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ABSTRACT OF THE THESIS

KAON PHOTOPRODUCTION OF THE PROTON:

CONTRIBUTION OF HIGHER ANGULAR MOMENTUM AND ENERGY

RESONANCES

TO THE CROSS-SECTION AND POLARIZATION ASYMMETRIES

THROUGH AN EFFECTIVE LAGRANGIAN MODEL

by

Alejandro M. de la Puente

Florida International University, 2008

Miami, Florida

Professor Oren Maxwell, Major Professor

The differential cross-section and polarization observables in the process 7 + p --> K+ +

A are studied within an isobaric approach that includes resonances with total angular

momentum J < over a center of mass energy range from W = 1.6 GeV to W 2.6 GeV.

The model is used to fit recent experimental data as a function of the coupling products

at the photon and strong vertices for the well established low energy resonances, as well as

the total decay width for the high energy less well-established resonances.

The model employed in this study is based on an effective hadronic lagrangian using

a tree-level approximation. The model uses Feynman diagrammatic techniques to extract

the interaction vertices at a first order level in perturbation theory.

To extract the coupling strength products involved in the reaction, a X2 minimization

technique is used to fit experimental data. The results suggests that both differential

cross-section and double polarization observables need to be fit simultaneously to obtain

an accurate description of the data. In addition, it was found that while resonances with

angular momentum J= 2 do not couple strongly to the KA channel, higher energy states

with J = do couple strongly to the KA channnel and are highly relevant for an accurate

description of the data at energies beyond 1.9 GeV.
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Chapter 1

Introduction

Nuclear physicists study the structure of matter, and try to describe its interactions at

a nuclear level. Theoreticians in nuclear physics use models that allow them to predict the

properties of matter.

T he reaction of interest for this study is the photoproduction of kaons from a proton

target. To fully understand this reaction in an intermediate energy regime, it is important

to study and include all well-accepted resonances.

1.1 Photoproduction

The overall photoproduction of mesons started with the works of Thom [11 and Renard [2]

over 30 years ago and has been an extremely interesting topic of research since. This

area of nuclear physics brings insight into understanding quark-model related research and

experimental observation. A substantial number of Quantum Chromodynamics (QCD)

inspired models have theorized the existence of a wide spectrum of baryonic and hyperonic

excited states, i.e. resonance states. It seems that QCD, which appears to be the correct

theory for strongly interacting particles, predicts more resonances than have been seen

through analysis of experimental data.
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The study of photoproduction has become an excellent tool for nuclear physicists since it

is used mostly to probe the internal structure of both the proton and the neutron. There is

still much to learn about the internal dynamics, as well as the spin and flavor structure of the

nucleon. The resonance spectrum has been mostly studied by the production of pions and

agrees well with predictions of various quark models. However, strangeness does not play a

role in pion production reactions, and thus, pion reactions cannot be used to sudy hyperons

and their excited states, which have been predicted with the same degree of significance.

Furthermore, a large number of heavier less well-established nucleon resonances have been

predicted but are not evident through pion photoproduction.

1.2 Quark models and strangeness production

Unlike pion photoproduction, the production of kaons introduces the strangeness degree

of freedom. Quark models that study the spectrum of observed and predicted baryons

incorporate the strange quark with a similar mass to the up and down quarks. Quark

models make use of symmetries that govern interactions and use the language of group

theory to arrange hadrons in representations of fundamental groups, such as flavor in an

SU(3) Lie algebra. Quark models using flavor SU(3) have predicted with great success

various fundamental properties of the hadrons' ground and excited states [3].

A larger symmetry has also been proposed and takes into account the intrinsic spin

belonging to the constituent quarks and their relative angular momentum. The particles

belonging to this group are members of representations of the group SU(3) 0 SU(2) 0 0(3).

This group representation has been used to explain the spectrum of excited states of hadrons.

It also predicts symmetry relations of the interactions between mesons and baryons of

different spins [4, 5, 6, 7, 8].
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Due to the difference in mass between the 'u, d and s quarks, it has been very difficult to

associate the wide spectrum of excited baryon and meson states with the right irreducible

representations of the different symmetry groups. There is no clear explanation yet on why

different flavors of quarks attain different masses.

1.3 Effective Models

Experiments in kaon photoproduction taken place within the medium energy regime,

that is from threshold at 1.6 GeV up to, recently 2.6 GeV. In fact, cross-section and double

polarization data for this energy region with high quality statistics are now available and

have been made public by the CLAS collaboration [9, 10, 11]. Unfortunately, this energy

regime is too low for a theoretical description using fundamental theories such as perturba-

tive QCD or global symmetry models such as SU(3) and SU(6). Therefore, QCD cannot

yet give a complete and concise picture that describes the reaction of interest as well as a

full description of the wide spectrum of hadrons and mesons that exist in nature.

Effective models such as the isobaric approach bypass the difficulties encountered within

the nonperturbative region of QCD by treating the interacting hadrons as fundamental

point-like particles. They also assign to the photoproduction reaction a set of unknown

coupling constants characterizing the different excited states involved, which are treated as

parameters within a fitting scheme to experimental data.

In effective models, such as the one described in this study, the parameter that one tries

to accurately extract is the leading coupling constant, 9kNA. This parameter determines

the strength of the interaction between the kaon, proton, and lambda particles. Quark

models such as [3] can be used to extract the leading coupling, using symmetry relations,

from well established couplings such as g rNN. The correct value for the 9,rNN coupling has

been deduced using QCD sum rules [12]. QCD sum rules have also been used to calculate

9KNA with results well within the value predicted using SU(3) flavor symmetry [13].
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Effective models in photoproduction are thus designed to provide more comprehensive

knowledge of the production of strangeness as well as answer why and how the mediators

in the reaction couple to hyperons, baryons and mesons. They also rely heavily on present

experimental data, making them an excellent tool for understanding why there seems to be

such a wide spectrum of resonances.

1.4 Motivation

There has been extensive research devoted to the modeling of strangeness photoproduc-

tion data with hopes of extracting the leading coupling constant, as well as the various

couplings to the intermediate nucleon and strange resonances, N* Y* respectively. Reso-

nances carry intrinsic spin, S, like their born-term counterparts and angular momentum

L due to the motion of the constituent quarks. Resonances grouped in multiplets (similar

mass) have the same total angular momentum, J, and parity of their spatial wavefunction.

Most previous studies, such as the ones by Adelseck [14] and Maxwell [15], have not incor-

porated states with total angular momentum greater than . Adelseck argued, based on

previous literature, that since most experiments were conducted at energies near threshold,

high angular momentum states could not be easily excited and thus were not necessary.

The exclusion of resonances with J > 1 was also due to a lack of well established data

above the energy of 1.9 GeV.

There have been other theoretical models that do include resonances with J =, such as

those described by Lamot [16] and Mizutani [17]. These two works discussed in depth the

nature of the spin 2 vertices as well as the prescription for the propagator in the s-channel.

The u-channel contribution of spin 2 has not been included in previous models.

As mentioned in Section (1.3), at experimental facilities, such as CEBAF at Jefferson

Laboratory, enormous effort has been put into studies of the photoproduction of kaons from

a proton target. High quality low energy data is now available below 1.9 GeV and can be

used to obtain a better description of the reaction when compared to previous theoretical

4



models. The data for energies above 1.9 GeV motivates us to incorporate the well established

spin 2 resonances as well as higher-energy spin 2 and 2 resonances. This energy regime

is particularly interesting since the latest version of the Particle Data Book [18] does not

contain any well-established nucleon resonances at around 1900 MeV with J= 1 7. There

is a wide overlap of less well-establshed resonances around this energy The model will

incorporate two J = states, one P13 resonance at 1900 MeV and one D13 resonance at

2080 MeV. The latter has been shown to play an important role in the analysis of the data

by Sarantsev [19] and has also been discussed as part of the missing resonance problem by

Benhold and Mart [20, 211. In addition, theoretical models, such as a relativistic quark

model by Capstick and Roberts [22], predict multiple states around 1900 MeV, that couple

strongly to the K+A channel. States in this group, such as a P13 state at 1950 MeV and

a D 13 at 1960 MeV could correspond to those taken from the Particle Data Book and

incorporated in this study.

With the additional resonances, it should be possible to fit the cross section data [9]

and polarization observables [10, 11] for this reaction more accurately. Better knowledge of

the coupling constants involved in the reaction and the mechanism for the production of

strangeness will also be available through this phenomenological approach. Furthermore, it

should be possible to deduce the number of effective parameters in the fit by determining

which resonances couple strongly to the K+A channel.
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The theory of quarks
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2.2 SU(6) 0 0(3) model . . . . . . . ................... 12

This chapter provides a brief introduction to quark models, in particular the SU(6) 0O(3)

model. It also introduces the theory of QCD, and what motivated its origin. Quark models,

make use of symmetries to study the spectrum of particles that have been shown to play an

important role in the analyses of experimental data of pion and kaon production reactions.

The symmetries that quark models introduce are not exact in nature, as can be seen from the

mass splitting between the particles belonging to the SU(3) flavor irreducible representation;

nonetheless, quark models provide useful guidelines for the introduction of resonances into

effective lagrangian models, such as spin-parity assignments.

2.1 The Quark Model

QCD is believed to be the correct theory of the strong interaction. It has had incredi-

ble succcess explaining the behavior of matter at high energies where the strong coupling

constant can be taken close to zero and one is able to do perturbation theory to extract

physical obervables. On the other hand, the confined nature of QCD in the low energy

regime makes it difficult to do first principle calculations to extract observables.
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Most of the nucleon resonance spectra observed in kaon and pion photoproduction ex-

periments occur within this low energy regime, up to 3 GeV. One has to rely on different

phenomenological models to explain the properties of the excited states of baryons and

hyperons.

2.1.1 The early 1960's

In the early 1960's Gellman [23] and Zweig [24] introduced the theory of flavor SU(3)

symmetry. This theory assumed the strong interaction to be invariant under continuous

global SU(3) transformations. This model treated as fundamental particles three quarks

with three different flavors: strange (s), up (u), and down (d) with their corresponding

anti-particles.

1 0 0

U= 0 d- 1 s = 0 (2.1)

0 0 1

The model properly explained the structure of the observed baryons as triplets of quarks

and mesons as a quark anti-quark pair.

Quarks are fundamental particles obeying Fermi-.Dirac statistics with spin and baryon

number equal to 1. This model was able to accurately assign the right combinations of

quarks to the observed baryons and mesons by assigning the right quantum numbers to the

quarks.

B q (2.2)

M (2.3)

The theory grouped the u and d quarks in an isospin doublet due to their small difference

in mass and assigned the heavier strange quark to an isospin singlet, Table (2.1). As
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Flavor Mass Electric charge Baryon number Strangeness Isospin I_

up (u) 5 MeV 2 1 1

down (d) 10 MeV - . 0 -

strange (s) 200 MeV - 0 0

Table 2.1: Fundamental particles in the SU(3) model.

baryons and mesons are observed to have integer charge, fractional charges were assigned

to the quarks. The strong interaction is observed to be isospin invariant with the SU(2)

(isospin) group as a subgroup of flavor SU(3). This led to the realization that iso-symmetry

had to be taken as a conserved subgroup of SU(3) with the same diagonal operators as

ordinary isospin, 1, and I2. It followed then that the charge operator could be related to

the z projection of isospin and the strange and baryon number operators related by the

Gell-Mann-Nishijima formula [25].

1
Q = + (S + B). (2,4)

Particles whose bound states are made of a quark-antiquark pairs are labeled mesons and

have either total spin S = 0 or S = 1. When the relative angular momentum L between the

quarks is 0, the quark antiquark pair combine to form an octet and a singlet in flavor SU(3)

with total angular momentum J = L + S = 0 for S = 0, and parity P = (-1)L+ -1 of

the wavefunction.

30 3=8D1. (2.5)

A second ground state configuration is also possible for L = 0, but the two quarks have

their spins aligned and are referred to as the ground state vector meson configuration. Both

the pseudoscalar and vector ground state mesons are shown in Table (2.2).
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Unlike mesons, baryons are bound states of three quarks. They combine to form a total

spin system of S = } or S = 1

30303 =10ED 80D80 1. (2.6)

The decomposition shown above is purely for particles. The antipartcles will form their

own decuplet, octet and singlet respectively. The first SU(3) multiplet corresponds to the

ground state baryons with L = 0 and parity P = (-1)L = +1 and is shown in Table (2.3)

with the proton and neutron being members of this J + octet.

S=0
particle mass (MeV) quark content strangeness charge

7r+ 140 ud 0 +1
7- 140 d; 0 -1
Fr 135 dd 0 0
K+ 494 us +1 +1
K 494 s7 -1 -1
K0  498 d- +1 0

K0  498 sd -1 0
548 uu 0 0

7 958 ss 0 0

S=1

p+ 770 ud 0 +1

p- 770 du 0 -l
P0  770 dd 0 0

K*+ 892 us +1 +1
*- 892 su -1 -1
* 892 d +1 0

fro 892 sd -1 0
w 784 uii 0 0
q 1019 ss 0 0

Table 2.2: Ground state pesudoscalar and vector mesons within flavor SU(3) [26]

However, the model presented a major problem. The wavefunction of the quark system

has to be antisymmetric, that is no two quarks can be in the same quantum state. The



S- 1

particle mass (MeV) quark content strangeness charge

P proton 938.3 uud 0 +1
N neutron 939.6 udd 0 0

E- 1197.4 dds -1 -1
E0 1192.6 uds -1 0
E+ 1189.4 us -1 +1

- 1321 dss -2 -1
- 1315 uss -2 0

A 1115.7 uds -1 0

Table 2.3: Ground state baryon octet within flavor SU(3) [26]

discovery of the A++ particle in the 1950's did not appear to have the right wavefunction

within flavor SU(3). This particle was observed to have a totally symmetric wavefunction,

which was forbidden by the Fermi-Dirac behavior of baryons.

2.1.2 Color and QCD

The theory of flavor SU(3) was very successful in explaining the observed hadron spec-

trum, but it is not an exact symmetry of nature; the strange quark is heavier than its up

and down partners. Furthermore, the SU(3) flavor model predicted in many instances a

symmetric wavefunction under the interchange of two quarks which violates Fermi-Dirac

statistics. The reconciliation between the quark model and Fermi-Dirac statistics came with

the introduction of a new quantum number by theorists such as Greenberg in 1964, and

later supported by experiments at SLAC and MIT. They proposed that each quark would

carry a hidden quantum number referred to as color charge and that each quark could come

in one of three different colors: red, blue and green. Each quark was then represented by a

color triplet.

1 0 0

q= R 0 +B 1 + - 0 (2.7)

0 0 1
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R, B, and G refer to the red, blue, and green basis coeffiecients. A pure red quark will have

both B and G = 0.

This additional degree of freedom makes the wavefunction antisymmetric since no two

quarks are allowed to have the same color. With this additional degree of freedom, a

wavefunction of the form

qqq >= (|spatial > If lavorSU(3) > x spin >)s x |color >A (2.8)

is assigned to each hadron. A refers to antisymmetric and S to symmetric under interchange

of any two quarks. The resulting wavefunction is antisymmetric and hence obeys Fermi-

Dirac statistics.

The theory of QCD, assigned each quark of a particular flavor to the fundamental repre-

sentation of a local SU(3) non-abelian gauge group in which the group operators (gluons)

change a quark of one color to another color leaving the flavor unchanged. The discovery

of asymptotic freedom in 1973 by Gross and Wilczek [27] led to the realization that QCD

would be a good candidate for the strong interaction. Unlike flavor SU(3), color SU(3) is

believed to be an exact theory of nature.

In addition to asymptotic freedom, non-abelian gauge theories experience confinement.

The coupling constant between two quarks increases with their separation distance. This

property of QCD gave the correct explanation as to why baryons and mesons are color

singlet bound states of quarks. The lagrangian of QCD as given by Cheng [28] is

LQCD = 2trG " + Zik(i-y[ D, - mk)qk, (2
k=1

where G"' represents the QCD gauge field tensor. The non-abelian nature of QCD is

inherent in the commutation relation satisfied by the gauge fields (gluons).

G,, = O A v -OvA - ig[Alt, Av]. (2.10)
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The occurrence of confinement at low energies represents a real problem for physicists

today since it is still not clear as to how low energy QCD should be approached. One

particular problem is the wide spectrum of hadrons with masses within this energy domain.

2.2 SU(6) ® 0(3) model

The octet model has been very successful in explaining the ground state spectrum of

baryons as well as how the two irreducible representations (8) and (10) of flavor SU(3)

baryons couple to both ground state strange and nonstrange mesons. Furthermore, the

symmetry relations within SU(3) multiplets give predictions for mass mixing effects as well

as the strengths of the coupling constants between baryons and mesons to the extent that

this symmetry is realized in nature [3].

The fact that many baryons have been observed to have total angular momentum J > 2

and negative parities has led many to believe that baryons belong to a higher symmetry

group. Just as the constituent quark picture led to the octet model, models in which

angular momemtum couple to spin generate the higher state spectrum of strange and non-

strange baryons. A model in which flavor couples to spin is based on an SU(6) symmetry

group. The relative motion between the quarks can be treated through the rotational

invariant group 0(3). This model has been extremely successful in explaining the spectrum

configuration of both ground and excited state baryons. It has also predicted allowed

transition amplitudes as well as mass mixing effects between states belonging to different

irreducible representations of SU(6) 0 0(3) [4, 5, 6, 8, 22].

The widely accepted version of SU(6) 0 0(3) is one that only contains symmetric irre-

ducible representations of the group. The antisymmetric total wavefunction for baryons

is then obtained from the color antisymmetric part of the wavefunction as discussed in

Section (2.1.2). The flavor-spin part of the wavefunction is obtained from the SU(6) part
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of the group, and the spatial part is obtained from an interaction Hamiltonian that de-

scribes the relative motion between quarks. This Hamiltonian can be well described by a

three-dimensional harmonic oscillator potential such as the one employed by [4]

Within SU(6) 0O(3), quarks can couple their spins to S = 1, 2. The flavor-spin coupling

can be expressed mathematically by

6 0 6® 6=5 6 s O 7  7 ( 20A, (2.11)

where S, M and A denote the symmmetric, mixed symmetric, and antisymmetric properties

of the spin-flavor wavefunction under inter-change of any two quarks. The flavor-spin part

of each of the SU(6) multiplets is given by

5 6 s = (10,4) + (8, 2)

70 M = (10,2)+ (8,4)+(8, 2)+(1,2)

2 0 A = (1,4)-+-(8,2). (2.12)

The assumption that the hamiltonian describing hadrons be invariant under SU(6) trans-

formations was mainly due to the dimensionality of the symmetric 56 multiplet which ac-

counted for the 40 spin and 16 spin 2 positive parity states that occurred within flavor

SU(3). The observation that the spectrum of nucleon resonances appeared as three-quark

excitations into well defined bands was well described by the 0(3) rotaional invariance of the

hamiltonian governing these particles [29]. The excitations can be explained by those that

arise from a harmonic oscillator potential which involves both radial and angular momen-

tum excitations between quarks. It is not yet clear as to which are the effective degrees of

freedom that dominate the spatial interaction between quarks. One approach is to treat all

three quarks independent and define two relative radial coordinates as well as motion with

respect to the CM of mass. Another approach is to treat two quarks as an effective diquark

particle and define two radial coordinates, one describing the diquark-quark excitation, and

one the motion with respect to the center of mass.
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This study includes strange and non-strange resonances with total angular momentum

J < . In the shell model described in [4], the composite structure of the hadron is due to

a three quark system interacting via harmonic oscillator forces. The independent degrees

of freedom are the relative motions between the quarks together with the center of mass

motion. From such a dynamical model and the assumption that the total wavefunction

representing the hadron must be symmetric when both spatial and spin-flavor wavefunctions

are combined, one can arrange hadrons into multiplets of the unitary group SU(6). SU(6)

symmetry mixes hadrons which couple their spins to S = 2 and S = 2. The harmonic

oscillator shell model then incorporates the 0(3) symmetry of the hamiltonian and couples

the orbital angular momentum to either spin. A hadron in its ground state belongs to the

symmetric 56 multiplet and has total orbital angular momentum L = 0. When S and L

combine, the total angular momentum J also couples to either J = 1 or J - . The case

is different when the quarks are in an excited state such as the negative partity L = 1

state. Since this state corresponds to an antisymmetric spatial wavefunction, one can only

arrange particles with J =, , to a mixed symmetry multiplet of SU(6) such as the 70

multiplet. This multiplet can be decomposed into its SU(3) and SU(2) multiplets given by

70M = (10, 2) + (8, 4) + (8, 2) + (1, 2) (2.13)

as in Eq. (2.12). In SU(6), an SU(3) octet of S= 2 states mixes with a SU(3) decuplet,

octet and singlet of S The mixing that occurs between S = and S - 2 state has been

studied extensively by [8] as well as their decays into the ground state of SU(6), 56 L = 0

by pion emission. All the decays that occur from the first excited state into the ground

state can be related through SU(6) symmetry relations, but the high degree of mixing that

occurs between states with higher angular momentum at energies around 2 GeV makes the

task of calculating decay amplitudes more difficult.

What has been covered in this section are some of the essential ideas pertaining to quark

models. Like flavor SU(3), SU(6) is not an exact symmetry of nature, and therefore cannot
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give a cosncise description of the resonances that have been observed to contribute to the

cross-section in both pion and kaon production. In addition, they seem to predict far more

resonances [22] than the experimentally established ones given in Particle Data Tables [18].

Nonetheless, they provide with useful approximations on masses and decay amplitudes for

states that may be included in phenomenological models that try to fit experimental data

to study the contribution and behavior of resonances with higher angular momentum, such

as the effective lagrangian employed in this study.
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Chapter 3

Photoproduction of K+
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In this chapter we examine the overall mechanism for the photoproduction of a K+ meson

from a proton at rest in the laboratory frame using a real photon as probe. The kinematics

in both the laboratory (LAB) frame and center of mass (CM) are discussed. We then

look at the three possible mechanisms that involve the excitation of one intermediate state.

Each of these depends on a particular invariant kinematical variable defined in the previous

discussion.

Section (3.2) applies kinematics in the CM frame to calculate the cross-section for the

inelastic scattering of two particles and its relationship to the reaction's amplitude. The

polarization observables are then introduced to take into account the different quantum

states of the particles and how they affect the cross-section. The details of the amplitude
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and its derivation depend on the dynamics of the reaction and the specified mechanism for

the production of a K. This is covered in the following chapter but its general relationship

to Feynman diagrams is included in Section (3.2.3).

3.1 Photoproducion mechanism

3.1.1 Photons: Virtual and Real

Production of kaons from a proton target can take place using a real or a virtual photon.

In this section we discuss the virtual probe and its advantages, as well as its differences,

with the real probe. In the next section, the kinematics of the reaction with a real photon

are discussed in depth.

The reaction induced by virtual photons is usually referred to as electroproduction. In

electroproduction, a photon is produced by scattering an electron off the proton. When two

charged particles interact, they do so by the electromagnetic interaction which is mediated

by the quantum of light, photons.

e' P'

9 9

e p

Figure 3.1: Electron-proton inelastic scattering: Virtual photon exchange

When photons are produced in this way, they must satisfy the Heisenberg uncertainty

principle,

AEAt> . (3.1)
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The uncertainty principle allows for the production of energy if the time is short enough to

satisfy the inequality in Eq. (3.1), but these photons fail to satisfy the on-shell condition

for a particle with mass M and spatial momentum p.

E2 p2 + M2 . (3.2)

Unlike virtual photons, real photons have zero mass and hence obey the equation

E2 = 2. (3.3)

In electrodynamics one finds that photons belong to a group of fields called gauge fields.

This property of light requires the invariance of the electromagnetic (EM) field equations

under a gauge transformation of the magnetic vector potential A and the scalar electric

potential V. Recall from electromagnetism the wave equations that relate the potentials to

the electromagnetic volume charge distribution p, and vector current J.

_ = V2V- +V-A
60 at EO

-pZ=(V 2gA- /1062 - A . + /106 at
8t at

The freedom of gauge in the electromagentic potentials can be exploited to simplify the

wave equations above. In particular, a choice of gauge may be made such that

V -A+ = -0. (3.4)at

This gauge condition is known as the Lorentz gauge condition. It greatly simplifies the form

of the wave equations.
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In quantum electrodynamics (QED), which is the relativistic quantized theory of electro-

dynamics, the EM field is expressed by a polarization four vector e.

V -+ E (3.5)

,A -(3.6)

Furthermore, the momentum of the quantum of light can be expressed using the canonical

relationship

Pu = (3.7)
B&xu

In the Lorentz gauge, one has

pAj .CA=60. (3.8)

Eq. (3.3) can also be expressed in terms of a Lorentz four vector

AU -Ap = 0. (3.9)

These last two equations, together with current conservation for real photons, ensure the

orthogonality of the photon's direction of propagation with the polarization vector,

P. = 0. (3.10)

Virtual photons do not satisfy Eqs. (3.8) and (3.9), and one can not use the tranverse

property of light given in Eq. (3.10). However, using a virtual probe has its own advantages.

Real photons are used mainly to extract the coupling strengths introduced in Section (1.4)

by making use of an effective model in which the interacting particles are treated as mathe-

matical points. By virtue of their masses, virtual photons acquire a longitudinal component

which is a great tool if one wants to probe the internal structure of the proton. Exper-

imentalists exploit both reactions since parameters easily found when using real photons

can be fixed in electroproduction to accurately obtain several other parameters, such as

electromagnetic form factors.
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In the next section we discuss the general kinematics for the scattering of two particles.

We then apply the results to the special case of a real photon scattering off a proton at rest

in the LAB frame.

3.1.2 Reaction Kinematics

The field of nuclear and particle physics is a very complicated one in that the forces

between particles are not yet very well understood. However, the field of classical relativistic

mechanics is still applicable to describe the kinematics involved in reactions.

In classical relativistic mechanics, the total four momentum before and after the reaction

must be conserved. This can be expressed simply by

Pi =Pg . (3.11)

Pi is the total four momentum of the particles before the collision, and Pf the total four

momentum after the collision. The total four momenta are defined as

P = (E,'p) (3.12)

Pf = (Ef, - ). (3.13)

With these definitions, conservation of energy and spatial momentum follow from Eq. (3.11).

In special relativity, one makes use of Lorentz transformations to go from one inertial

reference frame to another. The two most widely used inertial frames in nuclear and particle

physics calculations are the LAB frame and the CM frame. Four vectors span Minkowski

space and thus their lengths do not change from frame to frame. Using this property one

can write

CM = S.LAB (3.14)

The scattering of two particles can be depicted pictorially by Fig. (3.2) an the LAB frame

and Fig. (3.3) in the CM frame.

20



Ma

f JLAB

M4

Figure 3.2: Scattering of two particles in the LAB frame

Ma

M4

Figure 3.3: Scattering of two particles in the CM frame

In the LAB frame, a particle of mass m1 with momentum - collides with a particle at

rest of mass m2. Their total four momentum is defined by

PLAB(i) (E1 + m-2, p1j). (3.15)
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The CM frame is defined as the frame where the total spatial momentum of the colliding

particles adds up to zero.

PM () = (E + E, 0). (3.16)

The prime on the energies is used to differentiate between the energies of the particles in

the two frames. The kinematics for the scattering reaction are expressed in a more compact

way in the CM frame, since the total spatial momentum is zero. The total momentum

squared in the CM frame is defined by

s = PMz) = (E, + E)2, (3.17)

and it is usually referred to as the squared energy of the center of mass. In the LAB frame,

s can be expressed by

s = m1  m2 + 2m2E1 . (3.18)

The invariant quantity W = /s is fundamental in kaon photoproduction, since this is the

energy for the production of the excited baryon that mediates the reaction in the s-channel

The excited state later decays into the final state particles m 3 and m4. If the final state

particles differ from the initial scattering bodies, as in this reaction, the reaction is said to

be inelastic.

Since the four momentum is conserved, s can also be written using the final state particles.

In the CM frame

PCM() PM(f) = s = (E3 + E4)2. (3.19)

In photoproduction mi is equal to zero. In the LAB frame, the proton is at rest with

mass m2 = mP. The final state particle masses are labeled mK for the kaon, and mA for the

lambda particle. Experimentalists use beams of photons to induce the reaction, and thus

there exists a minimum energy which is necessary to induce the reaction and create the

final particles at rest in the CM frame. This energy is referred to as the threshold energy
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for the reaction. It can be obtained by using the following condition on Eq. (3.19) in the

CM frame

(E; + E) 2 > (inK + mA)2 (3.20)

For this reaction, the minimum CM energy squared is expressed by

sth, (MK + mA)2. (3.21)

Since the proton is at rest in the LAB frame, the photon's threshold energy can be defined

by solving for El = Ey(th) in Eq. (3.17) with mi = 0. This yields

1
E 2(th) 2 ((MK + mA) 2 - m ). (3.22)

In this study, we look at three different mechanisms for the photoproduction of kaons, all

of which include the exchange of one particle. The three different mechanisms are discussed

in the following section.

3.1.3 Mechanism

In an isobaric approach, one makes use of Feynman diagrams to calculate the amplitude

for the reaction

p+y -+ K+ + A (3.23)

The three possible mechanisms for the photoproduction of kaons correspond to the three

Minkowski invariant quantities or Mandelstam variables s, u and t.
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The Mandelstam variables are defines as follows:

s = (PP + Py) 2  (3.24)

u = (Pp - Pk) 2  (3.25)

t = (PY - Pk) 2  (3.26)

and which satisfy the following relationship:

s+ u+ t =M + M + M (3.27)

Y K+ A K+

g3*

/y 
/

gl, g2 ' g3 Y*

91*, g2*

P A P Y

(a) s-channel (b) u-channel

P

9 K 9V, 9T
o K*

K+ A
(c) t-channel

Figure 3.4: Contributions to the amplitude for the reaction Pyp - KA

Feynman diagrams corresponding to the three Mandelstam variables are depicted in Fig.

(3.4). Although each diagram contributes to the reaction in a different way, they all affect

the dynamics of the reaction. The s-channel diagram involves the invariant squared energy

s = (P + P y)2 The t and u-channel contributions affect the strength of the reaction at
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forward and backward scattering angles, respectively. In the CM frame, solving for t and u

in Eqs. (3.25) and (3.26) and using Fig. (3.3)

u= (EP - EK) 2 _ pP 2 _P + 2 Pp PK cos(ecM) (3.28)

t =(E - E)2_ 2 P + 2 p py cos(7r - OCM). (3.29)

Note that the t variable is large for forward angles, whereas u is large for backward angles

so that the reaction's contributions can be expected to have a strong angular dependence.

The virtual particles exhanged in each diagram correspond to nucleon resonances in the

s-channel, hyperon resonances in the u-channel, and kaon vector mesons in the t-channel.

Born terms contributions are also included in the model for all three channels. The con-

straints, as well as the mechanisms to extract the individual channel contributions, will be

discussed in Chapter 4. In the following section we discuss how observables are measured

and how to make the connection with theoretical models.

3.2 Observables

3.2.1 Cross-sections

In experiments one usually uses detectors and different particle identification (PID) tech-

niques to measure the likelihood of a certain outcome when two particles scatter. This

likelihood is measured by the cross section and it is defined as

cr = ee (3.30)
PA APBIBA(

In Equation (3.30), Px and l are the volume density and length of the bunches of particles

that serve as the probe and target, A is the cross-sectional area of the incident beam, and

Nevent, are the detected scattered events. It is related to the probability of detecting the

scattered particles for a given flux of the initial particles.

25



Similarly, one can use quantum mechanics to define the probability of an event happening

from some initial state. In quantum mechanics this can be expressed as

Probability = I < V1'42|/ AtB > 12 (3.31)

,i represent the final scattred state wavefunctions, and Ox represent the initial probe and

target state wavefunctions. The states are constructed in the asymptotic limit where we can

ignore any interaction between the initial or final states. Using a fourier transformation,

one can construct each wavepacket from its momentum components by

1 >= 4(k)k> .(3.32)

To calculate the cross section one uses scattering theory, representing each particle by

its corresponding wavepacket. This procedure is simplified by considering the initial states

in the far past and the final states in the far future. In this way, there is no interaction

between any of the states, and their wavefunctions can be constructed independently.

The formula to calculate two-body scattering cross sections is given by Peskin [30} in

terms of the invariant matrix element, M, which contains all of the information concerning

the interaction between the particles. In the center of mass frame (CM), the differential

cross-section for the reaction -+ p -> A + K+ is given by

do- 1 mPmAlpFI1
( d7)CM = -- - [MPA , 2 (3.33) dQ (27r)2 4Eys 4 Mi(3alLspins

where pF is the outgoing three momentum in the CM frame and s is the squared CM energy.

The differential cross-section given in Eq. (3.33) is an expression for the unpolarized cross

section for the inelastic scattering of two particles. In kaon photoproduction from the

proton, p + 7 -+ K+ + A, the explicit factor of 1 is from the average over the four spin

projections of the incoming particles, two spin degrees of freedom for the proton and two

polarization projections for a real photon. With this factor, the unpolarized cross section
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is then given by a sum over the spin projections of all the particles, including for the study,

both spin projections of the A. Cross sections are a very powerful tool used to test a theory

since they can be directly related to experimental analyses. The following section makes

use of the differential cross section and properties of the interacting particles to define

polarization observables.

3.2.2 Polarization observables

Aside from an unpolarized cross section, experimentalists are equally interested in mea-

suring the cross section when one or more of the interacting particles are polarized, that is,

with their spin projection fixed to lie in definite directions. Furthermore, one is interested in

the difference between the reaction's cross-section with a certain polarization configuration

and the opposite configuration. These measured differences are referred to as polarization

asymmetries.

In some cases, experimentalist have control over the polarization of the beam used to

induce the reaction, and the target polarization. In the lab frame as depicted in Fig. (3.2),

the direction of the beam or beam axis is given along the z-axis. If the beam consists of

a real photon, its polarization can be either parallel or perpendicular to the scattering x-z

plane (linearly polarized). The asymmetry measured between a parallel and perpendicularly

polarized photon is given by the symbol E.

d -
(3.34)

dull + dc-L
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If the photon beam has circular polarization, that is, if the helicity states are defined such

that

1

then the asymmetry may be defined as

_do,+ - do-_®

do-+ + du' (3.36)

where + refers to a helicity state in the El direction, and - to the C2 direction. In a similar

way, single polarization observables may be defined for the outgoing hyperon. The hyperon

asymmetry is given by

P = do+ - da (3.37)

The symbols + and - now refer to the polarization of the outgoing hyperon with respect

to a defined quantization axis.

In most cases, it is interesting to measure the amount of polarization that is transferred

from a polarized incoming particle to one of the outgoing particles. These types of asymme-

tries are referred to as double polarization asymmetries. The latest asymmetries measured

by the CLAS collaboration [10] are Cx and Cz. The double polarization Cx measures the

asymmetry that arises from a circularly polarized photon and a hyperon whose wavefunc-

tion is quantized along the axis, that is whose spinors are rotated 900 from the original

quantization axis (2 axis). The double polarization Cx is given by

dr+x+ - do+x-
du+x+ + du +x+ (3.38)

where the first superscript refers to the polarization of the photon, and the second to the

polarization of the hyperon. Similarly, the double polarization C, measures the asymme-
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try that arises from a circularly polarized photon and a hyperon whose wavefunction is

quantized along the 2 direction. Cz is given by

du+z+ + d z (3.39)

The assymetries described above would be used together with the unpolarized differential

cross-section data [9] to better constraint the behavior of the effective lagrangian model that

will be employed to study the reaction p + -y -+ K+ + A when fitted against experimental

data. The study of polarization observables can yield insight into which resonances seem

to be more significant for the description of the reaction of interest, in particular hyperon

resonances.

3.2.3 Amplitudes from Feynman diagrams

Feynman diagrams are a powerful technique used to understand and relate an interacting

theory of particles to experimental observation. A discussed in [30], one can calculate the

amplitude of an interaction by summing over all connected, amputated Feynman diagrams.

For an accurate description of the reaction of interest, it is essential to sum over all Feynman

diagrams that correspond to the perturbative expansion of the effective dynamical theory.

In an effective theory, suitable in the non-perturbative region of the strong interaction, the

reaction's amplitude is studied in the tree level approximation, i.e. by calculating only the

diagrams depicted in Fig. (3.4).

In field theory one usually derives the Feynman rules by first defining the vacuum to

vaccum transition amplitude in the presence of external sources. The lagrangian for the

reaction

p + 7 -+ + - A (3.40)

can be written in the form

Leff Lfree + Linteraction + JAn' + E Ti'i + E ing + wtk+ + k+ t w. (3.41)

i=p,A p,A
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The vacuum to vacuum transition amplitude can be expressed by

WV[J, 97, w] J [d@]d[A,] [dK+]ei if d(Lfree+Lint+JiAI'+rZp,A ?7i 4+p,A + zmwtk+ +k+tw)

(3.42)

with external sources J, for the photon field A,, q for the proton and A fields 0 and , and

w for the kaon field K+. From this definition, quantities with physical significance, such as

the amplitude M for Eq. (3.33) can be calculated. Feynman rules can readily be extracted

by carrying out a perturbative expansion of the transition amplitude W and defining the

Green's function

G4 (x x, 3 , 4 )lnW[J, y, i, wlG (4n J, 77, 7, w4) =(3.43)

Eq. (3.43) is proportional to the amplitude for the reaction between a photon and a

fermion originating at xi and X 2 respectively and a fermion and scalar boson originating

at x3 and X 4 . Green's functions of this form are best depicted by the following Feynman

diagram

Figure 3.5: Feynman diagram for 4-point Green's function

The interaction piece of the effective lagrangian is essential in the calculation of the 4-

point Green's function. The interaction lagrangian for all s and u-channels diagrams given

in Fig. (3.4) will be introduced in Chapter 4. Since these are the diagrams to be considered

as contributions to the cross section, the Feynman rules for such diagrams are stated here.

The Feynman diagrams involve only one internal line which represents the virtual particle

exchanged. The virtual particles considered in the study are both nucleon and hyperon
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resonances with total angular momentum J < 2. Internal lines are described by a two

point Green's function with a momentum distributionn given by

A(x-Y y) - d4 (k)ek-(x-y). (3.44)

The function 9(k) will depend on the angular momentum exchanged and will be introduced

in Chapter 4.

The interacting particles can be described by external lines whose states can be described

as free particles with momentum p some time before or after the interaction. The fermion's

wavefunction, a solution to the free Hamiltonian, can be expressed by a superposition of

free waves of momentum p

$(X, t) = Jdp Zu(p)eipx (3.45)

where u(p) is a Dirac spinor, and the sum over s indicates a sum over the fermion's spin.

Similarly the kaon free wavefunction can be expressed by

( ) d p 'px. (3.46)
~'i 2E

Plane wave functions for photons can be obtained from

AA - Jdp Zc,(p)e-ip, (3.47)

where E' indicates the polarization vector of the photon, and the sum over r indicates a

sum over the photon's spin. A vertex can be expressed by the product of the interaction's

strength with an integral over the Minkowski volume at the point of interaction. In this

framework, the meson vertex is given by

(g,) d4X, (3.48)
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and the charge contribution to the photon vertex by

-ief d4 y. (3.49)

Using the functional method, one can write the reaction's amplitude for these vertices to

first order in the couping strength product as a vacuum-to-vacuum correlation function in

which a photon and proton with momentum pi and p2, respectively, are annihilated, and a

K+ and A with momentum p3 and p4 respectively are created from the vacuum as

e-itkP3P)Y e-i(P1+P2k)x
98 (-ie) L (2r)4(2r)3 (2 r) 3  2E12E2 2E32E4 u(P4)O( ) (P1)u(P2) (3.50)

spinssrt

Equation (3.50) requires an implicit integration over the four momentum k is as well as the

integrals over the spatial momenta of the outgoing particles p3 and p4. The integrals over

the two vertices x and y are evaluated using the properties of the Dirac delta function to

yield

gs(-ie) Z 2ir)4  64 J73 -P4)4(P1+ -ip2 - k).(27r) 3 (27) 3  2E1 2E2 2E32E4j(
spins=sr,t

U ( 4) C}(k)f,- c(pi)r'(P2) (3.51)

Since momentum is conserved at both vertices, either delta function can be used to evaluate

the integral over the four momentum k. After integrating and restoring the integrals over

the outgoing particles, Eq. (3.51) can be expressed as

g5 (ic)d 3p3d3p4  (2w) 4

9s(- e) d3A (7) 64(p1 + P2 - P3 - P4)-(27r) 3 (27r) 3 2E12E22E3 2E4spins=sr,t

u(p4)s0(k)fcu(pi)rut(p2) (3.52)

The reaction amplitude pertaining to the reaction's dynamics can now be isolated and

defined by

M g(- e)i(p4)s (k)f ,(pi)rut(p 2 ), (3.53)
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with k = Pi + P2 = P3 + p4. The probability is now defined by IM 2 and the differential

cross section using Feynman diagrams can be expressed by

dur= pd3p4  (27r) 4  4(pi + P2 - P3 - P4) Z M1 2. (3.54)
(27r) 3 (27r) 3  2E1 2E2 2E3 2E4  spins=syt

The Dirac delta function in Eq. (3.54) reduces the integration down to two integrals. The

differential cross section is then expressed by

( )cM = 2 mPAIpFl I 2, (3.55)
(27r) 2  4E ys 4 ail pi
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Chapter 4

The isobar model
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In this study, we look at an effective lagrangian model similar to the one used by Han [31]

for the photoproduction of kaons from a proton target and Ramirez [32] for pion photopro-

duction. The model consists of an effective hadronic lagrangian in the three-level approxi-

mation, whose implementation started with the works of Thom [1] and Renard [2] over 30

years ago.

The model makes use of Feynman diagrammatic techniques, discussed in Section (3.2.3),

to extract the interaction vertices at first order in perturbation theory, involving the exci-

tation of one resonance.
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4.1 Effective hadronic lagrangian

4.1.1 Introduction

In Section 3.1.2 the kinematics of the photoproduction of kaons were discussed as well

as energy and momentum conservation at the point of interaction. The actual mechanism

for the creation of a virtual particle in the s, u and t-channels and its contributions to

the differential cross section are studied by means of an effective lagrangian. The particles

involved in the reaction are regarded as structureless fermions and mesons.

In the isobar model, the interaction is defined at two points, one defining the photon

vertex NyR, and the other, the strong vertex RK+A. The two vertices are connected by a

propagator with half integral spin J < . The spin propagator is given by a relativistic

Breit-Wigner form. The higher spin propagators are given by projecting the desired spin

from the spin 1 propagator. There has been theoretical work regarding the form of these

projection operators, mainly by Napsuiciale [33] and Shi-Zhong [34]. The latter paper works

out formulae for an arbitrary n + 1 spin propagator, which is of great interest if one wishes

to incorporate any resonance above J = . The propagators are derived based on the

properties of the Rarita-Schwinger equation [33, 34] and are introduced on shell. It has

been shown that off the mass shell, the Rarita-Schwinger form for the propagator for J = 2

does not preserve gauge invariance [15]. An attempt by Mizutani [17] to restore gauge

invariance was done by the incorporation of off-shell parameters in the propagator in both

the strong and photon vertices in the s-channel for resonances with J = . We do not

incorporate these additional parameters since our main interest is in the effect of higher

spin resonances.

Previous interaction lagrangians incorporated the vertices of nucleon resonances with

J < 2 and hyperon resonances with J < 2. For the current model we extend the analysis

to include all available nucleon and hyperon resonances with J < 2 in both the s and u-

channels respecting the invariance of the interaction lagrangian under the symmetry of point

transformations. In our calculation of the amplitudes we make use of a pseudoscalar (PS)
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coupling scheme rather than a pseudovector (PV) scheme at the RK+A vertex. Bennhold's

work over 10 years ago shows no preference between the two schemes when only Born terms

are included [35]; but it is possible that the use of the PV scheme would lead to a suppression

of the Born couplings when excited state resonances are included, as well as a disagreement

between the calculated couplings and the values predicted by SU(3) [36].

In our model, the hadron is treated as a point particle, hence ignoring any form factor

associated with the internal structure of the hadron. Han [31] discusses the addition of form

factors which have to be inserted in a gauge invariant manner since introduction by hand

would spoil gauge invariance. As the photon energy increases, it is essential to introduce

form factors. At low energies, it is of more importance to analyze the reaction with the

inclusion of a larger set of resonances. The t-channel contribution to the cross-section comes

from the exchange of two vector mesons, K*(892) and K'(1270) and a kaon born term as

described by [15].

The model also incorporates the decay branching ratios for resonances in the s-channel.

The decay widths are calculated for six different channels, where in each channel we make use

of the vertex corresponding to the lowest possible angular momentum state of the decaying

particles. Most of the resonances considered have well established branching ratios and

total decay widths given in the Particle Data Book [18] obtained from previous partial

wave analyses of experimental data [19]. We make use of these data to obtain the coupling

constants for the different decay channels. For states whose existence is not well-established,

the widths are incorporated as parameters that will vary with the fit.

The model employed in this study is fully relativistic. Furthermore, four different contri-

butions, where lagrangians based on pion photoproduction [32] are used for the born terms

and spin 1 s and u-channel resonances, and lagrangians based on recent theoretical models

for kaon photoproduction [31], are used for spin 2 and 2 resonances in the s and u-channels.
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4.1.2 Born terms

The born term contributions to the amplitude correspond to the exchange of a proton in

the s-channel and a A or E in the u-channel. A lagrangian similar to the one employed

in [32] based on a Yukawa lagrangian, Eq. (4.1), is used to extract the interaction vertices.

L = LDirac + L ein-Gordon -- 4 -+UA(Y51K+)up (4.1)

7 K+

f

P A

Figure 4.1: s-channel born term contribution to the amplitude for the reaction yp -+ K+A

The s-channel born term includes two interaction vertices that can be derived from

two interaction lagrangians. The photon interaction lagrangian is obtained from the dirac

equation and is given by

L = -eup{ A, + sp(OA - v ) (4A ) [-f"Y , ]}up, (4.2)

where A, is the electromagnetic field, Kp is the anomalous magnetic moment of the proton,

and up is the dirac spinor of the proton.

The strong vertex pAK+ can be derived from the interaction lagrangian

Lit -igK+AiAy5(vK+)up, 4.3

where 9pAI+ refers to the strong coupling constant, vK+ to the kaon field, and UA to the

dirac spinor of the A.
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Both vertices can be extracted by expressing the lagrangians above in momentum space

and identifying the electromagnetic feld with the polarization four vector E . Using the

canonical relationship

Ot = ip =pp,, (4.4)

the electromagnetic and strong vertices can be expressed by

CUB'{-Y~et - rp(P,,E, - PV EA )2( [-Y,-"]}up (4.5)

-igK +AUA75up- (4.6)

A K+

g~j

p 7

Figure 4.2: u-channel born term contribution to the amplitude for the reaction yp -+ K+A

In the u-channel, the lagrangian is similarly defined for both vertices but excludes the

static electromagnetic interaction term between the photon and the A. The only interaction

which occurs is the magentic term from the quark's spin distribution. The photon vertex

is defined by

-en {IA -OVAJ)2(4MA) f7~A 47

Similarly, the strong vertex is defined by

it t9 A+AUA75(VK+ )up, (4.8)
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equivalent to the strong vertex for the born term in the s-channel. The electromagnetic and

strong vertices in the u-channel can also be expressed in momentum space. This leads to

-e~iAf K(pus - PV EM) 1 [^Y-7-LA (4.9)
2(4MA)

-igAK+AA75UP (4.10)

Since both the proton and A are ground state particles with total quark angular momentum

L = 0, they have positive parity, and thus, there are not negative parity contributions to

the born terms in the reaction amplitude.

Since the born terms involve the exchange of a proton in the s-channel and a A or a E

in the u-channel, all of which are spin 2 fermions, we make use of the Feynman propagator,

A(X - Y) J (r-r" + (4.11)
(27r)4 p2 - M2

For the s-channel, we can express the amplitude for the reaction as

Mon jegKA 'YP + M~ 1
M =A'15 - {'y -ei(pjEu - P+ u )2(4M/) fIlP ."vfIup (4.12)

Similarly, for the u-channel

M7 = -ie 9\+ -TAf A(pEu -1 _____PA, + __nvup, (4.13)
2 (4 Mp) p. M

where both expressions for M contain an implicit integral over the four momentum of the

virtual exchanged particle (propagator).
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Since the reaction involves a real photon, the equation above can be re-written using the

anticommutation of the gamma matrices,

{"y , y"} = 2g9" (4.14)

and c p = 0 as stated in Eq. (3.8) to obtain

m, = ie gpK+A . TAY5 -Y 2 -- "fv7pp}up, (4.15)

orn -ae -gpK+A . A{ - "YpP 7" M up. (4.16)2MA PA~ -

A similar equation to Eq. (4.16) can be written for the intermediate E born term with

MA -> Mo and PA -+ pjo. Since the parameters in the model involve the products of

the couplings at the photon and strong vertices, it is useful to define the following strength

products:

Gsborn e ' gpK+A, (4.17)

Gorn =e - Kp " gpK+A, (4.18)

for the s-channel, and

G s, e~ e 1 -Apr (4.19)
u-born e9 A pK+A, 4.9

for the u-channel.

4.1.3 Spin Resonances

Contributions from resonances with total angular momentum J = correspond to the

exchange of nucleon resonances with isospin I = 2 in the s-channel, given in Table (4.1),

and hyperon resonances in the u-channel, given in Table (4.2). The hyperon resonances

correspond to excited states of the A with isospin I = 0 and excited states of the E0 with

isospin I = 1.
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s-channel

Mass (MeV) Isospin I JP PDG status

N*(1440) 1 1+
1 1

N*(1710) + 1+
N*(1535) ****

1 1-
N*(1650) ***

Table 4.1: Nucleon resonances with J =

u-channel

Mass (MeV) Isospin I JP PDG status

A*(1600) 0 + *
A*(1810) 0 +
A*(1405) 0 **

A*(1670) 0
E*(1660) 1 +
E*(1750) 1 *

Table 4.2: Hyperon resonances with J =
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As discussed in Section (2.2), resonances with total angular momentum J = 2 in both

the s and u-channels appear with either positive or negative parities corresponding to the

symmetry of the spin and angular wavefunctions arising from the relative excitation of the

composite quarks. The parities of these excited states are also shown in Tables (4.1) and

(4.2). Both the strong and electromagnetic vertices depend on the parity of the resonance

exchanged.

As with the Born term, the lagrangian describing the s-channel resonance contributions

consist of two vertices. For positive parity states, the photon interaction lagrangian is

similar to the magnetic interaction of a ground state fermion with the electromagnetic field.

The J = 2 nucleon resonances arise from transitions of the proton into an excited state and

therefore electromagentic currents contribute to the coupling only through the magnetic

moments. The interaction piece of the lagrangian at the photon vertex can expressed by

Ls" = 2-MN) (A -'YY U. (4.20)

Where KN* corresponds to the resonance's transition magnetic moment and UN* to its dirac

spinor. Negative parity states can be obtained by multiplying the resonance spinor by 7Y5:

L en = eUNY*5 {N* (OtAv - avAp) 2 (4i,) [f 1"}'up. (4.21)

(4I p

g(* g *
N*

P A

Figure 4.3: s-channel resonance contribution to the amplitude for the reaction yp -+ K+A
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A +
9u*|

Y *
a /

p91

Figure 4.4: u-channel resonance contribution to the amplitude for the reaction yp -+ K+A

The strong interaction lagrangian can be written in exactly the same way as for the

born term but with the appropriate resonance coupling. For positive parity resonances it

is given by

strong _(4.22)L' = -gN* K+11 tl}5 K+)'uN* , (-2

and by

Lstrong i-gN*K+AUA'/5(vK+)y5UN* (4.23)

for the negative parity states.

The u-channel interaction lagrangian for the J = hyperon resonances is defined to be

identical to the u-channel born term, where to first order, only electromagnetic field currents

contribute at the photon vertex. Defining the transition magnetic moment by r A*z-*, the

electromagnetic and strong interaction lagrangians for positive parity u-channel resonances

can be expressed by

L"=-euA{xy*(a, A, - DV AP) [(] (9|n
2(4AJy-

Lstrofg = -igy +,uy*(v +), (4.24)

and by

Le' = -euAY5{rY* (8pA~ - &OA ) 2(4M1A)

L = -igy*K+quy*75 ( +)Y5up, (4.25)
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for negative parity resonances. Y* has been used to denote either contribution from a A*

or a E* resonance.

The propagator used for the J = 1 resonances is also given by a relativistic Breit-Wigner

propagator:

As'U(X - y) f D (p)(Pj, + Ms u), (4.26)
j(i)

where

Ds(p) = (p2 - Mk* + iMN* N*) 1  (4.27)

in the s-channel, and

Du(p) - (p2 - m2 )-1 (4.28)

in the u-channel. Note that a width I has not been incorporated in the u-channel propagator

since the value of u, the four momentum squared transferred to the resonance, has a negative

value, and therefore the resonance cannot decay. An overall discussion of the widths, as

well as the dynamical model used to calculate resonance decay amplitudes, will be given in

Section (4.3). The above lagrangians, expressed in momentum space as in Section (4.1.2),

and the propagator given in Eq. (4.26) can be used to derive the amplitudes for resonances

with J = 2 in both the s and u-channels. The positive parity amplitudes are given by

M + - -e gN* K+A s (pN*) ' A- f5( YpN*,p + MN*){ 2M * p,.}up

ry*
M+ = -e gY*K+pDu(py*) . Zt{ f fp}(-y py*5 + My*)7sup, (4.29)2MA

and making use of the identity (-y2) = 1, the negative parity states can be expressed by

M- = -ie gN*K+ADS(pN*) TA(Y PN*,p + MN*){ vpP } 5 up>

Mil = -iegy*K+pDu(py*) TZA75-{ 7VF- 1"py*,p + My)up, (4.30)
2My*
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The coupling strength products are defined by

Fs = e - KN* ' 9N*K+A (4.31)

for nucleon resonances, and

F, = ey- *AY* - gy*K+p (4.32)

for hyperon resonances, where KAy* indicates the transition magnetic moment from a

ground state A to an excited A* or E* excited state.

4.1.4 Spin 3 Resonances

The treatment of higher spin resonances is of great relevance if one wishes to devise

a model at the hadronic level that can accurately describe recent experimental data. The

treatment of higher half-integral spin resonances began with the works of Pauli and Fierz [37]

and was later studied by Rarita and Schwinger [38] in what is known today as the Rarita-

Schwinger framework. The latter approach to spin particles has been used extensively

in previous isobar models [14, 15, 17, 31, 32]. Within the Rarita-Schwinger framework one

describes a spin 3 particle as a Lorentz tensor of rank one with dirac spinor components

V, (X), (4.33)

and imposes the following conditions on the wavefunction:

(-yp' - m)<0 = 0, (4.34)

70bp = 0, (4.35)

pp Op = 0. (4.36)

The conditions imposed on the wavefunction are generally used to eliminate the spin 2

components of a spin 2 free particle; they do not always hold when interactions are present,

as shown in [39].
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Given that lagrangians for this particles may not be unique, Eq. (4.35) ensures that

one possible form of a free lagrangian,

V (7 OA+ m),4 - +y&,')" + 14ayyAA - m)7",o, (4.37)
3I

as given by [38], remains invariant under point transformations of the form

_1 = 1, + } "21. (4.38)

Since the total lagrangian must also be invariant under the point transformation, Eq. (4.37)

constrains the form of an interaction lagrangian, which is highly relevant for this study.

The form of the free lagrangian and all of its theoretical aspects also affect the form of the

propagator for a higher spin resonance, but this will not be investigated here. However, the

form of the propagator for resonances with total angular momentum 2 has been studied

extensively, and one particular expression has been derived by Zhong [34] based on the

Rarita-Schwinger framework. For the J= case, the propagator is modified to include the

total width for resonances in the s-channel. The propagator is given by

R+ MR
(e M + AR R) P(4.39)

where PR = 0 for resonances in the u-channel. The projection operator P, is given by

1 PR'u,'y - PR ,v Y[ 2 PRpPRv
PMu R " - M'y + 2  . (4.40)

As discussed by Benmerrouche [40], Eq. (4.39) has the correct inverse but off-the-mass-

shell parameters must be added to the interaction vertices to account for the spin I com-

ponents of the wavefunction, which contribute to the propagation of the massive spin 3

resonance when it is off its mass shell. In the present model, off-shell parameters are not

implemented since more emphasis is given to the inclusion of particles with both greater an-

gular momentum and greater mass. Furthermore, calculations performed by Mizutani [17],
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have shown that these parameters have a relatively modest effect on observables. The

most general lagrangian between spin 2 and 2 particles that excludes off-shell parameters

is discussed by Han [31] and given by

Li = it84,C~u2 (4.41)

The form of C' dependes on whether the interaction is at the photon or strong vertex.

The lagrangian will be invariant under Eq. (4.38) provided that 7 = 0. Thus one can

define 0 ., as

1
9V = gPV - 'YA'yv. (4.42)

s-channel

Mass (MeV) Isospin I JP PDG status

N*(1720) 1 ****2 2
N*(1520) ****
N*(1700) 2**

Table 4.3: Nucleon resonances with J =

u-channel

Mass (MeV) Isospin I JP PDG status

A*(1890) 0 +

A*(1520) 0 ****
A*(1690) 0 ****
Z*(1385) 1 + *

E*(1670) 1 ****

E*(1940) 1 **

Table 4.4: Hyperon resonances with J = 2
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The J = resonances considered in this study are given in Table (4.3) for the s-channel,

and Table (4.4) for the u-channel. In the s-channel, the interaction lagrangian at the photon

vertex can be expressed by

L ®_2 ,N* ueg1-/. + ie2 oAI75UP(O"A A - O A") (4.43)

This form of the lagrangian includes the interaction due to electromagnetic currents with

two possible Lorentz invariant interaction forms. In the u-channel, the electromagnetic

interaction takes place between a hyperon and its excited state and can be expressed by the

hermitian conjugate of Eq. (4.43) with the appropriate spinors,

- - 2 e (a"A~ &A")uA7 5 fgf + i 2 DlL 2-MA ( A OA U 5[ - i-2aI VU vu* . (4.44)

The strong interaction term in the lagrangian in the s-channel is given by

L"trong =j uA(4 +)Eu'N*, (4.45)

where g' represents the strong coupling constant, and the factor of (M,)-l is added to

make the coupling constant dimensionless. Similarly, the strong interaction lagrangian in

the u-channel can be expressed by

Lpron"9 = *E),,v(O'v +)up, (4.46)
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The vertices for both interactions can be constructed, as in the spin j case, in momentum

space. Using Eq. (4.39) for the propagators and p . py = 0 and py - E = 0 for real photons,

the amplitude can be expressed by

MS+ 3= - Ds (PN*)TA(ON* + MN )P- Pv{ (F'Oy - Pv )
2 MP

+ (2A1 )2 (6 PPPy y . Pp E)}75Up (4.47)

in the s-channel, and

3+ MUPIAYkL p g)

( (M2 (C -PAP -- P; PAC V)}PvPV iUp (4.48)

in the i-channel for positive parity resonances. The notation j = Yp, has been used to

simplify the expressions. For negative parity excited states, the following substitutions are

made for for the resonance spinors in Eqs. (4.47) and (4.48):

UN*,Y* 'Y5UN*,Y*,

UN*,Y* -- + UN*,Y*'Y5- (4.49)

These definitions yield the following amplitudes for negative parity states:

MS Ds(pN* )TA75 (ON* + MN* )pPpv{ (u - pPly

+(F - p" - P. ppE")}Up, (4.50)

3 - Du (py ) A(y* + My){i_ (IEy-pl)MirUp*)A MA

+ (2MA)2(E - p-py .PA")}PPP )5up. (4.51)
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Making use of the definitions,

eg3g1D(pN*,Y*)
F1(pN*) 2M*

egsg2D(pN* Y*
F2(PN* Y*) 9.52)

(2 MpA) 2 M,(

and carrying out the contractions between the strong and photon vertices using the projec-

tion operator in Eq. (4.40) yields

MS = -ZiUA(N* +MN*)[F1(pN*){f{/ + -
.32 1

(PK PN*Oy -- f KI!

3MN* 3MN*
1 1

+ F2(PN*){q t - -KI pN* PK1Up

3 3MN*

(4.54)

for positive parity nucleon resonances, and

M = iUA75(7/N* + MN*)[Fl(pN*){(I/ + 2$7
3

2 1

3MN* PMN*

1 1
+ F2(pN*){q' - (q-. P 2 N* PK) (p

3 3MN*

(4.54)

for negative parity resonances, where

29= (. -pp)pfg - (py -pp)AL

RL = (q -c)p' - (q - ,) 6AL 2 K.p*pM(.

3 M(N*)rP~.(.5
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Similarly, in the u-channel, the amplitudes can be expressed by

2
Mu + - a'y5f [ y*{F2 (py* )q - t - W M - 2F1(PY )PK . py* 0-y

3My1

- ,alOK - F 1 (py*)/},4} +My*{f3 1q t+ 13 3

2 
Mf 2*,+ +51p-|,}u,(.6

+ 3M PK Px PY* 0y+ 0210K +-Fl(pY* ) o-41]up, (4.56)

M = --usf[y*{ F2(py*)q -t - W/ - -2F1( py* )pK .py~hp,
2 3My

- OI/K - 2F1(py*)'Oj} + My*{01q -t +Y|
2 2

+ 3M PK PY* 07 + 32 K+ F1(pY- ) ,} 175 Up, (4.57)

for positive and negative parity resonances respectively, where

t = tchannel(Mp -+ MA),

- R-hannel(MN* --

Ya F1(py*)RM + 1-F(P)F 2 (pY*)3)p -pY-tp,

1
W I pK pY*t

3My
_F 1 (py.)

a = M F2yy*

2F1 (pys)01 - F2 (py*) -
My*

_ F 1 (py) F 2 (py)
/32 - + 3(4.58)

MY* 3

Unlike spin 2 resonances, higher angular momentum states involve two electromagnetic

couplings. Since the parameters in the model involve coupling products as free parameters,

the following dimensionless coupling products are defined in the s-channel by

G 1 92 ' 93. (4.59)
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Similarly, in the u-channel, the coupling products can be expressed by

Gy= gf~gg,

= g -g. (4.60)

4.1.5 Spin 5 Resonances

Theoretical studies regarding the interaction of spin 2 particles have become increasingly

interesting in light of new and improved data on the photoproduction and electroproduc-

tion of strange particles, which suggests that there is a wide spectrum of higher angular

momentum states that contribute to the reactions' amplitude. Furthermore, a number of

these particles have attained three or four star status in the latest version of the PDG

tables [18]. There has been wide theoretical discussion on wavefunctions, propagators, and

interaction theories that pertains to these particles, which involves relativistic wave equa-

tions, extensions obtained from the Rarita-Schwinger framework discussed in the previous

section. One work in particular, is the recent work by Nierdele [41]. In this framework,

the spin 2 wavefunction for a massive particle can be expressed by the direct product of a

second rank Lorentz tensor with a Dirac spinor with components a,

()A~ (4.61)

which satisfies the Dirac equation

(-xp m- = 0 (4.62)

and the condition

= 0 (4.63)

for each of their Lorentz indices. Again, these conditions eliminate the smaller spin com-

ponents of the wavefunction in the free lagrangian that describes the propagation of a spin

particle, but they may not hold under the presence of interactions.
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Half integral spin propagators are constructed in analogy to the Rarita-Schwinger prop-

agators for a particle with half integral spin 2; in particular, an expression for porpagators

with arbitrary intergal spin n + 2 has been derived by Zhong [34]. In the present study, the

form of the spin 2 propagator has been modified and introduced on shell to be consistent

with the Benmerrouche [40] and Mizutani [17] treatment of the spin 2 projection operator,

which take into consideration the lower spin components that contribute to the propagation

when the particle is off its mass shell. The propagator used can be expressed by

I ~ R + -AR
vA( 10(p2R - MA + iMRR)P/vAJ- (4.64)

where

Pjvwa = 5PyAPv- 2PtvPAcr + 5PuyPvA + P pYPiP APuv + PvpjYrPFPatx

+ PPYPY'PgaPva + Pvp'Yp-jP AF yc, (4.65)

and where

PR, lPRv (4.66)Pv = gp -
.(MR) 

2

is the desired form of the on-shell projection operator. Again the width PR is set to zero in

the u-channel.

The J = resonances considered in this study are given in Table (4.5) in the s-channel

and Table (4.6) in the u-channel.

s-channel

Mass (MeV) Isospin I JP PDG status

N* 1680) 5+ ****2 2
N*(1675 1 5-

2 2

Table 4.5: Nucleon resonances with J
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u-channel

Mass (MeV) Isospin I JP PDG status

A*(1820) 0 + ****

A*(2110) 0 +

A*(1830) 0 ***

E*(1915) 1 + ****

E*(1775) 1 *

Table 4.6: Hyperon resonances with J -

The lagrangian for the interaction between spin 1 and 2 particles, which does not

contain off-shell parameters, has been discussed by Han [31] for the s-channel without

explicit derivation of the vertices. The s-channel lagrangian is given by

L" = 2 tM ) *a[g1YA + 2 A]upv(&QAA - AA ) (4.67)

The expression for the u-channel can be obtained from the hermitian conjugate of Eq. (4.67)

for positive parity resonances

Le = (2 M A )av A - DAAa)i A[gA + 2 A1]Eau " . (4.68)

The operators yA and 5A indicate that the operation is on the outgoing A spinor, A. The

strong interaction terms are expressed by

s
Lstrong = 2 3 P (" V &'K) (4.69)(MA2uA) 5eQP uN*

in the s-channel, and in the u-channel by

s
Lstron9 - 1 u , Y5Opu(&8"v) (4.70)

The lagrangian for negative parity resonances are obtained by transforming the resonance

spinors as in Eq. (4.49). The form of the interaction tensor is given by ), = 9PV. This
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form guarantees the point invariance of both the free and interaction lagrangians of a spin

particle and may not be unique. From the above definitions of the lagrangian densities

at both vertices in both the s and u-channels, and the form of the propagator given by

Eq. (4.64), the vertices can be derived in momentum space. For positive parity nucleon

resonances, the amplitude is given by

()3 10 = Ai 5PKPK(/N* + MN*)F,5 A {2 ( $ - p p

+ (2 )2 9( PpPAP - py PpA pUP

(4.71)

and for negative parity nucleon resonances, given by

S eg38 Ds (PN-) __S

5(M.) 3  10 UApp K (N* + N*) FpVAo{ 91 (EPr - prPy)

+ 2M) - PpPPy P ppEA'pJ)1 5up.

(4.72)

After contracting both vertices, the amplitudes can be expressed by

M A+ = 1^/5(PN* + MN*){F [10a - 2b + 2 K + 20N* I/]

-F1 [10a' - 2b' + 4 K + 4 ON*JY

+ F2 (c .pp)[10a' - 2b'+ 4 K + 40N*1/

- F2 (py- pp)[10a - 2b + 20Kf + 2 N* 1up, (4.73)

M = UA(N* + MN*) {F1[10a - 2b + 2K f + 20N* 0

- F 1[0a' - 2b' + 40K + 4PN*IYI/

+ F2 (6 pp)[10a' - 2b' + 40Kj + 4ON*lYV

- F2 (py -pp)[10a - 2b + 2K K + 20-N*I /f5up (4.74)
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The four vectors are I, J , KP, and NA are linear combinations of 0b, pl, and P y*

and are explicitly given in Appendix A along with the expressions for the Lorentz scalars

a, a', b, and b'. F1 and F2 are defined as follows:

eggjPN*F 1 = F1(pN*) eg1g3
20MpNM1

eggD gD(pN*)F 2 = F2(pN*) 2 4 sMJNM ) (4.75)
40M2M3

The u-channel contribution can be expressed by

eg+ 2M X7 up* n Atg { 60 - [L1)+
2 ~(Mir) 3 1Q2I y y

+ (2MA)2 ( y -~ PTy PAp)(PY* + My*)pKpK75up,

(4.76)

and

__( Eg Dy-y* qy~y

(M= -) 3  10 2MA +

+ (2 A)x 2 ( AyPN - Py PAP ~V)}(f y* + My)pipj4up,

(4.77)

for positive and negative parity, respectively. As with the s-channel contribution, the am-

plitudes can be re-expressed afte summing over repeated indices. This yields

u + = UA{oy ( Y* + My*)F1 [lOa - 2b+ 2 fOK + 2 0y-}

(j y* + My*)F1[lOa' - 2b' + 410K + 4]y y*]

+(OY* + My*)F2(C .pA)[10a' - 2b' + 4 10K + 4J/y* -

( y* + My*)F2(py PA)[lOa - 2b + 2f K + 2 Iy*]}-y5up,

(4.78)
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Al M =UAy5{,(OyY + My-)F1[10a - 2b+ 2 0K + 24$y* -

(Oy- + My-)F1 [10a' - 2b' + 4 10K + 4P ,y*

+(0y' + My-)F2 (- p A)([10a - 2b' + 4 11K 4+4y* -

(0y'-+ My+)F2 (py pA)[10a - 2b + 2/ K + 24 y-]}up

(4.79)

for positive and negative parities, respectively. The four vectors IA, JA, K", and NP and the

lorentz scalars a, a', b, and b' are defined as in the s-channel with pp PA, M -> MA, and

pN* -+ py , MN* -+ My*. Explicit expressions are given in Appendix A. In the u-channel,

F1 and F2 are defined as follows:

eg ggDu(py* )F1  F1(pyg
20MpAM,

F2 = F2(py*) = Xg2.8D0p *)40M~M~{4.80)
40MA2MS

The parameters in the model are defined as the coupling products between the strong

and photon vertices. In the s-channel, these are given by the dimensionless quantities

Gi = g[ - j

Gs = g - (4.81)

and

GY = gi -

G2 =92 U - g, (4.82)

in the u-channel.
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4.1.6 t-channel contribution

Contributions to the reaction's amplitude due to a t-channel born term, as well as two

vector particles are included in the model. Their significance in the reaction is still not very

well understood, but they seem to play an important role in replicating contributions of

higher spin nucleon resonances, mostly spin 2 particles [16]. We are thus interested in the

dependence of the differential cross section and spin polarization observables on t-channel

contributions and how they are affected when higher spin resonances, J = 2 and higher

energy resonances are added to the model.

The t-channel contributions are constructed with the same prescription as used in [15, 42],

where

D(pK) = 2 (4.83)
PK K

describes the propagation of the t-channel born term, K+, and

D(pK**) (4.84)

describes the propagation of the two vector particles, K**= K1(1270), K*(892). The born

term amplitude is proportional to the products of the electromagnetic vertex KK-y and the

strong vertex AKp defined in Section (4.1.2) and can be expressed by

AK ~ egAkpiAE . (2 pK - P-y)D(pK)"Y5UP, (4.85)

where 9AKp corresponds to the s-channel born coupling constant. Again, a real photon

condition,, e1 py = 0, can be used to reexpress the amplitude by

egAkp
MK 2 A2uAEyPp,K75Up. (4.86)

pK K
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For the vector resonance terms, the hadronic vertex resembles that which couples two

fermions and a photon. In particular, we can write the ApK** vertex as

T
V.pK** = {gV +YI + g+ MA 1-7PK**,v , (4.87)

where the the coupling gV indicates the strong vector couping, equivalent to the photon

charge coupling; and gT is the strong tensor coupling equivalent to the magentic coupling

between a photon and a charged particle. A 7Y5 factor should be included in Eq. (4.87) for

positive parity resonances, such as for the K** = K1 (1270) resonance. The electromagetic

interaction responsible for the excitation of the negative parity resonance K* from a ground

state kaon is given by

9-yKK* pvp (.8
wfe EvPpPK*,, (4.88)

where EMpA = 1 for even or odd permutations of the indices respectively, and A{c is a

scaling mass that is set to 1000 MeV as in [15, 421. For the excitation of the positive parity

resonance K1, the vertex is given by

9 (PKKPK- PuPK've) (4.89)

Using Eqs. (4.87) and (4.88) together with the propagator in Eq. (4.84) and the identities

iEvpApYdA = v7p - gYvp<A + gv1'}p (4.90)

and y5y = 1, the amplitude for the negative parity K*(892) can be expressed by

MK* = -iF(pK*i-Y f{ K* + K* K* '
MaIC MS6c(MB + MA)

{-yK* - (E - PK*)y + M, Ev ypPK*,APK*,u}tp' (4.91)
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where F(pK*) = (K* - MKy)--, and the vector and tensor coupling products are used:

GK* = 9yK K* 9 *

gT = 9yKK*9 * - (4.92)

Similarly, using Eqs. (4.87) and (4.89) together with the propagator in Eq. (4.84), the

amplitude for the K1 (1270) can be expressed by

GV
MKI = F(pK1)uA{ [-(E . pK1)0y + (py -PK*)] +

GT

M KC(M MA) 6- PK1) y + (P-y PK*)1OK1}75Up, (4.93)

where the vector and tensor couplings products are defined by

GK1 = 9yKKgKI,

GK1 =gyKKg9 (4.94)

4.2 Amplitudes and Pauli reduction

Having defined the amplitudes for the different contributions to the reaction, the general

structure of the complete reaction S-matrix for this model can be expressed by

T = EMb + E M, + 11 3+ M + Mltchannel. (4.95)

k ij 2 ij 2 ij 2 k

Where the sum over k in the first term indicates a sum over each channel's born terms, the

sum over i and j indicate sums over all of the excited states in both the s and u-channels,

and the last term's sum over k indicates a sum over the two t-channel resonances included

in this study. Using Eq. (4.95), the reaction's amplitude can be expressed by

M = uATup (4.96)
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for an incoming proton and outgoing A particle. The contributions to the amplitudes for

particles with J < were derived in Section (4.1) and given as proportional to contractions

of the form ypp 1'Yp... for some four vectors pu. After carrying out these contractions the

remaining Dirac matrix dependence allows the complete amplitude to be expressed as a

sum of four terms

M = un [A + b$75 + OY + -Y-Y}up. (4.97)
s,u,t;N,Y,K

The 2X2 operators A, B, C, and D depend on the channel as well as on the angular

momentum parity combination of each of the states contributing to the reaction's amplitude.

Explicit expressions for these operators for different JP states are given in Appendix B.

Uisng Equation (4.97), the amplitude for the reaction can be calculated for any given spin

combinations of the initial and final baryon states with momenta pi and pF respectively.

Eq. (4.97) can be reduced to an equivalent Pauli form, i.e. one involving two-component

spinors for the initial and final states, which are eigenvectors of o-z. The Pauli reduction

begins by first expressing the two dirac spinors as

u(pi) = NI X - ,(4.98)

and

u(pF) NFXt1 -( P , (4.99)

where N is a normalization factor given by

N = , (4.100)
2m

1 is the two by two unit matrix, and

=-- (4.101)

01



The vectors X are eigenvectors of a,:

1

X+ , (4.102)
0

and

0
X_ = (4.103)

1

for spin up and spin down respectively.

The term in Eq. (4.97) involving the operator A can be reduced to its Pauli form by

using the definitions given in Eqs. (4.98) and (4.99).

U(pF)Au(PI) = (NINF)Xt [A - (6 -F)A pI1)]X. (4.104)

Similarly, the expressions for the terms involving the operators B, 0, and D are expressed

by

u(pF)B-y5u(pI) = (NINF)xt[B(f3 .F) - (6 PI )b]x, (4.105)

T(pFC 'F) u(pI) = (NINF)X[ + ( pF)C( I)] X, (4.106)

; (pF)-'DYY5 u(PI) = (NINFW A x (' -y) + (a I)Dlx, (4.107)

making use the following representations for the dirac matrices -yo and ry with 2X2 com-

ponents:

Y = ,(4.108)
0 -1

and

0 1

"Y = (4.109)
1
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Using Eqs. (4.104)-(4.107) the reaction's amplitude can be now expressed in its Pauli form

by

M= (NINF)XFI(A+C)+((+b)- pI+ ' pF(- )+J F(0-) pF]XI, (4.110)

where now the initial and final spinors do not depend on momentum and energy. All of the

dynamical information is stored in the operators; therefore, the amplitude can be calculated

with respect to the original quantized axis z or with respect to any other axis by rotating

the Pauli spinors appropriately without altering the form of the operators. In particular

the amplitude is completely determined by using the x+ and x_ defined with respect to

any rotation matrix belonging to SU(2).

4.3 Resonance Widths

To properly evaluate the contributions to the amplitudes from resonances in the s-channel,

a model for the widths F has to be introduced. In this study, an effective lagrangian model is

used to calculate the amplitudes for the reactions responsible for the resonance decay widths.

The model makes use of the empirical on-shell total widths of the particles and employs

experimental values for their branching ratios into two and three-body decay channels to

calculate the coupling associated with each decay.

4.3.1 Decays into stable baryons

In this model, two-body decays are defined as decays of a resonance R with angular mo-

mentum J < into a stable nucleon or hyperon (A or F0 ) paticle with angular momentum-

parity J = and a pseudoscalar meson,

1+

2 +0 . (4111)
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As mentioned in the introduction of Section (4.1), the on-shell values for the branching

ratios to particular two-body channels are taken from the particle data tables [18]. These

are shown in Table (4.7).

Two body channels
Resonance N7r Nrj AK

N*(1440) 0.65
N*(1710) 0.15
N*(1535) 0.45 0.060 0.14
N*(1650) 0.77 0.525
N*(1720) 0.15 0.06 0.07
N*(1520) 0.60
N*(1700) 0.10
N*(1680) 0.60
N*(1675) 0.40

Table 4.7: Branching ratios into two-body decay channels

Two-body decay channels are considered for all s-channel resonances included in the

model. The vertices for decays of resonances with J = 2 into a 1+ nucleon and a pseu-

doscalar meson are given by

M + g1(y-tYB (4x112)

for resonances with positive parity, and

M 1 - URUB (4.113)

for resonances with negative parity. Here UR is the spinor of the decaying resonance, and

UB of the + decay product. The calculation is done in the resonance decay CM frame,

where

%=EB -- Ep (4.114)

and

Im + P =0. (4.115)
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Eg and pp correspond to the energy and spatial momentum of the outgoing pseudoscalar

meson. In the CM frame, the spinors can be expressed by

UR -=2 t (1, 0), (4.116)

1LB = EB +B 11X- (4.117)

EB+MB ( PB)

To perform the calculation, the z axis is chosen to lie along the direction of the baryon's

momentum 'B. This coordinate system is appropriate for use of the helicity basis. In this

basis, the baryon's spinor is quantized along the direction of its momentum, and it is given

by XmB, where mB = 1 labels spin parallel or antiparallel to - . The spinor for a J =

resonance must be expressed in this basis and is therefore written as a linear combination

of Pauli spinors in the helicity basis, i.e.,

1~ 1

X/m(R) = D (-O, -O)X = Dim (, 0)XA, (4.118)
A A

1

where Dam are the J = rotation matrices and the angles 0 and 0 define the position

of the helicity basis with respect to the coordinate system defined by the direction of the

photon. Eqs. (4.116)-(4.118) and the othogonality relation between Pauli spinors,

1

XR (R) -XnB (B) = DBmiR (8q0), (4.119)

are used to evaluate the decay amplitudes. These are given by

i

M1 + = g7 - D mR (0, f) (4.120)

and

Bgm (2M) BD B mB (,) (4.121)
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for positive and negative parities respectively, where

S2s2(EB + MB). (4.122)

For decays involving resonances with J = , it is first useful to express the resonance

Dirac spinor as a direct product of a spin j Dirac spinor and a vector. The coupling is

carried out using SU(2) spin Clebsch-Gordon coefficients. For a given spin 2 particle, the

wavefunction is defined by

U~ -- < 2 mi,1m2 (MR > Umi 2, (4.123)
ni m2

Um  j< 2 m1, 1m23mR > uml(ET 2 )*. (4.124)
nim2

The indices mi, m2, and mR label the spin projections of the individual paritcles, and 'E is

the polarization of the spin 1 vector particle. For decays into spin 2 baryons the following

vertices are employed:

M2+ = MK UR, PpyuB (4.125)
2 M

for resonances with positive parity, and

M 3 = K UR,pp"7/5uB (4.126)
2 l'Kx

for negative parity baryons. Using the wavefunctions for the spin 3 particles given in Eqs.

(4.123) and (4.124), the vertices can be expressed by

M2+ = g 2mi, 1m212mR > nm1 (i 9)*ppuB, (4.127)
1'2

M3 = g < 2 m1,1m2I2 mR > Um1(E 2 )*ppy15 B. (4.128)
2m2
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The polarization four-vector of the spin 1 particle is rotated to lie along the z-axis defined

by the direction of the baryon's spatial momentum, so that

(e")*pp = PB IDm2 (e, ), (4.129)

where

= 12

I(2 = 0)* = (4.130)

since j5 B - , in the resonance's rest frame. Using Eqs. (4.118) and (4.122) and

1 3 1 3
< mi, 12 > D "172 (0, #)D mi (8, 0) - < rr , 1(m = 0) 12MB > D~ BMR

7,i72 MB

(4.131)

reduces the amplitudes to

M 3 + 131 D m (0, c), (4.132)
MK3

MMK LB + B (2 mB) lD~BrmR(0, q) (4.133)

for positive and negative parities, respectively.

The construction of a resonance with spin 2 is carried out by first defining the wavefunc-

tion

n, = < ,i1 1m29-rnR > EI (e 2 )*, (4.134)
77217722
rflm2

which can be further expressed as

3 5 1 3
U < -i, lm2 -mR >< -m3, 1m4-lmi > 11Em 4 (Er 2 )* (4.135)
Umm2 2 2
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The vertices for decays into a spin z baryon and a pseudoscalar meson are then given by

S ig3 1 3
M5+ = d2 3mi,1m21 Ra >< Im3, 1m4 3MI >

mim2m3m4

-Um3 ( Em4)( Er2Y y5PppPpVUmB,

- ig 3 5 1 3
M5 - = g< 3m1, 12 MR >< 1M3, 1m4 Imi >

mim2m3rn4

U-M 3 (E ) * (E2) *PpppvUmUi

(4.136)

for positive and negative parity resonances, repectively. After evaluating the matrix ele-

ments, the decay amplitudes reduce to

M5 + - P31 2(2mB)A(mB)1D (RsO ) (4.137)
(MIK) 2 EB +MB Q

= 2 A(mB)D m (0, #), (4.138)

where

3 5
A(mB) B< me, 1m 0 -mB > . (4.139)

To calculate the widths 17 for the decays of all resonances included in Table (4.7) into the

+ + 0- channel, the following CM expression is used:

l' = dQ 1 E IM1 2. (4.140)32r2 s JJ +1 rn Rn

This expression can be simplified by noting that the amplitudes calculated for the decaying

particles are proportional to a matrix representation of the rotation group of dimension JR,

which satisfy

dQlD4r(0) 2  2J4T1 (4.141)
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Using Eqs. (4.140)-(4.141) and using the following values

123
|AmB! 2 1

for mB = 2, and summing over the spin projections mB yields

1+ 1+ g 2 B 3

P(- -> + 0) 4 Q2  (4.142)

T1_- 1++- 9i2 IPB!Q 2  413
2 2 47r s(1~3+- 1+2

+ 0~) = g !, (4.144)
2 2 127 M s

3( -+ + ) g2  45

{_-- 2++0-) 1 wM% 92 (4.145)
2 2 127r 1 V '

5- 1+ 1 2 1-1

1( -+ + 0 P) = (4.146)
2 2 07r MK Q2

5+ 1+ 1 2
7( -+ +0~) = 4 !sYI 5Q2, (4.147)

2 2 307r Mi s

where Q2 = V's(EB + MB).

4.3.2 Decays into unstable baryons and mesons

In addition to two-body decays, this study incorporates three-body decay channels, where

the widths are approximated by two-body decays into a stable hadron and another unstable

hadron. Such decays are included for all s-channel resonances for which the avialable CM

energy exceeds the decay threshold energy Vs. On-shell branching ratios for these decay

channels are given in Table (4.8). The amplitudes for decay of a J = 2 resonance into the

Ar channel can be expressed by

2 M1

Ml - UNRP -Y5UPyMB (4.148)
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Three body channels

Resonance o-N Ar pN
N*(1440) 0.075 0.25 0.025
N*(1710) 0.25 0.26 0.14
N*(1535) 0.025
N*(1650) 0.03 0.07
N*(1720) 0.73
N*(1520) 0.2 0.20
N*(1700) 0.8 0.1
N*(1680) 0.15 0.125 0.125
N*(1675) 0.60

Table 4.8: Branching ratios into three-body decay channels

Unlike decays of particles with J = into a spin 1 baryon and a meson in the resonance

rest frame, this vertex involves a moving spin 1 particle, and thus Eqs. (4.129) and (4.130)

cannot be used. The wavefunction of the A particle can be expressed by

Um = < 2mI, 1m21 m B > umi e 2. (4.149)
ml m2

To evaluate the inner products Eqs. (4.148) inner product between the polarization vector

e and the mesons's four momentum, note first that

Egp = 0 (4.150)

in the rest frame of the moving baryon. Since this is a Lorentz invariant, it must be zero in

the rest frame of the resonance. Therefore,

eoEB - E. p3s = 0, (4.151)

and

EPpP =® (4.152)
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since PB = -pp and .s = (EB +EP) in the rest frame of the resonance. Using these results,

the amplitudes can be expressed by

1 3M1 = - s < mI, 1m2 3mB > Eo(m2)numn(
mlm2

2 j sL< 2 m1 , 1m m > co(m2 )nmR7y5 uml. (4.153)
ni m2

The sums in Eq. (4.153) can be evaluated explicitly by noting that in the helicity basis, the

time component of the massive spin 1 particle polarization is given by

co(m 2 ) = Mm20. (4.154)
MB

Using the above equation and Eq. (4.119) the final expressions for the amplitudes for

positive and negative parity J = resonances are given by

M1+ 2 ;2 3MB B

2 |PB|2 1
M1-= 2 M (2mB)DB mR(O, 5), (4.155)

2 3 MB EB + MB

where mB = t .

Decays of resonances with J _ 3 into a Air can be evaluated using the following vertices:

M3 + = ,mR75UmpB
2

M3 = gUAMR (4.156)
2

for positive and negative parities, respectively. The calculation is done using the definitions

in Section (4.3.1) for the wavefunctions belonging to resonances with J = 3, and the
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definition given in Eq. (4.149) for the A wavefunction, which yield

1 PB D
M3+ = -9 77 DM B(81)

M 3  = -g7D2BmR(,#0). (4.157)

The amplitudes for J = resonances decaying into a A and a 7r are obtained from the

following veritices:

M - g PvrnR~p52UIrmB, 41)2 MK

MS = M-KsUmVaPP'5UpmB, (4.158)

for positive and negative parities, respectively. The calculation is carried out using the

wavefunction in Eq. (4.135) for the resonance and Eq. (4.149) for the A particle. This

yields

95
M5+ = + g A(MB)D B 0)

M I - 9-g f(mB)A(mB)D~amB(q),
2 MK EB+MB

(4.159)

with coefficients A(mB) for mB = and 51for mB = } and f(mB) = ymn.

Using Eqs. (4.140) and (4.141) the following expressions for the widths for decays of reso-

nances with J < 5 into the A7r channel are obtained:

1+ 3+ 2 g 2  
2

F(-- -+0-) = 2Is 3- 41!
2 2 127rM M ' (4.160)
1 3 2 924.161)
(- - - 0~) = ___ B S
2 2 127r MK Q2M'

3+ 3+ 5 02 (4.162)
(-- - 0) = f3(462
2 2 367r MKI Q2
3~ 3+ _2__ 2

2( --+-+0~) = - - (4.163)2 2 47r 'K s
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+ + 0~) = g B2  
3  , (4.164)

2 2 127r MK s'

5- 3+ 1 g2  7
S + - ++ 0-) = 2  15 7 (4.165)
2 2 127T MK 15Q21

where Q2 = VS(EB + MB).

Vector decays, i.e., decays to a p meson and nucleon, are also incorporated into the model.

The vertices associated with these decays are constructed in analogy to the photon vertices

given in Sections (4.1) for the s-channel resonances. The polarization four-vector of the

massive vector particle is constructed in the rest frame of the resonance with the z axis

rotated to lie along the direction of the outgoing nucleon. In the helicity basis

6mrv=O z,

A1

Emv- 1 = ( + ij) (4.166)

for the space components, and

o -- VmvO (4.167)
My

for the time component, where my indicate the spin projection along the rotated z-axis.

The decay widths for resonances with J= 2 are given by

r,(- -+ 1~ + ) = 1pB 3 E B f(v )22( _M )2}, (4.168)
2 2 A 3rEB v EB k MB EB k MB

where My and MB are the masses of the meson and baryon respectively. Since the decay

couplings are fixed by empirical branching ratios, and are not varied in the fitting procedure,

only the term proportional to the vector coupling gv has been kept.
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Similarly, the widths for spin 2 resonances are given by

3 )1+ 1 gi - 3EB MB 2 +|IB 2

U(- -- + +- )S4 M2SPBI
2 2 87r 4MB V/sM 3 EB MB

(1 E M 2) + M (1 + E .M(4.169)
3 B MBB

For positive parity spin 5 resonances, the width is given by

+-( 1 + - + g 1 IPB EB + MB {A 2 + 2B32 + C2}, (4.170)
2 2 307r 4MB M

where

A = GS - MB,

B -PB2  A
EB MB 2

EvA + 1,B12 ( B Ev +4- MB)
MV(B+B)(4.171)My M ( EB + MB)

The negative parity resonance widths are given by

5- 1+ B+M
F(- - 1- + - - 1 PB 13g2 B + MB {A 2 + 2B2 C2, (4.172)

2 2 307r 4MBM s

where

A IY(BS + MB),EB + MB

B= PS (1- )M
EB + MB 2

C = B (EV + IpB12 ) (4.173)
Mvl EB + MB

The mass of the pion is used to make gi dimensionless. Note also that for the J= and

resonances, only one coupling is introduced in the expressions for the widths. This is due to

the fact that we are limited to on-shell partial width information, which can only be used

to extract one coupling. The other couplings must be dropped from the calculation. To
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account for the instability of the A particle and vector meson, a method developed in [42]

is used. The method involves incorporating the width of the unstable decay product by

introducing a Breit-Wigner distribution. The channel width is expressed as

2 Mmax

F(s) = f1 F(s, x)S(x)dx, (4.174)
4 A Jh

where P(s, x) is the phase factor for decay of the resonance into an unstable decay product

of mass x, and

S(x) =- (4.175)
27r (X - Mc)2 (.15 + 1r

is the Breit-Wigner distribution with normalization parameter A. The integration limits

are

Mth = sth - Mstable,

Mmax S= - Mstable, (4.176)

where sth is the lowest possible CM energy to form the unstable baryon or vector meson,

andl Ms is the mass of the stable final state nucleon or pion.

The empirical on-shell branching ratios, together with the expressions derived in this

section yield a dynamical model for the well-established s-channel resonances (three to four

star status,) given in Tables (4.1), (4.3) and (4.5). The total widths for resonances of two

star category are treated as parameters in the fit, as mentioned in Section (4.1.1).

4.4 Parameters and Fitting Procedure

Using the effective lagrangian model developed in this chapter, two main fits are obtained

to the data provided by the CLAS collaboration [9, 10] for the photoproduction reaction

y + p -* K+ + A . One fit is performed using the low energy data, that is, for CM energies

below 2 GeV, and a second fit is obtained for CM energies up to 2.6 GeV. The low energy

fit includes all the well-established s and u-channel resonances with J < j given in [18]
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This fit is mainly used to study the effect on the differential cross section when the fit is

extended to include polarization data and to study the relative influences of the s and u-

channel coupling constants. Table (4.9) lists all of the s and u-channel resonances used in the

low energy fit along with their symmetry assignments, consistent with SU(6)XO(3) quark

models [5, 6, 8, 7]. The higher energy fit incorporates four resonances whose existence is not

Resonance I JP SU(3)
N(1440) + 28

N(1520) 4 3 28

N(1535) I 1 28

N(1650) 1 1 48

N(1675) 48

N(1680) 1 5+ 28
N(1700) - 48

N(1710) 1 1+ 28

N(1720) 1 3+ 28

A(1405) 0 2 21
A(1520) 0 21

A(1600) 0 I+ 28

A(1670) 0 48

A(1690) 0 3 28

A(1810) 0 1+ 28

A(1820) 0 + 28

A(1830) 0 48

A(1890) 0 + 28

A(2110) 0 +

E(1385) 1 + 410

E(1660) 1 + 28

E(1670) 1 - 28

E(1750) 1 - 210

E(1775) 1 48
E(1915) 1 + 28

E(1940) 1 48

Table 4.9: Low energy well-established resonances

yet very well established in the particle data tables [18], but as mentioned in Section (1.4),

have been predicted within quark models and used in previous analyses of photoproduction

data. The additional resonances are implemented because the model cannot successfully
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fit the complete data set when only the resonances listed in Table (4.9) are included. The

additional two-star resonances used in the model are listed in Table (4.10).

Resonance JP

N(1900) +
N(2000) +

N(2080) -
N(2200) 5

Table 4.10: Two star resonances implemented in high energy fit

In the low energy fit, the parameters fit to the experimental data are the coupling products

at the electromagnetic and strong vertices. These products were defined in Section (4.1).

Most of the Born term coupling products in the three channels are related to the leading

Born coupling

L =9pKA. (4.177)

In particular, one can express the born coupling products introduced in Section (4.1.2) and

(4.1.6) for the s, u and t-channel born terms as

G-born 9 L

G2 born = syL (4.178)

GA born = KAgL (4.179)

Gu-born = e6EA9pK, (4.180)

G or 9 L, (4.181)

where rp and KA refer to the magnetic moments of the proton and A respectively. The

magnetic moments for both the proton and A and the electric charge e are well established
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units. Throughout the fitting procedure, these values are fixed to

rp = 2.793, (4.182)

KA = -0.729, (4.183)

e = 0.3029, (4.184)

in dimensionless quantities. The coupling product for E exchange is fixed to the value

14579. The only coupling that has not been very well established is 9pKA. This coupling

can be related to the coupling gNNn in unbroken SU(3) symmetry by [3],

1
9KpA =- (3 - 2 aD)97rNN. (4.185)

Given that SU(3) symmetry is not fully realized in nature, other theoretical models, some

of which are based on photon-kaon scattering and 20% SU(3) symmetry breaking effects,

predict a range of values between -4.4 < 9 < -3.0 [43]. Other phenomenological models

for the reaction p(yK)A predict a value of gp between -4.30 and -2.90 [44]. In addition,

QCD sum rule methods predict a value close to p = -1.96 [13]. Given that there is a

range of values reported for gpKA in previous studies, gpKA is introduced as a parameter

that is allowed to vary in the fitting procedure. It will be of interest to see how the values

obtained for this parameter in the present fits compare with those obtained in previous

experimetally driven photoproduction models and QCD inspired models.

The additional parameters of the fit are the coupling products at the electromagnetic and

strong vertices. For resonances with total angular momentum J = 2, these parameters are

defined as

FN* cIp-+N* 9N* KA,

FA* eA-,nA*gA*Kp, (4.186)

F = erAr,*gE*Kp. (4.187)
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For resonances with total angular momentum J = 2 and 2, the definitions in Section (4.1.4),

GN* 91 9s
2pN* 3

N* 92 s 91

1 AA*3

A* g1 gu-A*>

G = 9 91-E, (4.188)

where g3 = 9N*KA in the s-channel, and g A** = 9A*, *Kp in the u-channel, are employed.

The t-channel resonance vector and tensor couplings are given by

V V
V = 9-KK*9AK*p,

G = 9yKK 9AK*p, (4.189)

for K* = K*(892) or K'(1270), respectively

The first fit is performed using the low energy portion of the CLAS unpolarized differential

cross section data [9] given by Eq. (3.55) in Section (3.2). Four different sets of starting

parameters, labeled sets A, B, C and D were used. A non-linear Levenberg-Marquardt

method was employed to obtain the set of parameters that minimizes the x2 defined by

2 (odl(4.190)
"V (N - npar) (dYeiP . dYip)2

where v labels the number of independent degrees of feedom in the fit. The variable Yodd

is the observable calculated using the effective lagrangian model, and Yexp is the experimen-

tally measured observable with uncertainty dY. The fit to the unpolarized cross section

yields a set of paramaters for each of the starting parameter sets defined above. These new

parameters were then used as starting parameters for a low energy fit to both unpolarized
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differential cross section data and the double polarization observables C- and C- [10]. For

a right circularly polarized photon , these assymetries are given by

dcr+ do- C = (4.191)
do.+ + do--

where refers to the A spin projection parallel or antiparallel to the j = z or j = x axes.

To fit the whole energy range from 1.6 GeV to 2.6 GeV, the resonances in Table (4.10) were

incorporated. Both the unpolarized differential cross-section and polarization observables

were fit in two steps using the same procedure as for the low energy data. The new param-

eters used in the full energy fits include the total decay widths of the less well-established

resonances in Table (4.10).

The best fit obtained from the four starting parameter sets was then used to study the

sensitivity of the fits to each of the nucleon higher energy resonances. This was done by

first fitting the differential cross-section and asymmetries keeping all parameters associated

with the resonances in Table (4.9) fixed and varying only the ones in Table (4.10). This

procedure provides information on how the low energy results are affected by the high

energy resonances and how well the parameters obtained from the low energy fit describe

the high energy data.

A second procedure is carried out to remove the high energy resonances from the model,

one by one. This was performed to study the sensitivity of the X2 to individual resonances.

This procedure can in principle give insight into how much the observables depend on each

of the high energy resonances and whether or not a particular resonance is relevant to the

description of the experimental data.

Using the best fit to all the cross section and double polarization data, a systematic

study of the contribution of u-channel hyperon resonances was performed. In particular, we

studied the sensitivity of the observables to the presence or absence of u-channel resonances

that do not couple strongly to the initial or final state or whose coupling products seem
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unphysically high. If the shape of the distribution does not change significantly when a

particular hyperon resonance is removed, an attempt is made to refit without it. Lastly, we

studied the angular dependence of the differential cross-section associated with the u and

t-channel contributions.
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Chapter 5

Results and Discussion

The version of the isobar model developed for this study of the reaction Y + p - K+ + A

was discussed in Chapter 4. In particular, contributions to the reaction's amplitude were

given for s and u-channel resonances with total angular momentum J < with both positive

and negative parities. In addition, two kaon resonances were also incorporated, the K* (892)

and K1(1270) resonances. A model for the decay widths for six particular decay channels

for nucleon s-channel resonances was also included in the model. The results of the fits

performed to the unpolarized cross section data and double polarization observables, C.

and Cz, are presented in this section. This section is divided into two main parts. The first

part analyzes the sensitivity of the coupling products to the addition of double polarization

data to the fitting procedure, in particular, the sensitivity of leading coupling constant

9pKA. The second part analyzes the behavior of the coupling products to two different sets

of starting parameters obtained from the low energy fits.

5.1 Low Energy Fits

In the low energy regime, two different fits are presented. The first fit is performed using

just the unpolarized differential cross section data for four sets of initial parameters labeled

models A, B, C, and D. The results for these fits are presented in table (5.1). These results

consist of the sets of parameters for which the X' function, Eq. (4.19), is at its minimum.

The occurence of global versus local minima is always a concern when data sets are fit.

This is not a trivial concern since many fitting routines are generally not robust enough to
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find a true minimum among several local minima. We attempted to tackle this obstacle by

varying the way in which the parameters were introduced into the fitting routine. In some

cases, a solution was found by first varying the s-channel parameters while keeping all other

parameters fixed. Using the output parameters for this particular solution as a new set of

starting parameters, the u-channel parameters were then varied to obtain a new minimum.

This procedure could be altered by permutating the order in which the different parameters

were varied. We also tried a scheme in which the parameters corresponding to resonances

with different angular momentum-parity combinations were successively varied. The results

in table (5.1) represent the parameters giving the lowest possible x2 obtained with the

Levenberg-Marquardt method, for each of the four different sets of starting parameters.

The angular dependence of the differential cross section is exhibited in Fig. (5.1) at four

different energies. With the exception of fit D, the quality of the four fits are similar, which

reflects the similar x2 obtained with the fits.

025 w= 1.753 GeV

0.15
0.2

0.1 -. - ® 0.15

0 0.05
0.05

0 0 0,5 1 -1 -0.5 0 0. 1

0.4 cos( ) 0.4 Cos(a

035 W1.858 GeV =.993 GeV

- - 0.3 -
0.3

0.25 0.2

0.2

0.150.1
0.15
0.1 0

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
cos(O) cos(e)

Figure 5.1: Differential cross section for the reaction 7 +p -+ K+ + A at four different total

CM energies. The solid curves were obtained with fit A, the dotted curves with fit B, the
dashed curves with fit C, and the dot-dashed curves with fit D.
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A B C D

FN*
N(1440) -3.759 -3.859 -4.800 -10.411
N(1710) + 0.080 0.054 0.185 0.233
N(1535) -0.101 -0.026 -0.052 -0.533
N(1650) -0.137 -0.199 -0132 0.027

G1- G N.

N(1720) + 0.035 0.135 0.036 -0.016 -0.002 -0.111 0.009 0.222
N(1520) -1.453 -0.895 -1.794 -0.825 -0.482 -0.066 -0.593 0.143
N(1700) 0.989 1.292 1.277 1.385 0.202 0.635 0.807 1.086
N(1680) + 0.096 0.072 0.108 0.067 0.048 0.017 0.108 0.124
N(1675) -0.011 -0.018 -0.015 -0.021 -0.007 -0.011 -0.013 0.018

FA*

A(1600) -9.869 -1.108 -12.148 -5.349
A(1810) + 0.559 3.447 -3.282 -1.299
A(1405) -1.078 -1.700 1.815 -2.167
A(1670)~ 0.477 -3.859 -5.721 -1.017

G* G

A(1890) + 2.070 -8.748 2.618 -9.868 0.215 0.102 0.063 -0.401

A(1520) a 0.505 0.963 -0.215 0.077 -0.022 0.258 0.047 -0.443

A(1690) ~ 9.289 -6.720 -0.466 -7.452 0.025 0.251 0.007 -0.432
A(1820) + -0.003 0.002 -0.004 -0.004 -0.010 -0.030 0.002 0.005

A(2110) + 0.011 0.021 -0.007 0.000 -0.015 -0.021 -0.004 -0.019
A(1830) 0.002 0.020 0.002 0.009 -0.005 0.022 -0.002 0.020

F

F(1660) + 4.800 -6.248 5.671 3.790

E(1750) 3.107 10.950 6.703 -0.422
G G

E(1385) -0.410 6.481 -0. 553 5.285 0.346 0.359 0.010 1.059

E(1670) -8.102 10.295 1.052 9.718 0.019 0.254 0.010 -0.433

r(1940) 0.665 0.650 -0.022 -0.094 0.111 0.190 -0.002 -0.414

E(1915) + 0.002 0.008 -0.004 -0.003 -0.011 -0.027 0.000 -0.004

E(1775) 0.003 0.012 0.002 0.007 -0.006 0.018 -0.002 -0.004

9pKA
-3.410 -0.901 -4.503 -3.589

x 1.436 x = 1.262 = 1.450 x = 1.861

Table 5.1: Low energy fit results: Unpolarized differential cross section fit.
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Figure 5.2: Differential cross section for the reaction -Y+p -+ K ++A at four different CM .
The solid curves were obtained with fit A, the dotted curves with fit B, the dashed curves

with fit C, and the dot-dashed curves with fit D.

The poorer quality of fit D can be seen in the behavior of the fits at energies near

threshold. While fits A, B and C appear to follow the shape of the data with the same

degree of quality, fit D fails to do so near threshold, and it fails to describe the data at back-

ward angles at all other energies. Fig. (5.2), which shows the behavior of the differential

cross section as a function of energy, reinforces the fact that fit D fails to describe the data

well at energies near threshold; in particular at 143 , fit D overestimates the differential

cross section at all energies up to 1.9 GeV. A closer look at Table (5.1) reveals the simi-

larities between the nucleon coupling products in fits A, B and C. This is to be expected,

since the s-channel dominates the reaction amplitude; the u and t-channels provide smaller

background contributions. While the s-channel parameters seem to converge to the same

value from different starting parameters, the u-channel coupling products vary from fit to

fit, thus depending on the different paths taken towards a x2 minima.
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Figure 5.3: Double polarization observable C, for the reaction y + p - K+ + A at CM

energies W= 1.787 GeV and 1.939 GeV. The solid curves were obtained with fit A, the
dotted curves with fit B, and the dashed curves with fit C.

Fig. (5.3) displays the double polarization observable C' as a function of the CM angle

for two different energies, while Fig. (5.4) displays Ce for the same two energies using the

three models that seem to give reasonable fits to the unpolarized differential cross section.

The models used to obtain the curves in Figs. (5.3) and (5.4), have not been fit to the

polarization data. The disagreement with the data indicate that cross section data alone

are not adequate enough to extract the coupling products which can entirely describe the

reaction.

The second part of the low energy fitting procedure involves a fit to both cross section

and polarization data using the same number of coupling product parameters as in the

fit described above and using the values in Table (5.1) as starting parameters. These

parameters are used as starting parameters since, with the exception of fit D, they yield

good fits to the cross section. Furthermore, there is no reason to believe that adding

polarization data to the fit should cause a drastic change in the coupling products. The

parameters obtained from this fit are given in table (5.2). Fits B and C have comparable
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A B C D

FN-

N(1440) + -2316 -0.873 -1,123 -7618

N(1710) 0.091 0.141 0.100 0.293
N(1535) 0.336 0.038 -0.010 -0.440

N(1650) -0.072 -0.121 -0.083 -0.007
G, G2,GN* GN

N(1720)f+ -0.067 -0.102 0.071 0.266 0.053 0.254 0.027 0.400

N(1520)2 -1.320 -0.916 0.288 -0.036 1.277 1.360 -0,814 0.100

N(1700)2 0.817 0.873 -0.130 -0.025 -0.396 -0.328 0.794 0.893

N(1680) + 0.092 0.092 -0.041 -0.065 -0.076 -0.098 0.110 0.123
N(1675) -0.012 -0.016 0.006 -0.010 0.009 0.004 -0.011 0.007

FA*

A(1600)}+ -8.704 -4.405 -14.211 -4.707
A(1810) + 2.202 1.138 -5.277 -0.773

A(1405)}~ -0.769 -0.481 3.577 -2.058

A(1670) 1.093 -3.359 -5.792 -0.887
GI G

A(1890) + 1.930 -8.039 2.862 -11.054 1.401 -3.262 0.100 -0.222

A(1520). 0.354 0.510 -0.602 0.790 -0.115 0.214 0.017 -0.594

A(1690) 9.082 -7.250 -0.562 -7.175 -0.028 0.535 -0.098 -0.572

A(1820) -0.007 0.001 -0.015 -0.054 -0.016 -0.022 0.007 0.000

A(2110) + 0.045 0.062 -0.016 0.031 -0.020 -0.039 -0.014 -0.029

A(1830) 0.011 -0.005 -0.016 0.032 -0.019 0.064 -0.003 0.007

FE*

6(1660) 6.138 -9.198 3.643 4.338

E(1750)?- 3.797 11.254 6.170 -0.286
G G

1,(1385) -0.171 6.101 -1.225 6.002 -0.695 2.178 0.046 1.105

E(1670)3 -8.300 9.774 0.925 10.049 -0.043 0.537 -0.085 -0.574

E(1940) 0.281 0.012 0.163 -0.522 0.094 0.547 -0.231 -0.535

E,(1915) 0.011 0.023 -0.015 -0.025 -0.017 -0.031 0.000 -0.011

E(1775) 0.014 0.000 -0.002 0.016 -0.007 0.005 -0.003 -0.013

gpKA
1.994 2.460 -1,380 -0.558
~ 2.192 = 1.447 = 1.500 - 2.059

Table 5.2: Low energy fit results: Unpolarized differential cross section and double polar-

ization asymmetries C. and C, fit.
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Figure 5.4: Double polarization observable C, for the reaction 7 + p -+ K+ + A at CM
energies W= 1.787 GeV and 1.939 GeV. The solid curves were obtained with fit A, the
dotted curves with fit B, and the dashed curves with fit C.

XV as can be seen by comparing the two fits in Fig. (5.5) at energies near threshold. It

is clear from Figs. (5.5) and (5.6) that fit C yields a better description of the data than

fit B. In particular, the energy distribution in Fig. (5.6) at 90 clearly shows that the

parameters in fit B overestimate the data, while fit C seems to agree well at both forward

and backward angles. The situation is different at more forward angles, such as 530, where

fits A, C, and D have comparable quality. It appears that the coupling parameters are

more sensitive to cross sectional data at angles greater than 900. Fits A and D do not yield

good representations of the data at low energies and back angles, as is evident from their

higher X..

Carefully comparing the parameters in Tables (5.1) and (5.2) for fit C, reveals a well

ordered change in the parameters after polarization data is incorporated into the fit. Of

particular interest is the fact that after inclusion of polarization data, all s-channel spin 2

resonance parameters decreased in magnitude, with the exception of the N*(1535), while

the u-channel spin 2 coupling products increased, with the exception of both spin 2 z
resonances, E*(1660) and E*(1750). Fits A, B, and D did not exhibit this behavior. In
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addition, it is worth noting that the behavior of the fitting parameters for resonances with

angular momentum greater than 3 showed no significant change in magnitude when polar-

ization data were included for all four sets. This might be be due to the fact that these

parameters are not very sensitive to the observables included in the fitting procedure. The

fluctuations appeared to be random, but rather small. The following section addresses this

issue, where cross-section and polarization data for energies up to 2.6 GeV will be included

in the fits.

S=1.628GeV 0.25 w=1.53 GeV
0.15 --

0.2

0.1 0.15 -

0.0.1

0.05

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

0.35 W 858 GeV W=1.993 GeV

0.3503 0.3
0.3

0.25 0.2

0.2

0.15

0.1 - 0

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
cos(O) cos(O)

Figure 5.5: Differential cross section for the reaction ry +p - K+ + A at four different total
CM energies. The solid curves were obtained with fit A, the dotted curves with fit B, the

dashed curves with fit C, and the dot-dashed curves with fit D.

It thus appears that polarization data have laid down certain constraints on the behavior

of the coupling parameters and discriminate between different fits. This is shown by the

angular distributions of the double polarization C, and C, depicted in Figs. (5.7) and (5.8)

respectively for energies 1.787 GeV and 1.939 GeV. Again, fits B, and C fit C. and Cz

well at forward angles, in particular near threshold at 1.787 GeV and even better near 2

GeV. At back angles, fit C seems to be preferred over fit B, especially at W = 1.939 GeV,

where fit B underestimates C, for all back angles. Another interesting observation is that
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Figure 5.6: Differential cross section for the reaction -y +p -+ K+ + A at four different total
CM energies. The solid curves were obtained with fit A, the dotted curves with fit B, the

dashed curves with fit C, and the dot-dashed curves with fit D.

at energies near 2.0 GeV, all fits seem to do well. It is at low energies that the fits become

distinguishable with one fit preferred over the other, as shown by the shape of the curves in

Figs. (5.5) and (5.6) for the cross section, and Figs. (5.7) and (5.8) for the asymmetries. It

seems that at energies near 2 GeV, there exist many different combinations of parameters

that could lead to a low X.. In particular, It may well be that the addition of high energy

resonances may improve some of the low energy fits more than others. The similarities

between the four sets of fits in the 2 GeV region are also evident from Figs. (5.9) and

(5.10), which depict both C. and Cz as a function of the CM energy for backward and

forward angles.

At first glance, one would be inclined to disregard any parameter sets for which the

Born coupling parameter gpKA is positive at the xu minimum. The value has not yet been

definately determined, but as discussed in Section (4.4), various studies seem to agree on its

sign. Since fit B seemed to be of comparable quality to fit C, a second fitting procedure was

conducted for fit B, as well as for fit A. In particular, a physical constraint was included

in the fitting procedure.
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Figure 5.7: Double polarizations observables C. for the reaction ry + p -+ K+ + A at two

different CM energies. The solid curves were obtained with fit A, the dotted curves with

fit B, the dashed curves with fit C, and the dot-dashed curves with fit D.
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Figure 5.8: Double polarization observable C, for the reaction -Y + p -+ K -+A at two

different CM energies. The solid curves were obtained with fit A, the dotted curves with

fit B, the dashed curves with fit C, and the dot-dashed curves with fit D.
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Figure 5.9: Double polarization observable C, for the reaction 'Y -}- p --- K+ +} A for four

CM scattering angles, )CM. The solid curves were obtained with fit A, the dotted curves

with fit B, the dashed curves with fit C, and the dot-dashed curves with fit D.
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Figure 5.10: Double polarization observable C, for the reaction "Y -+p --> K+ -}- A for four

CM scattering angles, ecM. The solid curves were obtained with fit A, the dotted curves

with fit B, the dashed curves with fit C, and the dot-dashed curves with fit D.
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The variation sampled different topological regions of the fitting function to search for

a new minima for which 9pKA is negative. The parameters given in Table (5.1) were used

as strating parameteres for these fits, since they correspond to minima different from those

obtained from the parameters in Table (5.2) for which gpKA are larger than zero. The

resulting fits did not yield a lower x2 than those for which the resulting value of 9pKA was

positive. In particular, constraining the value of the Born coupling in the fits yielded a

X2 of 12.05 for set A, and 2.889 for set B. Furthermore, the values of the Born couplings

resulting from these two fits were very close to zero. Clearly, reasonable values of x2 are

not comparable with the negative values of gpKA in these two fits.

Fit C appears to yield a set of parameters that better describe the experimental data, but

one needs to examine the uncertainties in the fit parameters, particularly in the u-channel,

before drawing any conclusions concerning the quality of the fit. In order to understand

the contributions of the u-channel resonances to the fit, a series of fits was conducted, using

as starting parameters the set C parameters in Table (5.1), in which different sets of u-

channel parameters were successively varied. The incorporation of u-channel resonances in

a controlled manner was used to study the effects of these resonances on the observables as

well as reveal any correlations between s and u-channel parameters. Table (5.3) lists the

values of the s-channel parameters and their uncertainties obtained for fixed values of the

u-channel parameters. Figure (5.11) depicts the unpolarized differential cross section as a

function of the CM scattering angle at four different energies, and Figs. (5.12) and (5.13)

depict C, and C, at four scattering CM angles. The dashed lines indicate the uncertainty

of the fit which is associated with the uncertainties in the parameters. The uncertainty in

the fit can be expressed by

2 Y(1, X2)9Y(XI, X2) )0 2  (5.1)

where y indicates the observable at energy x, and scattering angle X2 respectively, and o

represents the variance for i = j and covariance for i : j in the fit parameters.
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FN*

N(1440) + -2.267 0.036
N(1710) + 0.153 0.016
N(1535) a 0.053 0.045
N(1650)y -0.145 0.012

G, G
N(1720) 0.078 0.007 0.164 0.023
N(1520) 2 0.872 0.192 1.550 0.239
N(1700) 2 -0.088 0.039 -0.188 0.061
N(1680) + -0.034 0.004 -0.072 0.005
N(1675) 0.004 0.001 0.000 0.001

G* Gx.
K*(892) -1.609 0.075 3.044 0.202

K'(1270) -1.562 0.157 7.034 0.321

gpKA

-3.803
2.091

Table 5.3: Low energy fit results: s and t-channel parameters with u-channel parameters

fixed starting with set C in Table (5.1).

SW=1.628 GeV 0.25 m W=1.753 GeV
,0.15-

0.2

0.1 0.15

0.050
0.05 --

1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
0.4 0.4
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0.3

Q0.25 0.2
02

1 0.100.15 1

0.1 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

cos(8) cos(G)

Figure 5.11: Unpolarized differential cross section for the reaction 'y + p -+ K++ A at four

CM energies. The solid curves were obtained using the parameters in Table (5.3). The

dotted curves represent the uncertainty in the fit.

94



0.6 0.6
0.4 0.4
0.2 0.2

0I I
U -0.2 -0.2

-0.4 -0.4
-0.6 -0.6

-0.8 0 0-138.59 -0.8 0=110.49

1 18 19 2 -1.6 1.7 1.8 19 2

0.8 0. I8
0.6 0.6
0.4 0.4
0.2 0.2
S0- 0-2

U -02 -02
-0.4 -0.4 -

-0.6 -0.60=87.I30=31.79
-0.8 87.3 -0.83

1.6 1.7 1.8 1.9 2 1.6 1.7 1.8 1.9 2
W (GeV) W (GeV)

Figure 5.12: Aymmetry C for the reaction -y + p -- K+ + A at four scattering angles,

E)CM. The solid curves were obtained using the parameters in Table (5.3). The dotted

curves represent the uncertainty in the fit.
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Figure 5.13: Aymmetry C for the reaction y + p -> K+ + A at four scattering angles,

ECM. The solid curves were obtained were obtained using the parameters in Table (5.3).

The dotted curves represent the uncertainty in the fit.
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Figures (5.5) and (5.11) were obtained from fits performed using the same set of starting

parameters, those given in Table (5.1). As seen in Fig. (5.11), fixing the u-channel param-

eters yielded a cross section of comparable quality to the fit obtained with all u-cahnnel

parameters varied, although the xu obtained is somewhat larger. Furthermore, the uncer-

tainties associated with the fit when only s-channel parameters are varied were relatively

small; that is, the fit seemed to be well determined by the data. The polarization observ-

ables did not seem to be affected when the u-channel parameters were fixed. In particular,

this can be seen by comparing Figs. (5.9) and (5.12). It is evident that fixing the values

of the u-channel parameters affects the fits for C. at back angles, but the uncertainty band

appears to extend just enough to yield a good quality fit at energies above 1.7 GeV, with

the exception of the energy distribution at 8 CM = 138.59.

Using Table (5.3) as starting parameters for the s-channel, a fit was performed in which

the J = 2 i-channel parameters were allowed to vary. The resulting s-channel coupling

strengths with their uncertainties are given in Table (5.4). Direct comparison of Tables

N(1440) + -2500 0.601

N(1710)>+ 0.164 0.019
N(1535) 0.092 0,055

N(1650) _ -0.157 0.012
G G

N(1720)+ 0.066 0.010 0.170 0.024
N(1520)! 1.003 0.253 1.832 0.306

N(1700) -0.169 0.055 -0.363 0.077

N(1680) + 0.044 0.008 -0.081 0.012

N(1675) _ 0.003 0.002 -0.001 0.003
GK GK.

K*(892) -1.530 0.361 3224 0.510
K1(1270) -1.086 0.904 7.267 0.900

9vKA

-3.450 0.372
- = 2.010

Table 5.4: Low energy fit results: s and t-channel parameters from fits that include varia-

tions of J = u-channel parameters

(5.3) and (5.4) reveals small fluctuations in the s-channel parameters. In addition, the

Born coupling strength decreases with the inclusion of the J = u n-channel resonances. At
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this point, an interesting remark must be made. The variation of spin 2 u-channel reso-

nance parameters does in fact decrease the X2 of the fit, but the uncertainties associated

with these resonances are extremely high. These parameters are given in Table (5.5). Large

uncertainties clearly show that the parameters are not unique and that they mainly depend

on the starting parameters that define the path towards a x2 minimization. Figure (5.14)

FA
A(1600)1 -12381 682.63

A(1810)1+ -2.933 371.05
A(1405) 7  1.795 23.86
A(1670)y -5.533 183.08

FE

Z(1660) 5.602 -

E(1750) 6.967 164.36

Table 5.5: J = u-channel parameters and uncertainties

W=1.628 GeV 0.25 W=1.753 GeV

0.20.15 -
® 0.1 0.15-

0.1 ,- ,-

0.05

-1 -0.5 0 05 1 -1 -0.5 0 0.5 1

0.4 0.4
035 W=1 858 GeV W=1.993 GeV

0.50.
03

-0.25 0.2

00.1 0.151

0.1 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

cos(e) cos(e)

Figure 5.14: Unpolarized differential cross section for the reaction pY + p -+ K+ + A at four

CM energies. The solid curves were obtained using the paramteters in Tables (5.4) and

(5.5). The dotted curves represent the uncertainty on the fit due to uncertainties in the

parameters.

depicts the differential cross section obtained from the parameters in Tables (5.4) and (5.5).

There is no clear difference in the qualities of the fits as compared with those in Fig. (5.11),

again indicating that the differential cross section seems not to be affected by variation of
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the spin 1 u-channel contributions. Figures (5.15) and (5.16) depict the C and Cz polariza-

tion observables obtained from the parameters in Tables (5.4) and (5.5). Varying the spin i
u-channel resonances yields a better fit to both asymmetries at back angles. It is interesting

to note that the high uncertainties in the spin 2 u-channel parameters does not give rise

to large uncertainties in the fit. This is due to the high degree of correlation between the

parameters in the fit. The large uncertainties in the u-channel parameters indicate that the

model is not highly sensitive to spin 1 u-channel resonances, and thus, it is unlikely that

the corresponding couplings can be significantly constrained by the photoproduction data.

08 0.8 - -
0.6 - 0.6
0.4 0.4-
0.2 0.2

v 0 - 0
tj -0.2 -0.2

-0.40.
C?=13$.59 110.49

0.8 -I0.8 I A 1,8 1.9 2 1.6 1.7 1.8 1.9 2

0.8 0,8 -
0.6 0.6
0.4 0.4
0.2 02

uj-0,2 -0.2 .I

-0.4 -0.4

-0.86-71 -0.8 0=031.79

1.6 1.7 1.8 1.9 2 1.6 1.7 1.8 1,9 2
W (GeV) W (GeV)

Figure 5.15: Aymmetry C, for the reaction -y-p -+ K ++A at four scattering angles, ecmI
The solid curves were obtained using the parameters in Tables (5.4) and (5.5). The dotted

curves represent the uncertainty in the fit.

Parameters associated with u-channel spin 1 and resonances were also varied in the

fitting procedure. These parameters behaved in the same manner as those associated with

the spin 2 u-channel resonances, that is, the parameters obtained had large uncertainties.

This indicates that the model is also not very sensitive to J =2 and J = u-channel

parameters. The higher angular momentum u-channel parameters appear also to be highly
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Figure 5.16: Aymmetry C, for the reaction -Y+p -+ K+ A at four scattering angles, OcM.
The solid curves were obtained using the parameters in Tables (5.4) and (5.5). The dotted

curves represent the uncertainty on the fit due to uncertainties in the parameters.

correlated with all other parameters, which resulted in extremely low uncertainties in the

fits. In particular, varying the parameters associated with spin 1 and 2 u-channel resonances

did not cause large effects on the s and t-channel parameters, but played a major role in

significanly increasing the uncertainties associated with the s and t-channel parameters,

given in Table (5.6). Furthermore, the value of the born coupling obtained by varying all

u-channel parameters was smaller in magnitude when compared to the born couplings in

Tables (5.3) and (5.4).

In light of the large uncertainties associated with the u-channel parameters, we were

motivated to eliminate those resonances with very large uncertainties and refit the cross

section and polarization observables without significantly increasing the X2. The particular

u-channel resonances eliminated in this fitting procedure, which yielded the lowest X2, are

listed in Table (5.7).
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Figure 5.17: Unpolarized differential cross section for the reaction 7 { p - K+ + A at four

CM energies. The solid curves were obtained using the s-channel parameters in Table (5.6).

The dotted curves represent the uncertainty in the fit.

SFN'

N(1440) -2.400 0.742

N(1710) 1 0.171 0.026

N(1535)2 0.080 0.076

N(1650)-' -0.136 0.023

G G *

N(1720) 0.056 0.013 0.169 0.05

N(1520) z - 1.296 0.331 1.787 0.423

N(1700) a - -0.288 0.119 -0.369 0.136

N(1680) 2+ -0.053 0.013 -0.100 0.016

N(1675)~ 0.0036 0.003 0.000 0.005

®®K*(892) -1.236 1.535 2.408 1.408
K'(1270) -0.287 5.25 6 6.824 7.076

9pKA
-2.664 1.562

X=1.870

Table 5.6: Low energy fit results: s and t-channel parameters from fits that include varia-

tions of J = 2 and J = 2 u-channel parameters
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u-channel

Mass (MeV) Isospin 1 JP

A*(1600) 0 2+

A*(1810) 0 }+
A*(1520) 0 2

A*(1690) 0 2

E* (1660) 1 +
E*(1750) 1
E*(1670) 1

E (1940) 1

Table 5.7: u-channel resonances eliminated in the new low energy fit

The X. of this fit was 2.004 as compared to 1.500 given by the fit in Table (5.2) in-

corporating all u-channel parameters. The angular distribution shown in Fig. (5.18) is of

comparable quality to that shown in Fig. (5.5). Furthermore, the CM energy distributions

shown in Fig. (5.20) exhibit the same behavior of the cross section at energies near 1.9 GeV

and OCM = 114 as in Fig. (5.6). The polarization data seem to be well described within

the uncertainties except again at forward angles where the fit falls short in the neighborhood

of 1.9 GeV, as shown in Fig. (5.19).
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o W=628 GeV 0.25 W1.753 GeV
0.150.2
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a 0.1 0.15

II 0.1-
0.05- I.T005

0-1 -0.5 0 0.5 1 -1 -0.5 0 05

0.4 -1 -0.4

0.5 W=188GeV W=.993 GeV
0.3

0.3

0.25 0.2
0

0.2
0.1

0.15

0.1 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

cos(e) cos(O)

Figure 5.18: Unpolarized differential cross section for the reaction y p - K+-I- A at four

CM energies. The solid curves were obtained using the parameters listed in Tables (5.8)

and (5.9). The dotted curves represent the uncertainty in the fit.
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Figure 5.19: CM energy distrbution for the observable Cz. The solid curves were obtained

using the parameters listed in Tables (5.8) and (5.9). The dotted curves represent the

uncertainty in the fit.

The s and t-channel parameters are listed in Table (5.8) and the remaining u-channel pa-

rameters in Table (5.9). Reducing the number of u-channel parameters did not significantly

affect the quality of the fits, despite the larger X2, but the uncertainties associated with

the remaining u-channel coupling strengths are considerably smaller than those obtained

in Table (5.5). The s and t-channel parameters were not significantly affected by reducing

the number of u-channel resonances incorporated in the fit; in particular, values for the

J = z parameters were always shifted by amounts within their uncertainties as obtained in

fits that incorporated all the u-channel parameters, such as those given in Tables (5.2) and

(5.6).

This careful analysis of the set C parameters enabled us to determine the degree of

sensitivity that the model has to s and t-channel parameters. The study also revealed the

effect that u-channel parameters have on both the s and t-channel coupling strengths. It

was noted that variation of the parameters associated with the u-channel resonances did not

cause significant variations in the s and t-channel coupling strengths, but their inclusion did
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Figure 5.20: Unpolarized differential cross section for the reaction 'Y + p -+ K+ + A at four
CM scattering angles OCM. The solid curves were obtained using the parameters listed in

Tables (5.8) and (5.9). The dotted curves represent the uncertainty in the fit.

FN*

N(1440) + -3.100 0.552

N(1710) + 0.079 0.029
N(1535) -0.340 0.110

N(1650) 1 -0.028 0.025
_ _GI G

N(1720) 0.031 0.017 0.170 0.037

N(1520) -1.521 0.203 -0.795 0.428

N(1700) 0.768 0.102 0.855 0.143

N(1680) 2 0.086 0.010 0.071 0.012

N(1675) 5 - -0.010 0.002 -0.022 0.006
GG, GT

K*(892) 0.450 0.978 -2.396 2.101
K1 (1270) -0.527 1.535 3.823 7.286

9pKA
-0.667 1.437

= 2.004

Table 5.8: s and t-channel parameters obtained from a fit which excluded parameters

associated with the u-channel resonances in Table (5.7).
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FA*

A(1405) 1.787 25.356

A(1670) -6.880 32.879
SG~~G G,

A(1890) + -0.048 3.345 -1.175 26.610
A(1820) + 0.016 2.276 -0.022 8.855
A(2110) + -0.011 1.852 0.035 6.340

A(1830)57 0.003 0.643 -0.014 3.671
SG, G *

(1385) + -0.093 2.262 2.166 17.562

E(1915) + 0.0052 4.036 0.001 15.009
r(1775)57 -0.000 0.608 -0.012 3.516

Table 5.9: u-channel parameters obtained from a fit which excluded parameters associated
with the u-channel resonances in Table (5.7).

increase the magnitude of the s and t-channel parameter uncertainties. It was also noted

that even though spin 2 u-channel parameters are not unique within this isobar approach,

due to large uncertainties in their values, they are highly correlated to the other parameters

in the model. This behavior was also evident for higher angular momentum u-channel

states. Lastly, it should be noted that s-channel spin 2 resonances appear to couple very

weakly to the KA channel at the energies considered here. This result is obvious in all

four fits A, B, C, and D. It is possible that fits to higher energy data may require stronger

coupling to the KA channel for these resonances, and thus they should be included in higher

energy fits.

5.2 High Energy Fits

The behavior of the model at high energies was studied using the low energy parameters

obtained from the best fit to the low energy data and four less well-established resonances,

which appear with a two star status in the Particle Data Tables [18]. As discussed in the

introduction, two spin 2 resonances are included in these fits, which are shown to play an

important role in the description of the data in the 1.9 GeV energy region. The negative

parity D13 (2080) has been discussed in connection with the missing resonance problem by

Benhold and Mart [20, 21] and seems to play an important role in the analysis perfomed

by Sarantsev [19]. The positive parity P13 (1900) has been predicted by relativistic quark
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models {22]. It is not yet clear which structure has a dominant contribution in this energy

region. In addition, two spin resonances are included, a positve parity state at 2000 MeV

and a negative parity state at 2200 MeV, also predicted by relativistic quark models [22].

Figure (5.21) depicts the unpolarized differential cross section as a function of the CM

energy at CM = 90 using only the low energy parameters given in Tables (5.8) and (5.9).

It is evident from Fig. (5.21) that parameters obtained from fits to low energies cannot ac-

curately describe the behavior of the reaction at energies beyond 2 GeV. In particular, the

model underestimates the cross section at energies around 1.9 GeV, and diverges beyond

2.1 GeV. The divergent behavior is clearly an effect due to the absence of high energy data

in the fits used to obatain the parameters listed in Tables (5.8) and (5.9), as well as the

absence of higher mass resonances.

0.2

0.18 I

0.16 I

0.14 ,
0.12 ,

0 02

0 1.8 2 2.2 2.4
W (GeV)

Figure 5.21: Unpolarized differential cross section for the reaction 'y + p -K+ + A at
eCM = 90". The dashed curves were obtained using the parameters listed in Tables (5.8)
and (5.9)
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An attempt to fit the cross section using as starting parameters the values listed in Tables

(5.8) and (5.9) was also carried out. The parameters obtained from this fit are listed in

Tables (5.10) and (5.11). The coupling products of the resonances with masses above 1.6

GeV increased in magnitude when compared to the values listed in Table (5.8), while those

associated with the N*(1405) and N*(1535) decreased. It appears that the inlcusion of

higher energy into the fitting procedure affects resonances with heavier masses, since they

lie closer to the energy range in consideration. In particular, incorporating higher energy

data into the fitting procedure did not significantly affect the strength of the s-channel

resonances introduced in the previous section, where most of the time the parameters lsited

in Table (5.11) lied within the uncertainties associated with the resonance couplings listed

in Table (5.8). This result and the higher value of the x2 associated with this fit, suggests

that higher energy resonances are to be incorporated into the model for a better description

of the experimental data. In addition, the coupling products associated with the u-channel

resonances listed in Table (5.12) did not significantly changed in magnitude whereas pa-

rameter fluctuations appear to follow no distinctive trend. However, these fluctuations were

well within the uncertainties associated with the values listed in Table (5.9).

FN*

N(1440)+ -2.595
N(1710) + -0.170
N(1535) -0.139
N(1650)1~ -0.040

G1. G *

N(1720) + 0.026 -0.366

N(1520)z -1.285 -1.804

N(1700) 0.590 0.866

N(1680) 2 + 0.032 0.042
N(1675) -0.005 0.005

G * GT
K*(892) 0.617 2.122

K (1270) 0.389 -2.774

gKA
-0.885

X= 3035

Table 5.10: s-channel parameters obtained from fit to all data, excluding high energy reso-
nances.
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FA-

A1(1405) 2.373

A(1670) 1 -6.328

A(1890) -0.323 -1.948

A(1820) i 0.013 -0.027

A(2110) + -0.013 0.038
A(1830) 0 000 -0.002

G G

E(1385) -0.033 1.575
E(1915) + 0.002 -0.001
E(1775) -0.003 0.000

Table 5.11: u-channel parameters obtained from fit to all data, excluding high energy

resonances.

Figure (5.22) depicts the total CM energy distribution at three different Ocm. It is

clear from all three energy distributions that the fit does not do well in the 1.9 energy

region. In particular, at back angles the fits understimates this region, while it is consistent

with the data at all other energy regions. At forward angles, the situation is somewhat

different, since it is at energies below 1.9 where the fit understimates the data, while it is

overstimated above 1.9 GeV. The starting parameters used for this fit are listed in Tables

(5.8) and (5.9). The random behavior of the s-channel parameters in this fit can then

be attributed to the abscence of a resonance with mass near the 1.9 GeV energy region.

The fitting procedure is trying to compensate the lack of this state, by varying the other

parameters in order to obtain a low XU, underestimating the structure of the observable

in this energy region. An attempt to include polarization data in the fitting procedure

described above significantly raised the value of the Xu. Plots obtained could not be in

any way comparable to experimental data. With this is mind, it becomes evident that

excluding higher energy resonances in the model lead to fits that are highly inconsistent

with experimental data, when energies above 2.0 GeV are incorporated.

The first set of fits incorporated all the s, u, and t-channel resonances introduced in

the previous section and the four less well-established resonances earlier in this section.

The u-channel resonances eliminated in the last low energy fits, given in Table (5.7), were

included in this high energy fit to study their contributions at higher energies as well as
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Figure 5.22: Unpolarized differential cross section for the reaction 'y + p -+ K+ + A at
three scattering angles, eCM. The dashed lines were obtained using the parameters listed
in Table (5.10) and (5.11).

the uncertainties associated with them. The parameters associated with s and t channel

resonances and their uncertainties are given in Table (5.12). The parameters associated

with u-channel resonances are given in Table (5.13), where only negative parity spin j,

positive parity spin , and both positive and negative parity spin i resonances are shown.

The uncertainties associated with the remaining u-channel resonances were in some cases a

factor of three larger than the uncertainties associated with the parameters given in Table

(5.13).

Comparing the low energy fit parameters given in Table (5.6) with the fit described above

clearly reveals how well the s and t-channel parameters are fixed in both fitting procedures.

Values for the parameters corresponding to states with total angular momentum J = and

the born term remained fairly consistent in both low and high energy fits. Both coupling

products increased for the positive parity J = state and decreased for negative parity

J 2= o ates, with the exception of the N*(1520) state, which obtained a negative coupling

in the high energy fit. Furthermore, the couplings of J 6 states to the KA channel are

far weaker than those obtained from lower energy fits.
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FN*

N(1440) 2 -3.317 0.329
N(1710)' + 0.058 0.024
N(1535) 0.088 0.091
N(1650) -0.159 0.029

G*G,

N(1720) 0.180 0.006 0.373 0.015
N(1520) -0.228 0.091 -0.290 0.206
N(1700) -0.039 0.063 -0.218 0.100
N(1680) + -0.004 0.002 -0.004 0.001
N(1675)5 -0.003 0.001 -0.013 0.002

Higher Energy Resonances
G GN * 'N* (MeV)

N(1900) + -0.013 0.002 0.080 0.008 152.7 8.0

N(2080) -0.022 0.021 0.020 0,031 493.5 142.1

N(2000) + 0.000 0.0004 -0.000 0.0003 59.7 14.4

N(2200) s 0.001 0.0001 0.002 0.0004 415.2 51.0
G* GK

K*(892) -1.052 0.233 3.217 0.334
K'(1270) -3.947 0.641 5.931 1.805

gpKA
-2.458 0.542

2.865

Table 5.12: Preliminary high energy fit: s and t-channel paramters.

FA

A(1405)2 -4.147 19.84
A(1670)? -2.799 160.030

GX GL

A(1890) 1.638 i 1.147 0.767 4.926
A(1820) + -0.002 0.463 -0.003 1512
A(2110) + 0.002 0.377 0.021 1.037

A(1830) 5 - 0.023 0.084 -0.001 4.926

FE

E(1750) 9.302 146.444
G1 G2

E(1385) 2 -0.791 0.605 1.571 1.960

3(1915) + 0.005 0.827 -0.021 2.520

E(1775) -0.019 0.079 0.023 0.305

Table 5.13: Preliminary high energy fit: Selected u-channel parameters
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In addition, the t-channel resonance parameters corresponding to the K'(1270) and K*(892)

states obtained in the high energy fits have values well within the uncertainties associated

with the t-channel parameters given in Table (5.6). A remarkable result exhibited in this

preliminary fit concerns the behavior of the model at energies beyond 1.9 GeV, which

appears to be completely dominated by the positve parity N*(1900) resonance and the

negative parity N*(2080) state. The two additional spin 2 resonances included in the high

energy fit couple weakly to the KA channel as can be seen by their coupling strengths in

Table (5.12). The total decay widths obtained in the fit for the N*(1900) and N*(2080)

states were 152.7 7.95 MeV and 493.5 1421 MeV respectively. The u-channel parameters

in the high energy fit exhibited the same behavior observed in the low energy regime when

all u-channel parameters were allowed to vary. The uncertainties associated with these

coupling strengths are unacceptably large, which suggests that the many different sets of

u-channel parameters would generate fits to the experimental data with similar x2 values.

04 A 0. I4

o W=1993 GeV W=2.332 GeV

0.3 0.3

I I

110

l I

0.2 Ti0.2 II

l I
I I

u 0.1

- -1 0J 0 0.5 1 -0.5 0 0.5 1
cos(t) cos(E))

Figure 5.23: Unpolarized differential cross section for the reaction ") +I p -~ K+ + A at two
CM energies. The dashed curves were obtained by varying all u-channel resonances and.

incorporaing four higher energy resonances.
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Figure 5.24: Unpolarized differential cross section for the reaction -Y + p -+ K+ + A at
two scattering angles OCM. The dashed curves were obtained by varying all u-channel
resonances parameters, and incorporaing four higher energy resonances.

Figures (5.23) and (5.24) depict the unpolarized differential cross section as as function

of the CM scattering angle and the total CM energy, respectively. The uncertainties

associated with these fits are not depicted in the figures, since they tend to be very large

at back angles, and are essentially zero at forward angles. Furthermore, the uncertainties

associated with the energy distribution at OcM = 53.130 are very small at all energies, but

are large throughout the whole energy range at Ocm = 1260. The model seems to describe

the data well with a few exceptions. At 2.332 GeV, the fit does fall short of experimental

data at angles between zero and 60 degrees, and at 1260, the model overestimates the data

between 1.7 and 1.8 GeV. This behavior is also evident in the low energy fits, as seen in

Figure (5.6) at 114 . The asymmetry Cz is depicted in Figure (5.25) at OcM = 100.490 and

OcM = 31.790. The fit to the energy distribution at eCM = 31.790 does very well for all

energies. At OcM = 110.490 the fit fails to properly describe the energy region above 1.9

GeV. The uncertainty band associated with this fit was not included in the figure, mainly

because it is so large at energies above 1.9 GeV.
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Figure 5.25: Asymmetry C, as a function of the total CM energy at two CM scattering an-
gles 8 CM. The dashed curves were obtained by varying all u-channel resonance parameters
and incorporating four high energy resonances.

The large values and uncertainties associated with certain u-channel parameters moti-

vated a similar fitting procedure to the one performed in the low-energy regime. A series of

fits was conducted to effectively eliminate the u-channel parameters with large uncertainties

without significantly increasing the X2. The lowest x2 value was obtained by eliminating

from the high energy fits the resonances listed in Table (5.14), which unlike Table (5.7),

does not include the negative parity E 0 (1750) state. The s and t-channel parameters of

the resulting fit, which includes the four less well-established higher energy resonances are

given in Table (5.15) together with their uncertainties. The u-channel parameters obtained

in this fit are given in Table (5.16). Comparing Tables (5.12) and (5.15) again reveals the

stability of the s-channel parameters in fits which exclude the u-channel resonances given

in Table (5.14). In fact all parameters for J = 2 resonances showed a slight increase in

magnitude and no change in sign. The states with total angular momentum J =2 slightly

decreased in magnitude with the exception of the negative parity N*(1700) state. Elim-

inating u-channel parameters from the fit did not affect the magnitudes of the s-channel

J = states, which seem to always couple weakly to the KA channel at these energies. The

u-channel parameters included in this fit had uncertainties significantly smaller than those
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u-channel
Mass (MeV) Isospin 1 JP

A*(1600) 0 2+

A*(1810) 0 2

A*(1520) 0 2

A*(1690) 0
E*(1660) 1 +

E*(1670) 1 2 -

E*(1940) 1 2-

Table 5.14: u-channel resonances eliminated in the new high energy fit

FN*

N(1440) + -2,805 0.333

N(1710) + 0.126 0.022

N(1535) 1 0.304 0.037

N(1650) - -0.254 0.011
_ _ G G2

N(1720) 0.147 0.005 0.316 0.014

N(1520) - -0.257 0.087 0.063 0.133

N(1700) 0.120 0.066 -0.028 0.073

N(1680) + 0.000 0.002 -0.017 0.002

N(1675) 5 - -0.003 0.0003 -0.014 0.001
Higher Energy Resonances

G1 G IN* (MeV)

N(1900) + 0 024 0.002 -0.035 0.005 191.7 8.8

N(2080) a - 0.011 0.003 0.001 0.003 94.4 44.6

N(2000) + 0.003 0.0005 0.001 0.0004 105.6 13.2

N(2200) 0.0001 0.00003 0.001 0.0001 184.0 33.9

*. G*
K* (892) -1.934 0.065 0.963 0.087

K1
(1270) 0.639 0.230 4.059 0.843

gpKA
-0.245 0.338

2 2907

Table 5.15: s and t-channel high energy fit parameters.
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FA-

A(1405) -4.359 7.431
A(1670)? - -0.939 46.778

____ G~ G,
A(1890) + 1771 0.264 2.299 1.951

A(1820) + 0.010 0.045 0.014 0.400

A(2110) 2+ 0.031 0.034 0.012 0.282

A(1830) - 0.040 0,023 0.151 0.165
FE

E(1750) 1  9.21 40.419
_____ G, G

E(1385) + -0.675 0.164 -2.471 1.213
E(1915) + -0.036 0.077 -0.021 0.674
E(1775) _ -0.031 0.022 -0154 0.158

Table 5.16: u-channel high energy fit parameters.

given in Table (5.13). Two resonances in the u-channel continue to exhibit large uncertain-

ties, the A*(1670) and the E*(1750). The latter state, unlike in lower energy fits, led to high

values of X2 if excluded from the fit. In addition, the born coupling was significantly smaller,

but this behavior was also present in the low energy analysis, where a smaller born coupling

parameter was obtained after fitting the data without the resonances listed in Table (5.7).

Removing u-channel resonances from the fit did not greatly affect the magnitudes of the

parameters associated with the two spin 2 high energy resonances, but in most cases inverts

the signs of the coupling products. The decay width of the N*(1900) slightly increases to

191.7 8.8 MeV and that for the N*(2080) decreases to 94.4 44.6 MeV when compared to the

previous high energy fit. Judging from the uncertainties in both the coupling products and

total decay widths, the model appears to be more sensitive to the positive parity N*(1900)

state. As with the other spin 2 s-channel states, the newly incorporated N* (2000) and

N* (2200) have negligible couplings to the reaction's final states at these energies. As in

the low energy fits, eliminating the u-channel resonances in Table (5.12) does not affect

the quality of the fits. This fitting procedure did lead to a decrease in the fit uncertainties

at back angles and yielded uncertainty bands almost completaly symmetric about the fit's

curve. Eliminating the resonances in Table (5.12) does not significantly affect the fit to the

angular distribution at W = 2.332 GeV as seen in fig. (5.26). As in Fig. (5.23), for which

all resonances are incorporated in the fit, the cross section is underestimated at forward
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Figure 5.26: Unpolarized differential cross section for the reaction Y + p - K+ + A at two

CM energies. The dashed curves were obtained using the parameters listed in Table (5.15)

and (5.16). The dotted curves represent the uncertainty in the fit.
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Figure 5.27: Unpolarized differential cross section for the reaction y + p --- K+ + A at two

scattering angles, ecm. The dashed curves using the parameters listed in Tables (5.15)

and (5.16). The dotted curves represent the uncertainty in the fit.
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angles. In both Figs. (5.26) and (5.27) it can be seen that the fits do not describe the data

very well at low energies for CM angles greater than 120'. This is also evident in the low

energy fits described in the previous section.

0.5

rJ=110.49

8 2 2.2 2.4

0

-0.5

-15

1.8 2 2.2 2.4
W (GeV)

Figure 5.28: Asymmetry C, as a function of the total CM energy at two scattering angles,
eCM. The solid curves were obtained using the parameters listed in Tables (5.15) and

(5.16). The dotted curves represent the uncertainty in the fit.

The asymmetries C, and C, are depicted in Figs. (5.28) and (5.29) as functions of the

total CM energy. For C, and Cz the model describes the data well for all CM energies at

forward angles, but fails to do so at angles greater than 900. In the low energy region, the

fit to C, does well near threshold, unlike C for which the model overestimates the data.

Figures (5.30) and (5.31) depict the angular distribution of C, and C; respectively. The

model yields better results for Ca. The data suggests that for most energies and angles that

the polarization transfer has no preferred direction. The results are quiet different for C ,

for which the data suggests that that transfer of polarization has a preferred direction. The

fit is poorest at high energies, since it is here that the data not lying around 900 suggest

values for Cz which are greater than one. Discrepancies with the data are thus unavoidable
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Figure 5.29: Asymmetry C, as a function of the total CM energy at two scattering angles,
CM. The solid curves were obtained using the parameters listed in Tables (5.15) and

(5.16). The dotted curves represent the uncertainty in the fit.
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Figure 5.30: Asymmetry C, as a function of OCM. The solid curves were obtained using

the parameters listed in Tables (5.15) and (5.16).
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Figure 5.31: Asymmetry Q as a function of ec. The solid curves were obtained using

the parameters listed in Tables (5.15) and (5.16).

in this region since the polarization transfer observables are defined to lie in the range

-1 <CZ < 1.

Using the parameters listed in Tables (5.15) and (5.16) as starting parameters, we studied

the behavior of the fits when each of the four less well-established spin z and 2 resonances

was removed. A fit was conducted for each individual resonance eliminated to study the

behavior of the Xu. We made use of the parameter:

2 2

fN* = XA1 A X A1-N* -100, (5.2)
X2 A0

introduced in the multipole analysis of the CLAS data in [45], which measures the relative

change in the xU when a N* resonance is removed from the fitting procedure. The resulting

fN* obtained from the fits are listed in Table (5.17). Judging from Table (5.17) we can

conclude that the fit is thus more sensitive to the positive parity spin 2 N*(1900) state and

the positive parity spin 2 N*(2000) state. In particular, including just these two states in

the fits yields values for the Born coupling 9pKA in close agreement to the value obtained

in the high energy fit, Table (5.15). Figure (5.32) depicts the total CM energy distribution
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J Mass (MeV) X* ,fN* 9pKA

1900 5.372 2907 85% -0.403

2080 2.965 2.907 2% -0.250
5+ 2000 4.564 2907 57% -0.068

2200 3.018 2.907 4% -0.237

Table 5.17: Relative X2 differences from fits excluding individual resonances.

at both backward and forward angles. The solid black curves were obtained by fitting the

observables without the N* (2080) and N* (2200) states. This fit has comparable quality

to that of the high energy fit depicted in Fig. (5.27). This result is consistent with Table

(5.17), since eliminating either resonance from the fitting procedure led to a relative Xu

deviation below five percent. The dashed curves were obtained by fitting the observables

without parameters associated with the spin 2 positive parity N*(1900) state. The fit is

clearly shifted to the left, and fails to describe the data well at around 1.9 GeV. The fitting

procedure attempted to compensate for the absence of this state by overestimating the cross

section at lower energies. Beyond 2 GeV, excluding the N*(1900) does not affect the quality

of the fit. The dotted dashed curves were obtained by fitting without the positive parity

spin 2 state. The absence of this resonance in the fit only affected the quality of the fit

at back angles well beyond 2.4 GeV. It is clear from all the fits that there seems to be a

structure around 2.3 Gev which was not accounted for in this study.

We also studied the sensitivity of the model to the absence of each of the kaon resonances.

The solid curves in Fig. (5.33) depict the cross section as a function of OcM using the param-

eters in Tables (5.15) and (5.16), setting the coupling products for the K*(892) resonance to

zero. The dashed curves depict the cross section, when the remaining parameters are refit

without the K* (892) resonance. The x2 obtained from this fit is extremely high, but more

interesting, yields a Born coupling very close to zero, gpKA = 0.0004. Clearly, the absence

of the K* (892) state forces the Born coupling to decrease in magnitude, overestimating the

cross section at both backward and forward angles. It appears that the inclusion of kaon

excited states is important in the model if one wants to reproduce the Born coupling in

closer agreement with previous theoretical studies, such as those mentioned in Section (4.4).
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Figure 5.32: Unpolarized differential cross section for the reaction y + p -+ K+ + A at two
scattering angles, OcM . The solid black represent a fit without the N* (2080) and N* (2200)
states, the dashed curves represent a fit without the N*(1900) state, and the dotted dashed

curves represent a fit without the N* (2000) state.

Looking at the solid curves, one can conclude that the K*(892) has a stronger contribution

at forward angles, which appears more relevant at energies above 2.0 GeV. The solid curves

in Fig. (5.34) depict the cross section as a function of ecm using again the parameters in

Tables (5.15) and (5.16), setting the coupling products for the K1(1270) resonance to zero.

This curve clearly shows that the resonance does not impose a prefered angular dependence

on the distribution. In fact, the shift appears uniform throughout the angular range. The

dashed curves shows a fit to the cross section which does not include the K1(1270) state.

Eliminating this state from the fitting procedure yielded a 2 = 100.3, an order of mag-

initude smaller than that obtained by eliminating the K* (892) state. The smaller value

of the X2 is a result of the apparent angle independence of this resonance. Eliminating

this resonance from the fitting procedure yielded also a smaller value for the Born coupling

9pKA = -0.0002, as well as a smaller coupling for the N*(1440) state, FN* = -1.509, when

compared to those listed in Table (5.15). Clearly, these two are the dominant background

contributions, and thus, their contributions are significantly affected after excluding the

K1(1270).
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Figure 5.33: Unpolarized differential cross section angular distribution. The solid curves

were obtained using the parameters in Tabless (5.15) and (5.16) with zero couplings for the
K* (892) state. The dashed curves represent a fit to the cross section without a K* (892)

contribution.
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Figure 5.34: Unpolarized differential cross section angular distribution. The solid curves

were obtained using the parameters in Tabels (5.15) and (5.16) with zero couplings for the

K*(1270) state. The dashed curves represent a fit to the cross section without a K*(1270)

contribution.
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Eliminating kaon resonances form the isobar model discussed in this study has a direct

effect on both the Born coupling and the Roper resonance N*(1440). Including them in the

model significantly affects the background contributions to the observables and becomes

highly important if the model is to predict a value for the Born coupling that is in closer

agreement with the theoretical works discussed in Section (4.4). Unlike the K1(1270)

resonance, the K* (892) appears to have a strong angular dependence, where most of its

background contribution lies in the forward angular region.

5.3 Conclusions

Using the isobar model developed here, we studied the reaction 'Y + p -* K+ + A using

experimental data for the unpolarized differential cross section and two double polarization

observables, C, and C,. The study was conducted by performing a fit to the experimental

data at both low and high energies. The parameters used in the model were the coupling

products between the electromagnetic and strong vertices for nucleon, hyperon and kaon

resonances with masses below 2.2 Gev, and the total decay widths for resonances that have

not been well established experimentally but have been predicted by various theoretical

models.

Within the low energy fitting procedure, we were able to determine that for an accurate

description of the experimental data, both cross section and polarization observables had

to be fit simultaneously. Furthermore, incorporating polarization data in the fits was useful

in discriminating between different sets of starting parameters that resulted in similar X2

values when only the cross sections were fit. In addition, fits to the low energy region led

to the conclusion that the incorporation of a wide spectrum of hyperon resonances with

angular momentum J < leads to undesirable uncertainties in the u-channel parameters.

Large uncertainties indicate a lack of sensitivity of the model to these parameters, and thus,

the model cannot be used to determine with certainty the values for the u-channel coupling

products. Furthermore, incorporating a wide spectrum of u-channel resonances led to unde-

sirable uncertainties in the fits to the obesrvables, in particular, where the uncertainty bars
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associated with the experimental data are large. This behavior associated with u-channel

resonances can be traced back to their respective propagators. The u-channel variable in

the hyperon's propagator is often negative and far off the mass-shell. In particular, hyper-

ons with the same quantum numbers becomes indistiguishable, and thus a large number of

different parameter combinations becomes available, which lead to comparable fits. Within

the low energy regime, we were able to systematically remove u-channel resonances from

the fit without significantly affecting the value of the X2. We observed a significant de-

crease in both the coupling products and uncertainties associated with resonances in the

u-channel. Furthermore, it was noted that removing u-channel parameters from the fitting

procedure did not significantly affect the values of the parameters associated with the s and

t-channel resonances, but resulted in slight increases in the parameter uncertainties. It was

also noted that systematically removing u-channel resonances from the fitting procedure led

to very small uncertainties in the fitted observables. This was evidence that the remaining

parameters in the model were better constained within the low energy region.

Attempts to use the parameters obtained in the low energy fits for energies above 2

Gev, without refitting revealed that employing parameters obtained from lower energy fits

do not describe the photoproduction reaction very well at higher energies. Furthemore,

carrying out fits with just the low energy resonances introduced in Section (5.1) led to large

values of the X2, indicating a poor description of the experimental data in the 1.9 GeV

region, as well as above 2.4 GeV. This result was helpful in determining that s-channel

resonances with masses greater than 1.9 GeV are needed for an accurate description of

the data. The behavior of the u-channel parameters seen in the low energy fits was also

evident when attempting to incorporate all u-channel resonances into fits to higher energy.

In particular, minimizing both the uncertainties in the u-channel parameters as well as the

uncertainties in the fits to the observbles while keeping a desirable value for the X2 was only

made possible by excluding the same set of resonances eliminated from the low energy fit,

with the exception of the E*(1750) state. Furthermore, eliminating this set of resonances

from the fitting procedure led to smaller uncertainties of the parameters associated with
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the remaining u-channel resonances, as well as parameters associated with s and t-channel

states, as can be seen by comparing Tables (5.8) and (5.9) with Tables (5.15) and (5.16).

A larger range of energies available for fits to experimental data better constrained the

parameters used in the isobar model.

We arrived at the following observations after comparing the parameters obtained from

the low energy fit to those obtained in the high energy fit. It was noted that the parameters

associated with positive parity spin 2 s-channel states increased in magnitude, while the

parameters associated with negative parity spin 2 states decreased. Furthermore, with

the exception of the N*(1535), all s-channel spin 2 parameters had the same signs after

extending the fits to higher energies. A rather different result was observed for states with

total angular momentum J = 2 and 2. With the exception of the N*(1520) state, which

attained a higher coupling of the same sign between the fits, there was no clear trend in

the parameters associated with resonances carrying the same quantum numbers. The lack

of consistency between fits could be attributed to the fact that most of the higher angular

momentum states, J > , have masses very close to 1700 MeV and thus their contributions

tend to become indistinguishable. In the isobar model employed, states with the same

angular momentum and opposite parities differ only by a negative sign and thus can be

easily mixed to produce a lower X2 especially if their coupling products are close to zero.

In addition, in both low and high energy fits, it was observed that states with total angular

momentum J = 2 couple weakly to the KA channel for the energies considered in this

study.

The leading coupling constant, 9pKA, was also affected by incorporating higher energies

into the fits. The value for gpKA decreased in magnitude from -0.667 in the low energy fit

to -0.245 in the high energy fit. Both fits agree on the sign of 9pKA, but the magnitudes

obtained are far less than the values obtained from other fits to photoproduction data as

well as from QCD inspired models, discussed in Section (4.4). This disagreement can be

attributed to the fact that some ingredients are still missing from this model. In particular,
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a complete description of the photoproduction mechanism may be sought by incorporating

hadronic form factors that take into account the structure of the hadrons. In addition, in-

corporating off-shell parameters into the intermediate particle propagators may significantly

affect the contributions to the amplitudes, given that they take into account the lower spin

components of interacting particles with total angular momentum J > 3.

Through a systematic analysis of the four less-well established resonances incorporated in

the high energy fit, we were able to determine those for which the photoproduction reaction

is more sensitive. It was concluded that the photoproduction reaction is mostly sensitive to

both the positive parity spin 2 N*(1900) state as well as the positive parity spin 2 N*(2000)

state. Eliminating both the N* (2080) and N* (2200) did not significantly affect the quality

of the fits, and thus they are not relevant in the description of the experimental data within

the model employed in this study. Furthemore, the total decay widths rR associated with

the N* (1900) and N* (2000) states are significantly smaller than those listed in the Particle

Data Tables [18].

A detailed study of resonaces in the t-channel was also conducted. The study revealed

that both the K*(892) state, and the K1(1270) significantly affect the background con-

tributions to the photoproduction reaction. In particular, it was observed that excluding

either resonance from the fitting procedure led to a value for the leading coupling constant,

9pKA, very close to zero. It was also noted that unlike the K1(1270) state, the K*(892)

has a strong angular dependence, especially at forward angles. The parameters associated

with the t-channel resonances obtained in the low energy fit differed from those obtained

in the high energy fit. In particular, no unambiguous values could be determined for either

the vector and tensor couplings associated with these resonances, only that they are highly

correlated to the leading coupling constant.

The physical observables included in this study have been well reproduced within the

effective lagrangian model studied here. Furthermore, we were able to extend the fit by

incorporating two resonances, whose existence is not yet well determined. In addition, it was
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determined that an accurate description of u-channel resonances is not available through this

phenomenological approach, but a limited number of u-channel parameters is indeed needed

to reproduce the physical observables considered here. The results shown in this study can

serve as a foundation to study other photoproduction and electroproduction reactions. In

particular, parameters obtained throughout these fits can be used as starting points in

models which are used to obtain other parameters such as hadronic and electromagnetic

form factors.
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Appendix A

The lorentz four-vectors II',J, K", and NA appearing in Eqs. (4.73) and (4.74) are

linear combinations of the photon and intermediate state four momentum, labeled p" and

py respectively; as well as the photon polarization four-vector EA. In the s-channel the

vector IP can be obtainded by first defining the following terms:

I1 {PK-{ P y - 2 (PK P )(P ' P)}
R

'2 = {6-PK M2(PK ')p G- )}
R

13 = 1 { (PK ' -P) 2 (PK *P)(P9 P)(c .p)A
SR R

+ 2 {(6 .PK)(Py .p) - (PK -P)(Py p)(E ) , (A.1)
MR XR

where MR is the mass of the intermediate state in the s-channel. Using Eq. (A.1) the

vector I' can be expressedn by

IP IE1E + I2" $ + I13P. (A.2)
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Similarly, the vector IY can be obtained by first defining the following:

1 1
Ki = M2 K K -2 K p)(P)

R

R R

1 1

K22 {(PK )(PK )(P- A2 (PK ) (

lR R

1 __

1 73R

M{(PK .P)(e -PK)(P<P) M2(PK P)(<2 ( } A3)

Using Eq. (A.3), the vector K1 can be expressed by

K =K1d" + K 2p~ + Ks p ( A.4)

The vector J' can be expressed by

J1 = Jipy + J2P9, (A.5)

where

J11

J2 = (PK . py)(pry A 2( AyP2}. (A.6)
MRR(A)

The vector Nt can be expressed by

NA = N1p + N2p", (A.7)

where

1 1_2
N1 = { (pK . p-,)(PK , A - 2 K P)2T P)$
NR R

N 2  - f (PK p&P)(P<PV ) 1(pK p)2(pp )2 (AS)
3R 2
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The lorentz scalars a, b, a', and ' appearing alson in Eqs. (4.73) and (4.74) in the

s-channel are defined as follows:

11
-~(P M'PP( ( pr) (P ' )(Ep)(p

a = (pK . pY (pK ' 6) K 
AIK 'R'6-

1 1
z t pK ' p ( ) + I pK P 2 _-P(

R R

a' PK P P-) 2  1 K p PK Py A

pK - (PK )(P P (PK P )

- (p1 } p)2 4(PK P) pP), (A.9)
MR IVR

where MK is the mass of the kaon.

The expressions for I', KI, JP*, and NI as well as for a, b, a', and b' found in Eqs. (4.78)

and (4.79) in the u-channel are identical as those defined above.

133



Appendix B

The operators A, B, C, and b appearing in Eq. (4.97) depend on the spin and parity of

the particular intermediate hadron considered. They can all be expressed in terms of a set

of E and Q operators defined by the relations

>(a, b) aobo - a aa-b

Q(a, b) = boo - a - aoa - b, (B.1)

E3 (a, b, c) = aoE(b, c) - a - aQ(b, c)

Q3 (a, b, c) = aoQ(b, c) - - aE(b, c), (1.2)

and

Z 4(a, b, c, d) = E(a, b)E(c, d) + Q(a, b)Q(c, d)

Q4(a, b, c, d) = E(a, b)Q(c, d) + Q(a, b)E(c, d), (B.3)
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where ao and a are the time and space components of the 4-vector a. In terms of these

operators, the operators for intermediate baryons with positive parity and spin 2 are

A = FD(p)M R(py, ,
-1+

BS = FD(p)MR(p,,),

-1+

D - -FD(p)E3(p pye) (BA)

in the s-channel and

1+

A FD(p)M R(py, )

1+By= FD(p)MRZ(py,E),

C.2 = FD(p) 3 (py, E, p),

2 = FD(p)3(pyc , p) (B.5)

in the u-channel, where Py and r are the photon 4-momentum and polarization, MR and

p are the mass and 4-momentum of the intermediate baryon, and D is the propagator

denominator defined by

D(p) = (p2 - MI + iMRF)-1. (B.6)

The coupling products F are defined by Eqs (4.31) and (4.32). Note that the intermediate

baryon width F in Eq. (B.6) is zero in the Born terms. For an intermediate proton there

are additional contributions to the operators from the charge coupling. These are given by

Acharge = egAKpD(p)Q(p, E),

charge e9AKpD(p)E(p, E),

Ocharge e9AKpD(p)MeRT " ,

charge o. (B.7)
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For contributions with intermediate spin 2 resonances, we define the coupling parame-

ters

N1 = F 1 + F2 ,

02 = F2 - 2F1 ,

03 = 3F1 -F 2  (B.8)

with

01

2MB MD,

(2 MBG2D(P) (B.9)F2 (2MB) 2MA/Ij '

where MB is the mass of the ground state baryon at the photon vertex, and G1 and G2 are

the couplings defined by Eqs. (4.59) and (4.60). With these definitions, the operators for

intermediate resonances of positive parity and spin 2 are given by

Z [1Q(pK, k1) + 2F(pK p)Q (p,) -3Q(p, q1) - 2FQ4(p, pK p-y,),
3

= [/ 1E(pK, ki) + 2F1(pK .p)E(P ) 3E(p, qi) - 2F 4(ppK,Py, E) - 3F2(pK k1)],
33+ 1

[ 
3 I 3(PPKk)+2Fl(PK P) 3(P,, )+3F2(PK'k1)o 'P

+3M o qi - 2M F1 3(PK, p )],

3+ _ 1 F(Kk)
p3MIR {13(p, PK, k1) + 2FI(pK "p) 3 (p p, c) - 3F2(pK (kA)E

-3M q' - 2M FIE3(PK, Py, )1 (B.10)
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in the s-channel and

Z[-03 (kipK) - 2F1(pK 'p)Q(E,py) +- 3Q(p, qi) + 2FQ4(pc, ppK)],

a+ 1
B [-3E(k1,pK) - 2F1(pK *p)Z(E,py) + 3E(p,ql) + 2FE4 (p,E,ppK) - 302(pK k1)],

- a+ 1
Cu - [-/p3(p, kiPK)- 2F1(pK -p)Q3(p,Epy) - 3F2(pK k1)a - p

-3M17- . q2 + 2MAF1Q3(E, py, pK),

DU 3MaJ [-/31E3 (p, ki, pK) -- 2F1 (pK p)E3(pa E, p-y) + 3F2(pK " k1)E

-3AJRq0 + 2MRF1E3 (E,p7 ,pK)] (B.11)

in the u-channel, where E is the energy of the intermediate resonance, PK is the kaon

4-momentum,

ki (p E)py- (p -py)E,

k2 (pK ' E)py - (PK py)E, (B.12)

and

qi = Fk 2 +02 pKPk

q2 = FMk2 - F2 K k. (B.13)

For contributions with intermediate spin i resonances, we define the coupling pararne-

ters

G1

F1 Drr_2.(17)g(p),
2aG

F2  MR 2  (p) (B.14)
(2MB) 2 (M7) 3

where 01 and G2 are the coupling products given by Eqs. (4.81) and (4.82), and the linear
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combinations

l = bipy - b2E,

2 = aip- - a2E,

q - Epy + q .p-yc, (B.15)

where

al = 2q pB E - q - EpB py,

a2  = ' pypB 'P7,

b= q.pp - E + q - p-py,

b2 = 2q- pyp - py (B.16)

with

q = PK - Op (B.17)

and

P ppK (B.18)
M2

Four other useful combinations are

1
c1  q - EpK ' A+q pypK ' E- pK pypK -E+ 1Op EP -y,

C2 (2q - py pK p-y)pK - p, 1 OKp ' P7)2,

a 1 p - py-a2p -E
C3 - X'12

C4 a1pK - py - a2pK E + pK ' p-pB - PK p -~~PB - IpK . P)

+ 1KP Py(p P-yPB - p EpB p13.1)
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with

mn2 + 4(/3MR)2  (iO
OK m2 #a2.(B.20)

MR

In terms of these quantities, we have for positive parity spin resonances

Zs = Fi[ciG(p, py)-c2Q(p, )] + F2[C30(q, p) - 0(q, 2)]1 1

+ I Fi{M [24 (p, q, p, z1) + 2q . py 4 (p, q, py, ) - Q4 (p, q, (, p-y)],

= F2[c4 + F[cE(p,py) C2E(,E)] + F2[C3E(q,p) - E(q, 2)]2 (qp ,5+5

1 C 1

+ Fi[M 4(P, q, p, (i) + 2q -py E4 (p, q, py, c) - E4(p, q, C y]

' =' F2 " p + Fj R [cij -r py -C20s E] - .F2 [c3Q3(p, q, p) - Q3 (p, q, 2 )]

® IFl[ Q3 (q, p, z1) + 2q - p~yMRQ 3(q, py, e) - MRQ3 (q, (, py)],
R

+ 1
I += -F2c 4  Fi- FicME - 5()F 2 [c3E3 (p, g, p) - (p, q, 2)]

-F1 [ 13 (q, p, z1) + 2q -py MR73 (q, py, ) - MRE3 (q, (, py)] (B.21)
5 R5

in the s channel and

1+ 1

ZU = F[CIQ(p-, p) - C2 (C, p)] + 5 F2[C3Q(p, q) - Q( 2, q)]

+ 1 Fl[ l 4 ( z, p, p, q) + 2q - py 4 (E, p, py, q) - Q4 (py, pa () q)],
5 M

- + F2c4 + F[CiE(py, p) -C2E(Ep)] + 1FF2c3E(p, q) - E(2, q)]

+ 1 Fl[ lX2E4 ( , p, p, q) + 2q - p~yE4 (E, p, py, q) - E4 (py, p, (, q)],

(72 M MM

+A i[ 3(1, ,&) +- 2q -py MRQ3(q, py, q) - MRn3(p, Cq)

+ M

DU- + = F 2 4 E+ FlclMREy + F2[C3E3(,p, q) - E3 (P,2, q)]

+ - Fi [ 1 E3 ( 1, p, q) + 2q -py MRE3 (E, py, q) - IR E3 (py, , q)] (B.22)

5 MR
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in the u-channel.

For intermediate baryons of negative parity, the A and $ operators are given by the

same expressions as for intermediate baryons of positive parity and the same spin; whereas,

the C and b operators are given by expressions that are the negatives of the corresponding

positive parity expressions.

For the t-channel, we define the coupling parameters

Gv
Oz K'* D(p),

MSC

GT
C = K* D(p) (B.23)

MsC(Mp + MA)

where A1c is the same scaling mass that appears in Eqs. (4.88) and (4.89), and the GK*

are the coupling products defined by Eqs. (4.92) and (4.94). In terms of these parameters,

the t-channel operators are given by

K = egAKpD(p)

Ok = 0,

l = 0 (B.24)

for an intermediate kaon,

A, iCVT(E f- o--por- ),

$ = -MT (Err (- f o p),

C = Vf f ,

= iaV 7 . (B.25)

140



for an intemediate K*(892) resonance, and

K = a' [E .PKQ(P P)+ EP-. PKO ' E],

t = a' PKE(AP-Ty) PKP p pKu ' PU ' E,

Otr = a [P . PKU - E - E pK ' py ,

aV)E = v " -K (B.26)

for an intermediate K1(1270) resonance, where p and E are the 4-momentum and energy

of the intermediate meson,

f = x PK, (B.27)

and

= x (EKPy - EyPK). (B.28)
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