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DEVELOPMENT AND EXPERIMENTAL VERIFICATION OF A 
THREE-DIMENSIONAL MODEL OF LEFT VENTRICULAR FLOW

DYNAMICS
by

Tong Ding 

Florida International University, 1998 

Professor Richard T. Sehoephoerster, M ajor Professor 

Ischemic heart disease, which results from the insufficient coronary 

artery blood flow is a leading cause of mortality in developed countries. It 

manifests itself by abnormal left ventricular wall motion during systole.

A three dimensional numerical model was developed to simulate the 

flow patterns in the left ventricle. Numerical solutions were obtained by 

discretizing the Navier-Stokes equations for viscous, incompressible, steady 

flow using finite element method.

A diagnostic index Central Ejection Region (CER) as well as its 

quantitative version CER coefficient which are based on the flow patterns were 

defined as the region in which velocity vectors were aligned 5 degrees from the 

long axis. They seem to be very sensitive to the degrees and size of ischemia.

ABSTRACT OF THE THESIS



To validate the numerical method, experimental measurements as well 

as the numerical computation were performed on sphere-shape normal and the 

ischemic left ventricle model A good agreement has been achieved.
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CHAPTER I

INTRODUCTION

LI Ob jective of the study

Ischemic heart disease, which results from insufficient coronary 

artery blood flow, is one of the leading causes of mortality in developed 

countries. Other names for this condition include coronary heart, disease and 

arteriosclerotic heart disease. Some deaths occur suddenly as a result of an 

acute coronary occlusion or of fibrillation of the heart, whereas others occur 

slowly over a period of weeks to years as a result of progressive weakening 

of the heart pumping process.

The resulting abnormal function of the heart has been assessed for 

diagnostic and prognostic purposes predominately and most successfully by 

the ejection fraction (Rahimtoola, 1982), a global measurement relating 

stroke volume to available blood volume in the left ventricle. However, 

coronary artery disease produces localized areas of abnormal wall 

movement which may vary with time within the cardiac cycle, and 

compensatory actions in the unaffected regions of the myocardium can
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result in inadequate characterization of the state of disease using parameters 

based on global measures alone.

The advent of noninvasive imaging technology such as 

echocardiography has led to a rapid growth of studies related to left 

ventricular function. Parameters, which based on the image, had been 

shown to have the ability to estimate the ventricular performance (Nobuyuki 

et al. 1992). Regional wall motion analysis has also begun to be used as an 

adjunct tool in function assessment. However these techniques only 

provide information about small regions without supplying a measure of the 

heart’s overall function.

To describe the overall left ventricular function, a quantitative index 

of global left ventricular function based on regional wall motion has to be 

universally agreed upon (Clayton et a l, 1984; Owen et a l, 1991). An 

accurate method to quantify the degree of ischemia to aid in choosing 

approriate treatment to prevent furthers myocardial damage also needs to be 

developed.

The objectives of this study are the development of a three- 

dimensional numerical model that has realistic left ventricular geometry; 

Modification of Central Ejection Region (CER) as well as its quantitative
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version CER coefficient, which is a potential diagnostic index of left 

ventricular function evaluation and assessment, from the two-dimensional 

flow to one suitable for three-dimensional flow; Verification of the above 

numerical model through in vitro experimental measurements.

1.2.1 Physiology of human heart

The human heart is a hollow muscular, conical shaped organ located 

obliquely between the lungs, and enclosed in the cavity of the pericardium. 

The base is directed upward, backward and to the right. The apex is directed 

downward, forward and to the left. In adults, the heart measures about five 

inches in length, three inches and a half in breadth in its broadest part. It 

weights from ten to twelve ounces in males and eight to ten ounces in 

females [23].

The heart, by virtue of the contractile activity of its muscular walls, 

propels blood throughout the body so as to deliver oxygen and nutrients to 

and removes waste from each of the organs. It also provides for the 

transport of hormones and other regulatory substances between various 

regions of the body.
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The human heart (Figure 1.1) consists of two separate pumps; each 

composed of an atrium and a ventricle. The right side is responsible for 

supplying blood to the pulmonary circulation while the left side is 

responsible for supplying blood to the systemic circulation.

The atria are collecting chambers, and the ventricles are pumping 

chambers. The right ventricle receives blood from the right atrium and 

pumps it into the pulmonary circulation; the left ventricle receives blood 

from the left atrium and pumps it into the systemic circulation. Between the 

cavities of the atria and ventricles lie the atrioventricular valves: on the right 

the tricuspid valve and on the left the mitral valve. These valves prevent the 

back flow of the blood from the ventricles to the atria when the ventricles 

contract.

The aortic valve and pulmonary valve, which situate at the outflow of 

the ventricles, prevent back flow of the blood from the aorta and pulmonary 

artery into the ventricles when they relax.

Both atria are thin-walled muscular chambers. The thinness of their 

walls reflects the low pressures normally developed in the atrial cavities. 

The ventricles, on the other hand, have thick muscular walls, especially the 

left ventricle, which has approximately three times the mass and twice the

4



thickness of the right ventricle. The left ventricle is longer and more conical 

in shape than the right ventricle. It resembles an elongated cone with inflow 

and outflow tracks adjacent to each other. By contrast, the right ventricle 

has more of a crescent shape with separated tracks.

The interior surfaces of the heart are lined by a thin and smooth 

membrane called the endocardium. The outer surfaces are covered by a 

protective connective tissue called the epicardium. The region between the 

epicardium and the endocardium is referred to as the ventricular 

myocardium, which is formed by a series of overlapping muscle bundles 

spiraling from the fibrous base to the apex.

to right long to head and arms

Figure 1.1 The anatomy of the human heart [5]
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1.2.2 Ischemic heart disease

aorta

superior vena cava

right coronary 
artery

posterior descending 
branch

left pulmonary artery

left coronary artery 

^  circumflex branch

anterior descending 
branch

Figure 1.2 The Coronary Arteries [23]

Blood is transported to the heart muscle by the left and right coronary

arteries, which arise at the root of the aorta behind the right and left cusps of

the aortic valve, and their many branches, reaching the myocardium by way

of small arteries. Approximately 5% of the total blood flow from the left

ventricle goes through the coronary circulation. The oxygen needs of the

heart muscle are only minimally met by this amount of blood flow. Any
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constrictions of the coronary arteries and their branches may lead to damage 

of the heart muscle by restriction of its blood supply. This symptom is 

referred to as ischemic heart disease.

By far the most frequent cause of diminished coronary artery blood 

flow is atherosclerosis. This may be due to abnormalities of lipid or 

carbohydrate metabolism, or may be the result of organizing thrombosis. In 

certain persons, large quantities of cholesterol gradually deposited at many 

points in the arteries. Later on, these deposits become invaded by fibrous 

tissue, and they also frequently become calcified. The net result is the 

developments of atherosclerotic plaques that protrude into the vessel and 

either completely block or partially block blood flow. A very common site 

for development of atherosclerotic plaques is the first few centimeters of the 

coronary arteries. When this situation becomes severe and beyond any 

compensatory mechanism, acute coronary occlusion occurs leading to 

ischemia and infarction of the affected area. The regional heart muscle 

infarction may cause a decrease in local contractility so as to reduce the 

heart’s overall pumping function.

Three kinds of abnormal wall motion have been observed on 

ischemic heart: hypokinesis, in which the infarct area has a reduced

7



contraction; akinesis when the infarct area is absence of contraction; and 

dyskinesis for which the infarct area produces paradoxical motion. Figure

1.3 shows these different wall movements, where arrows indicate the 

direction of the wall movement.

Figure 1.3 Abnormal left ventricular wall movements [4]
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13 Previous Study

For the past two decades, computational fluid dynamics has been a 

useful research tool in the study of cardiovascular fluid mechanics. The 

ultimate goal is to develop a computational scheme in which realistic three- 

dimensional flow simulations can be achieved (Wendt, 1992).

The earliest work that solving biomechanics problems using 

computational fluid dynamics found in the literature was back in 1972, 

Peskin numerically solved the Navier-Stokes equations in the presence of 

moving immersed boundaries that moved by the local velocity of the fluid 

and exerting forces. In 1977 Peskin improved the method by including the 

muscular heart wall

By the late 1980's, it was feasible to simulate three-dimensional time- 

dependent flow. Three-dimensional equations of a viscous incompressible 

fluid that contains an immersed system of elastic fibers and contractile 

fibers were solved (Peskin et al. 1988, McQueen et al. 1988). Recently, 

Yoganathan et al. (1994) solved the three-dimensional Navier-Stokes 

equations for time-dependent flow in a compliant thin-walled, anatomically 

correct left ventricle during early systole. He also used the magnetic 

resonance imaging (MRI) technique to measure the three-dimensional

9



velocity in a MRI slice through a human subject, making MRI a means of 

obtaining the intravenricular flow field (Walker et al. 1996).

All the studies (Georgiadis et al. 1992, Hampton et al. 1992, Redaelli 

et al. 1996, Taylor et al. 1994 and 1995) which focused on the fluid 

dynamics inside the left ventricular chamber modeled blood as the 

Newtonian flow with the constant properties. The wall mechanics was not 

included.

Due to the irregular geometry, complicated movement and the lack of 

three-dimensional data, most studies (Georgiadis et al. 1992, Gonzalez et al. 

1996, Redaelli et al. 1996, Taylor et al. 1994) utilized simple geometry 

models to study the left ventricular ejection. The movement of the left 

ventricular wall was simulated by the inflow across the wall.

Taylor et al. used three-dimensional radius-varying spherical .models, 

and the boundary condition was calculated from the volume reduction. 

Boundary nodes were assumed to move towards the outlet center (Taylor et 

al., 1994). A year later, Taylor et al. (1995) built a realistic three- 

dimensional left ventricular model to study the ejection fluid dynamics 

indicating that there is a definite difference in the geometric shapes and 

flow patterns in normal and infarct hearts.

10



Georgiadis et al. (1991) introduced a two-dimensional ellipsoidal 

cavity by using different chamber eccentricities. Boundary condition was 

assumed to be uniform and perpendicular to the wall. This model was 

extended to three-dimension (Georgiadis et al., 1993). Schoephoerster et al.

(1993) built a two-dimensional real-shape model from a series of digitized 

echocardiograms. The boundary nodes were assumed to move towards the 

closest point on the geometry of next time step.

Gonzalez et al. (1995) solved equations for a three-dimensional 

spherical geometry with the same assumption of boundary condition.

Redaelli et al. (1996) utilized a simple contracted moving boundary 

condition on an axis-symmetric finite element model.

Quantitative experimental measurements of the left ventricle flow are 

very limited. Schoephoerster et al. (1991) measured velocity of different 

positions past-mitral valve in a rigid body left ventricle with LDA.

With the development of different heart imaging technologies, most 

of the work in this area has been directed towards detailing the actual 

movement of the left ventricular wall (Sennan et a l, 1986), or towards 

determining the rheological and mechanical properties of the myocardium 

(McPherson et al., 1987) from the image information. Very little attention
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had been given towards the analysis of regional flow patterns within the left 

ventricular chamber, which is undoubtedly influenced by the time 

dependent regional movement of the left ventricular wall.

Schoephoerster et al. (1993) introduced a two-dimensional model of 

left ventricular flow dynamics. Based on that model, Schoephoerster et al.

(1994) further studied the relation between left ventricular function and the 

flow patterns based on left ventricular wall motion. In this study, an index 

which has the potential to describe left ventricular global function based on 

regional and temporal variations in left ventricular wall motion was 

developed: the Central Ejection Region (CER), as well as its related 

quantitative index, the CER coefficient.

CER is the region of flow domain, which is aligned for ejection. It is 

defined as the flow domain in which the velocity direction is within five 

degrees of the left ventricular long axis. The data from this study shows that 

the CER is sensitive to regional decreased wall movement and the severity 

of the ischemia. Under normal wall motion conditions, the CER mainly 

follows the symmetric line of the left ventricle. However, in ischemic cases, 

the CER becomes thinner, shorter, and even breaks into disconnected small 

pieces for some very severe cases. The end of the CER tends to shift

12



towards the ischemic region. The average CER coefficient for the ischemic 

left ventricle was lower than that for normal left ventricle; it also decreased 

with the increase of the severity of simulated ischemic cases.

Gonzalez (1995) extended Schoephoerster’s work to a three- 

dimensional sphere-shaped model with both normal and simulated ischemic 

cases. The results further indicated that CER is a valuable left ventricular 

pumping efficiency index. CER coefficient quantitatively shows that the 

flow patterns are rather sensitive to moderated degrees of hypokinesis. Also 

Gonzalez emphasize the importance of building the three-dimensional 

model using the real left ventricular wall motion as input to the computer 

model.

The present study is a further step of the work done by 

Schoephoerster and Gonzalez. Yet, it is still a preliminary step of the 

complete understanding of left ventricular flow dynamics. Two goals were 

accomplished: 1) development of a three dimensional more realistic 

numerical model as well as the CER; and, 2) verification of the numerical 

method by experimental measurements using digital particle image 

velocimetry (DP1Y).
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Our ultimate aim is to develop and use the diagnostic index presented 

as an improved clinical tool to complement the capabilities of newer 

generation MRI machines which will be able to directly measure velocity 

patterns.

1.4 Problem Statement

When its wall expending and contracting periodically during each 

cardiac cycle, the human left ventricle is a three-dimensional irregular 

chamber, which continuously changes its geometry. The accurate numerical 

or experimental simulation of the flow within this chamber would be 

extremely complex, which would require difficult manufacturing technique, 

large amounts of computer resources as well as a complicated numerical 

method, therefore, is beyond the scope of this study.

In the current study, a simplified model was utilized to compute the 

velocity field based on the wall motion. The results were used to primarily 

study how normal and varying abnormal wall contractions affect the cavity 

flow dynamics. Since the mitral valves remain closed, while the aortic 

valves remain open during systole, the geometry of the control volume was 

modeled as a contracting chamber with a single outlet.

14



The Navier-Stokes equations were used to describe the flow inside 

the left ventricle. A general-purpose flow dynamics software package 

FIDAP was used to solve the digitized Navier-Stokes equations.

An index, which can be used to describe the function of the left 

ventricle, was concluded from the numerical results: central ejection region 

(CER). It represents the region in which the blood inside the left ventricle is 

aligned to eject. The CER appears to be a useful tool to visualize changing 

flow with changes in wall motion resulting from changes in the severity of 

the simulated ischemia.
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CHAPTER II 

MATHEMATICAL EQUATIONS & 

NUMERICAL METHODOLOGY

II. 1 Problem Definition

As mentioned in the previous chapter, the model of the current study 

is based on a known control volume, which is a contracting chamber with a 

single outlet. The velocity field was computed based on the wall motion. 

The results were used to primarily study how various wall contractions 

affect the chamber flow dynamics.

The model was built on the following assumptions: The inside flow 

was steady, laminar and incompressible. The wall was impermeable, non­

slip with a prescribed contraction. The wall mechanics were not included in 

this model. The actual boundary conditions were simulated by the inflow 

across the left ventricular wall. At the outlet, velocity was uniform. Since 

the average shear rate inside the left ventricle was expected to exceed 5 O'1 

sec, the inside flow was considered to behave as a Newtonian fluid. The 

temperature and the physical properties of blood were assumed to remaine 

unchanged. Gravitational effects were ignored.
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II.2 Mathematical Governing Equations..................  ............  1 " "  .....11     ‘ 1 mmrnmmmmum „   " J [................   

The governing equations for the problem were the continuity 

equation and the Navier-Stokes equations for incompressible, steady flow 

with constant properties and no gravitational iterms:

3ci = 0 (2.1)

(2.2)
dt 3cj p  3ci 3cj 3cj 

where 

i = 1,2,3

Ui = velocity component in the ith direction 

Xj = ith direction 

P = pressure

p =1.1 g/cm3, fluid density 

H = 3.5 poise, fluid viscosity

Equation (2.1) and (2.2) represent a system of four equations with 

four unknowns: Ut and P. With the proper boundary and initial conditions, 

this system of equations has a unique solution.
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11.3.1 Numerical Method

Finite element method (FEM), which has found increased use and 

wider acceptance for the solution of the equations governing viscous fluid 

flows in recent years, was adopted to solve the governing equations. A 

general-purpose code FIDAP (Fluid Dynamics International, Evanston, IL 

60201) was utilized for the calculation.

The full Navier-Stokes equations describing the flow domain were 

solved using Galerkin’s weighted residual approach in conjunction with 

finite element approximation. To reduce disk storage requirements, a 

segregated algorithm was used to solve the nonlinear system of matrix 

equations arising from the FEM discretization of the flow equations.

All the computations were carried out on a Silicon Graphics Power 

Challenge Server.

11.3.2 Formulations of The Discrete Problem

The objective of FEM is to reduce the continuum problem to a 

discrete problem described by a system of algebraic equations. It begins 

with the division of the continuos flow domain into a number of simply 

shaped elements. Within each element, variables ut and p  were interpolated
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by functions of compatible order, in terms of values to be determined at 

nodes. The discrete analogue of equation (2.1) and (2.2) for an individual 

element can be expressed by the following matrix equations:

where A represents the convection of momentum. M  represents the 

mass term in the field equations.

Usually the FEM is not applied directly to the foil system of 

governing equations but rather to a perturbed system of equation in which 

the continuity requirement is weakened and replaced by:

Where s  is a small number, typically between 10'5 and 10*9. This 

approach, referred to as a penalty function approach, has the great 

advantage of eliminating the dependent variable p £ , which is then 

recovered by post-processing from the velocity field by,

MU + A(U)U- CP = 0 (23)

CTU = 0 (2.4)

wher q U = (U1U2 U3)t

My = - e p (25)

(2-6)
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When the penalty formulation is employed, equation (2.4) was 

replaced by:

CTU= -sMpP (2.7)

Further, P can be eliminated from equation (2.3):

M u + A ( U ) U - - C  M/ ‘ CtU = 0 (2.8)

11.4,1 Geometry Generation

Figure 2.1 Cine - Angiograms derived contour lines during systole 
(a) Normal left ventricle (b) Ischemic left ventricle

The three-dimensional geometries of the left ventricle used in the 

study were reconstructed from the digitized two-dimensional cine- 

angiograms of real patients (.Figure2.1). Based on 30 frames per second 

rate, six curves which represented the contour of left ventricle along the
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long axis during systole were obtained from a normal left ventricle and five 

were obtained from a left ventricle with known ischemia. Both left 

ventricles have similar ejection fraction, and no apparent abnormal wall 

motion from end-diastole to end-systole.

Three dimensional geometry generation starts with all the curves 

placed on the Y-Z plane, the long axes aligned with Z-axis, and the simple 

steps:

1. Each curve was broken into two parts at the apex, which is the 

farthest point from the outlet center. Then each half was divided 

into 200 equal length curve segments (Figure 2.2a).

2. The corresponding separation points on both halves were 

connected by a line segment (Figure 2.2b).

3. Each line segment was translated to a new coordinate system in 

which the line was aligned with the Y-axis and perpendicular to the 

Z-axis. Then the line was rotated 180 degrees according to the Z- 

axis and its center. The trace of its two ends formed a closed circle 

(Figure 2.2c).
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4. Two hundred equally distributed points on each circle were 

digitized and reverse translated back to its original coordinate system 

(Figure 2.2d).

Figure 2.2 Steps to generate the 3D geometry

Thus each three-dimensional geometry is consisted of two hundred 

tilted circles and one apex point. Two hundred points were digitized on each 

circle, for a total of forty thousand and one points on one geometry.

Step 1 was accomplished utilizing a function inside FIDAP to equally 

divide the curves and output the coordinates of each separate point. The rest 

was done by a computer code GEO-GEN.c written in C language. The main 

mathematical theory used was the coordinate system transformation. The 

source code is presented in Appendix A.
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II.4.2 Geometry data modification

Figure 2.3 Alignment of the geometry (Normal and Ischemic)

As mentioned before, the original two-dimensional geometries were 

obtained from real patients. Figure 2.1 has captured the actual motion of the 

left ventricle, which includes rigid body movement and the contractile 

deformation. These curves were digitized based on a static reference point, 

with the measurement unit pixels.

To avoid additional complications that would result from taking into 

account inertial effects due to the rigid body, some modifications were 

necessary.

Figure 2.1 shows the geometry after the modification: all the centers 

of the outlet were moved to the origin, with every long axis aligned with the
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Z-axis (Figure 2.2). The outlet diameter of the first geometry was translated 

to 2,5 cm, which is the average size of the human aortic valve.

II.4.3 Mesh Algorithm

FIDAP requires that the computational domain to be defined by 

mesh solids to apply the meshing process. The contours of the mesh solid 

follow the contours of the flow domain. The only map meshing method, 

which is available for three-dimensional domains, is a regular 

“checkerboard” shape meshing.

To keep the element aspect ratio close to 1, the entire flow domain 

was decomposed into fifty-two sub-domains. Each was defined by one mesh 

solid. Adjacent domains were connected by the mutual mesh surface. All 

the mesh solids were meshed into eight-node isoparametric brick elements 

(Figure 23). There were a total 22560 elements and 21429 nodes generated 

for each geometry. This is the maximum node number allowed by the 

memory size and disk space of our computer to perform the correct 

computation.
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Figure 2.4 Mesh algorithm
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II.5.1 Boundary conditions

It was assumed that during the time period between two adjacent left 

ventricular geometries, the left ventricular wall moved so insignificantly 

that the wall movement could be regarded equivalent to the flow across the 

wall. Thus the prescribed-wall-motion boundary was substituted by the flow 

across the wall. The time period between two geometries varies from 67 ms 

to 134 ms.

The boundary conditions of each node were computed from two 

adjacent left ventricular geometries. Each node on the first geometry wall 

was assumed to move towards the position, which was occupied by the 

closest point on the next geometry at a constant velocity. The coordinates of 

each node on the wall were output from FIDAP. The displacement between 

each node and its closest point on the next geometry were calculated, then, 

divided by time period between these two geometries to get velocity 

boundary conditions.

Although mitral valves remain closed during systole, they do not 

contract like the muscular wall. On the other hand, it has paradoxical 

movement under the pressure, which is built up inside the left ventricle 

(Figure 2.4). This paradoxical movement caused a vortex near the outlet
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affecting the convergence of the entire 

flow domain. Since we are only interested 

in the main ejection region, all the 

boundary velocities of mitral area were set 

to zero to eliminate the extra computation 

caused by this effect.

The displacement and velocity 

boundary conditions were calculated by 

program BCondition.C, which is 

presented in Appendix B.

The boundary velocity at the outlet was assumed to be uniform and 

perpendicular to the outlet surface. The magnitude was calculated from the 

mass conservation inside the control volume.

II.5.2 Simulated Ischemic boundary conditions

A better understanding of how ischemia affects the left ventricular 

flow pattern development may be obtained by controlling the severity or the 

location of the ischemic region. For this purpose, a simulated ischemic 

region was imposed on the normal left ventricle wall to simulate ischemia.

Figure 2.5 Mitral valve’s 
movement during systole
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Since the normal left ventricle has the most symmetric contraction during 

the T1 time step, all the simulations were applied on the geometry of this 

time step.

Figure 2.5a-c show three simulated ischemic left ventricular models 

with the ischemia of different sizes or positions we used in the study; small 

ischemia on the side, large ischemia on the side and large ischemia at back. 

The gray area indicates the simulated ischemic region.

(a)

Figure 2.6 Simulated ischemic region 
(a)small ischemia on the side (b)large ischemia on the side (c)large ischemia at back
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(c)
Figure 2.6 Simulated ischemic region 

(a)small ischemia on the side (b)large ischemia on the side (c)large ischemia at back
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As mentioned before, each geometry is consists of 201 layers of 

digitized points including the apex. The simulated ischemia was on the 

bottom 67 layers, which is approximately one third of the total height. The 

small region extended around 45 degrees with respect to Y-axis. The large 

regions extended around 90 degrees with respect to the Y-axis or X-axis.

A simulation factor F was used to control the severity of the ischemia. 

It represents the percentage of the normal velocity boundary conditions and 

was multiplied to the velocity normal boundary condition of all the nodes 

located in the ischemic region. When F is between 0 and 1, the normal 

velocity boundary conditions were reduced to a certain percentage, and 

hypokinesis was simulated. F of 0 reduced all the velocity boundary 

conditions to 0 and simulated akynises. When F is less than 0, the 

magnitude of the velocity boundary condition was reduced and the direction 

of it was reversed, thus dyskinesis was simulated.

For each ischemic region, three hypokinesis, two dyskinesis and 

askynesis were simulated with F values of 0.5, 0.3, 0.1, 0, -0.1 and -0.3.

The computation of simulated boundary conditions was performed by 

program BCondition.c.
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II.6.1 Central Ejection Region(CER) and CER coefficient

To extend the CER defined for the two-dimensional numerical model 

(Schoephoerster 1993), the CER as well as its quantitative version the CER 

coefficient were developed for the three-dimensional realistically shaped 

model.

CER is defined as the region in which the velocity direction is within 

5 degrees with the left ventricular long axis. The long axis is the line 

segment connecting the center of the outlet and the apex. Physically, CER is 

the flow domain in which the flow is aligned to eject. So the larger the 

CER, the more efficient the left ventricle is.

It is a common assumption that an ideal ventricle should contract 

symmetrical to the centerline, especially the left ventricle that has a pear- 

shape chamber. So we expected that the CER of a healthier left ventricle 

would have a better alignment with the centerline than the one of an 

ischemic left ventricle.

The CER coefficient is a number based on the CER which can 

quantitatively described the left ventricular ejection. It is defined as:



Where N is the number of evenly 

distributed horizontal cross sections 

from the outlet to apex. dBL is the 

distance from the left ventricular wall to 

the geometric center of a particular 

cross section, dCER is the distance from 

the center of the same cross section to 

the center of the CER cross section. M 

is the number of the CER regions on the 

same cross section. If a particular cross section had no CER, dCER was set 

equal to dBL.

From equation (2.9) we can see that CER coefficient is between 0 and

1. A value of one indicates that the CER center is aligned with the cross 

section center on every cross section. That means that the CER follows the 

left ventricular centerline perfectly, indicating an ideal contraction. 

Whereas a value of zero means that all the flow has been pushed to one side 

of the left ventricle instead of the outlet indicating a poor contraction.

Cross
Section
Center

Figure 2.7 A Cross Section 
Of LV with Three CERs
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II.6.2 Data Processing

The calculation of CER coefficient was based on the velocity 

information of the positions on N horizontal planes within the flow domain. 

N was 50 in the present study. Unlike the Finite Analytic Method grid, 

which was used by Silva (1991) and Gonzalez (1994), the FEM mesh 

doesn’t naturally meet this condition. So the entire velocity field was 

interpolated into a new mesh having 50 equally distributed horizontal 

planes from the lowest point of the outlet to apex, all the nodes on each 

plane evenly distributed in the X and Y direction.

It is necessary to numerically find the geometric center for each 

horizontal cross section and the geometric center of CER on each cross 

section to obtain the dBL and dCER. The curve, which is made by connecting 

the center of each layer of the geometry, is considered to be the centerline of 

the left ventricular cavity. The gravity center of the CER was considered 

the CER center. Its coordinates were determined by:

E -ka
XcER = ^  . (2-11)

L Ai
N

]T YiA,
Ycer = (2.12)

L Al
N
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where Xt and Yt are the coordinates of the nodes within the CER, and 

Ai is the area summation of the elements around the node.

To obtain dBL, the local radius, which went through the CER center, 

was used. The angle between the X-axis and the line segment connecting 

the cross section center and CER center and the angles between the X-axis 

and the every radius on the cross section were compared. The radius whose 

angle with the X-axis is the closest to the angle between the X-axis and the 

line segment connecting the cross section center and CER center were used 

to compute dBL.
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CHAPTER III 

EXPERIMENTAL VERIFICATION OF 

THE NUMERICAL METHOD

In order to verify the numerical method, a spherically shaped left 

ventricular model was built based on all the assumptions of the numerical 

model. The velocity field of the cross section alone the long axis were 

measured using Digital Particle Image Yelocimetry (DPIY). The numerical 

procedure was carried out using FIDAP with the experimental boundary 

conditions as input.

III.l Experimental Setup

Figure3.1 shows the details of the experimental set up. A transparent 

latex balloon with a single outlet was used to simulate the left ventricular 

sac during systolic stage. Before contraction, the diameter of this balloon 

was dilated to approximately 8 cm. The radius of the outlet was 3.3 cm 

which is approximately 40% of left ventricular chamber’s radius (Gonzalez, 

1995). A 0.5-centimeter grid was plotted on the right side wall of the rigid 

box. These grids were used to determine the pre-contraction left ventricular
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diameter and the position of the laser sheet. The left ventricle contracted and 

dilated passively by the pressure difference between the inside and outside 

of the left ventricle. When both valves are closed, a pressure difference can 

be built up by pressing the air into both water reservoirs using hand pumps. 

The small pressure difference could also be adjusted by changing the liquid 

level of the two reservoirs.

Figure 3.1 Experimental setup 
(dotted square indicates the test section)

The same fluid was used in both reservoirs: 36% glycerine by volume 

in saline. This solution matches both the density and the viscosity of human
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blood. PIV seeding particles were put in the fluid inside the left ventricle for 

the flow visualization and velocity fields measurements. These are 

OPTIMAGE seeding particles. They have a specific gravity of 1.0 +/- 0.02 

with wider distribution in sizes up to 250 microns. However nearly 80% of 

them have a diameter under 50 micron.

One normal case and one hypokinesis case was simulated. A thin 

layer of transparent Silicon glue was put on the pre-decided ischemic region 

to increase the stiffness of the left ventricular wall, so as to decrease the 

contraction of this region. Velocity measurements at the cross sections of a 

long axis plane for both cases were taken. For the hypokinesis case, the 

measured plane also went through the center of ischemic region.

III.2 Digital Particle Image Velocimetrv (DPIV) svstem■-»'..  1 I....... .............................................I""P"'   ....  1 ‘"I""!—"1" 1 11 ™   nn ■ „ i ,m,„       1  

DPIV is a laser software system which utilizes a non-intrusive 

technique that permits the mapping of instantaneous two-dimensional flow- 

fields. Figure 3.2 shows the components of a DPIV system. A laser beam 

was generated from the laser generator, and converted to a thin sheet by the 

optic lens. In the present study, a 300 MV Argon laser was utilized. The 

laser sheet went through a plane of the test cross section of the flow. PIV
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beads in the flow field are illuminated by the laser and act as tracers which 

are captured by a CCD imaging camera with a maximum resolution of 486 

X 1134 pixels. The entire frame is transferred to a read-out buffer within 2 

ms; thereafter, the sensor can be exposed again. A total of eight images can 

be saved in the buffer at the same time.

Mechanical shutter
Laser

Laser light 
sheet optics

.Laser 
'• sheet

Timing box
n

Computer with two monitors

Figure3.2 DPIV system components 

Before the laser beam was converted to a laser sheet, it went through

a mechanical shutter which is controlled by a timing box and a shutter drive

unit. The timing box could be programmed to control the mechanical shutter

to chop the laser light at the camera’s frame rate to prevent a performance
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degrading streaking of the particle images in the camera during the 

exposure. For the present study, 33 ms period between exposures was 

utilized.

A user friendly software FLOWGRABBER™ is provided with this 

system. It subsampls the two sequential digitized images with a variable 

size interrogation window, and computes the cross correlation of the 2 

image samples with a Fourier analysis technique. The computation 

originally resulted in a displacement field of the tested cross section. Other 

associated kinetic fields such as velocity field, stream function, divergence, 

strain and vorticity, were derived from the displacement via finite 

differentiation and integration. Various options are allowed for data 

presentation in the form of vector plots, contour plots and ASCII files.

1113 Experiment Procedure

As we mentioned before that two sets of experimental measurements 

were taken, one for normal left ventricle and one for hypokinesis left 

ventricle. For each case, the same measurements were repeated seven times 

for seven evenly distributed cross sections along the short axis. Due to the 

reason that there is no electronic equipment to trigger the flow and the
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DPIV system at the same time, the best way to capture the start point of the 

flow is to set off the DPIV system first then open the valves. Eight images 

that were captured continuously. Among these eight images, the last one 

captured the stationary flow and the first one captured the moving flow 

were saved to be further processed. There are a total of fourteen pairs of 

images for each left ventricle.

The contours of the left ventricle on all images were digitized by the 

DPIV built-in function. The images of the center cross section were also 

processed to get the velocity field.

The repeatability of the experiment was assumed by the following. 

Since the experiment set up is a closed semi-loop, the mass of the fluid 

inside the loop was constant. The rigid box and tubes kept the boundary 

conditions unchanged. The original fluid level of each reservoir was marked 

and the barometer reading was recorded before the first measurement was 

taken. Once the fluid was pumped back to its original position and the 

barometer was pumped to the same reading, the pressure boundary 

condition was the same. Therefore the pressure boundary condition was also 

constant. The fluid inside the left ventricle is also driven by the elastic force 

of the balloon itself. Since latex is an elastic material. The size of the
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pumped-up left ventricle is within its elastic limits. We can safely assume 

that its elastic characteristic has no change during the time period of each 

sets of the measurement that usually took less than one hour.

III.4 Geometry Reconstruction

Figure3.3 Geometry Reconstruction 

Seven digitized parallel vertical curves were used to reconstruct the

whole geometry. These curves were then “wrapped” by two hundred

horizontal curves. On each horizontal plane, two points on each vertical

curve were digitized. Four to fourteen points were digitized for each

horizontal cross section. Since the shape of the left ventricle was very close
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to a sphere. Every three consecutive points were fitted by an arc segment. 

The segments formed a closed curve (figure 3.3). Two hundred points were 

digitized on each horizontal closed curve. These points were input to 

FIDAP to build the numerical geometry.

The mesh algorithm and boundary condition computation are the 

same as the ones for the human left ventricle model as we introduced in the 

previous chapter.
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CHAPTER IV 

RESULTS AND DISCUSSION

IV.l Comparison of the numerical and experimental results

The numerical results were qualitatively and quantitatively validated 

by the experimental measurements. Figure 4.14 to figure 4.19 are the 

comparison of experimental and numerical results for normal and ischemic 

left ventricles. For each case, the velocity field and two velocity 

components on two specific lines were compared. We arbitrarily chose one 

line on the upper half and one on the lower half of the cross section.

Velocity vector plots show a good qualitative agreement between the 

experimental and numerical results. The flow is symmetric with respect to 

the long axis for the normal left ventricle. For the ischemic case, the flow 

was generally directed towards the simulated ischemic region on the right 

lower part of the left ventricular wall.

A detailed comparision of the velocity on two specific lines of the 

cross section, a difference between the numerical and experimental results. 

Compared to the numerical results, the Z component profile of the DPIV 

measurements are flat, especially for the curve near the bottom, with lower
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value in the middle and higher values at both ends. This can be explained 

by the fact that the experiments are transient with an actual contracting 

boundary. The measurements were taken within one second after the flow 

started to move from the stationary state. On the other hand, the numerical 

simulation solved the equations of steady flow, which means the flow is 

folly developed in time. The velocity difference on both ends of the curve 

can be explained by the difference between the real boundary condition and 

the assumed boundary condition we imposed on the numerical model. Also 

when we approach to the outlet, the effect of the boundary condition, 

becomes smaller, so the two curves become more similar.

Figure 4.20 is the comparison of the CER between the numerical and 

experimental normal and ischemic LV. Since only two-dimensional data 

were available for the experimental results, the CER of the numerical model 

was calculated using two-dimensional formula for the corresponding plane. 

The graphs show that the CERs of the numerical models are narrower than 

that of the experimental models.

Although the above differences exist, there is still some agreement 

between the numerical and experimental results. For the normal left 

ventricle, the peak stays in the middle for both numerical and experimental
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measurements. For ischemic left ventricle, the peaks of the velocity profile 

apparently shifted to the right with approximately the same amount for the 

experimental and numerical cases. Each of the Y component profile curves 

reaches zero at the same or close to the same position as well.

Based on the above fact, it is believed that the numerical model can 

produce a CER that accurately reflects the flow development in the left 

ventricle.

IV.2.1 Flow patterns for various time steps of normal and ischemic left 

ventricles

In this section, the velocity patterns of all time steps of the normal 

and ischemic left ventricles are discussed. To better visualize the three- 

dimensional data, only the plots of the cross section, which contains the 

characteristic flow, were presented. Since both the geometry and the 

boundary conditions are symmetric with respect to the Y-Z plane, the 

velocity vectors of the cross sections that aligned with Y-Z plane are 

presented. Since the Z component of the velocity is the dominant one 

among all three velocity components. The contour plots of the Z component
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on the same cross section are also presented to help us to get a better look at 

the flow pattern.

Figures 4.1a to 4.1c are the velocity vectors and the Z component 

contour lines of each time step of the normal left ventricle. Figures 5.2a to 

5.2b are the velocity vectors and the Z component contours lines of all the 

time steps of the ischemic left ventricle.

It is clearly shown that the contour lines of the normal left ventricle 

for all time steps are shaped like narrow wedges pointed downwards. The 

lowest point of all the contour lines appeared approximately in the middle. 

This means that the high velocity region is in the middle of the cross 

section. Flow has been highly accelerated from the boundary to the center. 

The contraction is strong and symmetric.

Similarly shaped contour lines, with the lowest point in the middle, 

only appeared at the second time step (IT2) for the ischemic left ventricle. 

The contour line of the first time step (IT1) and third time step (IT3) are 

much more flat than that of the normal left ventricle. The lowest point of the 

contours lines shift to the right wall instead of staying in the middle. This 

means that the flow had not been accelerated much from the wall. The
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contraction is weak and non-symmetric. There is no apparent flow pattern 

for the last time of the ischemic left ventricle.

Table 4.1 and table 4.2 present the computed Reynolds number of 

each time step of the normal and ischemic left ventricle. The peak value of 

the two Ventricles are 3126.22 and 1317.69.

IV.2.2 Flow pattern of simulated ischemic left ventricles

As mentioned in the previous section, an ischemic area was imposed 

on the normal left ventricle with controlled abnormal wall motion to 

simulate the hypokinesis (F=0.5,0.3,0.1), akynesis (F=0.0) and dyskinesis 

(F=-0.1, -0.3). For the simulations with the ischemic area on the right wall 

of the left ventricle, the same cross sections as the ones used in the previous 

section are presented. For the simulations with the ischemic region on the 

back wall, the X-Z plane was chosen to present the velocity vector and Z 

component contour lines.

Figure 4.3a to 4.5c present the velocity vectors and twenty Z 

component contour lines of all the simulations. The corresponding contour 

lines are of the same value.
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The velocity vector plots qualitatively show that the flow around the 

ischemic region was directed to the ischemia more and more with decreases 

of F.

The Z component contour plots gave us a clearer look at the flow 

dynamics changes with the change in size and severity of the ischemic 

region. Almost all the contour lines except the ones near the outlet were 

affected by the ischemia. When F is larger than 0, all the contour lines are 

attracted to the ischemic wall. Near the ischemic region, the contour lines 

become more and more dense with decreases of F. When F is lower than 0, 

the contour lines appear further away from the ischemic wall. The existence 

and the magnitude of the Z component at the boundary cause this behavior 

of the contour lines.

With the decrease of F from 0.5 to -0.3, the shape of the 

corresponding contour lines became more and more flat. The lowest point 

of the corresponding contour lines continually moves upward to the outlet. 

For the simulation with the large ischemic area, the contour lines gradually 

changed from one valley to two valleys.

Since we keep the Reynolds number the same for all cases, the outlet 

flow rate is the same. The change of the flow patterns show that with the

48



severity of ischemia increased, the flow near the ischemic region 

contributed less and less to the outflow, while the flow of the unaffected 

regions contributed more and more.

The simulations with the ischemia on the side with two different 

sizes were compared. It is observed that with the same F, although the Z 

component contour lines of the simulation with large ischemia do not shift 

as much as the ones with small ischemia, their lowest point moved further 

upwards. The deformation of those contour lines is much bigger than that of 

the corresponding ones with small ischemia simulation.

IV.3.1 CER and CER coefficient of normal and ischemic left ventricles 

As mentioned in the previous chapter, a clinical index Central 

Ejection Region (CER) as well as its quantitative version, the CER 

coefficient, would be used to estimate the global and regional performance 

of the left ventricle contraction. Figure 4.6a to 4.7d present the CER of each 

time step of normal and ischemic left ventricles. Each CER is presented by 

two three dimensional views, a front view and a side view. Figure 4.11 and 

Table 4.3 presents the CER coefficient at each time step for the normal and
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ischemic left ventricles as well as the time-average value over the entire 

systolic period.

For all four time steps of the normal left ventricle, the CERs are solid, 

pillar shaped running continuously from the outlet to apex. Except the 

fourth time step, all the CERs were located in the middle of the left 

ventricular cavity, following the center line of the cavity very well, 

particularly the second and third time steps. The CER for the fourth time 

step shifted to the right wall and there appeared a little split at the end. This 

may attribute to the small area near the apex which has a weaker contraction 

compared to the unaffected areas.

Only the CER for the second time step of the ischemic left ventricle is 

similar to the CER for the normal left ventricle. For all other time steps, the 

CER was shorter and smaller in volume than the ones of the normal left 

ventricle. The shapes are thin and flat, and splitting to several branches, 

rather than staying in a solid pillar shape. Especially the last time step, the 

whole CER shrunk to a few very small pieces. Only a small section of the 

each CER followed the centerline, where most parts stayed along the left 

ventricular wall.
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Quantitatively the CER coefficient for the normal left ventricle 

ranged from 0.514 to 0.832 with a time-averaged value of 0,658 over 

systole. For the ischemic left ventricle, the CER coefficient ranged from 

0.054 to 0.783, with a time-averaged value over systole of 0.362, which is 

about 55% of CER for normal left ventricle.

IV.3.2 CER and CER coefficients of the simulated ischemic left 

ventricles

Figure 4.8a to 4.10c present a three-dimensional view, a front view 

and a side view of every CER for the simulated ischemic cases. The CER 

exhibited an apparent change with the change in ischemic region and F.

For the hypokinesis cases, the lower part of the CER, corresponding 

to the ischemic region along the Z direction, had been pushed into the 

region which is surrounded by the ischemic left ventricular wall even with 

the mildest abnormal wall motion. The CER remained inside this region 

when F is larger than 0. When F equals 0.5, the lower part of the CER 

became concave and extended along the ischemic wall. The cross section of 

the CER changed from a circle to an arc. With the decrease of F, the 

concave CER split into three branches. With more decreases in F, each
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branch became thinner and shorter, and moved closer and closer to the wall. 

The middle branch moved towards the center of the ischemia whereas the 

other two branches moved closer to the corresponding boundary of the 

ischemic region.

When the abnormal wall motion became severer (akinesis or 

diskineses), the CER inside the ischemic region completely disappeared. 

There were still short branches of the CER above the ischemic region. There 

is insignificant difference among the CERs for the same ischemic region. 

With decreases in F, the branches became slightly shorter and thinner, the 

split point moved slightly upwards.

Comparing Figure 4.10b and 4.11c? the CER along the long axis 

direction was affected when the ischemia was on the side than when the 

ischemia on the back of the left ventricular wall. This shows that the CER is 

more sensitive to the ischemia location when the ischemia is located on a 

cross section of a more regular geometry.

Table 4.1 and Figure 4.10 shows the CER coefficients of the 

simulated ischemic cases and the CER coefficient against F. With the same 

ischemic region, the CER coefficient decreased with a decrease in F. When 

F is zero, the curve became flat. With the same simulation factor, the
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simulation with the small ischemia on the side has the lowest CER 

coefficient, whereas the simulation with the large ischemia on the back has 

the highest CER coefficient. This is in partial agreed with Gonzalez. Figure 

4.13 is the results based on spherical shaped model similar size and location 

of the ischemic region.

As discussed before, the CER tends to stay inside the region, which 

is surrounded by the ischemic wall. The larger ischemic wall surrounded a 

larger region than the small ischemic wall; so obviously, the CER for 

simulation with the larger ishemic region is closer to the centerline than the 

CER of the simulation with small ischemic region. We also discussed 

before that the ischemia on the side has a bigger affect on the CER than the 

ischemia on the back.

IV.4 Comparision with Other Models

These resulting flow fields from the current model agree with the 

results of others using axis-symmetric geometry models (Georgiadis et al. 

1992 and Pelle et al. 1993) and more realistic geometry models (Peter et al. 

1996 and Taylor et al. 1995), in that the flow was generally directed toward
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the long axis, and then out through the orifice for a normally contracting 

ventricle.

Compared to the models with Peter et al. and Taylor et a l.’s model, 

both the vector plots and the magnitude images show that the flow 

converged toward the aortic valve from the entire ventricle. The maximum 

velocity occurred at the outlet of the ventricle. The result from Taylor et al. 

Also agrees that there is a definite difference in the geometric shapes and 

flow patterns in normal and ischemic hearts. The vector plot along the plane 

aligned with the long axis has a similar velocity profile as our results.

The result that CER is more sensitive with a more regular geometry s 

agrees with Gonzalez’s work (1994). In his results, based on a spherical 

shaped model, the CER is very sensitive to the ischemia region.

Some observations are different from the previous models. Compared 

to the two-dimensional results by Silva (1991), the ischemia affects a larger 

region of the CER along the long axis direction. Compared to Gonzalez’s 

(1994) results, a split of the CER is observed, and the CER is less sensitive 

to the location of the ischemic region. Most importantly, the current study 

gave a complete and a detailed look at some physical characters of the three 

dimensional CER.
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NT1 NT2

Figure 4. la. Velocity & Vz Contour of 
Normal left ventricle
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NT4

Figure 4. lb. Velocity & Vz Contour of 
Normal left ventricle



NTSA. ^ J L  *s J

Figure 4.1c. Velocity & Vz Contour of 
Normal left ventricle
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Figure 4,2a. Velocity & Vz Contour of 
Ischemic left ventricle
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IT J IT4

Figure 4.2b. Velocity & Vz Contour of 
Ischemic left ventricle
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F = 0.5 F = 0.3

Figure 4.3a. Velocity & Vz Contour of
simulated ischemic left ventricle models

small ischemia on the side



F = 0.1 F = 0.0

Figure 4.3b. Velocity & Vz Contour of
simulated ischemic left ventricle models

small ischemia on the side
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F = -0.1

Figure 4,3c. Velocity & Vz Contour of
simulated ischemic left ventricle models

small ischemia on the side
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F = 0.5 F = 0.3

Figure 4,4a. Velocity & Vz Contour of
simulated ischemic left ventricles

large ischemia on the side



F = 0.1 F = 0.0

Figure 4.4b. Velocity & Vz Contour of
simulated ischemic left ventricles

large ischemia on the side
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F = -0.1 F = -0.3

Figure 4.4c. Velocity & Vz Contour of
simulated ischemic left ventricles

large ischemia on the side
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F = 0.5 F = 0.3

Figure 4.5a. Velocity & Vz Contour of
simulated ischemic left ventricles

large ischemia at back
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F = 0.1 F = 0.0

Figure 4.5b. Velocity & Vz Contour of
simulated ischemic left ventricles

large ischemia at back



F = -0.1 F = -0.3

Figure 4.5c, Velocity & Vz Contour of
simulated ischemic left ventricles

large ischemia at back
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NT1

Figure4.6a Different views of the CER region inside
the normal left ventricle (NT1, t = 67ms)
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NT2

Figure4.6b Different views of the CER region inside
the normal left ventricle (NT2, t = 134ms)
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NT3

Figure4.6c Different views of the CER region inside 
the normal left ventricle (NT3, t = 201ms)
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NT4

Figure4.6d Different views of the CER region inside
the normal left ventricle (NT4, t = 301ms)
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Figure4.6e Different views of the CER region inside
the normal left ventricle (NTS, t = 401ms)
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IT1

Figure4.7a Different views of the CER region inside
the ischemic left ventricle (IT1, t = 100ms)
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IT2

Figure4.7b Different views of the CER region inside
the ischemic left ventricle (IT2, t = 200ms)
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IT3

Figure4.7c Different views of the CER region inside
the ischemic left ventricle (IT3, t = 267ms)
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IT4

Figure4.7d Different views of the CER region inside
the Ischemic left ventricle (IT4, t = 334ms)

7?



Figure4.8a 3D view of the CER regions inside left ventricles
with simulated ischemic region

small ischemia on the side

78



Figure4.8b Front view of the CER regions inside left ventricles
with simulated ischemic region

small ischemia on the side
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Figure4.8c Side view of the CER regions inside left ventricles
with simulated ischemic region

small ischemia on the side
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Figure4.9a 3D view of the CER regions inside left ventricles
with simulated ischemic region

large ischemia on the side
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Figure4.9b Front view of the CER regions inside left ventricles
with simulated ischemic region

large ischemia on the side
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Figure4.9c Side view of the CER regions inside left ventricles
with simulated ischemic region

large ischemia on the side
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Figu.re4.10a 3D view of the CER regions inside left ventricles
with simulated ischemic region

large ischemia at back
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Figure4.10b Back view of the CER regions inside left ventricles
with simulated ischemic region

large ischemia at back
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Figure4.10c Side view of the CER regions inside left ventricles
with simulated ischemic region

large ischemia at back
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Normal Left Ventricle

Time Time Step Outlet Outlet Re
(ms) diameter(cm) velocity(cm/s)

0
NT1 1,250 64.38 2299.24

67
NT2 1.230 81.62 2868.23

134
NT3 1.212 90.29 3126*22

201
NT4 1.208 28.29 63132

301
NTS 1.161 15.43 512.02

401

Table 4.1 Time after onset of systole for each Normal LV outline 
and corresponding Re for each time step

Ischemic Left Ventricle

Time Time Step Outlet Outlet Re
(ms) diameter(cm) velocity (cm/s)

0
IT1 1.250 27.45 98038

100
IT2 1.24 34.23 1209.09

200
IT3 1.16 39.76 1317*69

267
IT4 1.13 7.12 229*757

334

Table 4,2 Time after onset of systole for each Ischemic LV outline 
and corresponding Re for each time step
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n t i NT2 N T3 NT4 NTS T im e 
A ve.

Norm al 0.560 0.832 0/770 0.514 0.676 0.658

IT ! IT2 IT3 IT 4 T im e Awe.

Ischem ic 0,448 0.783 0.329 0.054 0.362

Table 4,3 CER coefficients of each time step of 
Normal and Ischemic left ventricle

n  T2 13 T4 15 TL\E
avhwe

line Step

i  Nbnrall^\%tnde u fedBiicLeffVertride

Figure 4.1 i Cer coefficient vs. Time Steps for normal and ischemic-
left ventricles
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F=0.5 F=03 F=0.1 F=0J F=-0.1 •

oi!
Size 

small @ 
side

0.533 0.466 0.420 0.394 0.387 0.376

Size 
Large @ 

side
0.588 0.511 0.456 0.424 0.407 0.399

Size 
Large @ 

back
0.634 0.553 0.469 0.451 0.415 0.406

Table 4.4 CER coefficient of simulated iscemic 
left ventricles

Figure 4.12 CER coefficient vs. simulation factor
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CER Coeff., SM Simulated Region

F

CER Coeff*, LG Simulated Region

'0.2 -0.1 0 0.1 0.2 0.3 0.4 0.8 0.6 0.7 0.8 0.9 1

F

Figure 4.13 CER coefficient vs. Simulation Factor 
for sphere shape model
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Figure4.14 Velocity vector plots from the numerical simulation
and experimental measurements for normal left ventricle
(a) Experimental measurement (b) Numerical simulation
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Figure 4.15 Velocity profile of experimental and
numerical results close to outlet

(a) Z component (b) Y component

92



Experiment ;Numerieaf

Figure 4.16 Velocity profile of experimental and
numerical results close to bottom

(a) Z component (b) Y component
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Figure4.17 Velocity vector plots from the numerical simulation
and experimental measurements for ischemic left ventricle
(a) Experimental measurement (b) Numerical simulation
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Figure 4,18 Velocity profile of experimental and 
numerical results close to bottom 

(a) Z component (b) Y component



Figure 4.19 Velocity profile of experimental and
numerical results close to bottom

(a) Z component (b) Y component
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Figure 4.20 Comparison of the CER of experimental and numerical results 
(a) numerical normal LV (b) experimental normal LV
(c) numerical ischemic LV (d) experimental ischemic LV

97



CHAPTER ¥

CONCLUSIONS AND RECOMMENDATIONS 

FOR THE FUTURE WORK

V.l Conclusion

The present work is a continuation of the left ventricular flow 

dynamics study. The main objective was to explore the validity and efficacy 

of the CER and the CER coefficient as a new diagnostic tool of ischemic 

heart disease based on a physiologic shaped three-dimensional model, and 

to obtain a direct qualitative and quantitative validation of the numerical 

model with experimental measurements.

As in the previous models, the CER appears to be a useful tool to 

visualize changing flow pattern with changes in wall motion resulting from 

changes in the severity of the simulated ischemia. For the hypokinesis 

cases, the CER was able to indicate the approximate position of the 

ischemia boundary. With the same ischemic region, the CER coefficient 

was sensitive to the severity of the ischemia. Both the CER and the CER 

coefficient are more sensitive to degrees of hypokinesis than to degrees of 

dyskinesis.
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In the previous two-dimensional model, a large CER was considered 

better. In the current model, a good CER has the appearance of a solid pillar 

shaped and resides in the middle of the left ventricular cavity. When the 

CER increased in size in one direction, it would most likely change into a 

thin flat shape, which corresponding to the wall motion modeled with mild 

hypokinesis.

Compared to the previous two-dimensional model and three- 

dimensional spherical shaped model, the current model most resembles the 

geometry of the left ventricle. The current study also included a complete 

detailed spatial observation of the CER as well as its relationship to the 

simulated ischemic wall motion. Some new phenomenon in the flow 

patterns and the CER are observed, which were impossible to observe in the 

two-dimensional model and were not observed in a spherical shaped three- 

dimensional model. This further provides the necessity for building a three- 

dimensional, real shaped model, which closely resembles the physiological 

geometry.

Another advantage of this model over the other three-dimensional 

models is the fact that the boundary conditions are obtained from the left 

ventricular wall motion.
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The main limitation of the model is the steady state assumption. The 

contraction of the left ventricle is a transient continuous motion, as well as 

the resulting flow. However, our current computational resources do not 

allow a transient computation.

The comparison of the numerical and experimental results gave a 

fairly good correlation. The experimental results validate the adequacy of 

the numerical model to predict left ventricular velocity vector fields based 

on computed wall motion.

¥.2 Recommendations for future work

Although the numerical model used in the current study is a lot closer 

to the real left ventricle compared with other models, it’s still symmetric 

with respect to the Y-Z plane, and the reconstruction method utilized in the 

current study is very simple. There are many groups working on the three- 

dimensional reconstruction methodology which is complicated yet more 

accurate. In the future, we should collaborate with other groups in order to 

build our model with a more accurate geometry.

The governing equation utilized in the current study is for steady state 

flow, which is not true for the real left ventricular flow. The main reason
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we didn’t used the transient simulation as in the two dimensional model is 

the limitation of the computer resources. In the future, it is hopeful that the 

transient simulation will be performed.

From the comparison of the experimental and numerical results, we 

can clearly see the difference between the free surface boundary condition 

and the quasi-steady inflow we used in the current study. A model of the 

free surface boundary condition is necessary for the future study.

The current definition of the CER only takes the velocity direction 

into account. From the comparison of the flow patterns of the model with 

small ischemia and larger ischemia, the magnitude of the velocity also plays 

an important role. When eventually the CER is used as a diagnostic index 

for ischemic heart disease, it should be able to take the flow magnitude into 

account as well.
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APPENDIX A

/* Program Geo Gen.C 
Language: C
This program generate the three dimensional geometry 
data from the two-dimensional data 

*/

#include<stdio.h>
#include<math.h>
#defme N 5000
#deflne N1 200 /*# of slcies along the long axis*/
#define N2 200 /* # of points of each slice*/
#defme PI 3.1415926
#define R 0.0043271 /*demensionalizing coefficient*/

struct POINT { 
double x; 
double y; 
double z; 
int flag;
}CO[Nl+l][N2+l];

main()
{double X[N],Y[N];
int i,j,n; /* n is total points in eash orgional 2-D data file , like of lvh.tO-5.

It may be different for different data file */ 
double a,b; /*x y coord of center of outlet*/ 
int I; /* point # of the lowest point*/ 
double bl,LX[Nl+l],LY[Nl+l],RX[Nl+l],RY[Nl+l]; 
double b2,lx[Nl+l],ly[Nl+l],rx[Nl+l],ry[Nl+l]; 
double temp; 
char stemp[50];
FILE *fp,*pr;
double r,alfa,delta,xtemp,ytemp,ztemp; 
double a_outlet,b_outlet;/* center of the outlet*/
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for(i= 1 ;i<=N 1 ;i++)
for(j= 1;] <=N2 ;j ++)
C0[i][j].flag=0;

fp=f0pen(,’lvs.t4’V’r’1); /*Read in 2-D origional data*/ 
i=0; 
do{ 
i=i+l;
fscanf(fp,f,%lf?%lf',&X[i],&Y[i]);
X[i]=-X[i];
}while(feof(fp)==0);
fclose(fp);
n=i-l;

a_outlet=(X[ 1 ]+X[n])/2; /*Caculate outlet center*/ 
b_outlet=(Y[ 1 ]+Y[n])/2; 
b 1=99999;
for(i=l ;i<=n;i++) /* Searching for the Apex point*/ 
{if(bl>=Y[i])
{bl=Y[ij;
1=1;
}
}

fp=fopen(”s4.L'7,rM); /*Read in seperation points on left and right halves.*/ 
pj^fopene^.R 'yV ’); /*s4.L and s4.R are output file segments from FIDAP*/ 
for(i= 1 ;i<=N 1+1 ;i++)
{
for 0=1 ;] <=24;] ++)
fscanf(fp,M%sM,&stemp);
fscanf(fp,”%c %c”,&stemp[ 1 ],&stemp[2]);
if(i<=2)
fscanf(fp,"%lf, %lf,%lf,,&LX[i],&LY[i],&temp);
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if(i>2)
fscanf(fp,"%lf, %lf,%lf',&LX[i-l],&LY[i-l],&temp); 
fscanf(fp,"%c",&stemp[l]);

for(j=l;j<=24;j++) 
fscanf(pr,"%s",&stemp); 
fscanf(pr,"%c %c",&stemp[l],&stemp[2]); 
if(i<=2)
fscanf(pr,"%lf, %lf,%lf',&RX[i],&RY[i],&temp); 
if(i>2)
fscanf(pr,"%lf, %lf,%lf',&RX[i-l],&RY[i-l],&temp); 
fscanf(pr,"%c",&stemp[l]);
}

lx[l]=LX[l]; ly[l]=LY[l]; 
rx[l]=RX[l];ry[l]=RY[l];

for(i=2; i<=N 1; i++)
{bl=99999.*99999; 
for(j=2;j<I;j++)
{temp=(XD]-LX[i])*(XD]-LX[i])+(YO]-LY[i])*(YO]-LY[i]);
if(temp<bl)
{bl=temp;
lx[i]=X[j];
ly[i]=YO];
}
}

b2=99999*99999.;
for(j=I+l;j<n;j++)
{temp=(X[j]-RX[i])*(X[j]-RX[i])+(Y[j]-RY[i])*(Y[j]-RY[i]);
if(temp<b2)
{b2=temp;
rx[i]=XD];
ry[i]=Y[j];
}
}
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}

for(i=l;i<=Nl;i++) /*rotate each segment, get the points on each tilted circle*/ 
{ a=(lx[i]+rx[i])/2; /*center of the segment, also rotate center*/ 
b=(ly[i]+ry[i])/2;
r=sqrt((lx[i]-rx[i])*(lx[i]-rx[i])+(ly[i]-ry[i])*(ly[i]-ry[i]))/2; 
alfa=atan((ry[i]-ly[i])/(rx[i]-lx[i])); /♦Angle to rotate*/

delta=2*PI/N2;
for(j=l;j<=N2;j++)
{xtemp=r* cos(delta*(j-l)); 
ytemp=r* sin(delta* (j-1)); 
ztemp=0;
if(((delta*(j-l))>=PI/4)&&((delta*(j-l))<=PI*3/4))
CO[i][j].flag=l;

CO[i][j].x=(xtemp)*R;
CO[i][j].y=(a-ap+ytemp*cos(alfa)-ztemp*sin(alfa))*R;
CO[i][j].z=(b-bp+ytemp*sin(alfa)+ztemp*cos(alfa))*R;

}
}

/* output to screen the 3-D geometry data. It can be directed to any file*/ 
printf("0 %lf %lf 1 \n",(X[I]-ap)*R,(Y[I]-bp)*R);

for(i= 1 ;i<=N 1; i++)
{forG=l;j<=N2;j++)

printf("%lf %lf %lf %d\n",CO[i][j].x,CO[i]0]-y,CO[i]0]-Z,CO[i]0].flag); 
}
}

/* End of the Program*/
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/* Fpoints_Gen.c
This program is the newer version of the previous program. Besides generates 
the 3-D geometry data, it also generates the FIDAP input file for all the points 
of each geometry with the input of the geometry data file

5j« j

#include<stdio.h>
#include<math.h>
#define N  5000
#define N1 30 /*# of slcies along the long axis */
#define N2 16 /* # of points of each slice */
#defme PI 3.1415926
#defme R 0.0043271 /*dimensionalize coefficient */

struct POINT { 
double x; 
double y; 
double z; 
int flag;
}CO[N1+10][N2+10];

struct outj3oint{ 
double x; 
double y; 
double z;
} out_temp[ 10],out_p 1 [ 10],out_p3 [ 10],out_p6 [ 10] ,out_p 15 [ 10],out_p24 [10]; 

main()
{double X[N],Y[N];
int i,j,n; /* n is total points of lvh.t0-5 */
double a,b; /*coord of center of each slice*/
int I; /* point # of the lowest point*/
double bl,LX[Nl+10],LY[Nl+10],RX[Nl+10],RY[Nl+10];
double b2,lx[Nl+10],ly[Nl+10],rx[Nl+10],ry[Nl+10]; 
double temp; 
char stemp[50];
FILE *fp,*pr;
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double r,alfa,delta,xtemp,ytemp,ztemp;
double ap,bp;/*center of the outlet*/ 
double X0,Y0,Z0,r0;

fp=fopen("lvh.t3 "9"r");
1=0;
do{
i=i+l;
fscanfCfp^yolf^/olf^&XfiJ^Yti]);
X[i]=-X[i];
}while(feof(fp)==0);
fclose(fp);
n=i-l;

ap=(X[ 1 ]+X[n])/2; 
bp=(Y[l]+Y[n])/2; 
bl=99999; 
for(i=l ;i<=n;i++)
{if(bl>=Y[i])
{bl=Y[i];
I=i;
}
}

fp=fopen("s4.L","r"); 
pr=fopen("s4.R","r"); 
for(i= 1 ;i<=N 1+1 ;i++)
{
for(j=l ;j<=24;j++) 
fscanf(fp,"%s",&stemp); 
fscanf(fp,"%c %c",&stemp[l],&stemp[2]); 
if(i<=2)
fscanf(fp,"%lf, %lf,%lf',&LX[i],&LY[i],&temp); 
if(i>2)
fscanf(fp,"%lf, %lf,%lf',&LX[i-l],&LY[i-l],&temp);
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fscanf(fp,"%c",&stemp[l]);

for(j=l;j<=24;j++) 
fscanf(pr,"%s",&stemp); 
fscanf(pr,"%c %c",&stemp[l],&stemp[2]); 
if(i<=2)
fscanf(pr,"%lf,%lf,%lf,)&RX[i],&RY[i],&temp);
if(i>2)
fscanf(pr,"%lf, %lf,%lf',&RX[i-l],&RY[i-l],&temp); 
fscanf(pr,"%c",&stemp[l]);
}

lx[l]=LX[l]; ly[l]=LY[l]; 
rx[l]=RX[l];ry[l]=RY[l];

for(i=2;i<=Nl ;i++)
{bl=99999;
for(j=2;j<I;j++)
{temp=(XD]-LX[i])*(XD]-LX[i])+(YO]-LY[i])*(YO]-LY[i]);
if(temp<bl)
{bl=temp;
lx[i]=XU];
ly[i]=YO];
}

}

b2=99999; 
for(j=I+l ;j<n;j++)
{temp=(XD]-RX[i])*(XO]-RX[i])+(YD]-RY[i])*(YD]-RY[i]);
if(temp<b2)
{b2=temp;
rx[i]=X[j];
ry[i]=YD];
}

}
}
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for(i=l ;i<=N 1 ;i++)
{ a=(lx[i]+rx[i])/2; 
b=(ly[i]+ry[i])/2;
r=sqrt((lx[i]-rx[i])*(lx[i]-rx[i])+(ly[i]-ry[i])*(ly[i]-ry[i]))/2;
alfa=atan((ry[i]-ly[i])/(rx[i]-lx[i]));

delta=2*PI/N2; 
for(j=1;] <=N2;] ++)
{xtemp=r*cos(delta*(j-l)); 
ytemp=r* sin(delta* (j -1)); 
ztemp=0;
if((delta>=PI/4)&&(delta<=PI*3/4))
CO[i][j].flag=l;
CO[i] [j ] ,x=(xtemp)*R;
CO[i][j].y=(a-ap+ytemp*cos(alfa)-ztemp*sin(alfa))*R;
CO[i][j].z=(b-bp+ytemp*sin(alfa)+ztemp*cos(alfa))*R;
}

/* output all the points of the cubic regions inside the control volume*/ 
iflCi— l)
{out_temp[ 1 ].x=0; out_temp[l].y=0; out_temp[l].z=0; 
out_temp[2].x=r/2; out_temp[2].y=r/2; out__temp[l].z==0; 
out_temp[3].x=-r/2; out_temp[3] .y=r/2; out_temp[l].z=0; 
out_temp[4].x=-r/2; out_temp[4].y=-r/2; out_temp[l].z=0; 
out_temp[5].x=r/2; out_temp[5].y=-r/2; out_temp[l].z=0; 
out_temp[6].x=r/2; out_temp[6].y=0; out_temp[l].z=0; 
out_temp[7].x=0; out_temp[7].y=r/2; out_temp[l].z=0; 
out_temp[8].x=-r/2; out_temp[8].y=0; out_temp[l].z=0; 
out_temp[9].x=0; out_temp[9].y=-r/2; out_temp[l].z=0; 
for(j=1 ;j <=9;] ++)
{outjp 10].x=(outJemp0].x)*R;
out_p 10 ] .y=(a-ap+out_temp [j ] .y * cos(alfa)-out_temp[j] .z* sin(alfa))*R; 
outjp 10 ] .z=(b-bp+out_temp [j].y* sin(alfa)+out_temp [j ] .z*cos(alfa))*R;
}
}
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if(i= 3 )
{out_temp[ 1 ],x=0; out_temp[l].y=0; out_temp[l].z=0; 
out_temp[2].x=r/2; out_temp[2].y=r/2; out_temp[l].z=0; 
out_temp[3 ].x=-r/2; out_temp[3 ] .y=r/2; out_temp[ 1 ] .z=0; 
out_temp[4].x=-r/2; out_temp[4].y=-r/2; out temp[ 1 ].z=0; 
out_temp[5].x=r/2; out_temp[5].y=-r/2; out_temp[ 1 ].z=0; 
out_temp[6].x=r/2; out_temp[6].y=0; out_temp[ 1 ].z=0; 
out_temp[7].x=0; out_temp[7].y=r/2; out_temp[l].z=0; 
out_temp[8].x=-r/2; out_temp[8].y=0; out_temp[l].z=0; 
out_temp[9].x=0; out_temp[9].y=-r/2; out_temp[l].z=0; 
for(j=1 ;j <=9;] ++)
{ out_p3 [j ] .x=(out_temp[j] .x)*R;
out_p3 [j ] .y=(a-ap+out_temp [j ] .y * cos(alfa)-out_temp [j].z* sin(alfa))*R; 
out_p3 [j ] .z=(b-bp+out_temp [j].y* sin(alfa)+out_temp [j].z* cos(alfa))*R;

if(I==6)
{out_temp[ 1 ].x=0; out_temp[ 1 ].y=0; out_temp[ 1 ].z=0; 
out_temp[2].x=r/2; out_temp[2].y=r/2; out_temp[ 1 ].z=0; 
outjem p[3].x=-r/2; out_temp[3].y=r/2; out_temp[ 1 ].z=0; 
out_temp[4].x=-r/2; out_temp[4].y=-r/2; out temp[ 1 ].z=0; 
out__temp[5].x=r/2; out_temp[5].y=-r/2; out_temp[l].z=0; 
out_temp[6].x=r/2; out_temp[6].y=0; out_temp[l].z=0; 
out_temp[7].x=0; out_temp[7].y=r/2; out_temp[l].z=0; 
out_temp[8].x=-r/2; out_temp[8].y=0; out_temp[l].z=0; 
out temp[9].x=0; out_temp[9].y=-r/2; out_temp[l].z=0; 
for(j=1 ;j <=9 ;j ++)
{ out_p6[j ] .x=(out_temp [j].x)*R;
out_p6[j].y=(a-ap+out_temp[j].y*cos(alfa)-out_temp[j].z*sin(alfa))*R; 
out_p6 (j ] .z=(b-bp+out_temp [j].y* sin(alfa)+out_temp [j ] .z* cos(alfa)) *R;

if(i=15)
{out_temp[ 1 ].x=0; out_temp[l].y=0; out_temp[l].z=0; 
out__temp[2].x=r/2; out_temp[2].y=r/2; out_temp[l].z=0; 
out_temp[3].x=-r/2; out_temp[3].y=r/2; out_temp[l].z=0;
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°ut_temp[4].x=-r/2; out_temp[4].y=-r/2; out_temp[ 1 ].z=0;
°ut_temp[5] .x=r/2; out_temp[5].y=-r/2; out_temp[ 1 ].z=0;
°ut_temp[6].x=r/2; out_temp[6].y=0; out_temp[l].z=0; 
out_temp[7].x=0; out_temp[7].y=r/2; out_temp[l].z=0; 
out_temp[8].x=-r/2; out_temp[8].y=0; out_temp[ 1 ].z=0; 
out_temp [9].x=0; out_temp[9].y=-r/2; out_temp[l].z=0; 
for(j=1 ;j <=9 ;j ++)
{out_p 15 [j ] .x=(out_temp [j ] .x) *R;
out_j3l5[j].y=(a-ap+out_tempO].y*cos(alfa)-out_tempU].z*sin(alfa))*R; 
out_p 15 [j] .z=(b-bp+out_temp[j] .y*sin(alfa)+out_tempO] .z*cos(alfa))*R;
}

}
If(i==24)
{out_temp[l].x=0; out_temp[l].y=0; out_temp[l].z=0; 
out_temp[2].x=r/2; out_temp[2].y=r/2; out_temp[ 1 ].z=0; 
out_temp[3].x=-r/2; out_temp[3].y=r/2; out_temp[ 1 ].z=0; 
out_temp[4].x=-r/2; out_temp[4].y=-r/2; out_temp[ 1 ].z=0; 
out_temp[5].x=r/2; out_temp[5].y=-r/2; out_temp[l].z=0; 
out_temp[6].x=r/2; out_temp[6].y=0; out_temp[l].z=0; 
out_temp[7].x=0; out_temp[7].y=r/2; out_temp[l].z=0; 
out_temp[8].x=-r/2; out_temp[8].y=0; out_temp[l].z=0; 
out_temp[9].x=0; out_temp[9].y=-r/2; out_temp[l].z=0; 
for(j=l;j<=9;j++)
{ out_p24 [j ] ,x=(out_temp [j].x)*R;
out_p24[j].y=(a-ap+out_temp[j].y*cos(alfa)-out_temp[j].z*sin(alfa))*R;
out__p24[j].z=(b-bp+out_tempO]-y’|tsin(alfa)+out_tempO].z*cos(alfa))*R;

}

printf("FI-GEN( ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, 
MEDG = 1, MLOO = 1, MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, MSOL 
= 1 )\n");
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for(j=l;j<=N2;j=j+2)
{for(i=l ;i<=Nl ;i++)
printf("POINT( ADD, VISI, CART, COOR, X = %le, Y = %le, Z = 

%le)\n",CO[i][j].x,CO[i]D].y,CO[i][j].z);
}

printfC'An1'); 
for(i=2; i<=N2; i=i+2)
printf(f,POINT( ADD, VISI,CART,COOR, X = %le, Y = %le, Z=

%le)\n,f ,CO[25] [i] .x,CO[25] [i] .y ,CO[25] [i] .z);

for(i= 1; i<=5; i++)
printf(!,POINT( ADD, VISI,CART,COOR, X = %le, Y = %le, Z=

%le)\nH ,out_p 15 [i] .x,out__p 15 [i] .y,out_p 15 [i] .z);

for(i=l;i<=5;i++)
prIntf(,!POINT( ADD, VISI,CART,COOR, X = %le, Y = %le, Z= 

%le)\n”,out_p24[i].x,out_p24[i].y,out_p24[i].z);

for(i=l;i<=5;i++)
prIntf(f,POINT( ADD, VISI,CART,COOR, X = %le, Y = %le, Z=

%le)\nn ,out_p6 [i] .x,out__p6 [i] .y ,out_p6 [i] .z);

printf("POINT( ADD, VISI, CART, COOR, X = 0, Y = %lf, Z = %lf)\n",(X[I]-
ap)*R,(Y[I]-bp)*R);

for(i=6; i<=9; i++)
printf(!fPOINT( ADD, VISI,CART,COOR, X = %le, Y = %le, Z= 

%le)\n" ,out_p 15 [i] .x,out__p 15 [i] .y,out_p 15 [I] .z);

for(i=6 ;i<=9; i++)
printf(,fPOINT( ADD, VISLCART,COOR, X = %le, Y = %le, Z= 

%le)\n”,out_p24[i].x,out_p24[i].y,out_p24[i].z);

for(i=6 ;i<=9;i++)
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for(i=l ;i<=5;i++)
prmtf(”POINT( ADD, VISI,CARI,COOR, X = %le, Y = %le, Z= 

%le)\nM,out_p3 [i].x,outjp3 [i] .y,out_p3 [i].z);

for(i=l;i<=5;i++)
prmtf("POINT( ADD, ¥ISI,CART,COOR, X = %le, Y = %le, Z= 

%le)\n",out_pl [i].x,out_pl [i].y,out__pl [i].z);

for(i=6;i<=9;i++)
prmtf(”POINT( ADD, VISI,CART,GOOR, X = %1 e, Y = %le, Z= 

%le)\n",out_p3 [i] .x,out_p3 [i] ,y,out_p3 [i] .z);

printf("POINT( ADD, VISI,CART,GOOR, X = %le, Y = % h, Z=
%le)\n’,,out_p6[i].x,out_j36[i].y,out__j)6[i],z);

for(i=6;i<=9;i++)
printf("POINT( ADD, VISI,CART,COOR, X = %le, Y = %le, Z= 

%le)\n,f,out__pl [i].x,out_pl [i].y,out_pl [i].z);

}
/*End of the program*/
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APPENDIX B

/*Program BCondition.C
Language: C
This program caculates the velocity boundary conditions for natural and 

simulated ischemic LVs, and outputs the BCs in FIDAP input file format. 
*/

#include<stdio.h>
#include<math.h>
#deflne N 2000 
#defme M 40100 
#defme n l 1561 
#defme PI 3.1415926535 
#defme flag 1

main()
{double xp^],y[N]?zp^],vx[N],vyp^],vz[N]; 
double lenth,minl,px[M],py[M],pz[M],U; 
char s[100],sl;
FILE *fp;
long int ij,n,m,np,mtl9int2,int3;
int nu;
double length,! 1,alfa 1,alfa2,beta 1 ,beta2,alfa,beta;

fp^fopenC'DAT'V’r"); /*DAT is the output file from FIDAP, contains the
coordinates of all nodes on the surface*/

for(i= 1 ;i<=473 ;i++)
{for(j=l;j<=5;j++) 
fscanf(fp5f,%sf,,&s); 
fscanf(fp," %dft,&nu); 
for(j=lu<==31y++) 
fscanf(fp,”%sl,,&s); 
fscanf(fp," %cM,&sl);
fscanf^^^/olf^/olf^/olf'^xfnul^ytnul^zfnu]);
fscanf(fp,,,%s,,,&s);
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}

for(i=474;i<=n 1 ;i++)
{for(j= 1 ;j<=5;j++) 
fscanf(fp,"%s",&s); 
fscanf(fp," %d",&nu); 
for(j=l;j<=25y++) 
fscanf(fp,''%s'',&s); 
fscanf(fp," %c",&sl);
fscanf(fp,"%lf,%lf,%lf’,&x[nu],&y[nu],&z[nu]);
fscanf(fp,"%s”,&s);
}

fclose(fp);

fp=fopen("GEO","r"); 
for(i= 1 ;i<=40001 ;i++)
{fscanf(fp,"%lf %lf %lf %d",&px[i],&py[i],&pz[i],&j);
}
fclose(fp);

n=i-l;
for(i=l;i<=nl;i++) 

{If(z[I]<-0.895545) 
{mml=999999.0;
’for(j=l ;j<=n:j++)
{lenth=(x[i]-pxlj])*(x[i]-px[j])+(y[i]-py[j])*(y[i]-py[j])+(z[i]-pz[j])*(z[i]-

pz 0 ]);
if(lenth<minl)
{minl=lenth;
np=j;
}

}
vx[i]=(px[np]-x[i])/(0.067); 
vy [i]=(py [np] -y [i])/(0.067); 
vz[i]=(pz[np]-z[i])/(0.067);
}
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if(z[i]>=-0.895545)
{vxfi]=0;
vy[i]=0;
vz[i]=0;
}

printf("BCNODE( ADD, VELO, NODE = %d, CONS, X = %le, Y = %le, Z = 
%le )\n",i,vx[i],vy[i],vz[i]);

}
}

/*End of the Program*/
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