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ABSTRACT OF THE DISSERTATION 

REGULATION OF ADIPOCYTE DIFFERENTIATION AND METABOLISM:  

RAB5-GUANINE NUCLEOTIDE EXCHANGE FACTORS AND 

METHYLGLYOXAL  

by 

Praew Chantarasinlapin 

Florida International University, 2017 

Miami, Florida 

Professor Fatma G. Huffman, Co-Major Professor 

Professor M. Alejandro Barbieri, Co-Major Professor 

Internalization and trafficking of ligand-receptor complex rely on a particular set 

of proteins, e.g. small GTPase protein Rab5 and its activators called guanine nucleotide 

exchange factors. Rab5-activating protein 6 (RAP6), a Vps9-containing protein, may 

participate in Rab5-mediated insulin signaling and receptor trafficking. A dicarbonyl 

compound methylglyoxal was found to alter insulin signaling in preadipocytes. This 

dissertation aimed to investigate the association of RAP6 activity on 3T3-L1 

preadipocyte differentiation and those driven by methylglyoxal. Overexpression of RAP6 

inhibited preadipocyte differentiation, Ser473-phosphorylation of Akt1, and expression of 

adipogenic marker PPARγ, but not C/EBPα. Methylglyoxal (10 µM) increased 

preadipocyte differentiation, proliferation and expression of PPARγ, C/EBPα and p-

Akt1-Ser473, but appeared to be neutralized by RAP6 overexpression. The findings 

suggest that RAP6 may be a key modulator in regulating the stimulatory effect of 

methylglyoxal on preadipocyte differentiation.  
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The associations of predominant methylglyoxal-derived adduct, methylglyoxal 

hydroimidazolone 1 (MGH1), with selected risk factors of chronic diseases in Black 

participants with and without type 2 diabetes (n=234 controls and n=254 cases) were also 

investigated. Only in individuals with diabetes, MGH1 levels were positively associated 

with fasting plasma glucose (B=0.240, p=0.037), homocysteine (B=0.355, p=0.014) and 

triglyceride (B=0.190, p=0.049). Being African Americans with type 2 diabetes was 

associated with lower MGH1 levels as compared to being Haitian American with 

diabetes (B=-0.334, p=0.016). The findings suggest that methylglyoxal may be linked to 

hyperglycemia and metabolic changes in type 2 diabetes, and may differently impact the 

development of diabetes across Black subgroups. 
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CHAPTER I 

INTRODUCTION 

 Cell signaling is a complex communicating network which governs basic cellular 

activities. Multiple signaling pathways in this biological system are regulated by 

extracellular ligands or stimuli within the cells (Jordan, Landau, & Iyengar, 2000). 

Receptor tyrosine kinases (RTKs) have been found to play an essential role in proper cell 

growth, cell development, cell metabolism, tissue repair and homeostasis (Li & Hristova, 

2006; Volinsky & Kholodenko, 2013) as well as oncogenesis (Pawson, 2002). Upon 

binding, a certain ligand activates its responsive receptor(s) which is associated with the 

plasma membrane. This increases receptor kinase activity and enables the receptor to 

eventually activate different intracellular downstream effectors, leading to distinct cell 

signaling events. Ligands induce signaling events not only at the plasma membrane, but 

they are also internalized together with their receptor as a complex, and enhance signal 

transduction intracellularly (Ceresa, Kao, Santeler, & Pessin, 1998; Romanelli et al., 

2007). The internalization and trafficking of ligand-receptor complex rely on a particular 

set of proteins such as a small GTPase protein Rab5 and its activators (Barbieri, 2004; 

Hunker, Kruk, et al., 2006). Error of cell signaling likely contributes to disease 

development e.g. diabetes (Fröjdö, Vidal, & Pirola, 2009), obesity (Gustafson, 

Hedjazifar, Gogg, Hammarstedt, & Smith, 2015) and cancer (Inoue, Goi, Hirono, 

Katayama, & Yamaguchi, 2011). The cell signaling can be altered by numerous stimuli 

such as hormones, growth factors, and a dicarbonyl compound methyglyoxal. 

Methylglyoxal can be ubiquitously produced in the cells (Phillips & Thornalley, 1993) as 

well as obtained from foods (Marceau & Yaylayan, 2009; Poulsen et al., 2013). Previous 
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studies indicated that methylglyoxal blunted insulin signaling (Afridi et al., 2016; Jia & 

Wu, 2007; Nigro et al., 2014; Riboulet-Chavey, 2006), caused beta-cell dysfunction 

(Chang et al., 2016; Fiory et al., 2011; Gao, Liao, et al., 2016), interfered with adipocyte 

growth and differentiation (Jia et al., 2012; Yang et al., 2013) and aggravated vascular 

complications (Brouwers et al., 2010; Hadas, Randriamboavonjy, Elgheznawy, Mann, & 

Fleming, 2013). Its glycation ability also links methylglyoxal to formation of advanced 

glycation end products (AGEs) which is commonly associated with chronic illnesses. 

 Basic information about signaling pathways and receptor-mediated endocytosis, 

particularly in relation to insulin-responsive preadipocytes are presented here. A growing 

evidence suggests that methylglyoxal possibly causes perturbation of cellular signaling 

and development of chronic diseases. Therefore, metabolism and harmful effects of 

methylglyoxal are also reviewed in the following section. 

The Insulin Receptors 

Insulin receptor family comprises insulin receptor (IR), insulin-like growth factor 

I receptor (IGF-IR), insulin-like growth factor II receptor, and insulin receptor-related 

receptor (Werner, Weinstein, & Bentov, 2008). These transmembrane receptors belong to 

a receptor tyrosine kinase (RTK) superfamily, which is activated through 

phosphorylation by specific ligands. Ligand activation causes conformational change and 

following autophosphorylation, which enhances receptor kinase activity (Werner et al., 

2008). This renders the receptor to phosphorylate multiple intracellular kinase proteins 

that involve in ligand-dependent signal transduction (Werner et al., 2008). Particular 

interest of this project is IR and IGF-IR.  
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Unlike other classes of RTKs, IR and IGF-IR exist as heterotetramers of two α 

subunits and two β subunits linked by covalent disulfide bonds (Werner et al., 2008). 

Heterodimer between IR and IGF-IR, which appears one half of each, can be found in 

cells expressing both receptors (Federici et al., 1997; Soos, Field, & Siddle, 1993). The α 

subunits of IR and IGF-IR reside extracellularly and contain cysteine-rich domain which 

is required for ligand binding (Werner et al., 2008). The β subunits feature several 

domains: hydrophobic transmembrane region; intracellular juxtamembrane domain which 

is speculated to participate in receptor internalization (Werner et al., 2008) and docking 

of intracellular effectors; and tyrosine kinase domain that plays a role in 

autophosphorylation and downstream cascade activation (De Meyts, 1994).  

Even though there is high resemblance in gene structures encoding IR and IGF-IR 

(Werner et al., 2008), existing evidences suggest different biological functions of the 

receptors. The difference is possibly due to several factors such as their affinity for a 

certain ligand, their distribution among cell types, and their signaling events. Insulin 

receptor and IGF-IR appeared to have higher affinity for their cognate ligand (Werner et 

al., 2008). It was reported that IGF-I had at least 100-fold lower affinity to IR than insulin 

(Werner et al., 2008). Expression of IR and IGF-IR was also found to be different among 

cell types. For example, IR expressed in liver and adipocytes, while IGF-IR was nearly 

absent in liver and low in adipocytes (Werner et al., 2008). A previous study 

demonstrated that proportion of total IR fraction assembled as hybrid receptors was low 

in adipocytes as compared with placenta and hepatoma (Federici et al., 1997). Hybrid 

receptors between IR and IGF-IR had high affinity for IGF-I, but not insulin, under 

physiological condition (Federici et al., 1997). Given that, high distribution of IR, but low 
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distribution of hybrid receptors in adipocytes may possibly favor insulin-dependent 

pathways related to growth and differentiation rather than those that are IGF-I-dependent. 

Through their preferential intracellular effectors, insulin is speculated to mainly 

participate in cell metabolism, e.g. glucose transport through Akt activity (Manna & Jain, 

2013), while IGF-I predominantly involves cell growth and survival, e.g. cell 

proliferation through activity of extracellular signal–regulated kinase 1/2 (ERK1/2) (Bost, 

Aouadi, Caron, & Binétruy, 2005). Later, additional data indicate that these downstream 

effectors are not exclusively activated by specific receptors. For example, IGF-IR 

involved in sustained activation of Akt in glial progenitor cells (Romanelli et al., 2007), 

whereas insulin appeared to strongly activate ERK1/2 in cultured adipocytes (Kayali, 

Austin, & Webster, 2000). These observations show that multiple ligands work together 

by participating in the complex signaling network that, in turn, precisely causes distinct 

cellular events. 

Insulin Action and Signaling Pathways in Adipocytes 

Adipocytes play an important role in energy storage in a form of triacylglycerols 

when excess energy is consumed in the diet. Triacylglycerols are used as fuel during 

post-absorptive state (Ali, Hochfeld, Myburgh, & Pepper, 2013). Adipogenesis is the 

differentiation of premature preadipocyte to form fat-laden adipose tissues (Attie & 

Scherer, 2009), which is tightly regulated by ligands such as insulin and IGF-I. An 

increase in adipogenesis possibly contributes to obesity which is characterized by an 

excessive fat accumulation in the body (Attie & Scherer, 2009). 

Established preadipocyte cell lines have been used to study adipocyte signaling 

pathways (Boney, Smith, & Gruppuso, 1998; Cao, Umek, & McKnight, 1991; Tang & 
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Lane, 2012; Tang, Otto, & Lane, 2003). Cultured preadipocytes, such as 3T3-L1 cells, 

grow to growth arrest e.g. at G1 phase in the cell cycle (Tang & Lane, 2012). 

Differentiation is induced by stimulant cocktail, including high concentration of insulin, 

dexamethasone (a synthetic glucocorticoid agonist), and 3-isobutyl-1-methylxanthine (a 

cAMP phosphodiesterase inhibitor) (Cornelius, MacDougald, & Lane, 1994). The 

stimulants activate signaling pathways dependent on IGF-I, glucocorticoid, and cAMP 

level, respectively (Tang & Lane, 2012), initiating differentiation. Several hours after 

induction, preadipocytes re-enter the cell cycle and go through about two rounds of 

mitosis in which the process is called mitotic clonal expansion (MCE) (Tang & Lane, 

2012). The cells then lose their fibroblast-like appearance, assume rounded shape, and 

become adipocytes by accumulating cytoplasmic triglycerides (Cornelius et al., 1994). 

Preadipocyte cell lines successfully commit to adipocytes, therefore; they have been 

extensively utilized to examine adipocyte signaling events, such as those caused by 

insulin. 

Insulin plays a key role in adipogenesis by promoting glucose uptake (Charron, 

Brosius, Alper, & Lodish, 1989; Watson, Kanzaki, & Pessin, 2004) and stimulating 

downstream cascades that initiate adipocyte differentiation (Siersbaek & Mandrup, 2011) 

(Figure 1). Receptor tyrosine kinases, e.g. IR and IGF-IR, have been widely accepted as 

key players for insulin signal transduction. Upon insulin activation, the receptors serve as 

a docking platform for multiple signaling cascades. One of the well-characterized 

pathways include a cascade constituting insulin receptor substrate 1 (IRS1), 

phosphoinositide 3-kinases (PI3Ks) and Akt, which acts as a central pathway harnessing 

adipogenesis and cell survival (Stenkula et al., 2004). Once activated, PI3K produces 
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phosphatidylinositol (3,4,5)-trisphosphate in the plasma membrane creating anchoring 

sites for downstream effectors, e.g. Akt (McCurdy & Klemm, 2013) and storage vesicles 

of glucose transporter 4 (GLUT4) (Bai et al., 2007; Calera et al., 1998). Along with other 

proteins, activated Akt subsequently induces GLUT4 translocation to the plasma 

membrane where glucose uptake takes place (Cong et al., 1997; McCurdy & Klemm, 

2013). Simultaneously, insulin-dependent PI3K activity suppresses lipolysis through Akt 

activation and following phosphorylation of phosphodiesterase 3b (PDE3b) (Choi et al., 

2006).  

Even a weaker affinity than IGF-I, insulin can stimulate IGF-IR whose 

downstream pathway involves in the early phase of adipogenesis (Boney et al., 1998; 

Smith, Wise, Berkowitz, Wan, & Rubin, 1988). Major IGF-IR-mediated signaling 

cascades consist of ERK1/2 and PI3K pathways (Siersbaek & Mandrup, 2011). Kinases 

ERK1/2 play a role in the early phase of adipogenesis by activating cell cycle regulatory 

proteins (Yohannes & Yohannes, 2009) and inducing MCE (Tang et al., 2003). This 

leads to expression of CCAAT enhancer-binding protein β (C/EBPβ) which is required 

for initiating MCE (Tang et al., 2005; Tang, Otto, & Lane, 2003). Then, C/EBPβ and δ 

cause co-expression of transcription factors, i.e. C/EBPα and peroxisome proliferator-

activated receptor γ (PPARγ), that subsequently induces adipogenic activity during the 

late phase of adipogenesis (Lefterova & Lazar, 2009; Siersbaek & Mandrup, 2011). 

Insulin signaling also regulates other pro-adipogenesis transcription factors such as sterol 

regulatory element–binding protein 1c (SREBP1c), which involves in lipogenesis 

(Petersen et al., 2008), and foxhead box protein O1 (FOXO1), which plays a role in early 

stage of terminal adipocyte differentiation (Munekata and Sakamoto, 2009). Therefore, a 
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series of insulin signaling pathways is essential for proper and complete proliferation and 

differentiation of adipose tissues. 

Receptor-mediated Endocytosis and Receptor Trafficking 

Endocytosis is a process that molecules are internalized from the plasma 

membrane to intracellular compartments. Available data indicate an association of 

endocytosis with cell signaling. Apart from transmitting signal at the plasma membrane, 

receptors and their ligands can be endocytosed and amplified the signal intracellularly. 

Clathrin-mediated endocytosis is a well-characterized mechanism which plays an 

important role in internalization of multiple receptors, e.g. IR (Ceresa et al., 1998), IGF-

IR (Romanelli et al., 2007) and low-density lipoprotein receptor (Goldstein & Brown, 

2009) as well as nutrients and other molecules (Le Roy & Wrana, 2005). When ligands 

bind to receptors, clathrin is recruited to the plasma membrane at which the cluster of 

receptors is located to form clathrin-coated pits (Le Roy & Wrana, 2005). The coated pits 

then bud and pinch off from the cell membrane to form clathrin-coated vesicles. 

Subsequently, the vesicles are uncoated and fuse with early endosomes (Le Roy & 

Wrana, 2005). The early endosomes containing ligand-receptor complex are further 

directed to specific intracellular compartments for either receptor degradation and signal 

termination, or receptor recycling to the plasma membrane and maintaining signal 

transduction (Irannejad, Tsvetanova, Lobingier, & von Zastrow, 2015). A small GTPase 

Rab5 has been found to facilitate receptor-mediated clathrin-dependent endocytosis 

(Kajiho et al., 2003; Nielsen, Severin, Backer, Hyman, & Zerial, 1999; Su, Lodhi, Saltiel, 

& Stahl, 2006) as well as early endosome biogenesis, sorting and fusion (Bucci et al., 
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1992; Rybin et al., 1996; Zeigerer et al., 2012). Rab5 is considered a key component that 

links clathrin-mediated endocytosis to ligand-activated cell signaling.  

Rab5 is a member of Ras GTPase superfamily that mainly participates in 

membrane trafficking. Rab5 switches between an inactive form bound to guanosine 

diphosphate (GDP), and an active form bound to guanosine triphosphate (GTP; Figure 2) 

(Mizuno-Yamasaki, Rivera-Molina, & Novick, 2012). The interchange between the two 

Rab5 conformations is very slow by itself. The switching process is thus accelerated by 

two sets of proteins: guanine nucleotide exchange factors (GEFs) activate Rab5 by 

promoting the exchange of GDP to GTP; and GTPase-activating proteins (GAPs) 

deactivate Rab5 by stimulating hydrolysis of GTP to GDP (Mizuno-Yamasaki et al., 

2012). Typically, Rab5 is localized at the plasma membrane and early endosomal 

membrane (Chavrier, Parton, Hauri, Simons, & Zerial, 1990). In cytosol, GDP-bound 

Rab5 is formed as a complex to Rab guanine-nucleotide dissociation inhibitor (GDI) 

which is speculated to translocate Rab5 to or from the functional target sites (Ullrich, 

Horiuchi, Bucci, & Zerial, 1994).   

Rab5-specific GEFs contain a highly-conserved Vps9 domain which is required 

for Rab5 activation (Burd, Mustol, Schu, & Emr, 1996; Delprato & Lambright, 2007; 

Tsukamoto et al., 2015). Among Rab5-GEFs, Ras interference 1 (Rin1) (Balaji et al., 

2012; Kavitha Balaji & Colicelli, 2013; Ding, Wang, & Chen, 2009; Galvis, Balmaceda, 

et al., 2009; Galvis, Giambini, Villasana, & Barbieri, 2009; Hunker, Giambini, et al., 

2006; Tall, Barbieri, Stahl, & Horazdovsky, 2001), and Rabex-5 (Aikawa, 2012; 

Delprato, Merithew, & Lambright, 2004; Kalesnikoff et al., 2007; Stenmark, Vitale, 

Ullrich, & Zerial, 1995; Zhang et al., 2014) have been widely studied to examine their 
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involvement in Rab5 activity. However, available data remains scarce for Rab5-

activating protein 6 (RAP6), also known as GAPex-5 (Lodhi et al., 2007) and hRME-6 

(Sato et al., 2005), which is newly discovered to participate in Rab5 activation (Hunker, 

Galvis, et al., 2006). 

Rab5 was reported to mediate clathrin-dependent endocytosis in response to 

insulin (Cormont, Van Obberghen, Zerial, & Le Marchand-Brustel, 1996), suggesting the 

link of Rab5 activity to insulin-stimulated signaling events. Similar mechanism also 

applied to glucose uptake through GLUT4 function (Watson et al., 2004). These 

evidences indicate that Rab5 and Rab5-GEFs, such as RAP6, possibly take part in 

modulating insulin-dependent homeostasis of energy storage in adipocytes. Supportively, 

overexpression of wild-type RAP6 markedly inhibited GLUT4 translocation, whereas 

RAP6 mutant lacking Vps9 domain caused less inhibition (Lodhi et al., 2007). These 

findings suggest that there may be an interaction between Vps9 and other domains, e.g. 

proline-rich domain and Ras-GAP domain, in RAP6 to fully regulate Rab5-mediated 

glucose uptake and adipogenesis. 

In addition, decline in Rab5 and RAP6 expression may perturb insulin-dependent 

signaling cascades that involve in endogenous synthesis of triacylglycerol from glucose, 

and delivery of glucose and triacylglycerol between cellular compartments. In response to 

insulin activation, RAP6 was required for Rab5-mediated formation of 

phosphatidylinositol 3-phosphate (PI3P) in the plasma membrane of 3T3-L1 

preadipocytes, thereby regulating GLUT4 translocation (Lodhi et al., 2008) (Figure 3). In 

the same study, knockdown of RAP6 inhibited GLUT4 translocation and insulin-

stimulated glucose uptake (Lodhi et al., 2008), suggesting an association of RAP6 with 
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insulin signaling. In insulin-responsive NIH3T3/hIR cells, knockdown of all Rab5 

isoforms (Rab5a, Rab5b and Rab5c) or RAP6 markedly reduced insulin-dependent 

activation of Akt (Su et al., 2006). This was speculated to be due to interference with 

interaction between IRS1 and PI3K-p85 subunit (Su et al., 2006). Interestingly, 

expression of Rab5 isoforms was significantly suppressed in obese Zucker rats as 

compared to lean rats (Su et al., 2006), suggesting the involvement of Rab5 in obesity. 

Collectively, Rab5 and RAP6 activity possibly have a potential role in insulin-dependent 

signaling and energy metabolism in adipocytes.  

Methylglyoxal: Dicarbonyl Compound 

Methylglyoxal is a dicarbonyl compound that can be produced endogenously 

from the breakdown of macronutrients (Phillips & Thornalley, 1993). Methylglyoxal is 

also found in foods, such as coffee, milk, bakery products (Poulsen et al., 2013) and 

honey (Marceau & Yaylayan, 2009), as well as biological samples, e.g. blood, urine, 

(Nemet, Turk, Duvnjak, Car, & Varga-Defterdarović, 2005; Nemet, Varga-Defterdarović, 

& Turk, 2006; Turk, Vrdoljak, Misur, Trescec, & Benko, 2009), and tissues (Ahmed, 

Brinkmann Frye, Degenhardt, Thorpe, & Baynes, 1997; Ahmed et al., 2003). As a highly 

reactive glucose derivative, methylglyoxal can bind to free amino acid residues and 

subsequently form advanced glycation end products (AGEs), suggesting its association 

with chronic diseases. It is hypothesized that intrinsic methylglyoxal transports to plasma 

by passive diffusion through interstitial fluid in its unhydrated form (Rabbani & 

Thornalley, 2015). Methylglyoxal concentrations have been estimated in human plasma 

at 100-120 nM, while cellular concentrations range from 1-5 µM (Thornalley, 2008). 

Greater than 95% of methylglyoxal is reversibly bound to plasma proteins with a half-life 
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of about 10 minutes, whereas irreversible binding is approximately 3.6 hours (Rabbani & 

Thornalley, 2015). Amino group of arginine and lysine is a target site of methylglyoxal-

mediated glycation (Lo, Westwood, McLellan, Selwood, & Thornalley, 1994). 

Methylglyoxal reacts with arginine (Klöpfer, Spanneberg, & Glomb, 2011; Oya et al., 

1999) and lysine forming glycosylamine adducts (Lo et al., 1994). Chemical structure of 

methylglyoxal, amino acid residues, and derived adducts are illustrated in Figure 4. 

Among AGEs in blood and tissues, a quantitatively prominent adduct is Nδ-(5-hydro-5-

methyl-4-imidazolon-2-yl)-L-ornithine (MGH1), which results from the reaction between 

methylglyoxal and arginine (Thornalley, 2005). Less stable isomers of methylglyoxal-

derived hydroimidazolones consist of 2-amino-5-(2-amino-5-hydro-5-methyl-4-

imidazolon-1-yl)pentanoic acid (MGH2) (Ahmed et al., 2003) and 2-amino-5-(2-amino-

4-hydro-4-methyl-5-imidazolon-1-yl)pentanoic acid (MGH3) (Ahmed, Argirov, Minhas, 

Cordeiro, & Thornalley, 2002; Klöpfer et al., 2011). It is proposed that MGH3 is an 

intermediate in methylglyoxal-mediated glycation mechanisms, leading to more stable 

compounds N7-(1-carboxyethyl)-arginine (CEA) (Alt & Schieberle, 2005) and MGH1 

(Klöpfer et al., 2011).  

Other arginine-derived methylglyoxal crosslinks are also identified in vitro, 

including Nδ-(5-hydroxy-4,6-dimethylpyrimidine-2-yl)-L-ornithine (argpyrimidine) and 

Nδ-(4-carboxy-4,6-dimethyl-5,6-dihydroxy-1,4,5,6-tetrahydropyrimidine-2-yl)-L-

ornithine (tetrahydropyrimidine; THP) (Ahmed et al., 2002). The adducts derived from 

the interaction between methylglyoxal and lysine residues include Nε-(1-carboxyethyl)-

lysine (CEL) (Ahmed et al., 1997) and methylglyoxal-lysine dimer 1,3-di(Nε-lysino)-4-

methyl-imidazolium (MOLD) (Brinkmann, Wells-Knecht, Thorpe, & Baynes, 1995). 
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With arginine and lysine residues, methylglyoxal also forms 2-ammonio-6-({2-{4-

ammonio-5-oxido-5-oxopentyl)amino]-4-methyl-4,5-dihydro-1H-imidazol-5-

ylidene}amino)hexanoate (MODIC) (Lederer & Klaiber, 1999).  

Methylglyoxal Metabolism 

Production 

Glycolysis is postulated to be a central pathway of methylglyoxal production from 

carbohydrates (Phillips & Thornalley, 1993; Figure 5). A majority of methylglyoxal is 

converted from glycolytic triosephosphates, including glyceraldehyde 3-phosphate (G3P) 

and dihydroxyacetone phosphate (DHAP) (Kalapos, 1999; Phillips & Thornalley, 1993). 

Methylglyoxal synthase is mainly involved in enzymatic conversion of methylglyoxal 

from G3P and DHAP (Kalapos, 1999). Methylglyoxal can also be non-enzymatically 

generated by phosphate removal of triosephosphates (Phillips & Thornalley, 1993), 

glucose autoxidation, and glycation of amino group-containing biomolecules (Rabbani & 

Thornalley, 2012; Semchyshyn & Lushchak, 2012). Glycation is a complex series of 

sequential reactions between reactive carbonyl groups of reducing sugars, such as 

glucose, and nucleophilic amino groups of proteins, lipids or nucleic acids (Semchyshyn 

& Lushchak, 2012). An early step of glycation is where glucose reacts with amino 

groups, reversibly forming an unstable Schiff’s base (Rabbani & Thornalley, 2012). 

Schiff’s base can be subjected to a reversible Amadori rearrangement resulting in more 

stable Amadori products or ketosamines (Semchyshyn & Lushchak, 2012). Amadori 

products can further undergo various chemical modifications, that subsequently lead to 

formation of carbonyl compounds, including methylglyoxal (Rabbani & Thornalley, 

2012). In parallel to the sequential reactions, methylglyoxal can also be generated from 
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fragmentation of glucose and Schiff’s base (Thornalley, Langborg, & Minhas, 1999), 

which is likely accelerated by oxidation reaction or reactive oxygen species (ROS) 

(Sakai, Oimomi, & Kasuga, 2002; Semchyshyn, 2013). In addition, fructose is another 

carbohydrate substrate for methylglyoxal formation (Thornalley, 1996). Fructose, such as 

from food intake or endogenously generated from glucose and sorbitol via polyol 

pathway, can be converted to G3P and DHAP. Therefore, high-fructose diet (Jia & Wu, 

2007; Masterjohn et al., 2013) and fructose generating system using inulin and inulinase 

(Wei, Wang, Moran, Estrada, & Pagliassotti, 2013) were used in animal models to induce 

methylglyoxal production. Like glucose, fructose can also lead to methylglyoxal 

formation through non-enzymatic glycation.  

Less significant amount of methylglyoxal is possibly produced from 

malondialdehyde, ketone bodies and threonine. Malondialdehyde is one of reactive 

aldehyde products from lipid peroxidation. By using rat liver fractions, a glycolytic 

enzyme phosphoglucose isomerase was hypothesized to convert malondialdehyde to 

methylglyoxal (Agadjanyan, Dugin, & Dmitriev, 2006). Ketone bodies are synthesized 

from fatty acids when fats become main fuel, such as during nutritional deprivation. 

Ketone bodies include acetoacetate and its byproducts acetone and acetol, which can be 

further catalyzed into methylglyoxal (Beisswenger, Howell, Nelson, Mauer, & 

Szwergold, 2003; Nemet et al., 2006). A few human studies suggest that ketone bodies 

become significant precursors of methylglyoxal under certain conditions, such as low-

carbohydrate diet and diabetes (Beisswenger et al., 2003; Turk, Nemet, Varga-

Defteardarović, & Car, 2006).  
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In addition, threonine is speculated to be a substrate of methylglyoxal (Dhar, 

Desai, Kazachmov, Yu, & Wu, 2008). Threonine is typically catalyzed into glycine and 

acetyl-CoA. When the ratio of acetyl-CoA to CoA increases, which commonly occurs 

during starvation and diabetes, threonine can be non-enzymatically converted into 

aminoacetone instead (Nemet et al., 2006). Aminoacetone is subsequently catalyzed into 

methylglyoxal by copper/iron-dependent semicarbazidesensitive amine oxidase (SSAO) 

(Lyles & Chalmers, 1992, 1995) or ferricytochrome c (Sartori et al., 2013). Supportively, 

the increase in SSAO activity (Boomsma et al., 1999) and Cu2+ levels (Abou-Seif & 

Youssef, 2004) were reported in participants with type 1 and type 2 diabetes. The data 

suggest that non-carbohydrate substrates may become other significant sources for 

methylglyoxal formation, under abnormal metabolic conditions such as diabetes. 

Degradation 

Methylglyoxal is mainly degraded by glyoxalase system (Thornalley, 2003). 

Glyoxalase system is a ubiquitous set of metalloenzymes which consists of glyoxalase-1, 

glyoxalase-2, and cofactors, including reduced glutathione and reduced zinc ion 

(Thornalley, 2003; Vander Jagt & Hunsaker, 2003). The binding between methylglyoxal 

and glutathione forms a non-toxic intermediate hemithioacetal that is subsequently 

detoxified to S-lactoylglutathione by glyoxalase-1 (Thornalley, 2003). Glyoxalase-2 

converts S-lactoylglutathione to D-lactate, simultaneously recycling back the reduced 

glutathione (Thornalley, 2003). Apart from D-lactate, the conversion of methylglyoxal 

eventually to pyruvate and other metabolites was speculated to be very small comparing 

to the total metabolites of methylglyoxal (Best & Thornalley, 1999). Lesser amount of 

methylglyoxal can be degraded by other enzymes such as aldose reductase, betaine 
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aldehyde dehydrogenase, and 2-oxoaldehyde dehydrogenases (Rabbani & Thornalley, 

2015; Vander Jagt & Hunsaker, 2003). 

Methylglyoxal and Pathological Consequences 

Insulin Resistance 

Insulin resistance is generally characterized by defective response of the cells to 

insulin stimulation (Højlund, 2014). Methylglyoxal treatment impaired systemic insulin 

sensitivity in mice as compared to the controls (Dhar, Dhar, Jiang, Desai, & Wu, 2011; 

Nigro et al., 2014). Supportively, an elevation of methylglyoxal levels in blood (Nemet et 

al., 2005) and urine (Turk, Čavlović-Naglić, & Turk, 2011; Turk et al., 2009) was shown 

in participants with diabetes or impaired glucose metabolism (Maessen et al., 2015). 

Augmented plasma methylglyoxal was associated with diabetic nephropathy progression 

(Nakayama et al., 2008) and self-report pain in individuals with diabetic neuropathy 

(Bierhaus et al., 2012). These observations are convincible that methylglyoxal may 

involve in insulin resistance and type 2 diabetes.  

Existing data support that methylglyoxal can cause insulin resistance through 

perturbation of insulin signaling. Methylglyoxal decreased glucose uptake by abolishing 

insulin-stimulated phosphorylation of IRS1 (Afridi et al., 2016) and PI3K activity in 

adipocytes (Jia & Wu, 2007), muscle cells (Riboulet-Chavey, 2006), and endothelial cells 

(Nigro et al., 2014). In response to insulin stimulation, insulin receptor phosphorylates 

IRS1 at tyrosine residues to further activate downstream effectors such as PI3K and Akt. 

The tyrosine phosphorylation of IRS1 was reportedly attenuated by IRS1 serine 

phosphorylation, which was proposed to interfere with an activity of insulin receptor to 

interact or phosphorylate IRS1 (Tanti, Grémeaux, van Obberghen, & Le Marchand-
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Brustel, 1994). In mouse preadipocytes and human hepatocytes, methylglyoxal appeared 

to impaired insulin signaling by decreasing IRS1 tyrosine phosphorylation and 

simultaneously increasing serine phosphorylation of IRS1 (Afridi et al., 2016). 

Phosphorylation of insulin receptor and downstream effector Akt was reduced in 

methylglyoxal-treated HepG2 cells, corresponding to the reduction of glucose uptake and 

GLUT2 expression (Cheng, Cheng, Chiou, & Chang, 2012). In contrast, unaltered IRS1 

expression and elevated glucose uptake were observed in cultured L6 myoblasts treated 

with methylglyoxal (Engelbrecht et al., 2014). The study showed that methylglyoxal 

increased glucose uptake by reducing GLUT4 endocytosis, in turn, prolonged GLUT4 

expression in the plasma membrane (Engelbrecht et al., 2014). Similar findings were also 

found in L6 myoblasts that underwent methylglyoxal accumulation provoked by siRNA-

mediated knockdown of glyoxalase-1 (Engelbrecht, Stratmann, Hess, Tschoepe, & 

Gawlowski, 2013). The inconsistent findings may be due to differences in methylglyoxal 

concentrations, glucose uptake assays used among studies, and efficiency of glyoxalase 

systems among cell types.  

A few studies demonstrate that methylglyoxal modulates cellular activities 

through ligand receptors, including IGF-IR. Pretreatment of methylglyoxal, 1 mM to 

HEK293 cells and 0.25 mM to NIH3T3 cells, increased the IGF-I-induced activation of 

MEK/ERK that subsequently elevated expression of a cyclin-dependent kinase inhibitor 

p21 (Du et al., 2003). By using thymidine uptake assay, the increased p21 expression 

resulted in decreased cell proliferation in both cell lines. In hepatic HEK293 cell, co-

stimulation of IGF-I and methylglyoxal did not show significant effect on activation of 

PI3K or protein kinase C (PKC). The effect of methylglyoxal on IGF-I-dependent 
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pathways, however, was not investigated on fibroblast NIH3T3 cells. Co-stimulation of 

insulin and 0.5-mM-methylglyoxal increased PKC phosphorylation which, in turn, 

decreased glucose uptake in mouse 3T3-L1 preadipocyte cells (Afridi et al., 2016). The 

findings suggest that methylglyoxal may differently modulate effector proteins among 

cell types. 

Methylglyoxal possibly aggravate insulin resistance by causing functional decline 

in pancreatic beta-cells, which play a pivotal role in regulation of glucose-induced insulin 

synthesis and secretion. A recent study demonstrated that methylglyoxal downregulated 

activity of IRS1/PI3K pathway and subsequent downstream effectors, Akt and glycogen 

synthase kinase-3 (GSK3) (Fiory et al., 2011). Mutual activity of Akt and GSK3 was 

reported to activate pancreatic duodenal homeobox-1 (PDX1), a key transcription factor 

that regulates beta-cell maturation and function such as modulation of genes encoding 

insulin and glucokinase (Ashizawa, Brunicardi, & Wang, 2004; Kaneto et al., 2007). The 

methylglyoxal-induced downregulation of Akt and GSK3 significantly decreased mRNA 

expression of genes Pdx1, Ins1, and Gck, simultaneously reducing insulin secretion 

stimulated by glucose (Fiory et al., 2011). A transcription factor FOXO1, which is 

phosphorylated and inactivated by Akt, was proposed to suppress beta-cell maturation 

through inhibition of Pdx1 transcription (Kitamura et al., 2002). Accordingly, 

methylglyoxal increased activation and nuclear translocation of FOXO1 through Akt 

downregulation, contributing to a marked decrease in glucose-induced insulin secretion 

of beta-cells (Gao, Liao, et al., 2016). In addition, pancreatic mitochondrial function was 

deteriorated by methylglyoxal in vitro, concomitant with the reduction of mitochondrial 

transmembrane potential (Gao, Liao, et al., 2016), oxygen consumption, and ATP 
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production (Chang et al., 2016; Gao, Liu, et al., 2016). Taken together, methylglyoxal 

appears to diminish a responsiveness of target cells, and even beta-cells, to insulin 

stimulation through blunted multiple insulin-dependent pathways. Disturbance in 

glucose-driven insulin secretion from beta-cells possibly occurs due to methylglyoxal-

induced beta-cell dysfunction and increased apoptosis. Therefore, the development of 

insulin resistance and type 2 diabetes may be evoked by methylglyoxal.  

Obesity 

It is widely accepted that obesity is positively associated with the risk of type 2 

diabetes and cardiovascular diseases. Greater accumulation of methylglyoxal in 

adipocytes was exhibited in obese Zucker rats compared to lean rats (Jia, Chang, Wilson, 

& Wu, 2012). Recent studies showed that methylglyoxal was inversely associated with 

activity of glyoxalase-2 in extracted adipocytes from fructose-fed rats (Masterjohn et al., 

2013), and expression of glyoxalase-mRNA in obese participants with at least one risk 

factor of metabolic syndrome (Uribarri et al., 2015). These observations implicate the 

association of methylglyoxal and obesity. 

Recent studies indicated methylglyoxal induced adipogenesis. An increase in cell 

differentiation was observed in methylglyoxal-treated 3T3-L1 cells (Jia et al., 2012). 

Methylglyoxal upregulated Akt1, in turn, stimulated cell cycle progression and increased 

adipocyte-specific markers, e.g. leptin, adiponectin, PPARγ, and C/EBPα (Jia et al., 

2012). Receptor for AGEs (RAGE) is pro-inflammatory and presents in multiple tissues 

including adipose tissues (Brett et al., 1993; Dozio et al., 2016; Neeper et al., 1992; 

Schmidt et al., 1992). An interaction of AGEs and RAGE promoted 3T3-L1 cell 

differentiation through transactivation of IGF-I-dependent pathway, and increased ROS 
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production. Activation of tyrosine kinase Src by ROS led to phosphorylation of caveolae 

structure element caveolin1 and IGF-IR, stimulating downstream signaling proteins e.g. 

IRS1, phosphoinositide-dependent kinase 1 (PDK1), and Akt. (Yang et al., 2013). This, 

in turn, increased adipogenesis and expression of adipogenic markers, PPARγ and 

C/EBPα (Yang et al., 2013). In this process, caveolae was required as docking sites 

where signaling proteins were recruited and activated. The study synthesized AGEs by 

incubating bovine serum albumin and glyceraldehyde, which unnecessarily yielded 

methylglyoxal-derived adducts. AGE/RAGE axis is possibly one of intracellular 

pathways mediated by methylglyoxal-derived AGEs. The assumption is supported by 

Chen et al. (2012) who reported the effect of methylglyoxal-AGEs on quiescent 

adipocyte maturation. Through an axis of AGEs and RAGE, adipogenic function was 

restored in senescent adipocytes that featured the same phenotypes as adipose tissues 

extracted from obese animal and human cells (Chen et al., 2012). It was hypothesized 

that methylglyoxal suppressed expression of tumor suppressor p53 and p21 in senescent 

preadipocytes by direct binding between methylglyoxal and p53 (Chen et al., 2012). 

Collectively, individuals with preexisting metabolic disease have either increased 

methylglyoxal production and/or ineffective methylglyoxal elimination that, in turn, may 

contribute to the risk of obesity development. 

Vascular Conditions 

Vascular endothelial cell plays a pivotal role in maintenance of blood vessel and 

circulatory function, such as regulating vasomotor tone and blood flow, controlling the 

balance of thrombosis and thrombolysis, and modulating generation of new blood vessels 

(Sumpio, Riley, & Dardik, 2002). As a barrier, the functions of endothelial cells are 
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dynamic in response to stimuli such as inflammation (Sumpio et al., 2002). However, 

overstimulation of stimuli may disturb endothelial integrity and function contributing to 

multiple pathological processes, such as hypertension and atherosclerosis (Sumpio et al., 

2002). It is widely accepted that inflammation takes part in vascular complication, with 

which methylglyoxal may involve. Levels of MGH1 were positively associated with 

levels of C-reactive protein in children and adolescents with type 1 diabetes of short 

duration (Heier et al., 2015), who were previously reported to have an increasing trend of 

carotid artery intima-media thickness (Margeirsdottir, Stensaeth, Larsen, Brunborg, & 

Dahl-Jorgensen, 2010). The findings suggest that methylglyoxal-derived AGEs may link 

to inflammation, which is a leading factor for atherosclerosis since early stages of the 

disease.  

Methylglyoxal-treated aortic cells showed a decrease in levels of nitric oxide, 

which is an important endothelium-dependent relaxing agent (Brouwers et al., 2010; Sena 

et al., 2012; Turkseven, Ertuna, Yetik-Anacak, & Yasa, 2014). This was, at least in part, 

due to interference with nitric oxide production (Turkseven et al., 2014) and breakdown 

(Brouwers et al., 2010) as well as increased oxidative stress (Brouwers et al., 2010; Sena 

et al., 2012, 2012). Interestingly, prolonged exposure of methylglyoxal, but not 

methylglyoxal-derived AGEs, showed the harmful effect on the blood vessel dilation 

(Brouwers et al., 2010). Supportively, overexpression of glyoxalase-1 abolished such 

effect and MGH1 formation evoked by methylglyoxal in mice (Brouwers et al., 2010). 

The findings suggest that detrimental actions of methylglyoxal on vascular relaxation 

likely emerge from extracellular methylglyoxal and intrinsic methylglyoxal-mediated 

AGEs. Collectively, methylglyoxal may trigger the release of pro-inflammatory 
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cytokines and the generation of ROS, leading to compromised endothelium-dependent 

vasorelaxation. Moreover, methylglyoxal appeared to provoke platelet aggregation, 

decrease thrombus stability (Hadas, Randriamboavonjy, Elgheznawy, Mann, & Fleming, 

2013), increase macromolecule endocytosis by endothelial cells (Shinohara et al., 1998) 

and inhibit hypoxia-induced neovascularization (Ceradini et al., 2008). These evidences 

suggest a possible link of methylglyoxal to the development of macro- and microvascular 

conditions. 

Dietary Intervention Targeting Methylglyoxal 

Like other AGEs, methylglyoxal adducts can be produced in food. This is due to 

methylglyoxal can be generated from the non-enzymatic Maillard reaction between sugar 

and protein in food (Nemet et al., 2006; Poulsen et al., 2013; Sharma, Kaur, Thind, 

Singh, & Raina, 2015). Then, further chemical reactions contribute to the production of 

dietary methylglyoxal-derived AGEs (Nemet et al., 2006; Poulsen et al., 2013; Sharma et 

al., 2015). The formation of methylglyoxal depends on various factors, such as alkaline 

condition, low water activity, and high contents of sugar (Nemet et al., 2006), protein and 

fat (Sharma et al., 2015). The Maillard reaction play a role in a generation of diverse 

aroma, color and flavor compounds used in food products (Poulsen et al., 2013; Wang & 

Ho, 2012). High heat cooking methods (e.g. browning and roasting) and processing 

procedures to extend shelf-life (e.g. curing and canning) appear to enhance AGEs 

formation through the reaction (Poulsen et al., 2013; Sharma et al., 2015).  

Daily consumption of dietary AGEs was positively associated with serum 

methylglyoxal adducts in obese adults (Uribarri et al., 2015). The finding suggests that 

blood methylglyoxal may be modulated by food intake. A recent randomized control trial 
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reported that high AGE diet increased overall postprandrial response of glucose, ghrelin, 

vascular cell adhesion protein 1, and urinary oxidative marker F2-isoprostrane in healthy 

overweight participants as compared to low AGE group (Poulsen et al., 2014). Self-

reported appetite and insulin sensitivity remained unchanged, which may be due to the 

study period of 24 hours (Poulsen et al., 2014). Another double-blind trial found a significant 

improvement in insulin sensitivity in healthy overweight individuals who had low AGE 

diet for 2 weeks, as compared to high AGE group (de Courten et al., 2016). Despite 

inconclusive findings, it suggests that endogenous methylglyoxal may be controlled by 

restricted exogenous intake. 

Taken together, endocytosis and endosome trafficking are required for insulin 

signal transduction. Rab5-guanine nucleotide exchange factors, such as Rab5-activating 

protein 6 (RAP6), appear to facilitate insulin signaling through Rab5 activation. Due to 

the complexity of insulin signaling network, further evidence is still needed to reveal the 

novel function of RAP6 and additional protein effectors. Also, the association of 

methylglyoxal with insulin resistance, obesity, atherogenesis, and dietary intake deserves 

further investigation. Therefore, the current study was conducted to explore cellular 

mechanism(s) by which RAP6 regulates in vitro preadipocyte differentiation driven by 

methylglyoxal. Furthermore, the association of methylglyoxal, and various risk factors of 

chronic disease was also examined in ethnic participants, including African Americans 

and Haitian Americans.  
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Figure 1. Insulin signaling pathway in adipocytes. C/EBP= CCAAT enhancer-binding 
protein; ERK=extracellular signal-regulated kinase; FOXO1=forkhead box protein O1; 
GLUT4=glucose transporter 4; IGF-IR=insulin-like growth factor I receptor; IR=insulin 
receptor; IRS1=insulin receptor substrate 1; MEK=mitogen-activated protein kinase 
kinase; PDE3b=phosphodiesterase 3b; PI3K=phosphoinositide 3-kinase; 
PI3P=phosphatidylinositol 3-phosphate; PPARγ=peroxisome proliferator-activated 
receptor γ; Ras=rat sarcoma; SREBP1c=sterol regulatory element–binding protein 1c. 
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Figure 2. Regulation of small GTPase Rab5. GAPs=GTPase-activating proteins; 
GDI=Rab guanine-nucleotide dissociation inhibitor; GDP=guanosine diphosphate; 
GEFs=guanine nucleotide exchange factors; GTP=guanosine triphosphate; Pi=phosphate; 
RAP6=Rab5-activating protein 6. 
 

 

Figure 3. Rab5 and RAP6 activities in insulin signaling according to existing data.  
Akt=protein kinase B; GDP=guanosine diphosphate; GLUT4=glucose transporter 4; 
GTP=guanosine triphosphate; IGF-IR=insulin-like growth factor I receptor; IR=insulin 
receptor; IRS1=insulin receptor substrate 1; PI3K=phosphoinositide 3-kinase; 
PI3P=phosphatidylinositol 3-phosphate; RAP6=Rab5-activating protein 6. 
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Figure 4. Chemical structures of methylglyoxal, amino acid residues, and advanced 
glycation end products. Argpyrimidine=Nδ-(5-hydroxy-4,6-dimethylpyrimidine-2-yl)-L-
ornithine; CEA=N7-(1-carboxyethyl)-arginine; CEL=Nε-(1-carboxyethyl)-lysine; MG-
H1=Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-L-ornithine; MG-H2=2-amino-5-(2-
amino-5-hydro-5-methyl-4-imidazolon-1-yl)pentanoic acid; MG-H3=2-amino-5-(2-
amino-4-hydro-4-methyl-5-imidazolon-1-yl)pentanoic acid; MODIC=2-ammonio-6-({2-
{4-ammonio-5-oxido-5-oxopentyl)amino]-4-methyl-4,5-dihydro-1H-imidazol-5-
ylidene}amino)hexanoate; MOLD=1,3-di(Nε -lysino)-4-methyl-imidazolium; THP=Nδ-
(4-carboxy-4,6-dimethyl-5,6-dihydroxy-1,4,5,6-tetrahydropyrimidine-2-yl)-L-ornithine 
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Figure 5. Metabolism of methylglyoxal. Adapted from Chaplen (1998), Desai et al. 
(2010) and Rabbani & Thornalley (2015). AGEs=advanced glycation end products; 
DHAP=dihydroxyacetone phosphate; G3P=glyceraldehyde 3-phosphate; GSH=reduced 
glutathione; Pi=phosphate; SSAO=semicarbazide sensitive amino oxidase. 
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CHAPTER II  

SPECIFIC AIMS AND HYPOTHESES 

Available data has been shown that Rab5-activating protein 6 (RAP6) plays a role 

in receptor-mediated endocytosis and insulin signal transduction. As the internalization of 

receptors facilitates either sustaining or terminating insulin signals, RAP6 activity may be 

able to modulate stimuli-induced cellular signaling. Methylglyoxal has been found to 

alter insulin-dependent signaling pathways, including those related to preadipocyte 

differentiation. These evidences suggest that RAP6 activity is possibly associated with 

methylglyoxal-driven cellular events in preadipocytes. Particularly, expression of RAP6 

protein has been found in both insulin-responsive preadipocytes and adipocytes, which 

gives rise to an opportunity for further investigation. However, the association between 

RAP6 and methylglyoxal is still lacking and remains to be studied. Therefore, the first 

part of the dissertation was aimed to examine the effect of RAP6 overexpression on in 

vitro preadipocyte differentiation in relation to the potent metabolite methylglyoxal.  

Attention to methylglyoxal is growing due to its association with chronic 

conditions, especially insulin resistance and diabetes. One factor that contributes to 

methylglyoxal accumulation is high glucose condition. However, available data indicates 

a diversity of health between different racial/ethnic groups which may lead to 

inconsistent findings regarding the relationship between methylglyoxal and other risk 

factors. Due to existing knowledge gap, the latter part of the dissertation was conducted 

to examine the association of a prominent methylglyoxal-derived adducts, namely 

methylglyoxal hydroimidazolone 1 (MGH1), with risk factors of chronic diseases in 

Haitian American and African American participants with and without type 2 diabetes. 
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By studying ethnic participants, the current study aimed to establish additional 

understanding in the relationship among potential risk factors of chronic diseases in high 

risk populations.  

Specific aims and hypotheses are listed as follows.  

Specific Aim 1: To determine the activity of Rab5-activating protein 6 (RAP6), Rab5-

guanine nucleotide exchange factor, on in vitro preadipocyte differentiation. 

 Hypothesis 1a: Through Rab5 activation, RAP6 overexpression will modulate 

cell proliferation and differentiation of mouse 3T3-L1 preadipocyte cells. 

 Hypothesis 1b: Through Rab5 activation, RAP6 overexpression will alter 

selective insulin downstream effector(s) in mouse 3T3-L1 preadipocyte cells (Figure 1). 

 Hypothesis 1a and 1b were examined in chapter III. 

Specific Aim 2: To elucidate the effect of a dicarbonyl compound methylglyoxal on in 

vitro preadipocyte differentiation mediated by RAP6. 

 Hypothesis 2a: Methylglyoxal will increase proliferation and differentiation of 

mouse 3T3-L1 preadipocyte cells.  

 Hypothesis 2b: RAP6 overexpression will alter an effect of methylglyoxal 

through specific insulin downstream effector(s) in mouse 3T3-L1 preadipocyte cells 

(Figure 1). 

 Hypothesis 2a and 2b were tested in chapter III. 

Specific Aim 3: To examine relationships between serum levels of methyglyoxal-derived 

adduct, methylglyoxal hydroimidazolone 1 (MGH1) and risk factors of chronic disease in 

African American and Haitian American participants with and without type 2 diabetes. 
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Hypothesis 3a: Participants with type 2 diabetes will have serum MGH1 level 

greater than those without type 2 diabetes. 

 Hypothesis 3a was examined in chapter IV, V, and VI. 

Hypothesis 3b: Serum MGH1 levels will be positively associated with levels of 

fasting plasma glucose and hemoglobin A1c. 

 Hypothesis 3b was examined in chapter IV. 

Hypothesis 3c: Serum MGH1 levels will be associated with levels of selected 

cardiovascular risk factors.  

 Hypothesis 3c was examined in chapter V. The selected cardiovascular 

risk factors were homocysteine, high sensitivity C-reactive protein, 

triglycerides, total cholesterol, low-density lipoproteins and high-density 

lipoproteins. 

Hypothesis 3d: Serum MGH1 level will be negatively associated with healthy 

eating indices, healthy eating index 2005 and alternate healthy eating index. 

 Hypothesis 3d was tested in chapter VI.  

SIGNIFICANCE 

An integration of findings from in vitro and in vivo studies substantially 

contributed to a better understanding of the development of obesity as well as the 

relationship between risk factors of chronic diseases. This, in turn, may lead to prevention 

strategies. Biochemical, cellular, and molecular assays were utilized in this dissertation to 

provided new information at several levels: (1) They determined whether RAP6 

represented a novel regulatory protein of preadipocyte differentiation, presumably 

through Rab5 activation; (2) They identified key cellular mechanism of RAP6 that was 
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required in methylglyoxal-mediated preadipocyte differentiation; (3) They examined 

whether there were the associations between levels of methylglyoxal and other risk 

factors of chronic diseases. Finally, these observations may have implications for Rab5 

regulation and function in adipogenesis, presenting RAP6 as the center of a cellular 

mechanism for controlling specific Rab5 function. Therefore, the observations 

established by this study provided a strong foundation to explore the roles of RAP6 

through Rab5 function in receptor internalization and signaling in normal and 

pathological conditions. Additionally, the current study suggested a significant 

association of methylglyoxal with biomarkers and modifiable risk factors of diabetes and 

cardiovascular disease among Black subgroups, which deserves further investigation.  
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Figure 1. The working model for the purposed in vitro study. The illustration showed 
the pathways speculated to be modulated by RAP6 activity (Specific Aim 1) and 
methylglyoxal (Specific Aim 2). C/EBP= CCAAT enhancer-binding protein; 
GDP=guanosine diphosphate; GLUT4=glucose transporter 4; GTP=guanosine 
triphosphate; IGF-IR=insulin-like growth factor I receptor; IR=insulin receptor; 
IRS1=insulin receptor substrate 1; MG=methylglyoxal; PI3K=phosphoinositide 3-kinase; 
PPARγ=peroxisome proliferator-activated receptor γ; RAP6=Rab5-activating protein 6. 
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CHAPTER III 

Rab5-Activating Protein 6 and Methylglyoxal: A Role in Adipocyte Differentiation 

ABSTRACT 

INTRODUCTION: Rab5-activating protein 6 (RAP6), a Vps9-containg protein, has 

recently discovered to facilitate insulin signaling and insulin-receptor trafficking through 

Rab5 activation. Methylglyoxal is a dicarbonyl compound that has been reported to alter 

insulin signaling and subsequent cellular events. This suggests an association of 

methylglyoxal with RAP6-mediated insulin signal transduction, which remains unknown.   

PURPOSE: The study was aimed to investigate the impact of RAP6 overexpression on 

mouse 3T3-L1 preadipocyte differentiation in a presence of methylglyoxal. 

METHOD: Mouse 3T3-L1 preadipocytes overexpressing GFP (control) and RAP6 were 

generated. The 3T3-L1 differentiation was measured by oil red o staining. Expression of 

selected proteins was detected by Western blot analysis. Cell proliferation was 

determined by MTT assay, while cell cycle progression was examined by flow 

cytometry. Levels of methylglyoxal-derived hydroimidazolone 1 (MGH1) in 3T3-L1 

cells were measured by competitive ELISA.  

RESULTS: Methylglyoxal treatment (10 µM) increased 3T3-L1 differentiation as 

evidenced by a significant increase in expression of adipogenic markers, PPARγ and 

C/EBPα. This was corresponded to a marked elevation in Akt phosphorylation at Ser473. 

Methylglyoxal also promoted 3T3-L1 proliferation and accelerated cell cycle 

progression. However, RAP6 overexpression inhibited 3T3-L1 differentiation, 

concomitant with suppression of PPARγ. These suppressions were unaltered by 

methylglyoxal. Phosphorylation of Akt1 at Ser473 was abolished by combination of 
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RAP6 overexpression and methylglyoxal treatment, even more than that by RAP6 

overexpression alone. In addition, differentiated 3T3-L1 cells had elevated levels of 

MGH1, which was enhanced by high glucose condition. 

CONCLUSION: Methylglyoxal at low concentration stimulated 3T3-L1 differentiation 

and proliferation which appeared to be neutralized by RAP6 overexpression. Therefore, 

RAP6 may be a key regulator that modulates methylglyoxal-stimulated preadipocyte 

differentiation.  

INTRODUCTION 

Adipocytes play an important role in energy storage in a form of triacylglycerols 

when excess energy is consumed in the diet. Adipogenesis is the differentiation of 

premature preadipocyte to form fat-laden adipose tissues (Ali, Hochfeld, Myburgh, & 

Pepper, 2013). An increase in adipogenesis can lead to an excess fat accumulation in the 

body which is a key feature of obesity (Attie & Scherer, 2009). Therefore, adipogenesis 

needs to be tightly regulated so as to function properly. 

Insulin plays a key role in adipogenesis by promoting glucose uptake (Charron, 

Brosius, Alper, & Lodish, 1989; Watson, Kanzaki, & Pessin, 2004) and stimulating 

downstream cascades that initiate adipocyte differentiation (Siersbaek & Mandrup, 

2011). Receptor tyrosine kinases, e.g. insulin receptor (IR) and insulin-like growth factor 

I receptor (IGF-IR), have been recognized as key components for insulin signal 

transduction. The receptors, which are associated with the plasma membrane, serve as a 

docking platform for multiple signaling cascades in response to insulin stimulation. One 

of the well-characterized pathways include a cascade constituting insulin receptor 

substrates (IRS 1-6), phosphoinositide 3-kinases (PI3Ks) and Akt, which acts as a central 
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pathway harnessing adipogenesis and cell survival (Stenkula et al., 2004). Once 

activated, PI3K produces phosphatidylinositol (3,4,5)-trisphosphate in the plasma 

membrane creating anchoring sites for downstream effectors, e.g. Akt (McCurdy & 

Klemm, 2013) and storage vesicles of glucose transporter 4 (GLUT4) (Bai et al., 2007; 

Calera et al., 1998). Along with other proteins, activated Akt subsequently induces 

GLUT4 translocation to the plasma membrane where glucose uptake takes place (Cong et 

al., 1997; McCurdy & Klemm, 2013).  

Insulin can also activate extracellular signal–regulated kinase 1/2 (ERK1/2) 

(Porras & Santos, 1996) which play a role in activation of cell cycle regulatory proteins 

(Yohannes & Yohannes, 2009) and induction of mitotic clonal expansion (MCE) during 

the early phase of adipogenesis (Tang, Otto, & Lane, 2003). This lead to expression of 

CCAAT enhancer-binding protein β (C/EBPβ) which is required for initiating MCE 

(Tang et al., 2005, 2003). Then, C/EBPβ and δ cause co-expression of transcription 

factors, i.e. C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ), that 

subsequently induces complete maturation of adipocytes (Lefterova & Lazar, 2009; 

Siersbaek & Mandrup, 2011). 

Apart from transmitting signal at the plasma membrane, receptors and their 

ligands can amplify or degrade the signal through endocytosis. Clathrin-mediated 

endocytosis is a well-characterized mechanism which play an important role in 

internalization of multiple receptors, including IR (Ceresa, Kao, Santeler, & Pessin, 

1998) and IGF-IR (Romanelli et al., 2007). Upon ligand activation, ligand-bound 

receptors are internalized from the plasma membrane to early endosomes (Le Roy & 

Wrana, 2005). The early endosomes containing ligand-receptor complex are further 
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directed to target intracellular compartments for either receptor degradation and signal 

termination, or receptor recycling to the plasma membrane and maintaining signal 

transduction (Irannejad, Tsvetanova, Lobingier, & von Zastrow, 2015). A small GTPase 

Rab5 has been found to facilitate receptor-mediated clathrin-dependent endocytosis 

(Kajiho et al., 2003; Nielsen, Severin, Backer, Hyman, & Zerial, 1999; Su, Lodhi, Saltiel, 

& Stahl, 2006) as well as early endosome biogenesis, sorting and fusion (Bucci et al., 

1992; Rybin et al., 1996; Zeigerer et al., 2012). Therefore, Rab5 is a key component that 

links clathrin-mediated endocytosis to ligand-activated cell signaling.  

Rab5 is a member of Ras GTPase superfamily that mainly participates in 

membrane trafficking. Rab5 switches between an inactive form bound to guanosine 

diphosphate (GDP), and an active form bound to guanosine triphosphate (GTP) (Mizuno-

Yamasaki, Rivera-Molina, & Novick, 2012). The switching process is accelerated by two 

sets of proteins: guanine nucleotide exchange factors (GEFs) activate Rab5 by promoting 

the exchange of GDP to GTP; and GTPase-activating proteins (GAPs) deactivate Rab5 

by stimulating hydrolysis of GTP to GDP (Mizuno-Yamasaki et al., 2012). Typically, 

Rab5 is localized at the plasma membrane and early endosomal membrane (Chavrier, 

Parton, Hauri, Simons, & Zerial, 1990). In cytosol, GDP-bound Rab5 is formed as a 

complex to Rab guanine-nucleotide dissociation inhibitor (GDI) which is speculated to 

translocate Rab5 to or from the functional target sites (Ullrich, Horiuchi, Bucci, & Zerial, 

1994).   

Rab5-specific GEFs contain a highly-conserved Vps9 domain which is required 

for Rab5 activation (Burd, Mustol, Schu, & Emr, 1996; Delprato & Lambright, 2007; 

Tsukamoto et al., 2015). Among Rab5-GEFs, Ras interference 1 (Rin1) (Balaji et al., 
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2012; Kavitha Balaji & Colicelli, 2013; Ding, Wang, & Chen, 2009; Galvis, Balmaceda, 

et al., 2009; Galvis, Giambini, Villasana, & Barbieri, 2009; Hunker, Giambini, et al., 

2006; Tall, Barbieri, Stahl, & Horazdovsky, 2001), and Rabex-5 (Aikawa, 2012; 

Delprato, Merithew, & Lambright, 2004; Kalesnikoff et al., 2007; Harald Stenmark, 

Vitale, Ullrich, & Zerial, 1995; Zhang et al., 2014) have been widely studied to examine 

their involvement in Rab5 activity. However, available data remains scarce for Rab5-

activating protein 6 (RAP6), also known as GAPex-5 (Lodhi et al., 2007) and hRME-6 

(Sato et al., 2005), which is newly discovered to participate in Rab5 activation (Hunker, 

Galvis, et al., 2006).  

Activities of RAP6 and Rab5 were reported to mediate insulin-stimulated cellular 

events. In insulin-responsive NIH3T3/hIR cells, knockdown of all Rab5 isoforms (Rab5a, 

Rab5b and Rab5c) or RAP6 markedly reduced insulin-dependent activation of Akt (Su et 

al., 2006). Interestingly, expression of Rab5 isoforms was significantly suppressed in 

obese Zucker rats as compared to lean rats (Su et al., 2006), suggesting the involvement 

of Rab5 in obesity. Overexpression of wild-type RAP6 inhibited GLUT4 translocation, 

whereas RAP6 mutant lacking Vps9 domain caused less inhibition (Lodhi et al., 2007). 

These findings suggest that there may be an interaction between Vps9 and other domains, 

e.g. proline-rich domain and Ras-GAP domain, in RAP6 to fully regulate Rab5-mediated 

glucose uptake and adipogenesis. In addition, RAP6 and Rab5 activities participated in 

GLUT4 translocation by facilitating insulin-induced formation of phosphatidylinositol 3-

phosphate in the plasma membrane of 3T3-L1 preadipocytes (Lodhi et al., 2008). 

Collectively, Rab5 and RAP6 activity possibly have a potential role in insulin-dependent 

signaling and metabolism in preadipocytes.  
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Methylglyoxal is a dicarbonyl compound that can be produced endogenously 

from the breakdown of macronutrients (Phillips & Thornalley, 1993) as well as obtained 

from foods (Poulsen et al., 2013). Recent studies indicated that methylglyoxal induced 

adipogenesis. An increased proliferation was shown in methylglyoxal-treated 3T3-L1 

cells (Jia, Chang, Wilson, & Wu, 2012). Methylglyoxal upregulated Akt1 that, in turn, 

stimulated cell cycle progression and elevated adipocyte-specific markers, e.g. leptin, 

adiponectin, PPARγ, and C/EBPα. (Jia et al., 2012). As a highly reactive glucose 

derivative, methylglyoxal can bind to amino acid residues forming advanced glycation 

end products (AGEs). Receptor for AGEs (RAGE) is pro-inflammatory and presents in 

multiple tissues including adipose tissues (Brett et al., 1993; Dozio et al., 2016; Neeper et 

al., 1992; Schmidt et al., 1992). Through the interaction of methylglyoxal-AGEs and 

RAGE, adipogenic function was restored in senescent adipocytes that featured the same 

phenotypes as adipose tissues extracted from obese animal and human cells (Chen, Abell, 

Moon, & Kim, 2012). It was hypothesized that methylglyoxal directly bound tumor 

suppressor p53 and thereby reduced expression of tumor suppressor p53 and p21 in 

senescent preadipocytes (Chen et al., 2012). In contrast, methylglyoxal was also reported 

to inhibit insulin signaling. A recent study demonstrated that methylglyoxal treatment 

diminished tyrosine phosphorylation of IRS1, Akt activation and subsequent glucose 

uptake in 3T3-L1 preadipocytes (Afridi et al., 2016). Regardless, methylglyoxal possibly 

alter ligand signaling and thereby interfere with preadipocyte proliferation and 

differentiation.  

Given that receptor trafficking plays a role in ligand signal transduction, a change 

in RAP6 activity may impact ligand-activated cellular events elicit by methylglyoxal. As 
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previously reported, protein RAP6 expresses in predipocyte and differentiated adipocyte 

cells (Lodhi et al., 2007), which provides an opportunity to observe RAP6 activity in 

preadipocyte model. Therefore, the current study was aimed to explore the impact of 

RAP6 overexpression on in vitro preadipocyte differentiation driven by methylglyoxal. 

MATERIAL AND METHOD 

Materials  

 Mouse 3T3-L1 preadipocyte cells, Platinum A (Plat-A) packaging cells, human 

HEK293T kidney cells were obtained from American Type Culture Collection (ATCC, 

Manassas, VA, USA). Anti-GFP antibodies were obtained from Santa Cruz 

Biotechnology, Inc. (Dallas, TX, USA). Anti-RAP6 antibodies were prepared and 

obtained as described elsewhere (Hunker, Galvis, et al., 2006). Other primary antibodies 

(e.g. antibodies against Akt1, p-Akt1 (Ser473), PPARγ, C/EBPα, p-ERK1/2, and 

GAPDH) and secondary antibodies were obtained from Cell Signaling Technology 

(Boston, MA, USA). Methylglyoxal was purchased in a concentration of 40% w/v (6.5 

M) in water (Sigma Aldrich, St. Louis, MO, USA). All other reagents and supplies were 

purchased from Fisher Scientific (Pittsburgh, PA, USA) except as specifically described.  

Generation of Stable Cell Lines  

Complementary DNAs (cDNAs) of GFP were subcloned into pMX-puro vector, 

while cDNAs of RAP6:wild type (WT) were cloned into pBABE-puro vector as 

described elsewhere (Barbieri, Fernandez-Pol, Hunker, Horazdovsky, & Stahl, 2004). 

Production of retroviruses containing GFP constructs was perform on Plat-A packaging 

cells, whereas human HEK293T cells were used to generate retroviruses containing 

RAP6:WT constructs. Plat-A cells were grown in Dulbecco’s minimum essential medium 
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(DMEM) containing 10% fetal bovine serum (FBS), 100 unit/ml penicillin G sodium and 

100 μg/ml streptomycin sulfate, 1 ug/ml puromycin, and 10 µg/mL blasticidin. HEK293T 

were cultured in DMEM containing 10% FBS, penicillin and streptomycin.  

By using Lipofectamine® 2000 kit (Invitrogen, Grand Island, NY, USA), the 

80%-confluent Plat-A or HEK293T cells were transfected with GFP or RAP6:WT 

construct, respectively. After 48-hour incubation, retroviral supernatant was harvested 

and further used along with 5ug/ml polybrene to transfect 3T3-L1 cells, generating GFP- 

and RAP6-overexpressing cell lines. After 72 hours, transfected 3T3-L1 cells were 

selected by using regular growth media containing 4 ug/ml puromycin for at least 9 days. 

The successfully transfected cells then were maintained in growth media constituting 0.5 

μg/ml puromycin. 

Cell Culture and 3T3-L1 Differentiation Assay 

Mouse embryonic fibroblasts, especially 3T3-L1 cell line, have been widely used 

as in vitro preadipocyte models to investigate novel signaling pathways in adipose tissues 

(Jia et al., 2012; Lodhi et al., 2008; Siersbaek & Mandrup, 2011). Mouse 3T3-L1 

preadipocytes were cultured to confluence in DMEM containing 10% FBS, 100 unit/ml 

penicillin G sodium and 100 μg/ml streptomycin sulfate. An in vitro differentiation 

procedure of 3T3-L1 preadipocyte cells was performed (Green & Meuth, 1974), with a 

slight modification in differentiation-inducing stimulant mix based on Jia et al. (2012). 

Briefly, 3T3-L1 cell differentiation was induced by a cocktail mix constituting 0.5 µM 3-

isobutyl-methylxanthine, 0.25 µM dexamethasone, and 0.43 µM insulin (MDI). On the 

fifth day after differentiation induction, the cells were then maintained in DMEM 

containing 10% FBS, penicillin, streptomycin, and 2.5 ug/ml insulin until fully 
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differentiation (about 10-14 days). The media was changed every other day. To determine 

effect of methylglyoxal on 3T3-L1 differentiation, working methylglyoxal solution was 

freshly prepared before use. The cells were treated with or without methylglyoxal, which 

was added as same time as when media was changed. Similar protocols of differentiation 

assay and methylglyoxal treatment were applied to GFP- and RAP6-overexpressing cells.  

Quantification of Lipid Accumulation 

 Intracellular triacylglycerols were quantified using oil red O (ORO) staining 

protocol (Halvorsen et al., 2001), with a slight modification. Briefly, differentiated 3T3-

L1 cells were fixed with 10% formaldehyde and stained with working ORO solution for 

15 minutes at room temperature and washed three times with distilled water. The 

remained dye was eluted with 100% isopropanol for 10 minutes at 37 oC. Optical density 

of the solution was measured using a spectrophotometer at a wavelength of 540 nm. 

Normal 3T3-L1 cells without methylglyoxal treatment served as a control to compare 

with cells treated with methylglyoxal, whereas GFP-overexpressing cells were used to 

compare with those overexpressing RAP6. 

Measurement of Cell Size 

 The cells were induced to differentiate in an absence or presence of methylglyoxal 

and subsequently underwent ORO staining. All photographs of dyed cells were captured 

using QCapture software (Surrey, BC, Canada), which were randomly selected and used 

for cell size measurement by ImageJ64 software (Bethesda, MD, USA). Perimeter of 

differentiated 3T3-L1 cells was measured in the unit of micrometer (µm). To ensure a 

circular shape, only data from differentiated cells that had roundness between 0.35 and 

1.00, was included in the analysis.  
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Western Blot Analysis 

 Western blot analysis described by Kohn et al. (1996) was utilized to measure 

expression of selected proteins, including GFP, RAP6, Akt1, p-Akt1 (Ser473), PPARγ, 

C/EBPα, p-ERK1/2, and GAPDH. Briefly, differentiated 3T3-L1 cells were lysed in ice-

cold lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% Nonidet P-40, 0.25% 

sodium deoxycholate, 50 mM NaF, 0.2 mM Na3VO4, and 1 mM PMSF). The cell lysates 

were separated through SDS-PAGE and transferred onto a nitrocellulose membrane 

(Millipore, Billerica, MA, USA). After blocking, the membranes were incubated in 

primary antibodies overnight at 4 oC. The membranes were washed thrice with TBST, 

incubated in appropriate secondary antibodies for an hour, and underwent three washes of 

TBST. Protein expression images were acquired by using darkroom development 

technique for enhanced chemiluminescence (Thermo Fisher Scientific, MA, USA). 

Protein expression was quantified by densitometry analysis using ImageJ64 software 

(Bethesda, MD, USA). GAPDH was used as a protein loading control. 

Cell Proliferation Assay 

 Cell proliferation was measured by a 3-(4, 5-dimethylthiazolyl-2)-2, 5-

diphenyltetrazolium bromide (MTT) assay which was described elsewhere (Kang, Nam, 

Kim, Huh, & Lee, 2013), with a slight modification. 3T3-L1 cells were seeded in a 96-

well plate at 1 x 104 cell/ml. After incubation in serum-free medium overnight, the cells 

were treated with or without methylglyoxal in regular growth medium for 24 hours. After 

methylglyoxal treatment, the cells were incubated in MTT-containing growth medium for 

2 hours in the dark until purple precipitate became visible. Then, detergent reagent was 

added to dissolve purple formazan crystals. Optical density at 570 nm of the solutions 
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were determined using a microplate reader (BioTek®, Winooski, VT, USA). Normal 3T3-

L1 cells without methylglyoxal treatment served as a control which was used to compare 

with methylglyoxal-treated cells.   

Cell Cycle Analysis 

 Cell cycle progression was measured by flow cytometry. Once GFP- and RAP6-

overexpressing cells reached 50% confluence, the cells were treated with or without 

methylglyoxal for 24 hours. After incubation, the cells were harvested, washed, and re-

suspended in 0.5 ml of PBS, and fixed in 4.5 ml of ice-cold 100% ethanol for 30 minutes. 

The cells were centrifuged, re-suspended in 0.5 ml of 0.1% Triton-X solution containing 

5 µl of RNase (20 µg/ml), and incubated in the dark at 37 oC for 20 minutes. The cell 

suspension was added with 5 µl of propidium iodide (50 µg/ml) and incubated in the dark 

at room temperature for 30 minutes. The flow cytometry then was performed on a BD 

Accuri™ C6 flow cytometer (BD Biosciences, San Jose, CA, USA). The data for cell 

cycle analysis were collected and analyzed from 20,000 to 30,000 gated events by BD 

Accuri™ software (BD Biosciences, San Jose, CA, USA). 

Methylglyoxal Measurement 

A prominent methylglyoxal adduct, hydroimidazolone 1 (MGH1), in sample 

lysates of differentiated 3T3-L1 cells were measured by OxiSelect™ MG competitive 

ELISA kit (Cell Biolabs, Inc., San Diego, CA, USA). The quantity of MGH1 was 

compared to a standard curve of predetermined MG-BSA. 

Statistical Analyses 

A Shapiro-Wilk’s test and visual inspection of their histograms, normal Q-Q 

plots, and box plots were used to examine whether variables were normally distributed. 
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Normal distributed data were expressed in mean±standard deviation (SD), percentage 

(%). Skewed distributed variable were shown in median and interquartile range (IQR). 

The difference between groups were determined by Student’s t-test for normal distributed 

variables, while Mann-Whitney U test was used for skewed distributed variables. Tests 

were considered statistically significant if p-value was less than 0.05. All data were 

analyzed by using SPSS version 23.0 (SPSS Inc., Chicago, IL, USA). 

RESULTS 

Sample Characteristics 

 According to a Shapiro-Wilk’s test (p>0.05; Razali & Wah, 2011) and a visual 

inspection of histograms, normal Q-Q plots and box plots, the data for cellular protein 

expression, cell cycle phase distribution, and cellular MGH1 concentration were 

approximately normally distributed for all experiment groups. However, the data 

distribution for cell differentiation in oil red O assay, cell perimeter, and cell proliferation 

in MTT assay were skewed for some subgroups as evidenced by p-value less than 0.05 in 

Shapiro-Wilk’s test and/or apparent skewness of data in visual plots.  

Methylglyoxal impacted 3T3-L1 differentiation 

 To determine whether methylglyoxal impacted 3T3-L1 differentiation, the 3T3-

L1 differentiation assay with or without methylglyoxal treatment (0-200 µM) was 

performed. Methylglyoxal treatment at 10 µM significantly increased 3T3-L1 

differentiation (median: 106.34%; IQR: 105.04%-110.96%; p=0.016 vs control) as 

compared to untreated cells (median: 100.56%; IQR: 96.06%-103.10%; Figure 1). The 

differentiation was gradually decreased when methylglyoxal concentrations increased. 

The significant reduction of differentiation emerged at 50 µM (median: 89.77%; IQR: 
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86.80%-96.83%; p=0.016 vs control), 150 µM (median: 85.28%; IQR: 80.88%-92.00%; 

p=0.010 vs control) and 200 µM of methylglyoxal (median: 79.17%; IQR: 78.17%-

86.15%; p=0.004 vs control).  

Methylglyoxal enhanced 3T3-L1 preadipocyte enlargement and increased expression 

of adipogenic markers.  

 Measurement of cell size was then performed to investigate whether 

methylglyoxal increased differentiation through adipocyte enlargement, one of the key 

features in adipogenesis. 3T3-L1 cells were induced to differentiate with or without 10 

µM of methylglyoxal. The methylglyoxal concentration of 10 µM was chosen due to the 

highest effect on 3T3-L1 differentiation. Subsequently, the cells underwent ORO 

staining, in which photos of the stained cells were captured and used for measurement of 

cell perimeter (Figure 2A). Methylglyoxal-treated cells significantly had a greater cell 

perimeter than untreated cells (control (n=310), median: 60.13 µm, IQR: 55.28-69.73 µm 

vs methylglyoxal (n=354), median: 65.64 µm, IQR: 59.95-78.77 µm, p<0.001; Figure 

2B). 

 Western blot analysis was also performed to determine expression of adipogenic 

markers, PPARγ and C/EBPα, in an absence or presence of methylglyoxal (10 µM). 

Marginally, methylglyoxal treatment resulted in elevated PPARγ expression as compared 

to the control (1.18±0.10 folds relative to the control, p=0.091 vs control, Figure 3A and 

3B). Methylglyoxal treatment caused a significant increase in expression of C/EBP-p42 

(1.16±0.03 folds relative to the control, p=0.002 vs control, Figure 3A and 3C) and 

C/EBP-p30 isoforms (1.23±0.10 folds relative to the control, p=0.016 vs control, Figure 

3A and 3D). 
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Methylglyoxal upregulated ERK1/2 in the early phase of 3T3-L1 differentiation. 

As previously reported, ERK1/2 was required for cell cycle progression and 

mitotic clonal explansion (MCE) (Tang et al., 2003). To determine whether 

methylglyoxal altered ERK1/2 activation, differentiation of 3T3-L1 cells was induced for 

5 minutes in an absence or presence of methylglyoxal (10 µM). Western blot results 

showed that methylglyoxal treatment markedly increased phosphorylation of ERK1/2 as 

compared to untreated cells (Figure 4).  

Methylglyoxal increased Akt1 phosphorylation at Ser473 in 3T3-L1 cells. 

 Methylglyoxal was reported to alter Akt phosphorylation (Afridi et al., 2016; Jia 

et al., 2012), which plays an important role in adipocyte differentiation (Kim et al., 2010; 

Maiuri, Ho, & Stambolic, 2010; Xu & Liao, 2004). Therefore, Western blot analysis was 

conducted to determine Akt1 activation in fully differentiated 3T3-L1 cells. The results 

showed that phosphorylation of Akt1 at Ser473 was significantly increased in 

methylglyoxal-treated cells as compared to untreated cells (1.16±0.03 folds relative to the 

control, p=0.002 vs control, Figure 5A and 5B).  

RAP6 overexpression caused inhibition of 3T3-L1 differentiation which was unaltered 

by methylglyoxal treatment.  

RAP6 has been speculated to activate Rab5 (Hunker, Galvis, et al., 2006), 

suggesting its association with receptor-mediated endocytosis and signal transduction. To 

determine the effect of RAP6 activity on 3T3-L1 differentiation, RAP6-overexpressing 

cell lines were generated along with GFP-expressing cells which served as the control. 

Amino acid sequences of RAP6 and its constituting domains were illustrated in Figure 

6A. The expression of GFP and RAP6 was confirmed by Western blot analysis (Figure 
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6B). The GFP- and RAP6-overexpressing cells underwent differentiation assay with or 

without methylglyoxal. The methylglyoxal concentration of 10 µM was chosen due to the 

highest effect observed in non-transfected 3T3-L1 cells. Similar to non-transfected cells, 

methylglyoxal treatment significantly increased differentiation of the GFP-

overexpressing cells (median: 120.40%, IQR: 113.64%-127.33%, p=0.006 vs non-treated 

GFP control) as compared to non-treated cells (median: 99.68%, IQR: 95.66%-104.02%; 

Figure 6C). Overexpression of RAP6 markedly diminished 3T3-L1 differentiation as 

compared to the untreated cells expressing GFP (median: 58.87%, IQR: 48.55%-72.85%, 

p=0.004 vs non-treated GFP control). The decreased differentiation by RAP6 

overexpression was unaltered by methylglyoxal treatment as the differentiation remained 

markedly lower than untreated GFP-overexpressing cells (median: 55.74%, IQR: 

50.09%-60.15%, p=0.004 vs non-treated GFP control), but not different from untreated 

RAP6-overexpresing cells (p=0.631 vs non-treated RAP6). 

Expression of adipogenic markers was decreased by RAP6 overexpression and 

remained suppressed in a presence of methylglyoxal. 

To determine whether RAP6 overexpression could affect expression of PPARγ 

and C/EBPα, Western blot analyses were performed after differentiation assay with or 

without 10 µM of methylglyoxal. Overexpression of RAP6 resulted in PPARγ 

suppression in 3T3-L1 cells (p=0.018 vs untreated GFP; Figure 7A and 7B). A slight 

decrease in expression of C/EBPα-p42 and -p30 isoforms in RAP6-overexpressing cells 

was shown, yet not statistically significant (p=0.125 and p=0.191 vs untreated GFP, 

respectively; Figure 7A, 7C and 7D). In GFP-overexpressing cells, methylglyoxal 

treatment moderately increased expression of PPARγ in GFP-overexpressing cells 
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(p=0.077 vs untreated GFP) as well as caused a significant increase in expressions of 

C/EBPα-p42 (p=0.014 vs untreated GFP) and C/EBPα-p30 (p=0.041 vs untreated GFP). 

Interestingly, methylglyoxal treatment caused a marginal suppression of C/EBPα-p30 

(p=0.073 vs untreated GFP), but not expression of PPARγ (p=0.483 vs untreated GFP) 

and C/EBPα-p42 (p=0.111 vs untreated GFP) in a presence of RAP6 overexpression. 

There was no significant difference in expression of PPARγ (p=0.483 vs untreated 

RAP6), C/EBPα-p42 (p=0.454 vs untreated RAP6), and C/EBPα-p30 (p=0.262 vs 

untreated RAP6) between RAP6-overexpressing cells with and without methylglyoxal 

treatment. 

RAP6 overexpression significantly inhibited Akt1 phosphorylation. Methylglyoxal 

appeared to enhance Akt1 downregulation by RAP6 overexpression. 

It was speculated that RAP6 modulated an activity of insulin-dependent 

downstream protein such as PI3K (Lodhi et al., 2008) as well as GLUT4 translocation 

(Lodhi et al., 2007). Given that Akt has been recognized as a major downstream effector 

of PI3K, RAP6 may also impact Akt activity. Following differentiation assay with or 

without methylglyoxal (10 µM), Western blot analyses were performed to determine 

Akt1 activation. Phosphorylation of Akt1 at Ser473 was significantly inhibited by RAP6 

overexpression (p=0.019 vs untreated GFP; Figure 8A and 8B). Interestingly, this 

inhibition was markedly enhanced by methylglyoxal treatment as compared to untreated 

GFP control (p<0.001vs untreated GFP) and untreated RAP-overexpressing cells 

(p=0.007 vs untreated RAP6). In contrast, methylglyoxal significantly increased Akt1 

phosphorylation at Ser473 in GFP-overexpressing cells (p=0.010 vs untreated GFP). 
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Methylglyoxal increased 3T3-L1 proliferation 

It was previously reported that methylglyoxal increased proliferation in 3T3-L1 

cells (Jia et al., 2012), cell proliferation with or without methylglyoxal treatment (0-200 

µM) was determined. Methylglyoxal markedly increased median 3T3-L1 proliferation at 

10, 30, 50 and 200 µM to 130.50% (IQR: 125.75%-149.75%; p=0.004), 136.50% (IQR: 

132.50%-185.25%; p=0.004), 147.50% (IQR: 140.50%-175.00%; p=0.004), and 

136.00% (IQR: 123.50%-151.5%; p=0.004) of untreated cells, respectively (Figure 9).  

Methylglyoxal treatment moderately led to a faster cell cycle progression, but not in a 

presence of RAP6 overexpression 

As methylglyoxal was found to increase 3T3-L1 proliferation in MTT assay, 

analysis of cell cycle phase distribution was performed to determine the effect of 

methylglyoxal in an absence or presence of RAP6 overexpression. At 24 hours of 

proliferation, only S phase distribution in RAP6-overexpressing cells was significantly 

higher than that in the control (GFP: 9.13±0.34 vs RAP6: 9.87±0.23, p=0.034; Figure 

10). There was no difference in distribution of G1 phase (p=0.354 vs untreated GFP) or 

G2/M phase (p=0.861 vs untreated GFP) between the control and RAP6-overexpressing 

cells. Methylglyoxal treatment (10 µM) appeared to accelerate cell cycle progression in 

GFP-overexpressing cells, as evidenced by a lower G1 phase distribution (GFP: 

57.87±1.42 vs GFP+MG: 50.23±4.28, p=0.042) and a higher distribution of S phase 

(GFP: 9.13±0.34 vs GFP+MG: 10.56±0.43, p=0.011) and G2/M phase (GFP: 33.00±1.36 

vs GFP+MG: 39.22±4.51, p=0.081) as compared to untreated cells. However, the 

distribution of all phases in RAP6-overexpressing cells unaltered in a presence of 

methylglyoxal (G1: p=0.555, S: p=0.457, G2: p=0.609 vs untreated GFP). 
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Levels of methylglyoxal adduct in 3T3-L1 cells were elevated in a presence of 

differentiation stimulants and high glucose condition. 

As compared to the control, insulin treatment appeared to cause methylglyoxal 

accumulation in 3T3-L1 cells (Liu, Desai, Wang, & Wu, 2013). In addition, high 

glucose-induced methylglyoxal accumulation was found in cell culture (Liu et al., 2013), 

animal model (Schlotterer et al., 2009) and human studies (Nemet, Turk, Duvnjak, Car, 

& Varga-Defterdarović, 2005; Turk, Čavlović-Naglić, & Turk, 2011). These evidences 

suggest that insulin-stimulated glucose uptake may increase production of methylglyoxal 

and subsequent methylglyoxal-derived adducts as compared to non-stimulation. Inducers 

of 3T3-L1 differentiation include insulin which stimulates glucose uptake (Leney & 

Tavare, 2009). Therefore, the prominent methylglyoxal adduct, methylglyoxal 

hydroimidazolone 1 (MGH1), in 3T3-L1 cells was measured in undifferentiated and 

differentiated 3T3-L1 cells. Levels of MGH1 in 3T3-L1 cells were increased about 1.56 

folds in a presence of MDI as compared to non-induced cells (p<0.001; Figure 11).  

It was reported that high glucose condition gave rise to methylglyoxal 

accumulation in cultured cells (Liu et al., 2013; Shinohara et al., 1998; Thornalley, 1988) 

and C. elegan model (Schlotterer et al., 2009). Methylglyoxal accumulation may also 

lead to an increased production of methylglyoxal-derived adducts. To determine the 

effect of glucose on cellular MGH1 formation, 3T3-L1 cells were induced to differentiate 

by MDI in media containing different concentrations of glucose (5, 12, and 25 mM). As 

compared to 5 mM-glucose group, the cells differentiated in 12 mM and 25 mM glucose 

containing media had a 1.35-fold and 1.38-fold increase in MGH1 levels, respectively 

(12 mM-glucose: p<0.001 and 25 mM-glucose: p<0.001 vs 5 mM-glucose).  
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DISCUSSION 

 The present study showed that methylglyoxal altered 3T3-L1 differentiation as 

evidenced by increased expression of selected adipogenic markers, PPARγ and C/EBPα. 

This was corresponded to an increase in phosphorylation of ERK1/2 in the early phase of 

differentiation and Akt1 phosphorylation at Ser473 in the late phase. Methylglyoxal also 

increased 3T3-L1 proliferation and enhanced cell cycle progression. However, RAP6 

overexpression suppressed 3T3-L1 differentiation, concomitant with significant 

suppression of PPARγ. These suppressions were unaltered by methylglyoxal. 

Surprisingly, Akt1 phosphorylation at Ser473 was abolished by combination of RAP6 

overexpression and methylglyoxal treatment, even more than that by RAP6 

overexpression alone. In addition, differentiated 3T3-L1 cells had elevated levels of 

methylglyoxal-derived adduct, MGH1, which was enhanced by high glucose condition. 

 Methylglyoxal increased 3T3-L1 differentiation in the current study. The highest 

increase was shown in 10-µM methylglyoxal treatment. Adipocyte enlargement was also 

significantly enhanced in methylglyoxal-treated cells. It was speculated that ERK1/2 

activity was required for mitotic clonal expansion (MCE) and expression of transcription 

factors during the early phase of adipogenesis (Tang et al., 2005). This sequential 

induction gives rise to expression of late phase transcription factors, e.g. PPARγ and 

C/EBPα, and thereby terminal adipocyte differentiation (Lefterova & Lazar, 2009; 

Siersbaek & Mandrup, 2011). The current findings showed that methylglyoxal increased 

phosphorylation of ERK1/2 after induction of differentiation for 5 minutes as compared 

to the control. This suggests the stimulatory effect of methylglyoxal during the early 

phase of adipocyte differentiation. Methylglyoxal caused a marginal elevation of PPARγ 
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expressions as well as significant increased expression of C/EBPα-p42 and -p30 subunits 

in the current study. The findings indicate that methylglyoxal may be associated with 

stimulation of differentiation during the late phase. Protein kinase Akt which is a key 

component in preadipocyte differentiation (Calera et al., 1998; Kim et al., 2010; Maiuri et 

al., 2010; Xu & Liao, 2004), was found to be upregulated through phosphorylation at 

Ser473 in methylglyoxal-treated cells. In contrast, a recent study reported that 

methylglyoxal (500 µM) suppressed Akt activation and subsequent glucose uptake in 

3T3-L1 cells (Afridi et al., 2016). As compared to the present study (10 µM), the 

methylglyoxal concentration was much higher which possibly gave rise to different effect 

on Akt activation. In addition, methylglyoxal significantly increased 3T3-L1 proliferation 

and accelerated cell cycle progression in the current study, consistently with the previous 

report by Jia and colleagues (Jia et al., 2012). Interestingly, a significant decrease in 3T3-

L1 differentiation was observed in methylglyoxal treatment at 50, 150 and 200 µM. Even 

though gradually declined, methylglyoxal concentrations of 50 and 200 µM still appeared 

to stimulate 3T3-L1 proliferation. These findings suggest that methylglyoxal 

concentration may govern its effect of cell signaling events. Collectively, methylglyoxal 

at low concentration appear to promote both 3T3-L1 proliferation and differentiation.  

 RAP6 is a newly discovered guanine exchange factor specific to Rab5 (Hunker, 

Galvis, et al., 2006). Given that Rab5 activity has been reported to mediate insulin 

signaling (Hunker, Kruk, et al., 2006; Jozic, Blanco, & Barbieri, 2011), Rab5 activators 

such as RAP6 may be associated with signal transduction in insulin-responsive cells, 

including preadipocytes. In the current study, RAP6 overexpression inhibited 3T3-L1 

differentiation, concomitant with a significant decrease in PPARγ expression. 



67 

Surprisingly, expression of C/EBPα-p42 and -p30 subunits was unaltered by RAP6 

overexpression. These findings suggest that RAP6 may selectively mediate expression of 

adipogenic transcription factors. Phosphorylation of Akt1 at Ser473 was also inhibited by 

RAP6 overexpression in the current study. However, knockdown of RAP6 was 

previously reported to abrogate Akt activation in insulin-responsive NIH3T3 cells (Su et 

al., 2006). Possibly, RAP6 function may depend on intensity of its activity as well as cell 

types.  

As RAP6 activity was found to mediate Akt activation, downstream signaling 

events may be altered. A possible event included glucose uptake by GLUT4. An in vitro 

study demonstrated that GLUT4 translocation to the plasma membrane was abolished by 

RAP6 overexpression in 3T3-L1 preadipocytes (Lodhi et al., 2007). It was proposed that 

RAP6 participated in regulation of GLUT4 trafficking between GLUT4 storage 

compartment and endosomes under basal condition (Lodhi et al., 2007). When RAP6 was 

overexpressed, this recycling of GLUT4 was augmented and became futile that, in turn, 

retained GLUT4 in the intracellular vesicles and impaired insulin-stimulated GLUT4 

translocation (Lodhi et al., 2007). Furthermore, RAP6 overexpression possibly inhibits 

3T3-L1 differentiation via Ras-GAP domain. Through GAP activity for GTPase protein 

Ras, RAP6 was able to deactivate Ras (Hunker, Galvis, et al., 2006) which is an upstream 

activator of Raf/MEK/ERK pathway (Marshall, 1995; Murholm, Dixen, & Hansen, 

2010). Downregulation of the pathway may impede the initiation of differentiation during 

the early phase by ERK1/2.  

 Methylglyoxal significantly increased 3T3-L1 differentiation, expression of 

PPARγ, C/EBPα, and cell cycle progression in GFP-expressing control cells. However, 
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these stimulatory effects of methylglyoxal did not show in RAP6-overexpressing cells. 

The combination of RAP6 overexpression and methylglyoxal treatment abolished Akt1 

activation more than that in a presence of RAP6 overexpression alone. These findings 

implicate that RAP6 activity may involve in methylglyoxal-mediated alteration of 3T3-

L1 differentiation, especially in Akt1 phosphorylation. Previous studies suggest that 

methylglyoxal altered various signal pathways, including insulin-dependent cascades 

(Afridi et al., 2016; Chen et al., 2012; Jia et al., 2012; Yang et al., 2013). At least in part, 

methylglyoxal may rely on receptor trafficking which is modulated by RAP6 activity.  

As previously reported, insulin-dependent production of phosphatidylinositol 3-

phosphate (PI3P) by PI3K required RAP6 and Rab5 activities that, in turn, facilitated a 

recruitment of downstream effectors at the plasma membrane (Lodhi et al., 2008). 

Simultaneously, phosphorylated insulin receptors were internalized (Inoue, 1998; Wang, 

Balba, & Knutson, 1996) and thereby recruited intracellular effectors such as IRS1 and 

PI3K (Di Guglielmo et al., 1998; Kublaoui, Lee, & Pilch, 1995). These processes were 

speculated to be mediated by RAP6 and Rab5 (Hunker, Galvis, et al., 2006; Hunker, 

Kruk, et al., 2006; Su et al., 2006). As mentioned, intensity of RAP6 activity may dictate 

its function and subsequent cellular signaling events. Apart from the plasma membrane, 

Rab5 also led to PI3P production on early endosome membranes where more Rab5 and 

Rab5-effectors were recruited to maintain its function in endosome trafficking 

(Christoforidis et al., 1999). Generally, Rab GTPases are localized in a membrane-

specific fashion to govern membrane trafficking at distinct sites. For example, Rab5 

resides at the plasma membrane and early endosomes which enables its function in 

endocytosis and early endosome trafficking (Chavrier et al., 1990). Disassembling of 
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Rab5 is required to allow the next Rab protein to assemble with endosomal membranes 

and continue the trafficking sequence such as endosome recycling to the plasma 

membrane or endosome degradation. Overactivation of Rab5 by RAP6 overexpression 

may inhibit Rab5 dissociation from endosomal membranes that, in turn, interfere with 

sequential membrane trafficking. It was demonstrated that a constitutively active Rab5 

increased early endosome enlargement, but simultaneously abolished receptor recycling 

back to the plasma membrane (Stenmark et al., 1994; Sun et al., 2012). Inhibition of 

receptor recycling possibly prevents insulin from sustaining its signal. In addition, RAP6-

mediated Rab5 hyperactivation possibly increases the rate of endocytosis, which may 

promote futile internalization of inactivated receptors. According to previous studies, 

methylglyoxal affected cell proliferation and differentiation through insulin-dependent 

downstream proteins (Chen et al., 2012; Jia et al., 2012; Liu et al., 2013; Yang et al., 

2013). Alteration of RAP6 activity possibly modify insulin signal transduction as well as 

that driven by methylglyoxal. It was demonstrated that RAP6 facilitated IRS and PI3K 

interaction which was required for Akt activation. Taken together, RAP6 overexpression 

possibly suppressed methylglyoxal-driven Akt activation by altering receptor trafficking 

and impairing activities of Akt upstream effectors.  

Elevated MGH1 levels in differentiated 3T3-L1 cells were observed in the present 

study. This may be due to glucose uptake elicit by insulin in differentiation stimulant 

mix. Methylglyoxal can be endogenously produced through multiple pathways such as 

glycolysis. Glycolytic intermediates, e.g. glyceraldehyde 3-phosphate and 

dihydroxyacetone phosphate, are speculated to be major substrates of methylglyoxal 

(Thornalley, 2005). Given that glucose predominantly enters glycolysis, insulin-
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stimulated glucose uptake may lead to glycolytic flux and following methylglyoxal 

generation in differentiated 3T3-L1 cells. Elevated glucose can also lead to formation of 

methylglyoxal and advanced glycation end products through non-enzymatic glycation 

(Rabbani & Thornalley, 2012; Semchyshyn & Lushchak, 2012). The current findings 

showed that high glucose conditions (12 and 25 mM) significantly rose MGH1 levels in 

3T3-L1 cells as compared to low glucose condition (5 mM). Supportively, previous 

studies reported methylglyoxal accumulation resulted from high glucose condition in cell 

cultures (Liu et al., 2013; Shinohara et al., 1998; Thornalley, 1988) and animal model 

(Schlotterer et al., 2009). Elevated methylglyoxal was also observed in participants with 

diabetes (Kong et al., 2014; McLellan, Thornalley, Benn, & Sonksen, 1994; Nemet et al., 

2005; Turk et al., 2011; Turk, Vrdoljak, Misur, Trescec, & Benko, 2009). Collectively, 

intrinsic methylglyoxal production may be harnessed by abundance of substrates which 

possibly manipulate its effects on cellular events.  

 To summarize, low concentration of methylglyoxal increased 3T3-L1 

differentiation, presumably through Akt activation and expression of transcription factors 

PPARγ and C/EBPα (Figure 12). Overexpression of RAP6 inhibited 3T3-L1 

differentiation, even in a presence of methylglyoxal. The findings suggest that RAP6 

activity, at least in part, may be able to modulate adipogenic stimulatory effect of 

methylglyoxal. Therefore, mechanisms by which RAP6 is required for methylglyoxal-

driven preadipocyte differentiation deserve further investigation.  
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Figure 1. Effect of methylglyoxal on 3T3-L1 differentiation. Once confluence, 3T3-L1 
cells were induced to differentiation with or without methylglyoxal (0-200 µM). The 
differentiated 3T3-L1 cells were then underwent oil red O staining. Data was presented in 
percentages (%) of arbitrary absorbance on 540 nm relative to that of the untreated 
control cells from two independent experiments (n=6 for each group). *p<0.05, **p<0.01 
vs control by Mann-Whitney U test. 
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Figure 2. Effect of methylglyoxal on cell size of differentiated 3T3-L1 cells. 3T3-L1 
cells were induced to differentiate with or without methylglyoxal (10 µM) and underwent 
oil red O staining. Then, the photos of stained cells were used for measurement of cell 
perimeter. (A) Photos of untreated and methylglyoxal-treated cells from oil red O 
staining was illustrated at magnification of x20 and x100. (B) The chart represented cell 
count for perimeter of untreated 3T3-L1 cells (blue area, n=310) and methylglyoxal-
treated cells (green area, n=354). *p<0.05 vs untreated cells by Mann-Whitney U test. 
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Figure 3. Effect of methylglyoxal on expression of adipogenic markers in 3T3-L1 
cells. The 3T3-L1 cells were induced to fully differentiate with or without methylglyoxal 
(10 µM). Then the cells were harvested, lysed and subject to Western blot analysis. (A) 
Western blot of PPARγ, C/EBPα-p42/p30 was illustrated. A quantification of (B) 
PPARγ, (C) C/EBPα-p42, (D) C/EBPα-p30 expressions was shown corresponding to the 
Western blot results. Data represented arbitrary unit of protein expression as compared to 
the untreated cells from three independent experiments (n=3 for each group). **p<0.01, 
*p<0.05, #p<0.1 vs control by Student’s t-test. MG=methylglyoxal. 
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Figure 4. Effect of methylglyoxal on ERK1/2 phosphorylation in the early phase of 
3T3-L1 differentiation. The differentiation of 3T3-L1 cells were induced for 5 minutes 
with or without 10 µM of methylglyoxal. Then the cells were lysed and subjected to 
Western blot analysis. Western blot of p-ERK1/2 was shown in an absence or presence of 
methylglyoxal. MG=methylglyoxal. 
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Figure 5. Effect of methylglyoxal on Akt1 phosphorylation in 3T3-L1 cells. The 3T3-
L1 cells were induced to fully differentiate with or without methylglyoxal (10 µM). Then 
the cells were harvested, lysed and subject to Western blot analysis. (A) Western blot of 
p-Akt1 (Ser473) and total Akt1 was illustrated. (B) A quantification of p-Akt1-Ser473 
expression was shown corresponding to the Western blot results. Data represented 
arbitrary unit of protein expression as compared to the untreated cells from three 
independent experiments (n=3 for each group). **p<0.01 vs control by Student’s t-test. 
MG=methylglyoxal. 
 
 
 
 
 
 
 
 
 
 
 



83 

A 

 

B        C 

 
 
Figure 6. Effect of methylglyoxal and RAP6 overexpression on 3T3-L1 
differentiation. (A) Amino acid sequence and constituting domains of RAP6 were 
illustrated. (B) Western blot of GFP and RAP6 in 3T3-L1 cells was shown in duplicate 
for each type of cells. Also, differentiation assay with or without 10 µM methylglyoxal 
was performed in GFP- and RAP-overexpressing cells, followed by oil red O staining. 
(C) Data represented percentages (%) of arbitrary absorbance on 540 nm as compared to 
that of the GFP control cells from two independent experiments (n=6 for each group). 
**p<0.01 vs control by Mann-Whitney U test. MG=methylglyoxal, PR=proline-rich 
domain, Rab5-GEF=Rab5-specific guanine nucleotide exchange factor binding (Vps9) 
domain, Ras-GAP=Ras GTPase-activating protein binding domain. 
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Figure 7. Effect of methylglyoxal and RAP6 overexpression on expression of 
adipogenic markers in 3T3-L1 differentiation. GFP- and RAP6-overexpressing cells 
were induced to differentiate with or without 10 µM of methylglyoxal. Then the cells 
were lysed and subjected to Western blot analyses. (A) Western blot of PPARγ, C/EBPα-
p42, and C/EBPα-p30 in GFP- and RAP6-overexpressing cells, with or without 10 µM of 
methylglyoxal. A quantification of (B) PPARγ, (C) C/EBPα-p42 and (D) C/EBPα-p30 
expressions was shown corresponding to the Western blot results. Data represented 
arbitrary unit of protein expression as compared to the untreated GFP-overexpressing 
cells from three independent experiments (n=3 for each group). *p<0.05, #p<0.1 vs 
untreated GFP-overexpressing cells by Student’s t-test. MG=methylglyoxal. 
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Figure 8. Effect of methylglyoxal and RAP6 overexpression on Akt1 
phosphorylation (Ser473) in 3T3-L1 differentiation. GFP- and RAP6-overexpressing 
cells were induced to differentiate with or without 10 µM of methylglyoxal. Then the 
cells were lysed and subjected to Western blot analyses. (A) Western blot of p-Akt1 
(Ser473) and total Akt1 in GFP- and RAP6-overexpressing cells, with or without 10 µM 
of methylglyoxal. (B) A quantification of p-Akt1 (Ser473) over total Akt1 was shown 
corresponding to the Western blot results. Data represented arbitrary unit of protein 
expression as compared to the untreated GFP-overexpressing cells from three 
independent experiments (n=3 for each group). *p<0.05, **p<0.01, ***p<0.001 vs 
untreated GFP control and †p<0.01 vs untreated RAP6-overexpressing cells by Student’s 
t-test. MG=methylglyoxal. 
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Figure 9. Effect of methylglyoxal on 3T3-L1 proliferation. The MTT assay with or 
without 10, 30, 50 and 200 µM methylglyoxal was performed. The cell proliferation of 
each group was presented in percentages (%) of absorbance on OD570 nm relative to that 
of the untreated control cells from two independent experiments (n=6 for each group). 
**p<0.01 vs control by Mann-Whitney U test. 
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Figure 10. Effect of methylglyoxal and RAP6 overexpression on cell cycle phase 
distribution. Once 50% confluence, GFP- and RAP6-overexpressing cells were 
incubated in growth media with or without 10 µM of methylglyoxal for 24 hours. The 
cell samples were collected and thereby used for cell cycle analysis by flow cytometry. 
Data was expressed in percentage distribution (%) of cell cycle phases (G1, S, and G2/M) 
from three independent experiments (n=3 for each group). MG=methylglyoxal.  
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Figure 11. Effect of differentiation stimulant mix and glucose on cellular MGH1 
formation in 3T3-L1 cells. (A) MGH1 levels of 3T3-L1 cells in an absence or presence 
of stimulants as described in METHOD. ***p<0.001 vs non-stimulated cells by Student’s 
t-test. (B) MGH1 levels of 3T3-L1 cells induced to differentiate in media containing 5, 12 
or 25 mM glucose. ***p<0.001 vs 5 mM glucose-treated cells by Student’s t-test. Data 
was presented in arbitrary unit of MGH1 levels relative to total cellular protein 
concentrations (n=3 for each group). MDI=3-isobutyl-1-methylxanthine, dexamethasone 
and insulin, MGH1=methylglyoxal hydroimidazolone 1. 
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Figure 12. A possible model of insulin-dependent adipogenesis modulated by RAP6 
and methylglyoxal. RAP6 possibly modulates Akt activity, expression of PPARγ and 
C/EBPα, and subsequent adipogenesis through Rab5 activation and/or direct interaction 
with the effectors. The findings suggest that methylglyoxal-induced adipogenesis may be 
regulated by RAP6 activity. Akt=protein kinase B; C/EBPα= CCAAT enhancer-binding 
protein α; GDP=guanosine diphosphate; GTP=guanosine triphosphate; IGF-IR=insulin-
like growth factor I receptor; IR=insulin receptor; IRS1=insulin receptor substrate 1; 
MG=methylglyoxal; PI3K=phosphoinositide 3-kinase; PPARγ=peroxisome proliferator-
activated receptor γ; RAP6=Rab5-activating protein 6. 
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CHAPTER IV 

Relationship between Methylglyoxal Adduct and Fasting Plasma Glucose in Blacks 

with and without Type 2 Diabetes 

ABSTRACT 

INTRODUCTION: Methylglyoxal is a dicarbonyl compound reported to be associated 

with insulin resistance, diabetes, and other chronic illnesses. However, such observation 

among Black populations, including African Americans and Haitian Americans, remains 

scarce. 

PURPOSE: The current study aimed to investigate the relationship between levels of 

serum methylglyoxal adduct and biomarkers of diabetes in African American and Haitian 

American participants, with and without type 2 diabetes.  

METHODS: Participants were recruited by community outreach in Broward and Miami-

Dade counties, Florida. The study included a total of 488 eligible participants (n = 234 

non-diabetics and n = 254 diabetics) over 30 years of age who had complete data of 

serum methylglyoxal and fasting plasma glucose. Serum levels of prominent 

methylglyoxal adduct, methylglyoxal hydroimidazolone 1 (MGH1) were measured by 

using a commercially available competitive ELISA kit. Fasting plasma glucose levels 

were determined by hexokinase enzymatic methods, whereas whole blood A1c was 

measured by DCA2000+ system. Multiple regression analysis was used to examine the 

association of MGH1 with fasting plasma glucose and A1c.  

RESULTS: In participants with diabetes, there was an increase in MGH1 levels of 0.24% 

for every 1% increase in fasting plasma glucose levels, after adjusting for pertinent 

variables (95% CI [0.02%, 0.46%], p=0.037). However, such association was not found 
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in controls (p=0.977). For every year increase in age, the geometric mean of MGH1 

levels rose about 1.34% (95% CI [0.44%, 2.25%], p=0.004). Interestingly, the geometric 

mean of MGH1 levels for African Americans with type 2 diabetes was about 28.40% 

lower than that for Haitian Americans with type 2 diabetes, holding other variables 

constant (95% CI [6.01%, 45.39%], p=0.016). No significant association between MGH1 

and A1c levels was shown in participants with (p=0.188) and without diabetes (p=0.808). 

CONCLUSION: The findings suggest that methylglyoxal may be linked to 

hyperglycemia and metabolic changes in type 2 diabetes, and may differently impact the 

development of the disease across age and Black subgroups. 

INTRODUCTION 

Methylglyoxal is a dicarbonyl compound that can be produced endogenously 

from the breakdown of macronutrients (Phillips & Thornalley, 1993). Methylglyoxal is 

mainly converted from glycolytic intermediates, including glyceraldehyde 3-phosphate 

and dihydroxyacetone phosphate (Kalapos, 1999; Phillips & Thornalley, 1993). In lesser 

amount, methylglyoxal can be generated through lipid peroxidation (Agadjanyan, Dugin, 

& Dmitriev, 2006) and metabolism of threonine (Dhar, Desai, Kazachmov, Yu, & Wu, 

2008) and ketone bodies (Beisswenger, Howell, Nelson, Mauer, & Szwergold, 2003; 

Nemet, Varga-Defterdarović, & Turk, 2006).  It is hypothesized that intracellular 

methylglyoxal transports to plasma by passive diffusion (Rabbani & Thornalley, 2015). 

Greater than 95% of methylglyoxal is reversibly bound to plasma proteins, which can 

lead to formation of advanced glycation end products (AGEs) (Rabbani & Thornalley, 

2015). Free amino groups of arginine and lysine are main target sites to which 

methylglyoxal interacts (Kalapos, 2008). For example, the reaction between 
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methylglyoxal and arginine produces Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-L-

ornithine (methylglyoxal hydroimidazolone 1; MGH1), which is one of quantitatively 

prominent adducts from dicarbonyl compounds in blood and tissues (Thornalley, 2005).  

Typically, methylglyoxal is degraded by glyoxalase system which is a main 

sequential pathway responsible for degradation of dicarbonyl compounds (Thornalley, 

2003). The glyoxalase system is a ubiquitous set of metalloenzymes which comprises 

glyoxalase-1, glyoxalase-2, and cofactors including reduced glutathione and reduced zinc 

ion (Thornalley, 2003; Vander Jagt & Hunsaker, 2003). Binding between methylglyoxal 

and reduced glutathione forms a non-toxic intermediate hemithioacetal that is 

subsequently detoxified to S-lactoylglutathione by glyoxalase-1 (Thornalley, 2003). 

Glyoxalase-2 converts S-lactoylglutathione to D-lactate, simultaneously recycling back 

the reduced glutathione (Thornalley, 2003). Apart from D-lactate, the conversion of 

methylglyoxal eventually to pyruvate and other metabolites was speculated to be very 

small as compared to the metabolites of methylglyoxal (Best & Thornalley, 1999). 

 Methylglyoxal has been widely studied due to pathological relevance, such as in 

relation to insulin resistance and diabetes. Elevated methylglyoxal levels in blood (Kong 

et al., 2014; McLellan, Thornalley, Benn, & Sonksen, 1994; Nemet, Turk, Duvnjak, Car, 

& Varga-Defterdarović, 2005) and urine (Turk, Čavlović-Naglić, & Turk, 2011; Turk, 

Vrdoljak, Misur, Trescec, & Benko, 2009) were shown in participants with diabetes or 

impaired glucose metabolism (Maessen et al., 2015). Also, changes in activity (McLellan 

et al., 1994) and mRNA expression of glyoxalase enzymes (Uribarri et al., 2015) were 

reported under pathological condition. The evidence suggests hyperglycemic condition 

possibly increases production and suppresses degradation of methylglyoxal. 
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Methylglyoxal-derived AGEs increased in individuals with diabetes, which may be due 

to hyperglycemia-induced methylglyoxal accumulation (Ahmed, Babaei-Jadidi, Howell, 

Thornalley, & Beisswenger, 2005). Additionally, methylglyoxal appeared to impair 

insulin signaling (Dhar, Dhar, Jiang, Desai, & Wu, 2011; Fiory et al., 2011), decrease 

function, and cause apoptosis in pancreatic beta-cells in vitro (Bo et al., 2016; Gao, Liu, 

et al., 2016). Such effects lead to decrease in cellular response to insulin stimulation, and 

reduce insulin secretion by beta-cells (Best, Miley, Brown, & Cook, 1999; Cook et al., 

1998; Dhar et al., 2011; Gao, Liao, et al., 2016). Taken together, the findings suggest the 

association of methylglyoxal with insulin resistance and beta cell dysfunction which are 

main hallmarks of diabetes.  

 Diabetes remains one of major causes of death in the United States (National 

Center for Health Statistics, 2016). Available evidence indicate that Blacks are at high 

risk for aberrant cardiometabolic illnesses including diabetes (National Center for Health 

Statistics, 2016). Age-adjusted rates of death caused by diabetes for Black population 

were about 1.9 times higher than that for White population (Kochanek, Murphy, Xu, & 

Tejada-Vera, 2016). In 2015, age-adjusted prevalence of diabetes among adults aged 18 

and over was 13.1% in non-Hispanic Blacks or African Americans only (Blackwell & 

Villarroel, 2016). Correspondingly, Black population tended to have 4 or more chronic 

conditions than White and other populations (National Center for Health Statistics, 2016). 

Obesity and cigarette smoking are widely accepted as important contributing factors for 

the development of diabetes. The percent of overweight or obese in non-Hispanic Blacks 

is increasing over the years, at a greater rate than Whites (National Center for Health 

Statistics, 2016). The prevalence appeared to be more pronounced in Black females than 
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Black males (National Center for Health Statistics, 2016). Black males had higher rates 

for cigarette smoking than White males (National Center for Health Statistics, 2016). 

These statistics indicate the need for further scientific studies and public health programs 

to tackle chronic illnesses in all subpopulations, including Blacks. 

 Due to African descent, Haitian Americans and African Americans are typically 

considered as non-Hispanic Blacks and not categorized separately. In fact, some 

modifiable factors and genetic variations of Haitian Americans and African Americans 

are heterogeneous. A meta-analysis revealed that higher A1c levels were observed across 

studies for African American as compared to Whites (Kirk et al., 2006). Specifically, 

Haitians had mean A1c levels higher than African Americans and non-Hispanic Whites 

(Vimalananda, Rosenzweig, Cabral, David, & Lasser, 2011) and tended to have impaired 

fasting glucose (Rosen, Sharp, Abad, Doddard, & Rosen, 2007). The prevalence of 

diabetes was 33% among Haitian Americans (Rosen et al., 2007), which was even greater 

than the overall age-adjusted percentage for non-Hispanic Blacks (Blackwell & 

Villarroel, 2016). In addition, previous studies suggest that subgroups of non-Hispanic 

Blacks have high genetic diversity across individuals and different groups across parts of 

the United States. Populations in Haiti and African Americans shared substantial 

proportions of African and European ancestry (Bryc, Durand, Macpherson, Reich, & 

Mountain, 2015; Simms et al., 2012). Low proportion of Native American ancestry was 

detected in self-identified African Americans resided in the United States (Bryc et al., 

2015), yet hardly determined in Haitian populations (Simms et al., 2012). These 

observations suggest that the risk for chronic diseases in Black subgroups is possibly 

different and should be examined separately. However, there is a scarcity of evidence in 
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the relationship between methylglyoxal and risk factors of chronic diseases in Black 

population. Therefore, the current study aimed to examine the association of 

methylglyoxal and biomarkers for diabetes in Haitian African and African American 

participants with and without type 2 diabetes.  

METHOD 

Participants 

Data and de-identified blood samples were retrieved from the cross-sectional 

study conducted on Haitian American and African American participants by Huffman et 

al. (2013). Haitian American participants were recruited by community-based 

approaches. The recruitment took place in Miami-Dade and Broward counties, Florida. 

Invitational letters explaining the study were mailed to African American participants by 

using a mailing list (Knowledge Base Marketing, Inc., Richardson, TX, USA). Health 

professionals and diabetes educators receiving the flyer were requested their assistance to 

enroll individuals with type 2 diabetes. Faculty, staff and students at Florida International 

University (FIU) received the flyers explaining the protocol and were asked for their 

cooperation. Advertisements were published in local newspapers and high-trafficking 

areas. Radio advertisements were announced on local Creole stations.  

Inclusion criteria of the parent study consisted of self-identified Haitian American 

and African American males and females; age 30 years or older; absence or presence of 

type 2 diabetes; free of thyroid disorders, coronary heart disease, chemo- or radiation 

therapy, major psychiatric disorders, and HIV/AIDS; not pregnant or lactating. By using 

an initial phone interview, potential participants were informed about the study purpose 

and determined the age and gender. To ascertain type 2 diabetes status, the participants 
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were asked for the duration of diagnosis and initial treatment regimens. Eligible 

individuals were invited to the Human Nutrition Laboratory at FIU to participate in the 

study. Participants were instructed to refrain from smoking, consuming any food or 

beverages except water, and any unusual exercise for at least eight hours prior to 

collection of blood samples. All participants gave written informed consents in either 

English or Creole. The study was approved by the Institutional Review Board at FIU 

prior to measurement of blood samples. 

Sample Size 

 Sample size was calculated by using G*Power software (Faul, Erdfelder, 

Buchner, & Lang, 2009). By using a medium conventional effect size to produce an equal 

number of controls and cases, the total sample size was estimated at 128 individuals 

based on independent t-test, whereas multiple linear regression yielded a total of 55 

participants. A total of 507 target participants (Haitian American=258: non-

diabetics=120, diabetics=138; African American=249: non-diabetics=120, 

diabetics=129) from the parent study was adequate for both calculated sample sizes to 

meet the predetermined 80% statistical power at significance level of 0.05. 

Biochemical Analysis 

Approximately 300 microliters of de-identified serum from the parent study were 

used for methylglyoxal measurement. A prominent methylglyoxal adduct, MGH1, in 

blood samples was measured by OxiSelect™ MG competitive ELISA kit (Cell Biolabs, 

Inc., San Diego, CA, USA). The quantity of MGH1 was compared to a standard curve of 

predetermined MG-BSA. All blood samples were stored at -80 Co. Existing data of other 

biomarkers was retrieved from the parent study. Briefly, hexokinase enzymatic method 
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was used to measure fasting plasma glucose (FPG). Whole blood A1c was measured by 

DCA2000+ system (Bayer HealthCare, Whippany, NJ, USA). This method is reliable as 

evidenced by 99% correlation with high-standard HPLC method.  

Anthropometric data 

Participant’s height was measured when the participant stood upright without 

shoes. Weight measurement was taken with the participant wearing light clothes by using 

a SECA clinical scale (SECA Corp, Columbia, MD, USA). Body mass index (BMI) was 

calculated as weight (kg)/height (m2).  

Socio-demographic data 

Socio-demographic data regarding age, gender, ethnicity were collected by using 

a standardized questionnaire. 

Statistical Analysis 

Values were presented in mean ± standard deviation or percentages. Continuous 

variables were analyzed by independent t-test, whereas Chi-square test was employed for 

categorical variables. Multiple regression analysis was used to further examine the 

relationship between serum MGH1 levels and other biomarkers, including FPG and A1c. 

Age, gender, ethnicity, BMI, and diabetes status were potential variables that were 

adjusted as appropriate during data analysis. Due to skewed distribution, levels of 

MGH1, FPG, A1c, and BMI underwent logarithm transformation. The log-transformed 

data were used in all analyses. Tests were considered statistically significant if p-value 

was less than 0.05. All data were analyzed by using SPSS version 23.0 (SPSS Inc., 

Chicago, IL, USA). 
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RESULTS 

In the current study, eligible participants were individuals who had complete data 

of serum MGH1, FPG 500 mmol/l or less, and BMI between 18.5 kg/m2 and 60 kg/m2. A 

total of 488 participants (n = 234 controls and n = 254 cases) were included in the data 

analyses, which was adequate to achieve 80% power. 

Characteristics of study participants 

The participants with type 2 diabetes tended to be older (p<0.001) and had higher 

lnBMI (p<0.001), lnFPG (p<0.001), and lnA1c (p<0.001) than those without diabetes 

(Table 1). The levels of lnMGH1 were marginally higher in the participants with diabetes 

as compared to those without diabetes (p=0.057). 

Relationship of MGH1 with FPG and A1c in study participants 

In unadjusted model, MGH1 levels were positively associated with levels of FPG 

(B=0.273, 95% CI [0.064, 0.481], p=0.011) and A1c (B=0.337, 95% CI [0.023, 0.651], 

p=0.036). However, the relationships of MGH1 with FPG (p=0.118) and A1c (p=0.419) 

lost insignificance after controlling for age, gender, ethnicity, diabetes status, lnBMI, 

smoking status, and two-way interactions among gender, ethnicity, and diabetes status. 

Relationship between MGH1 and FPG stratified by diabetes status 

To determine whether relationships of MGH1 with diabetes parameter were 

existed in subgroups of participants, stratification by diabetes status was performed prior 

to further multiple regression analyses. There was no significant relationship of MGH1 

with FPG in control participants, either in unadjusted (p=0.977) or adjusted model 

(p=0.977; Table 2). In participants with type 2 diabetes, the significantly positive 

relationship between MGH1 and FPG was observed in unadjusted model (p=0.027) and 
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such association remained after controlling for age, gender, ethnicity, interaction of 

gender by ethnicity, lnBMI, and smoking status. In adjusted model, the increase in 

MGH1 levels in participants with diabetes was about 0.24% when fasting plasma glucose 

levels increased by 1% (95% CI [0.02%, 0.46%], p=0.037). For every year increase in 

age, the geometric mean of MGH1 levels rose about 1.34% (95% CI [0.44%, 2.25%], 

p=0.004). The geometric mean of MGH1 levels for African Americans was about 28.4% 

lower than that for Haitian Americans, holding other variables constant (95% CI [6.01%, 

45.39%], p=0.016). There was no significant interaction effect between gender and 

ethnicity in the model (p=0.148). 

The adjusted multiple regression analysis showed insignificant relationship 

between MGH1 and A1c levels in participants without diabetes, controlling for age, 

gender, ethnicity, interaction of gender by ethnicity, lnBMI, and smoking status 

(p=0.808; Table 3). Similarly, there was no relationship between MGH1 and A1c levels 

in participants with type 2 diabetes after adjusting for age, gender, ethnicity, interaction 

of gender by ethnicity, lnBMI, and smoking status (p=0.188). In individuals with 

diabetes, the geometric mean of MGH1 levels was positively associated with age 

(B=0.014, 95% CI [0.005, 0.023], p=0.003). African American participants with diabetes 

were more likely to have lower MGH1 levels as compared to Haitian American 

counterparts, holding other variables constant (B=-0.323, 95% CI [-0.597, -0.048], 

p=0.021). 

DISCUSSION 

 Serum concentrations of dominant methylglyoxal adduct, MGH1, was marginally 

higher in participants with types 2 diabetes than controls in this study. A positive 
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relationship between levels of MGH1 and FPG was seen only in individuals with type 2 

diabetes. Also, increasing years of age and being Haitian American positively influenced 

serum concentrations of MGH1 in participants with type 2 diabetes. However, there was 

no significant relationship between levels of MGH1 and A1c.  

An interest in methylglyoxal has been increasing due to its pathological 

significance, especially in relation to insulin resistance and diabetes. Consistent with 

previous observations (Ahmed et al., 2005; Kilhovd et al., 2003), the current study found 

partially increased levels of MGH1 adduct in participants with type 2 diabetes as 

compared to the controls. Methylglyoxal levels were markedly elevated in blood (Kong 

et al., 2014; McLellan et al., 1994; Nemet et al., 2005) and urine of participants with 

diabetes or impaired glucose metabolism in other studies (Maessen et al., 2015; Turk et 

al., 2011, 2009).  

High glucose-induced methylglyoxal augmentation was also shown in previous 

cell culture studies (Liu, Desai, Wang, & Wu, 2013; Shinohara et al., 1998; Thornalley, 

1988) and animal studies (Schlotterer et al., 2009). The findings suggest that the 

increased availability of substrates, such as glucose, likely contributes to elevated 

methylglyoxal levels. However, the association between MGH1 and fasting plasma 

glucose was inconsistent in the literature (Ahmed et al., 2005; Kilhovd et al., 2003; Kong 

et al., 2014). The current study found significantly positive relationship of MGH1 and 

FPG levels in Black diabetic participants. The significant findings may be partially due to 

participants’ characteristics of the study. As compared to Whites, Non-Hispanic Blacks 

had higher prevalence of prediabetes and diabetes (Bullard et al., 2013; Menke, 

Casagrande, Geiss, & Cowie, 2015; Selvin, Parrinello, Sacks, & Coresh, 2014). Less 
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glycemic control and adherence to treatment also observed in non-Hispanic Blacks than 

Whites (Selvin et al., 2014). These characteristics contribute to persistent hyperglycemia, 

which likely promotes methylglyoxal accumulation.  

The increase in methylglyoxal levels may results from triosephosphate flux, 

converted from glucose via glycolysis and from fructose and sorbitol through polyol 

pathway. Elevated glucose and fructose can also lead to formation of methylglyoxal and 

advanced glycation end products (AGEs) through non-enzymatic glycation (Rabbani & 

Thornalley, 2012; Semchyshyn & Lushchak, 2012), which is likely accelerated in 

aberrant cardiometabolic condition like diabetes. Additionally, the marginal increase in 

MGH1 levels in the present study may reflect disproportion between methylglyoxal 

production and degradation in diabetes. A recent human study demonstrated that 

methylglyoxal accumulation was correlated with suppression of glyoxalase-mRNA 

expression in obese participants with at least one metabolic syndrome risk factor as 

compared to those with none (Uribarri et al., 2015). In contrast, the increased activity of 

glyoxalase-1 and glyoxalase-2 was found in isolated erythrocytes of individuals with type 

2 diabetes, corresponding to elevated blood concentrations of methylglyoxal (McLellan 

et al., 1994). The increase in glyoxalase system activity may be due to compensation for 

the decline in gene expression, and chronic exposure of high circulating methylglyoxal 

under hyperglycemic condition. In addition, the two selected studies conducted on 

different groups of individuals, which may contribute to differential findings in activity 

of glyoxalase system. 

Similar to other studies, null relationship between levels of MGH1 and A1c was 

observed in the present study. However, Kong et al. (2014) found a strong correlation 
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between levels of methylglyoxal and A1c in newly diagnosed with type 2 diabetes. The 

difference in duration of diabetes may contribute to such inconsistency. Among the 

studies with insignificant relationship, the participants were diagnosed with diabetes 

ranged from 4 to 26 years, in which glyoxalase system may increase its activity to adjust 

for prolonged exposure to high glucose (McLellan et al., 1994). The relationship between 

methylglyoxal and A1c levels may be stronger in recently diagnosed individuals than 

those with chronic condition. In addition, Kong and colleagues utilized the HPLC-

MS/MS method to determine total methylglyoxal levels (Kong et al., 2014). However, 

the current study used an immunoassay for measurement of major adduct MGH1, which 

may not be comparable. Dietary factors may also impact methylglyoxal levels. As 

previously reported, methylglyoxal was positively associated with postprandial blood 

glucose excursion, but not with A1c (Beisswenger et al., 2001; Maessen et al., 2015).  

The current study found a positive relationship between MGH1 levels and ages of 

the participants with type 2 diabetes, after adjusting for demographic and diabetes-related 

parameters. Supportively, elevation of methylglyoxal adducts in human lens was 

significantly correlated with participant’s age (Ahmed, Brinkmann Frye, Degenhardt, 

Thorpe, & Baynes, 1997). This may be described, in part, by glyoxalase-1 activity. A 

trend of glyoxalase-1 activity in human aortic tissues appeared to decrease with ages 

(Kirk, 1960). In individuals aged 50 to 79 years, significantly lower activity of 

glyoxalase-1 was found in arteriosclerotic tissues than normal tissue section (Kirk, 1960). 

In this study, the positive association between serum MGH1 levels and age in participants 

with diabetes may reflect the decreased activity of glyoxalase-1, exacerbated by diabetes.  
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In diabetic participants, African Americans were more likely to have lower 

MGH1 levels than Haitian Americans. Such dissimilarity may be partially due to 

difference in glycemic control and variation in glyoxalase-1 polymorphism among 

ethnicities. Black population features diversity of ancestry and language, which 

contribute to unique characteristics and genetics across Black subgroups. Non-Hispanic 

Blacks were more likely to have multiple chronic conditions and diseases than Whites 

(National Center for Health Statistics, 2016), leading them to become a high risk 

population. As compared to African American and non-Hispanic White counterparts, 

Haitian Americans with diabetes had poor glycemic control as evidenced by significantly 

higher levels of FPG and A1c (Vimalananda et al., 2011). This may strengthen the 

association between levels of MGH1 and FPG in Haitian American participants as 

compared with African American participants in the current study. In addition, genetic 

variation may be another factor to describe the diverged findings. The significant 

difference in erythrocyte GLO allele frequencies between White and Black Americans 

was reported by Weitkamp (1976). Unfortunately, the study did not have further analysis 

to examine GLO frequency among subgroups of Black Americans. Another study 

reported similarity of erythrocyte GLO allele frequency in Black Americans and Bantu-

speaking Black habitants in South Africa (Bender, Frank, & Hitzeroth, 1977). The study 

mentioned significant differences in the GLO allele frequency among some Black 

subpopulations (Bender et al., 1977). Additionally, populations from Haiti and African 

Americans had variation in proportions of African and European ancestry (Bryc et al., 

2015; Simms et al., 2012). A recent genome-wide study revealed that a small proportion 

of Native American ancestry was detected in African Americans resided in the United 
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States (Bryc et al., 2015), whereas it was hardly found in population from Haiti (Simms 

et al., 2012). Taken together, the observation suggest GLO allele frequency in African 

Americans may be distinct from those in Haitian Americans which, in turn, lead to 

difference in glyoxalase-1 activity and following methylglyoxal degradation.  

This study had some limitations. Due to the observational study design, changes 

in clinical and behavioral factors were not observed overtime. Therefore, it lacked to 

generate causality and provide a complete phenomenon. Also, the participants were only 

recruited from two counties in South Florida, which likely contributed to low 

generalizability. However, strengths of the study are worth mentioning. Apart from 

patient report, diabetes status was ascertained using standard criteria established by 

American Diabetes Association. This is the first study that investigated the relationship 

between methylglyoxal and biomarkers of diabetes particularly in Haitian Americans and 

African Americans. The evidence contributed to existing knowledge concerning Blacks, 

which provides the better understanding in health disparities among subpopulations.  

In conclusion, serum levels of prominent adduct MGH1 was marginally higher in 

Haitian American and African participants with type 2 diabetes than those without 

diabetes. Levels of MGH1 was positively associated with fasting plasma glucose in 

diabetic participants, suggesting the link of methylglyoxal to hyperglycemia. The 

relationship between MGH1 and biomarkers of diabetes appeared to be distinct across 

age and ethnicities. This may imply the needs of invention studies and public health 

programs for specific subpopulations. Future studies are required to warrant and elucidate 

the true nature of such relationship.  
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Table 1. Characteristics of the participants  

Variable without diabetes 
(n=234) 

with diabetes 
(n=254) 

p-value 

Age (years) 52.59 ± 10.00 56.00 ± 10.14 <0.001* 
Gender, n (%) 
   Female 
   Male 

 
116 (49.6) 
118 (50.4) 

 
136 (53.5) 
118 (46.5) 

0.381 

Ethnicity, n (%) 
   Haitian Americans 
   African Americans 

 
118 (50.4) 
116 (49.6) 

 
130 (51.2) 
124 (48.8) 

0.868 

BMI (kg/m2) 29.91 ± 6.06 32.46 ± 7.17 <0.001* 
lnBMI  3.38 ± 0.19 3.46 ± 0.21 <0.001* 
Smoke (%) 
   Yes 
   No 

 
54 (23.1) 

180 (76.9) 

 
53 (20.9) 

201 (79.1) 

0.555 

FPG (mmol/l) 97.28 ± 15.08 151.71 ± 64.88 <0.001* 
lnFPG  4.57 ± 0.15 4.94 ± 0.39 <0.001* 
A1c (%) 5.92 ± 0.45 8.03 ± 2.27 <0.001* 
lnA1c  1.78 ± 0.08 2.05 ± 0.26 <0.001* 
MGH1 (µg/ml) 2.29 ± 2.50 2.36 ± 2.44 0.764 
lnMGH1 0.42 ± 0.93 0.56 ± 0.73 0.057 
Continuous variables were expressed as mean ± standard deviation (SD), while 
categorical variables were expressed as n (%). ln=natural log-transformed; 
A1c=hemoglobin A1c; BMI=body mass index; FPG=fasting plasma glucose; 
MGH1=methylglyoxal hydroimidazolone 1; *p<0.05 is considered statistically 
significant. 
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Table 2. Multiple regression analysis for relationship of lnMGH1 with lnFPG stratified 
by diabetes status 
Participants without diabetes (n=234) 

Variables B SE 95% CI p-value 
Unadjusted model     
lnFPG -0.012 0.416 -0.831, 0.807 0.977 
Adjusted modela     
Age -0.006 0.007 -0.019, 0.006 0.328 
Gender (male) 0.033 0.396 -0.748, 0.813 0.934 
Ethnicity (AA) -0.063 0.190 -0.437, 0.312 0.741 
Gender*ethnicity 
(male*AA) 

0.001 0.252 -0.495, 0.498 0.996 

lnBMI 0.041 0.343 -0.635, 0.718 0.904 
Smoking status (yes) 0.100 0.169 -0.233, 0.433 0.555 
lnFPG 0.013 0.431 -0.836, 0.861 0.977 
Participants with diabetes (n=254) 

Variables B SE 95% CI p-value 
Unadjusted model     
lnFPG 0.259 0.116 0.030, 0.487 0.027* 
Adjusted modelb*     
Age 0.013 0.005 0.004, 0.023 0.004* 
Gender (male) -0.238 0.285 -0.799, 0.323 0.404 
Ethnicity (AA) -0.334 0.138 -0.605, -0.062 0.016* 
Gender*ethnicity 
(male*AA) 

0.264 0.182 -0.094, 0.623 0.148 

lnBMI 0.423 0.256 -0.081, 0.927 0.100 
Smoking status (yes) -0.046 0.121 -0.285, 0.193 0.707 
lnFPG 0.240 0.114 0.015, 0.466 0.037* 
AA=African American; B=coefficient, SE=standard error, CI=confidence interval, 
ln=natural log; BMI=body mass index; FPG=fasting plasma glucose; 
MGH1=methylglyoxal hydroimidazolone 1, *p<0.05 is considered statistically 
significant. 
aModel Summary: Adjusted R2=-0.023, F(7,226)=0.256, p=0.970.  
bModel Summary: Adjusted R2=0.057, F(7,246)=3.169, p=0.003. 
a,bThe model included age, gender, ethnicity, interaction of gender by ethnicity, lnBMI, 
smoking status, and lnFPG. 
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Table 3. Multiple regression analysis for relationship of lnMGH1 with lnA1c stratified 
by diabetes status 
Participants without diabetes (n=234) 

Variables B SE 95% CI p-value 
Unadjusted model     
lnA1c 0.013 0.800 -0.831, 0.807 0.987 
Adjusted modela     
Age -0.007 0.007 -0.020, 0.006 0.307 
Gender (male) 0.035 0.395 -0.745, 0.814 0.930 
Ethnicity (AA) -0.061 0.188 -0.433, 0.310 0.745 
Gender*ethnicity 
(male*AA) 

0.016 0.250 -0.477, 0.509 0.950 

lnBMI 0.007 0.355 -0.693, 0.708 0.983 
Smoking status (yes) 0.107 0.170 -0.228, 0.443 0.529 
lnA1c 0.285 0.884 -1.457, 2.028 0.747 
Participants with diabetes (n=254) 

Variables B SE 95% CI p-value 
Unadjusted model     
lnA1c 0.257 0.178 -0.094, 0.608 0.150 
Adjusted modelb*     
Age 0.014 0.005 0.005, 0.023 0.003* 
Gender (male) -0.255 0.288 -0.823, 0.313 0.377 
Ethnicity (AA) -0.323 0.139 -0.597, -0.048 0.021* 
Gender*ethnicity 
(male*AA) 

0.271 0.184 -0.091, 0.633 0.141 

lnBMI 0.386 0.258 -0.123, 0.895 0.136 
Smoking status (yes) -0.063 0.122 -0.303, 0.178 0.608 
lnA1c 0.243 0.180 -0.113, 0.598 0.180 
AA=African American; B=coefficient, SE=standard error, CI=confidence interval, 
ln=natural log; BMI=body mass index; A1c=hemoglobin A1c; MGH1=methylglyoxal 
hydroimidazolone 1, *p<0.05 is considered statistically significant. 
aModel Summary: Adjusted R2=-0.022, F(7,226)=0.270, p=0.965. 
bModel Summary: Adjusted R2=0.047, F(7,246)=2.772, p=0.009. 
a,bThe model included age, gender, ethnicity, interaction of gender by ethnicity, lnBMI, 
smoking status, and lnA1c. 
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CHAPTER V 

Relationship of Methylglyoxal-derived Adduct with Homocysteine and Triglycerides 

in Blacks with and without Type 2 Diabetes 

ABSTRACT 

INTRODUCTION: A diacarbonyl intermediate methylglyoxal gained an increasing 

interest due to pathogenesis relevant to atherosclerosis, diabetes, and other chronic 

illnesses. However, there is still lack of observations particularly in Black populations. 

PURPOSE: The study investigated the association of major methylglyoxal adduct, 

methylglyoxal hydroimidazolone 1 (MGH1) with selected markers for cardiovascular 

risk in African American and Haitian American participants with and without type 2 

diabetes.  

METHODS: The study included a total of 488 eligible participants (n = 234 non-

diabetics and n = 254 diabetics) over 30 years of age who had complete data of serum 

methylglyoxal and risk factors for cardiovascular disease. Community outreach approach 

was used to recruit participants resided in Broward and Miami-Dade counties, Florida. 

RESULTS: In adjusted multiple regression analyses, there was an increase in MGH1 

levels of 0.35% for every 1% increase in homocysteine levels in participants with 

diabetes (95% CI [0.07%, 0.64%], p=0.014). Being African American was associated 

with approximately 30% lower MGH1 levels than being Haitian American (95% CI 

[7.41%, 46.10%], p=0.012). Levels of MGH1 in participants with diabetes rose about 

0.19% when triglyceride levels increased by 1% (95% CI [0.00%, 0.38%], p=0.049). 

However, there was no significant association in control participants.  
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CONCLUSION: Methylglyoxal was associated with increased risk of cardiovascular 

disease in participants with type 2 diabetes. The relationship between MGH1 and 

biomarkers of cardiovascular disease appeared differential between Haitian Americans 

and African Americans. Further investigation should be conducted separately across all 

Black subgroups. 

INTRODUCTION 

Glycation is a complex series of sequential reactions between reactive carbonyl 

groups of reducing sugars, such as glucose, and nucleophilic amino groups of proteins, 

lipids or nucleic acids (Semchyshyn & Lushchak, 2012). Formation of advanced 

glycation end products (AGEs) is typically considered a potential contributing process for 

the development of diabetes. The glycation process is likely to accelerate under chronic 

conditions, placing individuals with diabetes at risk. Hyperglycemia was speculated to 

give rise to dicarbonyl compounds (Schlotterer et al., 2009) which appeared to be a 

highly reactive AGE intermediate even more than glucose (Thornalley, 2005). 

Methylglyoxal is proposed to be one of the key precursors in protein glycation (Kalapos, 

2008; Suravajjala, Cohenford, Frost, Pampati, & Dain, 2013; Zdenka Turk, Čavlović-

Naglić, & Turk, 2011). 

Methylglyoxal can be enzymatically converted from glycolytic intermediates 

(Kalapos, 1999; Phillips & Thornalley, 1993) and from non-enzymatic glycation of 

glucose (Thornalley, Langborg, & Minhas, 1999).  Lesser amount of methylglyoxal can 

be generated through lipid peroxidation (Agadjanyan, Dugin, & Dmitriev, 2006), and 

metabolism of threonine (Dhar, Desai, Kazachmov, Yu, & Wu, 2008) and ketone bodies 

(Beisswenger, Howell, Nelson, Mauer, & Szwergold, 2003; Nemet, Varga-Defterdarović, 
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& Turk, 2006). Methylglyoxal possibly transports to plasma by passive diffusion, over 

95% of which reversibly binds to plasma proteins (Rabbani & Thornalley, 2015). A 

major methylglyoxal-derived adduct is methylglyoxal hydroimidazolone 1 (Nδ-(5-hydro-

5-methyl-4-imidazolon-2-yl)-L-ornithine; MGH1), generated from reaction between 

methylglyoxal and free arginine residue (Thornalley, 2005). Methylglyoxal is mainly 

degraded by glyoxalase system which is responsible for degradation of dicarbonyl 

compounds (Thornalley, 2003; Vander Jagt & Hunsaker, 2003). However, persistent 

exposure of high glucose appears to alter methylglyoxal degradation and cause 

methylglyoxal accumulation (Schlotterer et al., 2009). This contributes to increased 

formation of AGEs in diabetes (Ahmed, Babaei-Jadidi, Howell, Thornalley, & 

Beisswenger, 2005; Kilhovd et al., 2003).  

Apart from through glycation, available evidence indicated involvement of 

methylglyoxal in pathophysiology of cardiovascular disease. Methylglyoxal-induced 

nitric oxide reduction corresponded to increased generation of reactive oxygen species 

(Sena et al., 2012) and blood vessel stiffness in vitro (Brouwers et al., 2010). Other 

potential biomarkers for cardiovascular condition include homocysteine (Sreckovic et al., 

2016) and C-reactive protein (Cardoso, Leite, & Salles, 2016). Homocysteine was 

speculated to rise under glycemic and oxidative stress (Karamshetty, Acharya, 

Ghaskadbi, & Goel, 2016), which likely increased in diabetes (Kulkarni, Acharya, 

Ghaskadbi, & Goel, 2014). C-reactive protein is an acute-phase biomolecule which is 

mainly released from hepatocytes in response to inflammatory cytokines (Gilstrap & 

Wang, 2012). The measurement of C-reactive protein may be useful to evaluate 

cardiovascular risk in some adult groups (Greenland et al., 2010). In addition, lipid 
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profile is suggested in assessment of chronic inflammatory disease (Ungurianu et al., 

2016). Positive relationships of cardiovascular disease with hypercholesterolemia and 

diabetes was found in a previous cohort study (Sardarinia et al., 2016). As mentioned, 

methylglyoxal is generated from lipid peroxidation and related to oxidative stress. 

Therefore, methylglyoxal may be associated with these factors which, in turn, links 

diabetes to the development of vascular complication. 

Heart disease and diabetes remain major causes of death in the United States 

(National Center for Health Statistics, 2016). Available evidence indicate that Blacks are 

at high risk for cardiometabolic illnesses (National Center for Health Statistics, 2016). 

The ratio of age-adjusted death rates for Blacks to Whites were about 1.2 for heart 

disease and 1.9 for diabetes (Kochanek, Murphy, Xu, & Tejada-Vera, 2016). In 2015, 

age-adjusted prevalence of diabetes among adults aged 18 and over was 13.1% in non-

Hispanic Blacks or African Americans only (Blackwell & Villarroel, 2016). 

Correspondingly, Black population tended to have 4 or more chronic conditions than 

White and other populations (National Center for Health Statistics, 2016). It is widely 

accepted that the increased risk of morbidity and mortality among populations are related 

to obesity (Calle, Thun, Petrelli, Rodriguez, & Heath, 1999) and tobacco use (U.S. 

Department of Health and Human Services, 2014). The prevalence of overweight or 

obese in Blacks continued to be greater than Whites, and more pronounced in Black 

females than Black males (National Center for Health Statistics, 2016). Black males had 

higher rates for cigarette smoking than White males (National Center for Health 

Statistics, 2016). Further scientific studies and public health programs are demanded to 

tackle preventable chronic diseases, especially in ethnic minorities. 
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Haitian Americans and African Americans are typically characterized as non-

Hispanic Blacks due to similarity of ancestry. As previously reported, subgroups of non-

Hispanic Blacks had diversity in genetic variants and modifiable factors across 

subgroups. Haitians had poorer glycemic control than Whites and African Americans 

(Vimalananda, Rosenzweig, Cabral, David, & Lasser, 2011). The prevalence of diabetes 

in Haitians was observed at 33% (Rosen, Sharp, Abad, Doddard, & Rosen, 2007), which 

was greater than the overall age-adjusted percentage for non-Hispanic Blacks (Blackwell 

& Villarroel, 2016). Apart from African and European ancestry, small proportion of 

Native American ancestry was also detected in African Americans (Bryc, Durand, 

Macpherson, Reich, & Mountain, 2015), but hardly determined in Haitian populations 

(Simms et al., 2012). Possibly, the risk for chronic diseases is different in Black 

subgroups and should be investigated. However, existing evidence in the relationship 

between methylglyoxal and risk factors of chronic diseases in Black population is still 

lacking. Therefore, the current study aimed to examine the association of methylglyoxal 

and selected risk factors of cardiovascular disease in Haitian African and African 

American participants with and without type 2 diabetes.  

METHOD 

Participants 

Data and de-identified blood samples were retrieved from the cross-sectional 

study conducted on Haitian American and African American participants by Huffman et 

al. (2013). Haitian American participants were recruited by community-based 

approaches. The recruitment was taken place in Miami-Dade and Broward counties, 

Florida. Invitational letters reviewing the study were mailed to African American 
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participants by using a mailing list (Knowledge Base Marketing, Inc., Richardson, TX, 

USA). Health professionals and diabetes educators receiving the flyer were requested for 

their assistance to enroll individuals with type 2 diabetes. Faculty, staff and students at 

Florida International University (FIU) received the flyers explaining the protocol and 

were asked for their cooperation. Advertisements were published in local newspapers and 

high-trafficking areas. Radio advertisements were announced on local Creole stations.  

Inclusion criteria of the parent study included self-identified Haitian American 

and African American males and females; age 30 years or older; absence or presence of 

type 2 diabetes; free of thyroid disorders, coronary heart disease, chemo- or radiation 

therapy, major psychiatric disorders, and HIV/AIDS; not pregnant or lactating. By using 

an initial phone interview, potential participants were informed about the study purpose 

and determined the age and gender. To ascertain type 2 diabetes status, the participants 

were asked for the duration of diagnosis and initial treatment regimens. Eligible 

individuals were invited to the Human Nutrition Laboratory at FIU to participate in the 

study. Participants were instructed to refrain from smoking, consuming any food or 

beverages except water, and any unusual exercise for at least eight hours prior to 

collection of blood samples. All participants gave written informed consents in either 

English or Creole. The study was approved by the Institutional Review Board at FIU 

prior to measurement of blood samples. 

Sample Size 

 Sample size was calculated by using G*Power software (Faul, Erdfelder, 

Buchner, & Lang, 2009). By using a medium conventional effect size to produce an equal 

number of controls and cases, the total sample size was estimated at 128 individuals 
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based on independent t-test, whereas multiple linear regression yielded a total of 55 

participants. A total of 507 target participants (Haitian American=258: non-

diabetics=120, diabetics=138; African American=249: non-diabetics=120, 

diabetics=129) from the parent study was adequate for both calculated sample sizes that 

design to meet the predetermined 80% statistical power at significance level of 0.05. 

Biochemical Analysis 

Approximately 300 microliters of de-identified serum from the parent study were 

used for methylglyoxal measurement. A prominent methylglyoxal adduct, MGH1, in 

blood samples was measured by OxiSelect™ MG competitive ELISA kit (Cell Biolabs, 

Inc., San Diego, CA, USA). The quantity of MGH1 was compared to a standard curve of 

predetermined MG-BSA. All blood samples were stored at -80 Co. Existing data of 

selected parameters for cardiovascular risk was retrieved from the parent study. Briefly, 

hexokinase enzymatic method was used to measure fasting plasma glucose (FPG). Whole 

blood A1c was measured by DCA2000+ system (Bayer HealthCare, Whippany, NJ, 

USA). This method is reliable as evidenced by 99% correlation with high-standard HPLC 

method. Based on fluorescence polarization immunoassay method, the IMx System was 

utilized to determine total plasma homocysteine (Hcy; Abbott Laboratories, Abbott Park, 

IL, USA). High sensitivity C-reactive protein (HsCRP) was analyzed by Immulite 

(Diagnostic Products Corporation, Los Angeles, CA). Serum total cholesterol (TC), 

triglyceride (TG), and HDL cholesterol (HDLC) were measured using enzymatic 

spectrophotometric methods by Laboratory Corporation of America (LabCorp, Miami, 

FL, USA). The Friedewald equation was used to estimate LDL cholesterol (LDLC) levels 

as described elsewhere (Friedewald, Levy, & Fredrickson, 1972).  
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Anthropometric data 

Participant’s height was measured when the participant stood upright without 

shoes. Weight measurement was taken with the participant wearing light clothes by using 

a SECA clinical scale (SECA Corp, Columbia, MD, USA). Body mass index (BMI) was 

calculated as weight (kg)/height (m2).  

Socio-demographic data 

Socio-demographic data regarding age, gender, ethnicity, and smoking status 

were collected by using a standardized questionnaire. 

Statistical Analysis 

Values were presented as mean ± standard deviation (mean ± SD) or percentage 

(%). Continuous variables were analyzed by independent t-test, whereas Chi-square test 

was employed for categorical variables. Multiple regression analysis was used to further 

examine the relationship between serum MGH1 levels and other biomarkers, including 

homocysteine total cholesterol, triglycerides, LDL cholesterol and HDL cholesterol. Age, 

gender, ethnicity, BMI, diabetes status and smoking status were potential variables that 

were adjusted as appropriate during data analysis. Due to skewed distribution, levels of 

MGH1, homocysteine, triglycerides, and BMI underwent logarithm transformation. The 

log-transformed data were used in all analyses. Tests were considered statistically 

significant if p-value was less than 0.05. All data were analyzed by using SPSS version 

23.0 (SPSS Inc., Chicago, IL, USA). 

RESULT 
In the current study, eligible participants were individuals who had complete data 

for serum MGH1 and other selected variables, and BMI between 18.5 kg/m2 and 60 
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kg/m2. A total of 488 participants (n = 234 controls and n = 254 cases) were included in 

the data analyses, which was adequate to achieve 80% power. 

Characteristics of study participants 

The participants with type 2 diabetes tended to be older (p<0.001) and had greater 

lnBMI (p<0.001), lnFPG (p<0.001), lnA1c (p<0.001), and lnTG (p=0.010) than those 

without diabetes (Table 1). The levels of lnMGH1 were partially higher in the 

participants with diabetes as compared to those without diabetes (p=0.057). 

Association of MGH1 with selected biomarkers in study participants 

Multiple regression analyses were used to examine the association of MGH1 with 

selected biomarkers in participants with and without type 2 diabetes. A positive 

relationship between MGH1 and homocysteine levels was found (B=0.346, 95% CI 

[0.135, 0.557], p=0.001; Table 2), and persisted after adjusting for age, gender, ethnicity, 

diabetes status, lnBMI, smoking status, and two-way interactions among gender, 

ethnicity, and diabetes status (B=0.338, 95% CI [0.111, 0.566], p=0.004).  

There was no significant association of MGH1 levels with TC (p=0.426), TG 

(p=0.664), LDLC (p=0.515), HDLC (p=0.850), and HsCRP (p=0.457). After adjusting 

for age, gender, ethnicity, diabetes status, lnBMI, smoking status, and two-way 

interactions among gender, ethnicity, and diabetes status, null association of MGH1 with 

TC (p=0.488), TG (p=0.515), LDLC (p=0.591), HDLC (p=0.746), and HsCRP (p=0.250) 

was remained. 

Relationship between MGH1 and homocysteine stratified by diabetes status 

Due to the fact that diabetes may contribute to increased cardiovascular risk, data 

were stratified by diabetes status prior to further multiple regression analyses. Null 
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association between MGH1 and homocysteine was shown in participants without 

diabetes (p=0.152; Table 3). The marginal relationship between MGH1 and 

homocysteine emerged in control participants after adjusting for age, gender, ethnicity, 

interaction of gender by ethnicity, lnBMI, and smoking status (p=0.085). However, the 

adjusted model failed to meet the significance level of 0.05 (p=0.684).  

There was a significant association between MGH1 and homocysteine in 

participants with diabetes (p=0.001), and remained after adjustment. Levels of MGH1 in 

participants with diabetes increased about 0.35% when homocysteine levels increased by 

1% (95% CI [0.07%, 0.64%], p=0.014). Being African American was associated with 

approximately 30% lower MGH1 levels than being Haitian American, holding other 

variables constant (95% CI [7.41%, 46.10%], p=0.012). Levels of MGH1 were also 

marginally associated with age (p=0.057) and BMI (p=0.068). There was no significant 

association of MGH1 with gender (p=0.405) and smoking status (p=0.594) as well as 

interaction effect between gender and ethnicity (p=0.405). 

Association of MGH1 with selected cardiovascular risk factors stratified by diabetes 

status 

In participants without diabetes, MGH1 levels were associated with TG levels 

(B=-0.288, 95% CI [-0.547, -0.028], p=0.030; Table 4), and persisted after adjusting for 

age, gender, ethnicity, interaction of gender by ethnicity, lnBMI, and smoking status (B=-

0.345, 95% CI [-0.624, -0.066], p=0.016). However, the adjusted model did not reach 

significance level at 0.05. In unadjusted models, there was no significant association of 

MGH1 with HDLC (p=0.169), LDLC (p=0.832), TC (p=0.924), and HsCRP (p=0.260). 

Null associations of MGH1 levels with HDLC (p=0.075; Table 5), LDLC (p=0.752), TC 
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(p=0.959), and HsCRP (p=0.179) remained in control participants after adjusted for age, 

ethnicity, gender, lnBMI, smoking status, and interaction of gender by ethnicity.  

In participant with diabetes, the association between MGH1 and TG levels did not 

show in unadjusted model (p=0.133), but emerged only in adjusted model (Table 4). 

After adjusted for age, ethnicity, gender, lnBMI, smoking status, and interaction of 

gender by ethnicity, MGH1 levels in participants with diabetes rose about 0.19% when 

TG levels increased by 1% (95% CI [0.00%, 0.38%], p=0.049). Elevated MGH1 levels 

were associated with an increasing age (B=0.014, 95% CI [0.005, 0.023], p=0.003) and 

being Haitian American (B=-0.341, 95% CI [-0.613, -0.070], p=0.014). A marginal 

relationship between MGH1 and HDLC was observed in participants with diabetes 

holding other variables constant (p=0.063; Table 5). Similarly, MGH1 levels was 

significantly associated with age (B=0.015, 95% CI [0.006, 0.024], p=0.002) and 

ethnicity (B=-0.349, 95% CI [-0.621, -0.077], p=0.012) in the adjusted model. In 

unadjusted model, there was no significant association of MGH1 with LDLC (p=0.281), 

TC (p=0.313), HsCRP (p=0.626) in participants with diabetes. After adjusted for age, 

ethnicity, gender, lnBMI, smoking status, and interaction of gender by ethnicity, null 

association of MGH1 with LDLC (p=0.292), TC (p=0.331), HsCRP (p=0.788) remained. 

DISCUSSION 

The present study found that serum concentrations of dominant methylglyoxal 

adduct, MGH1, were higher in participants with types 2 diabetes than controls. The 

elevated MGH1 levels were significantly associated with an increase in homocysteine 

and triglyceride levels in participants with diabetes. Also, being Haitian American 
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appeared to positively influence serum concentrations of MGH1 in participants with type 

2 diabetes. 

 Aberrant metabolic condition appeared to increase methylglyoxal levels. Elevated 

methylglyoxal levels were observed in individuals who had impaired glucose metabolism 

(Maessen et al., 2015), diabetes (Kong et al., 2014; Nemet, Turk, Duvnjak, Car, & Varga-

Defterdarović, 2005; Turk et al., 2011; Turk, Vrdoljak, Misur, Trescec, & Benko, 2009) 

or metabolic syndrome (Uribarri et al., 2015). As previously reported (Ahmed et al., 

2005; Kilhovd et al., 2003), the current study found that serum levels of prominent 

adduct, MGH1, was marginally higher in participants with diabetes than the controls. 

This may be due to differential capacity of methylglyoxal degradation among individuals. 

Even though an increased activity of erythrocyte glyoxalase enzymes was found in 

diabetes (McLellan, Thornalley, Benn, & Sonksen, 1994), hyperglycemia-induced 

methylglyoxal overproduction may disproportionate to degradation (Schlotterer et al., 

2009). This possibly leads to methylglyoxal accumulation. Existing evidence suggests 

that methylglyoxal is related to alteration of glucose metabolism which, in turn, increase 

risk of chronic illnesses overtime. 

 Homocysteine is identified as an important biomarker for atherosclerosis and 

vascular disease (Homocysteine Studies Collaboration, 2002; Sreckovic et al., 2016). 

Levels of MGH1 were positively associated with homocysteine levels in pooled analyses. 

However, the significant relationship between MGH1 and homocysteine persisted only in 

participants with diabetes after stratified by diabetes status and adjusted for confounders, 

suggesting such association likely presented under chronic condition. The current study 

firstly reported the relationship between MGH1 and homocysteine in diabetes. The 
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possible candidate to describe the findings was reduced glutathione. High glucose 

condition was speculated to cause overproduction of methylglyoxal (Ahmed et al., 2005; 

Schlotterer et al., 2009; Thornalley, 2005), which likely stressed the glyoxalase system. 

Reduced glutathione is required in glyoxalase-1 activity and recycled back after D-lactate 

production catalyzed by glyoxalase-2 (Thornalley, 2003). The study in isolated 

erythrocytes from individuals with diabetes found that reduced glutathione concentrations 

were negatively correlated with diabetes-related microvascular complications, and D-

lactate concentrations (Thornalley, McLellan, Lo, Benn, & Sönksen, 1996). Induced by 

methylglyoxal accumulation, an increased glyoxalase-1 activity coupled with a decreased 

glyoxalase-2 function may reduce abundance of glutathione by trapping it in the system 

(Chakraborty, Karmakar, & Chakravortty, 2014). As glutathione is essential for oxidative 

stress defense (Aoyama & Nakaki, 2013; Franco & Cidlowski, 2012; Matafome, Sena, & 

Seiça, 2013), systemic anti-oxidative property may decline. Methylglyoxal also caused 

the formation of reactive oxygen species (Brouwers et al., 2010; Sena et al., 2012) which, 

in turn, aggravated preexisting oxidative stress. In addition, almost half of hepatocyte 

glutathione was obtained from homocysteine through transsulfuration pathway 

(Mosharov et al., 2000). The positive relationship between MGH1 and homocysteine 

conceivably reflected physiological response against methylglyoxal accumulation and 

increased oxidative stress in diabetes. 

 In participants with diabetes, high MGH1 levels were significantly associated 

with elevated triglyceride levels, whereas marginally negative relationship was found 

with HDL cholesterol. However, Turk and colleagues (2011) reported the significant 

correlation between blood levels of MG-adduct and LDL cholesterol as well as that 
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between urinary MG-adduct and triglyceride levels. About 30% of the study participants 

had a history of macrovascular disease, and about 12% had type 1 diabetes (Turk et al., 

2011). The difference in participant characteristics may create different findings from the 

current study. 

 The positive association between MGH1 and triglycerides supported the 

possibility of methylglyoxal production through lipid peroxidation. By using rat liver 

fractions, a glycolytic enzyme phosphoglucose isomerase was hypothesized to convert 

malondialdehyde to methylglyoxal (Agadjanyan et al., 2006). Ketone bodies are 

synthesized from fatty acids when fats become main fuel, such as during nutritional 

deprivation. Ketone bodies include acetoacetate and its byproducts acetone and acetol, 

which can be further catalyzed into methylglyoxal (Beisswenger et al., 2003; Nemet et 

al., 2006). A few human studies indicated that elevated ketone bodies were found 

corresponding to increased methylglyoxal in diabetes or individuals who chronically 

consumed low-carbohydrate diet (Beisswenger et al., 2003; Turk, Nemet, Varga-

Defteardarović, & Car, 2006). Taken together, non-carbohydrate substrates may be other 

significant sources for methylglyoxal formation under abnormal metabolic conditions 

such as diabetes. 

 The association of MGH1 positively with triglycerides and negatively with HDL 

cholesterol suggested that methylglyoxal may involve in pathological manifestation of 

vascular complication. As endothelium serves as a semipermeable barrier, it plays a 

critical role in selective transfer of small and large molecules, and stability of blood 

vessel (Sumpio, Riley, & Dardik, 2002). High glucose-induced methylglyoxal 

accumulation in bovine endothelial cells appeared to increase endocytosis of 
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macromolecules (Shinohara et al., 1998). The increased internalization of 

macromolecules, such as lipids from circulating lipoprotein, possibly increased 

endothelial permeability linking to fatty deposit at vascular lesion (Cester et al., 1996).  

Additionally, HDL cholesterol was susceptible for methylglyoxal glycation 

(Bacchetti, Masciangelo, Armeni, Bicchiega, & Ferretti, 2014). As compared to healthy 

individuals, MGH1 contents of high density lipoprotein (HDL) were significantly greater 

in individuals with type 2 diabetes (Godfrey, Yamada-Fowler, Smith, Thornalley, & 

Rabbani, 2014). High density lipoprotein participates in reverse cholesterol transport 

where HDL is proposed to have a protective effect against atherogenesis (Vergeer, 

Holleboom, Kastelein, & Kuivenhoven, 2010). In part, HDL interacts with cholesteryl 

ester transfer protein (CETP), which mediates triglyceride transfer from triglyceride-rich 

lipoprotein to HDL in exchange for cholesteryl ester (Oliveira & de Faria, 2011). As a 

result, HDL enriched in triglyceride can undergo multiple fates such as taken up and 

catabolized by the liver. In animal model, the modification of HDL by methylglyoxal 

reduced particle stability and cholesteryl ester transfer through the interaction between 

HDL and CETP (Godfrey et al., 2014). In addition, methylglyoxal may enhance 

cardiovascular risk through interference with antioxidant enzyme activity. Paraoxonase-1 

features anti-oxidative and anti-inflammatory properties, including detoxification of 

homocysteine-thiolactone (Perła-Kaján & Jakubowski, 2012). Homocysteine converts to 

homocysteine-thiolactone which subsequently leads to the formation of N-

homocysteinylated protein (N-Hcy-protein; (Gurda, Handschuh, Kotkowiak, & 

Jakubowski, 2015). N-Hcy-protein was proposed to play a role in thrombosis and cell 

damage (Gurda et al., 2015; Jakubowski, 2001). Activity of paraoxonase-1 appeared to 
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protect against accumulation of N-Hcy-protein (Perła-Kaján & Jakubowski, 2012), which 

possibly delayed atherogenesis. Methylglyoxal-mediated glycation found to reduce 

activity of paraoxonase-1 enzyme on HDL particle surface (Bacchetti et al., 2014), at 

least in part, connecting methylglyoxal to impaired oxidative defense by HDL 

cholesterol. At least 33% decrease in plasma half-life of methylglyoxal-modified HDL 

was also observed (Godfrey et al., 2014), implicating the involvement of methylglyoxal 

in blood HDL cholesterol levels which commonly manifest as low in individuals with 

coronary heart disease or type 2 diabetes. The marginally negative relationship between 

MGH1 and HDL cholesterol supported this hypothesis. 

The current study did not find the significant association between MGH1 and 

HsCRP levels among participants. Levels of MGH1 were positively associated with 

levels of CRP in children and adolescents with type 1 diabetes of short duration (Heier et 

al., 2015), who were previously reported to have an increasing trend of carotid artery 

intima-media thickness (Margeirsdottir, Stensaeth, Larsen, Brunborg, & Dahl-Jorgensen, 

2010). Short duration of diabetes, preexisting vascular event, and participant’s age may 

contribute to different findings from the current study. Possibly, the relationship of 

methylglyoxal with CRP may emerge during early stages of the disease, but not late 

stages.  

In participants with diabetes, African Americans were more likely to have lower 

MGH1 levels than Haitian Americans. Such dissimilarity may be partially due to 

diversity of modifiable risk factors and ancestry among Black populations. Haitians with 

diabetes were more likely to have poor glycemic control as compared to White and 

African American counterparts (Vimalananda et al., 2011). Prolonged exposure of high 
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glucose appeared to cause methylglyoxal overproduction (Schlotterer et al., 2009), 

subsequently aggravating methylglyoxal detoxification system. Reduced glutathione 

concentrations in erythrocytes from individuals with type 2 diabetes were negatively 

correlated with plasma glucose levels (McLellan et al., 1994). Low glutathione 

concentration may cause methylglyoxal accumulation and simultaneously increase 

homocysteine for precursor supply. In addition, Glo1 gene was considered one of 

hotspots for genetic variation (Cahan, Li, Izumi, & Graubert, 2009). The similarity of 

erythrocyte GLO allele frequency in Black Americans and Bantu-speaking Black 

habitants in South Africa (Bender, Frank, & Hitzeroth, 1977). Yet, the study also 

mentioned significant differences in the GLO allele frequency among some Black 

subpopulations (Bender et al., 1977). The diversity of ancestry among Black populations, 

including Haitians (Simms et al., 2012) and African Americans (Bryc et al., 2015) was 

recently reported. Collectively, glyoxalase-1 expression and activity may be different in 

Black subgroups, impacting methylglyoxal detoxification.  

The nature of observational study limited the researchers to examine causality of 

the findings. Low generalizability was assumed due to participant recruitment from the 

same pool of population and area. However, the study also features some strengths. Apart 

from patient report, diabetes status was ascertained using standard criteria established by 

American Diabetes Association. By far, this was the first study investigated the 

relationship between methylglyoxal and biomarkers for cardiovascular risk particularly in 

Haitian Americans and African Americans. The evidence, at least in part, provided the 

better understanding in biomarkers that possibly predisposed Black populations to 

cardiovascular condition.  
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To sum up, elevated serum MGH1 levels were shown in Haitian American and 

African American participants with type 2 diabetes. A positive association of MGH1 with 

homocysteine and triglyceride placed methylglyoxal a possible candidate that linked 

diabetes to cardiovascular risk. The relationship between MGH1 and biomarkers for 

cardiovascular disease appeared differential between Haitian Americans and African 

Americans. Disparity in susceptibility for chronic illnesses among subpopulations 

deserve further investigation. Also, replication studies are demanded to warrant and 

elucidate the true nature of such relationship. 
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Table 1. Characteristics of the participants 
Variable without diabetes 

(n=234) 
with diabetes 

(n=254) 
p-value 

Age (years) 52.59 ± 10.00 56.00 ± 10.14 <0.001* 
Gender, n (%) 
   Female 
   Male 

 
116 (49.6) 
118 (50.4) 

 
136 (53.5) 
118 (46.5) 

0.381 

Ethnicity, n (%) 
   Haitian Americans 
   African Americans 

 
118 (50.4) 
116 (49.6) 

 
130 (51.2) 
124 (48.8) 

0.868 

BMI (kg/m2) 29.91 ± 6.06 32.46 ± 7.17 <0.001* 
lnBMI  3.38 ± 0.19 3.46 ± 0.21 <0.001* 
FPG (mmol/l) 97.28 ± 15.08 151.71 ± 64.88 <0.001* 
lnFPG  4.57 ± 0.15 4.94 ± 0.39 <0.001* 
A1c (%) 5.92 ± 0.45 8.03 ± 2.27 <0.001* 
lnA1c  1.78 ± 0.08 2.05 ± 0.26 <0.001* 
Homocysteine (mg/l) 10.07 ± 4.80 10.33 ± 4.09 0.534 
lnHcy 2.24 ± 0.36 2.27 ± 0.34 0.273 
HsCRP (mg/l) 4.75 ± 7.20 5.23 ± 7.28 0.468 
lnHsCRP 0.76 ± 1.28 0.96 ± 1.22 0.076 
Total cholesterol (mg/dl) 194.27 ± 38.90 191.53 ± 42.31 0.458 
TG (mg/dl) 110.01 ± 59.90 123.78 ± 69.43 0.020* 
lnTG  4.59 ± 0.46 4.69 ± 0.49 0.014* 
HDL cholesterol (mg/dl) 51.68 ± 13.73 51.43 ± 14.36 0.847 
LDL cholesterol (mg/dl) 120.59 ± 36.61 115.34 ± 36.47 0.114 
Smoke (%) 
   Yes 
   No 

 
54 (23.1) 

180 (76.9) 

 
53 (20.9) 

201 (79.1) 

0.555 

MGH1 (µg/ml) 2.29 ± 2.50 2.36 ± 2.44 0.764 
lnMGH1 0.42 ± 0.93 0.56 ± 0.73 0.057 
Continuous variables were expressed as mean ± standard deviation (SD), while 
categorical variables were expressed as n (%). ln=natural log-transformed; 
A1c=hemoglobin A1c; BMI=body mass index; FPG=fasting plasma glucose; 
HsCRP=high sensitive C-reactive protein; Hcy=homocysteine; MGH1=methylglyoxal 
hydroimidazolone 1; TG=triglycerides; *p<0.05 is considered statistically significant. 
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Table 2. Multiple regression analysis for relationship of lnMGH1 with lnHcy in the 
study participants (n=488) 
Unadjusted model 

Variables B SE 95% CI p-value 
lnHcy 0.346 0.107 0.135, 0.557 0.001* 
Adjusted model* 

Variables B SE 95% CI p-value 
Age 9.030E-5 0.004 -0.004, 0.011 0.982 
Gender (male) -0.026 0.250 -0.525, 0.462 0.917 
Ethnicity (AA) -0.038 0.138 -0.314, 0.231 0.784 
Diabetes status (yes) 0.460 0.248 -0.149, 0.852 0.063 
lnBMI 0.259 0.211 -0.212, 0.620 0.220 
Smoking status (yes) 0.021 0.102 -0.176, 0.229 0.837 
Ethnicity*diabetes status 
(AA*yes) 

-0.243 0.152 -0.522, 0.080 0.111 

Gender*ethnicity 
(male*AA) 

0.040 0.151 -0.231, 0.366 0.791 

Diabetes status*gender 
(yes*male) 

0.033 0.151 -0.249, 0.350 0.829 

lnHcy 0.338 0.116 0.111, 0.566 0.004* 
AA=African American, B=coefficient, SE=standard error, CI=confidence interval, 
ln=natural log; Hcy=homocysteine, MGH1=methylglyoxal hydroimidazolone 1, 
*p<0.05 is considered statistically significant. 
Model Summary: Adjusted R2=0.019, F(10,477)=1.927, p=0.040. 
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Table 3. Multiple regression analysis for relationship of lnMGH1 with lnHcy stratified by 
diabetes status 
Participants without diabetes (n=234) 

Variables B SE 95% CI p-value 
Unadjusted model     
lnHcy 0.246 0.171 -0.091, 0.584 0.152 
Adjusted modela     
Age -0.009 0.007 -0.022, 0.004 0.178 
Gender (male) 0.050 0.393 -0.725, 0.824 0.900 
Ethnicity (AA) -0.051 0.187 -0.420, 0.319 0.788 
Gender*ethnicity (male*AA) -0.032 0.251 -0.526, 0.462 0.898 
lnBMI 0.077 0.336 -0.586, 0.739 0.819 
Smoking status (yes) 0.104 0.168 -0.227, 0.435 0.535 
lnHcy 0.314 0.181 -0.044, 0.671 0.085 
Participants with diabetes (n=254) 

Variables B SE 95% CI p-value 
Unadjusted model     
lnHcy 0.425 0.131 0.167, 0.683 0.001* 
Adjusted modelb*     
Age 0.009 0.005 0.000, 0.019 0.057 
Gender (male) -0.236 0.284 -0.795, 0.322 0.405 
Ethnicity (AA) -0.348 0.137 -0.618, -0.077 0.012* 
Gender*ethnicity (male*AA) 0.227 0.182 -0.131, 0.585 0.405 
lnBMI 0.469 0.256 -0.035, 0.974 0.068 
Smoking status (yes) -0.065 0.121 -0.303, 0.174 0.594 
lnHcy 0.355 0.144 0.071, 0.639 0.014* 
AA=African American, B=coefficient, SE=standard error, CI=confidence interval, 
ln=natural log; Hcy=homocysteine; MGH1=methylglyoxal hydroimidazolone 1; *p<0.05 
is considered statistically significant. 
aModel Summary: Adjusted R2=0.021, F(7,226)=0.686, p=0.684.  
bModel Summary: Adjusted R2=0.089, F(7,246)=3.425, p=0.002. 
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Table 4. Multiple regression analysis for relationship of lnMGH1 with lnTG stratified by 
diabetes status 
Participants without diabetes (n=234) 

Variables B SE 95% CI p-value 
Unadjusted model     
lnTG -0.288 0.132 -0.547, -0.028 0.030* 
Adjusted modela     
Age -0.005 0.006 -0.017, 0.008 0.468 
Gender (male) 0.206 0.397 -0.576, 0.988 0.604 
Ethnicity (AA) -0.009 0.187 -0.378, 0.360 0.960 
Gender*ethnicity (male*AA) -0.074 0.250 -0.567, 0.420 0.769 
lnBMI 0.246 0.344 -0.432, 0.923 0.476 
Smoking status (yes) 0.154 0.168 -0.178, 0.486 0.361 
lnTG -0.345 0.142 -0.624, -0.066 0.016* 
Participants with diabetes (n=254) 

Variables B SE 95% CI p-value 
Unadjusted model     
lnTG 0.142 0.094 -0.043, 0.328 0.133 
Adjusted modelb*     
Age 0.014 0.005 0.005, 0.023 0.003* 
Gender (male) -0.173 0.284 -0.734, 0.388 0.544 
Ethnicity (AA) -0.341 0.137 -0.613, -0.070 0.014* 
Gender*ethnicity (male*AA) 0.213 0.182 -0.148, 0.573 0.246 
lnBMI 0.329 0.256 -0.183, 0.841 0.207 
Smoking status (yes) -0.068 0.121 -0.308, 0.171 0.574 
lnTG 0.190 0.096 0.001, 0.380 0.049* 
AA=African American, B=coefficient, SE=standard error, CI=confidence interval, 
ln=natural log; MGH1=methylglyoxal hydroimidazolone 1, TG=triglycerides; *p<0.05 is 
considered statistically significant. 
aModel Summary: Adjusted R2=0.033, F(7,226)=1.109, p=0.359.  
bModel Summary: Adjusted R2=0.081, F(7,246)=3.092, p=0.004. 
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Table 5. Multiple regression analysis for relationship of lnMGH1 with HDLC stratified by 
diabetes status 
Participants without diabetes (n=234) 

Variables B SE 95% CI p-value 
Unadjusted model     
HDL cholesterol 0.006 0.004 -0.003, 0.015 0.169 
Adjusted modela     
Age -0.007 0.006 -0.020, 0.005 0.259 
Gender (male) 0.140 0.397 -0.643, 0.923 0.724 
Ethnicity (AA) -0.049 0.187 -0.418, 0.320 0.793 
Gender*ethnicity (male*AA) -0.024 0.250 -0.517, 0.469 0.923 
lnBMI 0.148 0.341 -0.523, 0.819 0.664 
Smoking status (yes) 0.121 0.168 -0.210, 0.453 0.473 
HDL cholesterol 0.009 0.005 -0.001, 0.018 0.075 
Participants with diabetes (n=254) 

Variables B SE 95% CI p-value 
Unadjusted model     
HDL cholesterol -0.004 0.003 -0.010, 0.002 0.197 
Adjusted modelb*     
Age 0.015 0.005 0.006, 0.024 0.002* 
Gender (male) -0.283 0.288 -0.850, 0.284 0.327 
Ethnicity (AA) -0.349 0.138 -0.621, -0.077 0.012* 
Gender*ethnicity (male*AA) 0.258 0.182 -0.101, 0.618 0.158 
lnBMI 0.310 0.263 -0.208, 0.828 0.240 
Smoking status (yes) -0.052 0.121 -0.291, 0.187 0.668 
HDL cholesterol -0.006 0.003 -0.013, 0.000 0.063 
AA=African American, B=coefficient, SE=standard error, CI=confidence interval, 
ln=natural log; MGH1=methylglyoxal hydroimidazolone 1; *p<0.05 is considered 
statistically significant. 
aModel Summary: Adjusted R2=0.022, F(7,226)=0.716, p=0.658.  
bModel Summary: Adjusted R2=0.079, F(7,246)=3.028, p=0.005. 
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CHAPTER VI 

Relationship between Methylglyoxal Adduct and Eating Indices in Blacks with and 

without Type 2 Diabetes 

ABSTRACT 

INTRODUCTION: A dicarbonyl compound methylglyoxal found in food leads to 

formation of dietary advanced glycation end products which are generally known for 

association with chronic diseases. Methylglyoxal and its adducts tend to form in food 

high in sugars, proteins, and fats which are recommended to be consumed in moderation. 

PURPOSE: The current study aimed to investigate the relationship between levels of 

serum methylglyoxal adduct and diet quality using the 2005 healthy eating index (HEI-

2005) and alternate healthy eating index (AHEI) in African American and Haitian 

American participants, with and without type 2 diabetes.  

METHODS: Participants were recruited by community outreach in Broward and Miami-

Dade counties, Florida. The study included a total of 452 eligible participants (n = 212 

non-diabetics and n = 240 diabetics) over 30 years of age who had complete data of 

serum methylglyoxal and scores for the HEI-2005 and the AHEI. Serum levels of 

prominent methylglyoxal adduct, methylglyoxal hydroimidazolone 1 (MGH1) were 

measured by a commercially available competitive ELISA kit. The eating indices were 

calculated from completed food frequency questionnaire. Multiple regression analysis 

was used to determine the association of MGH1 with the eating indices.  

RESULTS: The significantly positive relationship between MGH1 levels and HEI-2005 

scores were observed after adjusted for age, gender, ethnicity, diabetes status, interaction 

of diabetes status by ethnicity, and physical activity (B=0.009, 95% CI [0.002, 0.014], 
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p=0.012). Such relationship appeared to be more pronounced in Haitian American 

participants (B=0.012, 95% CI [0.002, 0.022], p=0.014). Among Haitian Americans, 

elevated MGH1 levels were associated with having diabetes (B=0.853, 95% CI [0.316, 

1.391], p=0.002), higher education (B=0.248, 95% CI [0.027, 0.469], p=0.028), lower 

physical activity (B=-0.080, 95% CI [-0.161, 0.000], p=0.051), and being older (B=0.010, 

95% CI [0.000, 0.022], p=0.054). No significant association between MGH1 levels and 

the AHEI scores was shown in unadjusted comparison (p=0.897) or adjusted model (B=-

0.001, p=0.813). 

CONCLUSION: The relationship between diet quality and methylglyoxal may be 

different due to ethnicities, disease state, and modifiable factors, which should be 

assessed. 

INTRODUCTION 

Diabetes remains one of the major causes of death in the United States (National 

Center for Health Statistics, 2016). Available evidence indicate that Blacks are at high 

risk for aberrant cardiometabolic illnesses including diabetes (National Center for Health 

Statistics, 2016). Age-adjusted rates of death caused by diabetes for Black population 

were about 1.9 times higher than that for White population (Kochanek, Murphy, Xu, & 

Tejada-Vera, 2016). In 2015, age-adjusted prevalence of diabetes among adults aged 18 

and over was 13.1% in non-Hispanic Blacks or African Americans only (Blackwell & 

Villarroel, 2016). Correspondingly, Black population tended to have 4 or more chronic 

conditions than White and other populations (National Center for Health Statistics, 2016). 

Obesity and cigarette smoking are widely recognized as important contributing factors 

for the development of diabetes. The percent of overweight or obese non-Hispanic Blacks 
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has increased over the years, which was greater than Whites (National Center for Health 

Statistics, 2016). The prevalence of obesity appeared to be more pronounced in Black 

females than Black males (National Center for Health Statistics, 2016). These statistics 

indicate the need for further scientific studies and public health programs to tackle 

chronic illnesses in all subpopulations, including Black minorities. 

Eating well is an important feature for managing diabetes (Gallivan, Greenberg, 

& Brown, 2008). The dietary guidelines for Americans has been widely used as a 

foundation of dietary recommendation for chronic diseases (Evert et al., 2013; Kushi et 

al., 2012). However, the national data between 2003-2004 indicated that most Americans 

still had low adherence to the dietary guidelines (Ervin, 2011). Of those, the poorer 

compliance was found in non-Hispanic Blacks as compared with other populations 

(Ervin, 2011), suggesting the need of racial/ethnic specific dietary intervention. To assess 

overall diet quality among populations, healthy eating index (HEI) was developed by the 

United States Department of Agriculture in 1995 (Bowman, Lino, Gerrior, & Basiotis, 

1998; Kennedy, Ohls, Carlson, & Fleming, 1995) and has been revised to reflect the 

current dietary guidelines. The HEI-2005 is a measure of diet quality that features twelve 

diet-related components of the 2005 dietary guidelines for Americans by using scoring 

system (Guenther, Reedy, & Krebs-Smith, 2008). Alternate healthy eating index (AHEI) 

is another scoring system created to determine diet quality (McCullough et al., 2002). 

Some diet-related attributes in the original HEI still included in the AHEI scoring. 

However, AHEI scores also take into account for proportion of white and red meat, fat 

quality, cereal fibers, duration of multivitamin supplement, and moderate alcohol 

consumption, which are chosen due to association with reduced risk for chronic illnesses 
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(McCullough et al., 2002). Both HEI-2005 and AHEI has been used to determine overall 

diet quality in diverse populations (Akbaraly et al., 2011; Chiuve et al., 2012; Guenther, 

Reedy, Krebs-Smith, & Reeve, 2008; Lin, Gao, & Lee, 2013; McCullough & Willett, 

2006; Savoca et al., 2009). The high scores of the indices were associated with less all-

cause mortality and those caused by type 2 diabetes, cardiovascular disease, and cancer 

(Schwingshackl & Hoffmann, 2015), indicating the importance of diet quality in delaying 

mortality among populations.  

Advanced glycation end products (AGEs) have been widely mentioned due to 

association with chronic diseases. Apart from endogenous production, AGEs are also 

formed in food through non-enzymatic Maillard reaction (Poulsen et al., 2013; Sharma, 

Kaur, Thind, Singh, & Raina, 2015). The Maillard reaction is a chemical process in 

which protein reacts with reducing sugar (Nemet, Varga-Defterdarović, & Turk, 2006). 

This reaction can generate dicarbonyl compounds, such as methylglyoxal, that can further 

lead to AGE formation (Nemet et al., 2006; Poulsen et al., 2013; Sharma et al., 2015). 

Generation of AGEs driven by methylglyoxal suggested its relevance to pathogenesis of 

diabetes (Yamagishi, Matsui, & Nakamura, 2008) and cardiovascular disease (Yamagishi 

& Matsui, 2016). Increased dietary methylglyoxal was significantly associated with 

serum methylglyoxal adduct levels in overweight or obese participants (Uribarri et al., 

2015), suggesting that blood methylglyoxal may be possibly altered by food intake. In a 

recent double-blind cross-over randomized trial, healthy overweight individuals in low 

AGE diet group had a significantly greater insulin sensitivity than those having high 

AGE diet (de Courten et al., 2016). As compared to high AGE group, low AGE group 

also had an increased excretion of methylglyoxal hydroimidazolone 1 (MGH1) (de 
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Courten et al., 2016), which is a prominent adducted derived from methylglyoxal 

(Thornalley, 2005). The observations indicate that dietary methylglyoxal may be 

manipulated by food intake, and possibly impact physiological response. Methylglyoxal 

and AGE formation in food depends on high contents of sugar (Nemet et al., 2006), 

protein and fat (Sharma et al., 2015), which can be found in some diet components of 

HEI-2005 and AHEI. This suggest a possible link of eating pattern to dietary and 

subsequent circulating methylglyoxal-derived AGEs. However, diet quality assessment in 

relation to methylglyoxal remains scarce, especially in Black populations. Therefore, the 

current study aimed to examine the association between serum methylglyoxal adduct 

(MGH1) and eating indices (HEI-2005 and AHEI) in Haitian Americans and African 

Americans with and without type 2 diabetes.  

METHOD 

Participants 

Data and de-identified blood samples were retrieved from the cross-sectional 

study conducted on Haitian American and African American participants by Huffman et 

al. (2013). Haitian American participants were recruited by community-based 

approaches. The recruitment was taken place in Miami-Dade and Broward counties, 

Florida. Invitational letters reviewing the study were mailed to African American 

participants by using a mailing list (Knowledge Base Marketing, Inc., Richardson, TX, 

USA). Health professionals and diabetes educators receiving the flyer were requested 

their assistance to enroll individuals with type 2 diabetes. Faculty, staff and students at 

Florida International University (FIU) received the flyers explaining the protocol and 
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were asked for their cooperation. Advertisements were published in local newspapers and 

high-trafficking areas. Radio advertisements were announced on local Creole stations.  

Inclusion criteria of the parent study comprised self-identified Haitian American 

and African American males and females; age 30 years or older; absence or presence of 

type 2 diabetes; free of thyroid disorders, coronary heart disease, chemo- or radiation 

therapy, major psychiatric disorders, and HIV/AIDS; not pregnant or lactating. By using 

an initial phone interview, potential participants were informed about the study purpose 

and determined the age and gender. To ascertain type 2 diabetes status, the participants 

were asked for the duration of diagnosis and initial treatment regimens. Eligible 

individuals were invited to the Human Nutrition Laboratory at FIU to participate in the 

study. Participants were instructed to refrain from smoking, consuming any food or 

beverages except water, and any unusual exercise for at least eight hours prior to 

collection of blood samples. All participants gave written informed consents in either 

English or Creole. The study was approved by the Institutional Review Board at FIU 

prior to collection of blood samples and other study related data. 

Sample Size 

 Sample size was calculated by using G*Power software (Faul, Erdfelder, 

Buchner, & Lang, 2009). By using a medium conventional effect size to produce an equal 

number of controls and cases, the total sample size was estimated at 128 individuals 

based on independent t-test, whereas multiple linear regression yielded a total of 55 

participants. A total of 507 target participants (Haitian American=258: non-

diabetics=120, diabetics=138; African American=249: non-diabetics=120, 
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diabetics=129) from the parent study was adequate for both calculated sample sizes to 

meet the predetermined 80% statistical power at significance level of 0.05. 

Biochemical Analysis 

Approximately 300 microliters of de-identified serum from the parent study were 

used for methylglyoxal measurement. A prominent methylglyoxal adduct, MGH1, in 

blood samples was measured by OxiSelect™ MG competitive ELISA kit (Cell Biolabs, 

Inc., San Diego, CA, USA). The quantity of MGH1 was compared to a standard curve of 

predetermined MG-BSA. All blood samples were stored at -80 Co. Existing data of other 

biomarkers was retrieved from the parent study. Briefly, hexokinase enzymatic method 

was used to measure fasting plasma glucose (FPG). Whole blood A1c was measured by 

DCA2000+ system (Bayer HealthCare, Whippany, NJ, USA). This method is reliable as 

evidenced by 99% correlation with high-standard HPLC method.  

Dietary intake and eating indices  

 Dietary intake was assessed by using a semi-quantitative food frequency 

questionnaire (Willett et al., 1985). Participants were asked to report food and vitamin 

consumption over the past year. Then, macro- and micronutrient intake was estimated 

accordingly. The instrument has been validated and standardized in diverse populations 

(Hernández-Avila et al., 1998; Holmes et al., 2007; Nath & Huffman, 2005).  

The HEI-2005 score was calculated from each completed food frequency 

questionnaire. The HEI-2005 included a total of twelve diet-related items corresponding 

to the food guidance system MyPyramid which was described extensively elsewhere 

(Guenther, Reedy, & Krebs-Smith, 2008). Briefly, diets that met the dietary requirement 

obtained the maximum scores for nine adequacy attributes: total fruit (5 points), whole 
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fruit (5 points), total vegetables (5 points), dark green and orange vegetables and legumes 

(5 points), total grains (5 points), whole grains (5 points), milk (10 points), meat and 

beans (10 points), and oils (10 points). The minimum scores (0 point) of these attributes 

represented no intake of the food. In contrast, three restricted food items received 

maximum score representing moderate intake, whereas minimum standard score reflected 

overconsumption of the food: saturated fat (10 points), sodium (10 points), and energy 

from solid fats, alcohol, and added sugars (SoFAAS; 20 points). The scores were 

expressed in either per 1,000 calories or percentage of calories. All attribute scores were 

summed to a total score which ranged from 0 to 100. Higher scores reflected more 

compliance to the dietary guidelines and better diet quality (Guenther, Reedy, & Krebs-

Smith, 2008).  

 The AHEI score was calculated from each completed food frequency 

questionnaire. The AHEI included some food components corresponding to the dietary 

guidelines and food items that appeared to be associated with lower risk for chronic 

illnesses in epidemiology and clinical studies (McCullough et al., 2002). Eight of the 9 

diet components contributed 0 to 10 score points to a total score: vegetables 

(servings/day), fruit (servings/day), nuts and soy protein (servings/day), ratio of white to 

red meat, cereal fiber (grams/day), trans fat (percentage of energy), ratio of 

polyunsaturated to saturated fatty acids, and alcohol (servings/day). A score of 0 

indicated the least desirable dietary behavior, while a score of 10 represented the dietary 

recommendations were fully met. Scores between 0 and 10 indicated intermediate intakes 

which were determined proportionately. Scores for duration of multivitamin use were 

dichotomous, which contributed either 2.5 points for use of less than 5 years or 7.5 points 
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for use of 5 years or over. A total AHEI score was obtained from sum of all attribute 

scores. The total score ranged from 2.5 to 87.5, which indicated least and most desirable 

dietary patterns and eating behaviors, respectively.  

Anthropometric data 

Participant’s height was measured when the participant stood upright without 

shoes. Weight measurement was taken with the participant wearing light clothes by using 

a SECA clinical scale (SECA Corp, Columbia, MD, USA). Body mass index (BMI) was 

calculated as weight (kg)/height (m2). Physical activity was assessed by using a 

modifiable activity questionnaire (Pereira et al., 1997). The instrument determined 

physical activity by using estimated metabolic equivalent (MET; 1 kcal/kg/hour) which 

represented a resting metabolic rate of a typical person. The number of METs for each 

activity was calculated using the average metabolic cost for that activity. The duration 

and frequency of physical activity that individuals participated in the past year were 

collected. Each activity was calculated by duration of the activity (hours), monthly 

frequency, and the numbers of months that individuals engaged in the activity. The total 

duration of each performed activity was divided by 52 weeks per year, yielding hours per 

week. The corresponding MET of each activity was multiplied by the total duration to 

obtain MET-hour per week. Then, all MET-hour per week of leisure and occupational 

activity were summed to estimate the participant’s physical activity levels.  

Socio-demographic data 

Socio-demographic data regarding age, gender, ethnicity and education level were 

collected by using a standardized questionnaire. 
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Statistical Analysis 

Values were presented in mean ± standard deviation or percentage. Continuous 

variables were analyzed by independent t-test, whereas Chi-square test was employed for 

categorical variables. Multiple regression analysis was used to further examine the 

relationship between serum MGH1 levels and eating indices, including HEI-2005 and 

AHEI. Age, gender, ethnicity, BMI, diabetes status, smoking status, and education level 

were potential variables that were adjusted as appropriate during data analysis. Due to 

skewed distribution, levels of MGH1 and physical activity underwent logarithm 

transformation. The log-transformed data were used in all analyses. By using general 

linear model, pairwise comparisons were performed to determine interaction effects as 

appropriate. Tests were considered statistically significant if p-value was less than 0.05. 

All data were analyzed by using SPSS version 23.0 (SPSS Inc., Chicago, IL, USA). 

RESULTS 

In the current study, eligible participants were individuals who had complete data 

of serum MGH1, scores for the HEI-2005 and the AHEI, and BMI between 18.5 kg/m2 

and 60 kg/m2. A total of 452 participants (n = 212 controls and n = 240 cases) were 

included in the data analyses, which was adequate to achieve 80% power. 

Characteristics of study participants 

The participants with type 2 diabetes tended to be older (p<0.001) and had higher 

BMI (p<0.001), FPG (p<0.001), A1c (p<0.001), HEI-2005 score (p=0.002), and lnMGH1 

(p=0.026) than those without diabetes (Table 1). Calorie intake (p=0.026) and physical 

activity (p=0.014) appeared to be higher in control participants as compared to 
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participants with diabetes. There was a significant difference in education level between 

participants with and without diabetes (p=0.032).  

Relationship of MGH1 with HEI-2005 and AHEI in study participants 

Surprisingly, unadjusted comparison showed that there was an increase in MGH1 

levels of 0.08% for every unit increase in HEI-2005 scores (95% CI [0.20%, 1.41%], 

p=0.005; Table 2). The significantly positive relationship between MGH1 levels and 

HEI-2005 scores persisted after adjusted for age, gender, ethnicity, diabetes status, 

interaction of diabetes status by ethnicity, and physical activity (B=0.009, 95% CI [0.002, 

0.014], p=0.012). Marginally, individuals with diabetes were associated with higher 

MGH1 levels as compared to those without diabetes (B=0.471, 95% CI [-0.010, 0.952], 

p=0.055). The adjusted model showed that an increase in physical activity was partially 

associated with a decrease in MGH1 levels (B=-0.051, 95% CI [-0.107, 0.005], p=0.074). 

Males tended to have MGH1 levels higher than females after holding other variables 

constant, but only marginally (B=-0.051, 95% CI [-0.107, 0.005], p=0.090). 

There was no significant association between MGH1 and AHEI in unadjusted 

comparison (p=0.897; Table 2). Null relationship of MGH1 with AHEI remained after 

adjusted for age, gender, ethnicity, diabetes status, interaction of diabetes status by 

ethnicity, and physical activity (B=-0.001, p=0.813). Even though insignificant, the 

negative relationship of MGH1 levels with AHEI scores was shown, which was opposite 

to those with HEI-2005. Having diabetes was significantly associated with elevated 

MGH1 levels as compared to not having diabetes (B=0.511, 95% CI [0.027, 0.994], 

p=0.038). Noted that the adjusted model was partially significant.  
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Relationship between MGH1 and HEI-2005 stratified by ethnicity 

To determine whether relationships of MGH1 with diabetes parameter were 

existed in subgroups of participants, stratification by ethnicity was performed prior to 

further multiple regression analyses (Table 3). In Haitian American participants, the 

elevated MGH1 level was significantly associated with increased HEI-2005 scores in 

unadjusted comparison (B=0.013, 95% CI [0.004, 0.022], p=0.006). Such relationship 

persisted in the final adjusted model which controlled for age, gender, diabetes status, 

education, interaction of diabetes status by education, and physical activity (B=0.012, 

95% CI [0.002, 0.022], p=0.014). Being Haitian American with diabetes was 

significantly associated with higher MGH1 levels as compared to that without diabetes 

(B=0.853, 95% CI [0.316, 1.391], p=0.002). Higher education was significantly 

associated with increased MGH1 levels (B=0.248, 95% CI [0.027, 0.469], p=0.028). 

There was an interaction between disease state and education (B=-0.389, 95% CI [-0.680, 

-0.097], p=0.009), therefore; pairwise comparisons by general linear model were 

performed. Among Haitian American participants with education less than high school 

graduate, having type 2 diabetes was significantly associated with elevated MGH1 levels 

as compared to not having the disease when controlling for other variables 

(F(7,228)=14.104, p<0.001). Among Haitian Americans without diabetes, having high 

school or some college degree was significantly associated with higher MGH1 levels as 

compared to having less than high school graduate, holding other variables constant 

(F(7,228)=9.687, p=0.006). Being older (B=0.010, 95% CI [0.000, 0.022], p=0.054) and 

having lower physical activity (B=-0.080, 95% CI [-0.161, 0.000], p=0.051) were 
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partially associated with elevated levels of MGH1 in Haitian American participants after 

controlling for other variables.  

In African American participants, null relationship between MGH1 and HEI-2005 

scores showed in the unadjusted comparison (p=0.493) as well as in the final adjusted 

model after controlling for age, gender, disease state, education, and interaction of 

disease state by education (p=0.161). Noted that the adjusted model did not reach a 

significance level of 0.05. 

Relationship between MGH1 and AHEI stratified by ethnicity 

 Stratification analyses by ethnicity were also performed to determine the 

relationship between MGH1 levels and AHEI scores (Table 4). In Haitian American 

individuals, a negative relationship between MGH1 and AHEI scores was observed in the 

unadjusted comparison, however; it did not reach a significance level of 0.05 (p=0.309). 

Such insignificant findings remained after controlling for age, gender, disease state, 

education, and interaction of disease state by education (p=0.263). A significant 

relationship of MGH1 levels with age (B=0.011, 95% CI [0.000, 0.022], p=0.043), 

diabetes status (B=0.940, 95% CI [0.403 ± 1.477], p=0.001), education (p=0.309), and 

interaction of diabetes status by education (B=0.273, 95% CI [0.053 ± 0.494], p=0.008) 

were similar to the association between MGH1 levels and HEI-2005.  

In African American participants, a positive relationship between MGH1 and 

AHEI scores was shown in the unadjusted comparison, yet not statistically significant 

(p=0.910). The final adjusted model did not show a significant association of MGH1 with 

AHEI after controlling for age, gender, disease state, education, and interaction of disease 
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state by education (p=0.426). Noted that the adjusted model did not reach a 

predetermined significance level. 

DISCUSSION 

 The current study found that individuals with type 2 diabetes had significantly 

higher serum MGH1 levels and HEI-2005 scores than those without diabetes. 

Interestingly, there was a positive relationship between MGH1 levels and HEI-2005 

scores, which appeared to be more pronounced in Haitian American participants. Having 

diabetes was associated with higher MGH1 levels. Particularly in Haitian Americans, 

age, education, diabetes status and physical activity also uniquely impacted levels of 

MGH1. However, there was no significant relationship between MGH1 levels and AHEI 

scores in study participants.  

 Consistent with previous studies, elevated levels of MGH1 adduct was shown in 

participants with type 2 diabetes as compared to control participants (Ahmed, Babaei-

Jadidi, Howell, Thornalley, & Beisswenger, 2005; Kilhovd et al., 2003). Additionally, 

methylglyoxal levels were markedly elevated in blood (Kong et al., 2014; McLellan, 

Thornalley, Benn, & Sonksen, 1994; Nemet, Turk, Duvnjak, Car, & Varga-

Defterdarović, 2005) and urine of participants with diabetes or impaired glucose 

metabolism (Maessen et al., 2015; Z. Turk, Čavlović-Naglić, & Turk, 2011; Turk, 

Vrdoljak, Misur, Trescec, & Benko, 2009). These evidences suggest that methylglyoxal 

is possibly associated with hyperglycemia and insulin resistance.  

 By using HEI-2005, individuals with diabetes appeared to have healthier eating 

pattern than those without diabetes. However, AHEI scores tended to be lower in diabetic 

participants than controls. This may be partially due to difference in calorie intakes as 
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well as calculation method and food components of indices. Calorie intake was used in 

adjustment for HEI-2005 scores where AHEI did not. Individuals with diabetes had 

significantly lower energy consumption as compared to those without diabetes. The HEI-

2005 incorporated food components regrading amounts of oil, saturated fat, sodium, and 

SoFFAS, while AHEI featured duration of multivitamin use, ratio of consumed fatty 

acids and types of meat. Solid fats, alcohol and added sugar were ranked with highest 

weighing scores in HEI-2005 (Guenther, Reedy, & Krebs-Smith, 2008), which may be 

more relevant to dietary recommendation for diabetes. However, the higher scores of 

HEI-2005 may possibly reflect nutrition education bias among participants with diabetes 

(Huffman et al., 2011; Yu et al., 2015). 

Interestingly, the positive association between MGH1 levels and HEI-2005 scores 

emerged in the current study. This may be, at least in part, described by diet-related 

components in the HEI-2005. The scoring standard of the HEI-2005 was set at the lowest 

level of MyPyramid recommendation for assessing diverse populations, including 

sedentary individuals who were more likely to consume less healthful diet and energy-

dense foods (Hobbs, Pearson, Foster, & Biddle, 2015). Given that the HEI-2005 was 

adjusted for energy consumption, the least restrictive of the standard may inflate the 

scores. High contents of sugar (Nemet et al., 2006), protein and fat (Sharma et al., 2015) 

appeared to increase formation of methylglyoxal and AGEs through the non-enzymatic 

Maillard reaction. Sugar, protein, fat, and oils were taken into account in the HEI-2005, 

however; it did not directly reflect excess consumption of these AGE-containing food 

groups (Guenther, Reedy, & Krebs-Smith, 2008). High heat cooking methods (e.g. 

browning and roasting) and processing procedures to extend shelf-life (e.g. curing and 
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canning) appear to enhance AGEs formation (Poulsen et al., 2013; Sharma et al., 2015). 

Therefore, methylglyoxal-derived and other AGEs can be formed in some foods during 

processing such as bake goods, milk, grilled/broiled meat, and processed food (Negrean 

et al., 2007; Poulsen et al., 2013; Sharma et al., 2015; Stirban et al., 2008). The HEI-2005 

incorporated only grain portions of foods and adequate consumption of meat and beans, 

which did not necessarily cover foods with high content of methylglyoxal and its adducts. 

Even though Haitian American participants and individuals with diabetes reportedly had 

higher HEI-2005 scores as compared to their counterparts, some food components in the 

indices were still lower in the study participants as compared to those from the national 

data (Huffman et al., 2011). Taken together, dietary pattern of the study participants 

should not be straightforwardly assumed as healthy and needs to be interpreted carefully 

in relation to methylglyoxal.  

Disease state, environmental factors, and heterogeneity of participants may 

differently influence the relationship between MGH1 levels and HEI-2005. There was a 

significant effect of interaction between diabetes status and education. Non-diabetic 

individuals with high school and some college degree appeared to have greater MGH1 

levels than those with less than high school graduate. At education level of less than high 

school graduate, having diabetes was associated with increased MGH1 levels. These 

findings suggest that healthy eating pattern may not be prompted in individuals with 

diabetes and education levels less than high school, or in participants without diabetes 

with high school and some college degree.  

In stratified analyses, the association between MGH1 levels and HEI-2005 scores 

appeared to be more pronounced in Haitian American participants than African American 
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participants. This may be due to differences in modifiable behaviors, dietary patterns, and 

genetic variation among Black subgroups. Less glycemic control and adherence to 

treatment were observed in non-Hispanic Blacks than Whites (Selvin, Parrinello, Sacks, 

& Coresh, 2014). Haitian Americans with diabetes had poor glycemic control as 

evidenced by significantly higher levels of fasting plasma glucose and A1c, comparing to 

African American and non-Hispanic White counterparts (Vimalananda, Rosenzweig, 

Cabral, David, & Lasser, 2011). Persistent hyperglycemia possibly leads to subsequent 

methylglyoxal accumulation, particularly in Haitian Americans. According to the 

national nutrition survey, non-Hispanic blacks born in the United States had lower intake 

of fruits and grains, but higher calorie intake, than those born outside the United States 

(Lancaster, Watts, & Dixon, 2006). An observational study reported that African-

American subgroups resided in Florida had unique pattern of food consumption which 

was substantially varied among groups (James, 2009). Therefore, the difference in the 

relationship of MGH1 levels with HEI-2005 between ethnicities may be resulted from 

heterogeneity of eating pattern among ethnic subgroups. Additionally, a growing 

evidence supported that inherited ancestry among Blacks was substantially diverse across 

parts of the United States and subgroups (Bryc, Durand, Macpherson, Reich, & 

Mountain, 2015; Simms et al., 2012). Glo1 gene encoding methylglyoxal detoxifying 

enzyme, glyoxalase-1, was found to be one of genetic variation hotspots in an animal 

study (Cahan, Li, Izumi, & Graubert, 2009). Difference in allele frequency of GLO was 

reported in some Black subpopulations (Bender, Frank, & Hitzeroth, 1977), suggesting 

dissimilar activity of glyoxalase-1 and subsequent methylglyoxal degradation among 

Blacks. Collectively, poor glycemic control, diverse eating patterns, and, genetic 
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variation may differentially impact the findings. That, in turn, uniquely contributes to the 

positive relationship between MGH1 and the HEI-2005 in study participants. So far, there 

was no available data regarding the association of methylglyoxal with eating indices in 

Black populations for comparison with the current observation.  

 The adjusted model showed that an increase in physical activity levels was 

marginally associated with lower levels of MGH1 in adjusted model. In a small 

randomized control trial in overweight men, combination of low AGE diet and aerobic 

exercise for 12 weeks appeared to decrease methylglyoxal and other AGE levels (Macías-

Cervantes et al., 2015). Muscle contraction during exercise was proposed to activate 

antioxidative pathways and subsequent glutathione biosynthesis (Dieter & Vella, 2013). 

Glutathione plays an important role in systemic oxidative stress defense (Aoyama & 

Nakaki, 2013; Franco & Cidlowski, 2012; Matafome, Sena, & Seiça, 2013), including 

glyoxalase system which is responsible for methylglyoxal detoxification (Thornalley, 

2003). An increase in physical activity may, in part, enhance the activity of 

methylglyoxal degradation system that subsequently decreases methylglyoxal 

accumulation.  

The positive relationship between MGH1 levels and age was observed after 

adjusted for demographic and diabetes-related parameters. Augmented methylglyoxal 

adducts in human lens was significantly correlated with increasing participant’s age 

(Ahmed, Brinkmann Frye, Degenhardt, Thorpe, & Baynes, 1997). This may be described, 

in part, by glyoxalase-1 activity. In the glyoxalase system, glyoxalase-1 and co-factor 

reduced glutathione converted methylglyoxal to a non-toxic intermediate (Thornalley, 

2003). A trend of glyoxalase-1 activity in human aortic tissues appeared to decrease with 
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ages (Kirk, 1960). In individuals aged 50 to 79 years, significantly lower activity of 

glyoxalase-1 in arteriosclerotic tissues than normal tissue section was found (Kirk, 1960). 

The positive association between serum MGH1 levels and age found in participants with 

diabetes may reflect the decreased activity of glyoxalase-1, exacerbated by diabetes.  

Even though insignificant, decreased MGH1 levels appeared to be associated with 

high AHEI scores. This was opposite to the positive relationship of MGH1 levels with 

the HEI-2005 scores. Unlike the HEI-2005, the AHEI also featured nuts and soy protein, 

and duration of multivitamin use. These components possibly contain food items that 

showed the effect in reducing methylglyoxal levels. A study in diabetic rats found the 

beneficial effect of soybean isoflavones in lowering methylglyoxal levels (Lu et al., 

2008). Isoflavone genistein showed the effect in trapping methylglyoxal and preventing 

subsequent AGE formation in vitro (Lv, Shao, Chen, Ho, & Sang, 2011) and in mice 

(Wang, Chen, & Sang, 2016). In animal studies, vitamin B6 derivative, pyridoxamine, 

appeared to decrease methylglyoxal-induced glycation moderately in adipose tissues 

(Rodrigues, Matafome, Santos-Silva, Sena, & Seiça, 2013) and significantly in heart 

(Almeida et al., 2013). In a small intervention study, a 5-day vitamin E supplementation 

enriched in γ-tocopherol markedly diminished postprandial plasma methylglyoxal in 

healthy men (Masterjohn, Mah, Guo, Koo, & Bruno, 2012). Collectively, these evidence 

would partially describe the negative relationship between MGH1 levels and AHEI 

scores. 

 The current study had several limitations. Due to nature of the observational 

study, changes in clinical and behavioral factors were not observed overtime. Therefore, 

it lacked to generate causality and provide a complete phenomenon. The participants 
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were only recruited from two counties in South Florida, which likely contributed to low 

generalizability. Food frequency questionnaire heavily depended on long-term memory. 

However, the instrument has extensively been validated and standardized in diverse 

populations (Hernández-Avila et al., 1998; Holmes et al., 2007; Nath & Huffman, 2005). 

Also, dietary assessment over the past year may captured seasonal food intake which 

better reflected on overall food consumption. Despite these aspects, strengths of the study 

were worth mentioned. Apart from patient report, diabetes status was ascertained using 

standard criteria established by American Diabetes Association. This is the first study 

investigated the relationship between methylglyoxal and eating pattern particularly in 

Haitian Americans and African Americans. The evidence contributed to existing 

knowledge concerning Blacks, which provides a better understanding in health disparities 

among subpopulations.  

In conclusion, serum levels of prominent adduct MGH1 and HEI-2005 scores 

were significantly higher in Haitian American and African participants with type 2 

diabetes than those without diabetes. Levels of MGH1 were positively associated with 

the HEI-2005 scores. Such relationship may reflect the low sensitivity of the HEI-2005 to 

capture diet high in methylglyoxal and its adducts. Also, disease state and modifiable 

behaviors possibly confound the findings through aggravating methylglyoxal 

accumulation even with relatively healthy eating pattern. The interpretation of diet 

quality should be performed discreetly, especially in relation to methylglyoxal and AGEs. 

The positive association between MGH1 levels and the HEI-2005 score was more 

pronounced in Haitian American participants, indicating the need for culturally sensitive 
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nutrition education for diabetes management. Future studies are required to warrant and 

elucidate the true nature of such relationship.  
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Table 1. Characteristics of the participants  

Variable without diabetes 
(n=212) 

with diabetes 
(n=240) 

p-value 

Age (years) 52.47 ± 9.88 56.15 ± 10.30 <0.001* 
Gender, n (%) 
   Female 
   Male 

 
107 (50.5) 
105 (49.5) 

 
129 (53.8) 
111 (46.3) 

0.486 

Ethnicity, n (%) 
   Haitian Americans 
   African Americans 

 
112 (52.8) 
100 (47.2) 

 
124 (51.7) 
116 (48.3) 

0.805 

BMI (kg/m2) 30.00 ± 5.96 32.50 ± 7.23 <0.001* 
FPG (mmol/l) 97.21 ± 15.09 152.80 ± 65.73 <0.001* 
A1c (%) 5.93 ± 0.45 8.07 ± 2.31 <0.001* 
Education 
   < High school graduate 
   High school/some college 
   College degree and beyond 

 
57 (26.9) 

111 (52.4) 
44 (20.8) 

 
87 (36.3) 

121 (50.4) 
32 (13.3) 

 
0.032* 

Kcal 2,057.30 ± 1,025.56 1,851.25 ± 929.65 0.026* 
Physical activity (MET-hr/wk) 28.82 ± 61.39 17.57 ± 27.00 0.014* 
HEI-2005 59.49 ± 13.40 63.29 ± 12.66 0.002* 
AHEI 48.31 ± 13.85 46.47 ± 12.80 0.142 
MGH1 (µg/ml) 2.26 ± 2.55 2.40 ± 2.49 0.555 
lnMGH1 0.40 ± 0.93 0.58 ± 0.74 0.026* 
Continuous variables were expressed as mean ± standard deviation (SD), while 
categorical variables were expressed as n (%). ln=natural log-transformed; 
A1c=hemoglobin A1c; AHEI=alternate healthy eating index; BMI=body mass index; 
FPG=fasting plasma glucose; HEI-2005=healthy eating index 2005; 
MGH1=methylglyoxal hydroimidazolone 1; *p<0.05 is considered statistically 
significant. 
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Table 2. Multiple regression analysis for relationship of lnMGH1 with HEI-2005 and 
AHEI in study participants 
HEI-2005 scores 

Variables B SE 95% CI p-value 
Unadjusted model     
HEI-2005 0.008 0.003 0.002, 0.014 0.005* 
Adjusted modela*     
Age 0.001 0.004 -0.006, 0.009 0.745 
Gender (male) 0.141 0.083 -0.022, 0.303 0.090 
Diabetes status (yes) 0.471 0.245 -0.010, 0.952 0.055 
Ethnicity (AA) 0.102 0.119 -0.132, 0.337 0.391 
Diabetes status*ethnicity 
(yes*AA) 

-0.229 0.156 -0.536, 0.078 0.143 

Physical activityc -0.051 0.028 -0.107, 0.005 0.074 
HEI-2005 0.009 0.003 0.002, 0.014 0.012* 
AHEI scores 

Variables B SE 95% CI p-value 
Unadjusted model     
AHEI 0.000 0.003 -0.006, 0.005 0.897 
Adjusted modelb     
Age 0.002 0.004 -0.006, 0.010 0.598 
Gender (male) 0.080 0.080 -0.078, 0.238 0.224 
Diabetes status (yes) 0.511 0.246 0.027, 0.994 0.038* 
Ethnicity (AA) 0.012 0.118 -0.219, 0.244 0.917 
Diabetes status*ethnicity 
(yes*AA) 

-0.235 0.157 -0.545, 0.074 0.136 

Physical activityc -0.039 0.029 -0.097, 0.018 0.175 
AHEI -0.001 0.003 -0.007, 0.006 0.813 
AA=African American, B=coefficient, SE=standard error, CI=confidence interval, 
ln=natural log; AHEI=alternate healthy eating index, HEI-2005=healthy eating index 
2005, MGH1=methylglyoxal hydroimidazolone 1; *p<0.05 is considered statistically 
significant. 
aModel Summary: Adjusted R2=0.027, F(7,444)=2.759, p=0.008. 
bModel Summary: Adjusted R2=0.013, F(7,444)=1.839, p=0.078. 
cLeisure-time physical activity was transformed to ln(1+ physical activity). 
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Table 3. Multiple regression analysis for relationship of lnMGH1 with HEI-2005 
stratified by ethnicity 
Haitian American (n=236) 

Variables B SE 95% CI p-value 
Unadjusted model     
HEI-2005 0.013 0.005 0.004, 0.022 0.006* 
Adjusted modela*     
Age 0.010 0.005 0.000, 0.022 0.054 
Gender (male) 0.122 0.113 -0.101, 0.345 0.283 
Diabetes status (yes) 0.853 0.273 0.316, 1.391 0.002* 
Education 0.248 0.112 0.027, 0.469 0.028* 
Diabetes status*education -0.389 0.148 -0.680, -0.097 0.009* 
Physical activityc -0.080 0.041 -0.161, 0.000 0.051 
HEI-2005 0.012 0.005 0.002, 0.022 0.014* 
African American (n=216) 

Variables B SE 95% CI p-value 
Unadjusted model     
HEI-2005 0.003 0.005 -0.006, 0.012 0.493 
Adjusted modelb     
Age -0.007 0.006 -0.019, 0.005 0.277 
Gender (male) 0.143 0.117 -0.088, 0.374 0.224 
Diabetes status (yes) -0.805 0.419 -1.632, 0.022 0.056 
Education -0.341 0.146 -0.628, -0.054 0.020* 
Diabetes status*education 0.419 0.199 0.027, 0.810 0.036* 
HEI-2005 0.007 0.005 -0.003, 0.016 0.161 
B=coefficient, SE=standard error, CI=confidence interval, ln=natural log; HEI-
2005=healthy eating index 2005; MGH1=methylglyoxal hydroimidazolone 1, *p<0.05 
is considered statistically significant. 
aModel Summary: Adjusted R2=0.080, F(7,228)=3.938, p<0.001.  
bModel Summary: Adjusted R2=0.011, F(6,209)=1.388, p=0.221. 
cLeisure-time physical activity was transformed to ln(1+ physical activity). 
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Table 4. Multiple regression analysis for relationship of lnMGH1 with AHEI stratified 
by ethnicity 
Haitian American (n=236) 

Variables B SE 95% CI p-value 
Unadjusted model     
AHEI -0.004 0.004 -0.013, 0.004 0.309 
Adjusted modela*     
Age 0.011 0.005 0.000, 0.022 0.043* 
Gender (male) -0.017 0.109 -0.232, 0.197 0.874 
Diabetes status (yes) 0.940 0.273 0.403, 1.477 0.001* 
Education 0.273 0.112 0.053, 0.494 0.015* 
Diabetes status*education -0.400 0.149 -0.693, -0.107 0.008* 
AHEI -0.005 0.004 -0.013, 0.004 0.263 
African American (n=216) 

Variables B SE 95% CI p-value 
Unadjusted model     
AHEI 0.001 0.005 -0.009, 0.010 0.910 
Adjusted modelb     
Age -0.006 0.006 -0.018, 0.006 0.331 
Gender (male) 0.107 0.115 -0.120, 0.334 0.354 
Diabetes status (yes) -0.783 0.424 -1.618, 0.053 0.066 
Education -0.319 0.146 -0.607, -0.032 0.030* 
Diabetes status*education 0.425 0.204 0.024, 0.827 0.038* 
AHEI 0.004 0.005 -0.006, 0.013 0.426 
B=coefficient, SE=standard error, CI=confidence interval, ln=natural log; 
AHEI=alternate healthy eating index 2005; MGH1=methylglyoxal hydroimidazolone 
1, *p<0.05 is considered statistically significant. 
aModel Summary: Adjusted R2=0.052, F(6,229)=3.156, p=0.005.  
bModel Summary: Adjusted R2=0.004, F(6,209)=1.157, p=0.330. 
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

The first part of the dissertation aimed to investigate the association of RAP6 

activity on preadipocyte differentiation as well as those driven by methylglyoxal in vitro. 

Overexpression of RAP6 inhibited preadipocyte differentiation as well as expression of 

key adipogenic marker PPARγ, but not C/EBPα. Activation of Akt1 was decreased by 

RAP6 overexpression, suggesting that RAP6 may regulate preadipocyte differentiation 

through Akt1 activity. Another part of the in vitro study showed that low concentration of 

methylglyoxal increased preadipocyte differentiation, proliferation and expression of 

PPARγ, C/EBPα and p-Akt1-Ser473. However, the stimulatory effect of methylglyoxal 

appeared to be neutralized by RAP6 overexpression. Methylglyoxal-induced Akt1 

phosphorylation was suppressed even greater than that in a presence of RAP6 

overexpression alone. The findings suggest that RAP6 may be a key modulator in 

regulating the effect of methylglyoxal on stimulating preadipocyte differentiation. 

Presumably, RAP6 modulated preadipocyte differentiation and stimulatory effect of 

methylglyoxal through Rab5 activation. However, a direct interaction between RAP6 and 

related proteins should not be ruled out.  

 The latter part of the dissertation focused on determining levels of a predominant 

methylglyoxal-derived adduct, MGH1, in two ethnic participants with and without type 2 

diabetes. Elevated MGH1 levels in participants with diabetes reported earlier (Ahmed, 

Babaei-Jadidi, Howell, Thornalley, & Beisswenger, 2005; Kilhovd et al., 2003) were 

supported by the current study. Additionally, the association between levels of MGH1 

and fasting plasma glucose emerged in participants with type 2 diabetes, but not in 
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healthy individuals. The findings indicated that methylglyoxal was more likely to be 

elevated by hyperglycemia under pathological condition.  

The relationship of MGH1 with other risk factors of chronic disease were also 

investigated. Levels of MGH1 were positively associated with levels of homocysteine 

and triglycerides. These observations suggested the association of methylglyoxal with 

macro- and microvascular disease conditions. It was previously reported that 

methylglyoxal accumulation was shown in participants with diabetic vascular 

complications, e.g. neuropathy (Bierhaus et al., 2012), nephropathy (Beisswenger et al., 

2013; Beisswenger et al., 2014), and retinopathy (Haik, Lo, & Thornalley, 1994). 

Suggestively, methylglyoxal may be associated with pathogenesis of diabetic vascular 

complications.  

The positive relationship between MGH1 levels and the 2005-healthy eating 

index (HEI-2005) was also found in ethnic participants with type 2 diabetes, which was 

surprising. It was reported a significant association between high dietary advanced 

glycation end products (AGEs) and serum methylglyoxal levels in overweight and obese 

participants (Uribarri et al., 2015). Possibly, methylglyoxal may be more related to 

quantity of AGEs-containing food than overall food quality. Also, dietary pattern in 

relation to methylglyoxal should be interpreted cautiously due to diverse food pattern 

across Black subgroups as previously reported (James, 2009).  

The current findings showed that some factors also influenced circulating MGH1 

levels. Augmented MGH1 levels were associated with increasing age of the study 

participants, which was consistent with that reported earlier (Ahmed, Brinkmann Frye, 

Degenhardt, Thorpe, & Baynes, 1997). In participants with type 2 diabetes, the increase 
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in MGH1 levels were more pronounced in Haitian American participants than African 

American participants. This may be due to differences in genetic variation and behavioral 

factors. According to previous studies, Black subpopulations had variation in proportion 

of African and European ancestry (Bryc, Durand, Macpherson, Reich, & Mountain, 2015; 

Simms et al., 2012). This possibly contributed to different frequencies of some alleles 

such as GLO1 encoding enzyme glyoxalase 1 which was required for methylglyoxal 

detoxification. Supportively, the difference in GLO1 frequency was observed in Black 

subgroups residing in South Africa (Bender, Frank, & Hitzeroth, 1977). Haitian 

Americans reportedly had poor glycemic control as compared to Whites and African 

Americans (Vimalananda, Rosenzweig, Cabral, David, & Lasser, 2011). Given that, 

persistent hyperglycemia possibly caused the elevation of MGH1 levels in Haitian 

American participants even more than in African American participants. Culturally 

sensitive health counseling and intervention may be better applied to ethnic minorities 

who have diversity of genetics and health-related lifestyles.  

In this dissertation, there are some possible connections between the in vitro and 

human studies. High glucose condition appeared to elevate formation of MGH1 in 

cultured preadipocytes as well as in participants with type 2 diabetes. Methylglyoxal also 

increased preadiopocyte differentiation and proliferation in vitro, at least in part, through 

alteration of insulin signaling. These observations suggest that methylglyoxal may be a 

link between diabetes and adipogenesis. Based on the current findings, RAP6 activity 

possibly modulated the effect of methylglyoxal on preadipocyte differentiation. However, 

there still have discrepancies that remain to be elucidated. Mechanism(s) by which RAP6 

regulates Akt1 activation, e.g. through upstream effectors and/or direct interaction, 
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deserves further investigation. Moreover, it is convincible to examine the direct 

interaction between RAP6, receptors, and other effectors as well as the need of Rab5 

activation in RAP6-mediated preadicocyte differentiation. The future studies should be 

conducted to also explore whether the activity of RAP6 and the effect of methylglyoxal 

alter cell differentiation in a cell-type specific fashion. These observations may contribute 

to existing knowledge in regulation of adipogenesis as well as other pathological 

conditions resulted from dysregulation of receptor signaling and trafficking.  

The current human study particularly examined the association between 

methylglyoxal and modifiable risk factors in Black subgroups residing in two counties of 

Florida, which was unique. However, this may contribute to low generalization. Replicate 

studies in a larger sample size are required to warrant the findings of the current study. 

Not only variation of GLO1 allele frequency was reported in Black subgroups residing in 

South African (Bender, Frank, & Hitzeroth, 1977) but also between American Whites 

and Blacks (Weitkamp, 1976). Inclusion of other races may give rise to a whole spectrum 

of understanding in relationships between methylglyoxal and other risk factors of chronic 

diseases among populations.  
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