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ABSTRACT OF DISSERTATION

A METHODOLOGY FOR FORMALLY MODELING AND

ANALYZING SOFTWARE ARCHITECTURE OF MOBILE AGENT SYSTEMS

by

Junhua Ding

Florida International University, 2004

Miami, Florida

Professor Xudong He, Major Professor

A methodology for formally modeling and analyzing software architecture of mobile agent

systems provides a solid basis to develop high quality mobile agent systems, and the

methodology is helpful to study other distributed and concurrent systems as well. However, it is a

challenge to provide the methodology because of the agent mobility in mobile agent systems.

The methodology was defined from two essential parts of software architecture: a formalism

to define the architectural models and an analysis method to formally verify system properties.

The formalism is two-layer Predicate/Transition (PrT) nets extended with dynamic channels, and

the analysis method is a hierarchical approach to verify models on different levels. The two-layer

modeling formalism smoothly transforms physical models of mobile agent systems into their

architectural models. Dynamic channels facilitate the synchronous communication between nets,

and they naturally capture the dynamic configuration and agent mobility of mobile agent systems.

Component properties are verified based on transformed individual components, system

properties are checked in a simplified system model, and interaction properties are analyzed on

models composing from involved nets. Based on the formalism and analysis method, this

researcher formally modeled and analyzed the software architecture of mobile agent systems, and

designed an architectural model of a medical information processing system based on mobile
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agents. The model checking tool SPIN was used to verify properties such as reachability,

concurrency and safety of the medical information processing system.

From successful modeling and analyzing the software architecture of mobile agent systems,

the conclusion is that PrT nets extended with channels are a powerful tool to model mobile agent

systems, and the hierarchical analysis method provides a rigorous foundation for the modeling

tool. The hierarchical analysis method not only reduces the complexity of the analysis, but also

expands the application scope of model checking techniques. The results of formally modeling

and analyzing the software architecture of the medical information processing system show that

model checking is an effective and an efficient way to verify software architecture. Moreover,

this system shows a high level of flexibility, efficiency and low cost of mobile agent

technologies.
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Introduction

1 Background

Formally modeling and analyzing software architecture has profound impact on the

development of high quality software systems. A rigorous approach toward architectural level

system design can help to detect and eliminate design errors as early as possible in the

development cycle, to avoid costly fixes at the implementation stage, and thus to reduce overall

development cost and to improve the quality of the systems. A formal and rigorous way to model

and analyze software architecture is required to achieve the above advantages. Software

architecture is the overall structure and organization of software systems. With the increase in the

size and complexity of software systems, the design problem goes beyond using better algorithms

and data structures. Designing and specifying the overall system structure and organization

becomes more important [GS93]. In order to define software architecture, an architecture

description language (ADL) is required to define system architectural models, and an analysis

technique is needed to verify system properties. There are many ADLs, but research on software

architecture development and analysis techniques is still not enough [ShaG 1]. This dissertation

provides a formalism to model mobile computing systems especially mobile agent systems, and

proposes a systematic analysis method to analyze software architecture of mobile agent systems.

A mobile agent is an executing program representing its users and is capable to migrate from

one node to another in a network, and, thus, is able to execute at different locations during its life

span [GCKO1]. A mobile agent system consists of mobile agents, and agent support systems that

support agent executions. Mobile agent systems are useful to conserve bandwidth, reduce total
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completion time and latency, support dynamic load balancing, support offline operation in mobile

computing environments, and support dynamic deployment [XYDO3]. It has potential

applications in fields like on-demand software systems, interactive training systems, and data

mining systems. Formally modeling and analyzing software architectures of mobile agent systems

not only help further understand mobile agent systems, but also facilitate developing high quality

applications based on mobile agent techniques.

Petri nets are a popular formal approach with graphical and mathematical notations, noted for

its many advantages on the behavioral specification and analysis of distributed concurrent

systems, and it is a promising tool for studying mobile agent systems that are characterized as

being concurrent, asynchronous, distributed, parallel, and non-deterministic. Thus, Petri nets can

serve as a powerful medium of communication between practitioners and theoreticians:

practitioners can learn from theoreticians on how to make their models more methodical, and

theoreticians can learn from practitioners on how to make their models more realistic [Mur89].

Predicate/Transition (PrT) nets are a high level formalism of Petri nets that are especially suitable

for agent system modeling due to its similarity to a logic agent system, and efficient reachability

analysis [XYD03][BFF95]. PrT net models are much more compact and abstract than low-level

Petri net models. It brings us a convenient way to model complex distributed systems and enables

us to focus on important and interesting system properties. Temporal Logic is a formalism for

describing state changes or sequences of transition firings in a reactive system. Linear temporal

logic (LTL) is a common formalism to specify properties of reactive systems. It has sufficient

expressive power for most purposes, but with relatively simple syntax and semantics. LTL is

interpreted over infinite executions that make it appropriate to specifying properties of the

executions of Kripke structure. We will model the behavior of mobile agent systems using PrT

nets extended with dynamic channels, and specify system properties using LTL.



Theorem proving, testing, model checking and simulation are most popular approaches to

analyze software architectures. Theorem proving demands user interactions during proving and

the tedious and difficult works make it unsuitable to verify complex systems. Testing software

architectures needs complex support environments to support the model executions , but it cannot

guarantee the system correctness. Simulation suffers from the same problems as testing. On the

other hand, model checking is a powerful technique for analyzing software architectures and the

verification process is completely automatic. Model checking techniques have been successfully

used in mission critical system development [CHO02] [PMHO2], and it has become an important

verification method in hardware development. In our previous work, we successfully used a

model checking tool called SMV [CGP99] to find an error in a flexible manufacturing system

(FMS) model [HDD02] [Din00]. However, model checking techniques suffer from the state-

space explosion problem, because some systems are composed of many parallel processes and in

general, the size of the state-space grows exponentially with the number of processes [GL94].

According to the approaches to address this issue, model checking can be classified as symbolic

verification and explicit verification. Symbolic verification such as SMY uses symbolic

representations for sets of states and transition relations, and can check very large state space

(10100 or more) systems. Explicit verification model checking techniques such as SPIN use partial

order to reduce state-space, and they are more powerful in software verification than symbolic

model checking techniques in this field [EP02]. In this dissertation, we propose a hierarchical

analysis method to address the state-space explosion issue when analyzing the software

architecture of mobile agent systems. This method is particularly effective when it is integrated

with model checking tool SPIN.

However, existing works on modeling mobile systems using Petri nets (high-level or low-

level Petri nets) [FB98] [KMH03] [KMRO1] [KRO1] [MK96] [MW97] [XD0O] [X503] [XYD03]

cannot naturally capture the mobility and dynamic reconfiguration property of mobile systems.
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Most works focus on modeling and analyzing specific property such as mobility, cooperation or

security, but modeling the system architecture is not enough. In addition, to best of my

knowledge, there is not a systematic analysis method to formally analyze the Petri net software

architecture of mobile agent systems.

2 Scope of the Dissertation

In this dissertation, I propose a methodology for formally modeling and analyzing software

architecture of mobile agent systems. The goal is to define a formalism to model the software

architecture of mobile agent systems, and then to propose a systematic method to analyze the

architectural model. The formalism has the expressive power to naturally model the architecture

of mobile agent systems, and easily capture the properties especially the mobility and dynamic

configuration of mobile agent systems. The systematic analysis method provides a formally and

effective approach to analyze the software architecture of mobile agent systems, and it provides a

solid foundation for the architecture. In order to achieve this goal, the following works are

necessary. First, we extend PrT nets with dynamic channels (We also call the nets as CPrT nets),

which build the communication links at run time. Second, we model and analyze a software

architecture of mobile agent systems using CPrT nets with two-layer framework. Third, we

provide a hierarchical analysis technique for analyzing the software architecture of mobile agent

systems. Finally, we use the extended PrT nets to model a medical information processing system

based on mobile agents, and analyze the model using model checking tool SPIN based on the

hierarchical analysis technique.

2.1 Modeling Mobile Agent Systems

The primary identifying characteristic of mobile agents is their ability to autonomously

migrate from one computer to others in a network. Thus, support agent mobility is a fundamental

requirement of mobile agent systems. Even agent migration can be naturally simulated by

transition firing of Petri nets. The migration of mobile agents leads to the dynamic configuration
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of the software architecture of mobile agent systems. It might be complex and even difficult to

represent agent migration and dynamic connection between agents and their environments.

Tokens in PrT nets are passive, whereas agents are active. It is a challenge to naturally model and

analyze the dynamic property. In order to model the dynamic connection or reconfiguration of

mobile agent systems, we extended PrT nets with dynamic channels, which dynamically connect

agents with their environments according to their contexts at run time. Although CPrT nets do not

improve the expressive power of PrT nets, it provides a more flexible and powerful means to

model the dynamic property of mobile systems with more compact and more easily understand

models. In addition, to bridge the gap between tokens and agents, a two-layer approach (EOS)

[Val98] is chosen to model mobile agent systems. In the framework for modeling mobile agent

systems, we chose CPrT nets to define system behavior models, and LTL to define system

properties. In this method, agents are modeled as object nets that are wrapped as tokens in system

nets that representing the running environments of the agents, and communications between

object nets and system nets are through channels. We extend EOS from three aspects: 1. We use

CPrT nets instead of low-level place transition nets. This makes our model more compact and

easier to understand. 2. We use dynamic channels instead of textural labels on transitions to

facilitate the interaction and communication between object models and system models. The

channel method is more flexible and easier to model the synchronous communication of mobile

systems since communication links between transitions are built at run time and data exchanges

are through channel parameters, but labels on transitions in EOS are only for synchronization

between transitions. More importantly, we chose dynamic channels instead of static textural

labels for transitions, so that it brings a dynamic property to the static structures of PrT nets. The

values of channels are decided by their contexts at run time, which is different from existing

channels for Petri nets. 3. In EOS, it has to use process markings to deal with the object fork-joint

situation. Each object has to remember its state path, and then the jointed state is calculated based
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on the least upper bound of the jointed object processes. However, in our method, each object

only needs to keep its current state since objects are independent from each other.

2.2 Analyzing Mobile Agent Systems

In order to support the formal analysis of the software architecture of mobile agent systems,

we propose a hierarchical analysis method, which verify system properties at different levels

depending on properties. For some properties, it is not necessary to check the whole model but

only certain individual components; some properties are verified involving several different

models on different levels, and the system properties are verified based on a simplified system

model forming from individual models in the system level. This is reasonable since agents or the

agent systems are relatively independent programs, and even the interaction between an agent and

its system might be reduced to an agent model with its interface, which represents the

environment if our interested properties are on the agent. We classify three levels of analysis: the

system level analysis, the component level analysis, and the interaction level analysis. System

level analysis is used to verify system properties, and the model consists of all high-level models.

Component-level analysis is used to analyze individual component properties, which are on these

components. Interaction-level analysis is used to check properties that involve models in two

different levels, such as the interaction between agents and their systems. Since each component

is a part of the system model, we have to transform each component model as an independent

model, and the system-level model is simplified based on verification results of their components.

If we check an agent internal behaviors or tasks, we only need to check the agent model. These

behaviors include agent receiving or sending messages, updating itineraries, scheduling tasks etc.

Similar to agent environments, we only check the supporting system model for internal behaviors.

These behaviors include receiving or transferring an agent, restarting agents, terminating agents

etc. In our analysis approach, the checking for agent mobility is applied to system-level without

considering unfolding agent tokens since agents are inactive during migration. However, the
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analysis on cooperation property has to be applied on the model consisting of both agents and

their supporting systems. The mobility involves different agent support systems so that it has to

be checked on the model that is composed from connecting agent support system models but

keeping agents as wrapped tokens.

The high-level Petri nets models such as PrT models are much more compact and abstract

than low-level Petri nets models or SPIN model. However, it also complicates analysis. In order

to validate models using SPIN verifier, we must translate the net models into SPIN acceptable

models -- Promela programs. It is straightforward to translate low-level Petri nets models into

Promela programs. From intuition, we can translate a high-level Petri nets model into a low-level

model, and then translate the low-level Petri nets model into a Promela program. However, even

though it is possible to translate high level Petri net models into low level Petri net model in

theory, it is not practical to do so since there is not a good general way for the translation except

unfolding high level models. The unfolding method is a tedious and sometimes possible task if

some predicate types are infinite [GP98]. Therefore, we limit predicate type into finite, and each

element on the arc label is an enumerable type. The basic idea of translating PrT nets into

Promela is to translate predicates in nets into variables in Promela, and translate each transition

from nets into an atomic sequence. Global variables and channel variables are used to

synchronize different processes, which represent different nets.

2.3 An Application of Mobile Agent Systems

Although mobile agent technologies are an active research topic in last decade, there are only

few killer applications of this technology. It is important to find a practical and convincing

application of mobile agent technologies to prompt further researches. In this dissertation, we

describe a practical application system -- a medical information processing system based on

mobile agents. The system is difficult to be implemented using traditional solutions, but it can be

nicely implemented using mobile agent technologies. We design the system infrastructure, and
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formally model and analyze the software architecture of the system using CPrT nets and

hierarchical analysis method.

2.4 Contributions

The principle contributions of this work are described below:

1. PrT nets extended with dynamic channels for synchronous communication. The dynamic

channels are nicely integrated with the static structures of PrT nets. Dynamic channels provide a

powerful and natural mechanism to facilitate the communication between mobile agents and

environments. We prove that the behavior equivalence between the extended PrT nets and

ordinary PrT nets, and we show that the extended PrT nets provide a more flexible approach to

model synchronous communication between nets, especially the communication between nets on

different levels and mobile objects. Comparing to existing works on Petri nets, PrT nets extended

with dynamic channels is an original work with some advantages.

2. A Hierarchical analysis method for analyzing software architectures. We propose a

method to analyze software architecture of mobile agent systems using component level analysis,

composition level analysis and system level analysis according to different properties. The

hierarchical analysis method provides a solid foundation for the modeling method using CPrT

nets. This method reduces the analysis complexity, and expands the application scope of model

checking techniques.

3. An architectural model of mobile agent systems. We define an architectural model of

mobile agent systems, which follow the MASIF specifications [OMG98]. The model is more

compact and easy-to-understand comparing to existing Petri nets models. In addition, we formally

analyze the mobility and dynamic configuration property of mobile agent systems based the two-

layer CPrT nets model. The model and analysis method are helpful to further study mobile agent

systems, and it is useful to develop high quality applications based on mobile agents.
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4. A medical information processing system based on mobile agents. We design an

application for medical information processing system based on mobile agents. We define the

software architecture of the application using two-layer CPrT nets, and analyze the software

architecture using model checking tool SPIN based on hierarchical analysis method. The medical

information processing system not only demonstrates the capacity of the methodology for

formally modeling and analyzing software architecture of mobile agent systems, but also provides

a convincing example for mobile agent technologies.
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CHAPTER II

Modeling and Analyzing Mobile Agent Systems

1 Mobile Agent Systems

Mobile agent systems have become one of the most active research areas on distributed

systems since the early 1990s. A mobile agent system consists of a finite set of agent support

systems and a group of mobile agents. A mobile agent is an autonomous executable program that

represents its users to migrate and compute from hosts to hosts in networks. It has its own task

and executes the task in destination hosts and continuing its running on other hosts according to

its schedule or execution results. The unique characteristic of mobile agents is the active mobility,

which is different from passive mobile programs such as the applets. In order to support the

execution of mobile agents, each host needs an agent support system or agent system to support

particular types of mobile agents. An agent system is a server program that resides at a host where

mobile agents might visit. Each agent system can create, execute, transfer and terminate agents.

Moreover, it offers one or more services to mobile agents that enter it [0bj97] [Gay96]. There are

many different mobile agent systems for different research or application purposes. These

systems differ widely in architecture and implementation, such as implementation languages,

communication mechanisms, authentication methods, and whether they support strong mobility,.

These differences are impeding interoperability, and rapid proliferation of mobile agent

technology. In order to solve these problems, there are two main standardization efforts on mobile

agent systems. The first one is the Foundation for Intelligent Physical Agents (FIPA) [FIPO],

which defines standard interfaces for all different types of mobile agent systems. Another is

Mobile Agent System Interoperability Facilities (MASIF) defined by Object Management Group
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(OMG) [OMG98], which defines basic functions or facilities to construct a mobile agent system,

and the common interfaces for interoperability between mobile agent systems.

FIPA is a non-profit organization to promote the development of specifications of generic

intelligent agent technology and improve the interoperability of agent-based applications. FIPA

standards specify the interfaces of different components in the environments with which an agent

can interact. The specification includes four parts: agent management, agent communication,

agent software integration, and reference applications. The agent management defines basic

system management, mobility support and security management. The agent communication

describes the interaction between human and agents, an ontology service and an agent

communication language (ACL). The software integration and reference applications provide

application cases to improve the implementation and application of this specification.

MASIF specifies two interfaces: MAFAgentSystem for agent transfer, management, and

MAFFinder for the naming and locating of agents. In order to support the interoperability

between different mobile agent systems, it standardizes the following four areas: agent

management, agent transfer, agent and agent system names, and agent system type and location

syntax. Agent management defines standard operations to mange agents, such as creating, starting,

and terminating an agent. Agent transfer defines methods to migrate and receive agents and

different transferring types. Agent and agent system names standardize syntax and semantics of

agent and agent system names to allow agent systems and agents to identify each other, as well as

clients to identify agents and agent systems. MASIF supports agent tracking, which locates agents

on different agent systems registered at MAFFinders through these agent and agent system names.

The agent system type is defined so that each agent system can easily decide whether it supports a

particular type of agents. The location syntax is standardized so that the agent systems can locate

each other. The MASIF only provides the features required for transporting standardized
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information between agent systems. It does not address how each agent system deals with this

information internally since it is the implementation issue.

As a general paradigm for implementing distributed systems, mobile agent systems have been

demonstrated beneficial in several areas of applications such as workflow management,

distributed information retrieve, and automated software installation. Even though all of these

applications could be developed using traditional techniques, the mobile agent technique provides

a single infrastructure so that many distributed applications can be implemented easily, efficiently

and robustly. The paper [GCKO 1] listed six strengths of mobile agents. 1. Conservation of

bandwidth. Since a mobile agent migrates to the destination computers or servers to operate

locally, it is not necessary to send intermediate results to clients but just the results. However, the

agent's code may be larger than the total of intermediate results in some cases. The system should

estimate the potential bandwidth usage, and then decide whether to use mobile agent technique or

traditional client/server solution. 2. Reduction in total completion time. If a client requests a

service which needs many operations in the server, and the interaction of intermediate results

between the client and server is required, mobile agent runs in the server locally will reduce the

total completion time. 3. Reduction in latency. This works for the application that must react

quickly to some events by sending out new status or control information. In such case, if the

reactive component is implemented as a mobile agent, it can move closer to the producer of the

event producers and migrate with the producers, so the event information can be captured and

sent back to clients much faster. 4. Support disconnected operation and mobile computing. A

mobile agent is a relatively independent program, and as soon as it arrives at destination computer,

it can start its process without interaction with the clients until it needs to send back the results. 5.

Support dynamic load balancing. Load balancing aims to improve performance by partitioning a

task into components and distributing them across multiple processors. Since mobile agents can

move across the platforms with application-specific code, they naturally support dynamic
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redistribution of computing components. 6. Support dynamic deployment. A mobile agent can

move itself to a remote sever and install itself to provide services there.

Even though each one of them can be realized efficiently using traditional techniques, mobile

agent technology has all six strengths. The future direction for mobile agents will be expanded to

mobile codes. Mobile codes include not only the active mobile agents, but also passive migration

codes such as applets, and component-based mobile agents. The component-based mobile agent

technique will not move monolithic mobile agents to destinations; instead, it only moves some

core codes and a script program that is used to assemble agents in the destination computers or

servers, which have code bases for reconstructing agents. In addition, there will be more and

more middleware implemented using mobile agents to improve system performance and

reliability through using dynamic load balancing, dynamic deployment and disconnected

operation [GCKO 1].

1.1 Basic Concepts

1.1.1 Mobile Agent

An agent is an object that acts autonomously on behalf of a person or organization. Each

agent has its own thread of execution so that it can perform task of its own volition. A mobile

agent can move from hosts to hosts according its plan. Each mobile agent has its own task, but it

also has some common functions. A mobile agent includes at least the following parts: 1. An

agent identity. Since each mobile agent migrates in the networks and communicates with other

agents or systems, an agent requires a unique identity value to identify a particular agent instance.

2. The agent owner. Since each agent represents its users, the agent owner is an important factor

to decide its authority. 3. The agent itinerary. Since mobile agent migrates in networks, it needs

an itinerary to decide its visiting paths. The itinerary could be assigned to agents before they

move out, or agents could query a special directory service at the host to dynamically update its

itinerary. 4. Code. Each agent will fulfill some tasks, and the code is the program that will run in
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the destination host to provide some services. 5. Agent authority. Since mobile agents migrate to

different places, each agent needs an authority attribute, and the authority identifies the person or

organization for which the agent acts. An authority must be authenticated. 6. The agent execution

state. An agent's execution state is its runtime state, including program counter and fame stacks,

which is encapsulated with agents and maybe resumed in destination hosts. 7. The requirements

for resources. The destination servers can provide reasonable resources for agent's execution

according its resource requirements. 8. History information. Agents log their visiting information

to help users to process the results or dialog some failures.

1.1.2 Agent System

An agent system is a platform that can create, interpret, execute, transfer and terminate

agents. Each agent system has an authority that identifies the person or organization for which the

agent system acts. Each agent system has a name and it is uniquely identified by its name and

address. A host might contain one or more agent systems to support different types of agents.

The functions of an agent system include [OMG98]: 1. Creating an agent. An agent system

creates an agent according to requirements, assigns unique identity and authority for the agent,

and might associate an itinerary or moving algorithms for the agent. 2. Transferring and running

an agent. It includes initiating an agent transfer, receiving an agent, and transferring classes.

When an agent system initiatizes an agent transfer, it firstly suspends the agent if the agent is

running, then encapsuates the agent's state, serializes the instance of the agent classes and states,

encodes the serialized agent, authenticates client and finally transfers the agent. When an agent

system receives an agent which it can interpret, it accepts the agent and firstly authenciates the

client, then decodes the agent, deserializes the agent classes and states, instantiates the agent,

restores the agent states, and finally resumes the agent's execution. Class transfer is the ability to

transfer class information from one agent system to another. This ability is a requirement in agent

systems that support object-oriented agents. Classes can be transferred automatically or transferrd
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by request or on-demand since classes might not be transferred as a whole when the agent was

transferred. 3. Finding a mobile agent. When an agent wants to communicate with other agents, it

must be able to find the destination agent system to establish communication with the party. The

ability to locate a particular mobile agent is also important for agent management since the

migration of agents should be under control. Because mobile agents can travel in networks at any

time, an agent name must be unique across all agent systems. 4. Ensuring a secure environment

for an agent operations. Since a mobile agent is a computer program that can travel among agent

systems, a mobile agent is often compared to a virus. It is imperative for agent systems to identify

and screen incoming agents. An agent system must protect resources including its operating

system, file systems, disks, CPUs, memory, other agents, and access to local programs. To ensure

the safety of system resources, an agent system must identify and verify the authority that is

associated with the agent. The ability to identify the authority of an agent enables access control

and agent authentication within an agent system. And activity confidentiality is also one of the

issues for mobile agent security. 5. Terminating an agent. An agent owner can terminate its

agents' execution for any reason, and the agent system has the ability to move any guest agent out

for performance or security reasons.

1.1.3 Communication and Cooperation

In order to support cooperation between agents or agents and agent systems, a mechanism for

communication between them is required. There are two cooperation styles, one is message

passing and another is method invoking. Message passing is a kind of coarse-grained cooperation,

and agent behaviors are black boxes to other agents or agent systems. Agents only provide

interfaces for receiving or sending messages. This is the mainstream of cooperation style for

mobile agent systems. Method invoking is a kind of fine-grained cooperation similar to RPC

mechanism, so that one task could be completed through invoking several methods fro.m different

agents. This style may break the encapsulation of agents, and it leads to security problem and
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system complexity. Since mobile agents are relatively independent programs for particular tasks,

supporting RPC style method invoking is not to its advantage. If a task is to be completed using

several methods from different agents, the better way is to build a new agent based on these

methods.

The communication could be synchronous or asynchronous. Synchronous communication

means the sender has to wait response from communicating party to continue its execution, and

asynchronous communication means the sender continues its execution immediately after sending

out messages. The communication in mobile agent systems can be implemented as direct

communication or indirect communication. Direct communication relies on message passing. A

special case is a rendezvous model where two agents can communicate only when they reside

within the same place, which overcomes the requirement for locating other agents on the network.

If two agents need to communicate, they must move to the same host or mobile agent system.

Indirect communication implies that agent interact via blackboard located in each hosting

environment, which are used as information spaces to store and receive message locally. In

addition, it needs a special directory service at some hosts to locate the receiver agents. So direct

communication only happen between agents that reside on the same host, and indirect

communication happens between agents who reside in different hosts and the communication is

via some agent systems across the network.

1.1.4 Mobility

Mobility is the unique characteristic of mobile agent systems. Supporting agent mobility is a

fundamental requirement of the agent infrastructure. An agent can request its current support

system to transport it to some remote destinations. The agent system must then deactivate the

agent, capture its state, and transmit it to the agent system at the remote destination host. The

destination agent system then restores the agent state and reactives it, thus completing the

migration. According to how to recover the agent states coming from its source host, there are
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two types of mobility: weak mobility and strong mobility. Weak mobility permits the migration

of both code and part of the execution state. After migration, the execution starts from the

beginning or from a specific point. By strong mobility, both the code and the whole execution

state are moved in order to restart the execution exactly from the point where it was stopped

before migration.

From logical agent mobility point of view, agent mobility can be classifed as two types: 1.

Remote agent creation. A client program interacts with the destination agent system with

necessary information to create an agent in the remote host and to resume the agent execution. 2.

Agent transfer. If an agent needs to transfer to other agent systems, its current agent system

creates a travel request. As part of the travel request, the agent provides naming and addressing

information that identifies the destination host. If the source agent system reaches the destination

agent system, the destination agent system must either fullfill the travel request, or return a failure

indication to the agent. If the source agent system cannnot reach the destination agent system,

then a failure indication must be returned to the source agent system. When the destination agent

system agrees to the transfer, the source agent's state, authority, security credentials, and, if

necessary, its codes are tranferred to the destination agent system. The destination agent system

then reactivates the source agent, and then execution is resumed. There are three implementation

possibilites for agent mobility. The first one is that the agent carries all codes as it migrates. This

allows the agent to run on any host which can execute the code. The second one is that the agent

does not carry any code, but will recontruct its program using code from destination hosts. This

reduces the traffic, time and improves security, but it lacks flexibility and agent functions are

limited by available components in destination hosts. The third one is that the agent contains

only reference to its code base, so code will be provided from a code base server upon the agent

request, and this is also called code-on-demand.
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1.1.5 Security

Security is the most concerned issue to mobile agent systems since the mobile agents may

come from unknown hosts and have bad intentions. On the other side, agents may lose their

activity confidence or carry altered results because of bad actions from other agents or agent

systems. The attack to agent systems includes pilfering of sensitive information, damage to host

resources, denial of service to other agents, and annoyance attacks. The attack to agents includes

destroying the agent, stealing or modifying data that the agent carries, changing agents' codes or

itineraries to have them perform malicious behaviors.

In order to ensure agents and agent system behavior responsibly, there are some requirements

for security mechanisms: 1. Protection of privacy and integrity of agents. The system must

provide mechanisms for secure communications, and secure transfer of agent code and states as it

migrates across networks. Tampering of agents should be detectable. 2. Authentication of entities

in the system. The entities participating in a mobile agent application, such as servers and agents,

must be unambiguously identified. 3. Authorization and access control. Agent systems must be

provided with a mechanism for protecting their resources, by specifying their access control

policies and enforcing them. These policies includes such as restricting or granting agent

capabilities, setting agent resource consumption limits, and restricting or granting access. So

agents or agent systems only have limited capabilities for some operations such as agent creation

or migration. The policies may limit agents to consume resource such as CPU, and memory in

order to protect resources from abusive behaviors. Agent systems should control access to some

resources or destinations, operations that an agent can invoke, and data that an agent can view,

alter or provide.

1.2 A Logic Mobile Agent System

In this section, we define a logic mobile agent system as the reference model, which follows

the MASI standard. It includes four levels: communication, distributed system, mobile agent
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systems and mobile agent. The lowest level is operating systems that support TCP/IP protocol for

communication. Then the CORBA level provides basic distributed system functions. Each mobile

agent system is installed in each node, which accepts visiting mobile agents. The top most level is

the level for mobile agents, which migrates from hosts to hosts for completing some tasks

representing their users in the network.

1.2.1 Mobile Agent

Each mobile agent has a unique identity in the network. The identity consists of the name of

the agent system that creates the agent, and one unique integer, which is assigned to it by agent

systems. The name of each agent system name consists of its address and one unique identity

within that host. Therefore, each agent system or mobile agent has one unique identity that

identifies itself in the network. Each agent is associated with an authority that comes from its

client. Each agent has an itinerary that is an ordered set of locations of agent systems, but that

agent could update it on the trip. We do not consider code-on-demand style, so each agent always

carries its code with its state during migration. Agents cannot clone themselves since only agent

systems can create agents. Nevertheless, agent systems can create agents with the same functions

but with different identities.

1.2.2 Agent System

An agent system can create, interpret, execute, transfer and terminate agents. Each agent

system has an authority that identifies the person or organization. Each agent system has a unique

name consisted of its name and address. Each host only has one agent system, and it may provide

a blackboard for communication. Some agent systems may have more powers to act as

coordinators for a group of agent systems. The coordinator has a directory service to help locate

agents. Each agent system only can create mobile agent in its own host, so it does not support

remote agent creation. Agent systems support strong mobility, so agents carry their states to other

hosts and resume from the exact point when they move out from the source agent systems. Agent
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systems can force guest agents to move out, and they can destroy their own agents even though

they might be in remote hosts.

1.2.3 Communication

Mobile agent systems support synchronous and asynchronous communication. In this

reference model, we only consider message passing, which is of asynchronous communication. If

two agents are within the same agent system, they can communicate with each other directly.

However, if they reside at different hosts, they may move to the same host for communication, or

they must communicate through other agent systems, which provide blackboards to save

messages and directory facility to locate other agents. After an agent sends out a message to

another agent, it should not move out from this host before it receives response or until timeout if

it needs interaction from its communication partner. Before an agent moves to another host, it

must register its next destination in a directory service. Each directory keeps all active agent paths,

and all directories are synchronized so that each agent only needs to register on its nearest

directory. However, if this system is in an open network such as the Internet, this method will

have very inefficient. For that matter, we have to limit the communication so that the

communication only happens within one region or on the same host.

1.2.4 Mobility

An agent can request its current agent system to transport it to some remote destinations.

Agent systems also can force their guest agents move out. The agent system must then deactivate

the agent, capture its state, and transmit the state with code to the server at the remote host. The

destination agent system then restores the agent state and reactives it, thus completing the

migration. The agent system supports strong mobility, which means both the code and the whole

execution state are moved in order to restart the execution exactly from the point where it is

stopped before migration.
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2 Modeling Mobile Agent Systems

Mobile agents bring a wide range of new distributed applications. In order to deeply research

earnest issues such as security, mobility and cooperation, it is necessary to introduce formal

methods to provide a mathematical framework useful for specifying and verifying these

applications [SM98].

There are a variety of formalisms for mobile agent systems, and they have different levels of

expressiveness that may be used to formalize mobility, which is the most important property of

mobile agent systems. In this chapter, we mainly describe formalisms based on Petri nets since

we chose one high-level Petri nets (PrT nets) to model system behaviors in our work. However, in

order to improve our understanding on the theories of mobile agents and compare our works with

others, we also describe formalisms based on process algebra and other formalisms such as

mobile UNITY and PoliS. We are especially interested in the communication mechanisms such as

channels used in these formalisms, because modeling the communication between concurrent

components is so important but difficult. Moreover, we chose channels, which are similar to the

channels in CSP [Hoa85] and in it-Calculus [Mil99], to facilitate the communication between

agents and systems in our models.

2.1 Petri Nets

Petri nets are a popular formalism with graphical and mathematical notations, which are

effective to specify system behaviors and analyze concurrent and parallel systems. Agent

mobility can be naturally simulated by transition firing of Petri nets. Nevertheless, it might be

complex and even difficult to represent agent migration and dynamic connection. Tokens in Petri

nets, even in self-modifying nets and reconfigurable nets are passive, whereas agents are active.

To bridge the gap between tokens and agents, some multiple-level approaches were provided. We

introduce two formalisms here, one is based on PrT nets, and another one is based on colored
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Petri nets. However, all of them chose a multi-level paradigm from the elementary object system

(EOS) [Val98], which allows some nets wrapped as tokens in other nets.

2.1.1 PrT Nets

In our previous work [XYD03], we defined a formal architecture for logical agent mobility

using PrT nets. It is a two-layer PrT net model consisting of system nets and agent nets and

connector nets, to model the behaviors of the environments, mobile agents, and connectors,

respectively. The system nets define environments or platforms, and the agent nets define agents.

Communications between systems or agents are defined as connector nets. Furthermore, agent

nets are wrapped as tokens in system nets, and these agents only can update their states in a

particular place of each system net. The connectors include external connectors and internal

connectors. External connectors connect components, and internal connectors connect agents to

their environments. The internal connectors are dynamically configured so that a changing

number of agents in each component can be connected to their environment. There is at least one

external connector for each mobile agent system, and each component has exactly one internal

connector. In the following section, we introduce this two-layer PrT net approach from an

architectural model - the LAM (Logic Agent Mobility) model.

LAM model: The LAM model specifies a mobile agent system as a set of components and

connectors. Different components identify different locations for mobile agents. The connectors

specify the interactions among components. Each component is made up of an environmental part

and an internal connector, both defined as PrT nets. The environment part of components

provides facilities for agent mobility, and the internal connector of components is responsible for

the dynamic connection of the environmental part with a changing number of mobile agents. An

agent can migrate from one component to another by transition firing at rnn time because the

whole agent net is used as part of a structured token in the PrT nets modeling components and
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connectors. Therefore, the migration results in the change of agent locations. When an agent is

being transferred, no transition in the agent is enabled.

Agent model: Each agent is defined as a PrT net, called agent net. The interface, behavior, and

state of an agent are modeled by some input/output predicates for incoming/outgoing messages,

the transitions, and the predicates of the agent net, respectively. Particularly, the state of the agent

is the marking of the agent net.

System model: Each environment is modeled as a PrT net, called system net, and each

component includes a system net and an internal connector net. A system net and its connector

net forms a whole net. Each system net has external input/output interfaces connecting to external

connectors, which transfer messages or agents. In addition, each system net has internal

input/output interfaces that connect to internal connectors, which transfer messages between

agents and the system. Since agent nets and their states can be packed up as part of tokens in the

system nets, agent transfer is naturally simulated by the transition firing of PrT nets: if a transition

is activated, an agent, used as part of a token, moves from an input predicate to an output

predicate of the transition. After a certain sequence of transition firing, the agent is moved from

one component to another through connectors.

Internal connectors: In order to capture the social ability of agents and to bridge the gap

between agents and first-class components, agents need to dynamically connect with their

environments. A single internal connector is used to connect an environment with all mobile

agents residing in the current component. Such internal connector depends on the internal

interface of environments, the running agents, and agent interfaces. The basic structure of an

internal connector includes two parts: one part receives messages from the system net, and

another part sends messages from agents to the system. The first part receives messages from the

internal output interface of the system, and then delivers the messages to the input interface of an

agent according to the message destination address. The second part sends messages from agents
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residing in the system to the internal input interface of the system. If there are several agents in

the system, the sending messages are synchronized using a synchronization predicate.

External connector: A group of components is connected via external connectors, and arcs of

connector nets are supposed to be properly labeled so that a migrating agent is always transferred

to a proper destination. Each external output place of system nets may connect to all other

components. The structure of external connector is simple: each system external output interface

connects to external input interfaces of all other connected systems through transitions.

2.1.2 Reference Nets

Reference nets are a type of high-level Petri nets derived from colored Petri nets, which are

especially well suited for the description and execution of complex, concurrent processes

[Kum98]. Reference nets are similar to colored Petri nets except with four conceptual extensions:

net instances, nets as token objects, communication via synchronous channels, and several

different arc types. In the following section, we introduce the syntax of reference nets, and

reference net model of mobile agent systems.

Nets as tokens: Reference nets implement the "nets within nets" paradigm of elementary

object nets (EOS). In some nets, the structures of tokens are other nets.

Net instances: Net instances are similar to objects in object oriented programming languages.

If tokens in some nets are nets, these tokens are instantiated copies of their template nets.

Different instances of the same net can take different states at the same time and are independent

from each other in all respects. In reference nets, a new operation, which is associated with a

transition, creates an instance of a template net when the transition fires. If two tokens represent

the same instance of a template net, the two tokens share the same state at any time. This is same

as the "call by reference" in programming language. This is the reason to call this formalism as

reference nets.
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Synchronous channels: The idea behind introducing synchronous channels into Petri nets can

be found in [CH94], which introduced channels to colored Petri nets. Reference nets implement

this idea to synchronize and communicate between different transitions. The synchronous

channels in reference nets are not symmetric but directed, which means only one of the two

synchronized transitions indicates the net instance in which the counterpart of the channels is

located. The information transferred between two transitions through a synchronous channel can

be bi-directional and it is possible to transfer information within one net instance. The invoking

side of channels is called downlink, and the invoked side is called uplink [Kum98]. To fire a

transition that has a downlink, the reference net instance must provide an uplink with the same

name and parameter count, and it must be possible to bind the variables suitably so that the

channel expressions evaluate to the same values on both sides. The transitions can then fire

simultaneously. A transition may have several downlinks, but it only has at most one uplink.

Extended arc types: Reference nets have three special arc types: reservation arcs, test arcs

and inhibitor arcs. A reservation arc has an arrow at both ends and is solely for one occurrence of

a transition. It is a short hand notation for two opposite arcs with the same inscription connecting

a place and a transition. A test arc does not consume any token but is used for testing the

existence of a token in a given place (and the same token can be tested simultaneously by more

than one arc). An inhibitor arc prevents the occurrence of transitions as long as the connected

place is marked. Here is an example of reference nets:

m: new objnet
n: new objnet objnet

m n

m : plus(y)
m: plus(8)

Figure 2.1 An example of reference nets

25



In the left diagram of Figure 2.1, the operation new creates two instances m, n from template

objnet. The synchronous channel plus sends value 8 to the instance net m for a calculation. The

results in the bottom place have two instances m, n but with different states.

MULAN [KR01] is a mobile agent system defined using reference nets. We introduce

MULAN system below:

System architecture: In MULAN, a multi agent system consists of many agent platforms

connected via a network. Therefore, the top model is some places connected with transitions. The

places represent locations of agent platforms, and the tokens in these places are agent platforms,

which are defined as agent platform nets. The transitions describe communication or mobility

channels, which build up the communication infrastructure.

Agent platform: In each agent platform, there is a place to accommodate agents. The

communication between agents is through internal or external communication. Two agents

communicate through internal communication if these two agents are within the same platform.

The internal communication binds two agents: the sender and the receiver, to pass one message

over a synchronous channel. The communication between two agents from different platforms is

via external communication, which only binds one agent in the platform since another one is in

another platform. The transitions new and destroy are used to create agents and to kill agents. The

transitions receiver agent and sender agent are used to receive agents from other platforms and to

send agents to other platforms.

Mobile agents: Agents are modeled in terms of nets. The agent net is modeled as receiving,

processing and sending out messages. Agents act reactive or proactive, so an agent net has two

transitions to model these two behaviors. It may have a knowledge base to provide intelligence

for agents. In an agent net, there is a place to model the protocol for agent communication.

Therefore, tokens in a particular place of an agent net are wrapped from protocol nets. In
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summary, in this modeling system, the tokens could be agent platform nets, agent nets, protocol

nets, or other regular types.

Mobility: The mobility of agents is modeled as token migration from one system net to

another. Agent tokens in one platform net are sent to another when send agent transition fires, and

the receiver platform net gets agents when the receive agent transition fires. The send agent

transition and receive agent transition are synchronized using a synchronous channel. In the paper

[KMRO3], Kohler et al. defined four types of mobility that are supported by reference nets. These

types of mobility are differentiated by the interaction between object nets (agent nets) and system

nets (platform nets):

1. Spontaneous move: The object net moves inside the system net, neither object nor system

net controls the move.

2. Subjective move: Only the object net triggers the movement.

3. Transportation or Objective move: The system net forces the object net to move.

4. Consensual move: Both the system net and the object agree to move the object net.

2.2 Other Formalisms

There are some other formalisms to model mobile agent systems. Examples are n-Calculus,

mobile Petri nets, mobile UNITY, and Polis. Each of these formalisms defines a mathematical

framework that can be used to model and analyze code mobility. They vary greatly in their

expressiveness, in the mechanisms they provide to specify mobile code based applications, and in

their practical usefulness for the validation and the verification of such applications [SM98].

2.2.1 ir-Calculus

n-Calculus is a process algebra to model the changing connectivi of interactive systems

[Mil99]. "The 2-Calculus is a way of describing and analyzing systems consisting of agents

which interacts among each other, and whose configuration or neighborhood is continually

changing" [Mil93]. The most important concept in n-Calculus is channels, which provide the
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communication mechanism between processes and define the configuration of systems. The basic

entity is channel names with which the complex entities called processes are built. t-Calculus has

several versions depending on the content transferred in channels. If processes only can send

channel names in channels, this it-Calculus is called monadic n-Calculus. If processes can send

tuples of channel names in channels, this it-Calculus is called polyadic it-Calculus. Moreover, if

processes can send tuples of processes and channel names in channels, this n-Calculus is called

higher-order it-Calculus.

A monadic it-Calculus process is given by the following syntax [SM98]:

P : a,., I P1I1 2 I P1 + P2 I vxP I !P

a::= x(y) xy (2.2.1)

Where I is any finite indexing set, x, y are channel names, I is parallel operator, + is the sum

operator, vxP is the restriction operator, which bounds the name x within P, and ! is the

replication operator. x(y) means name y is received over channel x, and xy means the name y is

send over channel x. Since i-Calculus allows processes to pass channel names as parameters over

channels, if a process moves, its neighborhood changes and the process changes its channels for

communication. If x, y and z are channel names, transition x(y).P--2-+Pz means

channel name z is sent along channel x, then the resulting process PZ jis able to use z as a

channel for future communication. The values of channel names may be assigned to processes at

run time.

The polyadic 7-Calculus extends monadic i-Calculus by allowing tuples of names as well as

sorts, data structures and functions to be transferred over channels, whereas monadic i-Calculus

only transfers channel names over channels. The higher-order i-Calculus extends polyadic it-

28



Calculus by allowing functions of arbitrary order to be transferred. It allows processes to be

transferred over channels. After a process has been transferred, it can begin its execution.

The idea to use n-Calculus to model mobile agent systems is straightforward. The agent

support systems or platforms can be modeled as processes with channels to receive and send

messages or agents. Each agent is a process with channels to receive and send messages from

other agents or agent systems. When an agent system receives an agent from its channel, it

behaves in parallel with the agent process. The channel values of agents are assigned at run time,

and they may change when agents move from one place to another. The communication and

interaction between processes are through these channels.

2.2.2 Mobile Petri nets

Mobile Petri nets are a variation of colored Petri nets. In mobile Petri nets, the colored tokens

are tuples of place names, and an input token of a transition can be used in its post-set to specify a

destination. The postsets of its transitions are not static, but dynamically change depending on the

colors of the tokens the transitions consume. For instance, considering a print-spooler example

[AB96], we have a transition of the following definition:

ready(PRINTER, TYPE), job(FILE, TYPE) > PRINTER(FILE) (2.2.2)

The left side of the symbol > is the pre-condition of the transition, and the right side is the

post-condition. The preset of the transition has two places: ready and job; the post-set of the

transition has one place PRINTER, whose value is not decided until the transition fires. PRINTER,

TYPE and FILE are variables, and their values are instantiated at the time when the transition fires.

When the transition fires, it generates a new place with value of PRINTER, and it has token FILE,

which is moved fromjob place to PRINTER place.

Dynamic Petri nets are an extension of mobile Petri nets by adding the possibility of creating

new nets during the firing of a transition. When a transition fires, the transition might generate a
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new subnet instead of producing only new tokens. So the current state of the net is not

represented any more by a marking, but by a net.

A mobile agent system can be defined as a dynamic Petri net, where some tokens are referred

to as agents, which are defined as specifications to generate subnets in post-sets of some

transitions. The agent mobility is modeled as firing of transitions where agent nets being added to

the model dynamically. The migration of agents is to move tokens from transition preset to their

post-set, which includes subnets representing those agents.

2.2.3 Mobile UNITY

Mobile UNITY is an extension from the UNITY methodology [CM88], which is a state-based

formalism with the foundation in temporal logic, to model dynamically reconfiguring distributed

systems such as mobile agent systems. It extends the UNITY notation to express the computation

taking place within the mobile components of a system, and extends the UNITY proof logic to

reason about mobile computation. UNITY programs have notations similar to Pascal program

style. A UNITY program is a set of assignment statements that execute atomically and are

selected for execution with weak fairness, which means each statement is scheduled to execute

infinitely often in an infinite computation. A UNITY program includes variable declaration,

initialization, and assignments. The semantics of UNITY are given in terms of program properties

that can be proven from the text.

UNITY is not adequate to model the mobile computing domain since it describes systems as

static collections of components with fixed patterns of connectivity. In Mobile UNITY, each

program is a unit of mobility, which has a distinguished location attributes to capture the program

movement. The changes of location value reflect the movement of program units. Mobile UNITY

adds two new constructs, transient variable sharing and transient action synchronization, to

model communication between mobile units [RM97]. Transient variable sharing allows mobile

programs to share data transparently with different programs at different times depending upon
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their relative locations. Transient action synchronization means a statement owned by one

program is executed in parallel with statements owned by other programs when certain spatial

conditions are met.

We can model a mobile agent system using Mobile UNITY and verify the system properties

using its proof logic. Each agent or agent system is defined as a program, and the agent program

has a location attribute, whose value is updated when the agent moves from one place to another.

The communications between agents or systems are through transient variable sharing and/or

transient action synchronization. The dynamic agent migration property is naturally captured with

the changes of location values at run time.

2.2.4 PoliS

PoliS is a coordination language, which focuses on coordination problems in a multi-process

system [CFMOO] [Mas99] [SM98]. A PoliS specification consists of a collection of tuple spaces,

or spaces for short. It has modular and hierarchical structure with a tree of nested spaces that

dynamically evolve over time [CFMOO]. A space can contain other spaces, which have two types:

ordinary (uples and program tuples. Ordinary tuples are ordered sequences of values and types.

Program tuples contain coordination rules that manage activities inside the space they belong to.

A program tuple has an identifier and rule codes, which define reaction rules. The execution of a

program tuple is an action that can modify a space tree by removing and adding tuples. However,

an action can only process the tuples of the space it belongs to or its parent space. The basic

communication mechanisms of PoliS are through shared memory and are asynchronous and

anonymous. Tuples representing messages are put in the environment by program tuples that have

to communicate, and program tuples access messages by pattern matching. Data mobility in PoliS

is denoted by rules that are able to consume tuples locally and to produce tuples outside the local

space. Code mobility is denoted by rules that are able to consume and produce pies containing

codes.
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Model checking technique is used to analyze PoliS specifications. PoliS is the first fo alism

to build an automatic framework to analyze properties on specifications of systems with code

mobility [CFMOO]. The model checker in PoliS exploits its modularity features to reduce the

space of graphs built for a specification. The algorithm used for verification of properties follows

the one presented in [CES86]. The logic is based on temporal logic CTL (Computation Tree Logic)

with extension related to the spaces-based coordination model.

An mobile agent systems can be modeled as tuple spaces, which includes program tuples

representing mobile agents. The agent mobility can be realized with removing or inserting

program tuples from or to particular spaces.

2.3 Discussion

We presented several formalisms that have distinguished flavors and offer different views on

mobile agent systems. The two-layer PrT models and reference nets all implement "nets within

nets" paradigm, which naturally captures the physical architecture of mobile agent systems. Their

mobility mechanism is by reference passing, where some tokens denote other nets. The two-layer

PrT net introduces connectors to facilitate the communications between different nets. It keeps

the basic semantics of PrT nets in each net, so that its models are clear and it does not add more

complexity to analyze models since its analysis rules follow ordinary PrT nets. However, the

connectors themselves were defined statically, so they cannot properly solve issues on dynamical

configuration and communication between nets on different level. Reference nets provide

synchronous channels for transition communication and synchronization. However, the channels

are pre-defined so that it is still difficult to model the dynamic configuration of the software

architecture of mobile agent systems. Because of the extensions on Colored Petri nets, the

semantics of reference nets are different from the basic semantics of colored Petri nets, and there

is not a formal definition of reference nets so far. This brings the complexity to formally analyze

its models. The 7r-calculus is the first language offering features to specify movement across
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channels, but it does not support the location property, which is very important for mobile agent

systems. It focuses on the notation for processes, but it does not provide notations for

environments of the computation. Mobile Petri nets express process mobility by using variables

and colored tokens in an otherwise static net. Moreover, dynamic Petri nets extend mobile Petri

nets with mechanisms for modifying the structure of Petri nets. However, they bring forth the

complexity of modeling and analysis. These two nets cannot naturally model the movement of

one subnet from the preset to the post-set of a transition when it fires. In addition, it is difficult to

model a system with dynamic configuration graphically since we cannot draw the post-set of

some transitions, and it is much more difficult to define the graphs following these transitions.

Mobile UNITY is a state based formalism used for specification of physical and logic mobility.

Each mobile process has a special location attribute, and the migration is reflected as changes of

location values. PoliS is a coordination model with hierarchical tuple-spaces and multi-set

rewriting. Nested spaces that represent software components can move and change their positions

in the tree. The communication is specified using the asynchronous mechanism through shared

memory.

An important aspect of these formalisms is whether they can provide a means for the

verification of properties. The two-layer PrT models and reference net models can be unfolded

into ordinary PrT nets models or colored Petri nets models, respectively, so both models can be

verified using analysis methods from ordinary high-level Petri nets. The 7t-calculus is modeled in

terms of history dependent automata that lead to automatic verification procedure. Mobile UNITY

provides a temporal logic to prove program properties. PoliS analyzes its specifications with a

model checker that tests formal properties of the system specified.

3 Model Checking Concurrent Systems

Software architecture has been identified as a promising approach to bridge the gap between

requirements and implementations in the development of complex systems [MKG97]. In order to
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support defining software architecture, it emphasizes a separation of concerns: an architecture

description language for describing component structures and component functionalities, and a

formal analysis method. A sound architecture has profound impact on the maintainability,

scalability, and extensibility of software's lifecycle. A rigorous approach toward architectural

level system design can help to detect and eliminate design errors as early as possible in the

development cycle, to avoid costly fixes at the testing stage, and thus to reduce overall

development cost and to increase the quality of the systems. To achieve the above advantages, a

more formal and rigorous way to software architectural specification, design and analysis is

required [HYS03]. There are many ADLs, but research on software architecture development and

analysis is not enough [Sha01]. Theorem proving, testing, model checking and simulation are

most popular approaches to analyze software architecture. Theorem proving needs user

interaction during proving and the tedious work make it unsuitable for complex systems. Testing

for software architecture needs a complex support environment, but it cannot guarantee the

system correctness. Simulation suffers the same problems as testing. However, model checking is

a powerful technology for analyzing software architecture and the verification is completely

automatic.

In this dissertation, we use an extended PrT nets to define system behavior models, LTL to

define system properties, and the model checking tool SPIN to verify the properties. In the

following part, we describe Petri nets, PrT nets, LTL and model checking including model

checking tool SPIN.

3.1 Petri Nets

Petri nets are a graphical and mathematical modeling tool applicable to many systems, and

they are a promising tool for describing and s dying information processing systems that are

characterized as being concurrent, asynchronous, distributed, parallel, non-deterministic, and/or
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stochastic. In the following sections, first we introduce the low-level Petri nets (or Petri nets) and

its properties, and then we define a simplified PrT nets.

3.1.1 Definition of Petri Nets

Formally, a Petri net can be defined as follows [Wan98]:

Definition 3.1.1 (Petri nets): A Petri net is a 5-tuple N= (P, T,I,0, M,,), where: P = {, p2,

... , p,} is a finite set of places; T= {ti, (2, ... , t,} is a finite set of transitions, P U T # 0, and P r

T = 0; I: (P x T) -* N is an input function that defines directed arcs from places to transitions,

where N is a set of nonnegative integers; 0: (P x T) -+ N is an output function that defines

directed arcs from transitions to places; and M0 : P -+ N is the initial marking.

A marking is an assignment of tokens to the places of a Petri net. A token is a primitive

concept for Petri nets (like places and transitions). Tokens are assigned to, and can be thought to

reside in, the places of a Petri net. The number and position of tokens may change during the

execution of a Petri net. The tokens are used to define the execution of a Petri net.

A Petri net graph is a Petri net structure as a bipartite directed multi-graph. A circle

represents a place; a bar or a box represents a transition. Directed arcs (arrows) connect the places

and the transitions, with some arcs directed from the places to transitions and other arcs directed

from transitions to places. An arc directed from a place pj to a transition t; defines p to be an input

place of ti, denoted by I(t, pj) = 1. An arc directed from a transition t; to a place p defines pi to be

an output place of t,, denoted by 0(ti, pj) = 1. If I(t, p) = k (or 0(t, pj) = k), then there exist k

directed (parallel) arcs connecting place p to transition t; ( or connecting transition td to place pj).

A circle contains a dot representing a place containing a token.

3.1.2 Transition Firing

The execution of a Petri net is controlled by the number and distribution of tokens in the Petri

net. A Petri net executes by firing transitions. We now introduce the enabling rule and firing rule

of a transition, which governs the flow of tokens:
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Enabling rule: A transition t is said to be enabled if each input place p of t contains at least

the number of tokens equal to the weight of the directed arc connecting p to t, i.e., M(p) > I(t, p)

for any p in P.

Firing rule: An enabled transition t may or may not fire depending on the additional

interpretation; firing of an enabled transition t removes from each input place p the number of

tokens equals to the weight of the directed arc connecting p to t. It also deposits in each output

place p the number of tokens equals to the weight of the directed arc connecting t to p.

3.1.3 Properties of Petri Nets

As a mathematical tool, Petri nets have a number of properties. Here we provide an overview

of, from the practical point of view, some of the most important behavioral properties. They are

reachability, boundedness, conservativeness, and liveness [Wan98].

Reachability: The set of all possible markings reachable from a given initial marking is called

reachable set, and denoted by R(Mo). The set of all possible firing sequences from Mo is denoted

by L(Mo), and let o7 e L(Mo), then the reachable state of Mo is denote by Mo [o> M,.

Definition 3.1.2 (Reachability): For a given Petri net N = (P, T, I,0, M0 ), if there is a o- e

L(Mo) such that Mo [a->M;, then M; is said to be reachable from Mo.

Boundedness and Safeness: The Petri net property that helps to identify the existence of

overflows in the modeled system is the concept of boundedness.

Definition 3.1.3 (Boundedness): A place p is said to be k-bounded if the number of tokens in

p is always less or equal to k (k is a nonnegative integer number) for every marking Mreachable

from the initial marking Mo, i.e., M e R(M). It is safe if it is 1-bounded.

Definition 3.1.4 (k-bounded): A Petri net N = (P, T, I,0, Mo) is k-bounded (safe) if each

place in P is k-bounded (safe).

Conservativeness: It indicates that there is exactly the same number of tokens all places in

every reachable marking of a Petri net. Here is a broader definition of conservation:
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Definition 3.1.5 (Conservativeness): A Petri net N = (P, T,1,0, M) is said to be

conservative if there exists a vector w = (wl, w 2, ... , w.) where m is the number of places, and wi

> 0 for each p; e P, such that

wM(p,) = const. (3.1..1 )
a-1

Liveness: A Petri net modeling a deadlock-free system must be live. This implies that for any

reachable marking M, it is ultimately possible to fire any transition in the net by progressing

through some firing sequence. Different levels of liveness for transition t, and marking MO, were

introduced in [Com72] [Lau75].

Definition 3.1.6 (Liveness): A transition t in a Petri net N= (P, T,I, , M" ) is said to be:

1. LO-live (or dead) if there is no firing sequence in L(M,) in which t can fire.

2. L1-live (potentially fireable) if t can be fired at least once in some firing sequence in

L(MO).

3. L2-live if t can be fired at least k times in some firing sequence in L(M") given any

positive integer k.

4. L3-live if t can be fired infinitely often in some firing sequence in L(MQ).

5. L4-live (or live) if t is L1-live (potentially fireable) in every marking in L(M 0 ).

Definition 3.1'7 (Lk-live): A Petri net N= (P, T,I,0, M") is said to be Lk-live, for marking

M4, if every transition in the net is Lk-live, k= 0, 1, 2, 3, 4.

3.2 PrT Nets

Here we give the definition of PrT nets, which is different from ordinary PrT nets in [Gen87]

[GL81]. We define PrT nets same as the PrT nets in [XYDO3].

Definition 3.2.1 (PrT net): A PrT net is a tuple (P, T, F, E; L, co, Mo), where:
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1. P is a finite set of predicates (first order places), T is a finite set of transitions (P n T =

PUT # ), and F g (PxT) u (TxP) is a flow relation, or simply a set of arcs. (P, T, F)

forms a directed net

2. 1 is a structure consisting of some sorts of individuals (constants) together with some

operations and relations.

3. L is a labeling function on arcs. Given an arfe F, the labeling off; L(), is a set of labels,

which are tuples of individuals and variables. The tuples in L(fW have the same length,

representing the arity of the predicate connected to the arc. The zero tuple indicating a no-

argument predicate (an ordinary place in Petri nets) is denoted by the special symbol <$>.

4. (p is a mapping from a set of inscription formulae to transitions. The inscription on

transition teT p(t), is a logical formula built from variables and the individuals,

operations, and relations in structure 1

5. Mo is the initial or current marking.

Mo = UMo(p)
(3.2.1)

where M(p) is the set of tokens residing in predicate p. Each token is a tuple of symbolic

individuals or structured terms constructed from individuals and operations in I

The above definition describes the simplified general PrT nets [Gen87] [GL81] in two ways:

1. An arc labeling is a set of tuples (labels) {l,} rather than a formal sum c1 l1+c 212+ ... +c~l,. 2.

Accordingly, the marking of a specific predicate under a certain state is a set of tokens instead of

a formal sum of tokens. The simplification results in efficient analysis compliant with the

concurrent semantics of Petri nets.

Let 't = {p e P : (p,t) e F} and t' = {p e P: (t, p) e F} be the pre-condition predicates

and the post-condition predicates of transitions t, respectively. Let 'p = {t e T : (t, p) E F} and
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= {t e T :(p,t)e F} be the sets of input transitions and output transitions of predicate p,

respectively. For a subset of predicates Q c; P,Q = UQ p and Q =UEQ-p Basically, a

transition t in a PrT net is enabled under marking Mo if there is a substitution 0 such that i/0 e

Mo(p) for any label l E L(p, t) for all pe't and pt) evaluates true with regard to 0, where i/O

yields a token by substituting all variables in label 1 with the corresponding bound values with

regard to 0. The firing of an enabled transition t removes all tokens in {l/O: l e L(t, p)} from each

input predicate pE't , and adds all tokens in {l/0: / e L(t, p) } to each output predicate pEt.

After the firing of t, we get a new marking M'. Formally, M1(p) = Mo(p) - {l/O: I e L(t, p)} for

any pe't , and M1(p) = Mo(p) u {l/O: l e L(t, p)} for any pE't. We denote a firing/occurrence

sequence as

MO[t01 > MI[t 20 2 > M 2 ... [tO > M (3.2.2)

or, simply, t1 1t2 2.. tO,, where t1(1 : i n) is a transition, Oj(1 : i : n) is the substitution for

firing t, and M (1 : i n) is the marking after t4 fires, respectively.

Considering the fact that a token in a PrT net may carry structured data and a PrT net is a

structure, we will allow a PrT net to be packed up as a part of a token in another PrT net. Besides,

additional constraints may be imposed on the enabling of transitions in a PrT net. In order to

facilitate the communication and synchronization between nets, we extend PrT nets with

channels.

3.3 Temporal Logic

Temporal Logic is a formalism for describing sequences of transitions between states in a

reactive system. Properties like eventually or never are specified using special temporal operators.

The formula Fq is true in the present if q is true at some moment in the future. Similarly Pq is

true in the present if q is true at some moment in the past. The formula Gq is equivalent to , P-,
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meaning that q is true at every moment in the past. These operators can give surprisingly concise

expressions of sentences with complex tense structures [Mcm93]. These operators can also be

combined with boolean connectives and can be nested arbitrarily. There are a variety of temporal

logics, for example, the branching time temporal logic and the linear time temporal logic. They

mainly differ in the operators that they provide and the semantics of those operators [CGP99]. To

be more concrete, the branching time logic and the linear time logic differ in how they handle

branching in the underlying computation tree. In branching time temporal logic such as CTL, the

temporal operators quantify over the paths that are possible from a given state. In the linear time

temporal logic such as LTL, operators are provided for describing events along a single

computation path [CGP99].

3.3.1 Linear Time Temporal Logic

LTL is a common way to specify properties of reactive systems. It has enough expressive

power for most purposes and with relatively simple syntax and semantics. LTL is interpreted over

infinite sequences of executions that make it appropriate to specify properties of the executions of

Kripke structure.

Definition 3.3.1 (Kripke structure): A Kripke structure K = (S, T I, L) consists of:

1. A set of states S

2. A total transition relation T cS xS

3. A non empty set of initial states I _cS

4. A labeling of states with atoms L: S -2

LTL Syntax:

Xp: next time p holds (immediately after the current state p holds)

Gp: basic safety property (p holds globally after any number of steps p holds)

p U q: p holds until q holds (after a finite number of steps q holds and on the way to this point

p continuously holds)
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The set of atomic propositions is A, and LTL formulas are defined inductively as:

1. Every member p e A is a LTL formula

2. Ifp, q are LTL formula, then so ,yp, p vq, Xp, Fp, Gp, p Uq are LTL formula

3. There are no other LTL formula

Definition 3.1.2 (Path): Paths of a Kripke Structure:

1. A state s has a transition to a state t is defined as: s ->t iff(s, ) e T

2. A path if is an infinite sequence of states 7r = (so, s1, ...) e s' with so ->sl -+s2 -+sS ->

3. #ci) =- s and ; _ (si, si+1,..

LTL semantics:

We recursively definefto be valid on path rc, written ir f as follows:

* rcFp if/p EL(((0)) (first state of ;r is labeled with p)

a -fb-7g fif# g (g is not valid on 7r)

" i$ gA h if g and ifh (g and h are both valid on ir)

Z gf gvh iff 7r g or z h (one of g or h is valid on ;f)

* ifbg->h iff ibg then ir fh (ifg is valid on ifthen h too)

* 7Cf Xg iff g (g is valid on ifthat first state chopped off)

* c E Fg if3 [ g] (g is valid on some suffix of ic)

* ifbGg iff Vi[ ?g] (g is valid on every suffix of if)

* if gU h i f3[, h and Vj < i[d Eg] (g is valid until h holds)

3.4 Model Checking

Model checking is an automatic analysis technique for verifying finite state concurrent

systems [CGP99]. The method has been used successfully in mission critical system development

and to verify complex sequential circuit designs and communication protocols [GHO2] [PMHO2].

Moreover, it has become an important verification method in hardware development. In our
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previous work, we successfully found an error in a flexible manufacturing system (FMS) model

[HDDO2] using SMV. SPiN is a LTL model checking tool, and SMY is an example for CTL

model checking [CGP99]. CTL model checker is mostly used in the development of the early

tools for hardware verification, and LTL model checking technique is much more popular for

software verification. In theory, CTL model checker is more efficient than LTL one, but in

practice, there is no measure that can reliably tell which method can solve a given problem more

efficiently since the LTL verification algorithm can more easily be implemented with an on-the-

fly verification strategy to avoid constructing a whole system graph [Hol03]. Model checking

technology suffers from the state-space explosion problem, because the systems are composed of

many parallel processes; and in general, the size of the state space grows exponentially with the

number of processes [GL94]. According to how to address this issue; we can distinguish model

checking technology as symbolic verification and explicit verification. Symbolic verification such

as SMV uses symbolic representations for sets of states and transition relations can check very

large state space (10100 or more states) systems. Explicit verification model checker such as SPIN

uses partial order to reduce state-space, and it is more powerful in software verification than

symbolic model checking in this verification field [EP02].

3.4.1 Process of Model Checking

The following definition formally describes the model checking technique:

Definition 3.4.1 (Model Checking): Given a Kripke structure M= (S, R, I, L) that represents a

finite state concurrent system and a temporal logic formula f expressing some desired

specifications, then to find the set of all states in S that satisfy f: {s E S I, s J f . S is a finite

set of states, R cS x S is the transition relation, with (s, t) e R meaning that t is an immediate

successor of s, L : S -+ 2Au, is the valuation of atomic propositions in each state, where AP is a

finite set of atomic propositions. A non empty set of initial states I ( S. In order to describe
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the model checking algorithm, the nodes represent the states in S, the arcs in the graph give the

transition relation R and the labels associated with the nodes describe the function L.

Model checking consists of several tasks:

1. Modeling, The first task is to convert a design into a formalism accepted by the model

checking tool, such as using Petri nets or Promela to define system models.

2. Specification, Specification is to state the properties that the design must satisfy. The

specification is usually given in some logical formulas. It is common to use Temporal Logic, such

as LTL or CTL.

3. Verification, The model checking algorithm evaluates a given specification formula by

computing the set of states for which it is true. The formula and the set of states satisfying it are

identical. Ideally, the verification should be completely automatic. However, in practice, it often

involves human assistance. One such manual activity is the analysis of the verification results. In

the case of a negative result, the user is provided with an error trace based on counter examples.

3.4.2 SPIN and PROMELA

SPIN is a generic automatic verification tool to formally analyze the logical consistency of

distributed systems, which are defined using Promela (PROcess MEta Language). SPIN has some

important features [Hol03]:

1. SPIN is used for software verification, and it has been used to trace logical design errors

in complex software systems. It reports deadlocks, unspecified receptions, flags incompleteness,

race conditions, and unwarranted assumptions about the relative speeds of processes.

2. It uses on-the-fly technology to avoid constructing global state graph, exploits efficient

partial order reduction techniques, and (optionally) BDD-like storage techniques to optimize the

verification run.

3. SPIN is a full LTL model checking system. It defines systems correctness properties using

LTL formulas, and these properties can also be specified as system or process invariants.
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4. SPIN has three basic functions: 1. As an exhaustive state space analyzer for rigorously

proving the validity of user-specified correctness requirements. 2. As a system simulator for rapid

prototyping. 3. As a bit-state space analyzer that can validate large protocol systems with

maximal coverage of the state space.

Promela is a verification modeling language with C programming language style. It provides

a way for making abstractions of distributed systems that suppress details that are unrelated to

process interaction. A Promela program consists of processes, message channels, and variables.

Processes are global objects. Message channels and variables can be declared either globally or

locally within a process. Processes specify behavior, channels and global variables define the

environment in which processes run. Here is a Promela program example for two processes

mutually exclusively access critical section [Hol03]:

#define true 1
#define false 0
#define Aturn 1
#define Bturn 0

bool x, y, t;

proctype A()
{

x = true;
t = Bturn;
(y == false II t == Aturn) ;
/*Critical Section*/
x = false

}

Proctype B()
{

y = true;
t = Aturn;
(x == false 1I t == Bturn);
/*Critical Section*/
y = false

}

init {run A(); run B(}

Figure 2.2 A Promela program

In a Promela program, the process starts with proctype except the required init process, which

serves as the program entry point and is used to initialize process instances. Processes can run

44



concurrently and can be synchronized using global variables or channels. There are six data

types: bit, bool, byte, chan, short, int. In addition, there are three constant types: String constants,

Enumeration constants and Integer constants. The correctness claims have three styles: assertion

statement, label and never claim. One Promela program may have more than one assertion or

label statements in each process, but it only has one never statement. The assertion and label

statements are used to check the model state properties (such as a specific statement can reach or

not), and never statement can be used to check the mode execution properties (such as some

property should hold at any time or any step) [Ho103]. In Promela, a never claim is essentially

defined using LTL statements, but it is translated from LTL statements to Promela statements.

3.5 Analyzing Petri Nets/PrT nets

The verification of the correctness of Petri nets or PrT models can be done by demonstrating

that a property specification S holds in a behavior model B, i.e. B 1= S. [HDDOO]

In the following sections, we will present general ideas of two approaches to fulfill B j=S:

1. The reachability graph technique, and

2. The model checking technique.

3.5.1 Analysis Using the Reachability Graph Technique

Let B be the behavioral model defined using CE nets, and S be the paired property

specification in temporal logic. The idea of the analysis is to construct a reachability graph G

from the behavioral model B, and then evaluate S in G. A reachability graph is the representation

of all possible execution sequences of the net. Thus from G S we get B =S.

In reachability graph, each node is a marking of the net, and the directed arc from one node to

another is the firing transition causing the change of the marking. A reachability graph is

generated through the following steps:

Algorithm 3.5.1 (construct a reachability graph):

1. Choose the initial marking Mo as the start node for the graph G
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2. Fire each enabled transition from the initial marking Mo one at a time

3. If the fired transition t1 generates a new marking M1 , i.e. M0 [tj > M,, the new marking is a

new node of the graph G. Then connect Mo to M1 with a directed arc labeled with the fired

transition tj.

4. If the fired transition t, generates a marking M1 , which is an existing node of the graph G,

then if there is not a directed arc from Mo to M1, connected Mo to M1 with a directed arc

and labeled it with the fired transition tb. If there is already an existed directed arc from Mo

to M1 , then choose next enabled transition t2 to continue to generate new nodes and arcs.

5. The reachability graph is complete when no new node or no new arc can be generated.

As soon as the reachability graph G is generated from B, we can check the satisfiability of S

along each path n in G starting from the node Mo. The checking can be done systematically and

automatically by traversing the reachability graph G [HDW00].

For high-level Petri nets such as PrT nets, we can unfold their nets into low level Petri nets

since high-level nets can be considered as structurally folded versions of low-level nets if the

types of tokens are finite [Mur89]. Then we use the above algorithm to generate reachability

graphs.

3.5.2 Analysis Using the Model Checking Technique

The basic idea of analysis using model checking technique is to transform a reachability

graph G of net B into a state graph SG, and then go through SG to verify property specification S

using model checking algorithms. It is straightforward to transform G into SG by replacing the

node vectors with the set of atomic propositions true in the node. Thus, a reachability graph G is

an intermediate representation of a finite state transition system M. Then we verify B= S through

SG =S.

Model checking considers all possible execution traces of a state transition model. Hence, it

has to handle huge number of system states that may cause the state-space explosion problem.
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There are different strategies to combat this problem. The main methods are symbolic method

and explicit verification with partial order reduction. Symbolic method is extremely effective

when it is used in domain of hardware verification, and partial order verification performs

exceptionally well in domain of software verification [1103].

3.5.3 Analysis Using SMV

In order to verify Petri nets models, we need to know how to represent a CE net (1-safe Petri

nets) using SMY input language. There are several possible ways to do so. The first method is

based on SMY processes. For each transition, one process is instantiated. The places in a CE net

are represented as boolean variables in the main module, and the ASSIGN declaration specifies

their initial values. For each transition, a process is created. These processes are instances of

parameterized modules that describe the behavior of different kinds of transitions. The main

module defines a formula to verify deadlocks and contains the system specification [Wim97]. A

solution to fairness is to add the declaration FAIRNESS running to every transition module. We

propose to encode CE nets by specifying the transition relation directly using TRANS and INIT.

The flexibility provided by these declarations made it possible to translate CE nets into an SMV

specification that is easy to understand and reasonably efficient.

The SMV specification generated from a CE net consists only of a main module. In the VAR

part, one Boolean variable Pi is declared for each place pi. The INIT part specifies the initial state

of the system, which contains a Boolean formula of a place variable only when it is marked in the

initial marking. The TRANS part specifies the transition relation as a Boolean formula. It consists

of one sub-formula TRANS t for each transition t. The formula is true if the transition is enabled

and the next values of the place variables corresponding to the marking of the CE net after the

transition has fired. The transition relation is the disjunction of all these sub-formulas, which

ensures a valid successor is reached when one of the transitions is enabled. To ensure the

generations of infinite paths required by CTL semantics, SMV eliminates all states with no
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successors from the model. To make it possible to verify CE nets containing deadlocks, a sub-

formula specifying deadlock condition is added to the transition relation to allow the system to

stay in its current state if a deadlock occurs.

The Petri nets model and SMV code for the Producer-consumer is shown in Figure 2.3 and

Figure 2.4.

T1 T2 T4

Figure 2.3 A Petri net model of a producer-consumer system

The following program is a SMY definition of the producer and consumer system given in

Figure 2.3 with property specification VG (-,T] v V F T4)):

MODULE main
VAR
Pl: boolean;
P2: boolean;
P3: boolean;
P4: boolean;
P5: boolean;
P5: boolean;
INIT
(P1=l&P2=0&P3=1&P4=0&P5=1&P6=0)
TRANS

--Tl
T1.enabled&next (P1)=1&next (P2)=0&next (P3)=P3&next (P4)=P4&next (P5)=P5
&next (P6)=P6

--T2
T2.enabled&next (P2)=1&next (P4)=l&next (P1)=O&next (P3)=0&next (P5)=P5&n

ext (P6) =P6

--T3
T3. enabled&next (P3)=1&next (P6)=1&next (P4)=0&next (P5)=0&next (P1)=P1&n

ext (P2)=P2

--T4
T4 .enabled&next (P5)=1&next (P6)=0&next (P1)=P1&next (P2)=P2&next (P3)=P3

&next (P4)=P4;

-- selfloop for deadlocks
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deadlock&next(Pl)=P1&next(P2)=P2&next(P3)=P3&next(P4)=P4&next(P5)=P5
&next (P6)=P6;
)

DEFINE

T1. enabled:=P2;
T2. enabled:=P1&P3;

T3. enabled:=P4&P5;
T4 .enabled:=P6;
deadlock:=! (T1.enabled T2.enabledlT3.enabledIT4.enabled);
SPEC
AG (! (T1. enabled) I AF (T4 .enabled))

Figure 2.4 A SMV program for the producer-consumer system

3.5.4 Analysis Using SPIN

In order to verify PrT net models using SPIN, we must translate the PrT model into a Promela

program. It is straightforward to translate low-level Petri nets models into Promela models. From

intuition, we can translate a high-level Petri nets model into a low-level model, and then translate

the low-level Petri nets models into a Promela program. But even though it is possible in theory

to translate high level Petri nets this way; it is not practical since there is no good and general way

to translate a high level Petri nets model into a low level one except by unfolding the high level

model. However, the unfolded model sometimes will be huge even impossible if the predicate

type is infinite, and the translation is tedious but the solution is low efficiency [GP98]. We limit

predicate type to be finite, and any element in an arc label can only be an enumerable type.

The basic idea to translate PrT nets into Promela programs is to translate predicates in nets

into variables in Promela, and translate each transition from nets into an atomic sequence. In the

atomic sequence, each combination situation of the input variables of the transition is tested, and

its corresponding output is to set its related variables. The initial marking is translated into

variable initialization in Promela program. Global variables and channel variables are used to

synchronize different processes. To a model includes several PrT nets, each PrT net is translated

into as a process. This is a clear and simple way, but the process body may be huge if the net has

many transitions. The following figure is the framework to translate a PrT net into Promela

program:
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#define const value

declaration of global variables
proctype PrTModell(parameters)
{

declaration of local variables
initialization
do
::atomic { ti - do //list each possible value for tl input

//variables

::casel >
assign values to tl input variable;
casel = false;

::casen
assign values to tl input variable;
casen = false;

od
unless { (input tokens are satisfied) &&

(tl condition is satisfied) I I
(! (caselllI ...... H casen)) };

if
::!(casel j......I Ilcasen) 4 tl = false;
::else 4 tl fired and marking updated

tl = true;
fi;
casel = true; ... ;casen = true;

}

:atomic {t2 - do ......

}

:atomic {tn - do

}
: ! (tl It2II .. IItn) - goto dead

od;
dead: deadlock = true;
}

init
{ atomic { run tl(initialization value);

run t2( ......) ; ......
run tn (...)

}

}

Figure 2.5 A Framework to translate a PrT net into a Promela program

According to above discussion, we give an example to illustrate the idea of translating a PrT

net into a Promela program:

50



Figure 2.6 A PrT net model

#define true 1
#define false 0

proctype Test (byte pl, byte p2, byte sl, byte tl)
{

bool casel, case2, case3, case4;
bool tl = true;
byte p3 = 0;
casel = true; case2 = true;
case3 = true; case4 = true;

do
::atomic { tl - do

::casel - sl = 0; tl = 0; casel = false;
::case2 -a s1 = 0; tl = 1; case2 = false;
::case3 - sl = 1; tl = 0; case3 = false;

::case4 4 sl = 1; tl = 1; case4 = false;
od
unless { (p1 > 0 && p2 > 0) && (sl == tl) IC

(!(caselllcase2jlcase3llcase4)) 1;
if

(casel IIcase2l I case3l I case4) -tl = false;

::else - pl = pl - 1; p 2 = p2 - 1;

p3 = p3 + 1;
tl = true;

fi;
casel = true; case2 = true;
case3 = true; case4 = true;

}

(tl) 4 goto dead
od;

dead: deadlock = true;
}

init { atomic { run Test(l, 1, 0, 0 ) } }

Figure 2.7 A Promela program of the Figure 2.6

Here we use init process to initialize the p, and p2 token number and the predicates sl and ti,

but this only reflect one scenario of the PrT net running. If we need to check all scenarios, we set

p, and p2 with all possible values, so the atomic sequence will check each possible combination of
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sl and ti. The method to initialize the initial marking in init process results in a simpler model and

is highly efficient. We can even initialize multiple processes to simulate diffident initial marking,

so we can check all situations at the same time, and it is easier to find errors in the model. But it is

obvious this method is not suitable for complex initialization since it is a tedious work to

manually set the initialization in init process, but we can let system randomly select possible

values for variables if we set all predicates ready before they try all situations.
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CHAPTER III

Predicated/Transition Nets Extended with Channels

1 Introduction

In order to facilitate the interaction and communication between nets, we introduce dynamic

channels to PrT nets. A channel is a mechanism associated with transitions to send and receive

messages between transitions in different nets. Channels have two forms - an output channel for

sending messages to the channel, which is a channel name followed by an exclamation mark and

real parameters, such as mc!(type, msg); and an input channel for receiving and removing

messages from the channel, which is a channel name followed by a question mark and parameters

such as mc?(type, msg). Channel names can be variables or constants, and they are effective in

the whole model. We define the type of channel variable as a finite set of strings (pre-defined a

set of names). When any value with primitive type is assigned to a channel variable, its type is

converted to a string automatically. Any structured type of value cannot be assigned to a channel

variable directly. The parameters of an output channel must exist in its inscriptions of the channel

input arcs. An output channel sends values of its parameters (structured data such as (type, msg))

into the channel when the transition with the output channel fires. When a transition with an input

channels fires, it removes data from the corresponding channel and sends it to its output places. In

addition, an input channel is also a condition to enable the associated transition. We treat each

input channel as a proposition in the transition inscription, and if the channel is empty, its value is

false. If the input channel has the corresponding data, then the channel proposition is true. For

simplicity, we define a synchronization channel, which is a special channel with the buffer size

being zero. When a synchronization output channel is enabled (actually its transition is enabled),
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it outputs one structured datum to the channel. However, its transition cannot fire until the

corresponding input channel is enabled and then they fire at the same time. We put a zero on right

top of channel name such as co to denote a synchronization channel. Synchronization channels

are our most interested channel type, which we chose to model the software architecture of

mobile agent systems. However, in order to precisely define the synchronization channels, we

introduce the general dynamic channels firstly, and then discuss synchronization channels with

some restrictions on the general dynamic channel.

Communication between two transitions in different nets only happens when these two

transitions have matched input and output channels. An input channel matches an output channel

when they have the same channel name, same number of formal parameters, and each

corresponding parameter has compatible type. For example, there is an output channel dl!(msg), it

sends msg to channel dl, then only dl?(ms) but not dl?(ms, x) can get the data msg. This

restriction is helpful to share channels. However, it may also cause some problems. Suppose there

are two transitions tj and t2 with channels dl!(msg) and dl!(type, msg), and there are two other

transitions el and e2 with channels dl?(ms), and dl?(type, msg). 1. If t1 fires, and then t2 fires, the

channel dl has (msg) and (type, msg). If each real parameter in channel is an independent data

unit, then el does not know which message it needs to pick up in the channels when it fires. 2. If

we design channels as sequential data structure, which means each datum saved in a channel has

an order, and accessing data in channels must follow the order, it may cause deadlock. Suppose

channels are first in and first out (FIFO). If tj fires, and then t2 fires, the channel dl has (msg) and

(type, msg). If el is only enabled after e2 fires, however, e2 is enabled only when it can get (type,

msg) firstly. We found el has to fire and remove (msg) from the cha el firstly, and then e2 has

chance to fire. Then the deadlock happens. Therefore, we treat channels as a non-ordered

structure. That means data in channels can be accessed randomly. I addition, a parameter of a
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channel has a structured data type, and concrete data are wrapped as structured data according to

its formal parameters.

When we send one message to several channels, we can use multiple channels such as

dl!da!(msg), that means message msg is output to channel dl and da at the same time. In the

example dl!da!(msg), the msg is input to channels da and dl, and dl?(type)da?(msg), the dl gets

data for type from dl, and da gets data for msg from da. The value for channel names (channel

variables) can be empty (represented as #). When a channel is empty, it is ignored. Such as in

dl!da!(msg) and dl?(type)(da?(msg), if da is $, then dl!da!(msg) is the same as dl!( msg). There

are maybe several channels in one transition, but each transition only has one type of channel.

These channels may work concurrently using the and operator &&, or work in conflict using the

or operator 11. The input or output operations for channels are also qualified with transition

conditions or other conditions. If transition has the following inscription: ((da = $) && dl!(msg))

I ((da #) da!(msg)), this means if da is $, then msg is sent to channel dl, if da is not #, msg is

sent to channel da.

2 Formal Definition of CPrT Nets

Based on the informal discussion about the PrT nets extended with channels, we will formally

define its structures and behaviors in this section. We call the PrT nets extended with channels as

CPrT nets. Then we will discuss the behavior equivalence between PrT nets and CPrT nets.

Finally, we will introduce the two-layer paradigm of EOS into CPrT nets, and discuss the

communication, cooperation of nets between different nets. For convenience, we introduce an

operator \ in the following discussion. The operator \ is used to remove items from an expression,

such as (t)\c means removing expression c from expression p(t), and if c is a channel, the

operation removes the channel expression (channel name, its type and parameters) from the

expression q(t). We define o(x) as the value of x, and dom(x) as the possible values of x.
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2.1 Definition

Definition 2.1.1 (Channel). A channel C is an interaction relation between transitions in a PrT

net model, C = (7, E, p) where:

1. T is a transition in a PrT net N = (P, T, F, 1 L, q, Mp), and it is associated with an output

channel mcl(dl, ... , d), where mc is the channel name, and d, ... , d~ are formal

parameters for mc.

2. E is a transition in a PrT net N' = (P E, F, Z', L p, M'O), and it is associated with an

input channel mc'?(d', ... , d',), where mc' is the channel name, and d'], ... , d', are

formal parameters for mc.

3. T can communication with E through channel mc, if a (mc) = o(c ),and dom(d) C

dom(d'), 1 5 i < n, under marking (M, M'), where M is the marking of N, and M' is the

marking of N'.

4. The buffer size of a channel is finite, and messages in a channel are accessed randomly.

5. p c T x E is the interaction relation. The transition associated with output channel such as

T sends values of (dl, ... , d,) to channel mc when it fires, and transition such as E

associated with input channel gets values for (di, ... , d) when the values in channel mc are

available and removes the data from the channel mc when the transition fires.

6. The input channel mc is a guard condition to enable transition E and T If mc is empty, the

transition E cannot fire. If channel mc is full, then the transition associated with mcl cannot

fire until mc has available space.

A channel or channel expression has three parts: channel identifier, channel type, and

parameters. A channel identifier could be a variable or a constant. If it is a variable, it should

occur at adjacent input arcs of the transition that has the channel. A channel has two types: input

channel, which is a channel name followed by a '?', and output channel, which is a channel name
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followed by a ''. The parameters define the kind of information that can be passed through a

given channel. An output channel expression has the form like c!(pi, p), where c is channel

identifier, and (pi, p2) are its parameters, which is a structured data. A channel expression is part

of the transition inscription if the transition has that channel. Channel expressions combine with

other inscriptions using '&&' (and) or 'lj' (or) operator. Based on the definition of channels, we

give the definition of CPrT nets:

Definition 2.1.2 (CPrT nets), A CPrT net is a tuple (P, T, F, I L, y, Mo, C, 1), where:

1. (P, T, F, E L, , Mo) is a PrT net.

2. C is a finite set of channels, Vc e C, c = (CI, CT, CP)

1.1 CI is the channel identifier, and CI e E

1.2 CT is the channel type, and CT e (, ?

1.3 CP is the channel parameter or data passed through the channel, and CP e E

2. W is a finite set of transitions, and W _c T, t e W, 3c e C, p(t)1c # (p(t).

2.2 Behaviors of CPrT Nets

Since channel is a new concept to PrT nets, we discuss behaviors of CPrT nets especially

channel behaviors in this section. The only difference between CPrT nets and PrT nets is some

transitions in CPrT nets include channel expressions, which affect the firing rules of these

transitions. Adding input channel expressions to a given transition constrains its enabling, but it

does not affect transitions with output channels. However, transition firings with output channels

enable some transitions with input channels.

Let 't = {p e P : (p,t) e F} and t' = {p e P: (t, p) e F} be the pre-condition predicates

and the post-condition predicates of transitions t, respectively. Let *p = {t E T : (t, p) e F} and

P= {t e T : (p, t) e F} be the sets of input transitions and output transitions of predicate p,

respectively. We treat an input channel expression as a boolean expression, and it evaluates true
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when its formal parameters are concreted, and false if its parameters are empty. We treat

parameters of each channel as a structured data structure. Take channel expression c!(p1,p) as an

example. Here pd and p2 compose the data structure (p1, P2). If channel c is empty, that means

nothing with structure (p1, p2) in the channel c, so the expression evaluatesfalse, but (0, #) means

its parameters have value (#, #), and the expression c!(pj,p2) evaluates true. In the following

section, we discuss behaviors of three different transitions: transitions without channels,

transitions with output channels, and transitions with input channels.

1. Transitions without channels: transition t does not have any channel expression within its

inscription ((t). Transition t is enabled under marking Mo if there is a substitution 0 such that l/O

e Mo(p) for any label l e L(p, t) for all pE(t and ap(t) evaluates true with regard to 0, where l/O

yields a token by substituting all variables in label l with the corresponding bound values with

regard to 0. The firing of an enabled transition t removes all tokens in {i/O: l e L(t, p)} from each

input predicate pE't, and adds all tokens in {l/O: / e L(t, p)} to each output predicate pE't .

After the firing of t, we get a new marking M'. Formally, M(p) = Mo(p) - {l/0: 1 e L(p, t)} for

any pe't, and MI(p) = Mo(p) u {/0: l eL(t, p)} for any pE't

2. Transitions with output channels: transition t has a necessary output channel expression c

within its inscription t). We denote c. CI as the channel identifier, c. CT as the channel type, and

c. CP as the channel parameters. Transition t is enabled under marking Mo if there is a substitution

0 such that i/0 e Mo(p) for any label l e L(p, t) for all pe't and eo(t)\c (without considering the

output channel expression c) evaluates to true with regard to 0. Where i/0 yields a token by

substituting all variables in label l with the corresponding bound value 0, and substituting c. CI

and c. CP with the value 0 (c. CI/6, c. CP/). The firing of the enabled transition t removes all

tokens in {i/0: l e L(p, t)} from each input predicate pet , and adds all tokens in {i/0: / e L(t,
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p)} to each output predicate p" t . It also adds a new output place and 2 = c. CI/O for t, where

t' = A v t' , an arc y from t to place A, and a label V on y where i is <c.CI/O, c.CP/O>,

L(t, p) = L(t, p) u , p t', and adds token (c.CP/O) into place A. The following diagram

shows the firing rule of output channels. For simplicity, we rewrite the transition inscription as

p(t)&&c, where c is a channel expression, and ep(t) does not include any other channel

expressions.

l <cCI/O c.CP/e>

Figure 3.1 Firing a transition with an output channel

3. Transitions with input channels: transition t' has a necessary input channel expression c'

within its inscription ey'(t). The transition t' is enabled under marking M if there is a substitution

0' such that i/0' E Mo(p) for any label 1 e L(p, t') for all pe't' and e9(t) \c' (without considering

the input channel expression c', c' is false at this time) evaluates to true with regard to 0'. Where

i/O' yields a token by substituting all variables in label l with the corresponding bound value '

and substituting c'. CI and c'.CP with the value ', i.e. c'.CI/O' and c'.CP/O'. At the same time, a

transition t has an output channel expression c within its inscription eq(t), and t is enabled under

marking MO if there is a substitution 0. If c'. CI/O = c. CI/O', c'.CT = ?, c. CT = !, and c'. CP/O' =

c. CP/ (their parameters match). When transition t fires, channel expression c' becomes true, so

ep(t) is true, and transition t' is enabled. If there is more than one transition when c' is enabled,

and then which transition will fire is non-deterministic. The firing of t follows rules in (2), and

then adds a place A (added in (2) for output channel) = c. CI/O as a new input place for t'

0t'= Au't', an arc y from place to transition t', and a label on ywhere V is .CI/O, c.CP/O>

L(p,t') = L(p,t') uV , p t'. The firing of the enabled transition t' removes all tokens in
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{l/0': 1 e L(p, t')} from each input predicate p('t', and adds all tokens in {l/9': / e L(t' p)} to

each output predicate p e t''. The value of channel expression c' depends on the matched output

channel when t' fires. After firing of t and t', we get a new marking M'. Formally, M'I(p) =

M'o(p) - {l/0: I e L(t, p)} - {l/O': 1 L(t' p)} for any pE*t or pEt' , and M'I(p) = M'o(p) '

{l/0: 1 e L(t, p)} 1 {l/0': / e L(t', p)} {l/0: 1 e L(, p)} for any p e t'. The following diagram

shows the firing rule of input channels. For simplicity, we rewrite the transition inscription as

p(t')&&c' where c' is a channel expressions, and etq) does not include any channel expression.

c CI/O
( <c GI/ ec CP9> l 1/0,

Figure 3.2 Firing a transition with an input channel

4. Other cases. In the above paragraphs, we discussed a basic situation of channel expressions,

which are required items in transition expressions, and each inscription expression only has one

channel expression. In this section, we discuss the general situations where channel expressions

are combinations of several channels expressions. All of these cases can be transformed to the

basic case.

4.1 For a transition t with inscription (o(t)gjc!(pl, p2) or qp(t) Ic?(pl, p2), the transition t can be

split as two transition ti1, and t2. The transition t1 keeps the original structure but with inscription

as (t). The transition t2 has the same input, output places, arcs and labels as tj, but with

inscription as c!(pl, p), or c?(pl, p).

4.2 For a transition t with inscription c!(p, p2)&&c2!(sI, s2), when it fires, two places cL CI

and c2. CI are added with suitable arcs and labels according to the discussion in (2).

4.3 For a transition t with inscription is cl? (, p2)&&c 2 ?(si, s2), it includes cl.CI and c2.CI as

its input place, c. CI, C2.CIe't.

60



4.4 For all other cases, we can reorganize models according to the rules we discussed and the

rules of PrT nets, and transform the models to basic cases. Such as for a transition that has both

an input channel expression and an output channel expression, we can split the transition into two

transitions, one with only input channel expressions, and another with only output channel

expressions.

3 Transform CPrT Nets into PrT Nets

Before we can simulate and analyze models that are defined using CPrT nets, we formally

define CPrT nets semantics. We interpret CPrT nets semantics using ordinary PrT net semantics

through transforming CPrT nets to PrT nets, and then prove that these two models are

behaviorally equivalent, which means there is one to one correspondence between markings and

enabled steps of the two nets [CH94]. We explain CPrT nets using PrT nets, but we never really

transform CPrT nets into PrT nets when we describe a system. We always define a system

directly using CPrT nets without constructing the equivalent PrT nets.

In CPrT nets, some transitions are associated with input or output channels. This is the only

difference between CPrT nets and PrT nets. We can transform these transitions into regular

transitions through adding some predicates and input/output functions. After we transform all

transitions in a CPrT net into regular transitions, this special PrT net is transformed into an

ordinary PrT net. We can use ordinary PrT net rules to interpret, analyze and simulate the

transformed models.

3.1 Output Channels

We regard each output channel as an output place for the transition that has the output

channel, and the parameters for the channel as inscriptions on the arc that is from the transition to

the output place. The place is assigned the same name as that of the channel, and it is unique

within the global domain. The following diagram shows the idea of the transformation, and the
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place name p is a variable that is assigned with a real value at run time. We call this diagram as

the dynamic view of channels.

(P, sg)P t msg o j7, ~g, ® '- , g msg)

Figure 3.3 A dynamic view of an output channel

When a transition with an output channel fires, it instantiates the channel name (if the channel

name is a variable) and the channel parameters according to the tokens in its pre-conditions and

inscriptions on the arcs, wraps the instantiated parameters as structured data, and send the data to

the channels. It is straightforward to transform an output channel as a post place of the transition,

and inscriptions on the arc from the transition to the place are the channel name and the

parameters of the channel, and channel expression in the transition inscription is removed. When

a transition with one output channel fires, the instantiated parameters are saved in the output

channel. This is equivalent to output a structured token to a place, which represents the output

channel. The token has the same structure as the channel parameters, and it is instantiated with

the same values as those in the output channel. This is guaranteed by the inscriptions, which are

the same as output channel parameters, on the arcs.

Although we need to transform CPrT nets into PrT nets for analysis purposes, the extension

brings us great convenience to model dynamic configuration and communication between

different transitions of especially multi-level models. Since channel names might be variables,

their values are assigned at run time. Place names in regular PrT nets are pre-defined, so they

cannot change at run time. This is an important difference between PrT net places and channel

places. When we transform a channel transition into a regular transition, the transformed

transition is connected to a set of places through auxiliary places and transitions. Each place in

the set has a unique name from the possible values of the channel, and each possible value of the

channel has one corresponding place that has the value as its name. We call this view of
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transformation as the static view of channels. The following diagram shows a static view of an

output channel:

~ ms , , ms

Figure 3.4 A static view of an output channel

In Figure 3.4, the right side is an output channel, and left side is its transformed PrT net.

Suppose p only has three possible values: P1, P2, and P3 . The set of channel values is always

finite since channels are finite for any system, and each possible value has one corresponding

transition to put data into particular place that represents the channel. The subnet within the

dashed square in Figure 3.4 equals to the dash area in Figure 3.3.

3.2 Input Channels

We treat each input channel as an input place (also a pre-condition) for the transition that has

the input channel, and the parameters for the channel as inscriptions on the arc which directs from

the input place to the transition. The place is assigned a name same as the channel name, and it is

unique within the global domain. The following diagram shows the transformation:

p?(mS (iS (inss is

Figure 3.5 A dynamic view of an input channel

An input channel should have at least one possible corresponding output channel. If an input

channel name is a variable, the run time value of the input channel name should have a matched

output channel, i.e. the output channel name has the same value as the input channel name at that

time. The pre-condition representing the input channel becomes true when the corresponding

transition with the output channel fires. If the input transition is enabled, it may fire and remove
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data from the channel to its output places according to the firing rules. If there are several

transitions with the corresponding input channel expressions are enabled at the same time, then

which transition will fire is non-deterministic.

It is straightforward to transform an input channel as an input place of the transition, and

inscriptions on the arc from the place to the transition are parameters of the channel. When the

transition with an input channel fires, the values of the channel parameters are removed from the

channel and put into the output place of the transition. This is equivalent to moving out a

structured token from the input place, which represents the input channel, and put the token into

output places of the transition. The token in the input place has the same structure as the

parameters of the corresponding output channel. Channel names might be variables with values

instantiated at run time. When we transform a channel transition into a regular transition, the

transformed transition is connected with a set of places. Each place in the set has its unique name

from the possible values of the channel, and each possible value of the channel has one

corresponding place that has the value as its name. The following diagram shows a static view of

an input channel:

Ihg hs 
a s d

p?(sg (msg) 

Mg 

0M 

,yP=2

E~~~ ( 3 sg pP 3

Figure 3.6 A static view of an input channel

InFigure 3.6, the right side is an input channel, and left side is its transformed PrT net.

Suppose channel p has three possible values: P1, P2 and P3. Transition E gets tokens from

particular place (or channel) according to the run time value of p. If p is a constant, only one

channel place is required to connect with transition E, then other auxiliary places, transitions, and
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arcs are not necessary any more. The subset within the dashed area in Figure 3.6 is equal to the

dashed area in Figure 3.5.

3.3 Communication between Channels

In order to facilitate the communication and interaction between different transitions, we

extend PrT nets with channels. Since each output channel sends data to its channel, and the

corresponding input channel gets and removes data from the channel, we need to connect output

channels with its matched input channels in PrT nets to study the communication between

transitions with matched channels. After we transform channels to PrT net, each output channel

transition connects with their corresponding input channel transition by merging places with the

same name. The following diagram shows the dynamic view of connection:

msg) (m sg ms T

(pinMS
(P,)

(p) ins

E

Figure 3.7 A dynamic view of the communication

When a transition with one output channel fires, it puts tokens into the place representing the

channel that has the channel name as its name. The place representing the channel is one of the

preconditions for all transitions that have the input channel expression in their inscriptions as

required conditions. If any of these input transitions fires, the tokens in the place is moved to the

post-condition of the transition. Therefore, we can transform a CPrT net into a PrT net, and the

net follows the ordinary PrT net rules. The place p here is shared by transition T and E as post-

condition and pre-condition respectively. This is a dynamic view of the connection since p is a

variable. We can unfold p as a set of places with some auxiliary places and transitions to form a

static view of the connection. We transform output channels and input channels into PrT nets, and

merge channel places that have the same names. Then input channel transitions and output
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channel transitions are connected as a PrT net without channels, and the communication and

interaction between these transitions follow the ordinary PrT net rules. The following diagram

shows a static view of the communication:

T E

Figure 3.8 A static view of the communication

In Figure 3.8, output channel T and input channel E are transformed into PrT nets. Suppose

channel p has three possible values: P1, P2, and P3 . Transition T sends tokens to particular place

of P1, P2, or P3 according to the run time value of p. Transition E gets tokens from particular

place of P1, P2, or P3 according to the run time value of p. Then places with the same name are

merged, but there is no any other change. The subset within the dashed area in Figure 3.8 is

equivalent with the dashed area in Figure 3.7.

In the diagrams for CPrT nets in Figure 3.7, transition T with channel p is enabled. Suppose

value of p is P2, and iisg is MSG at one time. Before T fires, transition F with channel p is not

enabled since there is no value for msg in channel P2. As soon as T fires, channel P2 gets data

MSG. Then transition F is enabled. When F fires, it gets and removes data MSG from channel P2,

and sends MSG to its output place. Therefore, message is sent from input places of output channel

T to output places of input channel F. The communication between transitions E and T is

completed through the channel p. In the static view of transformed PrT net in Figure 3.8,

transition T is enabled when its input place has tokens with structure (p, msg), which has value

(P2, MSG). Transition F is not enabled since one of its input places has not any token, en T
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fires, it only sends the token to place P2 since only transition T2 can fire. When P2 get token (P2,

MSG), E2 is enabled. When E2 fires, E is enabled. E sends data MSG to its output place when it

fires. Then message MSG from input place of T is sent to output place of E, the communication is

completed.

4 Behavioral Equivalence of CPrT Nets and PrT Nets

In the previous sections, we discussed how to transform a CPrT net into an ordinary PrT net.

We showed that CPrT nets can be transformed into behaviorally equivalent PrT nets. This means

although adding channels to PrT nets increases the possibility for creating compact and

comprehensive models, its computational power is the same as regular PrT nets. By behavioral

equivalence, we mean a CPrT net has the same behaviors as its transformed PrT net. In other

words, there is a one to one correspondence between the markings and the enabled steps of the

two models. Therefore, we can generalize the basic concepts and the analysis methods of regular

PrT nets to CPrT nets, and a CPrT net has a given property if and only if the equivalent PrT net

has the corresponding property [CH94].

We call transitions with output channels as output transitions, and transitions with input

channels as input transitions. Each auxiliary place has a unique name except those particularly

addressed. We assume each transition has at most one channel, but the algorithm is easy to extend

for transitions with multiple channels.

Algorithm 4.1 (Transform CPrT nets to PrT nets): Given a channel PrT net CPrT = (P, T F,

1, L, , Mo, C, W), CPrT can be transformed into a PrT net N = (P' T, F' 2', L', ', M'o) using

the following steps:

1. Transform output channels into subnets without channels

For each output transition t e T, there is a channel c in the inscription 9(t), and c. CT =!.

Do the following steps:

1.1 Add a place A, and a directed arc y from t to , the inscription on y is (c.C, c.CP).
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1.2 For each element Ai in dom(c. CI), i.e. A e don(c. CI), add a transition z; with

inscription (c. CI = 2). Add a directed arc Y from Aj to ri with inscription on y is (c. CI,

c.CP). Idom(c.CI) = .

1.3 Add a place with name A for each r, and add a directed arc yj from zr to Aj with

inscription on yj is (Ai, c. CP).

1.4 Remove channel expression c from p(t) in t ((t) = IP(t)\c.

Repeat the above steps until there is no output transition in CPrT.

2. Transform input channels into subnets without channels

For each input transition t e T, there is a channel c in the inscription Wit), and c. CT = ?.

Do the following steps:

2.1 For each element 2 in dom(c.CI), i.e. r e dom(c.CI), add a place with name 2.

2.2 Add a transition z, for each place A with inscription (c. CI = A), and add a directed arc

r from 2 to z;with inscription on y is (A, c. CP). If sE t, and there is a directed arc y

from s to t, and the inscription Vt on y includes a required item c.CI, then add a bi-

directed arc between s and x, with inscription c. CI sea *r and s e r,

2.3 Add a place 2 and a directed arc y from z to 2, the inscription on y is (c.CI, c.CP).

2.4 Add a directed arc from to t with inscription on is (c. CP)

2.5 Remove channel expression c from 9(t) in t, 9(t) = p(t)\c.

Until there is no input transition in the CPrT net.

3. Merge the same predicates

If two places have same name, there are fused as one place without other changes.

4. N = (P', T, F' ;', L', , M'o), where P' is P combining with new generated predicates

from channels, T' is T uniting with new generated transitions from channels, T' is F adding
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with new generated arcs from channels, I" = 1 L' = LU(c.CI,c.CP), y' = p\c, M'a =

M0 with new generated places is .

Based on above discussion, we arrive at a conclusion:

Proposition 4.1: Let a CPrT net N = (P, T, F, E L, q, Mo, C, W) is a PrT net with channels,

there is a matching PrT net N' = (P' T', F", I', ' ,).

Proof The proof can be derived from Algorithm 4.1.

5 Synchronization Channels

Synchronization channels are channels that buffer sizes are zero, and the input channel and

the output channel have to fire at the same time when they communicate. For simplicity but

without affecting expressive capacities to model mobile agent systems, we define input channel

names as constants in synchronization channels. Synchronization channels are used for the

communication between transitions that are in different nets. Each transition only has one type of

channel so that there is no any direct circle between two communication transitions. There is no

group communication or broadcast among channels. We put a zero on right top of a channel

variable (not a constant) such as co to denote a synchronization channel. When we model mobile

agent systems using CPrT nets, we chose synchronization channels as the only one channel type

to facilitate the communication. Therefore, we ignore the zero on any channel variable.

Synchronization channels behave different to the general dynamic channels since both

communication transitions have to fire at the same time. As soon as the two communication

transitions fire, the communication completes and these two transitions have not synchronization

relationship any more until they need to communicate again.

5.1 Behaviors of Synchronization Channels

There are two CPrT nets N1, N in a model, one net N, has a transition T with an output

channel c!(p1, p2), and another net N has a transition E with an input channel C?(p,, P2). Under
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certain marking (MI, M2), MI is the marking of NI, and M 2 is the marking of N2 , T and E are

enabled without considering channel expressions. Then if there is a substitution 0 such that l/ 0

eM,(p) for one label 1 e L(p, T), where p e *T and c/O evaluates the value of c as C, T and E fire

at the same time, token (pI, p2) is removed from the input place of T and sent to output place of E.

The new marking M'I of NI is M'(p) = M(p) - {l/: le L(p, T)} for any p e *T, M'Ip) = M(p)

u {l/0: le L(T, p)} for anyp e T'. When is enabled under M2, there is a substitution 0' such

that / O' , M2(p) for any label l e L(p, E) for all p e 'E and qoE) (without considering the input

channel expression) evaluates true. The new marking M'2 of N2 is M'2(p) = M2p) - {l/O': l e L(p,

E)} for any p e E, M'2(p) = M2(p) {/0': l E L(E, p)}u {l/: l e L(E, p)} for any p e E'.

5.2 Semantics of Synchronization Channels

The basic idea behind the transformation of a CPrT net with synchronization channels to an

equivalent PrT net is to merge transitions that involve in the channel communication. When the

transition with an output channel is merged with the transition that has the communication input

channel, the arcs of the merged transition are the union of the arcs of the communication

transitions. The guard condition of the merged transition is formed by the conjunction of the

guards from the communication transitions and an expression to decide the equivalence of

channel names of the input and output channel. Because the bindings of the communication

transitions involve in a channel communication are independent, we have to make sure that set of

variables of the communication transitions are disjoint before we merge the transitions [CH94].

For each communication transition t, we rename each variable v e var(t) with a new variable s of

the same type as v, and make sure that the names of new variables are different. The following

diagrams illustrate the transform procedure.
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S Cp, P2> T E < p'1, p'2>

c!< p, P2> C?<P ',, p'2>

<C, S 2> TE <Sb S2>

cC

Figure 3.9 A transformation of a synchronization channel

The transition T and E are in different nets, and both of them are enabled under certain

marking (M, M2). The value of output channel variable c equals to C under the marking (M, M2).

The numbers of parameters of the input channel and the output channel are equal, and type of

each corresponding parameter is compatible. Then transition T and E fire at the same time, and

token of <pj, p2> are removed from the input place of T to the output place of E. The enabling

and firing sequences of the CPrT net are the same as the transformed PrT net, and the results of

the CPrT net firing is the same as the results of the transformed PrT net.

Since the name of each input channel is unique in a model, the name of an output channel

only can match at most one input channel at each time. However, it is possible to have more than

one output channel matches one input channel under certain marking at the same time. In that

case, only one output channel can communicate with the input channel at each time. Which

output channel is chosen to communicate with the input channel is non-deterministic.

6 Semantics and Analysis of Two-layer CPrT Nets

The paradigm of two-layer Petri nets is defined in EOS [Val98]. A two-layer Petri net model

includes a system net and some token nets, and token nets are packed as tokens in their system

net. Tokens in a PrT net are structured data, which may include another PrT net. In other words, a

PrT net can be packed as part of a token in other nets. We call the PrT net with net tokens as

system net, and the PrT net, which is wrapped as tokens, as token net. This paradigm brings a

hierarchical structure for PrT nets. Although we can design multiple layer models using PrT nets
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with channels, we limit our discussion only to a two-layer structure. In this section, we will

discuss the communication and interaction between two layer PrT nets using channels.

The token nets are defined before they can be used in system nets. Each token net is a

template. We treat these token nets as classes, and tokens as objects or instances, as in object-

oriented systems. A two-layer CPrT net system may include several separate system nets and

multiple token nets from the static point of view. Each token net has a unique identifier, which is

the type identifier. Therefore, each object or instance of a token net is uniquely identified by its

instance identifier and type identifier. We denote a token net instance as (TI TN), where the TI

and TN is the instance identifier and the type identifier, respectively. Each token net may have

multiple instances in system nets. However, instances are independent to each other except they

are explicitly defined to cooperate. This restriction brings us much more convenience to formalize

and implement this method.

6.1 Basic Situations

In PrT nets, tokens are simply predicates not embodying another net. In CPrT model, a token

net is like a traditional CPrT net in this case. System nets are different, however, in that it may

have tokens as other nets. In this section, we focus on the system nets with regard to the following

basic situations:

6.1.1 Sequence

Figure 3.10 Sequence

If transition t, is enabled, then t1 will fire. The token is moved to the next place. The state of

the token net in the next place depends on the interaction between the system net and the token

net. If t, does not interact with any transition in the token net, the state of token net does not

change when it is move from input place of t( to its output place. It is called transport. If t,
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interact with some transition in token net and they fire at the same time, then the state of the token

net in the output place of tj is updated with the firing of the transition. This is called interaction

[Val98].

6.1.2 Synchronization

1 p

2 p6
*t

Figure 3.11 Synchronization

The tokens in pi and p2 are independent instances of some agent nets. Their states are not

related to each other, but they are synchronized at transition t3 . After t3 fires, the tokens in place

p5 and p6 still are different instances of some agent nets.

6.1.3 Conflict

t2

ti

Figure 3.12 Conflict

The token states may be different either t2 or t3 fires. It depends on whether t2 or t3 directly or

indirectly interacts with the token net and which transition fires.

6.1.4 Concurrency

2 t2 p4
p1

*1 <a,an>6
ti <a+1,> t 6

p3  p5

Figure 3.13 Concurrency

If t1 fires, then tokens in place p2 and p3 are instances from the same token net if the token in

pi is a token net. The states of tokens in p2 and p3 are the same but with different identifiers. We

treat tokens in p2 and p3 as two independent instances, and the states of token nets in p4 and ps are

independent from each other. If t4 fires, it generates a new token in p6, but these two instances do
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not merge their states automatically so that the model has to explicitly design the merging if these

two instances need to be merged.

Another situation is that the tokens in P2 and p3 referring to the same instance (the inscription

on the label from t1 to p3 is <a, an>), so these two tokens still have same identifier. Therefore, at

any time, these tokens at any place should share the same state. If tj fires, but t3 does not fires,

then the token states in p3 and p, are the same, in other words, token state in p3 is updated after t2

fires if t2 interacts with the token net. Then t3 fires, the token state in p, are updated to the token

state in ps if t3 interacts with the token net. We do not consider this situation in our model even

we can simulate this semantics using our model.

6.2 Semantics and Analysis

In this section, we will give formal definitions of the two-layer CPrT nets, the communication

between system nets and tokens nets, and the communication between token nets.

Definition 6.2.1 (Two-layer CPrT nets): A two-layer CPr T net is a tuple STN = (SN, TN, p),

where:

1. SN is a finite set of system nets, SN = {SN, SN2, ..., SN~}, and SN (1 5 i 5 n) is a CPrT net,

SN, = (P, T, F, , L, , o, C, W).

2. TN is a finite set of token nets, TN = (TN,, SN2, .., TN.}, and TN (1 & i , m) is a CPrT net,

TN = (P, , F', ', , p', M'O, C W).

n

3. TN, eU SN 1 .
t=

4. p c W x W' is the interaction relation

Now, we discuss occurrence rules of two-layer PrT nets. We focus on the interaction between

system nets and token nets. According to which net activates the occurrence, we can distinguish

three types of occurrences, which are system autonomous, interaction, and object autonomous.
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This classification and concepts come from [Val98]. Suppose the marking of system net is M, and

the marking of token net is M', then the marking of whole model is (M, M').

System autonomous means a transition in the system net fires and may move a token net from

its input place to its output places, but the instance of the token net does not change its state, i.e.

there is not any transition firing in the token net when the system net updates its state. That means

the fired transition is a transition without channels, or the channels on the transition have not

matched enabled synchronous transitions in the token nets. If the fired transition is t, and A~t>

M1 , then the marking of the model changes as: (M M)[t > (M, M').

Interaction means a transition in the system net fires with a transition in token net at the same

time. That means the fired transition is a channel transition and it has a matched synchronous

transition in the token net. In other words, if the fired transition in system net with an output

channel c!, there is an enabled transition with channel c? in the token net. Interaction also can be

activated by the token net. When a transition in the token net fires, it activates or enables a

transition in the system net, and then the enabled transition fires, i.e. the token net and the system

net update their states at the same time. The system update its marking after transitions fire: (M

M')[(t, t')> (M, M1'), where t is the fired transition in system net and M[t > M1, and t' is the fired

transition in token net and M'[t'> M'1.

Object autonomous means a transition of a token net instance fires and updates its state, but

its system net does not fire any transition, i.e. a token net instance updates its state within a place

of the system net. In other words, the fired transition in token net does not enable or activate any

transition in system net. The system update its marking after transitions fire: (M M')[t' > (M

MI'), where t' is the fired transition in token net and '[t'> M'1.

We define the occurrence rules similar to the definition 2.2 in [Val99], but we extend them

with channels instead of the texture synchronization variables. Suppose there is one system net
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SN, a token net TN. The instance of TN in SN is (TI, Th). We use TIto represent (TI, Th) if there

is no confusion.

Definition 6.2.2 (Occurrence rules): There are three different occurrence rules:

1. System autonomous: A transition t e SNT, and TI ESN.P, Mis the marking of SN, and M'

is the marking of TI; t fires, M[t > M 1; but TI does not fire any transition, the marking of

TI still is M'. Then the system marking is (M, M')

2. Interaction: A transition t e SN-T, and TI e SNP, M is the marking of SN, and M' is the

marking of TI; t has an output channel such as c!(pi, p2), t' e TI-T' is an enabled transition

with the input channel c? (p'd, p'2, t fires, and then t' fires, M[t > Ml, M'[t'> M',. Then

the system marking is (M, M'). Or t' e TI-T' has an output channel such as c!(p',, p'2), t

e SN-T is an enabled transition with the input channel c? (pl, p2), t' fires, and then t fires,

M[t > M1 , M'[t'> M',. The system marking is (MI, M'I).

3. Object autonomous: A transition t' e TI-T', t e SN-T, TI e t , or TI et*, M is the marking

of SN, and M' is the marking of TI; t' fires, M'[t'> A'i, but SN does not fire any

transition, the marking of SN still is A Then the system marking is (M M'I).

The interaction of occurrence rule defines the basic communication between system nets and

token nets. We define the procedure of communication between system nets and token nets in the

following definition. The operator - means assign right side values to left side variables.

Definition 6.2.3 (Communication between system nets and token nets): A transition t e SNT,

and TI e SN.P, Mis the marking of SN, and M' is the marking of TI; t has an output channel such

as c!(pl, p2), the inscription of t is q(pt) && c!(pl, p,. t' e TI-T' is a transition with the input

channel c?(p', p', the inscription of t' is (p'(t') && c?(p', p'.
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L Sending messages from the system net to a token net: If the value of p(t) && c!(p, p2) is

true. t' is enabled, the value of p'(t') is true, c?(p'j, p'2) is false ((p'l, p'2) is empty in

channel c). Then t fires, M[t > M1 , p'1 &p-, p'2 P2, and (pl, p2),- $, 9'(t') && c?(p'1,

p'.d becomes true, and t' fires, M'[t'> ', The system marking is (M, M').

2. Sending messages from a token net to the system net: It is symmetry as sending messages

from a system net to a token net except the output channel is in token net, and input

channel is in the system net.

If there are at least two instances of token nets in system nets, they may communicate each

other. We define the procedure of communication between instances of token nets (we call these

instances as object nets) in the following definition.

Definition 6.2.4 (Communication between object nets): There are two transitions tj e TI, -T'

t2e TI2 -T', and TI e SN.P, TI2 e SN.P. M, is the marking of TI, and M 2 is the marking of TI. t

has an output channel such as c!(pl, p2), the inscription of t is y(t) && c!(p, p) and the value of

9(t) && c!(p, p2) is true. t2 e TI2 -T' is an enabled transition with the input channel c?(p' , p'2),

the inscription of t2 is 9'(t2) && c?(p', p'2) and the value of 9'(t) is true, c?(p'I, p') is false

((p', p'2) is $). t1 fires, M,[t > M'1 , p', +- pi, p'2 +- p2, and p+ , p2 +- , then V'(t2) &&

c?(p'l, p'2) becomes true, t2 fires, and M 2[t'> M'2 , (p '1, p') - . The system marking is (M M1,

M'1), where Mis the marking of SN.

7 Concluding Remarks

In this chapter, we extend PrT nets with channels for synchronous communication between

different transitions especially transitions within different nets. In addition, we also discuss how

to introduce two-layer modeling paradigm from EOS to PrT nets. There are some related works.

The first one is reference nets [Kum98] [KW99], which is a multiple-layer colored Petri nets

extended with channels and other operators. We already introduced reference nets in the previous
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section. Here we just compare the differences between reference nets and CPrT nets. In reference

nets, channel names are constants, but channel names are variables in CPrT nets. We call

channels with constant names as static channels, and channels with variable names as dynamic

channels. Dynamic channels are flexible and easy to model mobile computing systems especially

modeling system architectures with dynamic configuration. Suppose there are three processes P1,

P2, and P3 in a system, and P, communicates with P2 or P3 through channels at difference time. In

CPrT net, the name of output channel in P, dynamically changes at run time according its context

to match the name of the input channel of P2 or P3, and then the communication changes from

between P1 and P2 to P1 and P3 . However, the model using static channels is more complex. In

reference nets, the process P has to define a set of conflict transitions that communicate with

transitions in P2 and P3. All of these transitions have to be pre-defined. At the worst case, it has to

define all possible communication between P, and all other processes statically. In other words,

communication channels between processes are not shared, but they are used exclusively by two

processes. However, channels are shared and created at run time, and channel name are variables,

which are instantiated at run time by processes. This mechanism brings a more compact model

and much more convenient to model dynamic reconfiguration of mobile agent systems. In

reference nets, communication on channels are bi-direction on information flow, however, CPrT

net distinguishes input channels and output channels. Bi-direction channels are useful to

exchange messages between synchronization transitions. However, bi-direction channels also

bring complexity of analysis, and they have side effects such as one synchronization transition

does not want the partner synchronization transition to change some communication data. On the

other side, uni-direction channels bring more works if one synchronization transition wants to

exchange data with its communication partner transition but not just sending or receiving data.

Reference nets extended on colored Petri nets with some new operators, which we have already

introduced in previous chapters. CPrT net does not add any new operator to PrT nets since it has
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enough expressive power to model systems such as mobile agent systems. Certainly, reference

nets are based on colored Petri nets, while CPrT nets are extended on PrT nets. In paper [SH94],

channels are first introduced to colored Petri nets. The channel in the paper is the same as

reference nets except with some syntax differences. Another important related work is EOS

[Val99] [Val98], which defines the hierarchical Petri net. We extend this idea from Petri nets to

PrT nets, and synchronous communication between nets is through channels not text labels. In

addition, EOS has more difficulty than CPrT nets to deal with the dynamic interaction between

system net and token nets. 7t-calculus [Mil99] is also an important related work because the

dynamic channel concept in CPrT nets is similar to the channel concept in polyadic n-calculus.
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CHAPTER IV

A Formal Architectural Model of Mobile Agent Systems

1 Introduction

Mobile agents are programs that can move from hosts to hosts in networks. In order to

support the functionalities of mobile agents, each host needs at least one agent support system,

which provides services and management. Therefore, we look at a mobile agent system as a set of

agent support systems interconnected via networks, and a group of agents running within and

migrating among them. We chose CPrT nets to model the software architecture of mobile agent

systems, which includes a set of agent models and agent supporting system models. The

following diagram shows the top-level architecture of a mobile agent system:

mobile agent S3
system

system net

agent net sg
L....J sg p!(mnsg)

Framework

Figure 4.1 An architecture of mobile agent systems

We model the architecture of mobile agent systems as a hierarchical model: the top level is

the system level model, the next level is the support system model, and the low level is agent

model, which is running on support system models. In Figure 4.1, the S1, S2, and S3 are three

agent support systems, and these systems are located in different places (hosts) and connected
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with networks. The transition in the top-level diagram representing the mobile agent system is the

inter-connection of agent support systems and agents can move among them. If we model low-

level communication protocols, we can expand this connection as a communication model. The

dashed circles in the diagram for a mobile agent support system represent agent support system

models. We only show one place of each agent support system model in the dashed circle. The

places in dashed circles are places where mobile agents are staying when they execute their tasks.

The tokens in the top-level diagram represent agents that are packed as tokens in agent support

systems, and they are modeled as agent models in the low-level models. The communication

between nets is through dynamic channels. The output channels send out messages to channels,

and input channels get and remove messages from channels at the same time. In Figure 4.1, p and

m are channels with two types: input channels and output channels, where p!, m! is output

channels, and P?, Al? is input channels. The transitions with matched channels can communicate

through these channels.

System 1 System 1

Agent moves fromt

agent agent
System 1 to system 2

System 2 1System 2

Figure 4.2 A dynamic configuration of mobile agent systems

The architecture of mobile agent systems is dynamically changed with agents creation,

destroying, migration, and with some agent systems joining or leaving the system. The most

difficult issue is to naturally capture this dynamic property since agent nets and system nets are

statically defined, but contexts or environments of communication objects (agents or agent

systems) are always changing. We resolve this issue through integrating dynamic communication

channels into fixed defined PrT nets so that communication between objects can update with the

changing of their contexts. From logic point of view, each CPrT net has at least one input channel
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to accept tokens from other nets, and one output channel to send tokens to a particular channel

that connects to other nets or transitions.I Figure 4.2, the agent is in the system 1 before it

moves out, then the transition t in system 1 fires, it moves the agent from system 1 to system 2

(we do not consider the synchronization between t and e here). The migration of the agent

changes the system architecture. Figure 4.2 illustrates the dynamic configuration of mobile agent

systems:

dl, at, an dl(ai, an) ste <dl, a, an> dl!(ai, an)

agent Agent moves from agent

System 1 to system 2

S stem 2 System 2 <
CL?(a, an) CL?(ad, an) a

Figure 4.3 A communication between CPrT nets

Through channels, the migration of an agent from system 1 to system 2 is easy to be defined.

The Figure 4.3 shows the basic idea of the agent migration and communication with dynamic

channels in mobile agent systems. When system 1 moves the agent to system 2, it sends the token

representing the agent to the output channel dl that connects to system 2, and suppose the variable

dl = CL. System 2 gets the message from input channel CL, so the agent is moved from system 1

to system 2 since the input channel CL? has matched parameters (ai, an) as the output channel

dl!. The communication between the agent and system 2 is realized through channels dl! and

CL?. the diagram Figure 4.3 dl!(ai, an) means sending the agent identifier ai and its net an to

channel dl, which is a variable assigned value such as CL at run time. CL?(ai, an) means this

transition try to get object (ai, an) from channel CL, CL is a constant and it is unique in the global

doman and only for system 2. So different nets are connected with their channels, and the

communication relationship is decided at run time, When the transition with dl!(ai, an) in system

1 fires, it sends the agent token (ai, an) to channel CL. Then the transition with CL?(ai, an) in
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system 2 fires, it gets the agent token from channel CL and puts it into its postset places. With the

agent token moving from system 1 to system 2, the agent net disconnects from system 1 and then

connects with system 2.

2 A Formal Architectural Model

Mobile agent systems essentially have a hierarchical structure - agents are supported by agent

support systems, and agent support systems are supported by operating systems or other services

and network infrastructures. The two-level CPrT nets naturally capture the multi-level properties

of mobile agent systems. In the top level, a mobile agent system consists of a few support systems

connected with networks, and they are modeled as host nets with connections. Each agent support

system provides an execution platform for mobile agents, and agents cooperate with it to

accomplish their tasks. Therefore, agents are packed as tokens in top-level models, which are

defined as CPrT nets, and each agent is defined as a CPrT net in the low-level models. These

CPrT nets are statically defined, but each mobile agent systems dynamically configure its

architecture at run time when agents migrate from one system to another, or when agent systems

become active or inactive in the network. In order to model this dynamic property, CPrT nets

provide a dynamic channel mechanism to facilitate the dynamic communication and interaction

between nets at run time. In this model, each agent support system supports all types of mobile

agents, so we do not discuss interoperability issue in this paper. We do not consider security and

other specific detailed issues such as locating an agent. However, we can plug these features into

our models when we need to do further researches for those specific areas.

2.1 System Architecture

From the top-level view, a mobile agent system consists of agent support systems that are

interconnected with connections, and agents run or migrate within these systems. We model this

infrastructure as a set of agent support systems and a set of connections. The connection is the

network connecting for agent systems, and it provides transportation services for mobile agents
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and agent systems. We only consider total connection situation, so that each agent can reach any

other system that is connected and active in the network. Therefore, there is only one connection

in our model. However, we define the connection as a set of connections for future extension.

We model each agent as a CPrT net, called agent net. The interfaces, behaviors, and states of

an agent are modeled by some input/output transitions with channels for incoming/outgoing

messages, the transitions, and the predicates of the agent net, respectively. The input/output

transitions are transitions that send/get data to/from channels, which connect different CPrT nets.

Particularly, a concrete state of the agent is the marking of the agent net. Besides, each agent uses

input/output transition to dynamically connect to its agent support system when it moves into or

move out from the agent support system. The following is the formal definition of agent net:

Definition 2.1.1 (Agent Net). Agent net AN is a tuple AN = (P, T, F, 1; L, , Tn,, T,,, Mo, C,

W), where:

1. (P, ', F, 2; L, q, Mo, C, ) is a CPrT net

2. Ti, (Tn g We T) is a finite set of input transitions associated with input channels for

receiving incoming messages.

3. To, (To , W T) is a finite set of output transitions associated with output channels for

sending out outgoing messages.

4. The input transitions Tin and output transition Tai, are the interfaces to communicate with

agent support systems and other agents.

5. {<dt, dl, da, sl, sa, type, command, message>} cP

We define an agent A as a tuple A = (A,, MN,), where A, is the unique agent identifier, and

a is the corresponding agent net for A,. Agents are distributed in agent systems by means of

packing agents up as parts of tokens in system nets. In addition, each predefined instruction such

as MOVE or GOTO is also contained in the structures of CPrT nets. There is one token type in

agent net, which is <dt, dl, da, s, sa, type, command, message>, where dt is the destination type,
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such as agent net or host net. dl the destination host, da the destination agent of the message, sl

the source host of the message, sa the source agent of the message, type the message type,

command the command for messages, and messages the content of the messages.

We model each agent system with a CPrT net, called a host net. The agent system provides

facilities for agent execution (e.g., execution place, activation and deactivation). The interactions

between agents and its system are through dynamic channels. Each host net has input/output

interfaces to connect with other agent systems or agents, which are running within this agent

system. The following definition is the formal definition of system net:

Definition 2.1.2 (Host Net). A host net SN is a tuple SN = (P, T, F, 1 L, q, Ti, T, P, M, C,

W), where:

1. (P, T, F, , L, o, Mo, C, W) is a PrT net

2. Ti, (T,, T) is a finite set of input transitions associated with input channels to receive

incoming messages from the channels.

3. T., (T,~, g T) is a finite set of output transitions associated with output channels to send

outgoing messages to the channels.

4. Ti; and TQ', are the interfaces to communicate with other agent nets or system nets.

5. Pa (Pa gP) is the only place where agents execute tasks.

In the structure E of a host net, we define MN(P, T, F, 4 L, rp, Tn, To,, Mo, C, LI) as

structured data representing the structure of an agent, where (P, T, F, 4 L, (, T iu, T,,, MO, C, W)

is an agent net. We use MN to represent agent net if it does not cause confusion. There is one

token type in host net. The type structure is <dt, dl, da, sl, sa, type, command, message>, where:

dt is destination object type, in this model, it is a boolean value, true means destination is an

agent, false means the destination is a host. dt e {true, false}. dt is added to make sure messages

are only sent to unique channel at any time, dl is the destination host of the message, da is the
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destination agent of the message, sl is the source host of the message, sa is the source agent of the

message. type is the message type, and it has two values, one is agent, another is regular

messages. type e {MSG, AN}. If type = MSG, then command is a command message. This

command could be MOV which means to move out the source agent, or # which means the

message is regular data. If type = AN, then command is the agent identifier, and message is agent

net MN

Based on above concepts, we model a mobile agent system as a structurally composed model

by a finite set of host nets, a finite set of agent nets and a logical connection. The logical

connection provides facilities for communications and interactions among agents and agent

systems. The logical connection is modeled through channels, and dynamic configuration of

mobile agent system is reflected in the dynamic changes of channels. The following description is

the formal definition of a mobile agent system (MAS) model:

Definition 2.1.3 (MAS model). A mobile agent system is a ple H = (SYS, SAN, CONN),

where:

L SYS is a finite set of agent support systems SYS = {(DL, SN), (DL2, SN2), ... ,(DL,, SN,)},

DL is the agent support system identifier and SN is the system net (P, Ti, F, 1, Li,, Tin,

Tu, Pia, Mi, Ci, Wi).

2. SAN is a finite set of agents SAN = {(DAI, AN), (DA2, AN 2), ... , (DA, AN,)}, DAi is the

agent identifier and AN is the agent net (Pi', T ,, F,' , Li , P'i T'in, T, 'ou1, ', C' Wi'),

and AN EU]p
i=1

3. CONN is a logic connection CONN =(CN, CN 2,., CNn}, CNi is a transition with

channels, CNi E T T
i=1 j=1

86



2.2 Modeling Agent Systems

A mobile agent support system (we also call it as agent system or host system if it does not

cause confusion) provides services and managements for agents. Agent systems are pre-installed

in hosts and each one has its own location property that identifies it in the network. Agents and

agent systems use location information to locate a specific system within a mobile agent system.

Agent systems may have different capacities, but we only model the most general behaviors of

agent systems. An agent system can create mobile agents according to user requirements, send

agents to other agent systems, receive agents from other agent systems and provide reasonable

services for agents, communicate with agents or other agent systems through message passing,

monitor agent running and may force them to move out. Agent systems receive messages from

other systems or agents, and these messages could be data, commands, or agents. Tokens in

system nets mainly have two types: one is message, which is not associated with any agent net;

another is agents, whose nets are wrapped as tokens with identifiers. That means an agent token

always include two attributes: one is agent identifier AI, and another is agent net MN, and they

consist of a structured data (AI, MN). We use MN to represent MN(P, T, F, 1 L, q, T, pT, M, C,

W)for simplicity if no confusion caused.

When an agent system receives a message (token) from other systems or agents, it processes

this token according to its type. If the token is a message, the system processes this message.

Then the processed message is sent to other agents or hosts if the message is regular data (the

token has the form: <dt, dl, da, sl, sa, MSG, $, message>), and an agent is move out if the

message is a command to move out an agent dt, dl, da, sl, sa, MSG, MOV, $>). If the token is

agent, the agent is started and its state is recovered from the stop point when it moves out. Only

after an agent starts its task, it can receive incoming or send out outgoing messages. In the model,

incoming agents stay in the particular place P, of its host system net to run their tasks until they

are moved out from the host net. Agents only can run their tasks in this place. Agent systems can
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send messages to any agents within it, and agents can send messages to their host systems. In

order to facilitate the communication between agent systems, an agent system also can send

messages to other agent systems directly. However, if an agent system needs to send messages to

other agents that are in other agent systems, it should know the location of the destination agent

system and identifier of the agent. The messages are sent to the destination system firstly, and

then the destination system forwards the messages to the receiver agent. The communications

between agent systems and agents are through channels. We do not consider group or broadcast

communication in this model. Here is the agent system model:

receivernsg sendrsg
|ty6e = MSG s P1 1 md #MOV

2 12

CL?(ead,obj) 6 ana 15 !dt &&dl! eadobj)

receive 13 dt&&da! ead ob

send
receiveagent start agent sendagent

Figure 4.4 An agent system model (host net)

Table 4.1, Legend of Figure 4.4

place/transition/inscription Description

p The place mobile agent stay in, <dt, dl, da, sl, sa, AN, ai, MN>

PJ/P5 The incoming/outgoing messages from/to channels, <dt, dl, da, s sa,
_ _ type, command, message>

P2, p4/p3 Messages, messages <dt, dl, da, si, sa, MSG, command,
message>/Agents <dt, dl, da, s, sa, AN, ai, MN>

receive Input transition, get tokens from CL channel
send Output transition, send messages to dl or da channels according dt
receive msg Receive messages (incoming tokens are messages)
receive agent Receive agents (incoming tokens are agents)
process Agent system processes the received messages
start agent Start the received agent
send msg Send messages to other agent systems or agents within this system
send agent Send agents to other systems
manage System monitors agents
1, 14, 16, 17 <dt, CL, da, s, sa, type, command, message>
2, 4, 6, 8, 10, 12 <dt, CL, da, sl, sa, MSG, command, message>

3, 5, 7, 9 <dt, CL, t, sl, sa, AN, ai, MN>
11 <0, , 0, , , AN, ai, >
13 <false, nl, , CL, sa, AN, ai, MN>
15 <false, dl, da, CL, sa, MSG, MOV, nl>
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In Figure 4.4, dl represents destination location of this message or mobile agent, da is the

destination agent, which receives the message, if this token is an agent, then da is empty $. sl is

the location of the source agent system. sa is the source agent which sends the message. n/ is the

next destination of agent sa. For simplicity, we use ob] and head to represent complex structure

data, where oh E {<CMD, DATA>}, CMDe {MOV, STOP, AI} is a management command or

the identifier of the sending agent, DATA represents the message contents, it could be regular data

or the agent net. head = <dt, dl, da, sl, sa, type>, type e {MSG, AN). CL?, dl!, da!, ai! is channel

name, and CL is constant. <ai, MN> where ai is the agent identifier, and MN is its net. dt is

destination type, means the destination of a message is a host or an agent, it is a boolean variable,

dt is false when destination is a host, dt is true when the destination is agents.

In Figure 4.4, we model the basic functions of a mobile agent system. When channel CL has

data with structure <head, ohj> available, the input transition receive is ready to fire. The data or

token is moved from channel CL to place pl. If the token is a message, the token is sent to place

p2. Then if this message is data for an agent, then the data is sent to place p4 through transition

process, and the data is delivered through transition send nsg to place ps, and input transition

send put the data into channel da, and then the agent da will get the data. If the message is a

command to move an agent, such as the message is t, CL, $, CL, sa, MSG, MOV, nl>, the agent

sa is move out from place pa to destination host nl through transition send agent to place ps.

Then the output transition send put that agent into output channel dl, and agent system nl will

receive this agent If input transition gets the token from input channel CL is an agent da (suppose

it is DA), the agent DA is sent to place p3 from pi, and then transition start agent sends current

location information CL to the channel DA. When the agent gets CL from its input channel DA, it

starts its task and is ready to receiving other messages from its input transition. Then agent DA is

sent to place pa. CL is the system location and it represents a channel as well. The destination

variable dl and da are channel variables and they are assigned real values at run time. Each agent
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system has a unique channel CL, and it only get incoming messages from channel CL. The input

tokens of an output transition have the destination information, which decides the values of the

output channel names. Since the input tokens of output transitions change dynamically, so that the

channel values also change dynamically, and then the output transition dynamically connect with

the input transition of the destination. The communication between output transitions and input

transitions are through channels, which link two communication transitions at run time. Both the

input transition and the output transition for a communication fire at the same time and

disconnect the communication link as soon as they fired.

2.3 Modeling Mobile Agents

A mobile agent is an independent program with its own task on behalf of users. We view an

agent as an encapsulated entity consisting of interfaces, behaviors, and states. It is an interactive

object capable of receiving message from and sending messages to other objects. In the meantime,

it has its own states, and methods to process messages as well as to change the state. Agent

systems can send messages to agents, and these messages could be regular data for processing or

commands for managing agent's resources. Before an agent moves out, it stops running and

wraps up its state, and then it is delivered to the destination agent system. The destination agent

system starts the execution from the stop point when the agent moves out. Agent itineraries are

assigned when agent are created and updated at run time. Each agent may have its own

knowledge base, which decides agent decisions during its life span. Agents are different since

they have from simple to complex nctionalities (we use a dashed box to represent the running

task). Although we only model the general behaviors of mobile agents, other specific tasks or

services can be modeled as modules to plug in this model. An agent identifier represents its agent

net, and each agent includes a location property, which is the location of the agent system where

this agent stays. When an agent moves from one agent system to another, its location is updated

to the destination location. We define each type of agents using a CPrT net. The agent creation is
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the initialization of a pre-defined CPrT net, and an agent token is an instance of a type of agent

nets. The instance has its own identifier and the structure of the agent net based on the pre-

defined CPrT net. These instances are independent even though they may cooperate with each

other. For example, if agent a clones another agent a2 , then a and a 2 are two separated agents.

The change of al's state does not affect the state of a2 except when they cooperate with each other

explicitly.

An agent net has input and output interfaces for receiving incoming messages or sending

outgoing messages. Each agent net has a unique identifier DA, which is assigned when the agent

is created. Its location is the location of its host net. Each agent gets incoming messages from

channels DA and only from this channel except the start information from its host net. The input

transitions also make sure messages from its current host system or agents who are in the same

host system. Since agents may move to different hosts at any time, it is difficult to send messages

to other agents who are not in the same space. This limitation on sending message makes sense

and many mobile agent systems include this limitation. Agents cannot receive or send messages

until they are started and they are in particular place p, of the host net except receiving the

starting command from host nets. The input transition for receiving start signal in agent net is

inactive until agent is stop. There are two types of incoming messages, one is regular data, and

another is command. Agents process messages and commands at run time. Agents have their own

tasks and they may send some requisitions at any time. Before an agent moves out, it stops its

execution and saves its current state. According to the location of destination system, the agent

updates its current location information before it moves out. If the agent wants to move out, it

sends a message <false, CL, #, CL, DA, MSG, STOP, #> from transition run to place p2. Then the

transition stopagent is enabled and fired, it gets the next destination for this agent. After

transition run fires, the transition stop fires since nl is different current location cl, which stops

running tasks of the agent. The message <false, CL, #, CL, DA, MSG, MOV, nl> is sent to place
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p2, and transition send msg will deliver the message to current host net. As soon as current host

net accepts the message, it is sent to place p4 of the host net in Figure 4.4. Then the corresponding

agent DA is move out from place pa in the host net CL to next host net n1. When the destination

system accepts it, the system sends a message to start the agent. The agent starts its running and

recovers its state. Its location property is changed, and its input transition for receiving messages

is ready to receive messages. We use channels DA to get the starting information from its current

host net. When the agent arrives at p3 in host net, the host net sends a message to the agent

through channel DA. Then the agent starts and its receiving interface is enabled. Each agent has

its own knowledge base kb, which decides the behaviors of the agent. An agent sends messages to

other objects through its output transition/interface, which has output channels to connect with

other objects. The following diagram is the mobile agent CPrT model:

send.msg
(cl = dl) kb cmd#STOP

&& 8
A?(head,obj) 2

receive !dt&&dl!(headobj)
run 4 P2

dt&&da!(head, obj)
17 18 12 sen

19 3 stopagent

16 n1 c1

14 stop
(nl =cl)&& 1

DA? cl
start

Figure 4.5 A mobile agent model (agent net)
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Table 4.2 Legend of Figure 4.5

place/transition/inscription Description
receive Get incoming message from DA channel
send Send outgoing messages to dl or da channels
send msg This agent sends messages to current system
stopagent This agent sends a request to move out, its itinerary is updated, and

its state is wrapped. The moving out agent command is sent to
current agent system when transition run fires, and the execution of
agent is stop.

run This agent runs its tasks, gets its itinerary.
stop Stop the running of this agent
start Start running of this agent
kb Knowledge base or received data for this agent
pt The itinerary of this agent

1, 2, 3 <head, obj>, where head =<dt, dl, da, s, sa, MSG>, and obj =

<cmd, m g>, cmde {MOV, STOP]
6 <dt, dl, da, s, sa, MSG, STOP, msg>
4, 5, 7, 8 <dt, dl, da, sl, sa, MSG, cmd, msg>
9, 10 <cur>, <cur = (cur + 1)/N>, N is the number of total destinations

12, 13, 14, 15 <nl>
16, 17, 18, 19 <cl>
11 <nl>, nl = cur(pt), pt is the itinerary, and next is the reference

pointing to current location.

In Figure 4.5, where dl represents the destination location of this message or mobile agent, da

is the destination agent, which will receive the message. sl is the location of the source agent

system, where the message is sent. sa is the source agent sending the message. nl is the next

destination of current agent. obj e {<cmd, msg>}, cmd E {MOV STOP} is the management

command, msg represents the message content. head = <dt, dl, da, sl, sa, type>, type e {MSG,

AN}, we use head here for simplicity. dl!, da!, DA! is channel name, and DA is constant

representing current agent. cl is variable for location of agent system which starts this agent. The

destination variable dl and da are variables and they are assigned with real values at run time. dt

is a boolean value referring to whether the destination of a message is system or agent. dt isfalse

when destination is host nets, and dt is true when the destination is agents.

In Figure 4.5, we model the basic functions of mobile agents. When channel DA has data with

structure <head, obj> available, the input transition receive is ready to fire. The data is move from

channel CL to place pa. Then the agent processes the data using transition process with statements
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from run, and put results into place p2. If the token is a command such as stopping agent t, dl,

DA, si, sa, MSG, STOP, #>, transition stop agent is going to active transition update to get next

destination location. Then transition run sends out token to activate stop transition, which stops

current agent execution. The current destination location cl is updated to the value of next

destination. A message <false, cl, #, cl, DA, MSG, MOV, nl> to move out current agent is sent to

place p2, and then transition send _msg sends the message to current agent system, which sends

out this agent. In our models, stopping an agent means to move it out, however, its destination

depending on its itinerary. An agent support system does not send a command to move out an

agent directly. DA is the agent identifier, and it represents a channel for this agent as well. The

input transition has a guard condition to guarantee messages from current host system or agents

that are in the current host system. The destination variable dl and da are channel variables and

they are assigned with real values at run time so that the agent can communicate with different

host systems and different agents.

2.4 Dynamic Connection

In order to capture the social ability of agents and to bridge the gap between agents and

systems, we enable agents to connect with host systems dynamically. Representing such

connections is a challenge for the Petri net formalism because it is statically defined, whereas the

number of mobile agents changes over time [XYDO3]. It is impractical for each system to provide

separate ports for connection with each agent. Instead, we introduce channels to connect agents

with their host systems at run time to facilitate the dynamic configuration of mobile agent

systems. Here we show how agents dynamically connect to host systems and migrate among

them. The following diagram is a snapshot of a mobile agent system with logic connection using

channels. We only define their interface transitions and their parameters are simplified for this

specific case:
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(cl=d)&& dt&&da!(dl, msg) (cl =dl)&& dt&&da!(dl, msg)
MAI? dl,ms fl1A2? dl,ms )

el ® !dt&&d dl ms e3 !dt&&dl! dl s
agent 1 e2 agent 2 . e4

LJ?(mnsg =dt&&d! (d, cmnd)I ( FTZF(an71 dl!(d1insg)?

tdi&d!(l, mnsg) t4
host 1 . 2 host 2

Figure 4.6 A logic connection model

In Figure 4.6, agent 1, agent 2, host 1 and host 2 have channel MA,, MA2, DLI, and DL 2 to

receive incoming messages, and all of them are unique in the network. Moreover, the channel

variable cl is assigned with values at run time. When these nets send out outgoing messages, the

input tokens and the inscriptions on the input arcs of output transitions decide the value of dt and

the output channels dl and da. The cl has the value same as the current location of the agent.

Based on above description, we discuss several general communication scenarios:

1. An agent sends messages to its host system. If agent 1 is in host 1 and it sends a message to

host 1. Then in agent 1: dl = DLI, da = $, dt = true, and msg is the message. The output transition

e2 has the output channel with values as: DLJI(true, DLI, $, DLI, MA1 , MSG, $, msg). When e2

fires, DLI channel has that message, then t1 gets data msg and other information from channel

DLI. When tj fires, it sends the data to output places according to PrT firing rules and it removes

the token from channel DLI. The agent system in host 1 starts to process the message.

2. A host system sends messages to an agent that stays within it. If agent 1 is in host 1, and

host net 1 sends a message to the agent. Then in host net 1: dl = DLI, da = MA1 , dt = true, and

msg is the message content. The output channel of transition t2 has values as: MAI!tfalse, DL1,

MA1 , DLI, $, MSG, msg). When t2 fires, MA1 channel has the message. When el fires, it sends the

data to output places according PrT firing rules and it removes that message from channel MA.

Agent 1 can start to process message msg.

3. An agent moves from one host system to another. If agent 2 is in host net 1, and it wants go

to host 2. First, agent 2 sends this requisition <false, DL , DLI, MA2, MSG, MOV DL2>to the
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agent system in host 1, and then host 1 sends agent 2 to host 2. Transition e4 assigns values: dl =

DLI, sa = MA2, dt =false, and CMD = MOV, msg = DL 2, and the output channel of transition t2

has values as: DL! (false, DLI, MA2, DLI, MA2, MSG, MOV, DL2) Before agent 2 moves out, it

stops its running, updates its location with value DL2. Then system 1 sends agent MA2 to channel

DL2 with values: DL2 !(true, DL 2, $, DLI, MA2, AN, MA2, MA2). When t3 fires, it sends the MA2 to

output places according PrT firing rules and it removes message in channel DL 2 . Then system in

host 2 sends starting messages through channel MA2 with its location value DL 2 to agent 2 so that

it starts. The agent is sent to place pa in the system net of DL 2, and then agent MA2 starts to work.

4. An agent sends messages to another agent that is in the same agent system. If agent 1 and

agent 2 both are in system 1, and agent I sends a message to agent 2, then in agent 1: dl = DLI,

da = MA2, dt = true, and msg is the message content. The output transition t2 has the input

channel with values as: MA2!(true, DLI, MA2, DLI, MA1, MSG, $, msg). When (2 fires, MA2

channel has message msg, then e3 gets the message from channel MA2. When e3 fires, it sends the

data to output places according to PrT firing rules and it removes messages from channel MA2.

Agent 2 starts to process message msg.

5. One host system sends messages to another host system. If agent system in host 2 sends a

message msg to agent system in host 1, then in system 2 output channel: dl = DLI, dt =false, and

msg is the message content. The output channel of transition t4 has values: DLI!(fasle, DLI, f, DL 2,

$, MSG, , msg) When t4 fires, DA, channel gets the message, then tj gets the same message from

channel DA,. When tj fires, it sends the message to output places according PrT firing rules and it

removes the message from channel DA,. System 1 starts to process message msg.

If agent 1 is in host system 1, agent 2 in host system 2, agent 1 wants sending messages to

agent 2, then agent 1 only can send messages to host system 2, and host system 2 forwards the

messages to agent 2, or agent 1 and agent 2 must move to the same place to complete the

communication.
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3 Related Works

In our previous model (LAM) for mobile agent systems, we used connectors to facilitate

communication and interaction between different nets [XYDO3], while our current method uses

channels to provide functionalities for communication and interaction among different nets.

In LAM, a mobile agent system consists of a finite set of components and a finite set of

connectors. Each component includes an identifier for the component, a system net, and an

internal connector. The connectors (also called external connectors) interconnect host systems (or

agent system in LAM). Each host system has one input predicate receiving messages from

connectors and one output predicate sending messages to connectors. In addition, arcs of

connector nets are supposed to be properly labeled so that a migrating agent is always transferred

to a single destination since they do not consider agent cloning or broadcast agent transferring.

External output place of one system net may connect to all other components. Here is an example

of connector models:

6Ksa CM, da mh, mn tzA <CM,s d mh mb> SN2Z s d m b<saC2damh > ti ~ ~

Figure 4.7 A connector net of LAM

Essentially, connectors are pre-defined. When any agent system joins in or leaves, this

connector has to be re-defined. The channel method has not this problem since channels are

dynamically created according to run time situations (token or message values). We can look all

agent systems are connected with inactive channels, and channels are activated according to the

system or agent outputs. It naturally captures the essentially dynamic property of mobile agent

systems.

Each LAM component has one internal connector to connect the system net with all mobile

agents residing in the current component. Such an internal connector depends on the internal
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interfaces of environment, the running agents, and their interfaces. The following diagram shows

an example of internal connector for two agents:

<A,, dl, da, n, b> dl, da , mb

<sa, dl, da, h, mb>

ED t pn dd, h .
<sa, dl, da, mh, mb <2 l a h b

<si, sa, A1 , nh, t sa, mh, mb>

sl, sa, mh, mb>
<si, sa, A2, mh, m tA2 AN 2 -p

Figure 4.8 An internal connector net of LAM

It is difficult to capture the dynamic connection between agents and their systems because the

internal connector structure has to be changed with new agents arriving or leaving. Our current

method avoids this problem since it uses channels to connect agents with their systems. Channels

for connecting agents with systems are dynamically chosen according to PrT firing rules. It

smoothly integrates dynamic channels with static PrT nets. When we model a mobile agent

system, the system architectural model changes its structure with run time activities of agents and

agent systems. The channel method is more flexible to model mobile systems such as mobile

agent systems and other systems with code mobility. It provides a powerful mechanism to model

synchronous communication between distributed objects. In order to demonstrate its capacities,

we will use channels to model other paradigms of code mobility in the following section.

4 Modeling the Code Mobility

In addition to the mobile agent, the remote evaluation and the code on demand are other

paradigms of code mobility. The classification is based on the location of components before and

after the execution of the service, the computational component that is responsible for execution

of codes, and the location where the computation of services actually take place [FPV98]. We

discuss the client server paradigm even there is no code mobility because all these paradigms of
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code mobility are special forms of client server paradigm. We already discussed the modeling and

analyzing mobile agents using CPrT nets. In this section, we study the other three paradigms to

illustrate the express capacities of CPrT nets on code mobility.

Client server paradigm is a widely used classical distributed style. It has two components: one

is the server that provides a set of services, and another is the client that requests services from

servers. The server has programs and resources for all services in its site, and the client sends the

specifications of requests to servers. When one server receives a request from clients, it starts the

corresponding service and returns results to the client. If the server has not the service, the request

fails. this paradigm, there is no code migration among components. Remote evaluation

paradigm has two components: one component (we call it client) requests services, and another

one (we call it server) executes the service and delivers results back to the client. Clients have

programs of services, but they have not required resources, which are located on servers. A client

sends the program of a service to a server that has required resources, and the server executes the

program and sends results back to the client. Code on demand paradigm is the reverse style of

remote evaluation. It consists of two components: one is the client that requests services, and

another one is the server that provides programs of services to clients. Clients have resources for

requested services on their sites, but they have not corresponding programs. Servers have

required programs of services, so that servers send programs to clients according to demands

from clients. Then clients run those programs and get required services.

4.1 Modeling Client-Server

For client server paradigm, all resources and programs are on the server side. The CPrT net

model has two parts: one is for the client, and another is for server. The communication between

client and server is through channels. The server model is a two-layer CPrT net, the system net

models the environment, and the token nets represent the programs of services. Token nets are

instantiated as instances or object nets in system nets. In other word, object nets are packed as
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tokens in the system net. Each token net represents one service, and the service can serve

different clients at the same time. If one service is serving several clients, there are several tokens

in the system net, which are instances of the token net representing the service. The following

diagram shows the model:

Lm m> s'cC

Client

System 
aSy sa, mdm. sd m.id Asa,,id <said > <a> ! <a> sa (r)

e P2
sa, m > <svr> sa o> saor>

Sa m PS® <saco> o? s r aor

Service

ID? -IDISr

Server

Figure 4.9 A CPrT net of Client-Server systems

In the client net, C is the channel representing this client to receive messages from servers.

The parameter of channel C is the result r, which is a structured variable. The transition t sends a

request to a server for some services. The request includes the server name s, the client name C,

and structured data m. The m includes the service name ID and parameters p, which is also a

structured parameter for a set of simple parameters.

In the system net, S is a channel representing the server to receive messages from clients. S

has two parameters: sa for the source client, and m for the service requisition. The place p, has

the list of services that the server provides. For simplicity, we do not consider the reject

conditions. The place P2 is the configuror, which is a set of all active object nets in this system.

The a is a structured parameter, which has the form {ID(obji, obj2, ... , obj], ID2(obj, ob 2, ..,

obj ), ... , ID(ob1j, obj 2, ... , obi)}. IDi is the type of the service, and obji is the instance of this

type of service, and service instances are staying in p, during its life span. The transition e

generates an instance (start the service) of a type of service, and then forwards the requisition data
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to the object. The unique instance identifier in the server is assigned according to a in p2, and e

updates a when it generates an object. When result r is ready and sent back to client, the

corresponding object becomes inactive, and it is removed from configuor p2.

In the service net, channel ID is a dummy channel name representing the service. ID is

instantiated as a real value (the instance identifier) when an object is instantiated from this service

and move out from p,. The result of the computation is sent back to the system when the service

completes.

4.2 Modeling Remote Evaluation

System
<s Cm> <s Cm> s

<id, s, m>

Pd s

Client

System
<sa mid mnt> d! < > sa!(r)

<sa > <sa d> sa, r>

S sa ) <said> idr sar>

Service

D)-s ID-fr)

Server

Figure 4.10 A CPrT net of remote evaluation systems

Remote evaluation is a special style of mobile agent paradigm. However, a remote evaluation

system does not move resource with its mobile programs. In other words, it does not support

strong mobility. Programs, which migrate to remote sites, have not itineraries since remote

evaluation only works for one hop situation. The model of remote evaluation has two parts: one

is the client that sends programs to remote sites for evaluation, and another is the server that

receives and runs theprograms from clients. The client model has token nets, which are moved to
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remote server sides and instantiated as object nets. The results are delivered back to clients after

the evaluation finishes. Figure 4.10 shows the model of remove evaluation.

In the client net, it has a system net with its token nets that represent services. The channel C

represents the client to receive the evaluation results r from servers. The transition t sends a

program id with its net nt to server s. The program identifier id and its net nt are combined as a

structured data in. The p1 has the information of available programs in the client The client sends

a copy of the token net to the server side, and this token net is instantiated as an object net and

only one object in the server side.

In the service net, channel ID represents the type of a service and it severs as an object name

as well since only one object of the service is in each server at any time. The result r of the

computation on resource p is sent back to the system when the service completes. The reason we

make the input channel has different parameters with output channel because we need make sure

that the object sends result to its system not itself.

In the system net of the server side, S is a channel representing the server to receive messages

from clients. S has two parameters: sa for the source client, and m for the service requisition. The

place p, has all required resources for services. The received service (m. id, m.nt) is instantiated as

object with the service name. The transition e generates the instance (start the service) of the type

of service (place Pr is the instantiated service working place), and then forwards the requisition

data to the object. When result r is ready and sent back to the client, the corresponding object

becomes inactive.

4.3 Modeling Code-on-Demand

Code-on-Demand is the reverse style of the remote evaluation since it migrates code from

servers to clients, while remote evaluation moves code from clients to servers. Code-on-Demand

is also the reverse style of mobile agent paradigm since each client requests programs to move

from server sites to clients so that codes are passively moved to clients. However, in the mobile
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agent paradigm, agents actively move from clients to remote server. Same as remote evaluation,

contents of migration between clients and servers are programs without states. The model of

code-on-Demand has two parts: one is the client that requests programs from remote sites to the

client side, and another is the server that provides required programs to clients. The server model

has the system net and token nets, which represent services. Programs or codes are moved to the

client and instantiated as object nets. Programs run in the client and provide results directly to the

client. Figure 4.11 diagram shows the model of code-on-demand paradigm.

System
<sa m.id .mnt> d!a <sa, id <sa id> sa!(id)

id! sa

<sa, m > <id> <rsa,rid>

? sa m <sa id> id? r <sa,r>

Service

Client

System
?(sa,id) <svr, nt>

id =svr<said,nt> <sa, id nt> sa! id nt

Service
IID? s ri r D

Server

Figure 4.11 A CPrT net of Code-on-Demand systems

In the client net, the channel C represents the client to receive the requested code m (i.e. (id,

nt)) from servers. The transition e starts the code or sends a request to server. When the client

starts the code, it creates an object of the service net and the object name is same as the service

type. The reason is there is only one object of a particular type service in one client at any time.

The request for code also may happen during running of some services. The dashed service net is

the object net from remote server and it is instantiated in the client.
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In the system net of the server side, S is the channel representing the server to receive

requests from clients. S has two parameters: sa is for the source client, and id is for the

specification of a request code. The place P, has all required codes in the server. If the server has

the request program (codes), the program identifier and its net are packed as a token and sent to

the client.

In the service net, channel ID represents the type of a service and it serves as an object

identifier as well since only one object of the service is in each client at any time. The result r of

the computation with resource p is sent back to the system of the client when the service

completes.

From modeling of these three different paradigms of code mobility, and the modeling and

analysis of mobile agent systems, we demonstrate that two-layer CPrT nets are a powerful tool to

formally model and analyze systems with code mobility. The two-layer method naturally captures

the structure of systems with code mobility, and the channel mechanism smoothly integrates

models in different layer. The high-level Petri nets provide a tool for modeling systems with

higher abstraction and more compact models.

5 Concluding Remarks

In this chapter, we use two-layer CPrT nets to model the software architecture of mobile

agent systems and models of other systems with code mobility. From successful modeling and

analysis of these systems, we conclude that CPrT net is a power formal tool to modeling mobile

computing systems. These models demonstrate some advantages: 1. The two-layer modeling

paradigm smoothly transform physical models of mobile computing systems to their formal

architecture models. Since agents and agent support systems are related independent systems, this

method brings us convenience to focus on a particular sub-system without involving the

complexity of its environments at each time. Moreover, it is helpful to analyze these models since

we can analyze models on a particular level with abstraction of another level. 2. We chose
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dynamic channels to facilitate the synchronous communication between different nets. It naturally

captures the dynamic configuration property of mobile computing systems. Communication

objects change their communication topologies with the changes of their environments at run

time since channel values are dynamically assigned during execution. The dynamic channel

provides a mechanism to construct easy-to-understand and compact models, since each dynamic

channel is a finite set of static channels.
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CHAPTER V

Analyzing Software Architecture of Mobile Agent Systems

1 Introduction

An important goal of formal modeling is to facilitate the system simulation as well as the

specification analysis. We already defined the software architecture of mobile agent systems

using CPrT nets. In order to analyze the software architecture, we formally define its semantics,

which cannot be interpreted by the semantics of CPrT nets because of the dynamic property of the

architecture. A mobile agent system consists of several agent support systems and a group of

agents. The structures of these support systems and agents are statically defined, but the software

architecture has to be reconfigured with mobile agents moving in or moving out. the system

level, we treat agents as tokens. We can analyze agent systems like regular CPrT nets if we look

at agents as regular data. Then the analysis is addressed on one level CPrT nets. However, we

have to consider agent nets within system nets if we need to analyze the interaction between

agents and support systems and the dynamic configuration of the software architecture with

migration of agents. Then we have to connect agent nets with system nets as a whole net when

agents move in, and disconnect agent nets from system nets when agents move out. In the agent

level, there is no token net so that we can analyze agent nets as regular CPrT nets if we consider

agents with predefined interfaces that represent agent support systems. Then the analysis is

addressed on one level CPrT nets. We consider the cooperation between two agents who are

within the same space. We analyze the cooperation of two agents as a special case of interaction

since communication between agents is through the agent support system where both agents are

staying in. The analysis is based on the connected net of the two agent nets and the simplified
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host net. We chose a hierarchical analysis method to analyze the software architecture of mobile

agent systems. We analyze the software architecture on system level, component level and

interaction level. The system level analysis focuses on system properties such as mobility, safety

or liveness of a system. The component level analysis focuses on individual component properties

such as properties of an agent net or a host net, but without considering other components. The

interaction analysis focuses on dynamic configuration of system architecture, interaction and

communication between agents and systems.

2 Hierarchical Analysis Method

System level analysis treats agent nets as regular data or tokens within its places. Since all

host nets are statically determined, their composition is to connect them together based on their

channels. If one property we analyze involves only a single host system, we only need to analyze

the single CPrT net of the host system, and if that property involves several host systems, we

have to analyze the CPrT net consisting of those host nets. The analysis is directly addressed on

these CPrT nets connecting with channels, which form a whole net for the mobile agent system.

Component level analysis is used to analyze individual agent models or agent support system

models. When we analyze an agent net, its environment or agent support system is abstracted as

several interfaces. These interfaces send values to or get values from agent channels. The simplest

way to construct these interfaces simulates the interactions between agents and environments. If a

transition in agent nets has one input channel, which has a partner output channel in its system net,

then the interface is a subnet to setting values for the input channels when necessary. If a

transition in agent nets has one output channel, which has a partner input channel in its system net,

then the interface is to remove values from the output channels when necessary. In order to

analyze complex properties, it is necessary to construct complex interfaces, which are beyond the

scope of this paper. The most complex interface is the original host net, which cannot be reduced.

In that case, we have to analyze the whole net that consists of agent nets and their host nets.
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When we need to analyze the interaction between agents and their host nets, we have to use this

method, which is called interaction analysis or composition level analysis. Interaction analysis is

used to analyze properties involving agent nets and the system net or the cooperation among

different agents. Agent tokens in system nets are unfolded into agent nets, and system nets are

connected with those agent nets based on channels. When we analyze the cooperation between

two agents, the analysis is based on the connected net that consists of the two agent nets with

states. These agent nets maybe instantiated from the same predefined agent net, but they have

different states (markings). Because of the migration of agents, the model structures are

dynamically configured at run time. The migration of agents is determined with the itineraries of

agents, and these itineraries maybe updated at run time. In the next section, we will discuss the

method to analyze the dynamic configuration of architectural models.

2.1 Component Level Analysis

Component level analysis is used to analyze individual component properties such as

properties of agents or agent support systems. In the architectural model of mobile agent systems,

there are only two components: one is host nets, and another is agent nets. Since these individual

components are part of a whole system, we have to transform each individual component as an

independent model for analysis purpose.

2.1.1 Analyzing Host Nets

Each host net has at least one transition with input channels, and one transition with output

channels. When we analyze host net, the functionalities of channels are reduced to receive tokens

and send tokens. It is not necessary to consider on the dynamic communication since the agent is

already set in a particular environment. We transform input channels as input places of the

transitions that have these input channels. We transform output channels as output places of the

transitions that have these output channels. Then the component model is merged with its

interfaces to from an independent model. The following diagram shows the transformation. The
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top part of the diagram is the transformation for input channels, and the bottom part shows the

transformation for output channels.

p (t, C, ( ___ ()

Figure 5.1 The transfo ation of channel expressions

If one transition has more than one channel, we have to transform these channels into regular

transitions according to their relationships and PrT net rules. We restrict that there is no transition

with two different type channels, so that there are only two different combinations of channel

expressions: one is the AND relation between two channels, and another is the OR relation

between two channels. If two input channels have an AND relation in a transition, then these two

channels are directly transformed into two input places of the transition. If two input channels

have a OR relation in a transition, then these two channels are transformed into two concurrent

input places with two concurrent transitions, and then these two concurrent transitions output to a

place, which is the input place of the transition with these channels. If two output channels have a

AND relation in a transition, then these two channels are directly transformed into two output

places of the transition. If two output channels have OR relation in a transition, then these two

channels are transformed into two concurrent output places with two concurrent transitions, and

then these two concurrent transitions has one same input place, which is the output place of the

transition with these channels. The following diagram shows these transformations. In this

diagram, the top two nets show the transformation of input channels, and the bottom two nets

show the transformation of output channels.
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Figure 5.2 The transformation of complex channel expressions

After we transform these channels into regular transitions, we can analyze host nets based on

regular PrT nets. The analysis methods include such as the reachability tree technique, the

temporal logic proof technique, the structural induction technique, and model checking [HD02]

[HYS03].

2.1.2 Analyzing Agent Nets

Agent net analysis is to analyze agent properties, which do not involve interactions with hosts

or other agents. The easiest way is to transform channels of an agent net into ordinary transitions.

Then the analysis is based on the ordinary PrT nets. However, many agent properties involve

other agents and their environments. In that case, we have to abstract host nets into simpler nets,

and then analysis will based on the simpler host nets and agent nets. Since agents only interact

with the host where they are staying in, we can reduce the host net into a transition with one input

place and one output place. If we analyze properties of one agent net, we can fuse places of the

simpler host net with the places transformed from channels, and the analysis is based on this

transformed net. However, if we consider properties of multiple agents, we have to use the

method for interaction analysis, which we will discuss in the following section. The following

diagram shows the basic idea of the transformation. In the left part of the arrow, the top net
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represents a host net, and the bottom net is an agent net. In the right side of the arrow, it is a

transformed agent net with its an abstracted host net.

Figure 5.3 A transformation of an interaction

2.2 Composition Level Analysis

Composition level analysis is used to analyze some properties that involve communication

and interaction among different nets. ideal approach is to carry out the composition-level

analysis compositionally. In this approach, each subnet such as host net or agent net is analyzed

individually, and then the interested properties are synthesized based on properties of individual

nets. Despite some existing results on compositional verification techniques in Petri nets, their

general use is not yet ready [HD02]. Therefore, even if we can analyze some properties of host

nets, agent nets and system nets (considering agent nets as regular tokens) individually, we still

need to analyze some properties based on the composing model that consists of different nets and

interfaces for their environments. We transform the CPrT nets into PrT nets, and then we use

existing analysis techniques of PrT nets to analyze the models.

2.3 System Level Analysis

In system level, we treat agents as regular tokens. The analysis is addressed on two kinds of

models: one is the host net, and another is the system net that consists of all host nets. When we

analyze properties that only involve particular host net, we can transform the host net into an

independent CPrT net for analysis. If we analyze system properties such as mobility, we have to

connect host nets to form a logical whole net for analysis. Since each host net has input

transitions and output transitions that may involve the communication between agents, we have to

transform these transitions into transitions that have not channels involving agents. Especially for
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analyzing a single host net, we need to transform these transitions into regular transitions since

we do not considering the communication between different nets.

From system view, a system net of a mobile agent system consists of all host nets. These host

nets communicate with each other through channels. We analyze system properties over the

system net, which is a whole net consisting of all host nets. Each host net has at least one

transition with input channels, and one transition with output channels. These channels are used

not only for communication between host nets, but also for communication between host nets and

agent nets. Since we look at agents as regular tokens, the functions of channels, which are used

for communication between host nets and agent nets, are reduced to receive tokens or send out

tokens. We use the same method that we discussed in above section to transform channels into

ordinary transitions. The channel variable for communication between agent nets and agent nets

are different to the channel variable for communication between agent nets and host nets.

Therefore, we keep channels that for the communication between host nets and transform other

channels into regular PrT nets. Then the analysis is based the transformed system net. Then we

can analyze the model using the reachability tree analysis technique or other analysis method

such as model checking technique.

3 Dynamic Configuration

The dynamic configuration of the software architecture of mobile agent systems is reflected

by connecting or disconnecting agent nets with host nets. At the system level, we do not consider

dynamic configuration since agents are treated as regular tokens. For simplicity reason, we do not

consider reconfiguration of agent systems. In other words, the location of each agent system is

fixed, and all agent systems are predefined and ready to accept all agents. The interoperability

property is not within the scope of this dissertation. If we need to consider the configuration of

agent systems such as some agent systems may join in or leave during run time, we have to

change host nets with an additional boolean variable on the inscriptions of channel transitions to
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indicate whether the system is active or not. This variable is part of a guard, which will disable

these transitions with channels when it is false so that the agent system net cannot get or send

messages to other agent systems or agents. From the system point of view, this agent system is

disabled. The dynamic configuration does not exist at agent level either, since we only consider

agent nets or the whole net of two connected agent nets, and these net structures are statically

determined using one level CPrT nets.

At the interaction level, dynamic configuration brings us much more complexity on analysis.

How to analyze dynamic configuration architecture is an interesting and important topic. The

architecture of mobile agent systems consists of a group of host nets and a group of agent nets.

These host nets and agent nets are statically determined, so the architecture is the static definition

of the system. Since each agent net can be instantiated as several instances or objects with

different states at run time, the system architecture is dynamically configured at run time when

the system net connects with different object nets. Agent nets communicate with other objects

through channels, and each object has one unique input interface to receive messages from other

objects so that it guarantees messages reach correct destinations. We call this channel as agent

channel, and its value is a dummy constant when it is defined in templates of agent nets. However,

this dummy value is replaced by a unique real value same as the instance identifier when an

instance is instantiated from one template. In order to analyze the dynamic reconfiguration of

system architecture, we introduce the configuror, which is used to remember current active agents

in each host net. Based on system configuror, we reconstruct and analyze the snapshot of the

software architecture.

3.1 System Configuror

There are only finite numbers of object nets in a system net at any time, so we can transform

the dynamic view into a static view to study interaction properties. The key issue is how we can

transform a dynamic view into a static view at run time. We introduce a configuror concept to
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define the configuration of agent nets (the instances of agent nets) with their system nets. We do

not add any configuror to CPrT nets, but it is used for describing the system configuration when

we analyze the models. The configuror is responsible for achieving the dynamic reconfiguration

of the system architecture. Each system net has a configuror, which consists of agent instance

identifiers, agent types (agent nets) and agent itineraries. When an agent is created, it is assigned

an itinerary that decides the visiting path of this agent. Based on the knowledge or itineraries of

agents, agents may dynamically update their itineraries at run time. The configuror of system

architecture is the combination of all configurors of host nets.

Definition 3.1.1 (Configuror) The configuror of each system net is a list CON= {c], c2, ... }

where c = (ANr-ID, AN -TYPE, ANKB), 1 : i 5 n. The n is the number of agent instances in the

system net. AN is the agent instance in the host net, and ANID is the instance identifier of AN,

AN-TYPE is the instance type (the name of the template net of ANA), and AN KB is the instance

itinerary of AN.

When a host net receives an agent, the agent location is updated as the location of the host

system. Then it is put into the special place Pa in the host net, which is the only place the agent

can update its states except when the host system starts it. When an agent moves out from the

host, it updates its location according to its itinerary and stops its execution until the destination

host accepts it. An agent system can generate agents or instances of agent nets (we call instances

of agent nets as object nets) according to existing agent types (templates of agent nets), but each

object net has its unique identifier and itinerary. When a host net receives or generates an object

net, the configuror adds the object into its list, and it removes the object from its list when an

object leaves the host net. This confi ror is easily constructed from agents within Pa. The static

view of interaction between host nets and object nets is a net composing from the host net with a

group of object nets within the host net. The following diagram shows the basic idea to analyze

the dynamic configuration of host nets.
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Figure 5.4 A dynamic configuration

In Figure 5.4, the system net or host net has two agents within its place pa, so that its

configuror includes these two agents information, which can be used to construct the static view

of the host model with one host net and two agent nets. Then one agent moves out, the configuror

removes the agent (agent net 1) from its list, so that the static view of the current host model is

the host net and on agent net. When the host net receives an agent (agent net 3), the configuror

adds that agent information into its list, so that the static view of the current host model is the host

net and three agent nets. Based on static views and configurors, we can analyze the dynamic

reconfiguration of the software architecture of mobile agent systems.

3.2 Analyzing Dynamic Configuration

We analyze the interaction between a system net and its agent nets through transforming the

dynamic view into static view according to the configuror. We unfold all object tokens (the

instances of agent nets) from the system net into agent nets with states, and these nets consist of a

logical whole net even if they may not be connected with arcs, but they are logically connected

with channels. The analysis is based on these nets and configuors. The occurrence rules for this
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interaction view are the same as the semantics and analysis on two-layer CPrT nets. The marking

of the whole net is the combination of the marking of each net. When an agent moves out from

the host net, the configuror removes that object from its list and the corresponding object net is

removed from the interaction view or the whole net. When an agent moves in the system, the

configuror adds that object from its list and the corresponding object net is added into the

interaction view or the whole net.

Definition 3.1.2 (Interaction view): An interaction view of a system net is a tuple IV = (SN,

AN, CON), where:

1. SN is a system net, SN= (P, T, F, 1 L, L, oM, C, W)

2. AN is afinite set of object nets, AN = (ANI, AN 2, ..., AN }, AN = (Pi, Ti, F,, l, L;, goi, Mo,

C, W), 1 5 i:5 n, ANcE

3. CON is the configuror of SN

The dynamic configuration of host net is reflected on the migration of agent nets. Here is the

definition of dynamic configuration of a system net, but it can be extended to architecture level

since it is the combination of a group of host nets.

Definition 3.1.3 (Dynamic configuration): The dynamic configuration of a system net is

reflected on the dynamic changes of configuror of the host net. An interaction view of the host net

is IV = (SN, AN, CON), where

1. When an agent ANk moves in to SN, ANk = (Pk, 4T, F,, , L k, Mko, Ck, W), then ANk e

P, CON = CON uck}, and ck = (ANID, ANkTYPE, ANk-K).

2. When an agent ANk moves out from SN, ANk = (P, Tk, Fk, k, L, , Mo, Ck, Wf), then

ANk o P, CON = CON \{ck}, and ck = (ANk-ID, ANkTYPE, ANk-K).

The occurrence rules and communication between object nets and the system net follow the

definitions in CPrT nets.
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4 Strong Mobility

Mobility is the most important property of mobile agent systems. The strong mobility means

agents can move from sources to destinations along with their states. When an agent moves out

from one space, it stops its execution and save its state. As soon as the agent arrives at the

destination, it resumes its execution and recovers its state from the stopped point. In order to

discuss strong mobility, first we need to clarify the location concept in mobile agent systems.

Each agent system has a unique location attribute, and agents within it share the location

information. Each host system is fixed with its location, but agents move from hosts to hosts.

Therefore, the location information of agents changes with their migration. However, each agent

only has one unique location at any time, which means each agent only exists in one agent

support system at any time.

Suppose V is the finite set of all host nets for a mobile agent system model 1 CO is the finite

set of all agent types, and H = (t co). S is the finite set of all object nets or instances of agent type

co in V at the analysis time. We use SN, ; SN2 to denote that host net SN and SN2 are in different

locations, and pa e SN is the place where agent net can running their tasks.

Theorem 4.1 (The unique of agent location): Given an agent a e ( if a e SN, pa, the agent

system SN e Vf, if there is any other agent systems SN2 e , and SN, SN2 , then a # SN2 pe.

Proof There are only two ways to get agents in a host system, one is the host system

generates an agent (creates an instance net from agent type net), another way is to receive agents

from other agents.

1. The agent system (host system) SN, creates an agent a: before SN, creates 0, a e & that

means to any agent system SN e y, a SNp. After SN, creates a, a is unique to any other

agents in S because each new created agent has an unique identifier, and a e SNPa. So a exists

and only exists on SN, after it is created, and S = Su a).
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2. Agent a in the agent system SN comes from other agent systems: suppose a e SNI pa, and

a e SN2 pa, SNI e y, SN2 E i/; and SNI. SN2, if a is generated in agent system SN] or SN2,

then based on discussion on (1), a E SNI pa, or a e SN2 pa, but it is impossible a E SN Pa and a

E SN2 pa. The only possible is that a was generated from the third agent system SN3 , SN3 e y,

SN SN2  SN, and then it moves to SNI and SN2. Now we prove this situation is impossible. M1

is the marking of system net SN, and SNS E V/; and SN e ai, and suppose the migration path of

a from SN3 to SNI is:

f30[t31031 > 3 [t32 032 > .>[3sns >M3n

Mso[tsl OW > Ms][ts2 02 > ... >[tsm sm >M

10[t111 > M11[t12 012> >[tk lk >Mk

The migration path ' of a from SN3 to SN2 is:

M30[t31 i > M31[t32 032 > ... >[t3gO3g >M3g

Mo[tff > Mf[tp0 > ... >[tfrOfr>Mfr

M20 t21 021 > M21[t22 022 > >[t2 021 >M21

Based on above discussion, we know a only can be transform through path 4 or 4', but not

be created. If a goes from M3o[t3 1031 > M31[t32 032 > .. >[tnO3n >M3 n to Mso[ts]s > M,1[t2,2

> ... >[tsmOsm >Ms, then a can not go from M3 o[t31 03 1 > M31[t32 032 > ".. >[t3A0 >M3 n to

Mff[t, f > Mfftp0p > >[tOfr >Mf, at the same time if SN, SN Then we reach that a does

not exist in SN or SN2 at the same time. If SN = SNf, we can prove a does not exist to the next

two agent systems of SN or SN at the same time since a does not exist in SNI or SN2 at the same

time.

Based on (1) and (2), we reach the conclusion.
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If a mobile agent system supports strong mobility, the mobile agent execution is suspended

and its state is saved when a mobile agent moves out. The agent is inactive until it arrives at its

destination. Before the agent is put into the place pa, its location is updated to the location of the

destination agent system, and then the state of agent is resumed from the exact point when it

leaves from the source host system. The following proposition expresses this definition.

Suppose V is the finite set of all agent host nets for a mobile agent system model 1l, C2 is the

finite set of all agent types, and 11 = (a, co). Sis the finite set of all object nets or instances of

agent type co in y at the analysis time. We use SN, - SN2 to denote that SN and SN 2 are in

different locations. Ml is the marking of SNI, and M 2t is the marking of SN 2, Ma, is the marking of

a Then we have the following proposition for strong mobility.

Theorem 4.2 (Strong Mobility): Given an agent a E , if a e SN pa, the agent system SN e

V, and another agent systems SN2 e ;, SN, # SN2, there is a firing sequence (the sequence of

moving out the agent, and the sequence of receiving the agent) { for the agent a

(M o, Mao)[(tij 01,, tai ai) > (Mi, Mai) [(t 2 0 12, ta2a2) >... >[(t k0lk, tak ak >(Ml, Maid

(M2, Mak+L)[(t21 21, tak+2 ak+2) > (M1, Mak+)[(t22022, tak+3Oak+3) > .. >[(t21, 02,. tat.Oat-1)

>(M21-, Mat-) > [(t21021, tatOat) >(M 21, Mad

Where t4k®=21 and the channel c e ( )hp
()'K 2 ) ,the type of one parameters

of channel c is the agent type of a, a e c.P. a e Mlo(SN.p , a 1 M(SN,.pd, and a e

M2,(SN 2.p0). Then Maj = Mak = Mak+1 = Mak+2 = Ma-1, and lp ea-P, Mao(p) = Mat(p) except

p1 ea-P, and Mao(pd # Mak+i(pd, p1 is the predicate representing the agent location.

Proof. The proof is straightforward, so we only give the basic idea. When a moves out from

SN p, all transitions in ac are inactive (we put a guard variable to each transition when we design

agent nets) until it arrives at SN2.p, So we get Mal Mak = Mak+1 = Mak+2 = Mat-; Mao(p) is the
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location of SN, and MAN(p) is the location of SN 2, but tt only update the tokens in p, so we get

Vp ea-P, Mao(p) = Mt(p) except pi. Q

5 Cooperation

The cooperation means the interaction and communication between several agents within the

same space (agent system). We do not discuss the cooperation between agents who are not within

the same host system because they cannot communicate with each other directly. The cooperation

between agents is through channels in agent nets. We demonstrate the cooperation based on one-

to-one communication styles since we do not consider group or broadcast communication in

CPrT nets. Since agents are staying within agent systems, we have to discuss the cooperation

within the context of agent systems. The agent system communicates or interacts with agents

through channels, so that we can abstract agent support system as some interfaces from channels.

If the analysis focuses on the interaction between the system and agents, we have to analyze the

interaction view between agent system and the cooperation agents, which we discussed in above

section. When we analyze the cooperation between two agents, we abstract the host net as an

interface to forward or receive data to or from other agents. The analysis is based on the whole

net (from logical point of view) composing from the two agent nets and the interface for the host

net. The following diagram shows the basic idea.

Agent I

Agent2

Figure 5.5 A cooperation between agents

Suppose ir is the finite set of all agent host nets for a mobile agent system model 7, w is the

finite set of all agent types, and H = (a/; w). S is the finite set of all object nets or instances of
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agent type a) in e at the analysis time Ma, M; is the marking of a and pf respectively. Then we

have the following definition on cooperation between agents.

Definition 5.1.1(Cooperation between agents): There are two agents a; , e c an host system

SN e V, and a; fe SN.a. There is at least one transition tj e a-T, and one transition t2 E p-T,

they have paired channels with matched parameters. There is a 0 so that (Ma0 , Mo)[t, 0, 20 >

(Mal, MJ), and peMao('t1 ), pEMp (t2).

6 Model Checking Software Architecture

In chapter 2, we already discussed the basic ideas of model checking CE nets models and PrT

net models. In this section, we discuss the method to model checking CPrT net models of mobile

agent systems using model checking tool SPIN.

Model checker SPIN only can directly check models with finite states. In order to check an

infinite state system using SPIN, we have to reduce the system model into a model with finite

states. many cases, some properties still hold after reducing a model with infinite states to one

with finite states. Therefore, we can reduce models with infinite states into models with finite

states as long as the reduction does not affect those properties we need to verify. We model the

software architecture of mobile agent systems using CPrT nets, but the input programs of SPIN

are defined using Promela. We need to translate CPrT net models into equivalent Promela

programs. System properties are defined as correctness claims in Promela programs. Some

important system properties are specified as never claims, which are translated from LTL

formulas. In order to verify different properties and reduce the complexity of the verification, we

use SPIN to check the models based hierarchical analysis method. We firstly check individual

host nets and agent nets without considering unfold agent nets, and then verify some system

properties based on reduced model of the whole system net. We provide a general procedure and

rules for model checking the software architecture of mobile agent systems using SPIN.
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Step 1: Transform models (individual nets and reduced system nets)

If we check one net such as a host net or an agent net, we need to transform the CPrT net into

a PrT net. Since each individual net may include input channels, which are synchronized with

some corresponding output channels in other nets, and these input channels are guard conditions

to enable those transitions, it is easier to assign the initial marking if we transform these channels

into subnets. Moreover, it is convenient to verify results if we transform those output channels

into subnets. When we translate each individual model into a Promela program, the transformed

PrT nets are useful to verify the consistence between the CPrT model and its Promela program.

Based on verified results from individual models, we may transform a system model into a

simpler model using the method we already talked in previous parts. In this case, we have to keep

channels, and then we transform these channels into Promela programs directly.

Step 2: Reduce states (from infinite state model to finite state model)

First we need to restrict each place p in a model is k-bounded (i.e. M(p) k, Mo[>M),

where k is a constant. Then we define each variable type as enumerable type with finite number

of elements. The k is predefined according to system requirements.

Step 3: Specify properties

After we defined system behavior models B using CPrT nets, we specify interested system

property specifications S using LTL. The verification procedure is to verify property specification

S over behavior models B, i.e, B1= S.

Step 4: Translate a CPrT net or a PrT net model into a Promela program

In order to verify a CPrT or PrT model, we have to translate the net model into Promela

program. The following steps define the translation rules.

1. Program structure, Each individual net in a system model is translated into a process in

Promela program. Each program includes type definitions, global variable declarations, processes,

iit process, and a never claim. The type definition defines place and variable types. The global
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variable declaration defines global variables. Each process defines all transition relations in one

net. The init process is used to assign initial markings and other initial values. The never claim

defines system properties.

2. Defining state variables, Each place in a net is translated into a variable in Promela

program. The value range of each variable represents the possible markings of the place.

Therefore, the number of possible values of a variable is the number of possible markings of the

corresponding place. If a place p is k-bounded and !((p) is the number of possible values of a

token in p, then the number of possible markings of place p is k' . Therefore, the

declaration statement for place p has the form:

p : -l (6.1.1)

Thus, we treat a predicate symbol as a set of proposition symbols. This can be done when each p

is bounded and 149p) is finite [HYSO3].

3. Defining initial state, Initialize each variable with a value, which is corresponding to the

initial marking of the place in the behavior model. Initial variables are assigned values through

init process in the Promela program. Each net has a corresponding process with its variables as

input parameters, and init process invokes this process with real values (initial values). If there is

more than one process in the program, and each one is corresponding to one subnet, then init

process invokes these processes with their initial values as parallel running processes. Model

checker SPIN guarantees the running fairness of these processes.

4. Defining transition relations, There are two types of transitions in CPrT nets, one is

transitions without channels, and another one is transitions with channels. We discuss these two

transitions separately.

4.1 Defining transitions without channels, Each transition in a net is defined as an atomic

statement within a process, which represents the subnet, in a SPIN program. Each atomic

123



statement defines the firing rules of the transition. The atomic statement consists of a series of

case statements, and each one is corresponding to one possible input of the transition. The body

of each case statement explicitly defines the translation from input to output. The number of case

statement for each transition is the permutation number of input variables in inscription

expressions of the input arcs of the transition. There are many case statements in some atomic

statement, if it has many possible input values. Fortunately, each case statement should be very

simple, and we can use tools to help generate all case statements if we could not translate one net

to a program automatically. If there is more than one net in a model, and if the CPrT nets are

transformed into PrT nets, then shared places between different nets are defined as global

variables, so that it is easy to communicate between different nets and synchronization between

communication transitions are guaranteed with additional global boolean variables.

4.2 Defining transitions with channels, If there is more than one net in a model, and channels

in CPrT nets are not transformed into regular subnets, we have to translate these transitions with

channels using different methods to translate them into Promela programs. We separate channel

expressions from the transition inscription expressions. Then each channel is declared as a global

variable, which has a type with all possible values (finite number of values). In CPrT nets,

channel variables share variable names with their input inscription. However, we have to declare

different variables for each channel. The variable number is the number of possible values of the

channel variable in the net. All of these variables have same type, which is same to the type of

input or output parameters of the channels. After we separate channel expressions from transition

expression, we define the transition relations. For output channels, when the transition fires, some

channel variable is assigned with value according to the output of the transition. Such as one

channel has three possible values, P1, P2 and P3, if the output value, which is assigned to the

channel in the net, is P2, then value of P2 is updated with the values of the output parameters, but

P1, and P3 do not change. For input channels, according to input tokens and inscriptions on input
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arcs, we chose one channel variable as part of input conditions of the transition. For example, the

channel has three possible values, P1, P2 and P3 , and if input tokens realize current input channel

is P2, then P2 is chosen as part of input conditions of the transition. When the input transition fires,

value of P2 is updated. It is simpler to translate channels into Promela programs directly than to

transform CPrT nets into PrT nets, and then to the translate PrT nets into Promela programs.

5. Defining properties to be verified, We define never claim in Promela program to verify

system properties, which are defined using LTL. Never claims can be automatically generated

from LTL formulae using SPIN tools. We also can define accept-state labels in Promela

programs to check properties such as reachability. There are some other Promela constructs such

as basic assertion, end-sate labels, progress-state labels, and trace assertions. We can use them

to define different interested properties in Promela programs.

7 Concluding Remarks

In this chapter, we propose a systematic analysis method to analyze software architecture of

mobile agent systems. Because of the dynamic reconfiguration property of the software

architecture, we introduce a configuror to record current active agents in each agent support

system. The configuror can be generated from agents in the particular place pa of each host net.

Then we analyze the software architecture through transforming the dynamic architecture into a

static one based on system configuror. We formally analyze the mobility property of mobile agent

systems based on location changes of the migrating agent, and the strong mobility based on the

firing sequence of the migration does not change the state of the migrating agent. Because of the

relative independency of each individual net in the software architecture and the hierarchical

structure of mobile agent systems, we introduce a hierarchical analysis method to analyze the

software architecture of mobile agent systems. Based on different properties, we choose

component level analysis, system level analysis and composition level analysis method to analyze

these properties. Finally, we introduce a method to analyze the CPrT models of mobile agent
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systems using model checking tool SPIN. We can use model checking technique to analyze much

more complex and larger system when it is integrated with hierarchical analysis method.
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CHAPTER VI

A Medical Information Processing System

1 Background

Medical analysis data are precious resource to researches such as the disease discovery and

the pharmacy development. How to process these data to get useful information is a challenging

and tedious work. These data have some properties: 1. Data volume is huge. Each database may

have millions of samples, and each sample may have hundreds of data. In order to find useful

information, it is necessary to search many databases. 2. Different types of samples and different

companies may have different databases, which are distributed on different sites. These databases

may have different database management systems and data might be encoded with different

security systems. 3. Data on different sites may have different formats even for the same

parameter of same type of samples. These differences prevent data interoperability between

different systems. 4. Legacy data may only supported by legacy systems, which are not available

by some users. Because of these difficulties, retrieving information from medical data normally is

restricted to limited data such as data with specific formats or in particular databases. If we can

overcome these limitations, we may find much useful information that will be helpful to medical

researches. Most medical analysis data is separated from users and providers. Normally, users

are research groups, hospitals, or pharmacy companies, while providers are analysis laboratories.

Each user may have very limited data on local sites, but big laboratories have much more and

complete analysis data from different samples. In addition, In order to find useful information, it

is important to process data from different groups. This separation is a natural client server

structure, but servers only can provide data and some resources. Servers may provide a few basic
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services for database access and processing, and clients retrieve databases using these limited

functions or services to find useful information. However, those services from servers are far less

than requirements of medical information processing. Moreover, because requirements from

clients are different, it is impossible to provide near to complete data processing services from

servers. The traditional way is users copy data from providers, and then they analyze data in local

sites. However, this method brings many problems: 1. Data volume too huge that to copy all data.

Even the volume of data is still huge after filtering some unnecessary data. 2. Each server has

different system to manage its data even encrypt data for security protections, so that the data is

nonsense without support systems. However, users cannot provide all of these systems in their

local sites. Even it is impossible to maintain these systems for some clients. Such as many

hospitals chose Intersystems Cache as their DBMSs (Database Management System), but many

research groups chose Microsoft SQL server as their DBMSs. 3. The increasing of data in server

sides is very fast, but clients cannot update their data at real time since clients have to copy data

to local sites. 4. Clients have to pay fee based on the volume of data they get. Clients have to

reduce their data usage as less as possible, but it may lose much precious information. Because of

these difficulties, some clients may provide service programs to servers, and servers install these

services in their servers. Even this method is better than the traditional method, but it is difficult

to server providers. They have to maintain and update these services for each customer, and they

have to provide huge servers for customers. The computation model is one client and one server

structure, so clients have to do the tedious work to move intermediate results from one server to

others if the task involves data on different servers.

In order to overcome some of these problems, we design a medical information processing

system based on mobile agents. The general idea is that services are designed as agents that

compute from sever to server for medical information processing. These servers install agent

support systems in their agent system servers, which are separated from database servers, and the
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communication between agents and databases is through some access interfaces. Clients send

agents, which are complex data processing programs, to servers and run within agent support

systems. Agents move to different servers with their intermediate results according to their

predefined itineraries and run time results. The final results are delivered back to agent users

when agents finish their tasks. Agent systems are provided by clients and follow requirements

from servers. These agent systems provide basic functionalities to support running of agents, and

they implement requirements such as the safety, security, performance requirements from servers.

Therefore, different clients can share these agent systems. Clients or users implement agents,

which include their codes and knowledge bases to process medical data. Each agent moves back

to its users when it finishes its tasks, so it is not necessary to maintain many agents or services on

servers. The advantages of this computation model are obvious: 1. Since agents are moved to

server sides, they can use data locally and access much more data. It is not necessary to copy and

maintain data in local sites any more, and it is not necessary to maintain support systems for

original data from servers. 2. Since agents are moved to server sides, agents can work offline on

servers. It saves bandwidth comparing to traditional client server systems. 3. Clients create agents

according their applications, so that they can maximize the usages of data. 4. Since agents are

running at server sides, they can access the latest data at run time. 5. Servers do not need to

provide any application related services so that the burden of servers is much reduced. 6. Because

agents can move to multiple servers with intermediate results automatically, this method provides

an automatic processing flow for information processing. Users on clients do not need to process

the intermediate results any more, so their works are sending out agents and waiting for results.

2 System Structure

In order to support the medical information processing system based on mobile agents, the

following requirements are required. 1. Network connections. All hosts in a computation group

should be connected via networks so that they can reach each other. The computation group is a
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set of hosts where agents will visit. 2. Distributed environments. A distributed environment

provides basic services for distributed computing. It supports such as network file systems,

naming services, interoperability between different systems and security functionalities. The most

popular and commercial distributed environment is CORBA (Common Object Request Broker

Architecture) [OMG02]. These services are required to agent systems and agent computing. If

some servers have different distributed environments, the cooperation between agents within

these servers should be limited. 3. Interface specifications. Agents need to access databases, they

cannot access databases directly but through interfaces for security reasons, which limit and

control the access from agents to databases. These interfaces should have a common specification

so that users easily design their agents to access different databases. The interface specification

should conform to some existing interface specifications such as ODBC (Open Database

Connectivity) [Gei95]. The following diagram shows the general system structure of a medical

data processing system based on mobile agents.

Database A Database B

Access Interface Access Interface
agents agents

a ents
Client Mobile Agent Server Mobile Agent Server

agents
results AgentAgent System

Distributed Environment

Server

Figure 6.1 A framework of a mobile agent System

2.1 A Mobile Agent System

From logical view, the system consists of clients and servers, and they are connected with

networks. The client sends agents representing users to complete some tasks in server sides, and

servers provide basic environments and resources supporting the execution of agents. It is similar

to the traditional three-tier client server structure, but it has three important differences from the
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client-server paradigm. 1. The business logic in the server side is supplied by clients, and they are

dynamically deployed and configured in the server side by mobile agents. 2. As soon as one agent

arrives at its destination server, the connection between the client and the server is not necessary

until someone requests re-connection. In client server systems, the connection is required during

execution of the required task. 3. Mobile agents can migrate from one server to others during their

life spans according to their pre-defined itineraries and intermediate results. However, the

configuration between client and sever are statically defined in client server systems.

In each server side, the databases and the agent support system are two different systems. The

server system deploys and configures a particular agent system on its host before it can accept the

type of agents, monitor and support the execution of agents. Databases in servers keep all data

and provide basic database services. Agents can read data from databases through their interfaces,

and they cannot write or modify any data on any database. We are going to introduce different

concepts of the system: clients, agents, servers, agent support systems, databases and results.

Clients: Clients provides agent support systems or host systems to servers, and these host

systems are installed and configured in servers to provide execution environments for agents. In

addition to the basic functionalities of agent systems, they are vary on services for different

requirements on safety, security and performance. Each client has a particular agent system that

can create agents and submit them to servers.

Agents: Each agent includes at least the following five parts: 1. A program to access and

process data from databases. 2. An itinerary for its visiting path and a strategy to update its

itinerary according to its intermediate results. 3. Authority from its users. 4. A resource

requirement specification. 5. A log file for important events.

Servers: The server includes two separate servers. One provides basic database services and

other functionalities for the server side, and another is the agent system, which provides basic

services and functions to run agents.
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Agent Support Systems: Clients create these agent support systems, which should satisfy

requirements from servers. Agent systems are deployed and configured at server sides, and these

servers are connected via networks. Several agent systems may consist of a region, which may

have a common distributed environment such as CORBA to support distributed computation.

Databases: Databases include database management systems, database applications and data

storages. There are different databases for different purposes in different sites. However, these

databases provide a unified interface such as interfaces based on ODBC to clients. For security

and safety purpose, database servers do not provide any service for agents directly. They provide

interfaces to bridge the gap between agents and databases. Agents must use suitable interfaces to

access databases. The server sides create interfaces publish their specifications for clients.

Results: The results include intermediate and final results. Agents process intermediate results

on agent support systems, and they may bring these results to other hosts for continue works. The

results are delivered back to clients when the agent finishes its task. Agents cannot write any data

to databases in server sides except the databases on agent systems. If they need to manipulate

some data from databases, they have to copy these data to its agent system, and then the

processing is based on these as-is data since we do not consider data synchronization.

3 An Application

In this section, we introduce an application of the medical information processing system. It

is a data processing system for information on human blood cells. We call this system as CIP

(Clinical Information Processing) system. Research groups use CIP to retrieve and process

medical data from two different databases: one is for the cytometry analysis data, and another is

for the hematology analysis data. For some researches, they have to process data from one

database, and then process data from another database based on previous results.

Cytometry analysis [Sha03] is the analysis on blood cells for specific diseases such as IV.

Each sample has dozens of parameters such as count of red blood cells (RBC), count of white
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blood cells (WBC), count of platelets, volume of monocytes, lymphocytes, neutrophis, and

eosinophils, and many other different white blood cells. Based on these parameters, it also

calculates hundreds of combination data such as one dimension logarithm data (linear), two

dimension data, three dimension data etc.. All cytometry data are saved in the specific database

for cytometry data. Hematology analysis [RB02] is the analysis on blood cells for routine analysis.

Each sample has several dozens of parameters such as complete blood cell count (CBC), count of

platelets, and hundreds of combination or processed data based on well-know algorithms. All

hematology data are saved in the specific databases for hematology data.

Clients are research groups who require huge samples for researches, and they try different

algorithms and protocols to process these data. Each analysis software or agent includes program,

algorithms and protocols. The algorithms are rules or procedures to process data, and the

protocols decide the selection and combination data with different parameters. In other words,

protocols are used to select data, algorithms are used to process data, and programs are used to

integrate and run algorithms and protocols. Servers are laboratories providing blood cell analysis

data. To each sample, servers analyze as many parameters as possible in order to reuse samples

and reduce cost, so that there are huge amount of data in each database. Data in databases include

raw data and processed data with preliminary protocols and algorithms. Clients have to pay fee

for data access based on the volume of data.

Some practical difficulties prevent the usages of traditional client-server systems in CIP

system. 1. Servers cannot provide all possible protocols and algorithms to process data for all

clients. Especially for research users, they have to try their different algorithms and protocols

frequently. 2. Research groups cannot save all data from different databases to their local sites.

Some computation from research groups may involve most of data in databases. In addition, users

have to provide same environments and systems to support the data if they are copied from

servers. However, it is beyond the capacities of most users if it is not impossible. 3. There are two
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different databases for different samples, one is for hematology data, and another is for cytometry

data. Some computations involve both databases, but these two databases may locate in different

laboratories. Users have to coordinate these two databases during the computation. 4. Clients

cannot afford copying all data to their local sites, especially the samples in servers increase at

every moment, and the requirements from users change frequently.

We implement CIP system using mobile agent technologies. Clients send agents or programs

with particular algorithms and protocols for servers. These agents run locally in servers, move to

different servers to access different databases based on their intermediate results, and then deliver

results to clients when agents finish their tasks. CIP has advantages such as offline computation,

saving money on data transferring and maintenance, synchronization with latest data resources,

flexibility on different services, and reducing data transportation on networks. It overcomes those

difficulties from traditional client server systems.

CIP system structure is the same as the framework we discussed in section 2. Each client has

an agent system that is used to create agents, send agents to servers, accept results from remote

agents, and manage agents in remote sites. Suppose all servers and clients are connected with the

Internet (based on TCP/IP protocol), and each site is installed with CORBA 2.0, which supports

the interoperability between CORBA systems on different sites. Each server site has an agent

system, which is supplied by clients and configured by servers. Each database has an interface

that is responsible for database access, and agents access databases through these interfaces. We

suppose these interfaces are implemented based on ODBC, but they only can read data from

databases. Each agent system has a database, which is used to save processed or intermediate

results from agents.

4 Modeling the CIP System

The CIP system includes three agent systems: one for client, and the other two for servers.

The client may create different agents, however, the agent structure is same except the algorithms
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and protocols are different. In CIP system model, we only model one agent template, which can

be instantiated as many different agents. So that the static view of CIP architecture is: CIP = a,

C, Si, S2}, where a is the agent template, C is the agent system for client, S, and S2 are agent

system for hematology analysis server and cytometry analysis server, respectively. Agents are

created from C based on agent template a, and then they are sent to S or S2 by C. Agents do not

cooperate with each other, but one agent may move between different servers S, and S2 with

results, and finally move back to C with their results.

4.1 Modeling Agents

We simplify the agent net in previous general models for this specific application. Each agent

only communicates with its host. An agent sends retrieving statements (consisting with protocols)

to hosts, and then the agent system in the host searches its database, and sends back data as results.

As soon as the agent gets the data, it processes the data and saves the processed data. Each agent

executes its task according to its statements in knowledge base and intermediate results. It also

sends out requests to move itself out, which will be realized by the agent system in the host.

Tokens in agent net have the structure: <dt, dl, da, sl, sa, type, cmd, msg>, where dt is

destination channel type, false means hosts, and true means agents. dl, d a, sl, sa means

destination host, destination agent, source host, source agent, respectively. The type means the

message is an agent or a regular message, MSG means it is a ordinary message, and AN means it

is an agent. The cmd could be some predefined commands such as RST means message is result,

MOV means to ask agent system to move this agent out, STOP means to stop running of current

agent, or cmd is an agent identifier. The msg could be regular data, or an agent net if cmd is agent

identifier. From simplicity reason, we use head to represent <dt, dl, da, sl, sa, type>, and obj

represent <cmd, msg> in following parts.

The transition receive gets messages from channel DA, which has the same value as the

identifier of the agent. Then the transition process forwards the data to its output place. If the
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message is result data from server, it is sent to the agent for processing, and the result is saved at

place rst. The agent processes the data using transition run according to its algorithms and

protocols. The algorithms and protocols are represented as a knowledge base kb, and results are

defined with a predicate rst. The knowledge base consists of a sequence of statements. It has a

property ref which points to the current statement s. The statement s is a structure data, which

consists of its type and expression or data obj, i.e. s = <TYPE, obj>. There are three different

types for s: MSG, STOP and MOV. The MSG means sending messages obj out, STOP means to

stop running of current agent, and MOV means the agent request to move this agent out of current

system. The ref is move to next statement when the transition run fires. The itinerary is defined

with predicate pt, which is updated with the transition update. In predicate pt, there is a next

attribute, which points to the next location the agent will go. During the processing, the agent

may send messages out or request to move itself out. Transition send msg is used to send

messages to current host, and transition stopagent is used to update agent itinerary and stop

running of the agent. When an agent requests to move out, it has to stop the running of agent and

save its current state, which is saved in rst. The stop and start transition controls running of the

agent and it only can be started by the current host net. The following diagram shows the agent

net for the CIP system.
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4.2 Modeling Agent Systems

There are three agent system nets in the CIP system: one is for clients, and the other two for

servers. The agent system for clients can create agents and save results from agents. The other

two agent systems for servers have same functionalities except with different location information.

All of three host nets are similar to the general model we gave in previous chapters since agent

systems should have similar functionalities.

In the host net for clients, there is a predicate cb, which is the set of template of agent nets.

Each token in cb is a template of agent net. We use transition create to generate agents, so that it

outputs instances of agent templates to place p3, and then the agent is started and put into place pw.

When start the agent, the token is <AI, MN>. As soon as the agent is start, the kb of the agent

decides whether it will be move out to other systems or not. The dummy variable DA in agent net

is replaced with AI in MN When an agent returns to its home with results, the system starts it and

put it into the place pw. Then the agent sends a message with results to its home system (the kb of

the agent has this statement), and the system puts the results into predicate P6. For simplicity, we

do not model agent behaviors after it delivers results. The following diagram shows the agent net

for clients in the CIP system.

save rst
cmd = RT 2 ,

16 send rnsp

receive rnsg s aecmdt MOV &&
e = MSG -4 Pz 6 ocss P

c 22 19221 15 24 )dt &&d (head,obj)
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receive 3 I3 dt&&da! head obi)

ar-sa && send
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b 

send agent

Pi ia1z

Figure 6.3 A host net for clients in the CIP system
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Table 6.2, Legend of Figure 6.3

lace/tra sition/inseription Description
PW The place where mobile agents stay in, <$, CL, , CL, sa, AN ai,

MN, and sa - ai.
P1 The incoming messages from channels, <false, CL, da, sl, sa, type,

cmd, msg>
The outgoing messages to channels, <dt, dl, da, CL, sa, type, cmd,
msg>

P2, P4 Messages, <false, CL, da, sl, sa, MSG, cmd, msg>
p, p7  Agents, <false, CL, $, sl, sa, AN, ai, MA'>
P6 Finally results, <p, CL, , CL, sa, MSG, RST, msg>
cb Agent net templates, <MN>
pi Agent identifier, i>
receive Input transition, get tokens from CL channel
send Output transition, send messages to dl or da channel
receive msg Receive messages (incoming tokens are not agents)
receive agent Receive agents (incoming tokens are agents)
process Agent system processes the received messages
start agent Start the received agent
send msg Send messages to other agent systems or agents within this system
send agent Send out agents to other systems
create Generate agent based on agent template and assign its indetifier
initialize Initialize the generated agent net <AI, AN>
1 <false, CL, da, sl, sa, type, cmd, msg>

2, 4, 6, 8, 10, 15, 16 <false, CL, da, s, sa, MSG, cmd, msg>
12 <false, dl, da, CL, sa, MSG, cmd, msg>
3, 5, 7, 9, 11 <false, CL, $, sl, sa, AN, ai, MN>
13 <false, dl, $, CL, sa, AN, ai, MA>
14 <false, dl, da, CL, sa, type, cmd, msg>
17, 18, 19, 20 <ai>, <ai + 1>, <ai, an>, <ai, an>
21 <0, CL, , CL, ai, AN, ai, MA'>
22 <an>, where an is name of agent template

In system net for server 1 (for hematology analysis data), there is a predicate db, which

represents the database with hematology data. The transition selectdata is used to select data

from database according to statements from other objects such as agents. The channel LBI

represents this server. This agent system provides the basic functionalities of agent systems, so its

transitions and places have the same meaning as that we discussed in general system net of

mobile agent systems. The following diagram shows the host net for server 1 in CIP system.
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Figure 64 A host net for server 1 in the CIP system

Table 6.3, Legend of Figure 6.4

place/transition/inscription Description
PW The place mobile agents stay in, <t, LB1, $, LBI, sa, AN, ai, MN>,

and sa = ai.

PI The incoming messages from channels. <false, LBI, da, sl, sa, type,
cmd, msg>

ps The outgoing messages to channels. <dt, dl, da, LBI, sa, type, cmd,
msg>

P2, P4 Messages, <false, LBI, da, sl, sa, MSG, cmd, msg>
p3 Agents, <false, LBI, , sl, sa, AN, ai, MAN>
receive Input transition, get tokens from LBI channel
send Output transition, send messages to dl or da channel
receive msg Receive messages (incoming tokens are not agents)
receive agent Receive agents (incoming tokens are agents)
select data Select data from database db according request from agents
start agent Start the received agent
send msg Send messages to other agent systems or agents within this system
send agent Move out agents to other systems
1 <false, LBI, da, si, sa, type, cmd, msg>
2, 4, 6, 8, 10, 15 <false, LBI, da, sl, sa, MSG, cmd, msg>
12 <false, dl, da, LBI, sa, MSG, cmd, msg>
3, 5, 79, 11 <false, LBI, 0, sl, sa, AN, ai, AMl>
13 <false, dl, $, LBI, sa, AN, ai, MN>
14 <false, dl, da, LB1, sa, type, cmd, msg>
16 <msg>

The system net for server 2 (for cytometry analysis data) is same to server 1 except the

location different. The following diagram shows the system net for server 2 in the CIP system.

r select-data send msg

eciemg 6DS -1 8 P41 I rd o

2 121 dt &&dl!(head,obj)
LB2?(head, obj) 1 db A 5 P 4

receive 13 dt&&da! ead ob'
send

te = AN t aist Pw 11 a sd &&M

receiveagent start agent sendagent

Figure 6.5 An host net for server 2 in the CIP system
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5 Analyzing the CIP System

Based on the discussions and models of CIP system, we describe the working procedures of

this system. Suppose the system only has one type of agents, i.e. there is only one template for

agent net. In addition, there is only one active agent in this system. The agent is created in the

client, and then it moves to server 1 for calculating hematology data, and then it moves to server 2

with results from server 1 to process data from the cytometry database. As soon as it finishes its

tasks in server 2, it moves back to the client with its results.

From static architecture view, CIP = {A, C, S,, S2}, where A is the template for agent net, C is

the system net for the server in client site, S, and S2 is system net for server 1 and server 2,

respectively. In the following section, we discuss the procedure from creating an agent to finally

getting results from servers.

1. Create an agent template. Before we can create an agent, we must have a template for this

type of agent net AN = (P, T, F, 1 L, rp, MO, C, W), which is a CPrT net. The DA in the agent

template is a dummy value, which will be replaced with a real value of the agent identifier when

an agent is created.

2. Create an agent. We model agent creation in the host net for clients. The templates of

agent net are saved in predicate cb, and each token within it represents a type of agent. The token

in cb is an agent net MN. However, there is only one token in cb since we only consider one type

of agents. The token in place pi represents the identifier (an integer number) of next created agent.

The transition create generates an agent <A, AN> based on template in cb and identifier in pi,

and agent AI is put into place ps, AI plus 1 and sent back to pi. The dummy channel name DA in

agent template is replaced with the real value AI in the agent net.

3. Initialize agent AL. As soon as agent AI is created and put into place ps, it is initialized

and put it into the agent place p,. The ansition 'nitialize starts the agent, and then ref of kb is set
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to point to the first statement in kb. Then the agent AI controls the computation, it may send

message to server for requesting to move out, or asking for data from database.

4. Send out agent Alto server S1. Suppose the itinerary in pt is {CL, LB1, LB2, CL}, which

represents server 1 S1 , server 2 S2 and client C. The reference cur points to CL. Suppose the

statement s = ref (kb), s.TYPE = MOV, s.ob] = <LB1>, then transition run sends a token <i, CL,

, CL, Al MSG, STOP, CL> to place p2. The agent updates its cur(pt) to next location, here is 1

now. As soon as the transition run fires, agent is stop since cl nl. The run sends out a token

<false, CL, $, CL, Al MSG, MOV, LB1> to place p2. The transition send msg sends this token to

the host net CL through channel CL. When host net CL receives this token from channel CL, the

token <false, CL, $, CL, A, MSG, MOV, LB1> is sent to place p4. Then the transition send agent

is enabled since p, has this agent AL The transition send agent sends token <false, LBJ, $, CL, Al,

AN, Al, MA> to place ps. As soon as channel LB1 gets the token <false, LB1, $, CL, AI, AN, Al,

MAV>, the transition receive in SI fires, and send the token into place pl, since the type is AN, the

token is then send to p2 as soon as receiveagent fires. The transition start sends LBI to channel

AI, and then agent AI starts, and <$, LB1, $, CL, AI, AN, AI, Al> is put into p" for working.

5. Run agent AI in server SI. When agent Al arrives place p3 in system net SI, it is started

through sending LBJ to channel AI, and the agent state is resumed from the stop point. The agent

net <AI, MA> is put into the place p, of SI. The agent runs its task according to the statements

from kb. If the s = ref (kb), s.TYPE = MSG, and s.OBJ = SQL statements, then the token go

through place p2, transition send msg in AI net arrives at S;. The token is processed by transition

selectdata, and data from db is wrapped as token <true, LB1, Al, LBJ, , MSG, RST, msg> and

sent to ps, where msg is the selected data. Then the token with data is sent to agent AI through

channel AL Finally, the data is processed by the transition run in AI, and the result is saved in

place rst.
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6. Move agent AI to server S2. The procedure to move agent AI out is the same as the

procedure in 4, and the only difference is the destination changes from LBI to LB2. The moving

request is from agent AI, and the request to move agent out only comes from agents.

7. Run the agent in server S2 . This procedure is same as the procedure in 5.

8. Move agent AI back to client C. This procedure is same as the procedure in 4.

9. Run agent Al in C. When agent AI returns to home with results, it is started and put into

place P, of Sj. Then agent Al sends out a message with results <false, CL, , CL, AI, MSG, RST

msg> to system C. As soon as C gets the token, it is forwarded to place p, of C, and then the

transition saverst processes the token and puts the results into place p6.

6 Model Checking the CIP Models using SPIN

One of the important goals of building a formal architecturat model of mobile agent systems

is to help ensure the correct design that meets certain specifications and system requirements. A

correct design should meet certain crucial requirements such as liveness, deadlock-free, and

concurrency [XSO3]. In this section, we use model checker SPIN to analyze and verify the

simplified models of the CIP system. We check agent or host properties on agent nets and on host

nets, respectively. We check system properties based on system-level nets, and interaction

properties based on the connected nets composing from agent nets and host nets.

6.1 Model Checking a Host Net

In this part, we check the deadlock-free and reachability property of a host net for medical

information servers in the CIP system, and the model is simplified for this specific analysis. We

chose the host net of server 1 to analyze these properties. The following is the transformed net

from the original CPrT net model for server 1.

143



receivemsg selectdata send-msg
e =MSG P2P4 cmdM V

rec ive sen

e =AN md = MOP
receive agent startagent sendagen

Figure 6.6 A host net in the CIP system

The token structure in this host net: <dl, type, cmd>, since we only consider receiving

messages in this model without caring where they come from, we only need destination

parameter dl here, there are two types of messages: agents AN and regular message MSG. The

cmd is the agent identifier if the message is an agent, or cmd is the command MOV. We check the

following properties: if the host net receives a message from its channel, eventually, this message

will reach p4 or p6, and if the message is a MOV command, the token inp6 will be moved to place

po (we only consider one agent in this model, so we do not need to compare agent identifiers).

The following is the program and its running results (checking the safety and acceptable states).

/* we define LB1 as 1, MSG as 0, AN as 1, */
/* MOV as 1, and AI as 0, and ER as 0*/

#define LB1 1

#define MSG 0
#define AN 1

#define AI 0

#define MOV 1

#define ER 0

typedef Place {
bit dl;
bit type;
bit cmd

Place p0, pl, p 2 , p3, p4, p 5 , p6;
#define resetp(p) p.dl = 0; p.type = 0; p.cmd 0

proctype hostnet ()
{

do
/* receive */
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atomic { pO.dl == LB1 ->
pl.dl = LB1;

pl.type = pO.type;
pl.cmd = pO.cmd;
resetp(p0)

}

/* receive msg */
atomic { (pl.type == MSG && pl.dl == LB1) ->

p2.dl = LB1;
p2.type = MSG;
p2.cmd = pl.cmd;
resetp(pl)

}

/* selectdata */
atomic { (p2.type == MSG && p2.dl == LB1) ->

p4.dl = LBl;

p4.type = MSG;
p4.cmd = p2.cmd;
resetp(p2)

}

/* receive_agent */
atomic { (pl.type == AN && pl.dl == LB1) ->

p3.dl = LB1;
p3.type = AN;
p3.cmd = pl.cmd;
resetp(p1)

}

/* startagent */
atomic { (p3.type == AN && p3.dl == LB1) ->

p6.dl = LBI;
p6.type = AN;
p6.cmd = p3.cmd;

pO.dl = LB1;
pO.type = MSG;

pO.cmd = MOV;
resetp (p3)

}

/* send message, cmd <> MOV */

atomic { (p4.type == MSG && p4.dl == LB1 &&

p4.cmd != MOV) ->
p5.dl = LB1;

p5.type = MSG;
p5.cmd = p4.cmd;
resetp(p4)

}

/* send agent */

atomic { (p4.type == MSG && p4.dl == LB1 &&

p4.cmd == MOV && p6.type == AN &&

p6.dl == LB1 && p6.cmd == AI) ->

p5.dl = LB1;

p5.type = AN;

145



p5.cmd = AI;

resetp (p4);
resetp (p6 )

}

/* send */
atomic { if

(p5.type == MSG && p5.dl == LB1 &&
p5.cmd != MOV) ->

p0.dl = LB1;
p0.type = AN;
p0.cmd = AI;
resetp (p5)

:: (p5.type == AN && p5 .dl == LB1 &&
p5.cmd == AI) ->

p0.dl = LB1;
p0.type = AN;
p0.cmd = AI;
resetp (p5)

fi
}

accept: pO.type == AN && p0.dl == LB1 && pO.cmd == AI;
od

}

init
{

p0.dl = LBT p0.type = MSG; pO.cmd = ER;

run hostnet()
}

Figure 6.7 The Promela program for the Figure 6.6

The Results:

(Spin Version 4.0.7 -- 1 August 2003)
+ Partial Order Reduction

State-vector 44 byte, depth reached 17, errors: 0
18 states, stored

1 states, matched
19 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)

6.2 Model Checking an Agent Net

In this part, we check the deadlock-free and reachability property of an agent net in the CIP

system, and the agent net is simplified for this specific analysis. The following is the transformed

net from the original CPrT net model for the agent in the CI system.
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starten

Figure 6.8 A simplified agent net

The token structure in this host net: <di, da, cmd>, each agent has its location, which is its

host net identifier dl (its first location is CL). Because we only consider receiving messages in

this model without caring about where they come from, we only need destination parameter dl

and da here, and regular messages are the only type of messages in agent net, but cmd could be

STOP or other commands. We check the following properties: if the agent net receives a message

from its channels, eventually, this message will reach P2 (processed by the agent), and the STOP

command can update the agent's location, which means dl become dl +1. As soon as the agent is

sent out, the program updates its receiving channel cl to nl, so that it simulates the dynamic

migration property of an agent. The following is the program and its running results (checking the

safety and acceptable states).

/* we define CL as 1, DA as 111, STOP as 100, */
/* NL is the next destination of CL as 2, ER as 0*/
#define CL 1

#define NL 2

#define DA 111

#define STOP 100

#define ER 0

typedef Place {
byte dl;
byte da;
byte cmd

Place p0, p1, p2, p3, p4, p5, p6;
byte nl; /*next location of this agent */
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#define resetp(p) p.dl = 0; p.da = 0; p.cmd = 0

proctype agentnet()
{

do
/* receive */

atomic { (p0.dl == p3.dl && p0.da == DA) ->

pl.dl = p3.dl;
pl.da = p0.da;
pl.cmd = p0.cmd;
resetp(p0)

/* run */
atomic { (pl.dl ER && p3.dl != ER &&

p4.dl != ER && p5.dl != ER) ->

p2.dl = p5.dl;
p2.da = pl.da;
p2.cmd = pl.cmd;
p4.dl = p5.dl;

resetp (pl)
}

/* stopagent*/
atomic { (p2.dl != ER && p2.cmd == STOP) ->

atomic {
nl = (nl + 1) % 10;
if
: (nl == 0) -> nl = NL;
:: nl = nl;

fi

};
p5.dl = nl;

p5.da = ER;

p5.cmd = ER;

pl.dl = nl;
pl.da = DA;
pl.cmd = ER;
resetp (p2)

}

/* stop */
atomic { (p3.dl !=ER && p4.dl != ER &&

p3.dl != p4.dl) ->

p
6 .dl = p4.dl;

p6.da = ER;

p6.cmd = ER;
resetp (p3)

}
/* start */

atomic { (p6.dl == pO.dl && p6.dl ! ER) ->

p3.dl = p6.dl;

p3.da = ER;

p3.cmd = ER;
resetp (p6)

}

/* sendmsg */
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:: atomic { (p2.dl != ER && p2.cmd != STOP) ->
p0.dl = nl; /*to next host*/
p0.da = p2.da;
pO.cmd = p2.cmd;
resetp(p2)

}

accept:
p2.dl != ER && p4.dl != ER && p3.dl != ER;

od
}

init
{

nl = 1;

p0.dl = CL; p0.da = DA; p0.cmd = STOP;
p6.dl = CL; p6.da = ER; p6.cmd = ER;
p5.dl = CL; p5.da = ER; p5.cmd = ER;
p4.dl = CL; p4.da = ER; p4.cmd = ER;
run agentnet ()

}

Figure 6.9 The Promela program for the Figure 6.8

The Results:

(Spin Version 4.0.7 -- 1 August 2003)
+ Partial Order Reduction

State-vector 40 byte, depth reached 28, errors: 0
29 states, stored
1 states, matched

30 transitions (= stored+matched)
2 atomic steps

hash conflicts: 0 (resolved)

6.3 Model Checking an Interaction

In this part, we check the deadlock-free and reachability property of a two-level mode, which

is a simplified model composing from one agent net and its host net. Before the agent is moved to

place P6 in the host net, it is started through message passing from the host net to the agent net. As

soon as the agent is started and moved to its place p6, the host sends a request to move it out. The

moving is realized through two steps: first, the host sends a stop command to the agent to stop the

execution of the agent; second, the agent updates its itinerary to the next destination and sends a

message to current host to migrate the agent to the next destination. As soon as the agent is

moved out, the locations of host net and agent net are updated as the next destination so that the
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program can simulate the dynamic migration of mobile agents. The moving (such as stopping an

agent, updating its location) and receiving agents (such as starting an agent) are completed with

the cooperation between agents and their hosts. The following is the transformed net from the

original CPrT net model for the agent and one host of CIP system.

receive-msg selectdata sendrnsg
lwe = MSG) -Pa4 cmd #Mn RO

d=cl pi 16ps
receive sen

e - AN P3 m6nd =MO
receive-agent start agent sen agent

(cl =dl)&&
(pa.da =DA)

receive rmd-- STO

start send~rnsg

(p6.d1= CO ) run 12

stopagent

Figure 6.10 An interaction model of the CIP system

The token structure in this host net: <dl, da, type cmd>, where dl is the location of current

host and the agent (the first location is LBJ or CL), da is the agent identifier, type is the message

type: agents or regular messages, and cmd could be STOP, MOVE or agent identifier AI if the

message is an agent. Because we only consider receiving messages in this model without caring

about where they come from, we only need destination parameter dl and da here. We check the

following properties: if the host net receives an agent, the agent will be started and put into place

p6, and the agent is sent to its destination if the host requests to move out the agent. As soon as

the agent is sent out, the program updates the receiving channel cl and dl to nl (nl is dynamically

updated by the agent), so that it simulates the dynamic migration and interaction property of an

150



agent and its host. The following is the program and its running results (checking the safety and

acceptable states).

/* we define LB1, CL as 1, MSG as 66, AN as 88 */
/* AI, DA for agent ID is 10, */
/* MOV as 111, and STOP as 222 */
/* NL is the initialize next destination as 2 */
/* ER is empty as 0 */

#define LB1 1
#define MSG 66
#define AN 88
#define AI 10
#define MOV 111
#define STOP 222
#define CL 1
#define NL 2
#define DA 10
#define ER 0

typedef Place {
byte dl;
byte da;
byte type;
byte cmd;

Place ps, p1, p2, p3, p4, p5, p6;

Place pa, pll, p12, p13, p14, p15, p16;
byte cl, dl, nl;

#define resetp(p) p.dl = 0; p.da = 0; p.type = 0; p.cmd = 0

proctype hostnet ()
{

do
/* receive */

: atomic { ps.dl == dl ->

plidi = ps.dl;
pl.da = ps.da;

pl.type = ps.type;

pl.cmd = ps.cmd;
resetp(ps)

}
/* receivemsg */

atomic { (pl.type == MSG) ->

p2.dl = pl.dl;

p2.da = pl.da;

p2.type = MSG;

p2.cmd = pl.cmd;
resetp(pl)

}
/* select data */
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atomic { (p2.type == MSG) ->
p4.dl = p2.dl;
p4.da = p2.da;
p4.type = MSG;
p4.cmd = p2.cmd;
resetp(p2)

}

/* receive agent */
atomic { (plitype == AN && pl.da != ER) ->

p3.dl = pl.dl;

p3.da = pl.da;
p3.type = AN;
p3.cmd = pl.cmd;
resetp (pl)

}

/* start agent */
atomic { (p3.type == AN && p3.dl == dl) ->

p6.dl = p3.dl;
p6.da = p3.da;
p6.type = AN;
p6.cmd = p3.cmd;
pl6.dl = dl;

pl6.da = ER;
p16.type = ER;
p16.cmd = ER;
resetp(p3)

}

/* send message, cmd <> MOV, do not simulate sending out

/* other kinds of messages, we did that in host models *
atomic { (p4.cmd != MOV) ->

resetp(p4)
}

/* sendagent *1
atomic { (p4.type == MSG && p4.cmd == MOV

&& p6.type == AN && p6.cmd == AI) ->
dl = (dl + 1) % 10;
if

(dl == LB1) -> dl = NL;

:: else -> dl = dl

fi;
p5.dl = dl;

p5.da = DA;

p5.type = AN;

p5.cmd = AI;
resetp (p4);
resetp (p 6 )

}

/* send */
atomic { (p5.type == AN ) ->

pa.dl = p5.dl;
pa.da = p5.da;

pa.type = MSG;

pa.cmd = STOP;
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ps.dl = p5.dl;
ps.da = p5.da;
ps.type = AN;
ps.cmd = AI;
resetp(p5)

}

accept: (p6.dl != ER) && (p6.type == AN)
od

}

proctype agentnet ()
{

do
/* receive */

atomic { (pa.dl == cl && pa.da == DA &&
p13.dl == cl) ->

pll.dl = cl;
p11.da = DA;

pii.type = MSG;
pll.cmd = pa.cmd;
resetp(pa)

}

run
atomic { (pll.dl != ER && pll.da == DA &&

pi3.dl != ER && pi4.dl != ER &&

p15.dl != ER) ->

p12.dl = p11.dl;
p12.da = DA;
p12.type = MSG;
p12.cmd = pll.cmd;
p14.dl = p15.dl;
resetp (p11)

}

/* stopagent*/
:: atomic { (pl2.da == DA && p12.cmd == STOP) >

nl = (nl + 1) % 10; /*10 hosts*/

if

S(nl == CL) -> nl = NL;

:: else -> nl = nl

fi;

p15.dl = nl;

p15.da = ER;

p15.type = ER;

p15.cmd = ER;

p11.dl = cl;

pll.da = DA;

pll.type = MSG;

pll.cmd = MOV;
resetp(p12)

}

/* stop */
atomic { (p13.dl == cl && pl4.di != ER &&

p13.dl != pi4.dl) ->

p16.dl = pi4.dl;

p16.da = ER;
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pi6.type = ER;
p16.cmd = ER;
resetp (p13)

}

/* start */
:: atomic { (pi6.dl == cl) ->

pl3.dl = pi6.dl;
p13.da = p16.da;
p13.type = pi6.type;
p13.cmd = p16.cmd;
cl = nl;
resetp (p16)

}

/* send msg */
:: atomic { (p12.dl I= ER && p12.cmd != STOP) ->

ps.dl = p12.dl;
ps.da = p12.da;
ps.type = p12.type;
ps.cmd = p12.cmd;

}

accept:
(pa.dl != ER) && (pi4.dl == p15.dl);

od
}

nit
{

dl = LB1; cl = CL; nl = CL;

ps.dl = LB1; ps.da = DA; ps.type = AN; ps.cmd = AI;

pa.dl = CL; pa.da = DA; pa.type = MSG; pa.cmd = STOP;

p15.dl = CL; p15.da = ER; p15.type = ER; p5cmd = ER;

p14.dl = CL; p14.da = ER; p14.type = ER; p14.cmd = ER;

atomic {run hostnet(); run agentnet()}

Figure 6.11 The Promela program for the Figure 6.10

The Results:

(Spin Version 4.0.7 -- 1 August 2003)

+ Partial Order Reduction

State-vector 80 byte, depth reached 41, errors: 0

49 states, stored

22 states, matched
71 transitions (= stored+matched)

3 atomic steps

hash conflicts: 0 (resolved)
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6.4 Model Checking the Mobility

In this part, we check the deadlock-free and reachability property of a system-level model,

which is the model composing from two host nets. When an agent or message is sent out from

one host to another, eventually the destination host will receive the agent or message. We abstract

channels as common places within two nets. We treat agents as regular tokens in this model since

we already checked host nets, agent nets and the interaction model. The following is the

transformed net from the original CPrT net model for two host nets of the CIP system.

receive msg selectdata send-msg PS
tvpe=MSG PzP4 cmud .MOV

LB= p dl P
receive sen

e =AN Pm Od = MO
receiveagent start-agent send agent

receive msg selectdata send msg

e=AN P3d =MO

receive agent start agent send_ agent

Figure 6.12 A system model of the CIP system

The token structure in this host net: <dl, s, type cmd>, where dl is the destination location, sl

is the source location (only two locations: LB1 and LB2), type is the message type: agents or

regular messages, and cmd could be STOP, MOVE or agent identifier AI if the message is an

agent. We check the following properties: if the host net LB1 sends a message or an agent to

destination host LB2, eventually it will arrive at its destination LB2, and if the host net LB2 sends

a message or an agent to destination host LB1, eventually it will arrive at its destination LB1. The

following is the program and its running results (checking the safety and acceptable states).
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/* we define LB1 as 11, LB2 as 22 */
/* MSG as 66, AN as 88 */
/* MOV as 111, and AI as 100, ER as 0 */

#define LB1 11
#define LB2 22
#define MSG 66
#define AN 88
#define AI 100
#define MOV ill
#define ER 0

typedef Place {
byte dl;
byte sl;
byte type;
byte cmd

Place ps, pl, p 2 , p3, p4, p5, p6;
Place pt, pll, p12, p13, p14, p15, p16;

#define resetp(p) p.dl = 0; p.sl = 0; p.type = 0; p.cmd = 0

proctype hostnetl()

{

do
/* receive */

atomic { ps.dl == LB1 ->
pL.dl = LB1;
pl.sl = ps.sl;
pl.type = ps.type;

pl.cmd = ps.cmd;
resetp(ps)

}

/* receive msg */
atomic { (pl.type == MSG) ->

p2.dl = LB;

p2.sl = pl.sl;

p2.type = MSG;

p2.cmd = pl.cmd;
resetp (pl)

}
/* select data */

atomic { (p2.type == MSG) ->

p4.dl = LB1;

p4.sl = p2.sl;

p4.type = MSG;

p4.cmd = p2.cmd;
resetp(p2 )

}

/* receive_ agent */
atomic { (pl.type == AN ) ->

p3.dl = LB;
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p3.sl = pl.sl;
p3.type = AN;
p3.cmd = pl.cmd;
resetp(pl)

}

/* start-agent */
:a atomic { (p3.type == AN) ->

p6.dl = LB1;
p6.sl = p3.sl;
p6.type = AN;
p6.cmd = p3.cmd;
ps.dl = LB1;
ps.sl = LB1;

ps.type = MSG;
ps.cmd = MOV;
resetp(p3)

}
/* send message, cmd <> MOV */

atomic { (p4.type == MSG && p4.cmd != MOV) ->
p5.dl = LB2;
p5.sl = LB1;

p5.type = MSG;
p5.cmd = ER;
resetp(p4)

}
/* send agent */

atomic { (p4.type == MSG && p4.cmd == MOV
&& p6.type == AN && p6.cmd == AI) ->

p5.dl = LB2;
p5.sl = LBl;
p5.type = AN;
p5.cmd = AI;
resetp(p4);
resetp (p6)

/* moving out the agent */
atomic { (p5.dl == LB2) ->

pt.dl L LB2;

pt.sl = LBl;

pt.type = p5.type;

pt.cmd = p5.cmd;
resetp (p5)

}

accept: pt.dl == LB2 /*message is sent to destination*/

od
}

proctype hostnet2 ()
{

do
/* receive */

atomic { pt.dl == LB2 ->

pll.dl = LB2;
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p11.sl = pt.sl;
p11.type = pt.type;
p1l.cmd = pt.cmd;
resetp(pt)

}
/* receive _msg */

atomic { (pll.type == MSG) ->
p12 dl = LB2;
pl2.sl = pll.sl;
p12.type = MSG;
p12.cmd = pll.cmd;
resetp (p11)

}

/* selectdata */
atomic { (pl2.type == MSG) ->

p14.dl = LB2;

p14.sl = pI2.sl;
p14.type = MSG;
p14.cmd = p12.cmd;
resetp(p12)

}

/* receive agent */
atomic { (pll.type == AN ) ->

p13.dl = LB2;

p13.sl = p11.sl;
p13.type = AN;
p13.cmd = p11.cmd;
resetp(p11)

/* start agent, and request to move out */
atomic { (p13.type == AN) ->

p16.dl = LB2;
p16.sl = pl3.sl;
p16.type = AN;

p16.cmd = p13.cmd;

pt.dl = LB2;

pt.sl = LB2;
pt.type = MSG;

pt.cmd = MOV;
resetp(p13)

}

/* send out message, cmd <> MOV */

atomic { ( p14.type == MSG && p14.cmd != MOV ) ->

p15.dl = LB1;

p15.sl = LB2;

p15.type = MSG;

p15.cmd = p14.cmd;
resetp(p14)

}

/* send agent */
atomic { (p14.type == MSG && p14.cmd ==MOV &&

pl6.type == AN && p16.cmd == AI) ->

p15.dl = LB1;

p15.sl = LB2;
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p15.type = AN;

p15.cmd = AI;

resetp(p14);

resetp (p16)
}

/* moving out the agent */
:: atomic { (p15.type != ER && p15.dl == LB1) ->

ps.dl = LB1;

ps.sl = LB2;

ps.type = MSG;

ps.cmd = ER;

resetp (p15)
}

accept2: (ps.dl != ER) /*message is sent out*/
od
}

init
{

ps.dl = LB1; ps.sl = LB2; ps.type = AN; ps.cmd = AI;

atomic { run hostnetl(); run hostnet2() }
}

Figure 6.13 The Promela program for the Figure 6.12

The results:

(Spin Version 4.0.7 -- 1 August 2003)

+ Partial Order Reduction

State-vector 76 byte, depth reached 34, errors: 0

53 states, stored
3 states, matched

56 transitions (= stored+matched)
1 atomic steps

hash conflicts: 0 (resolved)

7 Concluding Remarks

In this chapter, we propose an architectural model for a medical information processing

system based on mobile agents. It demonstrates advantages such as the flexibility, high efficiency,

less cost of mobile agent technology. The CIP system includes one agent and three servers. The

agent migrates, retrieves and processes medical information in different servers, and delivers

results back to its users. There are two different servers; one is used in client sides, which has the

functionality to create agents for specific tasks; and another is used in server sides, which

provides basic nctionalities to support the execution of agents. We model the agent net, host
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nets (for servers or clients) using CPrT nets and these nets communicate and interact through

dynamic channels. We analyze the reachability property of the CPrT models and the cooperation

between host nets and agent nets. From the success of modeling and analyzing models of the CIP

system, we demonstrate the expressive power of CPrT nets, especially the advantage of

dynamical channels, which naturally capture the dynamic property of mobile agent systems. We

chose model checking tool SPIN to verify some properties such as reachabili , deadlock free and

safety of CIP system based on hierarchical analysis method. The results show that model

checking is an effective way to verify software architectures. It is almost impossible to manually

verify or prove a complex software system, so that the automation of model checking is an

obvious advantage. When model checking method is integrated with hierarchical analysis method,

it is possible to automatically verify much larger and more complex systems.
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CHAPTER VII

Conclusion

Formally modeling and analyzing software architecture of mobile agent systems is a

challenging work because of their complexity and dynamic reconfiguration of their architectures.

We address this issue from two ways: a formalism to define the system architecture and an

analysis method to formally verify system properties. The formalism is a PrT net extended with

dynamic channels, and the analysis is a hierarchical method for model checking. We borrow the

multi-layer modeling paradigm from EOS to CPrT nets so that the formalism is suitable to model

mobile agent systems. From successful modeling and analysis of mobile agent systems and other

systems with code mobility, we conclude that CPrT net is a powerful tool to model mobile

computing systems. The two-layer modeling paradigm smoothly transforms physical models of

mobile agent systems to their formal architectural models. Since agents and agent systems are

two relative independent systems, this framework brings us convenience to focus on a particular

system without involving the complexity of its environments. Moreover, it is also useful to

analyze models since we analyze them on a particular level and conside models on other levels as

interfaces. The channel naturally captures the dynamic configuration property of mobile systems,

and it facilitates the synchronous communication between different nets. Communicative objects

change their communication topologies with the changes of their environments at run time since

channel values are dynamically assigned during the execution. The dynamic channel provides a

mechanism to construct easier-to-understand and more compact models because each dynamic

channel is a finite set of static channels. In addition, the software architecture of mobile agent

systems essentially has a hierarchical structure, so we introduce a hierarchical analysis method to

verify the software architecture. We verify component properties based on transformed individual
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components, and then system properties are checked based on simplified system models. Only

properties involving two different models are analyzed on connected models. The hierarchical

analysis method provides a solid foundation for the software architecture of mobile agent

systems. It not only reduces the analysis complexity, but also expands the application scope of

model checking technology. From successful modeling and analysis of these systems, we can

deeply understand mobile agent systems especially the mobility and cooperation properties. It is

helpful to model and analyze other complex concurrency systems as well. We propose

architectural model for a medical information processing system based on mobile agents. It shows

high level flexibility, high efficiency, low cost of mobile agent technology. It provides a practical

and convincing case for the application of mobile agents. We chose model checking tool SPIN to

verify properties such as reachability, concurrency and safety of CIP system based on hierarchical

analysis method. The results show that model checking is an effective and efficient way to verify

software architectures. Integrating hierarchical analysis method with model checking technique

brings the possibility to automatically verify much larger and more complex systems.

In this dissertation, we only address the synchronous communication between components,

and channels in CPrT nets are introduced for this purpose. It is enough to model mobile systems

in this dissertation; however, asynchronous communication between nets is also an important

research topic especially for real time systems, which is one of our future research topics. We

translate CPrT net models into Promela programs manually, but it is a tedious work and it is

difficult to guarantee the consistency between the net models and their Promela programs. We are

developing a system to translate CPrT net models into Promela programs, but it still requires

users to input initial markings and define some variable types. Although we propose a

hierarchical analysis method to verify the software architecture of mobile agent systems using

model checking, the method still is the complete model checking, i.e. we first verify the

correctness of individual components and then verify the correctness of a composition by
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connecting the individual components into a single composition level model. This approach

works in most situations due to the high-level abstraction of software architectures. However, the

connected composition level model can be quite large in some situations to prevent the effective

use of model checking techniques. Compositional model checking techniques are potential

methods to solve this problem.
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