St. Catherine's 38.5 7.33 -10.36      

 F6841 F6842 18282048 Vixen 30.8 4.99 -9.42      

 F7258 F7259 65783279 Vixen 31.7 3.73 -8.49      

 F7290 F7291 65833883 Vixen 30.3 4.14 -8.47      

 F7292 F7293 65769629 Vixen 29.7 2.78 -8.38      

 M6324 M6325 65769105 Vixen 35.2         

 M6326 M6327 65778059 Vixen 33.1 3.00 -7.39      

 M6328 M6329 65623092 Vixen 32.9 7.68 -13.30      

 M6330 M6331 65623880 Vixen 33.4 2.70 -6.64      

 F7294 F7295 65782892 Tudor Hill 29.7 7.51 -12.55      

 F7296 F7297 65624276 Tudor Hill 31.7 7.28 -8.70      

 F7298 F7299 65777308 Tudor Hill 28.3 6.88 -12.07      

 M6332 M6333 65772066 Tudor Hill 43.1 6.73 -10.13      

 M6334 M6335 65623855 Tudor Hill 39.1 7.71 -12.23      

 M6336 M6337 65624376 Tudor Hill 36.6 7.92 -15.92      

 M3895 M6338 54879064 Wreck Hill 63.2 6.21 -5.19      

M6339 M6339 M6340 54876636 Wreck Hill 56.2 6.85 -6.22      

M6341 M6341 M6342 54879374 Wreck Hill 42.3 7.37 -14.21      

 M6343 M6344 54880820 Wreck Hill 51.9 5.66 -6.40 Wreck Hill 54.0 6.66 -6.22 

 M6345 M6346 54872102 Wreck Hill 47.1 6.57 -9.37      
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 MM938 MM939 54876012 Wreck Hill 63.4 5.47 -4.78      

 M6347 M6348 99077787 Annie's Bay 39.3 5.60 -6.66      

 M6350 M6351 107568281 Annie's Bay 36.7 5.58 -7.82 Annie's Bay 39.3 6.11 -7.22 

 M6352 M6353 18311539 Annie's Bay 29.7 5.22 -7.99      

 F7133 F7134 39085531 Annie's Bay 32.6 6.63 -9.16      

 M6354 M6355 107319863 Annie's Bay 40.9 4.93 -7.13      

 F7225 F7224 65622329 Annie's Bay 28.5 9.44 -12.77      

 M5009 M5010 107338092 Annie's Bay 42.1 6.44 -7.97      

M5500 M6356 M6357 39096633 Annie's Bay 39.1 8.06 -11.32      

 MB1060 M6349 66823372 Annie's Bay 59.1 5.65 -7.59      

F7300 F7300 F7303 54875877 Annie's Bay 29.0 6.39 -8.71      

M6358 M6358 M6359 54879544 Annie's Bay 46.9 6.85 -10.95      

M6360 M6360 M6361 54873028 Annie's Bay 52.0 6.27 -6.87      

M6362 M6362 M6363 54875865 Annie's Bay 32.3 10.06 -15.15      

M6364 M6364 M6365 54868833 Annie's Bay 31.8 6.99 -10.46 Annie's Bay 34.6 7.18 -9.03 

M6366 M6366 M6366 54882034 Annie's Bay 32.8 6.47 -8.83      

 F7304 F7305 54868513 Blue Hole 30.8 5.61 -9.15      

 F7307 F7308 65628518 Blue Hole  8.76 -11.95      

 M6368 M6369 65768093 Blue Hole 43.2 7.48 -8.66      

 M6370 M6371 65771637 Blue Hole 41.7 7.49 -6.57 Blue Hole 44.5 7.38 -6.57 

 M6372 M6373 65769864 Blue Hole 38.5 6.90 -6.43      

 M6374 M6375 65776119 Blue Hole 38.5 7.95 -12.37      

 M6395 M6396 65777332 Blue Hole 33.3 6.58 -7.91      

 M6397 M6398 54870006 Blue Hole 36.6 8.73 -13.61      

 M6399 M6400 54879297 Blue Hole 33.5 8.82 -11.32      

 M6401 M6402 54880270 Blue Hole 32.4 8.64 -10.35      
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 M6403 M6404 54878030 Blue Hole 38.2 8.93 -12.55      

 F7309 F7310 65771279 Blue Hole 28.8 8.69 -12.95      

 F7311 F7312 65625062 Blue Hole 31.5 8.00 -10.68      

 F7313 F7314 65622016 Blue Hole 28.4 7.44 -13.70      

 F7815 F7316 65776303 Blue Hole 29.7 6.77 -10.09      

 F7317 F7318 65624894 Blue Hole 28.7 8.63 -14.83      

 F7319 F7320 65632831 Blue Hole 27.7 7.55 -12.92      

 F7321 F7322 65780552 Blue Hole 25.3 8.59 -13.84      

 F7323 F7324 65769817 Blue Hole 30.2 7.74 -9.46      

 F7325 F7326 65623004 Blue Hole  7.18 -8.11      

 M6405 M6406 65782060 Blue Hole 32.4 6.79 -8.50 Blue Hole 35.1 7.45 -7.60 

 M6407 M6408 65768830 Blue Hole 38.3 6.64 -7.19      

 M6409 M6410 65624010 Blue Hole 38.5 7.23 -7.78      

 M6411 M6412 65623299 Blue Hole 36.2 7.85 -12.75      

 F7329 F7330 65633830 Cow ground 31.0 5.16 -8.71      

 F7331 F7332 39098614 Cow ground 27.2 6.65 -11.58      

 F7333 F7334 38855361 Cow ground 28.5 6.61 -12.36      

 M6413 M6414 65629769 Cow ground 35.9 5.80 -7.25      

 M6066 M6067 38841527 Somerset Long Bay 30.2 6.00 -5.85      

 MB975 MB5053 18260288 Somerset Long Bay 48.5 2.93 -8.24      

 F7335 F7336 39090296 Somerset Long Bay 30.0 9.01 -12.34      

 F7337 F7338 39097865 Somerset Long Bay 31.3 6.03 -8.02      
 F7339 F7340 39092293 Somerset Long Bay 29.2 7.21 -11.93      

 M6415 M6416 39099627 Somerset Long Bay 51.9 5.48 -4.81      

 M6417 M6418 38821547 Somerset Long Bay 42.2 5.67 -6.45      

 M6419 M6420 39101096 Somerset Long Bay 48.2 5.98 -5.25      
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 M6421 M6422 39091794 Somerset Long Bay 47.3 6.52 -6.50      

 M6423 M6424 39102270 Somerset Long Bay 40.3 6.56 -6.31      

 M6425 M6426 39032525 Somerset Long Bay 44.5 6.77 -5.37      

 M6427 M6428 38837358 Somerset Long Bay 31.7 8.58 -8.25      

 M6429 M6430 39102017 Somerset Long Bay 32.2 6.92 -11.06      

 M6431 M6432 39099338 Somerset Long Bay 47.7 6.03 -5.30      

 M6433 M6434 39106310 Somerset Long Bay 56.0 6.73 -5.05      

 MM940 MM941 39091798 Somerset Long Bay 63.2 6.88 -5.03      

 MM942 MM943 38833372 Somerset Long Bay 61.0 5.47 -5.10      

 MM944 MM945 38852817 Somerset Long Bay 61.4 7.28 -4.32      

 M6435 M6436 39102338 Vixen 37.9 4.05 -6.93      

 M6437 M6438 39103529 Vixen 41.4 3.66 -6.52      

 M6439 M6440 39094889 Vixen 36.7 4.62 -6.63      

 M6441 M6442 39101835 Vixen 35.0 2.39 -6.94      

 M6443 M6444 39091098 Vixen 33.7 6.61 -7.76      

 M6445 M6446 16027536 Vixen 32.3 2.71 -8.48      

 M6447 M6448 15895772 Ferry Reach 58.5 5.28 -5.36      

 M4938 M4939 18313889 Grotto bay 44.2 7.11 -7.90      

 MB902 MB946 98611307 Grotto bay 57.7 7.90 -6.04      

 F7341 F7342 15891844 Grotto bay 28.0 8.63 -15.61      

 M6449 M6450 15881280 Grotto bay 52.4 6.53 -4.10      

 M6451 M6452 15894892 Grotto bay 47.2 5.66 -5.01      

 M6453 M6453 16011375 Grotto bay 51.6 6.54 -5.25      

 M6455 M6456 16007787 Grotto bay 46.6 6.55 -5.08      

 M6457 M6458 16032589 Grotto bay 34.4 5.91 -6.67      

 M6459 M6460 16033862 Grotto bay 35.0 6.77 -7.20      
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 MM947 MM948 15883039 Grotto bay 68.9 7.32 -4.65      

 MM949 MM950 15872078 Grotto bay 62.1 7.18 -4.50      

 M6378 M5597 65627864 Long Bay 55.4         

 M6376 M6377 54873364 Long Bay 47.0         

 M6379 M6380 54875848 Long Bay 44.4         

 M6381 M6382 54869820 Long Bay 32.2         

 M6383 M6384 54879337 Long Bay 46.7         

 M6385 M6386 54873262 Long Bay 34.0         

 M6387 M6388 54883001 Long Bay 42.7         

 M6389 M6390 65769522 Long Bay 39.0         

 M6391 M6392 54867597 Long Bay 43.1         

 M6393 M6394 54879266 Long Bay 47.1         

M3918 MM921 MM922 73595069      Bailey's Bay 68.7 6.66 -5.71 

M6467 M6467 M6468 73771585      Bailey's bay 46.2 8.04 -15.33 

M6491 M6491 M6492 73621046      Baileys Bay 54.4 8.93 -5.51 

MM955 MM955 MM956 73774857      Grotto Bay 61.0 7.71 -4.60 

M6499 M6499 M6500 73607793      Grotto Bay 44.7 6.47 -6.56 

M3981 MM960 MM961 99097365      Long Bay 64.6    

M6556 M6556 M6557 73779635      Annie's Bay 52.3 6.38 -6.67 

M6558 M6558 M6559 72606768      Annie's Bay 49.7 6.72 -7.20 

R2670 MM966 MM967 24268341      Ft. St Catherine's 61.6 6.42 -6.45 
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Table S3. Details of 5 of the candidate models fit to the relationship between the fraction 
of seagrasses in the diet (Si) and Straight Carapace Length (SCLi) of green sea turtles 
(Chelonia mydas) on the Bermuda Platform. Akaike’s information criterion (AIC) for the 
fit of each model to the data is provided.  
 

Function Equation AIC value 

Linear Si= mx + b 

Si= 0.012256*SCLi + 0.007319 

-125.3634 

Michaelis-Menten with y 

intercept 

Si= S0 + Smax*(SCLΔ/(SCLΔ +  SCLK) 

Si= 0.1840 + 0.7982*( SCLΔ/ SCLΔ + 20.0190) 

-126.1088 

Michaelis-Menten Si= Smax * (SCLΔ/(SCLΔ +  SCLK) 

Si= 0.788  *(SCLΔ/(SCLΔ +  6.655) 

-127.2286 

Rational Function Si= 1 + SMax – (SCLi/(SCLi-V)) 

Si= 1 + 0.897 – (SCLi/(SCLi-10.709)) 

-132.7758 

Rational Function 

without overgrazed site 

Si= 1 + SMax – (SCLi/(SCLi-V)) 

Si= 1 + 0.9048 – (SCLi/(SCLi-10.7904)) 

-136.3316 
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