
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-27-2017

Jewels for Dollars: Native and Nonnative
Freshwater Fish Interactions in a Stressful Dry
Down Environment
Vanessa Trujillo
Florida International University, nessa.trujillo@gmail.com

DOI: 10.25148/etd.FIDC001758
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Behavior and Ethology Commons, and the Integrative Biology Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Trujillo, Vanessa, "Jewels for Dollars: Native and Nonnative Freshwater Fish Interactions in a Stressful Dry Down Environment"
(2017). FIU Electronic Theses and Dissertations. 3212.
https://digitalcommons.fiu.edu/etd/3212

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/15?utm_source=digitalcommons.fiu.edu%2Fetd%2F3212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1302?utm_source=digitalcommons.fiu.edu%2Fetd%2F3212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3212?utm_source=digitalcommons.fiu.edu%2Fetd%2F3212&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

 

JEWELS FOR DOLLARS: NATIVE AND NONNATIVE FRESHWATER FISH 

INTERACTIONS IN A STRESSFUL DRY DOWN ENVIRONMENT  

 

 

A dissertation submitted in partial fulfillment of 

the requirements for the degree of 

DOCTOR OF PHILOSOPHY  

in 

BIOLOGY 

by 

Vanessa Trujillo 

 

2017 



ii  

To:   Dean Michael R. Heithaus 

College of Arts, Sciences and Education 
 

This dissertation, written by Vanessa Trujillo, and entitled Jewels for Dollars: Native and 

Nonnative Freshwater Fish Interactions in a Stressful Dry Down Environment, having 

been approved in respect to style and intellectual content, is referred to you for judgment. 
 

We have read this dissertation and recommend that it be approved. 
 

 
M. Danielle McDonald 

 

 

John C. Withey 
 

 

Robert Lickliter 
 

 

Jennifer S. Rehage,Co-Major Professor 
 

 

Philip K. Stoddard,Co-Major Professor 
 

 

Date of Defense: March 27, 2017 
 

The dissertation of Vanessa Trujillo is approved. 
 

 

 
 

Dean Michael R. Heithaus 
College of Arts, Sciences and Education 

 

 

 

Andrés G. Gil 
Vice President for Research and Economic Development 

 and Dean of the University Graduate School 

 

 
Florida International University, 2017 



iii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

© Copyright 2017 by Vanessa Trujillo 
 

All rights reserved. 



iv  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEDICATION 

 

I dedicate this dissertation to my family and friends. Without their patience, 

understanding and loving support, the completion of this work would not have been 

possible. 



v  

 

 

 

 

 

 

 

 

 
 

ACKNOWLEDGMENTS 

 

I would like to express my appreciation to members of my committee for their 

guidance, support and patience during the term of my candidature. Their valuable 

assistance in providing me with my research direction has been most appreciated. I would 

also like to thank past and present members of the Stoddard and Rehage Lab plus my 

numerous volunteers that made data collection possible. A special thanks to Jeff Kline 

and Zach Fratto for assisting me with their knowledge about the ecosystem and teaching 

me all of the freshwater fish in Everglades National Park.   

I have found my coursework throughout the Curriculum and Instruction program 

to be challenging and exciting, providing me with the tools with which to explore both 

field and experimental research in multiple settings. 



vi  
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Vertebrate populations are subjected to novel anthropogenic stressors that are expected to 

multiply exponentially in the future. Introductions of nonnative species and human-

altered hydrology are among these stressors to native species communities. The Rocky 

Glades, located in Everglades National Park, may serve as a population sink for native 

species that typically do not survive the altered hydrology of the dry season, and as a 

source of nonnative species that may be better adapted to chronically stressful conditions. 

In the seasonally-flooded Everglades, the nonnative African Jewelfish invaded in the 

1960s and has since shown rapid range expansion. African Jewelfish are aggressive and 

territorial, thus they are predicted to be more successful at acquiring space and resources, 

and may displace native Sunfishes. I monitored assemblages of fish across time in 
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experimental mesocosms and solution holes and quantified survivorship and body 

condition of both natives and nonnatives. Overall, native Sunfish did poorly while 

nonnatives had higher survivorship over the course of the dry season. Unexpectedly, no 

evidence indicated that Jewelfish reduced survival of native Sunfish. I compared 

aggressive interactions between native Dollar Sunfish and nonnative African Jewelfish in 

Sunfish populations either sympatric or allopatric with Jewelfish. Sympatric Dollar 

Sunfish were twice as likely to approach African Jewelfish as allopatric ones. My study 

suggests native species can survive invasion through behavioral adaptation to nonnative 

competitors. Characterizing interactions between native and nonnative species and 

identifying their niche use can assist in understanding the challenges of native species 

conservation in the face of species invasions. 
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GENERAL INTRODUCTION 
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The introduction of a nonnative species can have multiple effects that modify 

traits and behaviors of native species, alter how ecosystems function, and impose 

socioeconomic costs (Smith, Hewitt and Klenk 2012; Loope 2004; Coutenay 1986). 

Damaging effects produced by nonnatives include, but are not limited to, displacement of 

natives from preferable habitat (Houser, Ginsberg and Jakob 2014; Brooks and Jordan 

2010), changes in native behavior, reduction or loss of native populations (Dorcas et al. 

2012; Kaufman 1992) along with changes to native communities and key ecosystem 

processes (Capps and Flecker 2013; Koehn 2004; Starling et al. 2002).  

The goal of my dissertation is to understand interactions between native and 

nonnative taxa and compare their role in aquatic communities and thus measure their 

influence on native competitors. To explore interactions on native species caused by 

nonnative invaders, I focused on Everglades National Park (ENP) where 17 nonnatives 

fishes have been documented over the past 50 years (Kline et al. 2013; Shafland, Gestring 

and Stanford 2008; Loftus 2000). Although nonnative fish have increased species 

richness of ENP by 50%, relatively few studies have recognized any significant 

ecological effects from these fish introductions, which have led to conflicting 

perspectives on the overall effects of nonnative aquatic taxa in the ecosystem (Schofield 

et al. 2013; Trexler et al. 2000; Shafland 1996). Managers need to understand the 

behavioral dynamics, particularly in those habitats where nonnative species are abundant 

(e.g., Rocky Glades and canals), along with how they affect survivorship and body 

condition of native taxa. Understanding behavioral dynamics requires empirical 

approaches that manipulate the presence of nonnatives and closely examines how natives 
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and nonnatives interact and thus quantify the mechanisms for interaction (e.g., Porter-

Whitaker et al. 2012; Brooks and Jordan 2010; Rehage et al. 2009).  

In my dissertation, I investigated how native and nonnative freshwater fish 

interactions differed by observing survivorship, body condition, and behavior during 

interactions between the nonnative African Jewelfish and native Dollar Sunfish. Because 

of similarities in size and niche occupancy, African Jewelfish have been predicted to 

compete heavily with native sunfishes, including the Dollar Sunfish (Rehage, Dunlop and 

Loftus 2009). The African Jewelfish is a piscivorous cichlid that has spread quickly 

through South and Central Florida (Schofield et al. 2013; Dunlop-Hayden and Rehage 

2011; Rehage, Dunlop and Loftus 2009).  Dollar Sunfish were once the most abundant 

sunfish species in the Rocky Glades and made up 16% of total fish caught in solution 

holes (Rehage et al. 2013). They are now the third most abundant sunfish while Jewelfish 

are the second most abundant of all fishes caught in solution holes (Trujillo et al. 

unpublished data). Dollar Sunfish are gape limited in their diet and subsist mainly on 

aquatic invertebrates such as shrimp and copepods (Warren 2009; Etnier and Starnes 

1993). Dollar Sunfish are aggressive towards intraspecific competitors (Etnier and 

Starnes 1993). The underlying interactions of naïve prey with predators has been well 

studied (Sih et al. 2010), while naiveté of competitors has not been addressed by previous 

work.  

In Chapter 2, I investigated how replacing a native species with a nonnative at 

varying ratios in outdoor mesocosms affected the native Dollar Sunfish. I quantified 

effects of body condition and survivorship across simulated solution holes in the dry 
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season. I also compared how native and nonnative species differed in their responses 

across treatments and time. 

In Chapter 3, I surveyed deep refuge (≥ 70cm) solution holes across the dry 

season in the Rocky Glades. I quantified and compared the effects of survivorship and 

body condition from beginning to end of the dry season for numerous native and 

nonnative fish taxa. I also examined the individual and community effects that native and 

nonnative, predator and/or prey, may have on solution hole community structure.  

In Chapter 4, I conducted behavioral assays to examine differences in natives 

from allopatric versus sympatric populations to a nonnative competitor. I quantified 

approach along with multiple aggressive responses invoked by African Jewelfish upon 

Dollar Sunfish from populations with and without a prior history of co-residency. I also 

compared differences in food response between native and nonnative populations. 

I conclude with Chapter 5, where I discuss the broader implications of my 

research and explore the resilience of native adaptive behavior. I also discuss the 

uncertainty of climate change, nonnative species expansion, and how it may reverse 

restoration efforts that might have ultimately assisted in native species persistence.  
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NONNATIVE AFRICAN JEWELFISH DO NOT COMPETE BUT COPE BETTER 

WITH ENVIRONEMTNALLY STRESSFUL CONDITIONS THAN NATIVE FISH 
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Introduction 

 

Native populations are increasingly subjected to novel anthropogenic stressors, 

particularly species invasions (Wong and Candolin 2015; Vitousek et al. 1997). While 

severe effects from invasions often result from predation (McCleery et al. 2015; 

Richmond et al. 2015; Kaufman 1992), competition with nonnative species may also 

harm native taxa (Bellard, Cassey and Blackburn 2016). Interspecific competition will 

occur among species that share the same requirements (i.e., occupying similar niches), 

and those with superior competitive abilities will outcompete others (Dayan and 

Simberloff  2005; Weiner 1990; Connell 1983; Schoener 1983).  Nonnative competitors 

have been shown to negatively affect native species through displacement from preferred 

habitats (Houser, Ginsberg and Jakob 2014; Brooks and Jordan 2010) and preferred food 

resources (Bonnington, Gaston and Evans 2014). However, the effects of competition can 

be difficult to quantify (Tylianakis 2008; White et al. 2006). For example, a study of 

nonnative Harlequin Ladybirds and native Flowerbugs found these two insects to be 

competitors, but their shared food resource was only determined through DNA gut 

contents analysis (Howe et al. 2016). A better understanding of competitive interactions 

requires empirical approaches that manipulate both the presence (frequency-dependent 

effects) and abundance (density-dependent effects) of nonnatives, more clearly 

elucidating the exact nature of competitive interactions (Tran et al. 2015; Porter-Whitaker 

et al. 2012; Brooks and Jordan 2010; Rehage, Dunlop and Loftus 2009).  

Competition is expected to occur among functionally-similar species (San 

Sebastian et al. 2015; Bando 2006), which may cause decreased individual growth rates 

(Jackson et al 2016), shifts in diet (Jackson et al. 2016; Chang et al. 2016), fecundity 
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(Fraser and Lamphere 2013) and/or spatial sorting of species (Tran et al 2015; Davenport 

and Lowe 2016). Competition occurs when two or more individuals try to use the same 

limiting resources and is often context-dependent depending on the habitat (Petren and 

Case 1998; Petren, Bolger and Case 1993) and can favor nonnative establishment in 

harsh environments where survival is difficult (Manea, Sloane and Leishman 2016; 

Bradley et al. 2012). For instance, droughts cause widespread mortality of native 

vegetation allowing for opportunistic nonnative grasses to outcompete native grasses for 

resources such as light and space (Manea, Sloane and Leishman 2016). Further, native 

and nonnatives species often respond differently to environmental conditions (Gido et al. 

2013; Brown, Sherry and Harris 2011), and variation can tip the balance of competition, 

frequently in the favor of nonnative species.  For example, the construction of roads and 

resulting traffic has led to differential effects on movement between native and nonnative 

squirrels, restricting the use of space by the native species, while nonnatives acquire more 

resources (Chen and Koprowski 2016). In aquatic systems, alterations to natural 

hydrological regimes may cause atypical hydrological variation that can favor nonnative 

taxa, to the detriment of native species (Cervantes-Yoshida, Leidy and Carlson 2015).   

 Florida Everglades exhibits prominent natural and anthropogenic hydrological 

variation, which can result in harsh conditions for aquatic organisms, including fishes 

(McVoy et al. 2011; Kobza et al. 2004; Loftus, Johnson and Anderson 1992). During the 

dry season, lower water levels force fishes to move from interconnected freshwater 

marshes into isolated refuge habitats where both abiotic stressors (i.e., poor water quality, 

low resources), and biotic stressors (i.e., high intraspecific densities, competition and 

predation) may be strong, particularly as the dry season progresses (Fig.1, Rehage et al.  
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Figure 1: Pictorial and photo of ephemeral landscape depicting marsh 

and solution holes during the wet and dry season 
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2014; Parkos, Ruetz and Trexler 2011; Alho 2008; Kobza et al. 2004). Stressful 

conditions in these refuge habitats have been exacerbated by drainage and impoundment 

over the past 100 years, which have resulted in more dry downs during the dry season 

throughout the Southern Everglades, including Everglades National Park (ENP, McVoy 

et al. 2011).  The Rocky Glades is a short hydroperiod wetland habitat located in eastern 

ENP that has been severely affected by regional drainage (McVoy et al. 2011). The 

region is dotted by solution holes or karst cavities that retain water when surrounding 

marshes dry.  Solution holes are used by fishes and other aquatic fauna during the dry 

season (Kline et al. 2013; Rehage et al. 2014). Everglades National Park (ENP) has been 

invaded by 17 nonnative fish species in the last 50 years, making the Rocky Glades one 

of the most invaded habitats of the Everglades (Kline et al. 2013; Shafland et al. 2008). 

In my study, I asked (1) whether harsh environmental conditions have a 

differential effect on a native versus nonnative species, and (2) whether the presence of a 

nonnative harms a native species in the same guild under these harsh conditions.  To 

address these questions, I simulated dry season conditions in experimental refuge habitats 

(outdoor mesocosms), and varied the presence and relative abundance of the nonnative 

African Jewelfish, Hemichromis letourneuxi, in mesocosms containing native Dollar 

Sunfish, Lepomis marginatus.  I quantified survival and body condition of both species 

over several weeks to simulate stressful dry season conditions where fish are isolated in 

small pools with decreasing resources.  I hypothesized that nonnative African Jewelfish 

would tolerate these harsh environmental conditions better than the native Dollar Sunfish 

since successful invaders are known to have broad physiological tolerances (Verbrugge et 

al. 2012; Hou et al. 2014; Schofield, Loftus and Brown 2007).  Also, because the African 
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Jewelfish is aggressive and territorial (Schofield, Loftus and Brown 2007), an increase in 

the ratio and density of Jewelfish relative to the native Dollar Sunfish should lower 

survival and body condition of the native Dollar Sunfish.  At elevated densities, 

nonnative birds, spiders, and weevils have been also shown to harm native species 

(Anderson 2006; Gruner 2005; Louda et al 1997). 

 

Methods 

Study system  

During the Everglades dry season (November to May, McVoy et al. 2011), 

marshes in the Rocky Glades go dry, and fishes are forced to seek out solution holes 

(local refugia) or return to deeper sloughs (Rehage et al. 2014; Goss, Loftus and Trexler 

2013). As surface water recedes, solution holes become occupied by a number of native 

species (belonging to the families Poeciliidae, Funduilidae, Ictaluridae and 

Centrarchidae), particularly Eastern Mosquitofish, Sailfin Mollies, Marsh Killifish, 

Yellow Bullhead, and several sunfishes (Lepomis spp.), as well as nonnative species 

(Cichlidae and Clariidae). Among these nonnative taxa, the nonnative African Jewelfish 

have become a dominant component of solution holes, outnumbering native species 

(Kline 2006; Rehage et al. 2014). African Jewelfish invaded ENP in 2000 and since then 

has expanded rapidly in the region (Lopez, Jungman and Rehage 2012), greatly 

increasing in abundance (Kline et al. 2013). African Jewelfish’s aggression toward other 

species (Schofield, Loftus and Brown 2007), and bi-parental care (Noble and Curtis 

1939) which improves offspring survival in the presence of other piscivorous species 

likely helped them invade the Rocky Glades. Once solution holes are isolated from the 
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marsh, resources (e.g., water, food, and refuge) and habitat quality (e.g., decreased 

dissolved oxygen and increased ammonia) continually degrade as the dry season 

progresses, eventually leading to desiccation and mortality for solution hole inhabitants 

until the onset of the wet season (Kobza et al. 2004; Rehage et al. 2014).  

 

Experimental design 

In a mesocosm setup designed to mimic dry season conditions in solution holes, I 

varied the presence and ratio of nonnative African Jewelfish to native Dollar Sunfish and 

compared the effects of varying relative abundances on the survivorship and body 

condition (a measure of overall health taking into account length and weight) of both 

species. I simulated dry season conditions for a period of 5 weeks (29 Jul – 1 Sep 2012). I 

used 30 concrete outdoor mesocosms (each with the capacity to hold 1200 liters and a 

surface area of 1.06m
2
) filled with 30 cm of well water (average solution-hole depth, 

Kobza et al. 2004) at the Daniel Beard Center, in ENP (Fig.2). Stove pipes maintained 

water depths at 30 cm for the entire duration of the experiment. Using a randomized 

block design, I assigned the following five treatments (in replicates of six) to mesocosms: 

a control with eight Dollar Sunfish only (0J:100D), two Jewelfish + six Dollar Sunfish 

(25J:75D), four African Jewelfish + four Dollar Sunfish (50J:50D), six African 

Jewelfish+ two Dollar Sunfish (75J:25D), and twelve African Jewelfish + four Dollar 

Sunfish (75J:25D x2) (Table 1). Four of the five treatments follow a replacement 

experimental design, where total fish density remained constant, allowing me to examine 

inter‐ and intraspecific interactions between the two species (Sih, Englund and Woosler 

1998; Schmitz 2007). The fifth treatment maintains a ratio of 75J:25D, but at double the                             
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Figure 2: Photo of experimental tank set-up. 5 treatments (in replicates of 6): a 

control with 8 Dollar Sunfish only (0J:100D), 2 jewelfish + 6 Dollar Sunfish 

(25J:75D), 4 African Jewelfish + 4 Dollar Sunfish (50J:50D), 6 African 

Jewelfish+ 2 Dollar Sunfish (75J:25D), and 12 African Jewelfish + 4 Dollar 

Sunfish (75J:25D x2) 
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Treatment African 

Jewelfish  

Dollar 

Sunfish 

Total fish per 

treatment  

0J:100D 0 8 8 

25J:75D 2 6 8 

50J:50D 4 4 8 

75J:25D 6 2 8 

75J:25D X 2 12 4 16 

Total # of fish used  144 144  

Mean length (cm) 

at stocking 

 5.22 ± 0.04 5.06± 0.06  

Mean weight (g) at 

stocking 

3.98 ± 0.09 3.44 ± 0.12  

 

Table 1: Total number of fish stocked for each species was 144, breakdown 

of the 5 treatments (each replicated 6 times) used in the study. Mean lengths 

of Dollar Sunfish and African Jewelfish were 5.22 and 5.06cm; mean weight 

of Dollar Sunfish and African Jewelfish were 3.98 and 3.44g at the start of the 

study.  
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density of the other treatments to replicate the fact that African Jewelfish are often found 

in high concentrations in the confined solution hole habitats (Kline et al. 2011).  

At the beginning of the experiment, Dollar Sunfish and African Jewelfish were 

added to standardized, representative solution hole communities. These solution hole 

communities were composed of the most abundant species typically found in solutions 

holes (in representative densities): Grass Shrimp (Palaemonetes paludosus), Eastern 

Mosquitofish (Gambusia holbrooki), Crayfish (Procambarus spp.), Florida Flagfish 

(Jordanella floridae), and Sailfin Mollies (Poecilia latipinna) (Gunderson and Loftus 

1993; Dorn, Trexler and Gaiser 2006). African Jewelfish consume a varied diet of 

invertebrates, algae, and fishes in their native range but a picivorous diet characterized 

fish in their invaded range (Hickley and Bailey 1987; Rehage et al. 2014). Dollar Sunfish 

are known to consume small invertebrate prey, particularly shrimp and copepods (Warren 

2009; Etnier and Starnes 1993). Tanks were also stocked with 2250 mL of periphyton and 

associated infauna (Turner, Fetterolf and Bernot 1999; Lamberti 1996), collected from 

the Taylor Slough area. Everglades periphyton is composed up of a complex web of 

organisms that included live and dead algae, bacteria and detritus, and contain infauna 

that are prey for Dollar Sunfish and African Jewelfish (Rehage et al. 2014; Bransky and 

Dorn 2013; Warren 2009; Dorn, Trexler and Gaiser 2006; Turner, Fetterolf and Bernot 

1999; Etnier and Starnes 1993; Hickley and Bailey 1987). Tanks were also left uncovered 

to allow for colonization of aquatic insects. Although dietary overlap between Dollar 

Sunfish and African Jewelfish may be low, since Jewelfish consume larger prey and more 

fish, interference competition, aggression and some resource competition for the smaller 

prey resource was expected. Representative prey species and periphyton were added 24-
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48 hours prior to the Sunfish and Jewelfish. Tanks were also provided with 2 concrete 

blocks to provide structure, and covered with 30% shade-cloth on one end of the tank to 

simulate shaded conditions found in the field.  Using baited minnow traps, dip nets, and 

boat electrofishing, the two focal species and the smaller taxa from the Rocky Glades 

region 0 to 4 weeks were collected and kept them in mesocosms prior to the start of the 

study. 

To track changes in body condition over time, African Jewelfish and Dollar 

Sunfish were tagged on their caudal peduncle with visual implant elastomer tags (Figure 

3, Northwest Marine Technology, Inc.) using a two-line color combination. Marked 

individuals were imaged, weighed, and measured at the beginning and immediately at the 

end of the study. Fulton’s Condition Factor was used as an indicator of body condition 

(Schmidt-Nielsen 1984):  

Fulton’s condition factor (  

 

Statistical analyses 

To examine variation in survivorship and body condition, generalized linear 

models (GLMs) that tested for the effect of treatment, species and the interaction were 

used. For survivorship, the proportion of fishes that survived to the end of the study was 

compared. Proportions were arcsin(x) transformed and checked with Shapiro-Wilks’ test 

for normality.  

Percent change in condition was calculated by initial body condition minus final 

body condition for each individual that survived. Values for change in condition were 

log10(x) transformed and checked for normality using the Shapiro-Wilks test. The GLMs  
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Figure 3: Photos of African Jewelfish and Dollar Sunfish at beginning and end 

of study. Elastomer tag seen on fishes at the end of study. 
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were followed by Tukey’s post-hoc comparisons to examine patters of significance. 

Analyses were performed using SYSTAT 13®. 

 

Results 

Overall, I created representative isolated aquatic taxa communities that began 

with the same quantity of resources which became limited over time and successfully 

mimicked a stressful solution hole environment. Nonnative African Jewelfish survived 

harsh conditions better than the native Dollar Sunfish. While only 66 of the 144 Dollar 

Sunfish stocked at the onset of the study survived, 110 of the 144 stocked African 

Jewelfish survived to the 5-week endpoint of the study. Across treatments, survival was 

significantly higher for African Jewelfish that Dollar Sunfish (Table 2a, Figure 4). The 

nonnative African Jewelfish averaged almost 90% survivorship, whereas survivorship for 

native Dollar Sunfish averaged near 50%. Contrary to expectations, however, survival did 

not vary across treatments, nor did the treatments affect each species’ survival differently 

(Table 2a). Most notably, survival of native Dollar Sunfish was similar in the presence 

and absence of the nonnative African Jewelfish.  

For the surviving fish, I noted significant variation in body condition over the 

course of the experiment. Both species lost condition across all experimental treatments 

but the loss in condition was greater for the native Dollar Sunfish (Table 2b, Fig. 5). 

Dollar Sunfish declined 33% in body condition over the 5 weeks, whereas African 

Jewelfish declined only 18% in body condition. Changing the relative or total abundance 

of the two species (treatment effect) did not affect body condition in either species (Table  
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a. Survivorship      

Source SS df MS F-ratio p-value 

Constant 11.63 1 11.63 146.19 0.001 

Treatment 0.39 3 0.13 1.64 0.195 

Species 0.69 1 0.69 8.64 0.005* 

Treatment*Species 0.21 4 0.05 0.65 0.628 

Error 3.42 43 0.08   

      

b. Body condition      

Source SS df MS F-ratio p-value 

Constant 0.00 1 0.00 0.07 0.791 

Treatment 0.03 4 0.01 1.27 0.281 

Time 0.30 1 0.30 56.23 0.001* 

Treatment*Time 0.02 4 0.00 0.77 0.545 

Treatment*Species 0.02 4 0.00 0.84 0.502 

Time*Species 0.02 1 0.02 4.15 0.042* 

Treatment*Time*Species 0.02 3 0.01 1.04 0.375 

Error 1.80 338 0.01   

 

Table 2 General linear model statistics for survivorship and body condition 

of focal fishes across treatments and time 
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Figure 4 Scatter plot of percent survivorship across treatments for Dollar 

Sunfish and African Jewelfish. Dollar Sunfish had a 50 ± 3 percent 

survivorship while African Jewelfish had an 89 ± 3 percent survivorship. 

Filled in circles are native (Dollar Sunfish) averages and empty circles are 

nonnative (African Jewelfish) averages 
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Figure 5: Scatter plot of body condition maintained across treatments 

for Dollar Sunfish and African Jewelfish. Filled in circles are native 

(Dollar Sunfish) averages and empty circles are nonnative (African 

Jewelfish) averages. Natives maintained around 66 ± 0.01 percent of 

their beginning body condition where nonnatives maintained around 82 

± 0.01 percent across treatments.  Changes in species density or ratio 

had no significant effect on body condition. 
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2b).  Similar to my survival results, the loss in condition experienced by the native Dollar 

Sunfish was similar in the presence and absence of the nonnative African Jewelfish. 

 

 

Discussion 

 

Native and nonnative species often respond differently to disturbances (e.g., harsh 

dry down conditions); patterns that may influence how species interact during 

competition following an invasion. In this study, I examined the effect of harsh 

environmental conditions associated with dry season refuge habitats on a native vs. 

nonnative Everglades’ fish and whether presence of the nonnative had a negative effect 

on the native species.  My results showed that at the end of five weeks, the native Dollar 

Sunfish experienced higher mortality (50% vs. 90%) and condition loss than the 

nonnative African Jewelfish.   Contrary to my expectations, I detected only species 

effects and no effect from increasing the ratio or density of the nonnative species in the 

experimental treatments meaning that they probably do not compete. Both survival and 

condition loss were similar across varying number and/or density of the nonnative 

African Jewelfish. Importantly, for the native Dollar Sunfish, condition loss and survival 

were comparable in the absence vs. presence of African Jewelfish. These results suggest 

that African Jewelfish are better able to cope with harsh environmental conditions than 

the native species, and that for the native species; the effect of these conditions may 

overwhelm potential negative interactions with the nonnative species.  

In my study, nonnatives were able to survive and maintain a higher body 

condition than the native fish. High numbers of nonnative freshwater fish, originating 

from releases of pets and escape from aquaculture farms (Hardin 2007; Fuller, Nico and 
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Williams 1999), have been able to survive and spread in the Everglades (Kline et al. 

2013; USGS-NAS 2013; Schofield and Loftus 2014). Nonnatives proliferate in an 

ecosystem may attribute their success to character traits like aggression, boldness, broad 

diet, exhibition of a wide range of physical tolerances, and having some form of paternal 

care (Schofield et al. 2013). Previous studies conducted in solution holes of the Rocky 

Glades are similarly reported nonnatives having a higher survivorship as compared to 

natives (Trexler et al. 2000; Kobza et al. 2004; Kline et al. 2013). Nonnatives like the 

African Jewelfish exhibit traits found in invasive species like aggression, bi-parental care 

and being dietary generalists (Parkos, Ruetz and Trexler 2011; Schofield et al. 2013), 

consuming invertebrates as part of their diet, and competing for refugia, potentially 

making the Dollar Sunfish a poor competitor in dry down situations.  

Nonnative survival and establishment is contrary to the perception that native taxa 

are preadapted to the native disturbance regime and should be expected to do better than 

nonnatives in their introduced ranges (Kiernan, Moyle and Crain 2012). As observed in a 

California stream, where native fishes recovered dominance after restoration of historic 

hydrological regimes while nonnative fishes were displaced (Kiernan, Moyle and Crain 

2012). Historic hydrology of the Everglades has been disrupted under current water and 

flood management, which has become harsh for native aquatic fauna (McVoy et al. 

2011). Nonnatives, like the African Jewelfish, may be adapted to handle the stress of the 

disturbed ephemeral landscapes, possibly because of similar competitive habitats within 

their native range (Seehausen and Schluter 2004). Replacement of native Dollar Sunfish 

with nonnative African Jewelfish should have community wide implications due to their 

different roles as consumers. 
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The African Jewelfish is an aggressive and territorial cichlid that I expected to 

compete for resources with Dollar Sunfish. Literature indicated that as resources become 

limited, competition increases and species with higher competitive ability persist (Cain 

and Langmore 2016). Therefore, as I decreased the ratio of natives to nonnatives I 

expected to see higher mortality and loss of condition for the natives but I did not. 

African Jewelfish are diet generalists (Parkos, Ruetz and Trexler 2011; Schofield et al. 

2013), consuming a varied diet of invertebrates, algae, and fishes (Hickley and Bailey 

1987; Rehage et al. 2013). Contrary to my predictions of increased mortality and 

decreased body condition in natives, I observed that natives did poorly across all 

treatments, regardless of nonnative numbers. Dollar Sunfish are gape-limited, and the diet 

consists mainly of shrimp and copepods (Warren 2009; Etnier and Starnes 1993). Native 

Dollar Sunfish and African Jewelfish avoid competition for food because they eat 

different prey and may not interact as much as was expected prior to my experimental 

study. African Jewelfish may affect natives, such as Dollar Sunfish, not through 

competition but perhaps via predation of juveniles since they are a small bodied 

piscivores and novel to the ecosystem. Alternatively, I might have failed to detect 

competition because of low statistical power (power=5%) or the five week study was not 

long enough to detect differences.  

Communities are shaped by their environment and how well taxa match their trait 

characteristics (Lhotsky et al. 2016). Favorable environmental conditions often promote 

taxa dissimilarity, while harsh conditions cause selection of favorable traits that supports 

trait convergence (Lhotsky et al. 2016). My findings that Jewelfish had no measurable 

effect on native Dollar Sunfish suggest that the effects of species interactions (e.g., 
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competition) can be damped or swamped by the effect of harsh environmental conditions. 

As environmental conditions become more severe, a focal species may experience a shift 

from negative competitive effects to neutral or positive facilitative effects, called the 

stress gradient hypothesis (Barrio et al. 2013). For example, an aquatic plant located in a 

stressful zone with low oxygen, benefited from having crabs present because they helped 

aerate the sediment. But when the plant was located in highly aerated sediment, the 

presence of crabs decreased plant productivity (Daleo et al. 2009). Therefore, harsh 

environmental conditions in the Everglades may shift competitive effects that may have 

been found between native and nonnative taxa under less stressful dry downs.    

Historically, the Rocky Glades experienced a less severe dry season and only 35 

native freshwater fishes were present in the system (McVoy et al. 2011). As a result of 

prolonged drying, the Rocky Glades may now function as a sink for native fishes, and a 

source of nonnative fishes that may be better adapted to these chronically stressful 

conditions (Rehage et al. 2013). Dollar Sunfish may be more affected by current water 

management that has caused degradation of the Rocky Glades ecosystem. As habitat 

quality decreases so may native species numbers (Fraser, Banks and Water 2014), which 

may than open niches to be colonized by nonnative species (Fraser, Banks and Walter 

2014; Didham, Watts and Norton 2005; Chollet et al. 2014). Once natives have been 

displaced and nonnatives have become established, natives may have difficulty regaining 

lost resources (Manea, Sloane and Leishman 2016; Bradley et al. 2012). The 

anthropogenic changes occurring in the eastern Everglades may ultimately lead to an 

ecological trap for the Dollar Sunfish and other native aquatic species. 
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In summary, I found that the nonnative African Jewelfish show greater resistance 

than a native centrarchid sunfish in post-drainage conditions of simulated Everglades’ 

solution holes. African Jewelfish have been in ENP since 2000, so natives may have 

already adjusted to their presence.  Adaptation of sunfish to the invader over the 15 years 

since the initial invasion could be the reason why I did not find survivorship or body 

condition differences between treatments. Future research will explore how allopatric 

versus sympatric natives react to the presence of the nonnative African Jewelfish to 

assess reasons why I saw no treatment effects in survivorship or body condition in my 

experiment. Nonnatives species do not always have the same influences on each of the 

communities in which they are introduced, and effects of these species are often context 

dependent and can vary over time and season, and are therefore hard to predict (Ricciardi 

and MacIsaac 2011; Biswas and Wagner 2014; Strayer et al. 2006). Predictions of 

nonnative effects can be better assessed through long-term datasets that include times 

before and after invasion to be able to document change and establish effects.  

By restoring and increasing habitat quality and quantity, managers may be able to 

increase native numbers while simultaneously decreasing nonnatives’ competitive ability 

(Didham et al. 2007; Kiernan, Moyle and Crain 2012; Ringler, Hodl and Ringler 2015). 

As climate change becomes more severe, which could counteract restoration; it is 

important to discover the unknown role harsh environmental conditions play in native 

species persistence and whether drier conditions do in fact favor nonnatives. 
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Introduction 

South Florida’s subtropical climate attracted suburban residents, tourists, and 

farmers, and underwent much hydrological change to make the landscape suitable for 

urbanization introducing many nonnatives (Harvey et al. 2010). The Everglades 

ecosystem is relatively young, only around 5,000 years old (Gleason and Stone 1994), 

with a low species diversity of 35 native freshwater fish in Everglades National Park 

(Loftus 2000). Low diversity, along with disturbance, may have made the system 

vulnerable to invaders with its low biotic resistance (Stachowicz et al. 2002). Everglades 

National Park (ENP) has 17 nonnative fishes that have spread and become established in 

the park (Kline 2006; Loftus 2000; Kline and Fratto 2008; Shafland, Gestring and 

Stanford 2008; Kline et al. 2013). Recognizing whether nonnatives do or do not influence 

native species composition and abundances, is imperative for managers to make 

knowledgeable decisions that lead to native species persistence and nonnative species 

control. 

Worldwide, anthropogenic disturbances have drastically changed the landscape 

and will continue at the expense of natural ecosystems (Palmer et al. 2004). The most 

disruptive anthropogenic disturbances include global climate change, introduction of 

invasive species, and changes in land use (e.g., agriculture and urbanization; Vitousek et 

al. 1997). Climate change has brought rising temperatures and droughts which are 

expected to become more frequent and erratic in the future (Bradley et al. 2012). In 

conjunction with climate change, disturbances such as alteration of hydrology for 

freshwater management can affect the persistence of native and nonnative species in 

ecosystems (Nosakhare et al. 2012; Milliman et al. 2008; Godfray and Garnett 2014; 
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Maree et al. 2013). Nonnative flora and fauna which have been released through the 

exotic pet and ornamental plant trades can lead to secondary effects on native species 

(Hardin 2007; Loftus 2000). A warming climate has furthered the ability of many tropical 

nonnative species to survive and spread (Hardin 2007; Loftus 2000). Novel disturbances 

such as the ones described above can put natives at a disadvantage relative to nonnatives 

through changes in dispersal opportunities and resource availability (Bradley et al. 2012).  

Water management for flood control, drinking water, and agriculture has 

drastically altered hydrology of the landscape (Oki and Kanae 2006). The management of 

the land has made agricultural, industrial and residential development possible through 

the creation of canals, levees, and dams. Hydrological changes have degraded the system 

by serving as barriers for natives along with conduits of nutrients, endocrine disrupters, 

and invasive species (Bronstert 2004; Light and Dineen 1994; Harvey et al. 2010; Davis 

and Ogden 1994; Clotfelter, Bell and Levering 2004). Areas especially affected, 

concerning decreases in endemic native species numbers, are those found in the lower 

reaches of the watershed, downstream of urban development (Cervantes-Yoshida, Leidy 

and Carlson 2015). Changes to hydrology that decrease water-flow often free nonnative 

species from competition with natives, doing so by decreasing quality of native habitat 

and native species numbers (Osmundson and Burnham 1999). Native species frequently 

benefit after restoration of habitat or hydrology, while reversing the gains made by 

nonnative populations (Kiernen et al. 2012; Gido and Propst 2012). Water management 

that deviates from the natural hydrology of the system can therefore have many negative 

effects at both abiotic and biotic levels that include changes to the physical habitat, 
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connectivity, native species and proliferation of nonnatives (Ostrom 1999; Grantham, 

Merenlender and Resh 2010; Bunn and Arthington 2002). 

Nonnative species often have the advantage upon arrival to a degraded ecosystem 

because of the depression of native populations already created by the disturbance 

(Didham, Watts and Norton 2005; Cholet et al. 2015; MacDougall and Turkington 2005). 

Not only do nonnatives have the benefit of open niches that they can monopolize, 

nonnatives often have traits known to improve fitness in competitive environments and 

disturbed habitats, including high foraging rates (Pintor and Sih 2009), generalist diets, 

and aggressive behavior (Pintor, Sih and Kerby 2009). A nonnative can cause 

competitive displacement of inferior individuals from resources such as food (Hasegawa 

2016; Mooney and Cleland 2001) and refuge (Brooks and Jordan 2010) potentially 

decreasing native survival. Direct competition can displace native species, as seen in a 

nonnative ant that is responsible for native ant nest raids (LeBrun, Abbott and Gilbert 

2013). Competition may also be indirect by way of exploitation competition, where 

native and nonnatives consume the same limited food sources (Howe et al. 2016). 

Nonnatives have been able to spread based on their pre-adapted physiological traits along 

with the aid of human introductions into tropical and subtropical areas (Verbrugge et al. 

2012; Hou et al. 2014; Schofield, Loftus and Brown 2007; Hardin 2007).   

The Rocky Glades region located in ENP experiences seasonal changes in water 

levels (Figure 1; Kline et al. 2013). Over the past 100 years these fluctuations have been 

enhanced in the extreme because of water being held back for seasonal agriculture, flood 

management, and urban use (Davis and Ogden 1994; McVoy et al. 2011).  Today, at the 

onset of the dry season, fishes in the Rocky Glades are forced to move into deeper water  
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Figure 1: Ephemeral landscape depicting marsh and solution holes during the 

wet and dry season    
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sloughs, canals, or karst solution holes that serve as refuges for up to half of the year 

(McVoy et al. 2011; Harvey et al. 2010; Kobza et al. 2004). If fishes choose a solution 

hole as a refuge: environmental variables, such as water quality, species composition and 

density are affected by the size, complexity, and aquatic vegetation within that refuge 

once that hole becomes hydrologically isolated from the rest of the marsh (Kobza et al. 

2004).  Estimates show that over 80% of solution holes are shallow (<0.5 m), with most 

refuges desiccating yearly under the current water management regime (Kobza et al. 

2004).  Over the duration of the dry season, resources for fishes in solution holes (e.g., 

water and food) become further limited, while habitat quality continually degrades (e.g., 

decreased dissolved oxygen and increased ammonia) (Rehage et al. 2014; Kobza et al. 

2004). The extended stressful conditions of the Rocky Glades, exacerbated by current 

water management practices, may now cause the Rocky Glades’ solution hole complex to 

simultaneously function as a trap for native fishes and a refuge for nonnative fishes that 

may be better adapted to these conditions (Rehage et al. 2014).   

The primary objective of my study was to examine the individual and community 

effects that nonnative fishes may have on solution hole community structure.   From my 

previous findings, I can predict a series of outcomes from the interaction between the 

altered hydroperiod and invaded fish communities: solution holes should have a high 

abundance of small individuals when first disconnected from the marsh. Once 

disconnected, body size should shift to larger-bodied fishes because smaller fishes will 

likely be consumed by piscivores over the duration of the dry season. Species 

composition should begin as a native-biased fish community and later shift to a 

nonnative-biased community by the end of the dry season, because nonnatives are often 
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better adapted to competitive stressful conditions (Verbrugge et al. 2012; Hou et al. 2014; 

Schofield, Loftus and Brown 2007). Fish that are omnivores should have a greater 

survivorship because they can switch food types when their preferred food is depleted 

(Schreber 1997; Volterra 1928). Body condition should decrease for all fishes as 

resources become limited but should be maintained better by nonnatives. To test these 

hypotheses, I asked the following questions: (1) How is size structure and community 

assembly changed from the beginning to the end of the dry season? (2) Does the ratio of 

natives to nonnatives change over the dry season? and (3) How does body condition of 

natives versus nonnatives change from the beginning to the end of the dry season? To 

address these questions, I monitored aquatic communities in Rocky Glades’ solution 

holes across two consecutive dry seasons. I quantified community assembly, survivorship 

and body condition of native and nonnative species at the beginning and end of the dry 

season. 

 

Methods 

The effects of season on survivorship and body condition of taxa in the Rocky 

Glades were compared.  Select solution holes across the dry seasons, located along 

Boundary Road and Main Park Road were surveyed. Twenty-eight solution holes were 

surveyed in 2012-13 and 38 solution holes in 2013-2014. Solution holes based on sites 

with a long hydroperiod, at a depth of ≥ 70 cm and low occurrence of vegetation to aid in 

sampling ease were chosen. Sites with high vegetation could not be sampled effectively 

for species composition and abundance; fish become entangled in vegetation affecting 

accurate surveys (Penczak 2013; Killgore et al. 1988). Data collection began when the 
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solution holes became disconnected from the marsh. After the solution holes were 

chosen, backpack electrofishing surveys were conducted to determine assemblages and 

body condition of taxa at the onset of the dry season. Fish were collected using a Smith-

Root, Inc. LR-24 Electrofisher backpack electroshocker. Fish were stunned using a 7Ah 

battery at 60Hz with a 5 ms pulse width.  The anode consisted of a metal ring with a 

28cm diameter and the cathode was a 3 m stainless steel cable.  Two people with a 2 mm 

mesh dip net collected the stunned fish.   The solution holes were considered depleted of 

fish once five passes were conducted with the absence of any new fish surfacing. Abiotic 

readings of solution hole conditions (temperature, conductivity, salinity, turbidity and 

dissolved oxygen) and water level measurements were taken at the beginning and end of 

the dry season. Any mortality was noted and excluded from the beginning species 

assemblage.  

Survival and average body condition of all fish taxa were compared at the 

beginning and end of study.  All fish species in a solution hole were counted and a subset 

were weighed and measured and then returned to the solution hole. To compare body 

condition of individual species at the beginning and end of the dry season, residuals of 

transformed log(body mass) adjusted for log(body length) were tested (Jakob et al., 1996; 

Kotiaho, 1999; Marshall et al., 1999).  

 

Statistical analyses 

Variations were examined using three-way ANOVAs that tested the effects of 

season, year, and species on response variables (survivorship and body condition). To 

satisfy assumptions of parametric tests, fish abundances and species richness values were 
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checked with Shapiro-Wilks’ test for normality prior to analysis. Analyzes were 

conducted in SYSTAT 13® and Sigmaplot 11.0®. Correlation coefficients were 

calculated  for all species pairs per solution hole site. All species pairs were analyzed for 

residuals of number of individual species going in adjusted for individual species 

proportional survivorship. 

 

Results 

Size structure and community assembly 

Median length of all fish species except the native Yellow Bullhead Catfish were 

smaller at the beginning of the dry season than at the end (Table 1). No difference in 

native versus nonnative survivorship with respect to size were found (Figure 2, p-value 

0.123). Fish guilds that survived until the end of the dry season were ones that 

incorporated invertebrates and fish into their diets (Figure 3). Average number of fish 

caught across all solution holes decreased over the course of the dry season (p < 0.001). 

Overall survivorship did not differ between years (2012-2013: 22%-22%) (p = 0.997) 

with no season-by-year interaction (p = 0.99). Average survivorship within each solution 

hole also decreased in both years (p < 0.01) and did not differ between years (p = 0.83) 

(Figure 4). Average species richness within each solution hole also decreased (p <0.01) 

and did not differ between years (p = 0.31), (Figure 5).  

 

Native and nonnative assembly   

At the beginning of the dry season, native taxa made up a greater proportion of 

community members in solution holes, accounting for ~80% and ~74% of all individuals  
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Common name 

Nonnative 

Native 

Scientific name Median length 

Early dry (cm) 

Late dry 

% change (cm) 

Feeding 

guild 

African Jewelfish Hemichromis letourneuxi 3.95 +5.06 P/I 

Black Acara Cichlasoma bimaculatum 4.95 +2.02 P/I 

Brown Hoplo Hoplosternum littorale 7.60 +7.89 I/D 

Jaguar Guapote Parachromis managuensis 6.15 +88.62 P/I 

Mayan Cichlid Mayaheros urophthalmus 4.85 +7.22 P/I 

Pike Killifish Belonesox belizanus 6.90 +7.22 P 

Spotted Tilapia Pelmatolapia mariae 9.30 +18.84 H 

Walking Catfish Clarias batrachus 11.50 +2.15 P/I/H/D 

Bluefin Killifish Lucania goodei 1.95 - I/H 

Dollar Sunfish Lepomis marginatus 4.40 -9.09 I 

Eastern Mosquitofish Gambusia holbrooki 2.45 +18.37 I 

Florida Flagfish Jordanella floridae 2.10 - I/H 

Golden Topminnow Fundulus chrysotus 3.50 - I 

Least Killifish Heterandria formosa 1.30 - I/H 

Marsh Killifish Fundulus confluentus 4.10 +4.88 P/I/H 

Redear Sunfish Lepomis microlophus 6.60 - I 

Sailfin Molly Poecilia latipinna 4.85 +8.25 I/H 

Spotted Sunfish Lepomis punctatus 4.65 +44.09 I 

Yellow Bullhead Ameiurus natalis 6.45 +0.00 P/I 

Warmouth Lepomis gulosus 6.70 +8.96 P/I 

 

Table 1: Species breakdown, scientific name, median length and feeding guild. 
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Figure 2: Scatter plot of percent survivorship versus median length (cm) of 

natives versus nonnatives. I found no difference in native versus nonnative 

survivorship with respect to size, p-value, 0.123. 
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Figure 3: Total counts and proportion to survive of fish guilds across year 

and season for both native and nonnatives fishes added together. P/I survive 

best because they can feed at multiple guilds, including fishes. P: Piscivore; I: 

Invertivore; H: Herbivore; D: Detritivore 
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Figure 4: Average number of fish caught among solution holes decreased 

consistently from the early to late dry season across years. Total number of 

fish decreased from early to dry season for both years (p<0.01) and did not 

differ across years (p=0.83). Each point represents a solution hole.   
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Figure 5: Average species richness among solution holes decreased consistently 

from the early to late dry season across years. Species richness decreased from 

early to dry season for both years (p<0.01) and did not differ across years 

(p=0.31). 
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while nonnatives began at 20% and 26% for both years, respectively. By the end of the 

dry season, native numbers dropped by 26% and 31%, and nonnatives made up 41% and 

51% of individuals in the community in both years, respectively  

 (Figure 6). Nonnative species had a higher survivorship than native species across years 

(Figure 7, p-value, 0.004, 0.012, respectively).  

Species that were part of the Piscivore/ Invertivore (P/I) guild were more likely to 

survive (p-value, 0.006, Figure 8). Nonnatives that incorporated fish and invertebrates in 

their diet were more likely to survive than natives who did not (p-value, 0.001, Figure 8). 

Four species were always the most prevalent natives at the beginning and end of the dry 

season for both years and only differed in order of abundance: Eastern Mosquitofish 

(Gambusia holbrooki), Yellow Bullhead Catfish (Ameiurus natalis), Warmouth (Lepomis 

gulosus), and Sailfin Molly (Poecilia latipinna) (Table 2).  

Three nonnative species were the most prevalent at the beginning and end of the 

dry season for both years: African Jewelfish (Hemichromis letourneuxi), Pike Killifish 

(Belonesox belizanus), and Black Acara (Cichlasoma bimaculatum) (Table 2).  

Positive correlation coefficients were only found when looking at species pairs. Jaguar 

Guapote have a higher proportion of survival when small-bodied fishes are present in 

higher numbers (Table 3, Figure 9). The Jaguar Guapote is part of the carnivorous P/I 

guild. Other positive species associations were ones that did not have completely 

overlapping diets; native Yellow Bullheads (P/I): nonnative Brown Hoplos (Invertivore/ 

Detritivore, I/D), nonnative Black Acara (P/I): nonnative Brown Hoplos (I/D), native 

Dollar Sunfish (I): nonnative Mayan Cichlids (P/I), nonnative Pike Killifish (Piscivore, 

P): nonnative Black Acara (P/I) or nonnative Mayan Cichlids (P/I) and nonnative Brown  



51 
 

  

 
Figure 6: Nonnatives survive better than natives from early dry (ED) to late 

dry (LD) season 
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Figure 7: Total number of fish caught decreased consistently from the early to late dry season across years. Native species 

(blue), nonnative species (red). Many natives dropped in abundance while more nonnatives survived. YR1 p-value, 0.004 

and YR2 p-value, 0.012 

 

R-Sq: 0.70, 0.68 R-Sq: 0.69, 0.89 
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Figure 8: Percent survivorship versus feeding guild comparing 

natives to nonnatives. Species with > 40% survivorship fed on at 

least fish and invertebrates. Nonnatives have a higher survivorship 

than natives, p-value, 0.012 
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Common name 

Nonnative 

Native 

YR1 Early 

Dry Count 

~ % YR1 Late 

Dry Count 

~ % YR2 Early 

Dry Count 

~ % YR2 Late 

Dry Count 

~ % 

Eastern Mosquitofish 291 30 16 7 519 40 37 13 

Yellow Bullhead 174 18 66 30 208 16 38 13 

Warmouth 119 12 6 3 50 4 10 3 

Sailfin Molly 109 11 26 12 70 5 31 11 

African Jewelfish 106 11 42 19 153 12 63 22 

Pike Killifish 59 6 5 2 18 1 7 2 

Spotted Sunfish 21 2 1 0.45 15 1 3 1 

Golden Topminnow 16 2 0 0 6 0.46 0 0 

Dollar Sunfish 11 1 0 0 8 0.61 3 1 

Marsh Killifish 11 1 2 0.90 5 0.38 1 0.34 

Black Acara 10 1 28 13 122 9 62 21 

Walking Catfish 9 0.92 6 3 12 0.92 5 2 

Jaguar Guapote 5 0.51 5 2 14 1 8 3 

Brown Hoplo 3 0.31 2 0.90 15 1 1 0.34 

Redear Sunfish 3 0.31 0 0 0 0 0 0 

Florida Flagfish 2 0.21 0 0 3 0.23 0 0 

Mayan Cichlid 1 0.10 3 1 8 0.61 2 0.68 

Bluefin Killifish 1 0.10 0 0 2 0.15 0 0 

Least Killifish 1 0.10 0 0 24 2 0 0 

Spotted Tilapia 0 0 0 0 3 0.23 1 0.34 

Bluegill Sunfish 0 0 0 1 0.08 0 0 0 

 

Table 2: Native (blue) and nonnative (red) species survivorship counts and percentage breakdown. 

Early and late dry season across years. 
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Increased 

proportional 

survival  

Median 

length  

Late dry 

(cm) 

Feeding 

guild 

As species 

numbers going in 

increased 

Median 

length 

Early dry 

(cm) 

Feeding 

guild 

R-value P-value N 

Jaguar 

Guapote 

11.6 P/I Dollar Sunfish 

Eastern 

Mosquitofish 

Marsh Killifish 

Spotted Sunfish 

Least Killifish 

4.40 

2.45 

4.10 

4.65 

1.30 

I 

I 

P/I/H 

I 

I/H 

0.570 

0.832 

0.821 

0.536 

0.690 

0.034 

0.001 

0.001 

0.048 

0.006 

14 

14 

14 

14 

14 

Yellow 

Bullhead 

6.45 P/I Brown Hoplo 7.60 I/D 0.472 0.031 21 

Black Acara  5.05 P/I Brown Hoplo 7.60 I/D 0.564 0.003 29 

Pike Killifish 8.20 P Black Acara 4.95 P/I 0.536 0.001 24 

Brown Hoplo 8.20 I/D Sailfin Molly 

Mayan Cichlid 

4.85 

4.85 

I/H 

P/I 

0.740 

0.667 

0.015 

0.035 

10 

10 

Dollar Sunfish 4 I Mayan Cichlid 4.85 P/I 0.530 0.029 17 

 

Table 3: Positive species pair associations.  
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Figure 9: Species pair associations. Thickness of the line represents R-value, 

correlation coefficient. Species with red circles are nonnatives and species with blue 

circles are natives. Species with grey boxes are ones with positive associations with 

species surrounding them. Nonnatives that are part of the Invertivore guild plus 

another guild (e.g., Detritivore or Piscivore) are at the center of species associations. 
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Hoplos (I/D): native Sailfin Mollies (I/H) or nonnative Mayan Cichlids (P/I) (Table 3, 

Figure 9). 

 

Body condition  

 Body condition of each individual species at the beginning and end of the dry 

season was compared. Species were excluded from analyses if they did not have at least 

three individuals to run a regression at both the early and dry season time point. No 

species increased their body condition from beginning to end of the dry season (Figure 

10). Species that maintained body condition from beginning to end of the dry season were 

the nonnative Mayan Cichlid, Jaguar Guapote, Brown Hoplo, Walking Catfish and the 

native Sailfin Molly, Eastern Mosquitofish, Spotted Sunfish, Warmouth and Marsh 

Killifish (Figure 10). Species that decreased in body condition from the beginning to end 

of the dry season were the nonnative Black Acara, Pike Killifish, and African Jewelfish 

(Figure 10). The only native that decreased in body condition was the Yellow Bullhead 

Catfish (Figure 10). There was no difference in body condition and survivorship when 

comparing native to nonnative species (Figure 11, p-value, 0.077). 

 

Discussion 

Throughout my solution hole sites in the Rocky Glades, the total number of fish 

caught declined by ~80% from the beginning to the end of the dry season. Native species, 

which made up the majority of species richness and abundance at the onset of the dry 

season, showed higher mortality rates than nonnatives. Body condition varied across 

individuals for both native and nonnative species. Species that incorporated invertebrates  
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Figure 10: Body condition of nonnative (red) and native (blue) species from 

early to late dry season for both years. Error bars represent standard error. 

Large error bars can be indicative of large individual variability or lower 

sample size (N). Species that are in the best condition are the ones typically at 

the centers of positive associations in Figure 9.   
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Figure 11: Change and body condition of native versus nonnatives. There was no 

difference in native versus nonnative species when comparing body condition to 

survivorship, p-value, 0.077 
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and fishes into their diets were the most likely to survive. One of the most abundant 

natives at the end the dry season was the Yellow Bullhead Catfish, but it was also the 

only native to lose body condition. The most abundant nonnative to survive was the 

African Jewelfish and was one of three nonnatives to be in the poorest condition by the 

end of the dry season Over the past 100 years, the Rocky Glades has rapidly been altered 

in its function as a native fish dry season refuge (McVoy et al. 2011). This study found 

that nonnatives have higher survivorship compared to natives, providing further evidence 

that the Rocky Glades serves as a trap for natives and a refuge for nonnative fishes 

(Rehage et al. 2014).   

 

Size structure and community assembly 

Small individuals typically survive better under low food conditions because they 

require less food. The survival of larger fish in this study supports my prediction of 

changing size structure, shifting from small to larger individuals from the beginning to 

end of the dry season. Presumably, larger fish survive better because they can eat a wider 

size range of prey (Szabo 2002). I was correct in my prediction that fish that fed within 

multiple guilds were the species that had the greatest survivorship. Fish may have 

benefited from initially following other aquatic taxa to a suitable refuge (Hamilton 1971). 

Once trapped in a solution hole, individuals may be better at surviving based on their 

size, but experiences may help (Grand 1997). Beneficial traits may include an 

individual’s personality (Sgoifo et al. 2005) which may explain the large standard error in 

body condition within species. Survivorship may be an indicator of an individual’s 

competitive ability (Parker and Sutherland 1986) and not merely based on a species guild. 
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Another competitive advantage nonnatives may have over natives is the evolutionary 

mismatch between local parasites providing an enemy release (Mitchell and Power 2003; 

Torchin et al. 2003). Native Dollar Sunfish were found to have more parasites and a 

higher incidence of infection than did African Jewelfish (p-value, 0.001 and 0.001, 

respectively, Trujillo et al. unpublished data).   

 

Native and nonnative assembly 

During the onset of the wet season, natives migrate from source populations (e.g., 

sloughs and canals, Rehage et al. 2014; Goss, Loftus and Trexler 2013) in larger numbers 

than nonnatives but have decreased survivorship at the end of the dry season when 

compared to nonnatives. Native and nonnative community ratios therefore changed from 

a native-biased to a nonnative-biased assembly from the beginning to the end of the dry 

season. I was correct in my prediction of a shift to a nonnative-biased community.  

Heightened competition between native and nonnative species may be driving the shift 

because most native and nonnative fishes are part of the P/I guilds. Nonnatives that are 

part of the invertivore guild plus another guild (e.g., detritivore or piscivore) were the 

ones at the center of positive species associations. Nonnatives that have been added to the 

system and succeeded are small predatory fishes (African Jewelfish and Pike Killifish), 

larger herbivores (Spotted Tilapia) and detritivores (Brown Hoplo and Walking Catfish), 

guilds that were not previously found. My positive association analyses suggest that 

nonnative species may have community-wide effects because of the roles they play in 

native consumer/prey community competition and survivorship in these stressful dry 

down conditions.  Nonnative species are resilient to disturbance and have been found to 
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recolonize sites even after their removal (Gallagher et al. 2016). Yet, native species of the 

Rocky Glades return in high numbers from source population during the wet season. 

Suggesting the rebound in large native numbers is caused by their migration ability 

during the wet season. 

 

Body condition 

Maintaining body condition did not always predict high survival frequency, nor 

did native/nonnative status. Species with positive associations had dietary overlap but 

also dietary differences, as in the native Sailfin Molly (I/H) and the nonnative Jaguar 

Guapote (P/I). Food partitioning may allow for these positive associations to occur which 

leads to survivorship of multiple species (Stephens and Krebs 1986; Perry and Pianka 

1997). In concordance with optimal foraging theory, species are expected to specialize in 

diet when resources are abundant and segregate by trophic niche as resources become 

limited (Correa and Winemiller 2014; Stephens and Krebs 1986; Perry and Pianka 1997).    

Circumstances that may affect species persistence during a disturbance event are the 

severity of the event and/or quality of the refuge (Magoulick and Kobza 2003). Survival 

would be favored when the disturbance is mild and the quality of the refuge is high 

(Rehage et al. 2014; Magoulick and Kobza 2003). In the case of solution holes of the 

Rocky Glades, the dry season is severe and refuges are typically shallow and often dry 

over the course of dry season (Kobza et al. 2004). Fish persist in the Rocky Glades 

because of annual replenishment during the wet season by fish migrating into the marsh 

habitat from deeper refugia (Goss, Loftus and Trexler 2013; Magoulick and Kobza 2003). 

Survival of individuals is also affected by degradation of water quality across the dry 
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season, noted by increases in ammonia and chlorophyll a as water levels decline (Kobza 

et al. 2004). If more water was allowed into the system, the dry season would be less 

severe and refuges would be better in quality for natives (Rehage et al. 2014). However, 

the consequences of water management are unknown and may further benefit nonnative 

spread (Kline et al. 2014). Disturbance often favors the spread and establishment of 

nonnatives (Pinto and Ortega 2016) which has been seen in the Rocky Glades system. In 

a mesocosm study of undisturbed and disturbed plots, nonnative plants established 

themselves in all disturbed plots regardless of native plant richness level (Pinto and 

Ortega 2016). Some native species may also benefit from the removal of nonnatives, such 

as in the case of the native Brook Trout, which did better after removal of the nonnative 

Brown Trout (Hoxmeier and Dieterman 2016).  

In summary, nonnatives are better at surviving the chronic stressful dry season under the 

current water management regime but natives reappeared the next season in greater 

numbers. The Everglades watershed has experienced marked changes to the amount and 

distribution of the water flowing through the system, starting from the Kissimmee River 

and extending down to Florida Bay (Marshall et al. 2004). Along with hydrological 

changes, South Florida has had an increase in the number of nonnative species, whose 

effects on the ecosystem is largely unknown (Hardin 2007; Shafland 1996; Trexler et al. 

2000). Nonnatives survive and leave solution holes in higher numbers than natives which 

may allow them to monopolize resources (e.g., nesting sites) at the onset of the wet 

season until high numbers of migrating natives arrive. Nonnatives that become 

established and spread are often aggressive, have a broad diet and high physiological 

tolerances that may ultimately be their reason for success (Verbrugge et al. 2012; Hou et 
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al. 2014; Schofield, Loftus and Brown 2007; Hardin 2007). Future studies should focus 

on the reasons behind positive species associations found in this study. Along with 

determining physiological tolerances of nonnatives that have entered the system 

(Schofield, Loftus and Brown 2007; Schofield, Loftus and Fontaine 2009), examining the 

migratory abilities (Goss, Loftus and Trexler 2014) of native versus nonnatives through 

the use of tags at source sites. And investigate which behavioral types (Schofield, Loftus 

and Brown 2007; Schofield, Loftus and Fontaine 2009) do best in the stressful dry down 

environment of the Rocky Glades. With the addition of water into the system from the 

Comprehensive Everglades Restoration Project we will hopefully see shorter, less 

extreme dry seasons that may benefit natives as seen in other restoration studies (Lo 

Galbo et al. 2013; McVoy et al. 2011). 
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CHAPTER IV 

 

BEHAVIORAL INTERACTIONS BETWEEN A NONNATIVE CICHLID AND A 

SYMPATRIC VERSUS AN ALLOPATRIC NATIVE  
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Introduction 

The introduction of a nonnative species can modify traits and behaviors of native 

species, alter how ecosystems function, and impose socioeconomic costs (Smith, Hewitt 

and Klenk 2012; Loope 2004; Coutenay 1986). Damaging effects produced by 

nonnatives include, but are not limited to displacement of natives from preferable habitats 

(Houser, Ginsberg and Jakob 2014; Brooks and Jordan 2010), changes in native behavior, 

reduction or loss of native populations (Dorcas et al. 2012; Kaufman 1992) along with 

changes to native communities and key ecosystem processes (Capps and Flecker 2013; 

Koehn 2004; Starling et al. 2002). In an experimental setting, nonnative tilapia 

aggressively ejected native sunfish from a refuge (Brooks and Jordan 2010). Examples 

like this one show the importance of learning how natives are affected by the presence of 

nonnatives. Linking nonnative monitoring efforts to native survivorship alone may mask 

indirect effects caused by introductions. Determining the behavioral mechanisms by 

which nonnatives reshape communities can lead to better management strategies for 

nonnative taxa (Catford, Jansson and Nilsson 2008). 

Behavioral traits that affect survivorship and reproductive output are likely targets 

of natural selection (Sih 2013; Wingfield 2013; Werner and Peacor 2003) with 

populations sometimes evolving quickly (Wright et al. 2010) in both invader (Holway 

and Suarez 1999) and native communities (Stuart et al. 2014; Strauss, Lau and Carroll 

2006; Vermeij 1982). The introduction of a nonnative can increase apparent competition 

(indirect competition between prey that share a predator) in a system and modify native 

predator behavior causing native prey to be more readily consumed (Brenneis, Sih and de 

Rivera 2011). Changes in behavior have been previously documented in native mollusks, 
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where, in response to a nonnative crab predator, the mollusk dug itself deeper into the 

substrate (Strauss, Lau and Carroll 2006). Alterations in resource levels may also induce 

trait changes (Peacor and Werner 1997) where a reduction in availability following from 

increased competition may force native consumers to partake in riskier acts (Werner and 

Peacor 2003). While naïveté of prey has been well studied (Sih et al. 2010), naiveté of 

competitors has not.  

To explore naiveté of native species to nonnative invaders, this study focuses on 

South Florida where the successful invasion of 17 nonnative fish species have been 

documented over the past 50 years (Kline et al. 2013; Shafland, Gestring and Stanford 

2008; Loftus 2000). Although nonnative fish have increased species richness by 50%, 

relatively few studies have recognized any significant ecological effects from these fish 

introductions, a finding which has led to contradictory perceptions on the overall effects 

of nonnative aquatic taxa in the ecosystem (Schofield et al. 2013; Trexler et al. 2000; 

Shafland 1996). Managers need to understand the behavioral dynamics, particularly in 

those habitats where nonnative species are abundant (e.g., Rocky Glades and canals). 

This understanding requires empirical approaches that manipulate the presence of 

nonnatives and closely examines how natives and nonnatives interact and thus quantify 

the mechanisms for interaction (e.g., Porter-Whitaker et al. 2012; Brooks and Jordan 

2010; Rehage, Dunlop and Loftus 2009).  

To examine behavioral interactions between native and nonnative taxa, I focus on 

the highly invaded region of South Florida (Kline et al. 2013; Harvey et al. 2010) and 

areas in Central and North Florida where nonnatives are often cold limited and cannot yet 

invade. Historically, the eastern Everglades region experienced a short dry season where 
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water levels lowered but remained high enough in solution holes for fish to survive in this 

refuge until the wet season (McVoy et al. 2011; Harvey et al. 2010). Because of the 

drainage and impoundment of the entire ecosystem for reasons of flood management, this 

area now experiences a long and extremely dry winter that is not suitable for aquatic life 

(McVoy et al. 2011; Rehage et al. 2013; Harvey et al. 2010). In a region of the 

Everglades called the Rocky Glades, fish attempt to wait out the dry season using karst 

solution holes for refuge. This area may now be a sink instead of a source for natives who 

no longer survive the dry season (Rehage et al. 2013) and a source of nonnatives that may 

be both better adapted for chronically stressful conditions and better at obtaining and 

acquiring resources in these competitive environments. Because of similarities in size and 

niche occupancy, African Jewelfish (Hemichromis letourneuxi) have been predicted to 

compete heavily with native Dollar sunfish (Lepomis marginatus) (Rehage, Dunlop and 

Loftus 2009). By examining behavioral responses invoked by African Jewelfish upon 

Dollar Sunfish from populations with and without a prior history of African Jewelfish co-

residency, this study shows whether invasion by nonnative African Jewelfish has induced 

compensatory adaptation in the behavior of native Sunfish. 

In my study, I asked (1) how behavioral responses to the presence of Jewelfish 

differ between native Dollar Sunfish from allopatric populations and versus those within 

the invasion range of African Jewelfish? and (2) are allopatric or sympatric native 

populations of Dollar Sunfish are better able to acquire food when competing with the 

nonnative competitor? To address these questions, I performed behavioral assays between 

native Dollar Sunfish from sympatric and allopatric populations with the nonnative 

African Jewelfish. I quantified aggression, distance between fish, first fish to recruit to 
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food, and number of worms eaten.  Because fish in these isolated Rocky Glades’ solution 

hole communities display strong competition for resources, I hypothesized that allopatric 

sunfish will interact more aggressively than sympatric natives, while sunfish from 

sympatric populations will have learned or evolved to avoid African Jewelfish, and keep 

their distance, and will obtain less food than allopatric sunfish.  

 

Methods 

The aim of this study was to look for plastic vs. static responses of two native 

populations of Dollar Sunfish. The sympatric population of Dollar Sunfish has been 

previously exposed to the nonnative African Jewelfish since the 1960s and therefore has 

had 56 years of potential interactions and adaptation, whether through phenotypic 

plasticity in behavior or through microevolution. The allopatric populations of Central 

and Northern Florida are outside of the range of this nonnative and are therefore naïve to 

this invader. In order to explore adaptation in sympatric vs. allopatric native sunfish 

populations, differences in behavioral trials and interactions with the African Jewelfish 

were compared. An inconsistent response difference between the Dollar Sunfish 

populations would indicate that natives have adapted to the presence of the nonnative 

Jewelfish.  

Behavioral trials were adapted from Bell 2005; Bell and Stamps 2004. All fish 

were collected via un-baited minnow traps (30 Dollar Sunfish from each population and 

60 African Jewelfish from ENP). Fish were transported to Florida International 

University inside coolers with air stones and StressCoat® to minimize stress. Fish were 

fed live blackworms or frozen brine shrimp once every two days, ad libitum, and kept on 
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a 12:12 hour light:dark cycle at 20°C in ten 20 gallon tanks with sand substrate, filter and 

air stone. 5-10% water changes were conducted every two days.  

Trials were run in individual 20 gallon tanks partitioned into 2 equal sections with 

an opaque mesh divider to prevent fish from interacting physically before the trail.  Tanks 

had sand substrate and water levels were kept at a constant 15cm. One side of the tank 

(random choice) had a Dollar Sunfish (from an allopatric population or sympatric 

population) and the other side had an African Jewelfish.  One side of the tank (random 

choice) had a clear PVC pipe and the other side was bare to elicit a dominance response 

between the individuals when the partition was lifted. Each fish was weighed and 

measured at the end of each trial.  

 

Behavioral assays 

Fishes were fed ad lib. before the start of the trial. Fishes were then placed in 

observation tanks and allowed to acclimate over two nights with the barrier in place. 

Observation tanks had the same water parameters as holding tanks. On the 5th day I 

gently removed the barrier and recorded each individual’s behavior for 20 minutes. I then 

introduced food, oligochaete ―blackworms‖, into the tank and recorded behavior for 

another 5 minutes. All behavioral trials were conducted between 08:00 and 14:00.  I 

observed fish continuously for 1 minute after first interaction and then again for 1 minute 

once food was introduced and the fish recruited to the food. Videos were scored manually 

using JWatcher® for this portion of the behavioral trail. These 1-minute interactions and 

1-minute food trials were then scored using Ethovision® to estimated average distance 

between fish. I scored behaviors such as lateral displays, bites and chases manually. 
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All assays were video recorded with no observer in the room.  I recorded the number of 

times that each fish interacted (e.g., biting, chasing, lateral displays) with each other. 

After 20 minutes, live blackworms were introduced into the tank.  The first fish to 

consume the food and amount of food consumed was recorded.  

 

Feeding trials 

Feeding trials were conducted to determine how many worms were eaten on 

average across species when no other competitor was present. All trials were video 

recorded with no observer in the room.  I began recording as soon as live worms were 

placed in the tank. Videos were scored by hand in JWatcher, noting the number of live 

worms each fish ate during the first minute.  

 

Statistical Analysis 

To examine variation in behaviors, I used Generalized Linear Models (GLMs) 

that test for the effect of differing populations, species and the interaction along with 

Cohen’s d to test for effect size. Values for behavioral counts were √(x+1) transformed 

and checked with Shapiro-Wilks’ test for normality. Average distance between fish were 

Log10(x) transformed and checked with Shapiro-Wilks’ test for normality. GLMs were 

followed by Tukey’s post hoc tests for population comparisons. Fisher’s exact test was 

performed for approach data. Analyses were performed using SYSTAT 13®.  
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Results 

Dollar Sunfish from the sympatric population were twice as likely to approach 

African Jewelfish as those from the allopatric population (Figure 1). There was no 

difference in the distances between fish kept by sunfishes from the difference populations 

(data not shown). African Jewelfish bit Dollar Sunfish more than the reverse (data not 

shown, p-value=0.009) but there was no difference in number of bites given by African 

Jewelfish on allopatric or sympatric dollar sunfish, p-value, 0.836, 0.825, respectively). 

Specifically, sympatric Dollar Sunfish populations had an average of 3.1±0.7 bites on the 

African Jewelfish while allopatric populations had 3.67±1.1 bites (Figure 2A). In 

contrast, African Jewelfish had an average of 5.92±1.2 bites on sympatric sunfish and 

5.19±0.88 bites on allopatric populations. Number of chases by African Jewelfish on 

Dollar Sunfish was greater than the number of chases by Dollar Sunfish on African 

Jewelfish (data not shown, p-value, 0.001). There was no difference in the number of 

chases by either allopatric or sympatric Dollar Sunfish on African Jewelfish (Figure 2B; 

p-value, 0.824) but there was a trend of more chases on sympatric Dollar Sunfish by 

African Jewelfish (p-value, 0.081). Specifically, the average number of chases by 

sympatric Dollar Sunfish on African Jewelfish was 2±0.61 while allopatric populations 

had 2.22±0.63 chases (Figure 2B). African Jewelfish chased sympatric sunfish an average 

of 6.8±1.4 times and chased allopatric sunfish 3.78±0.79 times. Dollar Sunfish overall 

displayed more than African Jewelfish (Figure 2C, p-value= 0.001). There was no 

difference in the number of displays by allopatric or sympatric Dollar Sunfish or African 

Jewelfish (p-value=0.677, 0.916, respectively). Sympatric Dollar Sunfish had an average 

of 6.71±0.94 lateral displays while allopatric Dollar Sunfish had an average of 5.29±0.85 
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 Figure 1: First fish to approach across sympatric and allopatric populations. 

Sympatric Dollar Sunfish approach twice as often as Dollar Sunfish from 

allopatric populations. 
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Figure 2: Average number of behavioral 

interaction between native species across 

populations. A. Bites, B. Chases, C. Lateral 

displays and D. Latency to food and number of 

trials. Bars represent standard error. 
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lateral displays. African Jewelfish had an average of 3.57±0.8 displays on sympatric 

sunfish and 2.57±0.43 displays on allopatric populations. Latency to approach food did 

not differ across dollar sunfish populations (Figure 2D; p-value, 0.587). 

African Jewelfish were more often the first to feed than Dollar Sunfish in either 

population (p-value, 0.001). African Jewelfish recruited to food greater than 70 percent of 

the time across all populations. Average number of worms eaten was greater for African 

Jewelfish (p-value, 0.001, Figure 3B). Dollar Sunfish from the sympatric population ate 

closer to the number of worms eaten by competing Jewelfish than did sunfish from the 

allopatric population (p-value, 0.05, Figure 3, medium effect size: Cohen’s d=0.50). 

 

Discussion 

Overall, the African Jewelfish is bolder than Dollar Sunfish and better at 

acquiring food which may make this species more likely to survive in chronically 

stressful environments. Sympatric Dollar Sunfish were more tolerant of the nonnative and 

able to preoccupy the African Jewelfish and therefore making the nonnative acquire less 

food in the experienced populations than naïve populations. 

The eastern Everglades was once a region that remained flooded for the majority 

of the year but with current water management the system dries nearly every year. The 

marsh drying forces fish to move into competitive karst refugia, which often desiccate 

before the start of the next wet season, killing most of the inhabitants (McVoy et al. 2011; 

Rehage et al. 2013; Harvey et al. 2010). For those refugia that remain wet, competition is 

great for the increasingly limited resources, such as food and areas with higher dissolved  
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Figure 3: Average number of worms eaten between native and nonnative 

across populations and feeding trials. African Jewelfish ate more worms than 

did Dollar Sunfish. Bars represent standard error. 
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oxygen (Kobza et al. 2004). One trait that may be beneficial is tolerance of other 

competitors (Dudley, Murphy and File 2013). Nonnatives often are more aggressive, 

including the African Jewelfish (Schofield et al. 2013). Sympatric Dollar Sunfish 

approached African Jewelfish twice as often as allopatric Dollar Sunfish, which likely 

caused the trend toward a higher number of chases. African Jewelfish could have also 

perceived sympatric dollars as a greater threat caused by their bolder approach. A study 

that shows similar findings in sympatric native tolerance found that native salamanders 

had an increased number of responses to nonnatives if they were from the invaded 

community rather than the naïve community (Cunningham and Rissler 2013). Another 

study also found that experienced crayfish were more aggressive than naïve crayfish to a 

nonnative competitor (Hayes et al. 2009). A study that revealed a better depiction of 

native tolerance was a predator-prey study, which found that experienced tadpoles were 

less active without a predator cue but had a smaller decrease in activity with the cue, 

possibly to help increase foraging (Hartman and Lawler 2014). Looking at activity levels 

of sympatric and allopatric natives may be an area of further study. Higher activity levels 

may make Dollar Sunfish more prone to African Jewelfish chases but may increase their 

foraging potential. However, increased activity may also bring negative effects such as 

increased risk of predation (Brenneis, Sih and Rivera 2011). The population differences I 

found may be caused by phenotypic plasticity of Dollar Sunfish or through the evolution 

of behavior produced by natural selection. 

The African Jewelfish is a picivorous cichlid that has spread quickly through 

south Florida (Schofield 2013; Dunlop-Hayden and Rehage 2011; Rehage, Dunlop and 

Loftus 2009).  While native Dollar Sunfish were once the most abundant sunfish species 



81 
 

caught in solution holes (Rehage et al. 2013) that number has since decreased while 

African Jewelfish are now the 2nd most abundant fish caught in solution holes (Trujillo et 

al. unpublished data). Dollar Sunfish are gape limited and have a narrow diet mainly of 

aquatic invertebrates (e.g. shrimp, copepods) (Warren 2009; Etnier and Starnes 1993) 

which may have played in part in their decline. Nonnatives often succeed in survival and 

spread because they are bold to explore new territories (Schofield et al. 2013). 

Nonnatives also typically have broad, generalist diets (Schofield et al. 2013) and these are 

traits of the African Jewelfish (Parkos, Ruetz and Trexler 2011; Schofield et al. 2013; 

Hickley and Bailey 1987; Rehage et al. 2013). Consistent with findings in the present 

study, bold individuals often feed more on prey out in the open (Sih, Bell and Johnson 

2004; Coleman and Wilson 1996). African Jewelfish were the first to recruit to a new 

food source and ate more live worms than native species which could explain why traits 

such as higher growth rates and increased body mass of nonnatives have been shown in 

previous studies (Pintor and Sih 2009; Hayes et al. 2009). African Jewelfish faced with 

sympatric sunfish ate fewer worms than with allopatric sunfish. Differences in the 

sympatric sunfish’s behavior likely resulted in the African jewelfish being unable to eat 

as much as when in the presence of allopatric sunfish. The nonnative African Jewelfish 

may be both better adapted for chronically stressful conditions and better at acquiring 

resources in competitive dry down environments (Rehage et al. 2013) but sympatric 

natives may be learning or evolving traits to help them deal with their opponents. 

 In summary, Dollar Sunfish from sympatric populations may be better adapted to 

living with the nonnative African Jewelfish because of learned or evolved tolerance from 

the exposure to this nonnative. Dollar Sunfish from sympatric populations may be more 
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likely to acquire food from worms overlooked by the African Jewelfish but at the cost of 

being bolder to the nonnative, which may prove to be the critical factor when it comes to 

survival in resource-limited refuges. African Jewelfish are aggressive, bold and territorial, 

which may be the reason for its success in acquiring resources through the displacement 

of native sunfish. Follow up experiments should focus on breeding Dollar Sunfish, in 

captivity, from allopatric and sympatric populations and testing if offspring responses to 

African Jewelfish are in fact heritable or learned. Experiments observing whether Dollar 

Sunfish can forget African Jewelfish interactions and how long does it takes to learn 

aggressive behaviors would also provide further insight of trait changes in native 

populations. Changes in traits are products of natural selection and can sometimes 

develop quickly in both invader and native communities. Furthermore, behavioral 

plasticity may provide a range of traits that both native and nonnatives may exploit to 

persist in the world’s rapidly changing environment. 
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Anthropogenic disturbances are becoming more frequent stressors of native 

species populations (Wong and Candolin 2015; Vitousek et al. 1997). Sources of 

disturbance include global climate change, urbanization, and the introduction of 

nonnative species (Vitousek et al. 1997). Nonnative species interactions may have effects 

on the individual level, which can then spread to the community and ecosystem levels if 

not regulated. Published studies have concentrated on measuring prey naiveté (Sih et al. 

2010) but have not explored consequences of novel nonnative competitors. Through 

direct and indirect interactions (LeBrun, Abbott and Gilbert 2013; Howe et al. 2016), 

nonnatives can act as novel competitive stressors to native species.  My research provides 

another connection to demonstrate how a nonnative competitor alters native responses 

(Hasegawa 2016; Short and Petren 2008; Petren and Case 1996; Petren, Bolger and Case 

1993) and demonstrate that natives have adapted to the presence of a nonnative after 

multiple generations. Everglades National Park has experienced a large establishment and 

proliferation of nonnative fish species, but with inconsistent evidence of their influence 

on the system and native species (Schofield et al. 2013; Trexler et al. 2000; Shafland 

1996). To help fill this knowledge gap of how nonnatives may or may not affect native 

species, I investigated how survivorship, body condition and behavior change across 

differing ratios, density and co-occupancy of nonnatives. My results have further 

provided evidence that the Rocky Glades serves as a sink for native and a source for 

nonnatives under current water management regimes (Rehage et al. 2014). 

In Chapter 2, I conducted an empirical study, in which I simulated Rocky Glades’ 

solution holes during the dry season to carefully determine the effects of competition 

between native and nonnative species on survivorship and body condition. I used a 
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nonnative replacement design to investigate the response of native Dollar Sunfish to the 

presence of African Jewelfish. Previous literature suggests that competition increases as 

resources become more limited (Cain and Langmore 2016) and increasing numbers of 

nonnatives have negative effects on the survival of native species (Anderson 2006; 

Gruner 2005; Louda et al. 1997). Disturbance is especially great if those nonnatives have 

invasive characteristics, like high aggression and a broad diet (Schofield et al. 2013). In 

agreement with other literature on the Rocky Glades region (Trexler et al. 2000; Kobza et 

al. 2004; Kline et al. 2013), I found that nonnative species did have a higher survivorship 

and body condition than native species. However, I found no effect of density between or 

within either species. African Jewelfish averaged close to a 90 percent survivorship, 

whereas native sunfish averaged around 50 percent survivorship. Dollar Sunfish 

maintained around 67 percent of their original condition and African Jewelfish 

maintained 82 percent of their early dry season condition. My data suggest that nonnative 

African Jewelfish do not compete, but are more resilient in environmentally stressful 

conditions than native Dollar Sunfish. African Jewelfish occupy ephemeral habitats in 

their native range and may cope better with the Rocky Glades annual dry down 

(Seehausen and Schluter 2004).  

In Chapter 3, I used survey techniques to investigate the differential survival of 

native and nonnative fish taxa in Everglades’ solution holes across the dry season. 

Previous literature found that nonnatives experience higher survivorship than native fish 

taxa (Trexler et al. 2000; Kobza et al. 2004; Kline et al. 2013). I found that close to 80 

percent of all fish died in my solution hole sites. Bigger species survived better, possibly 

because their larger gape size allowed them to eat a broader range of prey (Szabo 2002). 
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Small species with higher mass-specific metabolic rates may confer a disadvantage in 

maintaining biological functions under high stress and low food (Beamish, Mahnken and 

Neville 2004). In addition, feeding guilds that survived until the end of the dry season 

were often species that consumed both invertebrates and fishes. At the onset of the dry 

season native fishes made up around 77 percent of the community while nonnatives were 

close to 23 percent. However, by the end of the dry season, natives constituted 28 percent 

and nonnatives 46 percent, a result of greater mortality among native species. 

Maintaining body condition was not always an indicator of survivorship, in fact, species 

with a decreased body condition were some of the most abundant species at the end of the 

dry season (e.g., nonnative African Jewelfish and native yellow bullhead catfish). Species 

pairs with positive associations were those with differences in their diet.  Species that 

partitioned food resources may have coexisted with less competition, leading to higher 

survival (Stephens and Krebs 1986; Perry and Pianka 1997). Competitive ability may be 

a better indicator of survival, such as personality and experiences, than just the feeding 

guild alone (Parker and Sutherland 1986; Sgoifo et al. 2005; Grand 1997). 

In Chapter 4, I used behavioral assays to assess the different responses of native 

fish from invaded versus naïve communities to a nonnative competitor or antagonist. 

Previous literature suggests that natives increase their responses to nonnatives in invaded 

versus naïve communities (Cunningham and Rissler 2013; Hayes et al. 2009). I found 

that Dollar Sunfish from an invaded community were twice as likely to approach the 

nonnative as compared to the allopatric population of Dollar Sunfish. Dollar Sunfish 

populations did not differ in their aggressive interactions to African Jewelfish (e.g., bites, 

chases and lateral displays). African Jewelfish were the first to approach food when it 
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was introduced into the tank, a characteristic of boldness (Sih, Bell and Johnson 2004). 

African Jewelfish also ate more worms than either population of sunfish, which may 

provide further support as superior survivors in stressful competitive dry down 

environments. Despite nonnatives acquiring more resources than natives, nonnatives ate 

less in the presence of natives from invaded communities, possibly caused by increased 

responsiveness to the Dollar Sunfish. Increased responsiveness by the nonnative could be 

caused by increased activity of the fish from the invaded community (Hartman and 

Lawler 2014), which was not measured in my behavioral assay. Decreased consumption 

of food by the nonnative may leave more resources for experienced natives to benefit 

from and survive. I found that Dollar Sunfish, after more than 60 years of sympatric 

interactions, are more tolerant of African Jewelfish than their uninvaded counterparts. 

Population differences in the likelihood of approaching an aggressive nonnative may be 

caused by phenotypic plasticity of learned behavior produced by natural selection. 

Overall, I found that nonnatives are better able to cope with stressful dry down 

environments than are native species. In both experimental and field settings, nonnatives 

had a higher survivorship than many native species, which are ideally pre-adapted to 

native environmental conditions. Disturbances that alter historic conditions may be the 

main reason for decreases in native survivorship (Fraser, Banks and Water 2014), which 

then open niches for pre-adapted nonnatives to invade (Fraser, Banks and Walter 2014; 

Didham, Watts and Norton 2005; Chollet et al. 2014). Nonnatives often have broad 

physiological tolerances along with traits that aide in proliferation and establishment in a 

disturbed ecosystem, like parental care, aggression and generalist diet that make them 

better competitors (Schofield et al. 2013). Natives are not completely lost and have been 
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able to adapt to the presence of nonnatives like the African Jewelfish. Dollar Sunfish 

have heightened responses to the presence of African Jewelfish when it comes to 

territoriality. Sympatric Dolar Sunfish may also be able to distract nonnatives from food 

long enough for them to acquire some resources to help them survive the stressful dry 

down. 

Disturbance differentially affects native and nonnative species.  Nonnatives have 

often been found to resist disturbance, settling back into disturbed areas after restoration 

(Gallagher et al. 2016). The hydrology of the Everglades has been disrupted by current 

water and flood management practices (McVoy et al. 2011) while habitat quality 

continues to degrade at the expense of native species, further favoring nonnative 

establishment and spread (Pinto and Ortega 2016; Manea, Sloane and Leishman 2016; 

Bradley et al. 2012). If the Everglades were ever to lose the annual replenishment of 

migrating fish from deeper refugia during the wet season, South Florida would not only 

lose a population of native fish species (Goss, Loftus and Trexler 2013; Magoulick and 

Kobza 2003) but also a major food source for native wading birds (Gawlik and Boston 

2008). As the climate continues to warm, we expect to see further range expansions of 

nonnative species (Rehage and Blanchard 2017) which may counteract many restoration 

efforts. Behavioral plasticity may be the only option that offers the fastest trait changes 

for both native and nonnatives to continue to survive in this rapidly changing world. 
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