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ABSTRACT OF THE THESIS 

HYDROCARBON SPECIATION STUDIES IN ANCIENT SEDIMENTS BY HIGH 

TEMPERATURE SUPERCRITICAL CARBON DIOXIDE EXTRACTION. 

By 

Doraida Diaz 

Florida International University, 1996 

Miami, Florida 

Professor Rudolf Jaffe, Major Professor 

Professor Kenneth G. Furton, Co-Major Professor 

Results on the application ofhigh-temperature supercritical carbon dioxide extraction (HT-SFE) to 

the study of hydrocarbon (HC) speciation in geological samples are presented. Ancient sediments 

were treated by stepwise extractions, and by using a fresh sample each time. SFE temperatures 

ranged between 50 and 350°C. Individual analytes showed to be speciated in different ways 

throughout the solid matrix because different fractions are extracted under different energy 

conditions. Aromatic HCs appear to have a stronger association with the matrix than the aliphatics 

due to their higher polarity and molecular planarity. No evidence of geosynthesis of alkylaromatics 

during HT-SFE was obtained. Tri- and mono-aromatic steranes were totally extracted at relatively 

ix 



low temperatures while hopanes and steranes show a small fraction strongly interacting with the 

macromolecular organic structure possibly due to "trapping" processes. The release of "trapped" 

HCs was confirmed by the "maturity inversion" effect observed for the molecular distribution of 

hopanes at the highest extraction temperatures. Branched compounds like pristane and phytane 

showed to have a weaker association with the organic matrix if compared with straight chain 

analytes. Fresh sample extracted by SFE at different temperatures confirmed the results obtained for 

the stepwise procedure. Rock-Eva! Pyrolysis and Pyrolysis-Gas Chromatography/Mass 

Spectrometry (Py-GC/MS) from SFE pre-extracted sediments showed that HCs extracted at the 

highest temperature levels are not dominated by pyrolysis products and may have been released from 

trapped conditions, through irreversible thermally induced structural changes of the matrix and/or 

rearrangements of the macromolecular organic matter possibly via sulfur bond cleavage. No 

significant changes of the matrix were apparent after HT-SFE as suggested by Rock-Eval Pyrolysis 

and Py-GC/MS experiments, as well as from Electron Scanning Microscopy (ESM) determinations. 
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!.INTRODUCTION 

The extraction recovery of organic species from soils and sediments are critical in the 

identification and quantification of environmentally important compounds. Supercritical 

fluid extraction (SFE) has been generally accepted as an alternative to conventional solvent 

extraction methods, like Soxhlet extraction and sonication, for the recovery of a wide variety 

of compounds, including aliphatic and aromatic HCs from environmental matrices 

(Hawthorne, 1990; Furton, et al., 1994). 

The SFE of analytes from solid matrices depends on several factors including the vapor 

pressure ofthe compounds, the solubility and the diffusion coefficient of the analytes in the 

supercritical fluid. However, for environmental solids, such as soils and sediments, the 

limiting factor is generally how analytes are associated with the sample matrix.The 

speciation of hydrophobic organic compounds (HOCs) within geological samples is based 

in their association with the organic matrix through adsorption, partitioning, "sieving", 

binding and "trapping" processes . Some of these solute-solid interactions result in the 

incorporation of the solute into the solvent non-extractable fraction. The unique capacity of 

supercritical fluids to penetrate into pores of solid matrices permits the differentiation 

between traditional solvent extractable or "free" HOCs and those "trapped" in, or strongly 

associated with, the organic matrix of the sample (Hawthorne, et al., 1993; Furton, et al., 

1993 ). The application of high temperature in the procedure (HT -SFE) has proven to 

facilitate release of such compounds due to macromolecular structural rearrangements of the 



matrix and increased desorption kinetics (Furton, et al., 1994). 

This thesis deals with the application of HT -SFE, using carbon dioxide as a supercritical 

fluid, in order to study the speciation of some lipid components in Posidonia Shale by 

gradually applying increasing temperatures (stepwise SFE) and using the GC/MS for the 

analysis of the extracts. In addition, comparison with Soxhlet (using methylene chloride) 

recoveries was made. 

To evaluate the SFE potential as an extraction technique it is important not only to 

chemically characterize the resultant extracts but to analyze the extracted samples to gain a 

better understanding on SFE effects on the organic matrix, specially in those cases where 

high temperatures were applied. Rock-Eval Pyrolysis and Pyrolysis-Gas Chromatography 

I Mass spectrometry (Py-GC/MS) are useful tools for this purpose because both methods 

have become widely used to obtain structural information on source rock organic matter as 

well as other reliable data of geological interest ( Killops and Killops, 1993). 

Rock-Eval data allows us to quantitatively evaluate the remaining "extractable" hydrocarbon 

fraction as well as the generation potential upon pyrolysis of previously extracted sediments, 

while Py-GC/MS provides additional information for the description of a kerogen sample 

in terms of the quantitative distribution of various molecular types in the kerogen 

macromolecule (Larter and Horsfield, 1993). 
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Therefore, a comparison ofRock-Eval Pyrolysis and Py-GC/MS data obtained for ancient 

sediments extracted using different temperatures (fresh sample each time SFE) was carried 

out to evaluate HT -SFE effects on a specific matrix at a given temperature level. A 

microscopy study of the extracted solid structures was also performed to observe possible 

physical or structural changes in the SFE extracted matrices. Additionally, some experiments 

were conducted to know whether or not the structural macromolecular changes induced in 

the matrix during HT -SFE had a reversible nature. A preliminary evaluation of the 

possibility of alkylaromatic hydrocarbon geosynthesis during this procedure was included 

in this study. 

1.1 Speciation ofhydrophobic organic compounds in sediments. 

The speciation of lipids in recent and ancient sediments has been studied by a great number 

of investigators and, in general terms, has been classified into two categories as "free" and 

"bound" lipids . The former can be isolated via traditional solvent extractions, whilst the 

latter require more severe physical/chemical treatments for their release. 

The interaction of HOCs with the organic fraction of sediments and soils has been widely 

accepted (Jaffe, 1991) and, although it has been suggested that this interaction is controlled 

by a partitioning process (Chiou, 1979,1985; Kyle, 1981 ; Karickhoff, 1979) it is also likely 

that some speciation changes take place after the partitioning step. Diagenetic processes may 

play an important role in controlling this association. 
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Partitioning processes, where the molecules can associate with the "exposed " lipophilic 

surfaces, with humic micelles or "membrane-like" structures, may be the initial pathway 

of incorporation of these compounds. However, during early stages of diagenesis the 

organic matter undergoes a variety of chemical and physical changes primarily induced by 

microbial activity, characterized by biodegradation, polycondensation and insolubilization 

of natural compounds such as biopolymers, aminoacids, carbohydrates, lignins and lipids, 

which are then transformed into geopolymers such as humic and fulvic acids, humin and 

protokerogen (Tissot and Welte, 1986). During these microbially mediated processes, HOCs, 

which had previously partitioned into (and adsorbed on) the organic matter of the sediment, 

may become trapped in internal voids of the polymeric molecular sieve-type structures 

(Wershaw, 1986) and/or within plugged or deep pores, becoming "non extractable" by 

conventional analytical methods therefore, turning "free" HOCs into "trapped" HOCs 

(Khan, 1982; Monthioux and Londain, 1987; Del Rio et al., 1989; Jaffe and Gardinali, 1990; 

Jaffe et al., 1992). 

Figures 1 and 2 show the hypothetical speciation of HOCs in sediments and soils, and a 

proposed structure of sedimentary organic matter with "trapped" compounds (e.g. 

naphthalene), respectively. 

Many compounds incorporated into the "bound" fraction can only be released by 

saponification (Cranwell et el., 1987; Albaijes et al., 1984), other chemical degradation 

processes (Trifilieff et al.,1991; Al-Lihaibi and Wolff, 1991) or by thermal methods (Khan, 
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Fig. I. Hypothetical Speciation ofHOCs in Sediments and Soils. 

1111111111 

Fig.2. Proposed Structure of Sedimentary Organic Matter with Trapped HOCs 

(Naphthalene) . 

5 



1982). Jaffe and coworkers (Jaffe and Gardinali, 1990) observed in ancient sediments the 

natural release of"trapped" molecules from the kerogen due to thermal rearrangement of the 

geopolymers, while bound compounds were released via thermal bond cleavage. Since the 

trapped material showed molecular distributions characteristic of organic matter of low 

thermal maturity, the authors suggested that the "trapping" of HOCs must occur at early 

stages of diagenesis. Apparently, the "trapped" and bound HOCs are exempt from 

biodegradation and thermal maturation due to the "protective effect" of the OM in which 

they are contained. Consequently, the molecular distribution ofHOCs corresponding to the 

"free" vs. bound fractions can be different. Studies concerning the interaction of hydrophobic 

organics with humic substances have appeared in the literature (Khan and Schnitzer, 1992; 

Del Rio et al., 1989; Grimalt and Saiz-Jimenez, 1989) and the environmental significance 

of this interaction with respect to the fate and transport of organic pollutants has been 

stressed. 

The SFE is a suitable experimental approach in the study of the environmental/geochemical 

processes involved in the "trapping" ofhydrophobic organic molecules within the organic 

matrix of sediments due to the increased penetration of the solvent into the porous medium 

compared with that of the traditional extraction methods, especially when high temperatures 

are applied inducing structural rearrangements in the macromolecular organic matter that 

increase the availability of the solutes of interest to the extracting solvent. Preliminary 

studies made with shales (Furton et al., 1994 ; Jaffe et al., 1995) showed a promising 

potential for HT -SFE as an analytical tool in the investigation of the speciation of lipid 
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components in geological and environmental samples with a significant improvement in 

recoveries for certain compounds, precision and analysis time while using inexpensive, non­

toxic C02. 

1.2 Supercritical Fluid Extraction (SFE). 

A substance that is above it's critical temperature and pressure is defined as a supercritical 

fluid. The combined gas-like mass transfer and liquid-like solvating characteristics of 

supercritical fluids have led to their use as mobile phase for supercritical fluid 

chromatography (SFC) and as solvents in analytical scale SFE. Although the high solvating 

power of supercritical fluids was noticed more than a century ago (Hannay and Hogarth, 

1879) it is not until recent decades that supercritical fluid extraction has been used as a 

practical separation technique (Klesper and Angew, 1979; Sie and Rijnders, 1967). SFE was 

eventually used as an alternative to distillation and solvent extraction in industry (Johnston 

and Penninger, 1989; Me Hugh and Krukonis, 1986) but it was not applied in Chemistry on 

an analytical scale until recent years (Brigth and Me Nally, 1992; Hawthorne, 1990). 

Fig 3 shows the phase diagram for C02• Tis called triple point indicating that three stages 

(solid, gas and liquid) of a single substance co-exist under the conditions of that particular 

pressure and temperature and C is termed critical point what means that above the pressure 

and temperature shown on C, there is a unique state-supercritical fluid. 

7 



1. 0000 ....-----r----......----------· 

BOOO 

Fig. 3. Phase Diagram for Carbon Dioxide. T: Triple Point, C: Critical Point, C: Critical 

Point (Gong, 1995). 
1.2 • , 0.0 

P• 
~I 32.*C 

, .0 
so·c a.o 

Pressure !PSU 
Fig.4. Hildebrand Solubility, Density and Pressure of Supercritical C02 at different 

temperatures. Comparison to hexane at 20 Oc . 

Reference from Lecture Notes of Advanced Chromatography (CHM 5156, Fall 1994, 

Department of Chemistry at FlU by Dr. Kenneth G. Furton). 
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A comparison of several characteristics of supercritical fluids with those of liquid solvents 

demonstrates the potential of SFE to approach the idealized goals for analytical extraction: 

-The rate at which an extraction can be performed are ultimately detennined by mass 

transfer limitations. Supercritical fluids have much better mass transfer characteristics than 

liquid solvents due to solute diffusivities an order of magnitude higher (10'4 vs. 10'5 cm2/s) 

and viscosities an order of magnitude lower (10-4 vs. 10·3 N.s I m2 
) • While liquid 

solvent extractions take from several hours to days, a quantitative SFE are generally 

completed in 1 0-60 min. 

-The solvent strength of a liquid is essentially constant regardless of extraction conditions 

but the solvent strength of a supercritical fluid depends on the pressure and temperature used 

in the procedure so it can be easily controlled. In Fig 4 the density, pressure and Hildebrand 

solubility of supercritical C02 at various temperatures is shown as well as a comparison to 

hexane at 20°C. 

-Many supercritical fluids are gases at ambient conditions and the concentration steps needed 

for liquid solvent extracts are greatly simplified after SFE, saving time and avoiding the loss 

of more volatile analytes. 

Other practical advantages of supercritical fluids is that most are inert, pure, nontoxic and 

inexpensive. On the other hand, as fluids such as C02 and N20 have relatively low critical 
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temperatures (31 °C and 36°C, respectively), SFE can be performed at low temperatures to 

extract thermally unstable compounds. Table 1 shows some physical properties of common 

supercritical fluids. 

Table 1- Critical Properties of Common Supercritical Fluids (Poole and Poole, 1991). 

Fluid (Name) Tc (0C) Pc (atm) De (g/ml) 

C02 (Carbon Dioxide) 31.3 72.9 0.47 
N20 (Nitrous Oxide) 36.5 72.5 0.45 
SF6 (Sulfur Hexafluoride) 45.5 37.1 0.74 
NH3 (Ammonia) 132.5 112.5 0.24 
Xe (Xenon) 16.6 58.4 1.10 
n-C4 (Butane) 152.0 37.5 0.23 
n-C5 (Pentane) 196.6 33.3 0.23 
Cl2F2 (Dichlorodifluoromethane) I I 1.8 40.7 0.56 
H20 (Water) 374.4 226.8 0.34 
Ch30H (Methanol) 240.5 78.9 0.27 

Recent concerns about the hazardous nature of many commonly used solvents, the cost of 

environmental dangers of waste solvent disposal and their emission into the atmosphere 

during sample concentration further support the development of alternative sample extraction 

methods such as SFE. 

Supercritical C02 has been the choice for most SFE studies, primarily because of it's 

attractive practical characteristics. In general terms, C02 is an excellent extraction medium 

for nonpolar species such as alkanes and terpanes, it is reasonably good for moderately polar 

species, including polycyclic aromatic HCs (PAHs), aldehydes, esters, etc., but is less useful 

for more polar compounds. Because of the practical difficulties in using polar fluids as 

ammonia for SFE, extractions of highly polar analytes have most often been done using C02 
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containing a few percent added organic modifier (Hawthorne, 1990; Taylor and Thomas, 

1994). 

1.3 SFE ofHCs from geological samples. HT-SFE. 

The development of novel analytical methods for the analysis of non-extractable organics 

from environmental samples will significantly improve pollution assessment, environmental 

fate and biodegradation studies. "Trapping" may be an important environmental pathway for 

HOCs, reducing their toxicity and bioavailability and may be a major sink for anthropogenic 

compounds in sedimentary and soil environments. 

Any shallow rock that yield commercial amounts of oil upon pyrolysis can be classed as an 

oil shale. The organic matter in most shales appears to derive from marine or freshwater 

phytoplankton deposited in lakes, shallow seas, bogs or lagoons. For the generation of these 

shales or kerogenous rocks, the existence of anaerobic conditions for the preservation of the 

dead organisms in the original sedimentary environment is a requisite. 

In the present study, ancient sediment (shale) samples containing only naturally occurring 

HOCs will be studied because by looking at specific compounds one may get a better insight 

into the geochemical process of incorporation of HOCs as trapped components in sediments 

(Trifilieff et al., 1992; Jaffe and Gardinali, 1990). The process itself should be similar for 

anthropogenic and biogenic compounds with similar physical-chemical characteristics (e.g. 
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octanol-water partition coefficient Kow, and molecular planarity/shape). 

The use of supercritical fluids for hydrocarbon extraction from source rocks or coals was 

originally studied from two different points of view. On one hand, extraction with 

supercritical fluids at a high temperature was used by Whitehead and Williams (1975), 

Kershaw (1977), Smith and Udseth (1983) with solvents such as toluene or pentane but, 

llilder these severe conditions, a partial breakdown of the organic matter may occur. On the 

other hand, extraction with supercritical fluids like C02 or light HCs was used by Galimov 

et al. (1985) and Barth et al. (1986) for the characterization of organic material from 

sedimentary rocks. 

SFE has been applied to oil shales with industrial purposes to obtain soluble extracts 

(Kramer and Levy, 1988; Chong and McKay, 1987) using different solvent systems. Monin 

et al. (1988) and Kesavan et al. (1988) reported the successful use of carbon dioxide SFE 

in sedimentary rock extractions and Hopfgartner et al. (1990) concluded that SFE could 

advantageously replace solvent extraction for the determination of biomarkers in sediments. 

Multistage SFE of Kimmeridge Clay and Posidonia Shale formation samples, using plain or 

modified C02, to obtain information of the part of the soluble organic matter that may 

preferentially enter into primary migration processes was reported by Greibrock et al. (1992). 

It has been suggested that, to improve analyte recovery in SFE, it would be desirable to 

increase extraction temperature, to use polar supercritical fluids or to add polar modifiers to 
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non-polar fluids like C02 (Hawthorne et al., 1993). Lagenfeld et al. (1993) demonstrated that 

temperature was more important than pressure for achieving high extraction efficiencies 

when the interaction with pollutants molecules and sample matrices are strong and indicate 

that increasing SFE temperature may be a useful alternative to adding organic modifiers for 

achieving high extraction efficiencies from environmental samples. Similarly, Gong (1995) 

reported that temperature played a more important role than density of supercritical C02 and 

particle size in SFE ofNew Albany Shale samples. In fact, they found that HT-SFE can 

recover HOCs from shales previously exhaustively extracted by conventional methods (96 

hr Soxhlet extraction). 

Furton et al. (1994) showed the utility of SFE temperatures as high as 350°C for the rapid 

recovery of aliphatic and aromatic HCs from ancient sediments confirming the promising 

potential of this technique to determine geochemically important molecular parameters with 

a significant improvement in recoveries, precision and analysis time when compared with 

the traditional Soxhlet extraction. It was found in this study that high temperatures (250 to 

350°C) followed by a lower temperature step (50°C) to increase supercritical fluid density 

are required to recover "trapped" HOCs from shales. 

As was mentioned earlier, the focus of this study is the application ofHT-SFE to the analysis 

of geological samples. Changes in the macromolecular structure of the organic matter, that 

can be induced via thermal processes may result in the release of previously non-extractable 

compounds which could led to a better understanding of the speciation of HOCs in ancient 
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sediments (like Posidonia Shale). At the same time, it is of great importance to analyze the 

effect of high temperature on the sample matrix, to evaluate the possibility of artificial 

maturation processes, due to pyrolysis of the kerogen, that could affect the HOC composition 

of the HT-SFE extracts. For this purpose, analytical pyrolysis methods like Rock-Eval 

Pyrolysis and Py-GC/MS will be applied to the extracted sediments. 

1.4 Rock-Eval Pyrolysis . 

Three factors: type of organic matter, amount of organic matter and thermal maturity, are 

important in the evaluation of potential petroleum source rocks. Rock-Eval Pyrolysis can 

provide useful information concerning those characterizations. 

During this procedure (Fig. 5a), ground samples of sediment/rock are pyrolyzed in an inert 

atmosphere under varying temperature conditions (Espitalie et al., 1977). The sample is 

firstly heated to moderate temperatures (200 to 250°C) and the HCs already generated within 

the sample are volatilized. This group of compounds is quantified using a flame ionization 

detector and constitutes what is termed the S1 measurement. The temperature is then 

progressively increased (up to approximately 550°C) until breakdown of the kerogen 

structure occurs (simulating catagenesis), and the resulting HCs are again determined by the 

flame ionization detector to provide the S2 measurement. The flow of components emanating 

from the thermal breakdown of kerogen are usually split into two streams, so that oxygen 

containing components (specifically C02 ) could be determined by a thermal conductivity 
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detector, providing the S3 measurement. 

For many years , Rock-Eval Pyrolysis has been used in oil exploration to predict the 

hydrocarbon generating potential of source rocks (Tissot and Welte, 1984; Sweeney et al., 

1989; Burnham, 1987). The total amount ofHCs that can be generated by a source rock is 

called "genetic potential" and is represented by (S1 + S2 ) as a proportion of the amount of 

source rock. This information has been used to generate profiles of specific HOCs types with 

respect to the total petroleum potential in speciation studies (JafftS and Gardinali, 1990). 

Rock-Eval can yield very general information on the type of organic matter present by the 

use of the S2 and S3 values in combination with the total organic carbon (TOC) measurement 

(Radke et al., 1985). The hydrogen index (HI) is given by S2 I TOC and the oxygen index 

(OI) by S3 / TOC. A plot of HI vs. OI provides an analogue to the Van Krevelen diagram 

from which both organic matter type and maturity can be obtained (Fig. Sb ). 

As HCs are generated in increasing quantity with increasing temperature, the S2 

measurement decreases while S1 increases. Hence (S 1/S 1 +Sz) , known as the transformation 

ratio, increases with increasing maturity. Similarly, the temperature at which the maximum 

in the S2 response is noted (Tmax) increases with increasing maturity reflecting the higher 

thermal energy required to break the remaining bonds in kerogen associated with 

hydrocarbon generation during catagenesis. Fig. Sc shows the cycle of analysis and an 

example of records obtained by the Rock-Eval Pyrolysis method. 

16 



Etler et al. (1995) used Rock-Eval Pyrolysis to characterize samples extracted by a 

conventional chloroform extraction and by SFE, in a work designed to determine the 

experimental SFE conditions which would result in a bitumen of similar composition and 

concentration than that obtained by the traditional method. 

Nowadays, improved Rock-Eva! analyzers have been designed with expanded capability, 

enhanced flexibility and improved data input/output interface (Marquis et al., 1995). At the 

same time, these new models provide better estimations of OI, TOC content and kerogen 

types as well as the possibility of determining the mineral carbon in the source rock samples. 

Recently, Rock-Eval Pyrolysis data from Kupferschiefer Shale SFE extracted samples has 

been obtained by our laboratory to study the Rock-Eval parameter behavior with increasing 

temperature levels in the extraction procedure. In the present report we will present a 

comparison of Kupferschiefer data with that obtained for Posidonia Shale under similar 

conditions. 

1.5 Pyrolysis-GC/MS. 

The chemical composition of kerogen is a complex function of it's biochemical source­

related mechanical composition (maceral composition), the diagenetic modification and it's 

degree of thermal evolution. Bulk chemical analysis such as Rock-Eval Pyrolysis data has 

been useful in providing generalized chemical descriptions of kerogens, but only the use of 
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analytical pyrolysis as a kerogen structural analysis tool permits the description of kerogen 

in terms of the quantitative distribution of various molecular types in the macromolecular 

system. 

Analytical Pyrolysis involves the on-line coupling of an inert atmosphere (He or N2) 

pyrolyzer with a gas chromatograph (Py-GC) or with a mass spectrometer either directly (Py­

MS) or via a GC column (Py-GC/MS) (Larter, 1984; Horsfield, 1984). In the evolution of 

this area of research, coupled use ofPy-GC/MS and Py-MS techniques have proven to be 

more efficient (Maters et al., 1977; Larter, 1984) although to date most quantitative data are 

associated with Py-GC studies. 

Most ofthe analytical pyrolysis have been performed using two main types ofpyrolyzers: 

1) Filament pyrolyzers, either resistively or inductively heated, with isothermal pyrolysis of 

submilligram samples in the temperature range 600-800°C for several seconds (Larter and 

Senftle, 1985) and 2) Furnace pyrolyzers which can pyrolyze larger samples either 

isothermally or, more typically, under programmed temperature conditions over the range 

300 - 800°C, at heating rates usually similar to those of a Rock-Eval instrument (25°C/min) 

(Horsfield et al., 1989). Results from both systems appear to be qualitatively quite 

comparable. In this study we will use a Py-GC/MS with a filament type pyrolyzer. 

Py-GC/MS permits the identification of a great variety of components in kerogen pyrolysates 

including light hydrocarbon gases (Giraud, 1970), inorganic gases (Larter, 1984; Eglinton 
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et al., 1988), alkylaromatic and aliphatic HCs, phenols, acids and oxygen-, nitrogen-and 

sulfur bearing heterocycles (Maters et al, 1977;Larter and Douglas, 1978; Sinninghe-Damste 

et al., 1989). 

It is generally accepted that one of the major identified and readily quantifiable (GC/MS 

resolvable) kerogen pyrolysis product groups are saturated and unsaturated normal, branched 

and cyclic aliphatic HCs in the carbon number range of C1-C35 • Alkylated one to three -ring 

aromatic and naphthenoaromatic HCs with side chains from C1 to C30 have been also well 

characterized as major pyrolysis products (Larter, 1984; Horsfield, 1984). Additionally, 

steroid and terpenoid HCs have been observed in high temperature pyrolysates of oil shales 

and coal kerogens by many authors (Gallegos, 1975, 1978; Eglinton, 1988). 

The application of the Py-GC/MS technique to the original Posidonia Shale as well as to the 

SFE extracted samples will contribute both to a better characterization of this ancient 

sediment and to the analysis of possible HT -SFE effects on the kerogen that could be 

elucidated based on the pyrolysis products. 

1.6 Hydrocarbon composition in shales. Biomarkers. 

As was mentioned before, by the end of diagenesis the biogenic organic material in 

sediments either has been degraded and recycled by microorganisms or has been largely 

converted into insoluble polymeric material , such as kerogen, from which HCs are 
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produced (bitumen) with increasing burial and heating. Kerogen occurs in sedimentary rocks 

in the form of finely disseminated organic macerals being by far the most abundant form of 

organic carbon in the earth crust. The composition of disseminated organic matter in 

sedimentary rocks is shown in Fig. 6. 

Bitumen is composed of three main fractions: asphaltenes, resins and HCs. The hydrocarbon 

fraction contains mainly aliphatic and aromatic HCs. Among the aliphatic HCs the 

predominating groups are the acyclic alkanes (normal and branched) and cycloalkanes. 

Acyclic isoprenoidal alkanes are also important constituents, particularly pristane and 

phytane. In the aromatic fraction, the major components are benzene, naphthalene, 

phenanthrene and their alkylated homologues. Sulfur-rich kerogens can give rise to 

significant quantities of thiophenic compounds like benzothiophenes, dibenzothiophenes, 

naphthobenzothiophenes and their alkyl derivatives. Some of these compounds are shown 

in Fig. 7. 

Biological markers or biomarkers (Eglinton et al., 1964; Eglinton and Calvin, 1967) are the 

most useful molecular indicators at the stage of maturity corresponding to ancient sediments 

because their basic structures remain intact through processes associated with sedimentation 

and diagenesis. Biomarkers include acyclic isoprenoids like pristane and phytane, steroids, 

terpenoids and porphyrins and are found both, free in the bitumen and bound to the kerogen 

in petroleum source rocks. This makes them very useful in providing information about the 

organic matter present in source rocks, the environmental conditions during its deposition 
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Fig. 6. Composition of Disseminated Organic Matter in Sedimentary Rocks (Tissot and 

Welte, 1984). Figure Taken from Killops and Killops, 1993. 
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and burial (diagenesis), the thermal maturity experienced by the rock (catagenesis), the 

degree of biodegradation, etc. 

Known to be derived from the acyclic isoprenoid squalene, which is an ubiquitous 

component in organisms, steranes and hopanes (Fig. 8) (tetra and pentacyclictriterpenoids, 

respectively) can provide useful geochemical information in ancient sediments and 

sedimentary rocks . 

Hopanes are abundant in sediments and petroleum because their precursor 

(bacteriohopanotetrol) is an important component of the bacterial cell membrane (Ourisson 

et al., 1984). Similarly, cholesterol, found in the membranes of all eukariotic cells 

(Rohmer, 1987), is converted by dehydration and reduction to cholestane during diagenesis, 

and thus, like the hopanes, steranes are abundant in sediments, rocks and petroleum. 

Pristane and phytane are commonly the most abundant acyclic isoprenoids in geological 

samples. Due to their large abundance and easy measurement by GC and GC/MS, their 

identification and quantitation is often utilized in organic geochemical studies. They have 

been used in the definition of thermal maturity indicators (Goosens et al., 1988; Van Grass 

et al, 1981), correlation parameters (Welte, 1966; Hagemann et al., 1975), and depositional 

environment indicators (Brooks et al.,l969; ten Haven et al., 1987). 

Thermal maturity changes can be related to biomarker molecular distribution changes, such 
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as isomerizations at cyclic and acyclic centers in steranes, hopanes and other triterpanes, 

aromatisation of steroidal HCs and changes in relative abundances of acyclic isoprenoidal 

alkanes like pristane and phytane. We will refer here to three parameters that will be used in 

the characterization of Posidonia Shale SFE extracts in order to obtain information regarding 

the speciation of the related compounds in the matrix. These are described below: 

A) % 22 S for 17 a(H), 21 PCH) hopanes . 

The bacteriohopanetetrol shows a 17P(H), 21 PCH)22R CPPR) "biological" stereochemistry 

(Rohmer, 1987). Due to the fact that this stereochemical rearrangement is thermodynamically 

unstable, diagenesis of bacteriohopanetetrol result in the transformation of the pp 

configuration to the Pet and ap in the ring system and, similarly, the biological22R converts 

to an equilibrium mixture of 22S and 22R ap-homologues (Fig. 9). 

The homohopanes (hopanes with more than 30 carbon atoms) show an extended side chain 

with an asymmetric center at C-22 which results in two peaks for each homologue (22R and 

22S) on the mass chromatogram of these compounds (Fig. I 0). Based on the above 

configurational isomerization, a (22S/22S+ 22R) ratio has been defined ranging from 0 to 60 

%and can be calculated for any or all ofthe C31 to C35 hopanes. 
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B) % Tri!Monoaromatic steroids. 

One of the major classes of diagenetic products of steroids is the C-ring monoaromatic 

steranes. The aromatization of C-ring monoaromatic steroidal HCs (MA) to ABC-ring 

triaromatic steroids (TA) occurs as temperature raises with increasing burial. It involves the 

loss of a methyl group at the AlB ring juncture (Fig. 11) yielding TA-steroids with one less 

carbon. Thus, the TA/(MA+TA) ratio which increases from 0 to 100 has been used as a 

thermal maturity parameter in source rock extracts and petroleum samples. It is possible to 

use the sum of all C27 to C29 C-ring MA-steroid peaks forMA and the sum of all C26 to 

C28 TA-steroid peaks in a chromatogram for TA to calculate this ratio, but the use of one 

specific transformation like the one shown in Fig. 11 is considered to be the more accurate 

(Killops and Killops, 1993). 

C) Pristane/Phytane and C 18/Phytane ratios. 

Pristane/Phytane (Prist!Phyt) and C 18 n-alkane/Phytane (C 18/Phyt) ratios have been 

defined as a depositional environment and as a thermally induced kerogen cracking 

indicators, respectively. It is generally accepted that the Prist!Phyt ratio does not change with 

maturity (Tang and Stauffer, 1995; Burnham et al.,1982; Didyk et al., 1978) until the 

kerogen begins to suffer thermal cracking during catagenesis . Then, additional pristane 

appears to be generated from kerogen causing a ratio increment. This increase is paral1eled 

by an increase in n-alkanes relative to phytane and it is usually measured by determining the 
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C 18/Phyt ratio. 

These ratios will be calculated for different SFE extracts to study the interaction of 

isoprenoidal compounds with the organic matrix compared to that of normal alkanes 

considering their different molecular shapes. 

1. 7 Geosynthesis of alkylaromatics in sediments. 

The degradation of biogenic precursors in sediment maturation processes, largely by 

thermal bond breaking and dehydrogenation reactions, are generally considered responsible 

for the distribution of alkylaromatic HCs in sediment and petroleum (Smith et al., 1995). 

Alkylphenanthrenes have long be considered to be predominantly derived from terpenoids 

and steroids (Mair, 1964, Bendoraitis, 1974) while little is known about the origin of 

alkylanthracenes, which are commonly of much lower abundance than alkylphenanthrenes 

in sedimentary rocks. This observation corroborates their different origins. 

Additionally it has been suggested that significant quantities of these compounds in 

sediments may be derived by methylation of parent aromatic HCs (Radke et al, 1982 ). For 

example, it has been reported that the abundance of methylphenanthrenes over phenanthrene 

increases during pyrolysis of Kimmeridge Clay and Brent coal samples heated to 350°C 

(Garrigues et al., 1990). Derbyshire and Whitehurst (1981) observed pyrene alkylation at 

400°C due to transfer of carbon from the coal. Voigtmann et al. (1995) indicated the 
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likelihood of a geosynthetic, in addition to a precursor-directed, ongm for the 

methylphenanthrenes in sediments. Smith et al (1995) demonstrated the synthesis of 

methylphenanthrenes, methylanthracenes and methylpyrenes by the reaction of their 

correspondent parent molecules with coals at 220-400°C. Therefore, it would be of interest 

to investigate the effect of speciation and temperature on the presence of these compounds 

in HT -SFE extracts. In other words, it would be important to elucidate whether the 

alkylaromatics extracted at high temperature SFE from Posidonia shale are present 

originally in the sediment , or if some fraction was produced through geosynthetic processes 

via methylation of the parent molecules. This would also allow for a better understanding of 

the origin of these compounds in the geosphere. 
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2.EXPERIMENTAL 

2.1 Sample preparation. 

Posidonia Shale, an ancient sediment from a quarry near Dotterhausen, Southwest Germany, 

was the sample used in this study. Before its use in the experiments, about 500 g of the 

sediment was pulverized and stored at l2°C. 

2.2 Other materials. 

SFE/SFC grade carbon dioxide (99.9999% purity) from Plumsteadville, PA, USA was used 

in all the SFE extractions. High purity solvents (Optima grade, Fisher Scientific, NJ, USA) 

were used in the present study and the glass wool was preextracted with methylene chloride 

before its use. All glassware was firstly washed in an ultrasonicator (Solid State I Ultrasonic 

Cleaning System Model FS-7652, Fischer Scientific, USA) with an special heavy duty liquid 

soap (Liqui-Nox, Alconox. Inc., NY, USA) dissolved in water during 1 hr at 90 ° C, then it 

was rinsed out with deionized water and oven dried (120°C). Finally, the glassware was 

covered with aluminum foil and was rinsed with metahylene chloride before use. 

2.3 Instrumentation. 

2.3 .1 Supercritical Fluid Extractor. 

Fig. 12 shows a schematic diagram of the SFE system used in the experiments. The sample 
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to be extracted was introduced in an empty stainless steel HPLC column (15 em x 1 em i.d. 

and 0.5 inch o.d.) with frits at the end (Keystone Scientific, Bellefonte, PA, USA).This 

sample holder was used as the extraction cell, and placed into a Varian model 3700 GC 

oven to be heaten at the different temperatures under study. During the extractions, high 

pressilre (5000 psi) C02 (SFE grade, Plumsteadville, PA, USA) delivered by a 260D syringe 

pump (ISCO, Lincoln, NE, USA), was passed through the extraction cell. The resultant 

extracts were collected in 20 ml vials with methylene chloride through a 10 em (50 urn i.d., 

375 urn o.d.) fused-silica linear restrictor (Polymicro Technologies, Phoenix, AZ, USA). 

The needle valve (Scientific Systems, Inc., State College, PA, USA) used to control a 1.0 

mllmin C02 flow through the system was heated to 200°C with Silicone extruded heating 

tape controlled with a stepless temperature controller (Thermolyne, Dubuque, Iowa, USA). 

2.3.2 Rock-Eval Pyrolysis. 

The Rock-Eval Pyrolysis and TOC determinations were conducted by DGSI (The 

Woodlands, TX) using a LECO TOC and Rock-Eval II Pyrolysis unit as analytical 

procedures. 

- Leco TOC: 

TOC is determined by direct combustion . A 0.15 g sample, grounded so as to pass through 

a 60 mesh sieve to assure homogeneity, was carefully weighed, treated with concentrated 
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HCl to remove carbonates, and vacuum filtered on fiberglass filter paper. The residue and 

filter were placed in a ceramic crucible, dried and combusted with pure oxygen in a LECO 

EC-12 carbon analyzer at about 1000°C. The TOC was calculated as Wt %. 

- Rock-Eval II Pyrolysis. 

About 0.1 g of the same ground sample used for TOC determination was carefully weighted 

in a pyrolysis crucible and then heated to 300°C to determine the amount of free HCs that 

could be thermally desorbed (S 1) using an FID detector. In a similar way, the amount ofHCs 

that are generated from kerogen during pyrolysis (S2) was measured when the sample was 

heated in an inert environment from 300°C to 550 °C at a heating rate of25°C/min. At the 

same time as the S2 analysis, carbon dioxide generated during pyrolysis is collected up to a 

temperature of 390°C, detected in a TCD and reported as S3 (mg cq I g sample). The 

temperature during pyrolysis peak (S2) was reported as Tmax. Hydrogen Index (HI) equals 

S2/TOC and Oxygen Index (OI) equals SjTOC were plotted in a Van Krevelen type diagram 

(see Results and Discussion). 

2.3.3 Pyrolysis-GC/MS. 

The sample (2g) was placed in a steel press along with a Curie point wire (358°C) and 

pressed (15 atm) for 2 sec. The Curie point wire plus the sample were then inserted into a 

wide bore capillary tube which was then placed into a pyrolyzer unit that was activated (2 
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sec, interface temperature 250°C ). The system is connected to a GC/MS. The GC was 

programmed from -40 to 31 0°C at a rate of 6°C/min, with a holding time of 5 min at 31 0°C. 

The GC was initially cooled down by a cryogenic cooling unit using liquid C02 • The MS 

mass scanning range was set between 50 and 600 mass units. After the thermally extracted 

HCs (358 °C) had been analyzed, the Curie point wire was removed and the residue was 

scrapped off and placed in the clean press. A small amount of the residue was applied to 

another Curie point wire (610°C) as above and the pyrolysable HCs were analyzed on the 

GC/MS. Before each analysis, the wires were cleaned in diluted HN03, distilled H20, ethyl 

acetate and methylene chloride using a sonicator in all the stages. (Note: These analyses were 

performed at the University of Liverpool, U.K.). 

2.4 Analysis. 

2.4.1 GC/MS. 

The analysis of the Soxhlet and SFE extracts was performed by GC/MS. A HP5971A mass 

selective detector interfaced to an HP5890 Series II gas chromatograph (30m x 0.250 mm 

of DB-5 MS fused silica, capillary column) was used. The GC/MS was firstly run in the 

Total Ion Current (TIC) mode to identifY the compounds of interest in the extract, based on 

their characteristic mass spectral patterns. For the quantitative analysis, the GC/MS was run 

in the Selected Ion Monitoring (SIM) mode at an ionization energy of 70 ev and with a 

dwell time of250 microseconds for each monitored ion. An internal standard (squalane) was 
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added to all SFE extracts. The response factor for the analytes by GC/MS was assumed to 

be 1. Therefore, the obtained data are semiquantitative in nature. 

The GC temperature program began at 40°C during 1 min, followed by an increasing 

temperature rate of 6°C/min from 40°C to 300°C, with a final holding time of20 min. The 

injector and detector temperatures were of 280 °C. The analytes monitored and the 

correspondent characteristic ions (rnlz) are listed below: 

-Normal alkanes, pristane and phytane, (57). 

-Naphthalene, (128). 

-Cl-naphthalene, (142). 

-C2-naphthalene, (156). 

-C3-naphthalene, (170). 

-Phenanthrene, anthracene, (178). 

-Cl-Phenanthrene, (192). 

-C2-Phenanthrene, (206). 

-C3-Phenanthrene, (220). 

-Steranes, (217). 

-Monoaromatic steroids (MA), (253). 

-Triaromatic steroids (TA), (231). 

-Dibenzothiophene, (184). 

-C 1-Dibenzothiophene, (198). 

-C2-Dibenzothiophene, (212). 
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-C3-Dibenzothiophene, (226). 

-Hopanes, (191). 

-Deuterated phenanthrene, (188). 

The (TAIMA+TA) ratio was calculated based on the sum of all C26 to C28 TA and the sum 

of all C27 to C29 C-ring MA steroid peaks in the chromatograms. 

SFE extracts previously obtained for Kupferschiefer Shale were analyzed in the GC/MS for 

comparative purposes. 

2.5 Soxhlet Extraction. 

5 g sample of Posidonia Shale were weighed and transfered into a preextracted Cellulose 

thimble covering the sample with preextracted glasswool before placing it into the Soxhlet 

extractor. The samples was extracted with methylene chloride for 24 h and the resulting 

extract was concentrated first in a rotary evaporator followed by N2 blowdown, to 

approximately 400 ul. 

To eliminate the polar fraction of the extract (resins and asphaltenes), the sample was 

fractionated by column chromatography (Wang et al., 1994). A chromatografic column with 

a teflon stopcock (200 x 10.5 mm i.d.) was plugged with pre-extracted pyrex glass wool at 

the bottom, serially rinsed with methanol, hexane and dichloromethane, and allowed to dry. 

The column was then dry-packed with 3 g of activated silica gel and topped with about 0.5 
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ern of sand and about 0.5 ern of anhydrous sodium sulfate. The column was conditioned with 

20 rnl hexane and the eluent was discarded. Just prior to exposure of the sodium sulfate layer 

to air, Soxhlet extract was transfered onto the column using an additional 3 rnl hexane to 

complete the transfer. All eluents up to this point were discarded. Hexane (12 rnl) was used 

to elute aliphatic HCs (alkanes, triterpanes and steranes) while 15 rnl of a toluene:hexane 

mixture ( 1: 1) was used to elute target P AHs and their alkylated hornologues. Both fractions 

were combined, concentrated and analyzed in the GC/MS after addition of a known amount 

of squalane as internal standard. The procedure was conducted in triplicate in order to 

establish the method reproducibility based on the standard deviation and coefficient of 

variation for some of the compounds. 

2.6 Supercritical Fluid Extraction. 

2.6.1 Stepwise SFE. 

Stepwise SFE experiments were performed extracting a 3 g Posidonia Shale sample in the 

SFE using 5000 psi and a C02 flow of 1 ml/min, at seven succesively increasing 

temperatures (50, 100, 150, 200,250, 300 and 350°C) followed by a lower temperature step 

at 50°C for every temperature level and collecting the extract after each step. Every step 

consisted of a total extraction time of 1.5 h where 1 h corresponded to the SFE extraction at 

a given temperature and the remaining 0.5 h was divided between the initial heating time and 

a final 50°C period. 
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The seven fractions were collected and blown down separately using a N2 (g) stream and the 

internal standard (squalane) was added before injecting them into the GC/MS for 

quantitative analysis of target analytes. The experiment was made in triplicate for the 

reproducibility study. 

2.6.2 Temperature dependent SFE of individual samples. 

Seven SFE experiments (5000 psi, 1.0 ml of CO/min) were conducted separately at different 

temperatures (50, 100, 150,200,250,300 and 350°C) usin 3g Posidonia Shale samples. Each 

extraction was performed during 1.5 h in a similar manner than the stepwise procedure steps 

(1 h at the temperature of interest and 0.5 h between the initial heating and the final 50°C 

step). In this case, the extracts were collected after each extraction experiment as well as the 

corresponding extracted sediments. The sample was changed for each experiment. The 50, 

150, 250 and 350°C SFE extractions were performed in triplicate to determine the method 

reproducibility based on some ofthe studied compounds. 

2.7 Heating experiments. 

2. 7.1 Thermal treatment of non extracted sediments. 

Two experiments were conducted with four thermally sealed borosilicate ampoules 

containing 3 g of Posidonia Shale each. For the first experiment, two of the ampoules were 
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placed into a GC oven (Varian model3700) at 200°C and were analysed after 3 and 12 h of 

heating. The second experiment used the remaining two ampoules for a similar study but 

setting the GC oven temperature at 350°C. The thermally treated samples were then 

individually extracted in the SFE at 50°C during 1.5 h and the collected extracts were 

analysed in the GC/MS. A 50°C SFE extract obtained from the original (not thennally 

treated) shale was used as a control for comparative purposes. 

2. 7.2 Thermal treatment of preextracted sediments. 

Three g of 250°C SFE-preextracted Posidonia Shale sample were kept in the sealed 

depressurized SFE extraction cell during 1 hr at 350°C in the GC oven; then a 50 ° C SFE 

extraction was performed (total extraction time= 1.5h) and the extract was analized in the 

GC/MS. Another 250°C SFE preextracted 3 g sample of Posidonia Shale was extracted at 

50°C and used as a control. 

2.8 Preliminary evaluation of alkyl phenanthrene geosynthesis during HT -SFE. 

In order to test possible geosynthesis of alkylaromatics during HT -SFE , 140 ul of a 1967.5 

ug/ml deuterated phenanthrene solution (Supelco Inc., P A, USA) were diluted with 

methylene chloride in a 50 ml volumetric flask. This solution was poured on 6 g of the 

ground Posidonia Shale, so that a concentration of 40 ug of deuterated phenanthrene I g of 

shale was obtained. The sample was then swirled and rotoevaporated to dryness. Half of the 
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spiked sediment (3 g) was extracted in the SFE at 50°C while the other 3 g sample was 

extracted at 350°C. An internal standard (squalane) was added to the resultant extracts which 

were finally analysed in the GC/MS to compare the [deuterated phenanthrene ]/[squalane] 

ratios for both extraction temperatures in order to asses iftransalkylation to the deuterated 

standard did occur. 

2.9 Rock-Eval Pyrolysis. 

This technique was used to characterize both the original and the pre-extracted sediments. 

Rock-Eval Pyrolysis technique was applied to the extracted sediments obtained from the 

SFE at different temperatures, using a fresh sample each time. The TOC (Wt %), Sl (mg/g), 

S2 (mg/g), S3 (mg/g), Tmax (°C), HI and OI values were determined for each sample. The 

HI and OI values obtained for each extraction temperature were plotted in a Van Krevelen 

analogue diagram (see Results and Discussion). 

2.10 Pyrolysis -GC/MS. 

Sediment samples extracted by SFE using both a fresh sample each time (at 50°C, 250°C 

and 350°C) as well as the original nonextracted sediment, were analysed using the Py­

GC/MS technique. Comparisons of the TICs and some specific ion chromatograms obtained 

at 358 and 610°C Py-GC/MS for each sample were performed (see 2.3.3). 
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2.11 Microscopy Study. 

An original Posidonia Shale sample and sediments extracted at 150°C and 350°C (using a 

fresh sample each time SFE) were analyzed in an ISI Super III-A Scanning Electron 

Microscope (SEM). The samples were attached to aluminum stubs with silver paint and 

sputter coated with gold I palladium (60:40) in a Denton Vacuum Desk-1 sputter coater, and 

the photographic records were made using Polaroid 55 PIN film. 
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3. RESULTS AND DISCUSSION. 

3.1 Identification of target analytes. 

Figures 13 to 18 show characteristic GC/MS patterns for several compounds monitored in 

the different experiments. Tables II to V present the peak identification for hopanes, 

steranes, mono and triaromatic steranes. Compound identifications are based on mass 

spectral interpretations, comparison with literature spectra and chromatographic retention 

characteristics. 

3.2 Soxhlet extraction. 

The analyte concentrations obtained for the 24 h Soxhlet extraction of Posidonia Shale are 

shown in Table VI. These results will be compared later with results for stepwise SFE 

studies. The reproducibility study results are shown in Table VII for selected compounds. 

The coefficient of variation ranged in acceptable values (approximately 6.5 - 13 %). 

However, some analytes like naphthalene showed higher levels (approximately 17 %). The 

reproducibility of the Soxhlet, however, was found to be in the commonly observed range 

for this type of samples. 
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Peak i Formula Name 
1 C2sHso 17a(h), 21 ~(H)-30-Norhopane 
2 C30H52 17a(h), 21 ~(H)- Hopane 
3 C31 H54 17a(h), 21 ~(H)-29-homohopane 22S 
4 C31H54 17a(h), 21 ~(H)-29-homohopane 22R 
5 C32H56 17a(h), 21 ~(H)-29-bishomohopane 22S 
6 C32H56 17a(h), 21 ~(H)-29-bishomohopane 22R 
7 C33Hsa 17a(h), 21 ~(H)-29-trishomohopane 22S 
8 C33Hsa 17a(h), 21 ~(H)-29-trishomohopane 22R 
9 C34H6o 17a(h), 21 p(H)-29-tetrakishomohopane 22S 

10 C34H6o 17 a(h ), 21 ~(H)-29-tetrakishomohopane 22R 
11 C35H62 17a(h), 21 ~(H)-29-pentakishomohopane 22S 
12 C35H62 17a(h}, 21 ~(H)-29-pentakishomohopane 22R 

Table II- Peaks Identified for rnlz=l91 (Hopanes) Mass Chromatograms of Posidonia Shale 

SFE Extracts. 

Peak I Formula I Name 
1 I C27H4a C27 20S-13~(H), 17a(H)-diasterane 
2 I C27H48 C27 20R-13~(H), 17a(H)-diasterane 

~ ~-

3 C27H48 C27 20S-5a(H), 14a(H), 17a(H)-cholestane 
4 I C27H48 C27 20R-5a(H), 14~(H), 17~(H)-cholestane 
5 C27H48 C27 20S-5a(H), 14~(H), 17~(H)-cholestane 
6 l C2aHso C28 208-Sa(H), 14~(H}, 17~(H)-ergostane 
7 I C2sHs2 C29 208-Sa(H), 14a(H), 17 a(H)-stigmastane 
8 C2sHs2 C29 20R-5a(H), 14~(H), 17~(H)-stigmastane 

C29H52 C29 208-Sa(H), 14~(H), 17~(H)-ergostane 
9 C29H52 

1
C29 20R-5a(H), 14a(H), 17a(H)-stigmastane 

Table III- Peaks Identified for rnlz=217 (Steranes) Mass Chromatograms of Posidonia Shale 

SFE Extracts. 
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Peak I Formula I Name 
1 C27H42 1513-Cholestane 20S 
2 C27H42 Diacholestane 20S 
3 C27H42 5j3-Cholestane 20R 

C27H42 Diacholestane 20R 
4 C27H42 5a-Cholestane 20S 
5 C28H44 5j3-Ergostane 20S 

C28H44 Diaergostane 20S 
6 C27H42 5a-Cholestane 20R 

C28H44 5a-Ergostane 20S 
C28H44 5a-Ergostane 20R 
C28H44 Diaergostane 20R 
C29H46 5j3-Stigmastane 20S 
C29H46 Diastigmastane 20S 

7 C29H46 5a-Stigmastane 20S 
8 C28H44 5a-Ergostane 20S 
9 C29H46 5j3-Stigmastane 20R 

C29H46 Diastigmastane 20R 
10 C29H46 5a-Stigmastane 20R 

Table IV- Peaks Identified for rnlz=253 (Monoaromatic Steranes) Mass Chromatograms of 

Posidonia Shale SFE Extracts. 

Peak ! Formula Name 
1 C26H32 Cholestane 20S 
2 C26H32 Cholestane 20R 

C27H34 Ergostane 20S 

3 C2BH36 Stigmastane 20S 

4 CzsH36 Ergostane 20R 

5 C28H36 , Stigmastane 20R 

Table V- Peaks Identified for rnlz=231 (Triaromatic Steranes) Mass Chromatograms of 

Posidonia Shale SFE Extracts. 
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Analyte I Cone. (ug/g) 
C11-C19 n-alkanes l 160.43 
C20-C35 n-alkanes I 66.26 
Naphthalene 4.85 
C1-Naphthalenes 

I 
16.60-

C2-Naphthalenes 22.31 
C3-Naphthalenes 17.36 
Phenanthrene 4.32 
Anthracene 0.00 
C1-Phenanthrenes 8.64 
C2-Phenanthrenes I 8.28 
C3-Phenanthrenes 4.23 

--

Dibenzothiophene 2.23 
C1-Dibenzothiophenes 1 5.61 
C2-Dibenzothiophenes 4.77 
C3-Dibenzothiophenes , 2.35 
Steranes 15.66 
Monoaromatic Sterane 28.86 
Triaromatic Steranes 40.88 
Hopanes 12.72 

Table VI- Analyte Recovery Obtained from Soxhlet Extraction ofPosidonia Shale. 

Analyte Concentration (ug/g) Mean 1 SD I cv 
1 2 3 (ug/g) I (ug/g) I (%) 

C11-C19 n-alkanes 92.1 115.43 93.36 100.3 I 13.12 ! 13.08 
C20-C35 n-alkanes 42.16 52.36 45.45 46.66 5.21 11.16 
Naphthalene 7.14 9.26 6.82 7.74 1.33 17.19 
C1-Naphthalenes 27.73 24.15 22.86 24.91 2.52 i 10.13 
C2-Naphthalenes 30.87 34.23 29.07 31.39 2.62 8.35 
Phenanthrene 6.24 7.18 6.2 6.54 0.55 8.43 
C1-Phenanthrenes 10.33 11.52 9.62 I 10.49 0.96 9.18 I 

C2-Phenanthrenes 9.48 10.53 9.03 9.68 0.77 I 7.96 
Hopanes I 5.66 5.86 5.16 5.56 I 0.36 I 6.47 

Table VII- Reproducibility Results for Soxhlet Extraction ofPosidonia Shale 
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3.3 SFE. 

3.3.1 Stepwise SFE. 

3.3.1.1 Regular HCs. 

The SFE temperature effect on the extraction efficiency ofn-alkanes and aromatic HCs from 

Posidonia Shale samples is shown in Figures 19 to 23. Quantitative results for the stepwise 

SFE show that most of these compounds present higher recoveries at both end members of 

the temperature range (50 and 350°C) with lower recoveries at the intermediate temperatures. 

The same trend was observed in similar studies performed with Kupferschiefer Shale 

samples (Chen, 1996). Consistent increments in recoveries were reported for stepwise SFE 

ofNew Albany Shale (Furton, 1994) although it should be noted that in that case only three 

temperatures were studied. 

The results suggest a non-linear temperature dependence of the extraction efficiency due to 

the fact that individual compounds present in this sample are speciated in different ways 

throughout the solid substrate . Therefore, different fractions of the same analyte were 

extracted under different energy (temperature) conditions. Obviously, those analytes (or 

analyte fractions) that are preferentially released at higher temperatures are likely to have 

a stronger interaction with the solid substrate or are released due to thermally induced 

structural changes in the matrix. This analyte-matrix association may be caused by 

"trapping" in porous media, microfractures and within the organic matter, or by chemical 

bonding to the matrix (possibly sulfur bonds). 
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The extraction efficiency increment at 350°C (related to the correspondent 50°C recovery) 

was more pronounced for the PAHs with a 772, 3700 and 1933% for C3-naphthalenes, C2-

phenanthrenes and C3-dibenzothiophenes, respectively, which show the highest increments 

for each homologue serie at 350°C. This increment was only of 60% for short chain n­

alkanes (Cll-C19). 

The corresponding Soxhlet recoveries (versus total HT-SFE) are shown in each Figure for 

comparative purposes. For n-alkanes similar extraction efficiencies are observed through 

both methods, while a dramatic increase in aromatic hydrocarbon recovery was obtained 

using the SFE relative to the traditional Soxhlet extraction method. Similar results have been 

reported by Furton et al (1994) for New Albany Shale. 

The observed differences in the relative extraction efficiencies of aromatic HCs compared 

to that of aliphatics is probably due to the higher polarity (aromaticiy), molecular size and 

geometry (planarity) of the aromatic compounds, all allowing for stronger interactions with 

the macromolecular organic matter. Obviously, the superiority of SFE if compared with 

Soxhlet, is evident for those analytes that are more closely associated with the matrix. 

Considering other practical advantages as saving of time and the use of an inert, pure, non­

toxic and inexpensive fluid like C02, the SFE would be the method of choice even for the 

aliphatic compounds. 

Anthracene was observed in extracts obtained in succesive extractions only above 250 
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degrees (Fig. 23) and this behavior is consistent with those reported for Kupferschiefer and 

New Albany shales. In addition, compounds tentatively identified as methylanthracenes 

(Fig. 24) were observed at the same temperatures. These compounds apparently present a 

very strong association with the solid matrix, and seem to have a different origin than the 

corresponding phenanthrenes. The different behavior between phenanthrene and anthracene 

is likely to be associated to the difference in the geochemical characteristics of their 

precursor molecules. It has been suggested (Radke et al., 1982) that the anthracene molecule 

is less mobile than phenanthrene in the pore space of coals what could explain the fact that 

anthracene could only be recovered using HT -SFE. 

3.3.1.2. Biomarkers 

The total hopane and total sterane HT-SFE distribution patterns are very similar (Figures 25 

and 26), showing a maximum at 100°C and only a slight increase at 350 °C. Total stepwise 

curnmulative SFE recoveries were higher than the corresponding Soxhlet extraction values. 

For both, hopanes and steranes, a small fraction appears to be strongly associated with the 

organic matter which is evident in the recovery increment at 350°C. This effect is also 

obvious from a molecular point of view, as suggested by the change of the trend of the 

(S/S+R) C-31 ap homohopane ratio with the extraction temperature shown in Fig. 27. Here, 

a decrease in thermal maturity is observed at the highest extraction temperature levels. This 

is an unexpected result, since all hopanes in the sample (Posidonia Shale) should have 
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undergone the same thermal history. However, such a maturity inversion has been reported 

for hopanoic acids in ancient sediments (Jaffe and Gardinali, 1990) and has been suggested 

to be due to steric protection (from diagenetic isomerization processes) of "trapped" 

biomarkers. Molecules oflow thermal maturity stages (R isomers) may become "trapped" 

within or bound to the matrix at an early stage of diagenesis, and can only be released by 

high temperature induced structural rearrangements in the kerogen. The chromatograms for 

the hopanes (Figure 28) obtained at the different temperatures of stepwise SFE , clearly show 

the "maturity inversion" effect discussed above for the C31-homohopane (i.e. an increment 

in the relative ratio of 22 R vs. 22 S). Similar results were reported previously by Chen 

(1996). 

Figures 29 and 30 show the mono and triaromatic steroids extracted at different temperature 

levels, as well as the relationship of the (TA/TA+MA) ratio with the extraction temperature. 

In this case the extraction efficiency shows a maximum at 1 00°C but no detectable 

concentrations of these compounds were observed at temperatures higher than 200°C. No 

evidence of strong matrix interactions of tri and monoaromatic steroidal HCs were observed 

because these analytes appear to be totally extracted at relatively low temperatures if 

compared with aliphatic and other aromatic hydrocarbon behavior (P AH). A weak analyte­

matrix interaction could also explain the similar extraction efficiencies obtained for both 

Soxhlet and SFE extraction methods. 

The increment in the (TA/TA+MA) ratio at 150 and 200°C may be due to the fact that the 
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higher aromaticity of the triaromatic steroids increases their possibilities to get trapped into 

the porous macromolecular structure or to have a stronger surface interaction with the matrix 

when compared with the monoaromatics, which are expected to have a weaker association. 

The absence of a "maturity inversion" effect for aromatic steranes migth be due to their 

aromatic nature. These compounds present a higher planarity compared to hopanes which 

may allow the "trapped" molecules to suffer the aromatization process in the pores, while 

the configurational isomerization in the side chain of the "trapped" hopanes is expected to 

be inhibited. 

The behavior of the Prist/Phyt and C 18/Phyt ratios with increasing SFE extraction 

temperatures is shown in Figure 31 for Posidonia and Kupferschiefer shales. For both 

sediments, the Prist/Phyt ratio remains practically constant in the experimental temperature 

range, possibly with a slight increase at 350°C for Kupferschiefer. This increment is not 

likely to be significant, and is probably due to the experimental variability. Therefore, there 

is no evidence of a difference in the interaction of the macromolecular organic structures 

with any of these two isoprenoidal compounds. It is interesting to note that the Prist/Phyt 

ratio values are higher than 1 for Posidonia shale which is evidence of an initial oxygenated 

depositional environment where phytol was preferentially oxydized to form phytanic acid 

forming pristane through decarboxylation reactions. On the other hand, the Prist/Phyt ratios 

for Kupferschiefer shale ranged below 1 (except for 350°C) which could be interpreted as 

the existence of more reducing environment at early depositional stages where phytol was 

prone to be quickly hydrogenated into dihydrophytol which through dehydration and 
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hydrogenation reactions was converted to phytane. 

In contrast, while the C 18/Phyt ratio doesn't show accentuated changes with extraction 

temperatures below 250°C for any of the two shales, a dramatic increment is observed at 

temperatures higher than 200°C for both samples. This is possibly due to the existence of a 

much stronger association with the matrix for normal alkanes such as C 18 than for branched 

compounds like phytane and pristane that are not going to be easily "trapped" into the porous 

system due to their more "bulky" molecular conformation. The relative abundances of 

phytane, pristane and C 18 alkane are shown in the chromatograms corresponding to the 

different temperatures used in the stepwise procedure (Figure32). Generation of C 18 alkane 

due to thermal cracking is unlikely at these "low" temperatures, and in fact, no n-alkenes 

were observed. 

Results for the reproducibility study for the stepwise SFE method are plotted in Figure 33. 

The standard deviation and variation coefficient values are acceptable, considering the great 

number of factors that influence the experimental variability in the SFE system. These 

variations do not affect the observed trends discussed above. 

3.3.2 Direct temperature effect on SFE extraction efficiency. 

3.3.2.1. Regular HCs. 

The results obtained for n-alkanes and aromatics from HT-SFE using a new, non-extracted, 
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sample each time (Figures 34 to 38) show that the PAHs have more accentuated extraction 

efficiency increments with increasing temperature than n-alkanes. This corroborates the 

observations already discussed for the stepwise SFE experiment, that the P AHs have a larger 

fraction that is strongly associated with the matrix. Similarly, anthracene (Figure 38) and 

methylanthracenes were detected only for extractions made at temperatures higher than 

250°C. In general terms, temperature of extraction seems significantly more important for 

P AHs than for aliphatic HCs. 

3.3.2.2. Biomarkers 

For hopanes and steranes there is no apparent effect of the extraction temperature on the 

analyte recovery (Figures 39 and 40). It should be noted that, during these experiments, the 

samples were individually extracted during 1.5 h, collecting the total extracts.This could 

have overshadowed some effects that are evident in the stepwise procedure where the time 

is cummulative and the sample remained exposed to consecutively higher temperatures 

during a much longer period of time, during which the extracts were collected after each 

temperature level. However, for the stepwise experiments it was found, that the bulk of the 

biomarkers was extracted at relatively low temperatures. Therefore, as in the case of the 

alkanes, the above result is not surprising 

Similarly, the pattern for extracted mono and triaromatic steroids (Figure 41) at increasing 

temperatures shows a 1 00°C maximum and remains practically constant from a temperature 
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level of200°C and on which is perfectly consistent with the results reported and discussed 

for the stepwise procedure where no detectable concentrations of these compounds were 

found after 200°C. 

The reproducibility study for 50, 150, 250 and 350°C SFE extractions are shown in Figure 

42. 

3.3 .3 Thermal treatment of non extracted and preextracted sediment samples. 

Figure 43 shows the effect of a previous thermal treatment of the nonextracted sample at two 

temperature levels (200 and 350°C) during 3 and 12 h on the 50°C SFE recovery. To expose 

the Posidonia shale samples to a temperature of200°C doesn't seem to cause any effect on 

the final50°C SFE recoveries for n-alkanes, hopanes, naphthalene, phenanthrene and alkyl 

aromatics in the experimental time range used, while a thermal treatment at 350°C causes 

consistent increments in extraction efficiencies with the time of exposure. This suggest, that 

irreversible thermally induced rearrangements in the matrix took place during the 3 hour 

heating at 350°C. Considering that this effect could be probably observed in shorter periods 

of time, we decided to perform an experiment under different conditions (See Experimental, 

section 2.7) with a pre-extracted sediment to minimize the effect of high analyte 

concentrations in the SFE extracts. The influence of a holding step of 1 h at 350°C on a 

sediment previously extracted at 250°C is shown in Figure 44. The extraction recovery 

increments obtained for n-alkanes, naphthalene, phenanthrene, dibenzothiophene and 
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C2-phenanthrenes 

Increment percentage rate(%) related to 250 °C SFE recoveries 

350 °C SFE 50 °C SFE of thermally treated sediment 

24 4 

11 8 

52 24 

57 
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61 

58 
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72 



alkylated homologues suggest the existence of irreversible thermal effects on the solid 

matrix after only 1 hour at 350°C. 

These results confirm the significant temperature contribution to the HT -SFE recoveries 

obtained from ancient sediments. At the same time, it was observed that the increment 

percentage rate related to 250°C SFE hydrocarbon recoveries using fresh sample each time, 

is higher if considering 350°C SFE extraction efficiencies than for the thermally treated 

(350°C, lh) 5CJ C SFE recoveries (Table VIII) indicating that the combined effect of a 

supercritical fluid passing through the solid during the application of high temperature yields 

the high extraction recoveries reported in HT-SFE studies. However, heating alone does 

induce a noticeable effect on the post-thermal treated SFE recoveries at 50 °C. 

3.3.4 Preliminary evaluation ofmethylphenanthrene geosynthesis during HT-SFE. 

As discussed earlier, large increments in SFE extraction efficiencies for P AHs with 

increasing temperatures were observed. Thus, it is of great interest to explore the possibility 

of methyl phenanthrene geosynthetic processes during HT -SFE by methylation of the parent 

phenanthrene molecule, considering the presence of high concentrations of aliphatic HCs 

as methyl group sources during thermal treatment of kerogen. 

Samples were spiked with deuterated phenanthrene, in order to observe possible 

transmethylation of this compound during HT -SFE at elevated temperatures. The ratio 
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[Deuterated phenanthrene] I [ squalane] was 1.3 715 for the 50°C SFE and 1.3 831 for 3 50°C 

SFE suggesting that no phenanthrene methylation occurred in the Posidonia shale sample 

under these experimental conditions. However, it should be considered that spiked samples 

cannot give absolutely reliable results due to the fact that such analytes are not exposed to 

the same active sites as the equivalent native compounds. The experiment however, shows 

that such transmethylation probably does not occur to a significant degree. The 

transmethylation reactions observed by Smith and co-workers (Smith et al., 1995), 

transmethylations of up to about 14 % of the parent hydrocarbon, but ocurred when the 

samples were subjected to much more extended heating times (up to 66 hours). Therefore, 

it is unlikely that under much shorter exposure times (1 hr) this process would have a 

significant effect on the formation of alkylaromatics. In addition, the parent compounds in 

that study (Smith et al., 1995) were spiked in high amounts into the sample, unlike the 

present study where they were added in amounts similar to the native compounds. 

3.3.5 Rock-Eval Pyrolysis of Posidonia Shale. Comparison with Kupferschiefer Shale. 

The Rock-Eval Pyrolysis data obtained for non-extracted and SFE extracted Posidonia and 

Kupferschiefer samples is shown in Table IX . Figure 45 shows the S1 and ~ behavior 

related to the SFE extraction temperature for both shales. A dramatic decrease in S1 is 

observed from the original non-extracted sample to the 50°C SFE extracted sediment and no 

further changes ocurred up to 250°C and 30<Y C (for Posidonia and Kupferschiefer, 

respectively). At the high temperature end, only a sligth decrease is noted particularly for 
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Posidonia 

5FE TEMP ICI TOC (Wt%1 S1 (mg/g) 52 (mg/gl S3(mg/gl Tmax (C) HI 01 

0 10.27 4.41 83.54 0.52 428 813 5 -- ~---- --·--·--· ·-

9.97 0.97 ----- -- -76.28 0.8 427 765 8 ---------- -- ---- -~------- -~-- -- ------
50 

100 10.18 0.11 17.19 0.63 424 758 6 ·- -- --- - --- ----- ------- - --- ------------·--

150 9.3 0.71 76.34 0.64 422 821 1 
~-----~ --- -------------- ---- --------;-- ---- ---- - -- --- ---------------- ------------ --------

200 9.19 0.73 77.85__ __ ___ __ __:_O_c.6''----~ 1 _______ 4--'=24--'------- 847 1 

250 9.24 0.26 74.14 0.61 426 

300 9.19 0.19 74.63 0.5 426 812 5 ---- ------- ------ --------------

350 9.81 0.16 74.11 0.51 425 756 5 

Kupferschiefer 

SFE TEMP (C) TOC !Wt%1 S1 (mgfg) I S2 (mg/gl 53 (mg/g) Tmax ICI HI 01 

0 3.09 0.37 15.29 1.16 411 495 38 
--~------ --- --------- -- ------------ ------- -------

1.15 418 464 36 ----------~1!-~--r---E!_ _ ____ o.11 __ + _____ 1 __ 4 __ ._8 __ a ____ +------------------

1-----10_0 ______ , _____ .2=·=86=---+--- 0.16 --- 14.86 1.21 419 520 42 

150 3.14 0.18 
--------------r---------------------- --- 14.'-! ------ -- 1.31 _'!15 ____ -- 411_ __ _ 42 

418 524 
--~--- ~- -- -- ----- ------;--------------+------~---200 3.06 0.18 

~-------~~-r--------- --- -- ---------------+---------~-
16.02 1.37 45 

---~~~_(! _________ 2~-~~---+-----0._1_8 ____ !--~---1-4 __ ._9_2 __ +- _!·~~ --- ---~!!i_ ___ _ 511 44 
--------~ ---~~--

13.47 300 3.19 
~-~~---- r--~---~--

0.11 1.24 418 422 39 

350 3.22 0.15 11.01 0.73 423 342 23 

Table IX- Rock-Eval Pyrolysis Data for Posidonia and Kupferschiefer Shale 

Extracted Sediments (Fresh sample each time SFE). 
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Posidonia Shale. This may indicate that some "trapped" HCs are extracted at these 

temperatures, which are commonly part of the S1 measurement. Similarly, the values of S2 

remained relatively constant for all extraction temperatures, except for the two highest 

temperatures for the Kupferschiefer Shale. Again, some very strongly matrix associated 

HCs could have been removed by the HT-SFE. In this case, compounds which normally 

form part of the S2 measurement, but are not pyrolysis derived. 

These data confirm the stepwise SFE results suggesting that most of the extractable HCs can 

be recovered under mild SFE conditions (relatively low temperature) and indicates that the 

HCs extracted at high temperatures are not dominated by pyrolysis products. It is important 

to notice that no alkenes produced by pyrolysis were identified neither for Posidonia nor for 

Kupferschiefer SFE extracts. The observed reduction for S1 and S 2 values at higher 

temperatures migth be caused by the extraction of significant amounts of "trapped" HCs 

during the HT-SFE procedure. Such release (particularly in the case of S2 for Kupferschiefer 

shale) may be caused by the thermally induced structural changes and/or rearrangements of 

the macromolecular organic matter possibly via sulfur bond cleavage. 

To further investigate the thermal effect during HT-SFE on the sample matrix, the HI and 

OI values obtained from the original Posidonia and Kupferschiefer Shales were plotted in 

a Van Krevelen analogue diagram presented in Figure 46. The HI of 813 and the OI of 5 for 

Posidonia shows that the organic matter of this shale is composed of type I kerogen, known 

to be derived from lacustrine depositional environments, while the HI of 495 and the OI of 
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38 obtained for Kupferschiefer Shale coincides with an immature type II kerogen (marine 

origin). The SFE procedure does not appear to affect the Rock-Eval Pyrolysis potential in 

determining the kerogen type of a given source rock because no significant changes were 

observed for HI and OI in sediments extracted at different SFE temperatures (Table VIII, see 

also Figure 46). While no difference was observed for the pre-extracted Posidonia samples 

for the relative position on the Van Krevelen diagram, some more noticeable difference was 

observed for the two highest temperatures for the Kupferschiefer sample. Both the 300 and 

350 °C extracted samples showed "apparent" thermal maturity increments, although only 

slight ones. This could be caused by the fact that this shale contains significantly less organic 

matter compared to Posidonia (% TOC of approximately 3 vs. 1 0), and the release of 

"trapped" HCs could have more severe impact on it's matrix bulk characteristics. Such an 

effect however seems only minor during HT-SFE and will be further addressed below (See 

Py-GC/MS data). 

3.3.6 Pyrolysis-GC/MS. 

Figures 47 and 48 show some of the TICs obtained for non-extracted and SFE extracted 

Posidonia Shale samples for the sequential Py-GC/MS procedure at 358°C and 6H9 C 

respectively. In general, the 358°C step distributions show higher hydrocarbon abundances 

for the original shale which is obviously due to the previous extraction of these analytes 

during the SFE. This effect is particularly evident in the lower abundance of low molecular 

weight compounds, and n-alkanes which have been preferentially recovered during the SFE. 
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The Py-GC/MS trace of the 350 °C pre-extracted sample consists mainly of cyclic and 

aromatic HCs, in agreement with the stepwise HT-SFE data. No evidence of pyrolysis of the 

matrix was observed at this temperature, since no n-alkenes were apparent in the 

chromatograms. 

No noticeable differences between the 61 0°C TICs were observed for the original shale and 

the 50°C and 3500C SFE extracted samples, except a slight lower abundance for the low 

molecular weight HCs in the SFE extracted shales (Figure 48). The double peak pattern 

(indicating alkene presence) is characteristic of pyrolyzed matrices. The great similarity 

between the 610°C Py-GC/MS data for both original shale and 35b C HT-SFE is an 

indication that HT -SFE does not cause significant changes in the composition of the matrix 

of the sample. 

Some ion chromatograms for phenanthrene, anthracene (m/z = 178) and methylphenanthrene 

I anthracenes (m/z = 192) are shown in Figures 49 and 50 for 358°C and 610°C Py-GC/MS 

steps correspondent to the original shale and to SFE extracted sediments. 

For the original and the 50°C SFE extracted shale sample only phenanthrene and 

methylphenanthrene peaks were detected at 358°C Py-GC/MS, while anthracene and 

methylanthracenes were additionally observed for the 350°C SFE extracted shale as a 

consequence of the temperature induced rearrangements in the matrix during the SFE 

extraction. This apparently irreversible structural change in the matrix allowed for additional 
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phenanthrene/anthracene to be thermally desorbed from the sample. 

The 610°C Py-GC/MS experiment yielded both phenanthrene and anthracene and 

methylphenanthrenes/methylanthracenes for all samples including the original sample. 

Clearly, this temperature is elevated enough to induce structural changes of the matrix and 

release (and possibly produce via thermal synthesis) these compounds. Interestingly, no 

evidence of HT -SFE induced compositional changes in the matrix were apparent. 

3.3.7 Microscopy Study. 

In order to assess possible structural (physical) effects due to HT -SFE, Electron Scanning 

Microscope photographs (1 000 X) were obtained for the original Posidonia Shale and for the 

SFE extracted sediments at 150 °C and 350°C Figure 51. No differences were observed at 

this magnification level neither between the original shale and the SFE extracted ones nor 

between sediments extracted at different temperatures. It is likely that higher magnification 

is required to adequately asses such changes. 
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Fig 51. Electron Scanning Microscope Photographs ( 1000 X) Obtained for the Original 
Posidonia Shale and For the sediments extracted at 150 oc and 350 oc in the SFE. 
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4. CONCLUSIONS 

(A)- Individual analytes are speciated in different ways throughout the organic matrix of 

ancient sediments. Those fractions that are preferentially extracted under higher energy 

conditions (higher temperatures) have a stronger interaction with the organic system due to 

"trapping" processes in the porous media (or micro fractures) or by chemical bonding to the 

matrix (possibly via sulfur bonds). 

(B)- The higher SFE extraction efficiencies obtained at the highest temperature levels for 

aromatic HCs compared to that of aliphatics is probably due to the higher polarity 

(aromaticity), molecular size and geometry (planarity) of the aromatic compounds, all 

allowing for closer associations with the macromolecular organic matter. This could also 

explain the higher recoveries obtained for P AHs during the SFE compared to those observed 

for the Soxhlet extraction method. Branched compounds, like acyclic isoprenoidal alkanes, 

are less likely to get "trapped" into the matrix than straight chain analytes. 

(C)- Anthracene and compounds identified as methylanthracenes are detectable in SFE 

extracts only for extraction temperatures of 250°C and above indicating a very strong 

association with the organic macromolecular structure. They are released only after thermal 

rearrangement of the matrix. 

(D)- The release of "trapped" HCs during HT-SFE was confirmed by the inversion of 
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molecular thermal maturity parameters like the (S/S+R) ratio for C 31 -homohopane for the 

highest temperatures. The relatively more "immature" signal at 350°C HT-SFE clearly 

demonstrates that biomarkers such as hopanes can be sterically hindered from isomeric 

transformations during diagenesis/catagenesis while in the "trapped" form. 

(E)- Thermally induced matrix rearrangements in ancient sediments during HT -SFE appear 

to have an irreversible nature. However, HT-SFE does not significantly affect the chemical 

composition of the matrix. 

(F)- Rock-Eval Pyrolysis and Pyrolysis-GC/MS data suggest that most of the extractable 

HCs can be recovered at relatively low temperatures and indicate that the HCs extracted at 

high temperatures are not dominated by pyrolysis products but probably by "trapped" 

compounds that were released during the HT-SFE procedure. In addition, the data strongly 

support the fact that no major chemical changes in the matrix occurs during HT-SFE. 

(G)- No evidence for alkylaromatic geosynthesis from the parent molecules during HT-SFE 

was obtained. The high abundance of these compounds in the HT-SFE are due to their 

speciation in the sediments. 

(H)- In general terms, HT-SFE is suggested as an excellent tool for speciation studies ofHCs 

in ancient sediments. It provides reliable and reproducible data useful in organic geochemical 

studies. 
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5. RECOMMENDATIONS 

Based on the analysis of the results obtained during this study we would recommend: 

. To study the speciation of organic compounds in ancient sediments by the addition of 

modifiers during the SFE procedure . 

. To correlate the environmental fate of naturally occurring compounds in ancient sediments 

to that of the same analytes with an anthropogenic origin by carrying out speciation studies 

in polluted sediments using HT -SFE . 

. To evaluate the possibility of alkyl aromatic geosynthesis during the HT -SFE of sediments 

previously spiked with labeled parent molecules and kept during long time periods under 

different temperature conditions. 
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