
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-22-2017

Morphology, Architecture and Growth of a Clonal
Palm, Acoelorrhaphe wrightii
Sara M. Edelman
Florida International University, sedel003@fiu.edu

DOI: 10.25148/etd.FIDC001769
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Biology Commons, Botany Commons, and the Plant Biology Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Edelman, Sara M., "Morphology, Architecture and Growth of a Clonal Palm, Acoelorrhaphe wrightii" (2017). FIU Electronic Theses
and Dissertations. 3201.
https://digitalcommons.fiu.edu/etd/3201

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.fiu.edu%2Fetd%2F3201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/104?utm_source=digitalcommons.fiu.edu%2Fetd%2F3201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/106?utm_source=digitalcommons.fiu.edu%2Fetd%2F3201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3201?utm_source=digitalcommons.fiu.edu%2Fetd%2F3201&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

 

MORPHOLOGY, ARCHITECTURE AND GROWTH OF A CLONAL PALM, 

ACOELORRHAPHE WRIGHTII 

 

 

A dissertation submitted in partial fulfillment of 

the requirements for the degree of 

DOCTOR OF PHILOSOPHY  

in 

BIOLOGY 

by 

Sara Melissa Edelman 

 

2017 



ii 
 

To:  Dean Michael R. Heithaus     
 College of Arts, Sciences and Education     

 
This dissertation, written by Sara Melissa Edelman, and entitled Morphology, Architecture 
and Growth of a Clonal Palm, Acoelorrhaphe wrightii, having been approved in respect to 
style and intellectual content, is referred to you for judgment. 

 
We have read this dissertation and recommend that it be approved. 

 
 

_______________________________________ 
Kenneth Feeley 

 
_______________________________________ 

Javier Francisco-Ortega 
 

_______________________________________ 
Michael Ross 

 
_______________________________________ 

Scott Zona 
 

_______________________________________ 
Jennifer H. Richards, Major Professor 

 
 

Date of Defense: March 22, 2017 
 

The dissertation of Sara Melissa Edelman is approved. 
 
 

_______________________________________ 
  Dean Michael R. Heithaus 

  College of Arts, Sciences and Education 
 
 

_______________________________________ 
Andrés G. Gil 

Vice President for Research and Economic Development  
and Dean of the University Graduate School 

 
 
 
 

Florida International University, 2017 



iii 
 

 

 

 

 

 

 

 

 

 

© Copyright 2017 by Sara Melissa Edelman 

All rights reserved.  

 

 

 

 

 

 

 

 

 

 



iv 
 

 

 

 

 

 

 

 

 

 

 

 

DEDICATION 

I dedicate this dissertation to my two biggest inspirations and mentors: Dr. 

Richard Campbell and Pamela Schlactman. You both sparked my passion of plants and 

gave me the courage to follow my dream to study them.  

 

 

  



v 
 

ACKNOWLEDGMENTS 

I would like to thank my major professor, Dr. Jennifer Richards, for her guidance, 

terrific editing, and endless support. I am sincerely grateful to my committee: Dr. 

Kenneth Feeley, Dr. Javier Fransisco-Ortega, Dr. Michael Ross, and Dr. Scott Zona for 

their intellectual input, editing of this dissertation, and overall support and guidance.  

I would like to thank my many mentors. First, I would like to thank Dr. Richard 

Campbell for his endless support and encouragement. I would also like to thank him for 

reminding me to work efficiently and effectively almost daily; I would not be defending at 

this date had it not been for his constant encouragement. I would like to thank Dr. P. 

Barry Tomlinson for sitting with me whenever I needed and teaching me about palm 

growth and literature. I would like to thank Dr. Jack Fisher for helping me with anatomy 

and branching literature and for showing me proper techniques for dissecting A. wrightii 

suckers. I would like to thank Dr. F. Jack Putz for talking with me about palm 

demography and proper technique, recommending pertinent articles, and offering to 

read my chapters. I would like to acknowledge Dr. Walter Judd for working with me for 

two summers on tropical plant taxonomy. 

I would like to thank Florida International Universtiy for awarding me the 

Dissertation Year Fellowship funding that allowed me to complete my dissertation. I 

would also like to thank the International Palm Society for funding my trip to Belize. I 

would like to thank the International Center for Tropical Botany for funding a semester so 

I could work on completing my chapters and prepare for publication. I would like to thank 

Fairchild Tropical Botanic Garden for funding the first three years of my graduate school 

work. I would like to thank the Kelly Botanical Scholarship for funding my mesocosm 

study. 



vi 
 

I would like to thank my dear friends Judy DuPlooy, Marc Ellenby, Brian and 

Jenny Hew, and Pericles and Christina Maillis for housing and supporting me during my 

field excursions in Belize and the Bahamas. 

I would like to thank Dr. Carl Lewis, Fairchild Tropical Botanical Garden, and staff 

for their support and use of their collections. I would also like to acknowledge Dr. M. 

Patrick Griffith, Montgomery Botanical Center, and staff for their support and allowing me 

to use their collections. Working with both gardens was a pleasure. 

I would like to thank my lab mates, Nicole Sebesta and Kristie Wendelberger, for 

their support, knowledge and general understanding. 

I would like to thank my field assistants: Brianna Almeida, Sean Brown, Philis 

Edelman, Sara Estes, Julia Gehring, Jonathan Hernandez, Oliver Ljustina, Dale Stein, 

and James Stroud for trekking through the swamp with me in search of paurotis, setting 

up my mesocosm study, and monitoring growth of paurotis. 

I would like to thank my family, Philis Edelman, David Edelman, Leah Edelman 

and Martin Strauch for their endless love and support.  

  



vii 
 

ABSTRACT OF THE DISSERTATION 

MORPHOLOGY, ARCHITECTURE AND GROWTH OF A CLONAL PALM, 

ACOELORRHAPHE WRIGHTII 

by 

Sara Melissa Edelman 

Florida International University, 2017 

Miami, Florida 

Professor Jennifer H. Richards, Major Professor 

Palms provide valuable commercial resources in the tropics and are dominant 

species in tropical lowland forests. While general biology of palms is well studied, there 

are gaps in the literature on palm growth through life stages and in response to 

environmental conditions. Literature gaps on palm growth could be caused by the slow 

growth of palms; it is difficult to monitor morphology and architecture for the periods of 

time necessary to capture changes. Acoelorrhaphe wrightii is a threatened palm native 

to southern Florida with an unusual adult architecture. The purpose of this dissertation 

was to study growth A. wrightii throughout its life stages and in response to changes in 

environmental conditions. In order to do study growth, I first had to understand the 

evolutionary history and types of vegetative branching in palms to identify vegetative 

branching possibilities in A. wrightii. I described branching types for 1903 species from 

all 181 genera using literature reviews and hands-on analysis. I then studied adult 

morphology and architecture in a common garden setting by monitoring leaf morphology, 

ramet growth and architecture of A. wrightii in two gardens in Miami, FL, over a two year 

period. I tested the effects of water and light on germination and growth of juvenile plants 
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in a mesocosm where water and light were manipulated, following growth for a year. 

Finally, I compared leaf morphology and architecture of adult individuals in four 

populations in Belize and Florida. I found five branching types were present in the palms: 

lateral axillary branching, shoot apical division, false vivipary, abaxial branching and leaf-

opposed branching. In the garden, Acoelorrhaphe wrightii displayed two types of lateral 

axillary branching: basal suckering and rhizomatous branching. The two branching types 

produced tiers in adult clones, which were used to model architecture. Ramets had an 

establishment period and growth varied seasonally in establishing and established 

phases. Low water levels and full sun yielded greater germination of A. wrighti and 

produced juveniles with a greater number of leaves, more root mass and more 

branches. Variability between populations and environmental conditions was observed in 

adult individuals in the field but differences were minimal.  
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INTRODUCTION 

 Palms are an important plant family economically and ecologically, providing 

valuable commercial resources in the tropics and subtropics and being dominant species 

in tropical lowland forests. (Svenning et al., 2008; Stiegel et al., 2011).  Coconuts, dates, 

and acaí are palm fruits enjoyed worldwide, and palm oil and rattan support million dollar 

industries that provide income to local communities in the tropics (Balick, 1990). Palms 

are known for their iconic growth form, with an erect, solitary trunk topped by a crown of 

plicate leaves. While the solitary habit is more widely recognized, many palm species 

are multi-stemmed. These clumping palms branch vegetatively to produce multi-

stemmed clones. The multi-stemmed habit differs from how dicots and gymnosperms 

produce branches, because palms lack secondary growth, which is what thickens trunks 

and branches of dicot and gymnosperm trees.  

 While general biology and ecology of palms is well studied, there are gaps in the 

literature on the architecture and effects of environment on growth and morphology of 

juvenile and adult palms (Tomlinson, 1990). Literature gaps could be caused by the slow 

growth of palms; it is difficult to monitor morphology and architecture for the time 

necessary to capture changes in growth. In particular, morphology and architecture of 

clonal growth is not well-described in palm literature. Clonal palms are particularly 

interesting because they reproduce asexually, forming clumps where each new shoot is 

a clone of the initial shoot. For many clumping palms, both asexual and sexual 

reproduction increase with increased genet size (Souza, Martins, & Bernacci, 2003; 

Thompson, 2002; Thompson & Eckert, 2004). Thus, the life history of clonal palms 

differs from that of solitary palms. 
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 Despite its common occurrence, vegetative branching in the palms has not been 

thoroughly investigated. The types of vegetative branching in palms have not been 

clearly described and quantified, and, therefore, the evolution of branching types in the 

palms cannot be understood. A better understanding of how palms branch vegetatively 

and the evolutionary history of branching types are essential to understand how palms 

create clonal clumps. 

 Palms can be very sensitive to minor changes in landscape elevation and 

topography, and these environmental changes can greatly influence morphology, 

architecture and growth (Vormisto et al., 2004; Avalos et al., 2005; Roncal, 2006; 

Sylvester & Avalos, 2013). A variety of environmental variables can influence leaf size, 

leaf production and overall architecture of a palm. The effect of environment on palm 

growth is particularly interesting because palm growth is uninterrupted—that is, the 

growth of each palm stem is continuous (Tomlinson, 1990). However, the rate of growth 

may change depending on day length, moisture, temperature, or other environmental 

variables (Tomlinson, 1990).  

 Acoelorrhaphe wrightii is a clonal palm native to the Florida Everglades. The 

natural range of A. wrightii is southern Florida, Mexico, Belize, Costa Rica, Guatemala, 

Honduras, Nicaragua, Cuba and Colombia (Wendland, 1879). The southern Everglades 

population is threatened (Ward et al., 2003), and seedling recruitment and juvenile 

individuals are not readily observed (personal observation). It is possible that human 

manipulation of hydroperiod and water level is impacting A. wrightii populations, since 

these changes have been shown to impact germination, growth, morphology and 

architecture of other Florida plants (Davis & Ogden, 1994; Newman et al., 1996). 

Analysis of morphological and architectural plasticity of A.wrightii and their response to 
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environmental vaiables that influence growth at different life stages will show how A. 

wrightii could be impacted by human modifications to the environment. The purpose of 

my dissertation was to create a conceptual model for branching in palms in order to 

place branching in clonal palms in an appropriate phylogenetic context, to describe in 

detail the morphology and architecture of A. wrightii, one clonal palm, and to understand 

how morphology and architecture are affected by age and environmental variation.  

In order to study the morphological and architectural plasticity of A. wrightii, I first 

analyzed, described, and classified branching types throughout the palms, determined 

the distribution of branching types in the family, and placed branching in a phylogenetic 

context.  This research is presented in Chapter I. After surveying branching in all genera 

and 1903 species using literature reports and observations of living specimens, I defined 

all vegetative branching types present in the palms and classified the observed species 

into the different types. The distribution of branching types throughout the family and 

subfamilies were analyzed using phylogenic trees, and a hypothesis for the ancestral 

branching type was developed. 

In Chapter II, I focused on the morphology and architecture of A. wrightii, using a 

common garden approach by following growth of the species in two gardens in Miami, 

FL. Leaf morphology, adult architecture and growth variables were monitored over a 

two-year time period in order to understand the general morphology and growth of A. 

wrightii.  

In Chapter III, I studied germination and juvenile morphology and architecture in 

mesocosms where shade and water depth were experimentally manipulated. 

Germination in different water depths was monitored for a year. In order to better 

understand the effect of environmental variables on juvenile growth of A. wrightii, 
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juvenile plants were grown in different water and light conditions. Leaf production, 

vegetative branching, and stem growth were measured on these plants over one year  

 Finally, in Chapter IV, in order to determine the environmental range and 

plasticity of the species, I analyzed the morphology, architecture and population 

structure of four wild populations of A. wrightii.  The data from the chapter will help 

environmental managers make decisions to support growth of this threatened Florida 

native plant.  
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ABSTRACT:  
Vegetative branching is common in the palms (Arecaceae). However, current 

branching terms to describe vegetative branching diversity are not consistent and do not 

cover the full range of branching. In this study, (1) vegetative branching types in the 

palms were identified and defined and (2) the phylogenetic distribution of palm branching 

types were described. 

Vegetative branching terms were defined through a review of the literature and 

branching types were described from these reviews and field observations. Five 

branching types were found: lateral axillary branching, shoot apical division, false 

vivipary, abaxial branching and leaf-opposed branching. In total, 1903 species 

representing all 181 genera were included. The numbers of species with each branching 

type were counted to determine the most abundant branching type. Ancestral branching 

was predicted using the most parsimonious approach in the program Mesquite. 

Most species exhibited no vegetative branching (1043 species, 55% observed 

species). Lateral axillary was the most common branching type, described in 646 

species (34% observed species). Lateral axillary branching and shoot apical division 

were identified as the earliest-evolved branching types.  The present study suggests that 

branching types have different evolutionary histories, and it is likely that the solitary habit 

is more common now than when palms initially diverged from commelinid relatives. 

 

Keywords: Arecaceae; branching; commelinid monocots; monocotyledons; Palmae; 

palm phylogeny; vegetative anatomy; vegetative propagation 
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INTRODUCTION:  

 Branching is the outgrowth or division of a meristem and results in a new axis. 

Plants can branch sexually, producing an axis used for sexual reproduction, or 

vegetatively, producing a separate and genetically identical vegetative axis (Doust & 

Doust, 1988). The vast majority of plants display some form of vegetative branching, 

which results in a great diversity in plant form and architecture (Bell & Tomlinson, 1980). 

Plants branch vegetatively in three ways: axillary (occurring in the leaf axils), apically (at 

the apex of the shoot), or adventitiously (in neither of the previous two locations) (Halle 

et al., 1978). Axillary branching, the most common type of branching in plants, has two 

forms that account for much of architectural diversity displayed in plants: long and short 

shoots.  Short shoots are specialized units, usually producing photosynthetic or 

reproductive structures or spines that bear no lateral branches (Halle et al., 1978). Long 

shoots grow, add height, and can proliferate to produce additional lateral axillary 

branches that become either long or short shoots.  

 Vegetative branching is common in the monocots, where it is used as a 

mechanism to increase in size, since most monocots lack secondary growth (Halle et al., 

1978). The three main terms used to describe branching in the monocots are (1) axillary, 

(2) dichotomous, and (3) adventitious branching (Tomlinson, 1973). However, these 

terms are not consistently used in descriptions of monocot branching diversity.   

  While similar vegetative branching types exist in the palms (Arecaceae Bercht. & 

J.Presl) and their monocot relatives, the terminology to describe these types is not 

uniform and many terms have been applied to the same branching type (Tomlinson, 

1961; Tomlinson, 1971; Fisher, 1973; Fisher & Tomlinson, 1973; Fisher, 1974; Fisher et 

al., 1989; Mendoza & Franco, 1998; Fisher & Zona, 2006). Detailed descriptions are 
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often not assimilated or are greatly simplified in the popular palm literature (Tomlinson, 

1973; Dransfield et al., 2008). Consequently, the current branching vocabulary for palms 

does not consistently and accurately describe the diversity of vegetative branching in the 

family.  

The three vegetative branching types commonly described in palms are similar to the 

branching types used for the monocots (Tomlinson, 1990), axillary branching, apical 

dichotomous branching, and non-axillary branching, but different types of these have 

been recognized depending on origin instead of variation in outgrowth.  Axillary 

branching, the most commonly described, is used to describe the formation of a 

primordial bud in the leaf axil at the base of orthotropic (vertical) shoots. If axillay 

branches grow erect immediately, they create branch types called basal suckers. If the 

basal sucker grows horizontally before turning to grow erect, it forms a rhizome 

(Tomlinson, 1990). Rhizomatous branching is occasionally classified as its own, unique 

branching type.  

Apical dichotomous branching occurs when the apical meristem of the stem 

bifurcates, creating two apical meristems. In palms, species differ in whether the 

meristem splits into two even (isotomous) or uneven (anisotomous) parts (Tomlinson & 

Moore, 1966; Gola, 2014). In palm literature, the term dichotomy has been used 

incorrectly to imply equality of outgrowth (Tomlinson, 1990).  

Non-axillary branching describes a branch that does not arise in the leaf axil 

(Tomlinson, 1973). The term, however, does not further differentiate among locations of 

the branch (non-apical portions of the stem, lamina or inflorescence), which can differ 

among taxa.  

In addition to being poorly described and classified, the frequency and distribution of 

branching types in palm subfamilies and genera have not been examined from a 
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phylogenetic perspective. Understanding the relationship between phylogeny and 

branching type will increase our understanding of the evolution and ecology of 

vegetative branching in the palms and will provide a framework for understanding 

branching in all monocots. The purpose of this study was to (1) identify, define and 

classify the types of vegetative branching in the palm family Arecaceae and (2) describe 

the phylogenetic distribution of these branching types in palms.  

MATERIALS AND METHODS: 

Basic vegetative branching terms were defined through a review of the literature. 

Vegetative branching terms used in the literature or derived from observations are 

defined in table 1 with synonyms. Species were recognized following the accepted 

species in the Kew World Checklist of Palms on February 5, 2016 (Goverts et al., 2011). 

Branching type(s) of species were described from literature reviews of journal articles 

and books describing branching patterns and from analysis of living specimens in the 

palm collections at Fairchild Tropical Botanic Garden and Montgomery Botanical Center 

(Coral Gables, FL, USA) (table 2). In total, 181 genera (out of 181 genera in the family, 

100% genus coverage), comprising 1903 species (out of 2501 species in the family, 

76% species coverage), were sampled (table 2). Each branching type was defined by (1) 

branching meristem (axillary, apical, non-axillary); and, if non-axillary, (2) location of 

branch (inflorescence, leaf base or stem). Using these criteria, five branching types in 

the palms were identified, which are distinguished from the solitary phenotype that had 

no vegetative branching.  The five branching types were: lateral axillary branching, shoot 

apical division, false vivipary, abaxial branching and leaf-opposed branching. Lateral 

axillary branching was defined as vegetative outgrowth of an axillary meristem on the 

vegetative shoot (stem) (Fig. 1B). Many species display lateral axillary branching but 

could also not branch, presenting a solitary stem; these species were classified as 
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having lateral axillary branching.  Shoot apical division was defined as the division of the 

apical meristem into two equal or unequal meristems (Fig. 1C). False vivipary was 

defined as adventitious vegetative outgrowth of buds in the apical bracts of inflorescence 

that eventually rooted in the soil and produced vegetative shoots (Fig. 1D). Abaxial 

branching was defined as the vegetative outgrowth of an adventitious meristem located 

on the abaxial surface of the leaf at the base of the leaf sheath (Fig. 1E). Leaf- opposed 

branching was defined as the vegetative outgrowth of an adventitious meristem borne on 

the stem, opposite the lamina and petiole and enclosed within the edges of the leaf 

sheath (Fig. 1F). Branching type combinations can also occur, and two branching 

combinations are present in the palms: shoot apical dichotomy + lateral axillary 

branching and false vivipary + lateral axillary branching.  

The terms shoot apical division and false vivipary needed additional clarification 

because terms were not clearly defined in previous literature. Branching type names 

were assigned using the uniqueness and priority principles of botanical nomenclature 

(Greuter et al., 1999). The term dichotomy was not used because it has been defined 

multiple ways and the evidence for whether shoot apical division results from an equal 

apical division was often lacking. Most commonly, dichotomy implies equal division of 

the shoot apical meristem (Tomlinson, 1990), but the term has also been defined as (1) 

two independently functioning axes (Gola, 2014), or (2) two more or less equal axes 

(Harris & Harris, 2013). Thus, the term has been used to describe both a developmental 

process (equal division of the shoot apex) and the result of branch outgrowth.  Since 

there was discrepancy among definitions and usage of dichotomy, the term apical 

division was used to describe any division of the apical meristem (uniqueness principle). 

The term false vivipary was selected because it was first published in the grass literature 
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to describe a phenomenon similar to what was found in the palms (priority principle) 

(Van der Pijl, 1982; Bell 2008). 

The numbers of species, genera and subfamilies with each branching type were 

counted to determine the most abundant branching type and combination found at each 

taxonomic level. To determine the relationship between subfamily size and branching 

types, the number of solitary species in each subfamily and the number of branching 

types in each subfamily were counted and compared to the number of species in each 

subfamily. Comparisons between number of solitary species and total number of species 

among subfamilies were made using contingency tables and chi-squared tests in R (R 

studio team, 2015); expected values were obtained by multiplying the sample size of the 

subfamily by the sample proportion of solitary species in the palms (0.55).  Comparisons 

between number of branching types and total number of species among subfamilies 

were made using contingency tables and chi-squared tests in R (R studio team, 2015); 

expected values was the average number of branching types exhibited in the subfamilies 

(3 types). 

Mapping the phylogenetic distribution of vegetative branching types:  

Subfamily-level and genus-level phylogenies were used to examine the 

phylogenetic distribution of branching types. The phylogeny from Baker et al. (2009) was 

selected for character mapping because it had the most recent genus-level phylogeny.  

Adjustments were made for new and deleted taxa (Dransfield, 2008; Baker & Bacon, 

2011; Bernal & Galeano, 2013; Baker et al., 2015; Noblick & Meerow, 2015). Branching 

types were used for character mapping, since the specific branching type was the 

character that was retained or lost. The software Mesquite (Madison & Madison, 2016), 

a software package used by evolutionary biologists to analyze comparative data, was 
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used to map vegetative branching onto the published cladograms. The ancestral 

branching types were determined using the most parsimonious tree in Mesquite. A 

subfamily level cladogram was analyzed to predict the ancestral branching type for the 

family. Cladograms for Arecoideae, Calamoideae and Coryphoideae were analyzed to 

predict the ancestral branching type for each of these three subfamilies. A cladogram for 

Ceroxlyloideae was not included because this subfamily had no vegetative branching 

except for a single species, Ravenea deliculata Rakotoarin. A cladogram for Nypoideae 

was not included because it is monospecific (Nypa fruticans Wurmb).  

RESULTS: 

There were five vegetative branching types recognized in this study: lateral 

axillary branching, shoot apical division, false vivipary, abaxial branching and leaf-

opposed branching. A dichotomous key was created to facilitate understanding and 

recognition of each branching type (Table 3). Some species displayed more than one 

branching types, referred to as branching combinations. Two branching combinations 

were also observed: shoot apical division + lateral axillary; and false vivipary + lateral 

axillary. Most commonly, species exhibited no vegetative branching; four subfamilies, 

147 genera (81% of genera), and 1043 species (55% of observed species) did not 

branch vegetatively (Table 2, Fig. 2). Some species were found with a branching type or 

as a solitary individual (175 species, 9% of observed species). 

 1) Lateral axillary branching was the most widely distributed vegetative branching 

type in the palms; it was described in four subfamilies, 61 genera (34% of genera), and 

646 species (34% of observed species) (Table 2). Four forms of lateral axillary 

branching were identified: basal suckering, rhizomatous branching, aerial suckering and 

relocated axillary branching.  Basal suckering was defined as lateral axillary branching 
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where the branches grew orthotropically (vertically) immediately and were restricted to 

the base of the parent shoot. Basal suckering was the most common form of lateral 

axillary branching, found in at least 600 palm species. Basal suckers may be produced 

throughout the life of an individual or basal suckers may be produced only during certain 

times. For example, Plectocomia Mart. & Blume species (15 species) and two Licuala 

Thunb. species (L. celebica Miq. and L. gracilis Blume) produced basal suckers after a 

period of dormancy, usually after death of the parent shoot (Tomlinson, 1990). Phoenix 

L. species produced basal suckers until they were sexually reproductive and then 

stopped producing basal suckers (Tisserat & DeMason, 1985).  

 Rhizomatous branching was defined as lateral axillary branching where branches 

were restricted to the base of the stem but grew plagiotropically (horizontally) for some 

time before growing orthotropically (vertically). At least 33 species exhibited rhizomatous 

branching. Rhizomatous branching was found in combination with basal suckering in two 

species (Acoelorrhaphe wrightii H.Wendl. ex Becc. and Cyrtostachys renda Blume).  

 Aerial suckering was defined as basal suckering that was not restricted to the 

base of the stem and also occurred on the aerial portions of the stem. Wendlandiella 

gracilis sub. Polyclada Dammer, Linospadix apetiolatus Dowe & A.K.Irvine, Hyospathe 

elegans hort ex Hook. f., and Geonoma baculifera Kunth exhibited aerial suckering 

(Tomlinson, 1990; Chazdon, 1991). In this study, aerial suckering was placed within 

lateral axillary branching because the branching mechanism for aerial suckering was 

developmentally the same as the branching mechanism for lateral axillary branching and 

species with aerial lateral axillary branching have basal suckering as well.  

 Displaced lateral axillary branching, found in Korthalsia Blume, was defined as 

vegetative axillary meristems that were initiated in the axil of the first or second leaf 
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primordium and then were displaced during development on to the internode above or 

onto the base of the leaf above. The displaced lateral axillary branching type was placed 

within lateral axillary branching because the branching mechanism was lateral axillary 

and the transition out of the axil occurred after initiation of the meristem (Fisher & 

Dransfield, 1979).  

 2) Shoot apical division was distributed throughout the palms, having been 

described in four subfamilies, seven genera (3% of genera), and 21 species (1% of 

observed species) (Table 2, Fig. 2). Three forms of shoot apical division were identified: 

isotomy, anisotomy and Nannorrhops branching.  

Isotomy, which is equal apical division followed by equal growth, has been 

studied anatomically in three palm genera and eight species:  Hyphaene Gaertn. (H. 

compressa H.Wendl, H. coriacea Gaertn., H. dichotoma (J.White Dubl. Ex Nimmo) 

Furtado, H. reptans Becc., and H. thebaica Mart., Nypa fruticans Wurmb. and Manicaria 

saccifera Gaertn. (Gola et al., 2014).  Leaf arrangement and equal forking in divided 

crowns of mature plants suggest isotomy, but anatomical study of shoot apical 

development is needed for confirmation of other species (Fisher, personal 

correspondence).  

Anisotomy, which is unequal division followed by differential growth, was 

exhibited by Eugeissona Griff. (E. ambigua Becc., E. brachystachys Ridl., E. insignis 

Becc., E. minor Becc., E. triste Griff., and E. utilis Becc.). Anisotomous division was so 

unequal in Eugeissona species that the division appeared to be lateral axillary branching 

on non-basal portions of the stem (Fisher et al., 1989). Apical division in palms has been 

reported to range from equal (isotomous) to unequal (aniosotomous) division.  In 

Chamaedorea cataractarum Mart., the anisotomous division of the apical meristem 
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occurred very early in development, and as the stems matured, the division appeared to 

be equal (Fisher, 1973). Only developmental studies showed that the division did not 

initiate equally.   

Nannorrhops branching, which has not previously been recognized as a distinct 

branching type, was defined as equal apical division with branch-pair differentiation. For 

example, in Nannorrhops ritchiana H.Wendl., the apical meristem divides into one fertile 

and one vegetative branch.  

 3) False vivipary has been described in two subfamilies, three genera (1 % of 

genera), and ten species (0.5% of observed species) (Table 2, Fig. 2): Calamus Auct. 

ex. L. (C. castaeneus Griff., C. dianbaiensis C.F.Wei, C. gamblei Becc., C. ingens 

(J.Dransf.) W.J.Baker, C. kampucheaensis A.J.Hend. & Hourt, C. nematospadix Becc., 

and C. pygmaeus Becc.) Salacca Reinw. (S. flabellata Furtado, and S. wallichiana Mart.) 

and Socratea salazarii H.E.Moore (Fisher & Mogea, 1980; Baker et al., 2000; Pintaud & 

Millan, 2004; Rupert et al., 2012). In each account of false vivipary, different terms were 

used to describe the phenomenon (Fisher & Mogea, 1980; Baker et al., 2000; Pintaud & 

Millan, 2004; Rupert et al., 2012). The architectures of the palms with false vivipary were 

different, yet the branching of the inflorescence was the same--vegetative shoots formed 

at the apex of the inflorescence. If the shoot reached the ground, it rooted and a shoot 

grew upward. Calamus gamblei, C. pygmaeus and C. nematospadix are all climbing 

rattans (Dransfield, 1992), Socratea salazarii is an erect and usually solitary palm 

(Pintaud, 2004), while Salacca flabellata is an acaulesent palm (Furtado, 1949). 

 4) Abaxial branching was described in one subfamily (Arecoideae), two genera 

(2% of genera), and seven species (0.3 % of observed species) (Table 2, Fig. 2). In 

abaxial branching, a vegetative branch originating on the abaxial surface of the leaf 
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sheath occurred on the basal and intermediate internodes of orthotropic stems in 

Oncosperma Blume species and Dypsis lutescens (H.Wendl.) Beentje & J. Dransf. 

Species with abaxial branching usually do not display lateral axillary branching. 

5. Leaf-opposed branching was described in one subfamily (Calamoideae), two 

genera (1% of genera), and seven species (0.3% of observed species). Leaf opposed 

branching occurred on basal internodes and on aerial internodes of the stem, as in the 

liana Myrialepis paradoxa (Kurz.) J. Dransf.  Axillary branching, leaf opposed branching 

and abaxial branching are distinct types of stem nodal meristems based on location and 

position of the branching meristem (Fig. 2). In axillary branching, the meristem is located 

in the axil of the leaf. In abaxial branching, the vegetative branching meristem is located 

on the abaxial surface of the leaf sheath. In leaf-opposed branching, the branching 

meristem is borne on the stem, enclosed by the edges of the leaf sheath and opposite to 

the lamina and petiole. 

  Individuals within a species sometimes displayed more than one branching type 

at a time, here called branching combinations. The two branching combinations were 

shoot apical division + lateral axillary and false vivipary + lateral axillary branching. 

Shoot apical division + lateral axillary branching was exhibited by one species of 

Basselinia Vieill. (Arecoideae), all 27 species of Korthalsia Blume (Calamoideae), two 

species of Hyphaene (Coryphoideae) and monospecific Nannorrhops ritchiana 

(Coryphoideae). False vivipary + lateral axillary branching was exhibited by five species 

of Calamus (Calamoideae), and Socratea salazarii (Arecoideae) (Table 2).  

Distribution of branching types within the family:  

 At the subfamily level, lateral axillary branching and shoot apical division were 

predicted as the ancestral vegetative branching types (Fig. 4). The solitary state (no 
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vegetative branching) was also an ancestral state. False vivipary evolved a minimum of 

two times: once in the Calamoideae and once in the Arecoideae (Fig. 4A, 4C). Abaxial 

branching evolved a minimum of two times in the Arecoideae (Oncosperma and Dypsis) 

(Fig. 4C). Leaf-opposed branching evolved two times in the Calamoideae, in Myrialepis 

Becc. and in Calamus (Fig. 4A). 

The subfamilies had different relationships between size (species count) and 

number of branching types (Fig. 5A, Χ2 test comparing number of branching types to 

genus size by subfamily p<0.01). The subfamilies also had different relationships 

between size and number of solitary species (Fig. 5B, Χ2 test comparing number of 

solitary species to genus size by subfamily, p<0.01) The Calamoideae subfamily had a 

disproportionately large number of branching types and a disproportionately low number 

of solitary species for its size (Fig. 5A, Fig. 5B). 

 The Calamoideae, the most basal and second largest subfamily (659 species), 

exhibited four branching types and both branching combinations and was the most 

diverse in vegetative branching types (Table 2). On average number, one branching type 

was exhibited in a genus. With three branching types, Calamus exhibited the most 

branching types in Calamoideae . The ancestral branching type of Calamoideae was 

predicted to be lateral axillary branching (Fig. 4A). In the Calamoideae, more species 

had vegetative branching (341 species, 86% of observed Calamoideae species) than the 

solitary habit (58 species, 15% of observed species). Lateral axillary branching evolved 

a minimum of one time in the Calamoideae. In five genera, all species had lateral axillary 

branching; these genera were Laccosperma G. Mann & H.Wendl. (six species), 

Eremospatha Mann & H.Wendl. (11 species), Oncocalamus Mann & H.Wendl. (five 

species), Mauritiella Burret (four species), Plectocomia Mart. & Blume (15 species), and 
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Plectocomiopsis Becc. (six species). Ten species in two genera in the Calamoideae 

displayed false vivipary: Calamus (eight) and Salacca (two). Shoot apical division 

evolved at least two separate times in the Calamoideae; species of Eugeissona and 

Korthalsia exhibited shoot apical anisotomy. Leaf-opposed branching, described only in 

the Calamoideae, was the least common branching type in the Calamoideae; Myrialepis 

(one species) and Calamus (seven species) were the only two genera with leaf-opposed 

branching.  In Calamoideae, 15% of observed species did not display any branching, 

and two genera, Mauritia L.f. (two species) and Pigafetta (Blume) Becc. (two species) 

exhibited no branching:. 

 The majority of the Coryphoideae, the third largest subfamily (492 species), were 

solitary, exhibiting no vegetative branching (39 genera/283 species, 74% of observed 

Coryphoideae species). Members of Coryphoideae displayed lateral axillary branching 

(16 genera /79 species, 20% of observed Coryphoideae species) and shoot apical 

division (three species of Hyphaene, 0.7% of observed Coryphoideae species), as well 

as one branching combination, shoot apical division + lateral axillary (two species of 

Hyphaene and Nannorrhops ritchiana) (Table 2). The ancestral branching type of the 

Coryphoideae was lateral axillary branching (Fig. 4B). Based on size, the Coryphoideae 

exhibited fewer branching types, given the number of species (Fig. 5A). The genus 

Hyphaene (eight species) exhibited the most branching types and combinations in the 

Coryphoideae (two types – lateral axillary and shoot apical division and one branching 

combination (shoot apical division + lateral axillary)). All species in subtribe Rhapidinae, 

except for Trachycarpus H.Wendl., exhibited lateral axillary branching: Chamaerops L. 

(one species), Rhapidophyllum H.Wendl. & Drude (one species), Maxburretia Furtado 

(three species), Rhapis L.f. (ten species) and Guihaia J.Dransf., S.K.Lee & F.N.Wei (two 

species). The subtribe Rhapidinae was the only clade greater than genus-level in the 
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Coryphoideae where lateral axillary branching was retained throughout all species of the 

clade. Lateral axillary branching evolved at least 12 times and shoot apical division 

evolved at least two times in Coryphoideae. There were no species in the Coryphoideae 

that displayed false vivipary, abaxial branching or leaf-opposed branching.   

 The Arecoideae, the largest subfamily (1376 species), exhibited four branching 

types and two branching combinations (Table 2). The majority of the Arecoideae 

exhibited no branching (59%, 657 observed species). Dypsis Noronha ex Mart. exhibited 

three branching types, which was the most branching types for the Arecoideae. The 

ancestral branching type of the Arecoideae palms was lateral axillary (Fig. 4C). Five 

genera in Arecoideae had no solitary species (i.e., all species exhibited vegetative 

branching): Iriartella H.Wendl. (two species), Wettinia Poepp. ex Endl. (21 species), 

Jubaeopsis Becc. (one species), Podococcus Mann & H.Wendl. (two species) and 

Sclerosperma G.Mann & H.Wendl. (three species). Shoot apical division evolved at least 

four times, occurring in Allagoptera, Basselinia, Dypsis, and Manicaria. However, shoot 

apical division was not easily observed in these genera. In Basselinia, Dypsis and 

Manicaria, shoot apical division occurs early in development of the stem (Moore, 1982; 

Fisher & Zona, 2006). Allagoptera Nees is a creeping palm and apical division occurs 

low to the ground. While shoot apical division was not as obvious as in Hyphaene 

(Coryphoideae), morphological signs of apical division (forking) are still present and 

observable in Allagoptera. False vivipary evolved once in Socratea salazarii. Abaxial 

branching evolved twice, occurring in Dypsis lutescens and Oncosperma.  

 The Ceroxyloideae, the fourth largest subfamily (47 species), had one species 

that branched vegetatively. The ancestral state of Ceroxyloideae was no branching; 99% 

of species exhibited no branching.  Ravenea deliculata, from the largest genus in 
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Ceroxyloideae (Ravenea, 21 species), displayed lateral axillary branching both basally 

and aerially (Rakotoarinivo, 2008). On the basis of size, the Ceroxyloid palms exhibited 

fewer branching types and combinations than expected (Fig. 5A).  

 Nypoideae, the smallest subfamily (one species, Nypa fruticans), exhibited one 

branching type (shoot apical division), and the ancestral branching type was shoot apical 

division. 

In the palm family, most genera displayed either no branching (147 genera, 81% 

of genera) or lateral axillary branching (61 genera, 34% of genera). There were only 15 

genera (9% of genera) and 67 species (3% of observed species) that displayed 

branching types other than lateral axillary branching. In Calamoideae, four genera had 

non-axillary vegetative branching: Calamus (leaf-opposed, false vivipary + lateral 

axillary), Korthalsia (shoot apical division + lateral axillary), Myrialepis (leaf-opposed), 

and Eugeissona (shoot apical division). In Coryphoideae, two genera displayed non-

axillary vegetative branching: Hyphaene (shoot apical division or shoot apical division + 

lateral axillary), and Nannorrhops (shoot apical division + lateral axillary). In Arecoideae 

eight genera displayed non-axillary branching: Allagoptera (shoot apical division), 

Basselinia (shoot apical division+ lateral axillary), Chamaedorea (shoot apical division), 

Dypsis (shoot apical division or false vivipary), Manicaria (shoot apical division), 

Oncosperma (abaxial), Socratea (false vivipary + lateral axillary), and Syagrus (shoot 

apical division).  

Only six genera displayed two or more branching types. Genera with two 

branching types were Basselinia (14 species, Arecoideae), Chamaedorea (106 species, 

Arecoideae), Syagrus Mart. (58 species, Arecoideae) and Hyphaene (eight species, 

Coryphoideae). Calamus exhibited three branching types (498 species, Calamoideae), 
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and Dypsis exhibited three branching types (162 species, Arecoideae). The genera that 

displayed two or more branching types came from different sized genera but were 

disproportionately from Arecoideae.  Multiple branching types occurred in one genus 

from Calamoideae, one from Coryphoideae and four from Arecoideae.  

DISCUSSION:    

Results from the current study suggest that lateral axillary branching is the 

ancestral branching type and that branching evolved before palm divergence from 

immediate ancestors. Monocots evolved in the mid/late Jurassic period about 160 million 

years ago. (Wikstrom et al., 2001). Recent evidence suggests palms diverged in the 

Turonian, about 90 million years ago (Harley, 2006).  Newer findings demonstrate that 

palms diverged much earlier than commelinid relatives (Barrett, 2016). At some point 

between monocot evolution and evolution of the present palm species, a diversity of 

branching types evolved in the palms.  

While fossilized remains of palms are distributed throughout the fossil record, 

stems are less commonly found as fossils and multiple-stemmed fossils are missing 

from the literature entirely (Erwin & Stockeny, 1994; Harley, 2006).  There is a form 

genus for palms with rhizomatous stems, Rhizopalmoxylon (Palmoxylon is the form 

genus for petrified wood) and there is apparently no literature on its architecture, 

specifically, whether there are multiple stems per individual (Harley, 2006). Nypa 

fruticans, a multi-stemmed palm once widespread in many continents, has fossilized 

pollen, fruit, and leaves but no stem fossils (Gee, 2001; Mehrotra et al., 2002). It is 

difficult to determine when branching evolved in Nypa, and in palms in general, without 

any branching or architectural information from fossils. 
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While the fossil record does not distinguish the ancestral branching type, it is 

possible to predict evolutionary trajectories for each branching type. Because of the 

prevalence of lateral axillary branching in commelinid relatives, as well as in the palm 

family, lateral axillary branching may have been present before the divergence of palms. 

Lateral axillary branching is a common branching type in Poaceae Barnhart (Holtuum, 

1995; Ward & Leyser, 2004; Steen & Leyser, 2005; Doust, 2007), Cyperaceae Juss. 

(Rodigues & Maranho-Estelita, 2009), Zingiberaceae Martinov (Bell, 1979) and 

Dasypogonaceae Dum. (Clifford et al., 1998); Dasypogonaceae is sister to the palms. 

Therefore, lateral axillary branching may share a common evolutionary history 

throughout the commelinid relatives.  

While the results from the present study suggest that shoot apical division is an 

ancestral branching type, shoot apical division in the commelinids is described only in 

Strelitzia Banks (Strelitziaceae) (Fisher, 1976). Also, shoot apical division is not nearly 

as widespread through the palm family as lateral axillary branching. It is likely that shoot 

apical division evolved after the divergence of palms. 

Results from this study suggest that the remaining branching types, false 

vivipary, abaxial branching and leaf-opposed branching, probably evolved after the 

divergence of palms. False vivipary and leaf-opposed branching are found in commelinid 

relatives. False vivipary is common in the Poaceae (Chlorophytum comosum (Thunb.) 

Jacques, Deschampsia alpina (L.) Roem. & Schult., Festuca ovina var. vivipara L., 

Dactylis glomerata L., Poa x jemtlandica K.Richt.), as well as the Zingiberales 

(Costaceae Nakai and Marantaceae R.Br.). In Costaceae (Zingiberales) and 

Marantaceae (Zingiberales), bulbils are produced in the axils of inflorescence bracts 

(Jenik, 1994), a branching type closely related to false vivipary.  Leaf-opposed branching 
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is found in Musa L. (Fisher, 1973). However, the presence of these branching types in 

commelinid relatives does not mean that the ancestral palm could display the branching 

types. Results from this study suggest that false vivipary and leaf-opposed branching 

evolved later in palm evolutionary history. Results suggest that the false vivipary and 

leaf-opposed branching displayed by the palms and their commelinid relatives is an 

example of homoplasy, and distinct evolutionary histories led to similar branching types. 

Abaxial branching, however, has been described only in the palms and may be a 

branching type unique to the family. 

The evolutionary history of branching types may not be easily determined 

because the evolution (and loss) of branching types in the palms is continuous and 

occurred at different speeds among subfamilies (Faurby et al., 2016). The different 

evolutionary trajectories of vegetative branching in subfamilies Calmoideae and 

Arecoideae exemplify that evolution (and loss) of branching types is continuous and 

occurred at different speeds. In Calamoideae, most commonly an entire genus shares a 

branching type. Branching types in Calamoideae do not appear to be changing at the 

species level. Alternatively, in Arecoideae, species within a genus may not share a 

common branching type. In the Arecoideae, the genera are mostly solitary but have a 

few branching species. There are two distinct trajectories that could lead to a primarily 

solitary genus with a few branching species in Arecoideae. Either the ancestor to the 

genus did not branch and the ability to branch is re-evolving in a few species, or the 

ancestor did branch and the extant species have lost the ability to branch. Evolution of 

branching in palms may be influenced by differences in the ecology of different taxa.  
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Ecology of branching in palms 

Regardless of evolutionary history, vegetative branching is less common in 

palms than in their commelinid relatives (Tomlinson, 1973). Like most monocots, 

including their commelinid relatives, palms do not produce secondary xylem (wood) from 

a vascular cambium, which limits their ability to make large trees. One of the main 

differences between palms and their close relatives, however, is their large, strong, 

woody trunks. Palms form a woody trunk through cell thickening and lignification on the 

surface layers of the cells in the outer cortex. It is possible that the lignification of the 

surface of the palm stem prevents activation and growth of dormant axillary buds. The 

lignified stem may have imprisoned the buds and the ability to branch via axillary buds 

was lost over evolutionary time. Lignified stems (woody trunks) presumably have been 

selected because they increase fitness and the chance of survival (Schluter, 2001). 

Vegetative branching may be less common in the palms because there was a selection 

for palms with thicker, taller and faster-growing trunks rather than thinner trunks that can 

branch (Henderson, 2002a).  

 It is important to note that all palms, even solitary palms, branch sexually. All 

palms have meristems that produce inflorescences. Similar branching types exist in 

vegetative and sexual branching in the palms. The most common type of sexual 

branching is axillary, exhibited by the vast majority of palms, where an inflorescence is 

produced from a bud in the leaf axil (Dransfield et al., 2008). In sexual branches, there is 

variation in types of displaced axillary branching that results in different branching 

patterns (Fisher & Maidman, 1999). In Salacca and Kerriodoxa J.Dransf., the sexual bud 

is borne in the leaf axil but may be captured by the subtending developing leaf and the 

bud emerges through a slit on the abaxial side of the leaf sheath (Fisher & Mogea, 
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1980). In a few genera in the Calamoideae (Korthalsia, Calamus, Myrialepis, 

Plectocomia and Plectocomiopsis) the bud is displaced longitudinally and is adnate to 

the internode and leaf sheath above the node of origin (Fisher & Dransfield, 1977; 

Fisher, 1980). In sexual apical branching, the apical meristem aborts vegetatively and 

produces a large inflorescence (i.e., Corypha L. and Tahina J.Dransf. & Rakotoarin.) 

(Dransfield et al., 2008). False vivipary is a convergence between asexual and sexual 

branching and is both sexual and vegetative. Abaxial and leaf-opposed sexual branching 

types have not been recorded in the palms. 

While sexual branching is more common in the palms than vegetative branching, 

there are ecological benefits of vegetative branching. First, branching could increase net 

primary productivity for the individual genet. When the palm branches vegetatively, it 

produces more crowns with more leaves, and the increase in leaves could increase 

photosynthetic potential (Duncan, 1971). Since not all leaves are photosynethically 

equivalent, having multiple crowns would increase photosynthesis.  In palms like 

Serenoa Hook.f., Allagoptera and Nypa, a creeping habit allows the stem to produce 

more roots (Tomlison, 1990; Fisher, 1999). The creeping habit can support a greater 

photosynthetic potential. However, if the branching type is shoot apical division and the 

habit is erect (as in Hyphaene dichotoma), the trunk may be unable to support more 

crowns physically and physiologically.  

Another ecological consequence of branching is that having multiple stems 

increases chances of an individual’s survival in unstable environments, such as 

understories of rainforests and coastal strands (Tomlinson, 1990). Certain species of 

Chamaedorea Willd. and Geonoma Willd. live in unstable environments in the 

understory of rainforests where falling debris poses a threat to their survival (Bullock, 
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1980; Clark & Clark, 1989; Chazdon, 1992; James, 2013;) A solitary palm only has one 

apical meristem and damage to the apical meristem results in death of the plant. In a 

multiple-stemmed palm, a genet can survive after damage to a single apical meristem. 

Thus, having multiple stems increases their chance of surviving a fallen branch or trunk 

of a large upper canopy tree, exemplified by Geonoma baculifera and Hyospathe. These 

species are clumping palms that grow in the understory of rainforests. However, if 

damage occurs on an apical meristem (at the apex of the stem), aerial axillary buds 

grow to produce plantlets. The stem eventually falls and the plantlets root into the 

ground, producing new ramets. 

Nypa and Allagoptera also colonize environments where water level and 

substrate are unstable. Nypa fruticans colonizes coastal strands where water level is in 

constant flux and muddy banks are unstable (Tomlinson, 1990). Allogoptera colonizes 

sandy beaches and dunes, where water level changes daily and dunes are likely to 

change shape (Dransfield et al., 2008). For Nypa and Allogoptera, branching is by shoot 

apical division, which allows them to form large monotypic stands. If damage occurs to a 

stem, such as meristem or stem rot from prolonged flooding, many other apical 

meristems exist that will survive and continue branching.  Nypa and Allagoptera may 

also help stabilize these unstable environments. 

While vegetative branching is a survival method, as in Chamaedorea, Geonoma, 

Hyospathe Mart., Nypa and Allagoptera, it is also a mechanism for reproduction (Mogie, 

1992). In unstable environments, such as flood plains, coastal strands and habitats with 

frequent fire and droughts, seed germination and establishment can be difficult. The 

ability of an individual to branch vegetatively and reproduce asexually ensures continued 

reproduction of the species into the next generation. 
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The Calamoideae epitomize the ecological benefit gained from vegetative 

branching. They are an interesting group because most species exhibit vegetative 

branching and climb prolifically. A major innovation in the Calamoideae was their liana 

habit (Gianoli, 2004; Couvreur et al., 2013). These palms climb, branch and dominate 

the canopy of Asian rainforests (Dransfield, 1992; Dransfield, 1997; Dransfield et al., 

2008). Vegetative branching, therefore, allows the Calamoideae to climb through and 

explore the canopy prolifically. These palms climb, branch and colonize the canopy more 

efficiently than unbranched palms. Vegetative branching allows the Calamoideae to 

exploit the canopy habitat; at the same time, the liana habit means that they plants do 

not invest in large woody trunks. 

The Calamoideae also contain the greatest number of species that branch 

through false vivipary. False vivipary is interesting ecologically because it is only 

successful if the inflorescence is able to root in the forest floor, presumably when the 

crown is close to the ground (Bell, 1980). In grasses displaying false vivipary, the 

inflorescence is never more than a few centimeters from the ground and the plantlet can 

easily reach the soil to root. In palms, false vivipary occurs on both erect (Socratea), 

climbing (Calamus) and acaulescent (Salacca) stems and is successful in all of these 

habits (Fisher & Mogea, 1980; Dransfield, 1992; Dransfield, 1997; Baker et al., 2000; 

Pintaud & Millan, 2004; Rupert et al., 2012). For all species that exhibit false vivpary, 

successful rooting of the false viviparous shoot has been described for stems near the 

soil, but the exact heights have not been recorded. There are at least four possible 

relationships between stem height and successful false vivipary. First, there could be no 

relationship; false viviparous shoots could form at any height in the canopy and 

successfully root in the soil. No relationship between height of the shoot and 

successfully rooting is the least likely of the scenarios, since the viviparous shoot may 
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have a very long distance to travel to reach to soil. Second, the false viviarpous shoots 

could form at any height in the canopy but may not successfully root above a certain 

stem height (critical height). Alternatively, false vivipary may only occur on stems below 

a critical height and stems of Calamus and Socratea may stop producing false 

viviparous inflorescences once they reach a certain height. The fourth possibility is that 

the viviparous shoot could abscise and fall to the forest floor. More studies on the 

morphology and ecology of false vivipary in the palms are needed in order to determine 

which mechanism occurs in which species.  

This study of vegetative branching in palms demonstrates that diverse branching 

types exist in the Arecaceae. The distribution of shoot apical division, false vivipary, 

abaxial branching and leaf-opposed branching within the palm family and subfamilies 

gives insights into palm evolutionary history and ecological constraints. This study 

highlights how the simplification of vegetative branching in the palm literature has 

inhibited our understanding of basic palm evolution and ecology.  
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TABLES: 

Table 1: Definitions of branching terms used in this study with synonyms, reference and 

palm example. 

Term (synonym(s)) Reference(s) Definition Palm example 

Lateral axillary branch Tomlinson, 1990 Branch originates in 
the axil of the leaf 

Serenoa repens 

Basal sucker Tomlinson, 1990 Lateral axillary branch 
immediately grows 
upward, limited to 
basal internodes 

Pytchosperma 
macarthurii 

Aerial lateral axillary 
branch 

Tomlinson, 1990 Lateral axillary branch 
is not limited to basal 
internodes 

Geonoma 
baculifera, 
Hyospathe 
elegans 

Dormant basal 
suckers 

Tomlinson, 1990 Basal sucker 
outgrowth is dormant 
until death of parent 
stem 

Plectomia spp. 

Rhizomatous branch Zimmerman & 
Tomlinson, 1967 

Vegetative outgrowth 
of axillary meristem at 
base of stem where 
monopodial or 
sympodial units form 
a plagiotropic rhizome 

Rhapis excelsa 

Sympodial 
rhizomatous branch 

Zimmerman & 
Tomlinson, 1967 

Vegetative outgrowth 
of axillary meristem at 
base of stem where 
sympodial units form 
a plagiotropic rhizome 

Rhapis exelsa 

Monopodial 
rhizomatous branch 

Bell & Tomlison, 
1980  

Vegetative outgrowth 
of axillary meristem at 
base of stem where 
monopodial units form 
a plagiotropic rhizome 

No palm 
example  

Apical branch Tomlinson, 1990 Branch originates in 
the apical meristem, 
most commonly as a 

Hyphaene 
thebaica 



32 
 

division of the apical 
meristem 

Apical division Gola, 2014 More or less equal 
division of apical 
meristem, resulting in 
two independent 
functioning axes  

Hyphaene 
coriaceae 

Apical isotomy  Gola, 2014 Equal division apical 
meristem that results 
in two independent 
functioning axes of 
similar size and 
morphology 

Nypa fruticans 

Apical anisotomy Gola, 2014 Unequal division 
apical meristem that 
results in two 
independent 
functioning axes of 
different size and 
morphology 

Eugeissona 
tristis 

Nannorhops 
branching 

* new term Equal division apical 
meristem that results 
in two independent 
functioning axes of 
different size and 
morphology 

Nannorhops 
richiana 

Adventitious 
bud/branching 

Fisher, 1973 Meristem not in typical 
position 

Socratea 
salazarii 

False vivipary 
(prolification, 
vegetative 
transformation of 
inflorescence, broadly 
as proliferation 
(sensu latu) 

Fisher & 
Dransfield, 1977; 
Bell & Bryan, 
2008 

Adventitious 
vegetative outgrowth 
at the shoot apex of 
the inflorescence, 
growing 
independently of 
inflorescence axis 

Calamus 
castaneus 

Proliferation (sensu 
stricto) 

Bell & Bryan, 
2008 

Adventitious meristem 
originates from 
vegetative material, 
usually leaves 

No palm 
example 
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Abaxial branch  Fisher, 1973, 
Fisher et al., 
1989;  

Vegetative branch 
meristem borne on 
the abaxial surface of 
leaf, on the base of 
the leaf sheath 

Dypsis lutescens 

Leaf-opposed branch Fisher & 
Dransfield, 1979; 
Tillich, 1998 

Vegetative branch 
meristem borne on 
the stem opposite of 
leaf and enclosed in 
the leaf sheath 

Myrialepis 
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Table 2: Palm subfamilies and their species counts for the four branching types and their combinations; species only assigned to 

one combination. References for sub-families can be found in the individual sub-family tables. 

 

Subfamily Species count 

Number of spcies that exhibit… 

N
o branching 

Lateral axillary 

Shoot apical dichotom
y 

Shoot apical dichotom
y 

w
ith lateral axillary 

False vivipary 

False vivipary w
ith 

lateral axillary  

Abaxial 

Leaf-opposed 

Arecoideae 1112/1376 657 423 13 1   1 7   

Calamoideae 395/659 58 292 6 28 2 2   7 

Ceroxyloideae 47/47 46 1             

Coryphoideae 381/492 283 92 3 3         

Nypoideae 1/1     1           

Arecaceae (1903/2501) 1043 646 21 31 2 3 7 7 
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Table 3: Key to major branching types in the palms; palms branching types were distinguished by location of the meristem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If there are more than one crowns: meristem used for branching (a) axillary, (b) apical, (c), adventitious (atypical position) 

a. Axillary: …………………………………………………(1) Lateral axillary branching  

b. Apical: …………………………………………………..(2) Shoot apical division 

c. Adventitious: bud borne on (a) inflorescence, (b) leaf sheath, (c) stem  

a.  Inflorescence……………………………………….(3) False vivipary 

b. Leaf sheath, base………….…………………..…….(4) Abaxial 

c. Stem, enclosed in leaf sheath…………….……...….(5) Leaf-opposed 
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FIGURES: 

Fig. 1: Vegetative branching types in the palms (arrows indicate vegetative branch): A. 

No branching type (Hyophorbe laugenicaulis) or solitary; B. Lateral axillary branching 

(Rhapis mulifida); C. shoot apical division (Hyphaene dichotoma); D. false vivipary 

(Socratea salazarii); D. abaxial branching (Dypsis lutescens); and E. leaf-opposed 

branching (Myrialepis paradoxa).  Arrow points to branch. 
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Fig. 2: Plan view of a palm leaf with locations of the three distinct types of stem nodal 

branching; the stem is not drawn but the encircling leaf base is shown. (A) Axillary 

branching--the meristem arises in the axil of the leaf; (B) Abaxial branching--the 

meristem is located on the base of the leaf sheath, on the abaxial surface of the leaf; 

and (C) Leaf-opposed branching--the meristem is borne on the stem of the palm, 

enclosed by the outer edges of the leaf sheath and opposite to the lamina and petiole. 
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Fig 3: Distribution of branching types in the palm family (Arecaceae) on a sub-family 

level cladogram (A. key to branching types; B. sub-family cladogram)  
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Fig 4: Distribution of branching types in the Calamoideae on a genus level cladogram. 

Key the same as Fig. 2.  
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Fig. 5: Distribution of branching types in the Calamoideae on a genus level cladogram. 

Key the same as Fig. 2 
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Fig. 6: Distribution of branching types in the Arecoideae on a genus level cladogram (A. 

entire cladogram showing further break down, B. Socratea- Parajubaea C. Podococcus- 

Clinostigma D. Chambeyronia- Neoveitchia, and E. Ptychosperma- Normanbya). Key 

the same as Fig. 2. 

A. 
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B. 
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C. 
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D. 
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E. 
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Fig.7: A. Number of branching types and combinations in each subfamily and the entire 

family plotted with size of subfamily and family (species count) and B. number of solitary 

species in each sub family plotted against size of subfamily and family. (ARE= 

Arecoideae, CAL= Calamoideae, CER= Ceroxyloideae, COR= Coryphoideae, 

NYP=Nypoideae).  

A. 

 

B. 
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APPENDICES: 

Appendix A: Genera, species counts for the four branching types and their combinations for subfamily Calamoideae with 

references.  

A.    Number of species that exhibit…   

Genus 

Species 
count 

N
o branching 

Lateral axillary 

Shoot apical 
dichotom

y 

Shoot apical 
dichotom

y w
ith lateral 

axillary 

False vivipary 

False vivipary w
ith 

lateral axillary  

Abaxial 

Leaf-opposed 

References 
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Calamus  263/521 40 210       2   6 

Beccari, 1902; 
Beccari, 1914; 
Dransfield, 1977; 
Dransfield, 1979; 
Fisher & 
Dransfield, 1979; 
Dransfield, 1982; 
Dransfield, 1984a; 
Kramadibrata, 
1992; Dransfield, 
1997; Dransfield, 
2001; Renuka et 
al., 2001; Baker & 
Dransfield, 2002a; 
Baker & 
Dransfield, 2002b; 
Rustiami, 2002a; 
Rustiami, 2002b; 
Baker et al., 2003; 
Dransfield et al., 
2005; Henderson, 
2005; Baker & 
Dransfield; 2007; 
Henderson & 
Henderson, 2007; 
Henderson et al., 
2008; Henderson, 
2009; Sunderland, 
2012; Henderson 
& Dung, 2013; 
Rustiami et al. 
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2014; Baker et al., 
2014 

 

Eleiodoxa  1/1   1             Dransfield et al., 
2008 

Eremospatha  11/11   11             Dransfield et al., 
2008 

Eugeissona  6/6     6           Fisher et al., 1989;  

Korthalsia  28/28       28*         Fisher & 
Dransfield, 1979 

Laccosperma  6/6   6             Dransfield et al., 
2008 



50 
 

Lepidocaryum  1/1   1             Dransfield et al., 
2008 

Mauritia  2/2 2               Dransfield et al., 
2008 

Mauritiella  4/4   4             Bernal & Galeano, 
2001 

Metroxylon  7/7 6 1             Barrau, 1959; 
McClatchey ,1998 

Myrialepis  1/1               1 Dransfield,1982 

Oncocalamus  5/5   5             Dransfield et al., 
2008 

Pigafetta  2/2 2               Dransfield et al., 
2008 

Plectocomia  15/15   15             Dransfield, 1982 

Plectocomiopsis  6/6   6             Dransfield et al., 
2008 

Raphia  19/20 8 11             Russell, 1965; 
Fisher et al., 1989 

Salacca  22/23   21     2       Fisher & Mogea, 
1980 

Calamoideae 399/659 58 292 6 28 2 2   7   
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Appendix B: Genera, species counts for the four branching types and their combinations for subfamily Coryphoideae with 

references. 

B.    Number of species that exhibit…   

Genus 

Species 
count 

N
o branching 

Lateral axillary 

Shoot apical 
dichotom

y 

Shoot apical 
dichotom

y w
ith lateral 

axillary 

False vivipary 

False vivipary w
ith 

lateral axillary  

Abaxial 

Leaf-opposed 

References 

Acoelorrhaphe  1/1   1             Personal observation 

Arenga  
20/24 3 17             

Dransfield et al., 
2008; Jeanson & 
Guo, 2011 

Bismarkia  1/1 1               Dransfield et al., 
2008 

Borassodendron  2/2 2               Dransfield et al., 
2008 

Borassus  5/5 5               Dransfield et al., 
2008 

Brahea  11/11 10 1             Dransfield et al., 
2008 
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Caryota  
14/14 11 3             

Dransfield et al., 
2008; Personal 
observation 

Chamaerops  
1/1 1               

Dransfield et al., 
2008; personal 
observation 

Chelyocarpus  
4/4 2 2             

Kahn & Mejia,1988; 
Dransfield et al., 
2008 

Chuniophoenix  
2/2   2             

Dransfield et al., 
2008; Personal 
observation 

Coccothrinax  
50/53 46 4             

Henderson et al. 
1997; Henderson, 
2005; Moya, 1997b 

Colpothrinax  
3/3 3               

Dransfield et al., 
2008; Personal 
observation 

Copernicia  22/22 21 1             Henderson et al., 
1997; Moya, 1997a 

Corypha  
5/5 5               

Dransfield et al., 
2008; Personal 
observation 
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Cryosophila  
10/10 10               

Dransfield et al., 
2008; Personal 
observation 

Guihaia  
2/2   2             

Dransfield et al., 
1985; Dransfield et 
al., 2008; 

Hemithrinax  3/3 3               Dransfield et al., 
2008 

Hyphaene  
7/8 2   3 2         

Moore & Uhl, 1982; 
Valkenburg & 
Dransfield, 2004 

Itaya  
1/1 1               

Dransfield et al., 
2008; personal 
observation 

Johannesteijsmannia  4/4 4               Dransfield et al., 
2008 

Kerriodoxa  
1/1 1               

Dransfield et al., 
2008; Personal 
observation 

Lanonia 8/8 1 7             Henderson & Bacon, 
2011 

Latania  
3/3 3               

Dransfield et al., 
2008; Personal 
observation 
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Leucothrinax  
1/1 1               

Dransfield et al., 
2008; Personal 
observation 

Licuala  

60/162 38 22             

Henderson, 1997; 
Takenaka et al., 
2001; Dransfield et 
al., 2008; Henderson 
et al., 2008;  

Livistona  27/27 27               Dransfield et al., 
2008; Dowe, 2009 

Lodoicea 1/1 1               Dransfield et al., 
2008 

Maxburretia  
2/3   2             

Dransfield et al., 
2008; Henderson, 
2009 

Medemia  1/1 1               Dransfield et al., 
2008 

Nannorhops  1/1       1         Tomlinson and 
Moore, 1968 

Phoenix  

13/13 6 7             

Davis, 1950; 
Chevalier, 1952; 
Barrow, 1998; 
Dransfield et al., 
2008  

Pholidocarpus  6/6 6               Dransfield et al., 
2008 
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Pritchardia  
30/30 30               

Dransfield et al., 
2008; Personal 
observation 

Pritchardiopsis  1/1 1               Dransfield et al., 
2008 

Rhapidophyllum  
1/1   1             

Dransfield et al., 
2008; Personal 
observation 

Rhapis  
10/10   10             

Dransfield et al., 
2008; Personal 
observation 

Sabal 14/14 14               Dransfield et al., 
2008 

Sabinaria  1/1 1               Dransfield et al., 
2008 

Saribus  1/1 1               Bacon & Baker, 2011 

Satranala  1/1 1               Dransfield et al., 
2008 

Schippia 1/1 1               Dransfield et al., 
2008 

Serenoa  

1/1   1             

Fisher & Tomlinson, 
193; Bennet & 
Hicklin, 1998; 
Abrahamson, 1999; 
Personal observation 
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Tahina  1/1 1               Dransfield et al., 
2008 

Thrinax  3/3 3               Dransfield et al., 
2008 

Trachycarpus  10/10 10               Dransfield et al., 
2008 

Trithrinax  
3/3 2 1             

Dransfield et al., 
2008; Personal 
observation 

Wallchia  
8/8 1 7             

Dransfield et al., 
2008; Personal 
observation 

Washingtonia  
2/2 2               

Henderson, 2007; 
Dransfield et al., 
2008 

Zombia  
1/1   1             

Dransfield et al., 
2008; Personal 
observation 

Coryphoideae 381/492 283 92 3 3           
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Appendix C: Genera, species counts for the four branching types and their combinations for subfamily Ceroxyloideae with 

references. 

    Number of species that exhibit…   

C.  

Species 
count 

N
o branching 

Lateral axillary 

Shoot apical 
dichotom

y 

Shoot apical 
dichotom

y w
ith lateral 

axillary 

False vivipary 

False vivipary w
ith 

lateral axillary  

Abaxial 

Leaf-opposed 
References 

Ammandra 1/1 1               Dransfield et al., 
2008 

Aphandra 1/1 1               Dransfield et al., 
2008 

Ceroxylon 12/12 12               Dransfield et al., 
2008 

Juania  1/1 1               Dransfield et al., 
2008 

Oraniopsis 1/1 1               Dransfield et al., 
2008 

Phytelephas 6/6 4 2             Dransfield et al., 
2008 
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Pseudophoenix 4/4 4               Dransfield et al., 
2008 

Ravenea 

21/21 20 1             

Beentje, 1994a; 
Beentje, 1994b; 
Dransfield et al., 
2008; Rakotoarinivo, 
2008; Rakotoarinivo 
& Dransfield, 2010 

Ceroxyloideae 47/47 46 1               
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Appendix D: Genera, species counts for the four branching types and their combinations for subfamily Arecoideae with 

references (A. Acanthophoenix- Beccariophoenix, B. Bentinckia- Drymophloeus, C. Dypsis- Leopoldinia, D. Lepidorrhachis-

Prestoea, E. Ptychococcus-Voaniola, F. Wallaceodoxa- Wodyetia 

D.    Number of species that exhibit…   

Genus 

Species 
count 

N
o branching 

Lateral axillary 

Shoot apical 
dichotom

y 

Shoot apical 
dichotom

y w
ith lateral 

axillary 

False vivipary 

False vivipary w
ith 

lateral axillary  

Abaxial 

Leaf-opposed 

References 

Acanthophoenix    3               Dransfield et al., 
2008 

Acrocomia  8/8 8               Dransfield et al., 
2008 

Actinokentia  2/2 2               Dransfield et al., 
2008 

Actinorhytis  1/1 1               Dransfield et al., 
2008 

Adonidia  1/1 1               Dransfield et al., 
2008 

Aiphanes  23/29 11 12            Borchsenius & 
Bernal, 1996; 
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Henderson et 
al., 1997 

Allagoptera  5/5 1   4           Tomlinson, 1967 

Archontophoenix  6/6 6               Personal 
observation 

Areca  

37/46 24 13             

Dransfield, 
1984b; 
Henderson, 
2009; Heatubun, 
2011; Heatubun 
et al., 2012 

Asterogyne  

5/5 5               

 Henderson & 
Steyermark, 
1986; 
deGranville & 
Henderson, 
1988; Stauffer et 
al., 2003; 
Dransfield et al., 
2008 

Astrocaryum  

32/38 24 8             

Kahn & Millán, 
1992; 
Henderson et 
al., 1997; 
Borchsenius et 
al., 1998;  Kahn 
& de Granville, 
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1998; Kahn, 
2008 

Attalea  66/66 66               Dransfield et al., 
2008 

Bactris  

72/79 5 67             

Tomlinson, 
1990; 
Henderson et 
al., 1997; 
Henderson, 
2000 

Balaka  9/9 9               Dransfield et al., 
2008 

Barcella  1/1 1               Dransfield et al., 
2008 

Basselinia  

14/14 10 3   1         

Moore, 1984; 
Essig et al., 
1999; Pintaud & 
Baker, 2008; 
Pintaud & 
Stauffer, 2015 

Beccariophoenix  3/3 1               Dransfield et al., 
2008 

Bentinckia  2/2 2               Dransfield et al., 
2008 
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Brassiophoenix  2/2 2               Dransfield et al., 
2008 

Burretiokentia  5/5 5               Dransfield et al., 
2008 

Butia  17/20 14 3             Gaiero et al., 
2011 

Calyptrocalx  21/26 12 9             Dowe & Ferrero, 
2001 

Calyptrogyne  

10/17 10               

Henderson et 
al., 1997; 
Dransfield et al., 
2008 

Calyptronoma  3/3 3               Dransfield et al., 
2008 

Carpentaria  1/1 1               Dransfield et al., 
2008 

Carpoxylon  1/1 1               Dransfield et al., 
2008 

Chamaedorea  91/104 73 17 1           Fisher, 1974; 
Hodel, 1992 

Chambeyronia  2/2 2               Dransfield et al., 
2008 

Clinosperma  4/4 4               Dransfield et al., 
2008 



63 
 

Clinostigma  11/11 11               Dransfield et al., 
2008 

Cocos  1/1 1               Dransfield et al., 
2008 

Cyphokentia  
2/2 1 1             

Moore & Uhl, 
1984; Jaffré & 
Veillon, 1989 

Cyphophoenix  4/4 4               Dransfield et al., 
2008 

Cyphosperma  5/5 5               Dransfield et al., 
2008 

Cyrtostachys  
5/7 1 4             

Dransfield, 1978; 
Heatubun et al., 
2009  

Deckenia  1/1 1               Dransfield et al., 
2008  

Desmoncus  

24/24   24             

Putz, 1990; 
Isnard et al., 
2005; Tomlinson 
& Zimmerman, 
2003 

Dictyocaryum  
3/3 3               

Henderson, 
1990; Dransfield 
et al., 2008 
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Dictyosperma  1/1 1               Dransfield et al., 
2008  

Dransfieldia  1/1   1             Baker et al., 
2006 

Drymophloeus  5/7 5               Zona, 1999 

Dypsis  

160/167 63 90 6       1   

Dransfield & 
Beentje, 1995; 
Fisher and 
Maidman, 1999; 
Dransfield, 2003; 
Britt, 2005; 
Hodel et al., 
2005; 
Rakoarinivo, 
2010 

Elaeis  2/2 2               Dransfield et al., 
2008 

Euterpe  

7/7 1 6             

Henderson & 
Galeano, 1996; 
Dransfield et al., 
2008 

Gaussia  5/5 5               Dransfield et al., 
2008 

Geonoma  
39/68 14 25             

Henderson, 
1995; 
Henderson et 
al., 1997; 
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Dransfield et al., 
2008; 
Henderson, 
2011a 

Hedyscepe  1/1 1               Dransfield et al., 
2008 

Heterospathe  22/41 18 4             Fernando, 1990 

Howea  2/2 2               Dransfield et al., 
2008 

Hydriastele  30/49 16 14             Baker & 
Dransfield, 2007 

Hyophorbe  5/5 5               Dransfield et al., 
2008 

Hyospathe  

2/5   2             

Skov & Balslev, 
1989; 
Borschsenius et 
al., 1998 

Iguanura  
25/33 15 10             

Kiew, 1976; 
Henderson, 
2009 

Irartea  1/1 1               Dransfield et al., 
2008 

Iriartella  2/2   2             Dransfield et al., 
2008 
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Jailoloa 1/1 1               Heatubun et al., 
2014 

Jubaea  1/1 1               Dransfield et al., 
2008 

Jubaeopsis  1/1   1             Dransfield, 1989 

Kentiopsis  4/4 4               Dransfield et al., 
2008  

Laccospadix  1/1   1             Dowe, 2010 

Lemurophoenix  1/1 1               Dransfield et al., 
2008  

Leopoldinia  

2/2 2               

Bernal & 
Galeano, 2001; 
Henderson, 
2011 

Lepidorrhachis  1/1 1               Dransfield et al., 
2008 

Linospadix  
7/7 1 6             

Dowe & Irvine, 
1997; Dowe & 
Ferrero, 2001 

Loxococcus  1/1 1               Dransfield et al., 
2008 

Lytocaryum  4/4 4               Dransfield et al., 
2008 
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Manicaria  

2/2 1   1           

Bernal & 
Galeano, 2001; 
Fisher & Zona, 
2006 

Manjekia 1/1 1               Heatubun et al., 
2014 

Marojejya  2/2 2               Dransfield et al., 
2008  

Masoala  2/2 2               Dransfield et al., 
2008  

Nenga  
4/5 1 3             

Fernando, 1983; 
Henderson, 
2009 

Neonicholsonia  

1/1 1               

Henderson & 
Galeano, 1996; 
Dransfield et al., 
2008 

Neoveitchia  2/2 2               Dransfield et al., 
2008 

Nephrosperma  1/1 1               Dransfield et al., 
2008  

Normanbya  1/1 1               Dransfield et al., 
2008 

Oenocarpus  9/9 8 1             Bernal et al., 
1991; 
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Henderson et 
al., 1997; 
Dransfield et al., 
2008 

Oncosperma  
6/6             6   

Fisher et al., 
1989; Fisher and 
Maidman, 1999  

Orania  18/18 18               Dransfield et al., 
2008  

Parajubaea  3/3 3               Dransfield et al., 
2008 

Pelagodoxa  1/1 1               Dransfield et al., 
2008 

Phoenicophorium  1/1 1               Dransfield et al., 
2008  

Pholidostachys  4/8 4               Dransfield et al., 
2008 

Physokentia  7/7 7               Dransfield et al., 
2008 

Pinanga  

60/139 12 48             

Dransfield et al., 
1978; 
Henderson, 
2009 
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Podococcus  
2/2   2             

Bullock, 1980; 
Van Valkenburg 
et al., 2007 

Ponapea  4/4 4               Dransfield et al., 
2008 

Prestoea  

10/10 2 8             

Henderson & 
deNevers, 1988; 
Henderson & 
Galeano, 1996 

Ptychococcus  2/2 3               Dransfield et al., 
2008 

Ptychosperma  
19/29 7 12             

Essig, 1977; 
Essig, 1978; 
Dowe, 2001 

Reihardtia  

6/6 1 5             

Henderson et 
al., 1997; 
Henderson, 
2002b 

Rhopaloblaste  6/6 5 1             Banka & Baker, 
2004 

Rhopalostylis  2/2 2               Dransfield et al., 
2008 

Roscheria  1/1 1               Dransfield et al., 
2008  
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Roystonea  10/10 1               Dransfield et al., 
2008 

Satakentia  1/1 1               Dransfield et al., 
2008 

Sclerosperma  

3/3   3             

Van Valkenburg 
et al., 2007; van 
Valkenburg, et 
al., 2008 

Socratea  

5/5 4         1     

Bernal- 
Gonzales & 
Henderson, 
1986; Svenning 
& Balslev, 1998; 
Pintaud & Millan, 
2004 

Solfia  1/1 1               Dransfield et al., 
2008 

Sommieria  1/1 1               Dransfield et al., 
2008 

Syagrus  

36/61 23 12 1           

Henderson et 
al., 1995; 
Pinheiro et al., 
1996; Noblick, 
1996; Noblick, 
2004; Noblick & 
Lorenzi, 2010; 
Noblick et al., 
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2014; Noblick & 
Meerow, 2015 

Synechanthus  2/2 1 1             Dransfield et al., 
2008 

Tectiphiala  1/1   1             Moore, 1978 

Veitchia  11/11 11               Dransfield et al., 
2008 

Verschaffeltia  1/1 1               Dransfield et al., 
2008  

Voaniola  
1/1 1               

Dransfield, 1989; 
Dransfield et al., 
2008 

Wallaceodoxa 1/1 1               Heatubun et al., 
2014 

Welfia  1/1 1               Dransfield et al., 
2008 

Wendlandiella  1/1   1             Dransfield et al., 
2008 

Wettinia  

21/21 19 2             

Henderson et 
al., 1997; 
Borchsenius et 
al.,1998 

Wodyetia  1/1 1               Dransfield et 
al.2008 
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Arecoideae 1112/1376 657 423 13 1   1 7 0   
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CHAPTER II 

MORPHOLOGY AND ARCHITECTURE OF THE THREATENED FLORIDA PALM 

ACOELORRHAPHE WRIGHTII (GRISEB. & H. WENDL.) H. WENDL. EX BECC. 
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ABSTRACT:  

Palms are important economically and ecologically and have diverse 

architectures, but the morphology and architecture of rhizomatous multi-stemmed palms 

are poorly described.  The purpose of this study was to describe growth, morphology 

and architecture of one such species, Acoelorraphe wrightii, in a common garden 

setting.  The study was conducted at Fairchild Tropical Botanic Garden and Montgomery 

Botanical Center, Coral Gables, Florida, USA. Leaf morphology variables were 

measured on two or three ramets of 16 genets.  Ramet growth rates were determined by 

recording leaf production and number of leaves present per ramet every three months 

for two years on two ramets of 38 genets.  Genet circumference, diameter, and number 

of ramet tiers, and number of living ramets > 0.5 m, were measured on 41 genets. An 

exponential model was used to model asexual clonal architectural growth (number of 

ramets) using data collected on survivorship and reproduction rate of rhizomes and tier 

numbers as a proxy for time. Ramets have an establishment period from inception to 0.3 

m ramet height. Plant growth varies seasonally in establishing and established phases, 

with greater leaf production in the warmer, wet season and less in the cooler, dry 

season. Clonal architecture can be modeled as the number of established ramets in a 

genet, using an exponential model that depends on number of ramet tiers, the rate of 

ramet production, and their survivorship. The ex-situ study provides an understanding of 

the architectural potential for A. wrightii, and highlights the importance of botanical 

gardens for research, especially on large, slow-growing species. 
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INTRODUCTION: 

Palms are ecologically and economically important, particularly in the tropics.  Their 

diversity in architecture helps them to grow and often dominate in a variety of tropical 

and subtropical ecosystems (Henderson, 2002). However, palms are rarely used in 

demographic and developmental studies because of their slow growth and large size. 

Thus, most demographic studies conducted on palms are restricted to species that are 

economically important or small (Bullock, 1980; De Steven, 1989; Clancy & Sullivan, 

1990; Olmstead & Alvarez-Bullya, 1995; Barot et al., 2000; Escalante, Montaña, & 

Orellana, 2004; Rodríguez-Buriticá, Orjuela, & Galeano, 2005; Endress, Gorchov, & 

Berry, 2006; Portela, Bruna, & Santos, 2010). As a result, the diversity of palm 

morphology and architecture is not well understood.  

The architecture of multi-stemmed individuals in particular is not well described, 

even though multi-stemmed species are present in almost every palm genus (Dransfield 

et al., 2008, Edelman, Chap. 1). There are two commonly-used architectural models that 

describe the multi-stemmed palm habit (Henderson, Galeano, & Bernal, 1995; 

Henderson, 2002; Dransfield et al., 2008): (1) the caespitose habit, which is created from 

basal node branching where new ramets immediately grow upward, producing closely-

spaced vertical stems; and (2) the colonial habit, which is formed from horizontal 

elongation of the basal node branch before it grows upward, i.e., elongation of the 

branch produces a rhizome. While these models are useful, they do not encompass the 

diversity of architecture in clonal palms.  

One way to understand plant architecture is to model it mathematically (Fisher & 

Honda, 1979). Exponential growth models are used in population ecology to model 

population growth of a single population and can be useful for predicting clonal growth 
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(Vandermeer, 2010).  These types of models have not been used to model palm 

architecture but could be particularly useful for modeling growth in a clonal palm (Souza 

et al. 2003).  

Acoelorrhaphe wrightii (Griseb. & H. Wendl.) H. Wendl. ex Becc., paurotis palm, is a 

clonal palm that grows in wetland habits along the coastal Caribbean basin (southern 

Florida; western Cuba; Caribbean coast from Mexico to northern Costa Rica; and 

Andros and New Providence Island in the Bahamas) (Henderson et al., 1995).  It is 

economically important in Central America, where its stems are used for timber and its 

fruits for medicines, similar to the closely-related species, saw palmetto, Serenoa repens 

(Balick & Beck, 1990).  Acoelorrhaphe wrightii is ecologically important because its 

round, raised clumps create habitat for terrestrial animals and plants in seasonally 

flooded marshes (Henderson et al., 1995). The species is at the northern end of its 

range in southern Florida, where it is native to the Everglades and is widely used 

horticulturally.  In Florida it is listed as a state threatened species (USDA, 2015). 

 Acoelorrhaphe wrightii has a combination of basal node branching and 

rhizomatous growth that produces an unusual palm architecture (Edelman, Chap. 1).  

Despite morphological complexity and economic and ecological importance, no 

morphological or demographic studies have been conducted on it, and only a handful of 

horticultural studies have been published (Broschat, 2005; Broschat, 2011) .  The goal of 

the present study, therefore, was to describe the morphology, growth and architecture of 

clonal A. wrightii, to determine the range of variation in these characteristics in a 

common-garden setting, and to explore the ability of an exponential model to describe A. 

wrightii whole plant architecture. 
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MATERIAL AND METHODS: 

 Study site and selection of individuals — The present study took place at two 

botanical gardens (Fairchild Tropical Botanic Garden (FTBG) and Montgomery Botanical 

Center (MBC)) located within a mile of each other in Coral Gables, FL, USA. These 

botanic gardens share common geologic substrates (limestone bedrock with a few 

inches of topsoil) and experience similar weather conditions (5 month wet period from 

late spring to fall and 7 month dry period from late fall to spring).  

Individuals used in this study were grown in cultivation from wild-collected seeds 

from populations in Belize, Florida (USA) and Mexico.  Year of entry for these living 

collections was used to determine approximate age of individuals. Plants grown from 

seeds collected from the same parent were called “sisters” and had the same garden 

accession number. When planted in the garden, they were given distinct qualifiers to 

distinguish among individuals. Seven sister groups and a total of 47 individuals that 

varied in age from 14 to 66 years were used in this study.  Two sister groups, groups 1 

and 2 (n= 23 and n= 13 individuals), were wild-collected in Belize in 1999 and planted in 

full sun in both gardens and in partial shade at MBC. Three sister groups, groups 3, 4 

and 5 (n=5, n=5, and n=4) were wild-collected in Florida in 2001 and planted in full sun 

at MBC. Sister group 6 ( n=4) was wild-collected in Mexico in 1984, and planted in a 

shaded hammock at FTBG. Sister group 7 (n=4) was wild-collected in Florida in 1950, 

and planted in a shaded hammock at MBC.  

Ramet leaf production and morphology—   Leaf production was followed over a two-

year period (Nov. 2012 to Nov. 2014) on two ramets per genet for 38 genets (76 ramets 

total) from Belize (24 plants) and Florida (14 plants); they belonged to sister groups 1–
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5).  Southern Florida has a wet warm season from June to November and a dry cool 

season from December to May (DeAngelis & White, 1994), so leaf production sampling 

spanned two of each season. 

The most recently matured leaf on each ramet was tagged.  Every three months for 

two years, the following measurements were recorded: number of new leaves matured 

(number of fully expanded leaves above tagged leaf); the number of live (green) leaves 

below the most recently matured leaf; and height of the ramet (from soil to apical bud of 

ramet).  At each sampling, the current most recently matured leaf was tagged so that 

measurements could be repeated three months later. Internode length was calculated as 

the change in ramet height (cm) between measuring events divided by the number of 

new leaves matured. Leaf production was analyzed using a mixed within/between-

subject ANOVA. The mixed design ANOVA tested the difference between life history 

phases (establishing and established), while subjecting individuals (ramets) to repeated 

measures analysis by season (winter = average of leaves produced from December- 

February and March-May, summer = average of leaves produced from June- August and 

September-November) (Teetor, 2011).  

To characterize leaf and ramet morphology, leaves from 16 individuals (genets) 

from Belize (10 individuals) and Florida (6 individuals) belonging to sister groups 1, 2 

and 4 were measured; two or three ramets of different height were selected for sampling 

from each genet. Three leaves/ramet--the first, fifth and tenth most recently matured 

leaves--were sampled (N = 94 leaves measured).  The most recently matured leaf was 

defined as the newest leaf that had fully emerged from the apical bud of the stem and 

whose lamina had fully expanded.  Morphological measurements included ramet height 

and circumference, lamina length and width, and petiole length and width.  Ramet height 
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was measured from the base of the ramet to the apical bud. Location of the apical bud 

was estimated based on location of the emerging leaf. On larger plants, circumference of 

the ramet was measured 0.3 m below the stem apical bud, where the stem 

circumference stablizes. If the stem was less than 0.5 m, ramet circumference was taken 

at half the height of the stem. Lamina length was measured from the point of petiole 

attachment to the tip of the lamina, while lamina width was measured at the widest part 

of the lamina. Petiole length was measured from the top of the leaf sheath to lamina 

attachment on the abaxial side of the petiole. The abaxial side of the leaf was used 

because petiole and lamina are clearly demarcated on the abaxial side. Petiole width 

was measured on the adaxial side, where the petiole is flat. Because the data were not 

normally distributed, Spearman correlations were used to detect relations between 

height of ramet, circumference of ramet, lamina length, lamina width, petiole length, and 

petiole width.  Analysis of the data suggested that there were two distinct growth phases, 

which were designated as the establishing and establishment phases. These phases 

were defined through break point analyses using linear models and piecewise 

regression; ramet height was plotted against leaf morphology variables (lamina length, 

lamina width and lamina length) to determine break points (Loew, 2012). Piece-wise 

linear regression models were used to examine variability in lamina length (using only 

the most recently matured leaf to avoid pseudoreplication) and ramet circumference, 

with ramet height as the explantory variable, across the two establishment phases.  

Clonal architecture—Architectural drawings and measurements to describe clonal 

architecture were made for 41 genets from Belize (26 plants), Florida (11 plants) and 

Mexico (four plants) that were from sister groups 1–7). Architectural drawings recorded 

locations of ramets (dead and alive) within a genet, locations of rhizomes (dead and 

alive) within a genet, and locations of basal suckers (dead and alive) within a genet, with 
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a focus on rhizome and ramet connectivity. Clone circumference was measured with a 

tape ruler as the total distance around the base of the clump, including all ramets above 

0.1 m.  Two perpendicular diameters (diameter 1 = length and diameter 2 = width) were 

taken for the clumps, which were elliptical.  Length and width were defined as follows: 

The first rhizome produced was identified as the rhizome from the most central ramet in 

the clump. Diameter 1 was measured perpendicular to the first rhizome and diameter 2 

was measured parallel to the first rhizome. Total number of ramets over 0.5 meters tall, 

total number of live ramets over 0.5 meters tall, and number of tiers in a genet were 

counted. Tiers were defined as visually distinct levels in the canopy of a clonal palm (or 

plant) caused by cohorts of ramets of differential heights; not all multi-stemmed palms 

form tiers. Tiers were counted for each genet by visual estimates of canopy density and 

overlap; distinct tiers have little intersection of ramet canopies. Light was measured at 

breadst height on the outside of the genets with a BQM Apogee quantum meter (Apogee 

Instruments, Inc., Logan, UT). Four light measurements per genet were taken at high 

noon and averaged. Genets with average measurements < 500 μmol m-2s-2 were in 

shade, while those with > 500 μmol m-2s-2 were in sun. 

Circumference, number of ramets, and number of tiers were measured for each 

genet, and variation was examined separately for each age group. Clone age groups 

were determined based on the year of the sampling (2014) as compared to accession 

date; genets had ages 13–15 yr (planted 1999-2001, full sun, n= 37) and age 30 yr 

(planted 1984, n=4, in shade).  The following architectural relationships were examined 

for each genet growing in full sun aged 13–15 years: circumference (explanatory 

variable) versus number of ramets; circumference (explanatory variable) versus number 

of tiers; and number of tiers (explanatory variable) versus number of ramets. 
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Statistical analyses were done in the R statistical environment (R 2015; Therneau, 

2015). Average circumference, average number of ramets, and average number of tiers 

were found for clone age groups (ages 13–15, N= 37; age 30, N=4).  ThenANOVA tests 

analyzed differences in architectural relationships between light regimes (sun or shade). 

Since there were great differences in growth rates and architectural relationships for 

different light regimes, results presented on growth relationship calculations were from 

genets growing in full sun (sister groups 1–5, N=37). The t-tests analyzed differences in 

growth rates and architectural relationships between populations. Exponential 

regressions were reported instead of linear regression because of higher R2 values for 

the exponential models.  

Modeling clonal growth— Given the clonal growth and tiered architecture of A. 

wrightii individuals, an exponential architectural model was developed in order to better 

understand the effect of growth rate on number of ramets in a genet and to determine 

growth rate of A. wrightii under garden conditions. A basic model of exponential growth 

was used to predict number of ramets in a genet by manipulating growth rate,  

Nt= N(0)*Rt,  

where Nt = total number of established ramets in a genet with t tiers, N(0) = the 

number of ramets at initiation, R = growth rate and t = number of tiers (generation). N(0) 

was set to one (N(0)=1), and t, number of tiers, varied from 1 to 6.  The growth rate (R), 

was assumed to be a function of (1) the number of offspring ramets each ramet 

produced (r), and (2) the survivorship of the offspring ramets (s) (Tillman1988). Thus, R= 

r*s.  Based on observations of ramet production in the garden clones, it was assumed 

that only recently established ramets produced offspring ramets and that the 

reproduction rate was constant for all tiers.  
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The goal of the modeling was to determine how rates of vegetative reproduction 

and ramet survival affected ramet number per tier and what combination of rates most 

closely described genet growth in the gardens.  In the model, R (finite growth rate) was 

manipulated using low or high vegetative reproduction (r, number of ramets produced, 

either 3 or 6) and low, medium or high levels of survivorship (s, ramet survival, either 

0.3, 0.5, 0.8) (Table 2):  Values for vegetative reproduction and survivorship were 

selected based on the range of observed values in the gardens. 

To determine the best-fit model, models were plotted using t as the independent 

variable and Nt as the dependent variable. The best-fit model (R under garden 

conditions) was selected based on ramet accuracy for the fourth tier (t=4) by comparing 

measured number of established ramets (from the data) to predicted number of 

established ramets at the fourth tier.  

RESULTS: 

 Ramet characteristics—Ramet growth varied between younger and older ramets, 

as reflected in leaf morphology and ramet circumference (Fig. 1; piecewise regression to 

determine break point of ramet height; breakpoint = 0.3 m ramet height for lamina length, 

lamina width and number of pinnae; p= 0.01). Leaves on establishing ramets (≤ 0.3 m) 

were smaller and increased linearly with ramet height up to a height of 0.3 m (Fig. 1A). 

Leaves on ramets > 0.3 m also increased in size linearly with ramet height but at a much 

lower rate than leaves on smaller ramets (Fig. 1A; t-test comparing slope of increase in 

leaf size on establishing and established ramets, t = 12.52, df = 45, p < 0.05).  Ramet 

circumference also increased linearly until ramets were 0.3 m in height, then 

circumference increased much more slowly (Fig. 1B; t-test comparing slope of 

circumference increase on establishing and established ramets, t = 32.75, df = 45, p < 

0.05). These variations in morphology were used to define an establishment phase 
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(ramet height ≤ 0.3 m) and an established phase (ramet height > 0.3 m) for ramet 

growth. 

Leaf production was influenced by both ramet height (establishment phase) and 

seasonality (Fig. 2). Ramets produced more leaves in the wet season (1.3 leaves/mo., 

internode length = 1 ± 1 cm) and fewer leaves in the dry season (0.3 leaves/mo.; 

internode length = 3 ± 3 cm) (Fig. 2; internode data not shown).  Establishing and 

established ramets showed similar patterns of variation in leaf production across 

seasons, but established ramets had greater rates of leaf production than establishing 

ramets (Fig. 2, t-test comparing number of leaves produced between establishing and 

established ramets, t = 12.28, df = 154, p < 0.01).  Established ramets produced an 

average of two more leaves than establishing ramets in the wet season and an average 

of one more leaf in the dry season (Fig. 2, mixed within-between ANOVA comparing leaf 

production of different establishment phases between dry and wet, F1, 1, 150 = 15, p << 

0.01). Establishing ramets produced shorter internodes than established ramets in both 

the wet season (1.0 ± 1.1 cm, 3.5 ± 1.2, respectively), and dry season (1.4 ± 1.1 cm, 2.5 

± 2.3, respectively). There were no differences in leaf production between gardens, 

location in garden or country of origin (ANOVA, p = 0.42, N = 92). Established ramets 

produced more leaves than establishing ramets (repeated measures ANOVA comparing 

leaf production of establishing and established ramets, F1, 1, 150 = 15, p  < 0.01), but the 

difference between leaf production in establishing and established ramets was more 

dramatic in the summer, as indicated by a significant interaction term (mixed within-

between ANOVA, p  < 0.01).   

The palmately compound laminae of establishing and established ramets of A. 

wrightii were wider than long (54.5± 6.5 cm (L) x 82.1 ± 12.8cm (W); L/W ratio = 0.7 ± 
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0.1) and had 37 ± 6 pinnae.  Petiole length was similar to lamina length (59.5 ± 14.8 cm), 

while petiole width was 1.3 ± 0.2 cm.   Lamina length to lamina width had a 2:3 

relationship regardless of establishment phase (t-test comparing relationship between 

lamina length and lamina width for both establishment phases; p  = 0.90), but the 

relationship was more variable during the establishing phase (t-test comparing 

relationship between lamina length and lamina width for leaves on establishing ramets 

only; p = 0.75). All leaf variables except petiole length and width were highly correlated 

(p > 0.72) (Table 1). Petiole length was correlated with position in the canopy. The most 

recently matured leaf and the fifth most recently matured leaf had shorter petioles (0.5  ± 

0.1 m) than the tenth most recently matured leaf (0.7 ± 0.1 m).  Correlations among leaf 

variables were not stronger when only the most recently matured leaves were used for 

analysis (p > 0.63,) nor when leaves on only established ramets were used (p > 0.69). 

Lamina length increased more rapidly with ramet height in establishing ramets than 

established ramets (Fig. 1A).  Number of pinnae on the compound leaves had a slightly 

greater increase with lamina width in establishing ramets (no. pinnae = 0.67 * lamina 

width + 13.65) than established ramets (no. pinnae = 0.08 * lamina width + 31.37) 

(ANCOVA comparing relationship between number of pinnae and lamina width between 

establishment phases, F 3, 90 = 23.4, p < 0.01). However, lamina length increased with 

lamina width similarly in both establishing and established ramets (lamina width = 1.54 * 

lamina length; F 1, 92 = 675.5, p < 0.01).  

Clonal architecture—The 41 genets measured ranged in age from 14–66 years old 

and varied in size, but clones initiated growth similarly. All A. wrightii genets began 

growth as single stems that branched rhizomatously to form clumps. The initial stem or 

protoclone was not observed alive in any of the garden specimens. Death of the first 

stem formed a small opening in the center of the genet (Fig. 3A). The size of the empty 
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center increased as older ramets died and newer ramets were produced at the periphery 

of the clump. All vegetative reproduction occurred through sympodial rhizomatous 

growth. Rhizomes arose as basal suckers from axillary buds at the base of the parent 

ramet/rhizome (Fig. 3B). Some basal suckers elongated horizontally to form rhizomes 

(Fig. 3C), whereas others remained close to the parent ramet and grew vertically. An 

average of 3 ± 3 rhizomes were produced and survived from each ramet in our sample. 

Episodic rhizomatous growth occurred only at the periphery of the clump, creating a 

tiered canopy (Fig. 3D); interior ramets did not initiate new basal suckers or rhizomes. 

The innermost tier was composed of the tallest, oldest ramets, and the outermost tier 

was composed of the shortest, recently produced ramets. The clump expanded in 

circumference through growth of new rhizomatous ramets.  

Genet circumference in clones in the gardens varied from 1 to 6 m, having from 1 to 

14 live established ramets and 1 to 4 tiers of establishing and established ramets per 

genet. Genets were not circular but were elliptical (d1/d2 = 0.5). Genets increased in 

diameter 1 and diameter 2 at the same rate (slope = 1) (Fig. 4). Older genets were not 

necessarily bigger but age and light regime were confounded in the garden specimens, 

so results could not be compared. The number of ramets per genet increased 

exponentially with tier number (Fig. 5, no. ramets = 1.1e0.5x, where x = no. tiers, F 1 35 = 

40.5, p < 0.01) and with genet circumference (Fig. 5, no. ramets = 1.1e0.5x, where x = 

genet circumference, F 1 35 = 61.8, p < 0.01).  The number of tiers also increased 

exponentially with genet circumference (Fig. 5, no. tiers =1.1e0.2x, where x = genet 

circumference, F 1 35 = 53.5, p < 0.01).    

Modeling clonal growth— The six models to estimate clonal growth had very 

different rates of increase and numbers of ramets by tier 4 (Table 2, Fig. 6; model 6 not 
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plotted).  Models 1 and 2, with low rates of vegetative branching and low to medium 

survivorship, increased in ramet number gradually and at lower rates than the observed 

data (Fig. 5C, Fig. 6).  Low vegetative reproduction but high survivorship, or high 

vegetative reproduction and medium or high survivorship quickly produced many ramets 

and had many more ramets than observed (Table 2, Fig. 6). Model 4, which had high 

vegetative reproduction and low survivorship, provided the best fit with the observed 

data with respect to rate of increase and number of ramets at tier 4 (Table 2, Fig. 6).  At 

the gardens there was only one clone in the sun that had 5 tiers, but this clone had fewer 

ramets than would be predicted by the exponential model (Fig. 5C), which predicts 19 

ramets for a clone with five tiers.  

 

DISCUSSION: 

Acoelorraphe wrightii expands clonally, producing an elliptical clone with tiers of 

ramets.  The oval shape probably results from asymmetry in the initial growth of the 

protoclone, as the rate of expansion in length and width is equal in older genets. 

Acoelorraphe wrightii ramets have distinct establishing and establishment phases of 

growth.  For A. wrightii, 0.3 m height corresponds with stabilization in leaf scaling, leaf 

production and ramet circumference; 0.3 m height defines the end of an establishment 

phase that begins with seed germination or branch outgrowth and that is characterized 

by higher relative growth rates of leaf and ramet characters and lower rates of leaf 

production.  The presence of an establishment phase is well documented in both solitary 

and clonal palms (Lothian, 1959; Sarukhán, 1978; Savage & Ashton, 1983; Ash, 1988; 

Gupta, 1993; Joyal, 1995; McPherson & Williams, 1996; Olmstead & Alvarez-Bullya, 

1995; Svenning & Balslev, 1997; Zakaria, 1997; Bernal, 1998). In these studies, 

establishment phase is a seedling characteristic, not a ramet characteristic. However, in 
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clonal palms, the transition from establishing to established ramet occurs many times, as 

new ramets are produced and grow out. This study is also different from previous 

studies on the establishment phase because prior descriptions of an establishment 

phase are published as duration of establishment phase (years). In this study, ramet 

height proved to be a reliable marker for transition between phases.  Therefore, in order 

to quantify the establishment phase for a clonal palm, researchers could consider 

defining establishment phases based on morphological markers such as ramet height, 

rather than or in addition to, time. 

The leaf phenology data reported here provide a method to age individuals of A. 

wrightii in the field. In temperate plants, a well-defined dormancy period makes it 

possible to age individuals because periods of dormancy produce physical markers such 

as bud scale scars, distinguishing between seasons and years. However, similar to most 

palms and many tropical plants, individuals of A. wrightii did not display vegetative 

dormancy (Tomlinson, 2006). Using our data on rates of leaf production and internode 

length, we can roughly estimate age of ramets by culm height. An estimated twelve 

leaves are produced per year with an average internode length of 2 cm. Therefore, a 

ramet grows an estimated 24 cm a year (12 internodes/year x 2 cm= 24 cm/year). The 

approximation of 24 cm of growth /year can be used in the field to age a culm by dividing 

ramet height (measured in cm) by 24 cm to get an estimated age. The 24 cm/ year 

estimation would yield a crude estimation of age, since variables used in estimation (leaf 

production and internode length) were variable by season and height of the ramet. The 

24 cm/year estimation also does not include the time it takes for a rhizome to begin 

vertical growth. However, maximum rhizome age could be estimated by the difference 

between parent and daughter culm age.  
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The method described above provides a method for estimating integrated annual 

growth, but there were differences in growth between seasons.  The phenology data 

showed that there is a period of slow growth during the cool, dry months and a period of 

active growth during the warm, wet months in southern Florida. The active growth is 

associated with both vegetative and reproductive growth. Flowers are produced in May 

and June, fruits develop in July, August and September and fruits mature in October and 

November in south Florida (Edelman, personal observation). Individuals of A. wrightii 

experience the highest rate of leaf production while fruits are maturing, and rhizome 

initiates are formed as flowers are developing. Although no data were collected on 

flowering and fruiting, only a few ramets in a genet produced flowers and fruit, even 

though many were tall enough to do so. Most ramets reproduced vegetatively, 

suggesting a resource trade-off between vegetative reproduction over sexual 

reproduction. A simple mapping of inflorescence production on ramets in a clone would 

show whether sexual reproduction is confined to the interior of the clone where 

vegetative branching has ceased.  If there is no overlap between sexual and vegetative 

reproduction, then vegetative branching is a characteristic of younger ramets, and once 

ramets are sexually mature, they no longer branch vegetatively. However, if there is 

overlap of the two types of reproduction, determining whether ramets with inflorescences 

produce fewer basal branches than ramets without would provide insight into potential 

reproductive trade-offs.  

The results from the architectural model proposed in this study serve as benchmark 

averages for future architectural comparisons. Deviations from model predictions may 

give insight into how environmental and field conditions affect clonal growth. In 

particular, survivorship in the field can be analyzed using this architectural model. In the 

model that most closely approximated the garden data, not all rhizomes survived 
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(survival rate = 0.3), indicating that even under garden growing conditions, fewer than 

half of the ramets survived.  These survival rates may be more variable in nature, where 

Acoelorrhaphe wrightii genets are exposed to fire, flooding and, potentially, other 

environmental stresses. The estimations of the best-fit model highlighted the slow-

growing nature of A. wrightii. Number of rhizomes and basal suckers produced is 

expected to be lower in the field. Therefore, clones in the wild may be more similar to the 

low reproduction, low survivorship model (Model 1, Fig. 6).  The proposed model can 

also be used in the field to compare survivorship of different sized genets and to 

determine if there is a maximum number of ramets and tiers that can exist in a genet 

(carrying capacity). The deviation from the model prediction for number of ramets in the 

single garden clone with five tiers suggests that such limitation can occur.Tiers were 

used in the exponential architectural growth model as equivalent to a generation and 

thus as a proxy for time. However, the relationship between tier formation and time is 

unknown. Tiers were a better predictor of generation than year. While architectural 

measurements (ramet number, clone size) were not directly related to age, they were 

related to tier number. Tier number, not age, was a better predictor of the overall size 

and robustness of the genet.  

The architectural model for A. wrightii, which used horizontal tier formation as a 

proxy for time, may be unique to plants such as A. wrightii that show episodic growth. 

Growth of tiers, however, has been used in other architectural models to describe the 

pattern of aerial branching along a vertical axis (Hallé et al., 1978, Borchert & Tomlinson, 

1984; Shukla & Ramakrishnan, 1986; Tomlinson, 1987; Fisher, 1992; Hill, 1997; 

Sabatier & Barthelemy, 1999; Barthelemy & Caraglio, 2007).  The tiers found in these 

models and architectural analyses are formed by the pattern of aerial branches along a 

main axis. In Nozeran’s architecture model, the shoot tip of the seedling axis produces a 
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tier of horizontally oriented branches and the main shoot apex becomes determinate.  A 

new erect axis arises below the tier, grows vertically, and repeats the process (Hallé et 

al., 1978). In Aubréville’s model tiers are produced by a monopodial, single trunk axis 

with rhythmic growth and each cycle of growth produces a new tier of horizontally 

oriented branches (Hallé et al., 1978). The features that these models share with tier 

growth in A. wrightii are episodic branching and separation of ramets (branches) from 

previously formed ramets (branches). 

The current study highlights the usefulness of botanic gardens in studying large, 

slow-growing species. Having numerous individuals in close proximity facilitated making 

measurements, while having access to plants in a protected location for periods long 

enough to quantify the slow growth made this work possible. In addition, the clonal 

architecture of A. wrightii is difficult to study in the wild because the ecological history of 

the individuals is not known, but life history greatly influences growth and architecture. In 

the gardens, careful historical records are kept so the history of the individual is easily 

determined and can help in understanding growth. Finally, the similar “common garden” 

environment reduces variation among genets. The knowledge gained from this type of 

study can then inform field studies. 
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TABLES: 

Table 1: Spearman correlation coefficients for most recently matured leaves (top) and all 

leaves (below, in parentheses) of A. wrightii ramets. 

 Circum
ference 

Lamina 
length 

Lamina 
width 

Petiole 
length 

Petiole 
width 

No. of  
pinna 

Height 0.927 
(0.895) 

0.870  
(0.793) 

0.798 
(0.719) 

0.441 
(0.311) 

0.818 
(0.707) 

0.832 
(0.766) 

Circumfere
nce 

 0.879 
(0.794) 

0.811 
(0.704) 

0.386 
(0.288) 

0.837 
(0.702) 

0.797 
(0.782) 

Lamina 
length  

  0.877 
(0.895) 

0.482 
(0.400) 

0.887 
(0.763) 

0.804 
(0.755) 

Lamina 
width  

   0.449 
(0.357) 

0.833 
(0.752) 

0.724 
(0.663) 

Petiole 
length  

    0.420 
(0.275) 

0.394 
(0.342) 

Petiole 
width  

     0.691 
(0.629) 
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Table 2:  Parameters for models of clonal growth in A. wrightii.  The model is Nt= N(0) * 

Rt, where Nt is the number of ramets present in a clone with a given tier number, and R, 

the growth rate, is determined by r (number of branches produced by a ramet) * s (ramet 

survivorship).  Veg. reprod. = vegetative reproduction; surv. = survivorship. 

 

Model No. Model Description r s R N4 

1 low veg. reprod., low surv. 3 0.3 0.9 1 

2 low veg. reprod., med. surv. 3 0.5 1.5 5 

3 low veg. reprod., high surv. 3 0.8 2.4 33 

4 high veg. reprod., low surv. 6 0.3 1.8 10 

5 high veg. reprod., med. surv. 6 0.5 3.0 81 

6 high veg. reprod., high, surv. 6 0.8 4.8 531 

 Measured genets    10 
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FIGURES: 

Figure 1: Acoelorrhaphe wrightii ramet height vs. ramet circumference (A) and lamina 

length (B). Left regression equations are for establishing phase (ramet height ≤ 0.3 m), 

while right regression equations are for established phase (ramet height > 0.3 m). 
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Figure 2: Acoelorrhaphe wrightii leaf production values on ramets of different heights in 

Fairchild Tropical Botanic Garden and Montgomery Botanical Center plants in Miami FL; 

measured from Nov. 2012 through Dec. 2014.  Data divided into leaves from 

establishing ramets (ramet height ≤ 0.3 m) and established ramets (ramet height > 0.3 

m).  Error bars = standard error.  
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Figure 3: Acoelorrhaphe wrightii. (A) Absence of the protoclone results in empty-

centered ring. (B) Basal node branching occurs when a basal axillary bud grows out to 

form a new ramet without any horizontal elongation. (C) Rhizomatous branching occurs 

when a basal axillary bud grows out to form a new ramet with horizontal elongation 

before turning upward. (D) Tiers are present in all observed A. wrightii individuals and 

decrease in height from inner to outer tiers. 
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Figure 4: Two perpendicular diameters (diameter 1 and 2) for 31 genets of A. wrightii of 

different sizes in Fairchild Tropical Botanic Garden and Montgomery Botanical Center 

plants in Miami FL; measured once in Nov. 2013.   
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Figure 5: (A) Number of stems vs. genet circumference, (B) number of tiers vs. 

circumference (C) number of tiers vs. number of stems in 31 genets of A. wrightii in 

Fairchild Tropical Botanic Garden and Montgomery Botanical Center plants in Miami FL, 

in full sun, measured once in Nov. 2013.   
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Fig. 6: Exponential clonal growth model estimations for different growth rates (R) given 

different levels of reproduction (r) and survival rates (s) for clonal palm, Acoelorrhaphe 

wrightii. Model 1: r = 3, s = 0.3, R = 0.9. Model 2: r  = 3, s =  0.5, R = 1.5. Model 3: r = 3, 

s =  0.8, R = 2.4. Model 4: r = 6, s =  0.3, R =  1.8. Model 5: r = 6, s =  1.5,  R =  3.0. 

Model 6: r = 6, s =  4.8, R = 4.8. Dashed line represents values from genets measured in 

the gardens. Selected model (Model 4) fits data to 1 ramet.  
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CHAPTER III 

GERMINATION AND JUVENILE GROWTH OF THE CLONAL PALM, 

ACOELORRHAPHE WRIGHTII, UNDER DIFFERENT WATER AND LIGHT 

TREATMENTS: A MESOCOSM STUDY 
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ABSTRACT:  

Clonal growth, an important aspect of plant reproduction and survivorship, can 

vary under different environmental conditions, and differences in clonal growth in the 

juvenile stage influence adult architecture. The clonal palm Acoelorrhaphe wrightii, which 

is listed as threatened in southern Florida, can occur as solitary or clonal individuals.  In 

order to predict its adult architecture, I determined the effects of water and light on (1) 

germination and (2) morphology and branching of A. wrightii during juvenile life stages. 

Germination of wild-collected seeds exposed to four conditions: emergent, saturated, 

low and medium water levels was monitored every month for a year. Seeds began to 

germinate after seven months, and soils with saturated water levels had highest seed 

germination. To assess the impact of water and light on stem growth, leaf production 

and vegetative axillary branching of juvenile plants, 64 juveniles were grown in one of 

four environmental treatments (low water + sun, low water + shade, medium water + 

sun, and medium water + shade) and measured every two months for a year.  After a 

year, individuals were harvested to assess the impact of treatments on plant biomass, 

biomass allocation, and branching. Full sun and saturated soils yielded juveniles with a 

greater number of leaves, more root mass and more branches. The results of this study 

suggest that while A. wrightii is commonly found in flooded areas, it requires a dry-down 

in order to recruit successfully, and it produces more vegetative branches in high light, 

low water level environments.  Results were used to model the effect of water level on 

adult vegetative architecture. 
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INTRODUCTION: 

 

Axillary buds have three fates: (1) they can remain dormant; (2) they can become 

inflorescences; or (3) they can become vegetative branches (Bosner & Aarsen, 1996). If 

vegetative branching occurs at or below the soil and branches can form roots, the 

branches have the potential to produce clones. Through clonal growth, an individual can 

by-pass environmental stresses that decrease sexual reproduction and cause low 

recruitment, ensuring continued success and survival of the individual (Pan & Price, 

2001; Honnay & Bossuyt, 2005).  

Clonal growth is especially common in wetlands, as many wetland species 

require low water levels for seed germination, so high water levels decrease chances of 

recruitment from seeds (Rea & Ganf, 1994; Keddy & Ellis, 1985; Keddy & Constabel, 

1986; Cronk & Fennessy, 2001). In these wetland species, clonal growth provides a way 

for species to persist and spread in the absence of conditions that favor germination 

(Santamaría, 2002). However, variations in water level can also affect clonal 

reproduction, and increased water levels have been observed to decrease clonal 

proliferation (Evans, 1991; Edwards et al., 2003; Miller & Zedler, 2003).   

Light availability also impacts vegetative reproduction, and increased light 

availability is commonly linked to increased rates of vegetative growth and clonal 

expansion (Méthy et al., 1990; Dong, 1995; Stuefer & Huber, 1998; Maurer, 2002). Since 

younger plants often have higher branching rates, fluctuating water levels may be 

particularly influential on vegetative reproduction during early life history stages (De 

Steven, 1989; Winkler & Schmid, 1995; Miguel, Druart & Oliveira, 1996). 
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Environmental conditions, therefore, can stimulate axillary bud outgrowth and 

create a clonal individual or suppress axillary bud outgrowth and produce a solitary 

individual. In fact, many clonal plants have both solitary and multiple-stemmed habits, 

and frequently, the difference between a solitary and multiple-stemmed individual is 

controlled by environment rather than genetics (Hallé, Oldeman & Tomlison, 1978; 

Dransfield et al., 2008; Smith & Potts, 1987). Clonal plants begin as a solitary stem and 

through outgrowth of axillary buds, form clonal individuals. A solitary morph of a clonal 

individual, then, is formed by the suppression of vegetative branching (De Steven, 1989; 

Souza, Martins, & Bernacci, 2003; Kozlowski, 1971; Zimmerman & Brown, 1971; 

Penalosa, 1994; Doust, 2007). In many orthotropic, arboreal, clonal plants, such as 

some palms, there are two branching phases: (1) an active vegetative branching phase 

when basal vegetative buds on a ramet develop and expand into rhizomes; and (2) a 

post-vegetative branching phase when aerial buds produce inflorescences and basal 

vegetative buds on a ramet are no longer developing (Tomlinson & Zimmerman, 2010).  

The active vegetative branching phase has been shown to be associated with the 

juvenile phase of growth in the dicotyledonous tree Eucalyptus occidentalis (Jaya et al., 

2009), and this is probably true in other species.  Therefore, a solitary-stemmed morph 

of a usually clonal species can be hypothesized to be a product of environmental 

suppression of bud outgrowth in the juvenile phase of the stem.   

In order for the environment to influence bud outgrowth and thus adult 

architecture, a seedling must first germinate. Conditions needed for germination could 

favor particular growth responses in juvenile plants, and consequently, adult 

architecture.  Therefore, studying germination under different environmental conditions is 

an important aspect of understanding how environment influences juvenile growth and 

ultimately adult architecture. Additionally, understanding how conditions promoting 
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germination interact with conditions favoring different adult architectures provides a way 

to infer aspects of environmental history from adult populations. 

Palms, members of the plant family Arecaceae, are primarily tropical and 

subtropical, where they occur in a variety of habitats, including wetlands (Dransfield et 

al., 2008).  Most of the 181 palm genera have species that grow in wetland habitats or 

lowland moist forests (Dransfield et al., 2008), although only a limited subset of species 

is truly aquatic (Dransfield, 1978). Most palms do not form vegetative branches aerially 

because buds are suppressed hormonally or are absent; so most vegetative branching, 

if it occurs, is at or below ground level (Tomlinson, 1990).  A number of wetland palm 

species have clonal branching, producing offshoots at ground level.  Clonal palms that 

grow in wetlands encounter fluctuating water levels, so their ability to germinate, 

establish and begin branching vegetatively under different water levels and light 

availabilities is important to their success in wetland habitats (Balslev et al., 1990; 

Gomes, Válio, & Martins, 2006). Studies have been conducted on the germination, 

seedling morphology, and juvenile morphology of palms, and some studies focus on the 

influence of environment, specifically water and light, on germination and morphology 

(Djibril et al., 2005; Bonadie, 1998; Henderson, 2002; Perry & Williams, 1996; 

Tomlinson, 1960a; Tomlinson, 1960b). However, few of these studies include clonal 

palms, excepting those of Gomes et al. (2006) and Balslev et al. (2011). While Gomes et 

al. (2006) and Balslev et al. (2011) monitored germination and morphology of clonal 

palm seedlings, neither focused on growth under multiple environmental conditions.   

Acoelorrhaphe wrightii, a palm classified as threatened in southern Florida 

(Ward, Austin & Colie, 2003), grows as a solitary stem, or more commonly, in 

rhizomatous clumps in seasonally flooded grasslands (Gann et al., 2016; Henderson et 
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al., 1997). Acoelorrhaphe wrightii reproduces sexually: in southern Florida flowers are 

produced in May, and seeds ripen in November (Henderson et al., 1997). Acoelorrhaphe 

wrightii also reproduces asexually through rhizomatous branching, which occurs on the 

periphery of a clone and builds up a multi-stemmed genet over time (Edelman, Chapter 

2). The species, however, can also occur as solitary individuals (Edelman, 2015).  

Whether the difference between solitary or multiple-stemmed palms is genetically 

controlled or environmentally induced is unknown. 

The purpose of the current study was to understand the effects of water and light 

on germination and early growth of the clonal palm A. wrightii.  The effect of water and 

light on germination and juvenile morphology and branching of A. wrightii was evaluated 

to understand the effect of these environmental variables on early life history stages, 

considering as well how environmental effects on bud outgrowth influence adult 

architecture. 

MATERIALS AND METHODS: 

This study took place at Florida International University in Miami, Florida from 

November 2014-April 2016. Seeds and plants of A. wrightii were grown outdoors in 

water-filled mesocosms.  Mesocosms used in this experiment were 3410 L (900 gal) 

round, polypropylene, cattle tanks (1 m deep × 2.1 m wide) and had shelves suspended 

within them where potted seeds or plants were placed.  The shelves could be raised or 

lowered to establish different water levels within a single tank.  Tanks were emptied and 

refilled with tap water before the start of the experiments. Water levels used for this 

study were informed by hydrologic data averaged over a year from the Everglades 

Depth Estimation Network (EDEN) (USGS, 2016), using values from the EDEN dataset 
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that coincided with collected GIS points from individuals of A. wrightii in the marshes of 

southern Everglades, Everglades National Park, FL, USA.  

Seedling germination under varying water levels: Seeds were collected from 

individuals growing in non-wilderness areas of Everglades National Park (collecting 

permit no. EVER-2014-SCI-0015). In total, 3000 fruits were collected from ten individuals 

(300 seeds/individual) and bulked in November 2014. Of the 3000 fruits, 1600 were 

randomly selected for the germination experiment. Fruit walls were removed down to the 

endocarp. Fruits were gently placed at soil level.  Fruits were planted in Nov., 2014.  To 

assess the impact of water level on seedling germination and survivorship, I established 

four water levels in a single tank by manipulating shelf heights. The four treatments were 

(1) emergent (water 5 cm below soil surface), (2) saturated soil (water at soil surface), 

(3) submerged shallowly (low water level; water 5 cm above soil surface) and (4) 

submerged deeply (medium water level; water 10 cm above soil surface). These levels 

were selected using environmental conditions present in the species’ habitats over the 

range where A. wrightii plants grow and on results of preliminary studies (Taylor, 1963; 

Armentato et al. 2002). Each water level had eight 1-gal pots with 50 seeds per pot 

scattered on the surface of the soil (n=1600). Germination was monitored, and the 

number of germinated seeds present was counted every other month for a year.   

Juvenile morphology and branching response to variation in light and water levels: 

Twenty-six 5-gallon pots of 3-5 year-old juvenile A. wrightii plants were purchased from 

Action Theory Nursery (Homestead, FL) in Dec. 2014. Pots contained multiple 

individuals that had been germinated from seed, so individuals were separated and 

repotted in 5-gallon plastic pots using soil obtained from a commercial composting 

facility (EPS Organics, Hialeah Gardens, FL). A total of 64 individuals was repotted and 
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distributed among four mesocosms in Feb. 2015. A single stem from the seedling pots 

was repotted into each 5-gallon pot. These stems were the protoclones, the original 

stem of the genet. Treatments were set up to assess the impact of water level and light 

availability on juvenile stem growth, leaf production and branching using a randomized 

block experimental design with two factors completely crossed: water level (medium or 

low) and light availability (shade or sun). The four treatments were low water + sun, low 

water + shade, medium water + sun, and medium water + shade. Each of the four tanks 

was a block with all four treatments in each block. Each tank had four individuals per 

treatment for a total of 16 individuals per tank. Water levels, either medium or low, were 

selected following the environmental conditions present in the Everglades in habitats 

where A. wrightii plants grow (Taylor, 1963; Armentato et al., 2002). The medium water 

level treatment had water 10 cm above the soil level and the low water level treatment 

had water at the soil line. Water levels were manipulated using shelves in the 

mesocosms.  Light availabilities were either shade or sun. Shade was created using 50 x 

50 x 70 cm shade boxes made with wood stakes and covered with 80% shade cloth on 

the sides but open on top; the shade boxes were placed over individual pots. Individuals 

in sun were not covered by shade boxes and sat in direct sun light.  

The following measurements were taken on the main stem in a pot every other 

month for a year: height (cm), circumference (cm), number of green leaves, and number 

of branches. Height was measured from the soil to the tip of the stem, where the leaves 

emerged. Circumference was measured at half the height of the stem. The number of 

green leaves was counted as the number of fully and partially expanded leaves but did 

not include the spear (unexpanded) leaves. The number of branches was counted as the 

number of basal suckers growing from the stem. Stem growth rate (change in 

height/year), leaf production rate (change in number of green leaves/year) and 
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branching rate (change in number of branches/year) were found by subtracting the initial 

measurement from the final measurement for each plant. Morphological measurements 

(height, circumference, number of green leaves and number of branches), as well as 

growth rates (stem growth rate, leaf production rate and branching rate) were compared 

between and among water levels and light availabilities. The following measurements 

were taken on the branches for the last two sampling periods: height of branch 

measured perpendicular from the soil level to the meristem of the branch (where all the 

leaves emerged); and rhizome length (distance between the branch and the juvenile) 

measured parallel to the soil from the meristem of the branch to the stem of the juvenile. 

After a year, plants were harvested from March 14, 2016 to April 1, 2016.  Each 

individual was removed from its pot, washed to remove all soil, and separated into roots, 

stems, dead leaves and green leaves.  During the harvesting process, the shoot was 

dissected to examine expanding axillary bud outgrowth. Expanding buds were 

developing branches that had not emerged from the leaf base and, therefore, were not 

visible prior to dissection. Expanding axillary buds were counted, and numbers of buds 

per individual were compared among treatments. Total number of branches plus 

expanding buds were compared among treatments. The relationship between the 

rhizome length and height of branch, height of the juvenile plant and treatment was 

analyzed over time. The percent of individuals in each treatment for which no bud 

outgrowth occurred was compared among treatments. 

Branches and expanding buds were mapped for each juvenile plant to analyze 

distribution of branches/buds and the sequence in which they emerged. To map the 

branches/buds, the base of each harvested protoclone stem was projected onto a circle. 

Each stem had a horizontal portion that terminated in an erect portion that supported the 
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leaves.  On the erect portion, the leaf bases formed a cylinder surrounding the shoot 

apical meristem and younger stem and leaves (Fig. 1A). The horizontal stem was not 

visible until leaf bases and leaves were removed during dissection. The direction of 

curvature of the horizontal portion was used as a reference point for mapping (Fig. 1A).  

The horizontal axis was oriented parallel to 0o–180o and the plant was centered in the 

middle of the circle. The positions of branches and expanding buds were mapped in 

reference to the horizontal axis (Fig. 1B). The locations of branches/expanding buds 

were drawn on the circle map, and the heights of each were measured. Only expanding 

buds greater than three millimeters in length (observable to the naked eye) were 

counted. After all branches and expanding buds were mapped, a 360°protractor was 

used to measure the angles between the base of the horizontal portion (0°) and the 

branches/expanding buds. The resulting angles were grouped into quadrants: region 1 

was 315–44°, region 2 was 45–134°, region 3 was 135–224° and region 4 was 225–

314° (Fig. 1B).  The distribution of branches and expanding buds among the quadrants 

was analyzed using contingency tables, predicting equal distribution of branches and 

expanding buds among quadrants. A 360° protractor was used to measure the smallest 

angle between the first and second buds to expand.  

Harvested roots, stems, dead leaves/leaf bases and green leaves/leaf bases 

were oven-dried at 80 °C in drying ovens. Once dry, plant parts (living leaves, dead 

leaves, stems, and roots) were weighed to the nearest milligram.  Parts were summed to 

determine total biomass per individual, while total live biomass included all of the above 

except dead leaves. Root to shoot ratios were found by dividing root biomass by shoot 

biomass (sum of stem, living leaves and dead leaves biomass). Leaf mass fractions 

(LMF), stem mass fractions (SMF) and root mass fractions (RMF) were found for all 
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individuals and calculated by dividing leaf mass (LM), stem mass (SM) and root mass 

(RM) by total mass (TM).  

Statistical analysis:  

The R environment was used to analyze results (R Core Team, 2013). Cox’s 

proportional hazards test was used to analyze the effect of treatment on proportion of 

seedlings germinated (Springate, 2012; Therneau, 2015). Average germination rates 

were calculated for each water level (emerged, saturated, low and medium).  

Differences in morphological and growth rate variables between water levels and 

between light availabilities and interaction between water and light were analyzed with 

two-way ANOVAS. The relationships among morphological variables were analyzed with 

linear regression models.  

A Pearson chi-squared test was used to determine whether branches and/or 

buds were evenly distributed around the stem (numbers of branches and/or buds by 

quadrant and sequence of expansion). Since the phyllotaxy was not known for each 

plant, I expected an even distribution of branches and/or buds among quadrants; the 

expected numbers for the chi-squared test were obtained by dividing the total number of 

first, second and third branches and/or buds by number of quadrants (four).  Analysis 

could only be done on first, second and third branches and/or buds to expand because 

one or more of the expected frequencies for fourth order branching was less than five.  

Two-ways ANOVAS were also used to analyze differences between water levels 

and light availability in biomass variables. Differences between water levels and light 

availability in relative biomass allocation were analyzed with generalized linear models 

(GLMs) and GLMs were used to compare the slopes between water levels and light 
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availability of log transformed biomass data. Slopes were equivalent to leaf, stem and 

root mass fractions (Poorter & Sack, 2012).  All values are reported as mean ± standard 

deviation. 

RESULTS:  

Germination: A. wrightii seeds began to germinate in June, 2015, seven months 

after sowing, and germination then increased over time (Fig. 2).  A higher proportion of 

seeds germinated in saturated soil conditions than all other treatments (Table 1; Fig. 2; 

Cox proportional hazard tests comparing germination proportions over time between 

water treatments, Likelihood ratio= 64.9, df=3, p<<0.01).   

Juvenile morphology and branching: Initial stem height was 5.7 ± 2.6 cm, initial 

number of leaves was 3 ± 1 and initial number of branches was 0 ± 0.  At final sampling, 

stem height was 10.8 cm ± 5.4 cm, circumference was 6.4 ± 2.8 cm, number of leaves 

was 6 ± 2 leaves, and number of vegetative branches was 1 ± 1. Height and average 

number of leaves did not vary among water level-light availability treatments (Table 2A; 

two-way ANOVAs,  p>0.20).  Stems of individuals growing in the shade had smaller 

circumferences (Table 2; two-way ANOVA , df = 46, p < 0.05). Individuals growing in low 

water levels and full sun branched more, but there was no difference between 

individuals growing in the different light availabilities (Table 2; two-way ANOVA test 

comparing number of buds between water levels and light availabilities; df = 46, p < 0.05 

for water levels, p > 0.20 for light availability). The deep water + shade treatment had the 

highest percentage of individuals that did not branch (87.5%); 62.5.5% of individuals 

growing in low water + shade and deep water + sun did not branch, and 32.5% of 

individuals growing in low water + sun did not branch. Average number of expanding 

buds was 1 ± 1. The average number of expanding buds was not different based on 
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water level or light availability (Table 2; Two-way ANOVA, p > 0.20). There were no 

interactions between water level and light availability. 

Most growth occurred between June and October.  Over the sampling period, the 

juveniles increased in height, circumference, number of leaves, and number of emerged 

vegetative axillary buds (Fig. 3). Stem growth was 2.9 ± 6.1 cm/year, leaf production rate 

was 2 ± 3 leaves/year, and branching rate was 1 ± 1 branches/year. Stem growth rate 

was not different between water levels or light availabilities (Table 3; two-way ANOVA, 

p>0.20). An average of 1 more leaf/year was produced in medium water levels than in 

low water levels, and an average of 1 more leaf/year was produced in full sun than 

shade (Table 3; two-way ANOVA comparing differences in leaf production rate between 

water levels, df = 60, p<0.05 and between light availabilities, df = 60, p<0.05.). One more 

branch/year was produced in the sun than in the shade, but there was no difference in 

branch production rates between water levels (Table 3; two-way ANOVA comparing 

differences in branching rate between light availabilities, df = 60, p<0.05 and water levels 

p > 0.20). There were no significant interactions between water level and light availability 

for any of the measured variables. Rhizome length (distance between the juvenile and 

the branch or expanded bud) increased linearly with height of the branch or expanded 

bud and time (linear regression, F2,40 = 7.1, p = 0.002) 

Vegetative axillary buds were not evenly distributed around the base of the main 

stem (Fig. 4). The first buds to expand were more likely to be located at the forward base 

of the erect stem (quadrant 3) (Pearson chi-squared, df = 3, p = 0.05, Fig. 4B). There 

was no evidence in the pattern for second or third buds to expand based on their 

location on the stem (Pearson chi-squared, p>0.20). The average angle between the 
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first and second bud to expand was 123.9° ± 26.7°; 92% of the second buds to expand 

were located 90-270° from the direction of the first bud. 

Juvenile biomass and biomass allocation:  Total living biomass of plants was 

75.7 ± 54.9 g. The biomass and biomass allocation of leaves, stem, shoot, and root can 

be found in Table 4. Individuals growing in shallow water were heavier overall; living 

leaves, dead leaves, stems, shoots, roots and total plant weight were greater than for 

individuals growing in deep water but there were no differences in biomass between light 

availabilities (Table 4; two-way ANOVAs comparing biomass of living leaves, dead 

leaves, stem, shoot and root between water level df = 60, p < 0.05, between light 

availability p > 0.50).  There were no differences in biomass allocation or root:shoot ratio 

between water levels or light availabilities (Fig. 5; Table 4; GLMs comparing leaf mass 

fractions, stem mass fractions, root mass fractions and root:shoot ratio between water 

levels and light availabilities, p > 0.20).  

DISCUSSION:  

Development of solitary vs. clonal architecture in A. wrightii:  The results of this 

study demonstrate that different water levels could induce different adult architectural 

habits (solitary or clonal) in A. wrightii by inhibiting or promoting growth and vegetative 

branching at the juvenile stage. Juvenile plants grew more vigorously in low water and 

full sun, as demonstrated by greater biomass, greater leaf production and greater branch 

outgrowth and survival. These results suggest that in native habitats, a juvenile growing 

in full sun and low water has more root biomass, can successfully produce more 

branches, and is therefore likely to produce a clonal individual.  

The timing of the water level variation has an important effect on whole plant 

architecture because there is a limited time in the life of the individual in which ramets 
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can successfully produce rhizomes. In palms, the stem must be in the active branching 

phase (juvenile) in order to produce basal vegetative buds (Tomlinson & Zimmerman, 

1978). Additionally, buds in monocots have a limited life span, as they are not 

maintained by development of a vascular cambium in the stem; thus the environment 

can affect bud outgrowth only for a limited time.  For example, in order for buds in 

grasses to expand successfully in wetlands, the duration of high water must be shorter 

than the lifespan of the bud (Hendrickson & Briske, 1997).  

These two constraints (length of the juvenile phase and life span of the axillary 

bud) can be used to develop hypotheses to explain the development of solitary and 

clonal habits in A. wrightii. The two architectures can be achieved through plants 

experiencing different water levels (medium or low) for different periods of time during 

the active vegetative branching phase (Fig. 6). Low water levels during active vegetative 

branching phases would form a clonal architecture irrespective of bud life span. High 

water levels, if they were shorter than the life span of some vegetative buds, could also 

yield a clonal architecture, as buds that were still alive when waters receded could 

expand. High water levels that persisted longer than the life span of the buds, however, 

would yield a solitary habitat. Once the stem reached the post-vegetative branching 

phase, the stem could not produce vegetative branches even if water levels were low, 

and the stem would remain solitary (Fig. 6).  It is important to note that water levels in 

wetland habitats are typically seasonal; there is a clear distinction between high and low 

water levels, and over a year, a plant may experience both low water levels that allow 

branching and high water levels that inhibit branching. While results from the growth 

data in this study did not suggest seasonality of bud outgrowth, as new branches were 

produced throughout the year, studies on other tropical plants demonstrate that bud 

outgrowth may be controlled temporally by season (Shimizu-Sato & Mori, 2001), and 
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branching on ramets of A. wrightii appears to be seasonal (Chap. 2). Therefore, in order 

for high water levels to influence bud expansion and survival, seasonally high waters 

must persist for long enough to abort expanding branches and return every year until the 

vegetative branching phase has passed.  

Environmental effects on germination: In a greenhouse study by Wagner (1982), 

germination rates of 70% were reported for A. wrightii. Germination rates in our study, 

however, were low and similar to data from germination studies on other palms (Wagner, 

1982; Broschat, 1993; Makus, 2006). In particular, germination rates of A. wrightii in 

saturated soil (8%) were equal to germination rates of uncleaned Sabal palmetto seeds 

(Makus, 2006).  Our data show that environmental conditions constrain germination; 

seeds germinated only in saturated soil conditions. The saturated soil condition, if 

maintained during the juvenile branching phase, would induce vegetative branching and 

a clonal individual. However, since A. wrightii individuals grow in wetlands with 

fluctuating water conditions, different architectures can occur even after low water levels 

are experienced for germination. Germination has to occur during a dry-down; but after 

germination, branching will be encouraged by continued low water level or discouraged 

by rising water level.  

Effects of A. wrightii germination rates on population structure:  Germination 

rates for A. wrightii observed in this study were low compared to those reported for other 

palms and were affected by water level (Wagner, 1982).  Relative annual recruitment (F) 

can be estimated using germination rates (Rg) and seedling survival rates (Rs). Using 

results from this study, the relative annual recruitment of a genet (F) under high and low 

water levels can be estimated: F= Rg*Rs;  
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Relative annual recruitment under high water levels (Fhigh) and low water levels 

(Flow) were estimated using germination rates from this study (Rg = 2% for low water and 

8% for high water).  Survival rates (Rs) were estimated using data from other studies. 

Seedling survival rates for Serenoa repens and Sabal etonia in dry soils was 39-57% 

(Abrahamson & Abrahamson 2009), so 50% seedling survival was used in low water. 

Seedling survival rates for Sabal palmetto in flooded conditions were 0% (Perry & 

Williams, 1996).   Since some germination was observed in high water levels, slightly 

greater (0.5%) seedling survival was used in high water.  These numbers gave annual 

recruitments of Flow = (0.08)*(0.5) = 0.04 and Fhigh = (0.02)*(0.005) = 0.0001. 

Annual recruitment in the field appears to be very low (Edelman, personal 

observation). In this study, seeds planted in December began germinating in June. In the 

Caribbean basin, as in south Florida, the wet season lasts from May until November 

(Duever et al., 1994; Giannini, Kushnir & Cane, 2000). During the wet season, high 

water levels and flooded soils are present in the wetland habitat during germination of A. 

wrightii. Under high water levels, there should be little to no annual recruitment. 

However, topography and water level are not homogeneous. Seedling recruitment is 

possible if germination occurs on raised patches of soil within the wetland landscape or 

during dry years. Recruitment would occur annually but only in these elevated 

microhabitats.  

Recruitment also has the ability to influence population structure (Rea & Ganf, 

1994). If seedling recruitment occurs annually on elevated microhabits, only a few 

individuals would germinate in any one year, and the population would consist of 

individuals of different ages growing in similar environmental conditions. A population 

structure with individuals growing in similar conditions is present in the Everglades, 
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where similarly sized A. wrightii line the ditches of the road between Mahoganny 

Hammock and West Lake (Edelman, personal observation). Alternatively, when 

environmental conditions are not conducive for germination and survivorship (such as 

high water levels), recruitment is limited to temporally rare environmental events when 

water levels remain low from germination to establishment (Rea & Ganf, 1994). If 

recruitment is limited to temporally rare events, individuals sexually reproduce 

successfully only once in many years when the environment is conducive to mass 

recruitment, leading to a population structured with many individuals in a few age 

classes.  

The recruitment and architecture models proposed here used data on growth of 

juvenile plants to predict adult vegetative architecture and population structure. Using 

these models, the architecture of wild populations of adult genets can be analyzed in 

order to develop hypotheses about their historical environment and to predict future 

growth of this threatened species. Information on the historical environment and future 

growth of A. wrightii is of particular interest in the Everglades, where water levels have 

been manipulated over the past 100 years and where restoration will produce further 

changes. If seasonal water levels increased in the current habitat, decreased 

germination of A. wrightii would be expected, resulting in fewer seedlings and juveniles 

and potentially solitary individuals. Less vigorous vegetative branching on adult clones 

would also be expected. If water levels decreased, increased germination would be 

expected, resulting in more seedlings and juveniles, clonal juvenile plants, and vigorous 

vegetative branching on adult clones.  
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TABLES: 

Table 1: Total percent germination of A. wrightii seeds after 1 year under different water 

levels; water depths are emergent (water level 5 cm below soil level), saturated (water 

level at soil level), submerged (water level 5 cm above soil level) and submerged deeply 

(water level 10 cm above soil level). Values are mean percent ± standard deviation.  

Different superscripts signify that means were significantly different. 

 

 

LEVEL OF WATER 

Emergent Saturated Soil  Submerged Submerged, 
deeply 

    

0.75 ± 1.49%a  8.00 ± 10.64%b  0.50 ± 0.93%a  0.25 ± 0.71%a  

 

  



134 
 

Table 2: Average measurements of height, circumference, number of leaves, number of 

branches at final sampling, and number of developing buds at harvest under different 

water levels and light availabilities. Values are mean ± standard deviation. Different 

superscripts signify that row means were significantly different. 

 

 

LOW WATER MEDIUM WATER 

SHADE SUN SHADE SUN 

Height (cm) 12.7 ± 5.8a 10.7 ± 4.8a 11.3 ± 6.8a 8.2 ± 3.3a 

Circumference (cm) 7.7 ± 3.3a 5.4 ± 1.4b 7.2 ± 4.0a 5.7 ± 1.9b 

No. Leaves 7 ± 2a 8 ± 2a 6 ± 2a 7 ± 2a 

No. Branches 0 ± 1a 2 ± 1b 0 ± 1a 1± 1c 

No. Buds 0 ± 1a 1 ± 1a 0 ± 1a 1 ± 1a 

No. Branches and 
Buds 1 ± 1a 3 ± 1b 1 ± 1a 2 ± 1c 

 

 

 

 

 

 

 

  



135 
 

Table 3: Annual growth rates under different water levels and light availability for stem 

height, number of leaves matured, and number of branches produced. Values are mean 

growth rate ± 1 standard deviation. Different superscripts signify that row means were 

significantly different. 

 

Growth rates: 

LOW WATER MEDIUM WATER 

SHADE SUN SHADE SUN 

Stem 

(cm/year) 
3.6 ± 4.5a 4.5 ± 6.1a 1.5 ± 8.6a 1.8 ± 5.2a 

Leaves 

(No./year) 
2 ± 3a 3 ± 3b 0 ± 3c 2 ± 3b 

Branches 

(No./year) 
0 ± 1a 1 ± 1b 0 ± 1a 1 ± 1a 
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Table 4: A. Variation among water levels and light availabilities in biomass of living leaves, dead leaves, stem, shoot (stem + all 

leaves), root and total living plant. Values are mean biomass ± 1 standard deviation. B. Variation among water levels and light 

availabilities in biomass allocation for living leaves, stem, root and root:shoot ratio among water levels and light availabilities. 

Values are mean mass fractions ± 1 standard deviation. Different superscripts signify that row means were significantly different. 

 

 LOW WATER MEDIUM WATER 
TOTAL 

A. Biomass (g) SHADE SUN SHADE SUN 

Living leaves 22.8 ± 18.5a 22.2 ± 16.3 a 15.5 ± 13.6b 14.6 ± 12.3 b 18.8 ± 15.5 

Dead leaves 5.1 ± 4.74 a 5.1 ± 3.4 a 2.4  ± 1.8 b 3.8 ± 5.1 b 4.1 ± 4.0 

Stem 8.4 ± 5.9 a 7.8 ± 5.0 a 4.3 ± 2.9 b 6.1 ± 6.6 b 6.7 ± 5.4 

Shoot 36.3 ± 24.9 a 35.0 ± 23.0 a 22.2 ± 16.0 b 24.5 ± 17.9 b 29.5 ± 21.2 

Root 27.9 ± 20.7 a 23.5 ± 15.3 a 14.5 ± 10.2 b 17.1 ± 16.7 b 20.8 ± 16.7 

Total living plant 59.1 ± 421.1 a 53.5 ± 34.7 a 34.3 ± 23.7 b 37.8 ± 29.3 b 75.7 ± 54.9 

B. Biomass allocation (%)     

Leaves 0.33 ± 0.17 a 0.42 ± 0.14 a 0.40 ± 0.18 a 0.37 ± 0.18 a 37.9 ± 16.9 

Stems 0.17 ± 0.08 a 0.15 ± 0.04 a 0.15 ± 0.06 a 0.19 ± 0.14 a 16.5 ± 9.2 

Roots 0.49  ± 0.11 a 0.43 ± 0.10a 0.45 ± 0.15 a 0.45 ± 0.13 a 45.6 ± 12.2 

Root: Shoot 0.84 ± 0.32 a 0.71 ± 0.36 a 0.76 ± 0.37 a 0.74 ± 0.42 a 0.76 ± 0.6 
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FIGURES: 

Figure 1: A. Dissected shoot of A. wrightii showing a small rhizome with a slight 

protrusion at the base of the erect stem. The origin of the rhizome is at 0° and the erect 

stem is at 180°. Arrow points to axillary bud. B. Diagram displays in plan view how buds 

and branches were categorized into quadrants. If viewed from above, 0° is the origin of 

the rhizome, 180° is the erect stem, 270° is behind the erect stem and 90° is over the 

bud. Dashed inner circle represents where erect stem was placed during angle 

measurements.  
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Figure 2: Cumulative number of A. wrightii seeds germinated for each of the four water 

levels over the 1-year sampling period. The four water levels were emergent (-5 cm), 

saturated soil (0 cm), low water level (5 cm) and medium water level (10 cm). Error bars 

represent ± 1 standard error but only the saturated soil water level had standard error 

large enough for error bars to be visible. 
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Figure 3: A. Average stem height, B. average number of mature leaves, and C. average 

number of visible buds for juveniles of A. wrightii growing in four treatments (low water 

level + shade, low water level + sun, medium water level + shade, and medium water 

level  + sun). Error bars represent ± 1 standard error but only the saturated soil water 

level had standard errors large enough for error bars to be visible. 
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Fig. 4: A. Distribution of developing and emerged axillary branches around the base of 

the stem, based on sequence of emergence. Numbers in parentheses are the 

cumulative numbers of buds/branches in each region. Categories 1-4 correspond with 

degrees from Figure 1, with the midpoint of 3 being 180o. B. Frequency of developing 

and emerged bud/branch locations (region 1, 2, 3, 4) and their sequence of emergence 

(first, second or third).  
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Fig. 5: A. Log leaf mass (LM), B. log stem mass (SM), and C. log root mass (RM) plotted 

against log total plant mass (TM) for juveniles of A. wrightii growing in four treatments 

(low water level + shade, low water level + sun, medium water level + shade, and 

medium water level + sun).  
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Figure 6: Conceptual model for how high and low water levels  could result in solitary or 
multiple stemmed architecture.  Production of solitary individuals occurs under a single 
combination of environmental conditions.   
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ARCHITECTURAL VARIABILITY OF THE CLONAL PALM ACOELORRHAPHE 

WRIGHTII  ACROSS A GEOGRAPHIC RANGE 
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ABSTRACT: 

Morphological or architectural variability is the ability of an organism to change its 

shape or form in response to changes in the environment.  Clonal plants make good 

subjects for the study of architectural variability because the ramet can be used as an 

additional measure of architectural variability. The purpose of this study was to describe 

leaf mophology and clonal architecture of A. wrightii in different parts of its geogrphic 

range and to analyze variability of these characters in different environmental conditions. 

A total of 96 genets (clonal individuals); from four populations were studied: three 

populations in Belize and one in Florida. Leaf morphology and ramet measurements 

were taken on one to three leaves for one ramet/genet (Nleaves = 179). The variability in 

leaf morphology was compared in relation to light regime, presence of fire, habit and 

elevation. Architectural variability was studied on clumping individuals (Ngenets = 87), and 

variability was analyzed for different light regimes, presence of fire and elevations. 

Circumference size was used to create size classes, and the distribution of individuals 

among size classes was compared among populations. Leaf morphology differed among 

populations and within populations with fire, light regime and elevation. Clonal 

architecture differed among populations and elevations. However, differences in average 

values among populations, light and fire regimes were not great, suggesting that leaf 

morphology and clonal architecture were not highly variable across the geographic 

range of A. wrightii. Size class distribution differed among populations, suggesting 

different population dynamics. 
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INTRODUCTION: 

Morphological or architectural variability is the ability of an organism to change its 

shape or form in response to changes in the environment (Sultan, 2000). Examples of 

environmental conditions that induce variations are changes in temperature, topography, 

and altitude (de Kroons & Hutchings, 1995).  Historically, plant species were delineated 

based on their morphology and/or architecture (Stace, 1989). Recent findings in genetics 

show that these delimitations were not always correct (Judd et al., 2000). Moreover, 

variability in plant form and architecture may make these historical delimitations even 

less reliable (Bradshaw, 1965; Sultan, 1987; Sultan, 2000).  These considerations are 

especially important for slow-growing, long-lived species such as palms because 

conditions can change through the lifespan of individuals and conditions experienced 

early on can induce differences later. 

Clonal plants make good subjects for the study of architectural variability 

because there is an additional layer of study -- the ramet within the genet. The number 

of ramets within a genet and overall clone circumference have been used to measure 

architectural variability (Doust, 1991; Cain & Damman, 1997; Price & Marshall, 1999; 

Sultan, 2000; Benot et al., 2011). Clone circumference, commonly used in studies of 

architectural variability, can also be used to analyze population structure, where size is 

taken as a proxy for time or developmental stage (Condit et al., 1998; Lykke, 1998). In 

these types of studies, the population is split into discrete size classes. The distribution 

of size classes within the population are used to predict the fate of a population (Ahmed 

& Ogden, 1987; Crouse, Crowder & Caswell, 1987; Boot & Gullison, 1995; Olmstead & 

Alvarez-Bullya, 1995; Frederiksen, Lebreton & Bregnballe, 2001; Hunt, 2001; Kaye et 

al., 2001; Feeley et al., 2007). Analysis of population structure can provide information 

on the overall health of a population. Populations skewed to small size classes are 
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increasing in population size; populations skewed to larger size classes are decreasing; 

populations with an even distribution of size classes are not changing in size; and 

populations with missing classes are not reproducing every year (Ricklefs & Miller, 

2000). These types of analyses can be used to understand the health of a population 

and can be used further to compare among populations (Ahmed & Ogden, 1987).  

Clonal palms are large, woody monocots that branch vegetatively, primarily 

through basal suckering (Tomlinson, 2006; Edelman, chap. 1). While studies on clonal 

palm architecture have mostly focused on the effect of harvesting on regrowth and basal 

suckering, some studies have found that the circumference and number of ramets in a 

genet is variable among clone sizes (Olmstead & Alvarez-Buylla, 1995; Alvarez-Buylla et 

al., 1996; Bernal, 1998; Silva Matos, Freckleton & Watkinson, 1999; Siebert et al., 2000; 

Floreze & Ashton, 2000; Souza et al., 2003). 

Acoelorrhaphe wrightii is a clonal palm native to the Caribbean basin (Atlantic 

coast of Central America, from the Yucatan Peninsula to northern Costa Rica; Cuba; 

Southern Florida; Bahamas) (Henderson et al., 1997). Historically, A. wrigthii was 

seperated into eight species demarcated by differences in morphology and architecture 

(Small, 1922; Goevarts & Dransfield, 2003); species delimitation also depended on the 

original author. A subspecies of A. wrightii was distinguished based on presence of a  

solitary habit (Small, 1922; Dransfield et al., 2008; WCSP, 2017). However, as more 

researchers viewed herbarium specimens, the eight species and subspecies were 

lumped into A. wrigthii as a result of a consensus on leaf and floral morphological 

similarities among herbarium specimens (Small, 1922; Bailey, 1934).  

Thus, both leaf morphology and whole plant habit (architecture) have been used 

to classify species or subspecies in the genus Acoelorraphe. The purpose of this study 
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was to describe the leaf morphology and clonal architecture of A. wrightii in distinct 

natural populations from different parts of its geographic range in order to examine 

morphological and architectural variability in these characters in the field. The findings 

were used to analyze population structure in different locations and to evaluate the 

bases for historical species classification.   

MATERIALS AND METHODS: 

Study sites and selection of individuals: Individuals were sampled from relatively 

undisturbed, native areas, excluding individuals found on the side of the road and 

individuals known to be planted and/or managed by people. Solitary and mulitple-

stemmed genets were used in this study but solitary individuals were not included in the 

architectural measurements, because they lacked tiers and genet circumference (Fig. 1A 

& 1B; nsolitary = 9; nmultiple = 91). Two countries, Belize and U.S.A., and multiple 

populations were visited for this in-situ study (Fig. 2; population information available in 

Table 1). In Belize, three populations were sampled (NBelize = 80 genets): (1) Monkey 

Bay Wildlife Sanctuary (nBZmb = 38 genets); (2) the northern Western Highway from La 

Democracia to Burrell Boom (nBZnh = 14 genets); and (3) the Coastal Highway (nBZch = 32 

genets). In the USA one population was sampled in the southern Everglades of Florida; 

the Everglades population was located off the Main Highway between Mahoganny 

Hammock and Nine Mile Pond (nFL = 18 genets). Population locations are given in Table 

1. Data from garden-cultivated individuals from Edelman, Chapter 2 (ngarden  = 45) were 

also used in this study. 

Sampled individuals were mapped using a Garmin ETrex 10 GPS (GPS 

accuracy ± 15 m). Sampled individuals occurred in different light regimes and varied in 

their fire interval. Light regime was visually determined by amount of interception of 
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sunlight by the outermost tier when the sun was most vertical, between 10-3pm. Light 

regime was defined as sun or shade; if more than 50% of the leaves on the outermost 

tier of a genet were in the sun, then the individual was said to be growing in the sun, 

otherwise it was said to be in shade. Presence of fire was assigned based on physical 

evidence of fire. Presence or absence of fire was a  genet characteristic based on 

evidence of fire, such as burn marks on stems, rhizomes or leaves (Fig. 3A & 3B). A 

class of no fire was assigned if there were no signs of fire on the indivdual (Fig. 3C). All 

sampled individuals in all three countries were growing in seasonally flooded conditions. 

Gross elevation was determined to examine interpopulation variation of elevation in the 

Google geoplanar application (accuracy of geoplanar was ± 10m elevation; Google, 

2016) using GPS coordinates obtained from the field, since field elevation from the GPS 

was not accurate enough for this study (accuracy of GPS was ± 20 m elevation). 

Leaf morphology:  To characterize leaf and ramet morphology, 179 leaves from 

79 individual genets (ramet/genet, 2-3 leaves/ramet) were measured. Leaves from four 

populations (nBZcr =  48 leaves, nBZnh =  11 leaves, nBZmb 93 leaves, and nFL =  27 leaves) 

were measured in this study. One ramet/genet were selected to measure. Ramets were 

selected based on size (between 0.4 and 1.5 m) and location in the genet (in the 

outermost tier). At heights above 0.4 m, ramets are established and their leaf 

characteristics are more similar within a ramet (Edelman, Chapter 2), so selecting 

established ramets diminished the effect of ramet size on leaf morphology. Ramets 

found in the outermost tier were used in order to reduce the potential effects of shading 

on leaf morphology.  Up to three leaves/ramet--the first, fifth and tenth most recently 

matured leaves--were measured, if available.  The most recently matured leaf was 

defined as the newest leaf that had fully emerged from the apical bud of the stem and 

whose lamina had fully expanded.  Morphological measurements included ramet height 
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and circumference, lamina length and width, petiole length and width, and number of 

pinnae. Ramet height was measured from the base of the ramet to the apical bud. 

Circumference of the ramet was measured 0.3 meters below the stem apical bud, where 

the stem circumference has stablized after  primary thickening growth. Lamina length 

was measured from petiole attachment to the tip of the lamina, while lamina width was 

taken at the widest part. Petiole length was measured from the top of the leaf sheath to 

lamina attachment on the abaxial side of the petiole. The abaxial side was used since 

there is a clear distinction of where the petiole begins and ends on the abaxial side. 

Petiole width was measured on the adaxial side, where the petiole is flat. Leaf 

morphological characters were compared among wild populations and to garden-

cultivated individuals from Edelman, Chapter 2 (ngarden =  94 leaves). 

Clonal architecture: Measurements to describe clonal architecture were taken for 

87 multi-stemmed or clumping genets from four populations (NBZcr = 30, NBZmb = 36, 

NBZnh = 7, and NFL = 14). Clone circumference was measured with a tape ruler as the 

total distance around the base of the clump, including all ramets above 0.1 m. Total 

number of ramets over 0.5 meters tall, total number of live ramets over 0.5 meters, and 

number of tiers in a genet were counted. Tiers were defined by visual estimates of 

canopy density and overlap; distinct tiers had little intersection of ramet canopies.  Three 

architectural relationships were analyzed, as in Edelman, Chap. 2: (1) circumference x 

number of established ramets; (2) circumference x number of tiers; and (3) number of 

ramets x number of tiers. These relationships were used to determine if there were 

differences in clonal architecture between populations, light regimes, fire intervals, and 

elevations. Relationships were compared among wild populations and to garden-

cultivated individuals, using data from Edelman, Chapter 2 for the latter (Ngarden =  45). 
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Population structure, defined as the distribution of size classes within a 

population, was analyzed using circumference as a measurement for size class and then 

finding the number of genets in each size class for each population. Number and size of 

size classes were defined to balance the number of sampled individuals across size 

classes as in Condit et al. (1998).  The following circumference size classes were used 

to accommodate the decrease in number of individuals with increasing class size (Condit 

et al., 1998): 0-2, 2.01-4, 4.01-6, 6.01-8, 8.01-12, 12.01-16, 16.01-24, 24.01-32 m. The 

number of individuals in each class for each population was tallied, and numbers were 

compared between classes within populations to determine if the distribution of class 

sizes within a population was even. Class size distributions were also compared among 

populations to determine whether population structure was similar.  

 Statistical analysis: The R environment was used to analyze results (R Core 

Team, 2013). Leaf variability was examined using linear regression with lamina length as 

the independent variable and lamina width as the dependent variable. To determine if 

there were differences in leaf morphology among populations (wild and garden-

cultivated), light regime, presence of fire, and habit, average lamina length, lamina width, 

petiole length, petiole width and number of pinnae were analyzed using ANOVA tests. 

To determine if there were differences in leaf morphology among elevations, average 

lamina length, lamina width, petiole length, petiole width and number of pinnae were 

analyzed using ANCOVA tests Since differences existed among populations, nested 

ANOVA tests were used to examine differences in leaf morphology variables between 

light regimes (shade or sun), habit (solitary or clumping), and between presence of fire 

(fire or no fire) within populations. Scaling relationships between morphological variables 

were compared among wild populations, light regimes, fire, elevation and habit using 
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ANCOVA tests.  The effect of genet within the population on leaf morphology variables 

was examined with nested-mixed effects models using the lme4 package in R; 

population was the random variable and ramet within genet was the fixed effect (Bates, 

2011). The genet could not be used as a fixed effect since there was only one ramet per 

genet. The nested mixed effect model thus compared variation within a ramet to 

variation within a population to variation between populations.  

The architectural relationship between circumference and number of established 

ramets was analyzed using linear, exponential and log-transformed equations, and the 

best fit equation was selected using AIC values. Log-transformed models were the best 

fit and were used to analyze the relationship between circumference and number of 

established ramets (see also Edelman, Chap. 2). The relationship between 

circumference and number of established ramets was compared among populations 

(wild and garden-cultivated), light regimes, and presence of fire using ANCOVA tests. 

The relationship between circumference and number of established ramets was 

compared among elevations using regression analysis, where circumference and 

elevation were the indepdent variables. 

The architectural relationship between circumference and number of tiers and 

number of established ramets and number of tiers were compared using ANOVA tests.  

The relationships between circumference and number of tiers and number of established 

ramets and number of tiers were compared among populations (wild and garden-

cultivated), light regimes, and presence of fire using two-way ANOVA tests, while the 

relationships among elevations were compared using ANCOVA tests. 

As per Lykke (1998), for each population, a regression was calculated with size 

class midpoint (m) as the independent variable and number of individuals (Ni) in that size 

class as the dependent variable. Class mid point was the average circumference for 
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each size class in each population. The size class variable was ln-transformed, and the 

average number of individuals was transformed by ln (Ni+1) (1 was added beause some 

size classes had 0 individuals). A regression was calculated for each of the populations.  

Slopes of these regression were called SCD (size class distribution) slopes and were 

used as indicators of population structure. SCD slopes among populations were 

compared using linear regression analysis.   

RESULTS: 

Leaf morphology– Leaf morphology (lamina length, lamina width and petiole 

length) is variable among populations (Table 2; ANOVA tests for differences in lamina 

length, lamina width and petiole length among populations, p< 0.05). However, there 

was little morphological variation observed within a ramet for leaf morphology variables 

(nested mixed-effect model testing the variation within a ramet within a population for 

lamina length, lamina width, number of pinnae and petiole length, p> 0.10).  

Leaves in BZMB had the largest laminas (Table 2; ANOVA tests for differences in 

lamina length and lamina width, p< 0.05, Tukey post hoc among populations). Leaves in 

BZNH had the longest petioles (Table 2; ANOVA tests for differences in petiole length, p< 

0.05, Tukey post hoc among populations).  Lamina length and lamina width had a 

positive linear relationship (lamina width = 1.39 lamina length + 0.0006,  p< 0.01). 

Garden-cultivated individuals were larger for leaf variables except petiole width (Table 2; 

ANOVA tests for differences in lamina length, lamina width and petiole length among 

populations,  p< 0.05).   

Leaf morphology was also variable between environmental conditions within 

populations. Different light regimes, presence of fire and elevations were correlated with 

variability in lamina length, lamina width and petiole length within populations. Individuals 

that had experienced fire had narrower and shorter laminas and shorter petioles (Table 
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3; nested anova for differences in lamina length, lamina width and petiole length 

between light regimes within populations, p=  0.05). Individuals in the shade had longer 

and wider laminas and longer petioles (nested anova for differences in lamina length, 

lamina width and petiole length between light regimes within populations, p=  0.05). 

Ramet circumference, number of pinnae, and petiole width were not variable between 

light or fire regime or habit within populations (Tables 2A and 2B; nested analysis for 

differences in ramet circumference, number of pinnae, and petiole width within 

populations, between light regimes and presence of fire, p> 0.05; ANCOVA test for 

differences between elevations, p> 0.05). The relationship between lamina length and 

lamina width did not vary significantly within wild populations for light or fire regime, 

elevation or habit (ANCOVA test, p> 0.05). Elevation within populations were not 

variable so statistical analysis could not be completed on differences in leaf shape within 

populations based on elevation. 

Clonal architecture: Architecture and population structure (size class 

distributions) were variable among populations, however, similar growth patterns were 

found throughout all populations. Solitary individuals were present in every population. 

There were two solitary individuals observed in the southern Everglades (8% of total 

observed individuals), two in Monkey Bay Wildlife Sanctuary (5% of total observed 

individuals), three in northern Western Highway (20% of total observed individuals), and 

two in Coastal Highway (6% of total observed individuals).    

 All mulitple-stemmed individuals (genets) had similar overall architecture;  they 

all had empty centers, presumably caused by death of the protoclone, and formed tiers. 

Tiers were less obvious in genets growing in shaded conditions without fire. The 

maximum number of ramets observed in a genet was 60 and the maximum number of 

tiers observed was five. However, there was more variability in clone circumference and 
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number of ramets among genets with five tiers than in genets with four or fewer tiers 

(Fig. 4) The relationship between circumference and number of established ramets can 

be expressed as log (no. ramets) = 0.13 * circ + 0.61 (semi-log linear regression 

analysis, F1,85= 208.5, p<  0.01).  

 Architectural relationships, as reflected in circumference, tiers and number of 

ramets, differed among wild populations (Fig. 5; two-way ANOVA for differences among 

populations in relationships between 1- circumference and no. tiers, F5,3,78= 2.8, p= 0.05; 

2- no. ramets and no. tiers, F5,3,78= 3.8, p= 0.01). The Monkey Bay Wildlife Sanctuary 

population produced more ramets and larger circumference than other populations (Fig. 

5). The Western Highway population had fewer ramets given circumference and 

displayed a greater increase in number of tiers with increase in circumference than other 

populations (Fig. 5).  The southern Everglades population had a smaller increase in 

number of tiers with increase in circumference than other populations. Genets growing in 

higher elevations had fewer ramets and fewer tiers given circumference.The Coastal 

Road, Belize, population had the largest circumferences and greatest number of ramets 

for genets with one to five tiers (Table 4). Differences in elevation may have induced the 

architectural variability observed among populations (linear regression for relationship 

between ramets and circumference + elevation, F3,83= 75.07, p<  0.001; ANCOVA for 

relationship between circumference and no. tiers + elevation, F5,1,80= 2.0, p= 0.10; and 

ANCOVA for relationship between no. ramets and no. tiers + elevation, F5,1,80= 5.0, p= 

0.02). However, environmental differences within populations (fire, light, elevation) did 

not induce variability in architectural relationships (ANCOVAs for differences in 

relationship between ramets and circumference, circumference and number of tiers, and 

number of ramets and number of tiers between light, fire and elevation within 

populations, p> 0.10). Architecture of garden-cultivated individuals were different from 
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wild populations but most similar to southern Everglades (Fig. 5; ANCOVA test for 

differences among populations in architectural relationships, p<  0.10).  

 Population structure, measured by size class distributions, varied among 

populations (linear regression comparing size class midpoint (independent variable) to 

number of individuals in each size class among populations, F1,3,27= 6.62, p= 0.001).  

While all populations had a greater proportion of the population in smaller class sizes, 

Coastal Highway and Monkey Bay populations had a more even distribution of 

individuals among size classes than Western Highway and Southern Everglades 

populations (Fig. 6A - D). Western Highway and Southern Everglades popoulations 

lacked larger-sized individuals (larger size classes) (Figs. 6C & 6D).  

DISCUSSION:  

Results of the leaf morphological and architectural analyses in this study support 

the current classification of A. wrightii into a single species. At the time of A. wrightii’s 

discovery and classification, palm biologists sometimes drew species lines based on 

analysis of a single herbarium sheet with one leaf and one inflorescence or 

infructescence (Small, 1922; Bailey, 1934).  In this study, the variation among ramets 

captured the variation in an entire population; one clone had the ability to display all the 

variability observed within the population. However, the variability between populations 

was only a few centimeters, similar to leaf variability of other palms (Henderson, 2002). 

Most likely, A. wrightii was split into taxonomic species as a result of lack of 

communication between authors or lack of understanding of the range of variation 

among individuals and populations, not because of significant morphological differences 

based on genetic differences (Bailey, 1934). 
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While results of this study demonstrate that variability occurs among populations, 

it is important to note that this study did not include samples from the entire range of the 

species. A. wrightii also occurs in Costa Rica, Cuba, Guatemala, Honduras, Mexico, and 

Nicaragua. Populations used in this study were from Belize (the center of the range) and 

Florida (the northern edge of the range).  A study of additional populations would provide 

information about morphological and architectural variability throughout the range.  It 

would be especially interesting to look at the edge of the range: Costa Rica (southern 

range), Nicaragua (western range) and Cuba (eastern range). Cuba has some 

populations that have been reported to have only solitary individuals (Henderson et al., 

1997). Examination of these populations and their environmental history would be 

especially interesting.  Results of the experiments in Edelman, Chap. 3, suggest that 

these could be populations with wet/dry hydroperiods where the dry period is short but 

shallow enough to allow germination, and water levels in the wet season are relatively 

high, inhibiting bud expansion in the juvenile stage.  Additional data on morphological 

and architectural variability throughout the range could be used to determine if 

architectural variability reported from this study was typical. 

Additional data on morphological and architectural variability throughout the 

range could be used to determine if architectural variability reported from this study was 

typical.  The number of countries sampled could increase the variability measured. 

Gaston (2000) hypothesized that variability in plant architecture changed with extent of 

geographic range such that species with larger geographic ranges display greater 

variability. Studies suggest that species with larger geographic ranges display greater 

variability because these species experience more environmental variability (Brown et 

al., 1996).  The range of A. wrightii spans the Caribbean basin. Belize populations 

(Coastal Highway, Monkey Bay Wildlife Sanctuary, and Western Highway) were located 
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at the center of the geographic range, while the Florida population (southern Everglades) 

was located at the northern edge of the geographic range.  The Florida population, 

however, was not different morphologically or architecturally from two of the three Belize 

populations. The third Belize population, Western Highway, was different from all other 

populations, suggesting that location within range may not be as important as other 

environmental factors. 

Generally, a larger range has more environmental conditions. In this study, 

environmental conditions observed (light and fire) did not influence overall architecture. 

And while elevation is usually a proxy for climate, sites used in this study span about 40 

m of elevation, a relatively narrow range. A wider range of elevations, achieved by 

sampling more populations, is needed in order to determine the shape of the curve 

describing the relationship of elevation to morphology and architecture in A. wrightii. 

The importance of environmental variables on leaf morphology is further 

supported by the fact that garden individuals were different in leaf morphology from wild 

populations. Leaves of garden individuals were larger than all wild populations except 

BZNH . Larger leaves in the garden is most likely caused by the additional fertilizer and 

nutrients available to garden-cultivated individuals. Nutrient analysis was not included in 

this study but has been shown to play a role in leaf morphology of other plants, including 

palms (De Steven, 1989; Poorter & Nagel, 2000) 

Regardless of architectural variability, genets displayed clear carrying capacities.  

The maximum number of tiers found on a genet was five, but circumference was quite 

variable, suggesting that there is a maximum number of tiers a genet can support. 

Number of tiers have been used to estimate age in A. wrightii (Edelman, Chapter 2) 

however, the results reported here suggests that circumference may be a better proxy 

for time. Individuals in wild populations were much larger than garden individuals, 
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suggesting that they were older. We could not find a relationship between time and 

circumference (Edelman, Chapter 2), when we knew the ages of the clones, because 

most of the garden clones were the same or similar ages. If garden clones are monitored 

for growth over many years in a long term study, the relationship between time and 

circumference could be clarified. 

The distribution of circumference size within a population was used to describe 

population structure. While stability of a population can only be determined through a life 

history study, population structure is often indicative of population stability (Tilman & 

Kareiva, 1997). A population with an even distribution of proportions among classes 

(here, size classes) or more young individuals than old individuals is usually a stable 

population.  The results from this study suggest that the Coastal Highway population is 

stable. However, populations with skewed distributions are generally unstable (Ricklefs 

& Miller, 2000). A skewed small class size, as in Monkey Bay, is an increasing 

population. However, greatly uneven distributions with missing classes, such as Western 

Highway and Southern Everglades population, are indicative of an unstable population 

that is not consistently reproducing and replacing itself. Thus, clone size provides an 

easy and convenient way to assess population characteristics in native habitats.  

The use of clone size to examine population structure could be applied to other 

populations of A. wrighitt. When coupled with findings on morphological and architectural 

variability, results from the study can be used for baseline comparisons to other 

populations of A. wrightii not covered in this study. More widely, results on population 

structure, morphology and architecture can also be used to compare variability among 

clonally-reproducing palms or similar large, slow-growing monocots. 
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TABLES: 

Table 1: Location and sample sized for the five populations sampled, including the Bahamian population that was excluded from 

analyses. Population acronyms are: MB = Monkey Bay Wildlife Sanctuary located in Belize; NH= North Western Highway 

located in Belize; CH= Coastal Highway located in Belize; FL= Southern Everglades located in Florida, USA. Numbers in 

parenthesis were not used in the study. 

Pop Country Lat. Long. 
Avg. 

elevation 
(m) 

No. 

genets 

No. genets 
with 

multiple 
stems 

No. 

solitary 
individuals 

No. 

leaves 
sampled 

MB Belize 

 

17°19.103’ - 
17°24.375’ N 

 

88°28.827’ - 
88°34.045’ W 40.7 ± 6.8 34 32 2 48 

NH Belize 
 

17°47.079’ - 
17°51.890’ N 

88°18.477’ - 
88°19.071’ W 14.1 ± 0.5 18 15 3 36 
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CH Belize 17°17.601’ - 
17°17.837’ N 

88°28.113’ - 
88°28.440’ W 18.2 ± 1.6 32 30 2 93 

FL USA 25°15.859’ - 
25°20.721’ N 

80°47.891’ - 
80°49.913’ W 1.4 ± 0.8 18 17 2 27 
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Table 2: Average ramet circumference and leaf morphological variables by population. Different letters to the right of the value 

indicates that these means differed significantly (ANOVA p<0.05). 

 

Population  

Coastal Road, 
Belize  

(n= 48) 

Monkey Bay 

 Wildlife 
Sanctuary, Belize 

(n= 93) 

Western 
Highway, 

Belize 

(n= 11) 

Southern 

 Everglades, 
U.S.A. 

(n= 27) 

Overall  

Average 
Garden 

individuals 

 Ramet circum. (cm) 22.9 ± 1.6a 26.0 ± 17.9a 25.6 ± 1.9a 29.9 ± 2.8a 25.3 ± 13.1 20.0 ± 7.6 b 

 Lamina length (cm) 48.5 ± 5.5a 53.2 ± 7.9 b 51.8 ± 10.3 a 48.6 ± 7.4a 51.1 ± 7.9 54.5± 6.5 c 

 Lamina width (cm) 66.1 ± 9.0a 74.6 ± 13.5b 73.3 ± 15.5a 68.4 ±  15.2a 71.2 ±  13.4 82.1 ± 12.8 c 

 No. pinnae  37 ± 3a 38 ± 5a 36 ± 3a 36 ±  6a 37 ±  5 37 ± 6 b 

 Petiole length (cm) 43.3 ± 39.8a 44.1 ± 18.0 a 59.8 ± 35.1b 52.8 ± 23.3c 47.2 ± 28.7 59.5 ± 14.8 d 

 Petiole width (cm) 1.0 ± 0.0a 1.1 ± 0.9a 1.0 ± 0.0a 1.1 ± 0.1a 1.1 ± 0.1 1.3 ± 0.2 a 
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Table 3: Average ramet circumference and leaf morphological variables for light, fire and habit within populations (A, Coastal 

Road; B, Monkey Bay; C, Western Highway; D, Southern Everglades). Different letters to the right of the value indicate that 

these means differed significantly (ANOVA p<0.05). C= circumference (cm); LL= lamina length (cm); LW= lamina width (cm); No. 

p =   number of pinnae (count); PL= petiole length (cm); PW= petiole width (cm). 

 

 

A. 

CR 
LIGHT FIRE HABIT 

 full fire no fire clumping solitary 

C (cm) 22.9 ± 1.6 22.1 ± 1.6 a 23.4 ± 1.5 a 22.9 ± 1.6 a 23.2 ± 1.3 a 

LL (cm) 48.5 ± 5.5 47.7 ± 4.7 a 48.4 ± 5.9 a 48.3 ± 5.5 a 50.2 ± 6.1 a 

LW (cm) 66.1 ± 9.1 61.8 ± 5.0 a 66.1 ± 7.8 b 64.9 ± 7.1 a 74.2 ± 16.1 a 

No. P 37 ± 3 37 ± 4 a 36 ± 3 a 37 ± 3 a 40 ± 3 a 

PL (cm) 43.3 ± 4.0 18.8 ± 31.1 a 45.5 ± 44.6 b 42.6 ± 42.3 a 47.6 ± 14.4 a 

PW (cm) 1.0 ± 0.0 1.0 ± 0.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 
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B. 

MB 
LIGHT FIRE HABIT 

 full fire no fire clumping  solitary 

C (cm) 26.0 ± 17.9 23.2 ± 1.1 a 26.2 ± 19.0 a 26 ± 18.1 a 28 ± 0.0 a 

LL (cm) 52.1 ± 8.2 46.1 ± 9.1 a 52.6 ± 8.2 b 52.3 ± 8.2 a 44.7 ± 0.7 a 

LW (cm) 73.1 ± 13.8 63.3 ± 10.4 a 74.2 ± 13.8 b 73.4 ± 13.7 a 56.3 ± 9.8 a 

No. P 38 ± 5 36 ± 6 a 38 ± 5 a 38 ± 5 a 36 ± 1 a 

PL (cm) 44.7 ± 22.4 27.1 ± 5.3 a  46.5 ± 23.0 b 45.0 ± 22.6 a 30.4 ± 9.6 a 

PW (cm) 1.1 ± 0.1 1.0 ± 0.1 a 1.1 ± 0.1 a 1.1 ± 0.1 a 1.0 ± 0.0 a 
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C. 

NH 
LIGHT FIRE HABIT 

 full shade fire no fire clumping solitary 

C (cm) 28.0 ± 0.0 a 24.8 ± 1.3 a 28.0 ± 0 a 24.7 ± 1.3 a 25.7 ±2.4 a 25.5 ± 0.6 a 

LL (cm) 62.6 ± 5.9 a 60.6 ± 8.0 a 62.6 ± 5.9 a 60.6 ± 8.0 a 58.2 ± 6.4 a 67.5 ± 3.1 a 

LW (cm) 85.1 ± 8.0 a 88.3 ± 5.4 a 85.0 ± 8.0 a 90.5 ± 15.0 b 84.5 ± 5.9 a 92.1 ± 2.5 a 

No. P 39 ± 1 a 35 ± 2 a 39 ± 1 a 35 ± 2 a 36 ± 3 a 36 ± 2 a 

PL (cm) 63.8 ± 13.7 a 82.1 ± 10.4 b 63.8 ± 13.7 a 82.1 ± 10.3 b 71.0 ± 13.2 a 86.0 ± 11.5 a 

PW (cm) 1.1 ± 0.1 a 1.0 ± 0.0 a 1.1 ± 0.1 a 1.0 ± 0.0 a 1.1 ± 0.1 a 1.0 ± 0.0 a 
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D. 

FL 
LIGHT FIRE HABIT 

 full shade no fire clumping solitary 

C (cm) 26.3 ± 1.9 a 27.8 ± 3.7 a 26.9 ± 2.8 a 26.7 ± 2.7 a 28.5 ± 4.4 a  

LL (cm) 47.3 ± 8.8 a 50.6 ± 4.0 a 48.6 ± 7.4 a 48.4 ± 7.5 a 50.3 ± 7.0 a 

LW (cm) 65.8 ± 18.6 a 72.1 ± 7.6 b 68.4 ± 15.2 a 68.1 ± 15.6 a 70.1 ± 13.8 a 

No. P 35 ± 6 a 37 ± 5 a 36 ± 6 a 36 ± 6 a 33 ± 6 a 

PL (cm) 48.2 ± 19.8 a 59.5 ± 27.2 b 52.3 ± 23.3 a 55.2 ± 21.2 a 33.1 ± 34.7 a 

PW (cm) 1.1 ± 0.1 a 1.2 ± 0.1 a 1.2 ± 0.1 a 1.2 ± 0.2 a 1.2 ± 0.0 a 
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Table 4: Number of ramets and average circumference of outermost tier based on 

number of tiers for each wild population and garden-cultivated individuals (data from 

Edelman, Chapter 2). 

 

 

 

Population  No. tiers 

    1 2 3 4 

Coastal 
Road, Belize 
(n=30) 

No. ramets 1 ± 0 2 ± 1 8 ± 6 21 ± 8 

Circumference 2.7 ± 1.0 m 9.1 ±7.7 m 16.4 ± 7.1 m 20.5 ± 3.8 m 

Monkey Bay 
Wildlife 
Sanctuary, 
Belize (n=36) 

No. ramets 1 ± 1 4 ± 4 12 ± 12 25 ± 20 

Circumference 2.2 ± 1.3 m 4.0 ± 3.0 m 9.0 ± 6.5 m 12.1 ± 19.7 m 

Western 
Highway, 
Belize (n=7) 

No. ramets 1 ± 0 2 ± 1 n/a 6 ± 0 

Circumference 1.0 ± 0 m 3.0 ± 2 m n/a 4.51 ± 0 m 

Southern 
Everglades, 
USA (n=14) 

No. ramets n/a 4 ± 4 5 ± 2 9 ± 4 

Circumference n/a 6.7 ± 2.2 m 4.3 ± 1.3 m 7.9 ± 1.9 m 

Garden-
cultivated, 
Miami, USA 
(n=37) 

No. ramets 1 ± 1 2 ± 1 6 ± 1 10 

Circumference 0.83 m 2.56 m 3.17 m 3.82 m 
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FIGURES: 

Fig. 1: Acoelorrhaphe wrightii is found naturally as a (A) single-stemmed (solitary) or (B) 

multiple-stemmed (clumping) individual. 
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Fig. 2: Range of Acoelorrhaphe wrightii highlighted in green. Populations visited marked 

with icon (Google Earth). 
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Fig. 3: Fire interval assigned based on fire evidence. Fire (A): evidence of fire on 

rhizomes, stems and 3 newest leaves and (B): evidence of fire on rhizomes and stems 

but canopy has returned to normal. No fire (C): no evidence of fire on stem or rhizome. 
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Fig. 4: The relationship of (A) the circumference for genets with different numbers of 

tiers and (B) the number of ramets for genets with different numbers of tiers for all wild 

populations. 
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Fig. 5: The relationship of (A) the circumference for genets with different numbers of 

tiers and (B) the number of ramets for genets with different numbers of tiers for all wild 

populations, separated by population. 
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Fig. 6: Distribution of population size classes for each population sampled, showing the 

proportion of the population in each size class within populations, and differences of 

overall population structure among populations: (A) Coastal Road population, (B) 

Monkey Bay Wildlife population, (C) North Western Highway population and (D) 

Southern Everglades population.   
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CONCLUSIONS 

 

Palms provide valuable commercial resources in the tropics and subtropics and 

are dominant species in tropical lowland forests. (Stiegel et al., 2011; Svenning et al., 

2008). Multi-stemmed palms (clonal palms) are particularly important economically in 

local communities in the tropics where they are used for palm heart and rattan 

production (Balick 1990; Dransfield et al., 2008). While general biology and ecology of 

palms is well studied, there are gaps in the literature on the growth, morphology, and 

effects of environment on clonal palms (Tomlinson, 1990).  

Understanding growth of clonal palms requires knowledge about branching in 

palms.  In chapter I, I developed a comprehensive classification scheme that provides a 

clear description of branching types present in the palms. Branching types from 1903 

species from all 181 genera were described and classified. Five branching types were 

present in the palms: lateral axillary branching, shoot apical division, false vivipary, 

abaxial branching and leaf-opposed branching. Most species exhibit no vegetative 

branching (1043 species) and produce solitary individuals. Lateral axillary branching was 

the most common branching type, found in 646 species. Lateral axillary branching and 

shoot apical division were predicted to be the earliest evolved branching types and were 

distributed throughout the palms.  Due to differences in phylogenetic distributions, I 

concluded that the branching types have different evolutionary histories, and it is likely 

that the solitary habit is more common now than when the palms initially diverged from 

commelinid relatives. 

In chapter II, I described the morphology and architecture of the Florida 

threatened clonal palm A. wrightii. Ramets displayed an establishment period from 

inception to 0.3 m ramet height. Plant growth varied seasonally in both establishing and 
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established phases, with greater leaf production in the warmer, wet season and less in 

the cooler, dry season. Clonal architectural was modeled as the number of established 

ramets in a genet, using an exponential model that depends on number of ramet tiers, 

the number of ramets, and their survivorship.  

In chapter III, I analyzed how water and light influence germination and juvenile 

morphology and branching. I found that full sun and saturated soil yielded juvenile plants 

with a greater number of leaves, more root mass and more branches. The results of this 

study suggested that while A. wrightii is commonly found in flooded areas, it requires a 

dry down in order to successfully recruit, and it produces more vegetative branches in 

environments with high light and low water levels.   

In chapter IV, I compared morphology, architecture and population structure of 

adult individuals in four populations in Belize and Florida. Leaf morphology differed 

among populations and between fire intervals, light regime and elevation. Clonal 

architecture differed among populations and elevation. However, differences in average 

values between populations, light and fire regimes were not great, suggesting that leaf 

morphology and clonal architecture were not highly variable across the geographic 

range of A. wrightii. Population distributions, measured by size class distribution, differed 

among populations, suggest that population dynamics can vary greatly among 

populations. 

Combining results from all chapters shows how A. wrightii grows throughout its 

lifestages and how environment influences architecture and morphology of A. wrightii 

through those life stages. Specifically, water level is an important determining factor of 

growth and architecture in all life stages. Therefore, the distruption of natural water 

levels, as in the Everglades, threatens growth of A. wrightii. These results will guide 
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Everglades decision makers in water management in order to protect this threatened 

species.  

These results also filled a void in palm literature on palm demography and life 

history. Palms are long-lived and hard to study because of their slow growth. There are 

few studies that follow palm species from germination through adult growth. By taking a 

life stage perspective, in a short time I studied growth from germination, to juvenile, to 

young adult to mature adult life history stages. This dissertation provides a model for 

how other palm biologists could do similar demographic work.  I captured many stages 

of life history using botanical garden resources, nursery plants and wild individuals. The 

life stage approach used here provided new data on A. wrightii and palm growth in a 

relatively short time and established a model for conducting these types of life history 

studies in large, slow-growing species such as the palms. 
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