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ABSTRACT OF THE THESIS 

OPTIMAL IMAGE DECONVOLUTION BY RANGE AND NOISE MOMENT

CONSTRAINTS

by

Angelica Maria Diaz 

Florida International University, 2005 

Miami, Florida 

Professor Frank M. Candocia, Major Professor 

Image deconvolution, also known as image restoration, is concerned with the 

estimation of an uncorrupted image from a noisy, degraded one. The degradation o f this 

image may be caused by defects of optical lenses, nonlinearity o f the electro-optical 

sensor, relative motion between an object and camera, wrong focus, etc. By assuming a 

degradation model, one can formulate and develop a restoration algorithm. In this thesis, 

the developed algorithms are iterative deconvolution methods based on noise moment 

and pixel range constraints. The moments were used to ensure that noise associated with 

the deconvolution solution satisfies predetermined statistics. The pixel range constraints 

were also used to ensure the solution is within predetermined pixel value bounds. This 

addresses the critical issue of noise amplification at those frequencies where the point- 

spread function (the blurring function) contains frequency nulls. The solution’s 

dependence on the number of moments is examined and the performance of the 

deconvolution approach is compared with existing and well established deconvolution 

methods such as Wiener filtering and inverse filtering.
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C hapter 1 

Introduction

Advances in digital image restoration first came about in the 1950s and early 

1960s by scientists involved in the space programs of the United States and the former 

Soviet Union [Kats91]. Many of the space programs were interested in capturing images 

of the Earth and the solar system. However, the images captured during the planetary 

missions experienced many photogenic degradations. The loss of information due to 

image degradation was devastating. The necessity to retrieve the information lost drove 

the engineering community to work on algorithms that would retrieve meaningful 

information from the degraded images.

Digital image restoration not only plays an important role in astronomical 

imaging but also in the medical field, where restoration has been used for filtering of 

Poisson distributed film-grain noise in chest X-rays, mammograms, etc. [Kats91]. It has 

been also used by law enforcement agencies to restore blurry photographs of license 

plates and crime scenes which may provide the only link to solving a crime. Digital 

image restoration is by no means limited to the previously listed examples as there are a 

wide variety of applications that can benefit from such processing. In particular any 

image obtained from a process or sensor that is degraded due to defects in optical lenses, 

nonlinearity o f sensors, relative motion between object and camera, wrong focus, etc. is a 

good candidate for restoration.

In the field o f digital image restoration, methods are developed to recover an 

original image from the degraded observation. These methods perform the restoration
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task by assuming models, not only for the cause of the degradation and/or noise, but also 

for the original image. They also make use of regularization theory since the problem 

related to image restoration is an ill-posed one. Regularization theory involves the use of 

constraints related to the type of signal being dealt with and the manner in which the 

constraints affect the effectiveness and the efficiency of the deconvolution algorithm 

[Star02]. In this thesis, we examine how image deconvolution can be improved, in 

particular, as it relates to the “shaping” of noise in the solution.

Chapter 2 provides a review of previous work done in the field of image 

restoration so as to better identify where the contributions of this thesis lie.

Chapter 3 provides a description to standard approaches in deconvolution. It 

details the convolution and the degradation model used in this work. It also provides a 

mathematical description of the Wiener and inverse filtering approaches. These 

approaches will be used as a basis for comparison with the algorithm developed in this 

thesis.

Chapter 4 provides the mathematical description of the deconvolution approaches 

we have developed. These, algorithms are iterative methods based on noise moment and 

pixel range constraints. They also address issues common to image restoration such as 

establishing an objective stopping criteria for iterative deconvolution methods.

Chapter 5 contains experimental results obtained from various image restoration 

algorithms. It provides a quantitative and qualitative analysis o f the algorithms developed 

in this thesis relative to the standard approaches mentioned in chapter 3.

2



Finally, chapter 6 concludes with a summary of what was accomplished. We also 

take the opportunity to address future research issues in image restoration and 

deconvolution.

3



C hapter 2

Existing Classes of Image Deconvolution Techniques

The majority o f the techniques used in image restoration try to model the 

degradation and/or noise and then apply an inverse procedure to obtain an approximation 

o f the original image. Since image restoration is an ill-posed problem most of these 

techniques use regularization theory to yield meaningful answers and approximations to 

the given ill-posed problem. This regularization theory involves the use of constraints 

related to the type of signal we are dealing with and the way we use these constraints 

affects the effectiveness and the efficiency of the deconvolution algorithm [Star02].

Examples of commonly used constraints include nonnegativity, which means that 

all pixel values in the estimate resulting from the deconvolution process must be positive. 

Other types of constraints include boundary constraints and deterministic constraints. 

These help to reduce the set of feasible solutions [AxelOO]. In addition, constraints can 

also be placed on the noise that is an intrinsic part of all measured images. The presence 

of noise is one critical factor that makes the deconvolution process particularly difficult. 

In this chapter we will describe some of the most used methods for performing image 

deconvolution.

2.1 Inverse Filtering

An inverse filter is typically a linear filter whose point spread function (PSF) is 

the inverse o f the blurring function. The implementation of the linear filter in the spatial 

domain can be difficult. In contrast, the spectral counterpart is usually easier. The 

advantage of the inverse filtering technique is that it requires only the blur PSF as a priori
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knowledge. This technique is computationally very quick and allows for the perfect 

restoration of an image if (1) the PSF has no frequency nulls, i.e., frequency components 

at zero spectral magnitude and (2) there is no noise in the image. When noise is present, 

its effects are necessarily amplified by this technique. An image’s spatial .frequencies 

eliminated by the filter’s nulls cannot be recovered in this technique. In fact, no inverse 

filter will exist for performing this filtering although an approximation to it can be 

employed.

2.2 Least-squares Filtering

To overcome the noise sensitivity of the inverse filter, a number of restoration 

filters have been developed that are collectively called least-squares filters. The two most 

commonly used filters are the Wiener filter and the constrained least-squares filter.

The Wiener filter is a linear, spatially invariant filter in which the point spread 

function is chosen such that it minimizes the mean-squared error (MSE) between the 

ideal and restored images. The solution to this minimization problem is known as the 

Wiener filter. It is typically defined in the spectral domain. In the typical situation where 

an image is noisy, this approach trades-off the restoration by inverse filtering and 

suppression of noise for those frequencies where the PSF is close to or equal to zero. In 

chapter 3, we will describe in more detail this particular approach [LageOO].

The constrained least-squares filter is another approach that also overcomes the 

problem that the inverse filter has, i.e. excessive noise amplification, by using the 

deterministic prior information about the original image as a regularization parameter 

[LageOO].

5



2.3 Iterative Filters

Inverse and least-squares filters usually result from the closed form solution of a 

formulated problem. Iterative filtering, however, is an approach where small steps are 

taken towards the restored image and this is usually done in the spatial domain. This is in 

contrast to the “one-step”, closed form solution obtained in the inverse and Wiener filters. 

The effect is to approach the solution and essentially stop before noise amplification 

“takes over”, i.e. the iterations can be terminated whenever an acceptable restoration 

result is achieved. Any iteration past this point will result in increasingly noisy and 

visually degraded images. To more intelligently and mathematically produce a stopping 

criteria, constraints on the restored image or some other quantity must be introduced to 

the iterative process. These filters effectively seek to trade-off accuracy in restoration 

with noise amplification. This is further addressed in the next two sections. But before 

doing this, we note that all iterative deconvolution begins with an initial guess at the 

restored image. This initial estimate starts the iteration process. Due to typical lack of a 

priori knowledge, it is very common to use the given degraded image as the initial guess. 

In these iterative schemes, the correction per iteration is based on the residual between 

the observed image and the blurred image estimate. Iterative methods will be terminated 

after a finite number o f iterations to obtain an approximation of the true image.

2.3.1 Iterative Constrained Deconvolution

Because the performance of iterative type approaches is compromised by their 

sensitivity to noise in the signal or to error in the estimate of the point spread function, 

adding constraints is necessary. The typical constraints used include clamping the values

6



of the restored image so that they lie within a known reasonable dynamic range or 

limiting the amount of adjustment that can occur at any pixel. These limits may be 

imposed by setting thresholds or by introducing nonlinear range-limiting functions. Other 

useful constraints include those that restrict the possible noise space of the final solution. 

If these constraints are not present, typical amplification of noise results. Lack of a priori 

noise statistics might preclude the reasonable use of this type o f constraint. This is the 

reason why many approaches look for a linear alternative to performing the restoration.

An approach that can be included in this category is the one proposed by 

[HareOO] in which the previous image estimate is pre-filtered using a stabilizing function 

that is updated based on current error and noise estimates. This approach tries to diminish 

the noise by the use of a second regularizing operator resulting in a hybrid iteration 

technique.

23.2. CLEAN

The CLEAN method is a nonlinear iterative algorithm that assumes that the image 

is composed of point sources. In each iteration, this algorithm finds the strength and 

location o f the brightest point of the image. It then subtracts the PSF degraded image 

(also called the dirty beam) multiplied by the peak strength and gain factor at this point, 

from the image (called the dirty map) at this location. This resulting map is then used in a 

repeated process until a prespecified limit is reached. After each iteration, what is left are 

the residuals, which are added to the convolution of a clean beam (or the so called ideal 

PSF) and point sources to yield the restored image or clean map. This algorithm is largely

7



used in radio astronomy but because of its computational complexity and basis of point 

sources, is not used in many other applications [Star02].

2.4 Wavelet-Based Deconvolution

The regularization methods of this section make use o f the wavelet transform. 

This transformation’s use has increased because of its ability to represent sharp 

discontinuities. Some of these related algorithms propose an inverse estimation procedure 

which combines Fourier analysis with wavelet expansion [Neel99], The proposed 

algorithms comprise Fourier-domain system inversion (a regularized inverse filter which 

allows the algorithm to work even when the system is non-invertible) followed by 

wavelet-domain noise suppression. This is done by using a mean square error metric to 

strike an optimal balance between Fourier-domain regularization (matched to the system) 

and wavelet-domain regularization (matched to the signal/image).

Another algorithm, introduced by [Figu03] proposed an expectation-maximization 

(EM) approach for image restoration based on a penalized likelihood which is formulated 

in the wavelet domain. In this algorithm, regularization is achieved by promoting a 

reconstruction with relative low-complexity that is expressed in terms of the wavelet 

coefficients and takes advantage of the sparsity capabilities of the wavelet representation. 

The problem, in general, with methods based on the wavelet representation is that most of 

them require very demanding optimization methods, since the convolution operator is 

generally quite difficult to represent in the wavelet domain. This naturally suggests the 

possibility of combining Fourier-based deconvolution and wavelet-based denoising. The 

method in [Jalo02] proposes a deconvolution algorithm based on the EM procedure.



Here, the deconvolution problem is addressed using only a denoising technique. This 

approach consists of alternating a Landweber step and a denoising step. The denoising 

step is performed using a complex wavelet transform, ensuring both translational and 

rotational invariance properties and a spatially adaptive prior model.

9



C hapter 3

Standard  Deconvolution Approaches

This chapter will present and describe the general image degradation model and 

subsequently develop the convolutional model that will be used in this thesis. In addition, 

the two most standard deconvolution approaches o f a direct inverse filtering and Wiener 

filtering are presented and explained as they will serve as the comparative basis for the 

results presented in chapter 5.

3.1 Convolution Models

The purpose of this section is to establish the convolution model that will be used 

in this thesis. It is a fmite-extent model that addresses the limited number of data that is 

ever only available in practice.

We begin by noting that, in general, a continuous degraded image can be 

represented by the following equation

A . < = ) = £ £  A<(*,>'2> r„ r I)x(r,>z-i y r 1rfr! +r}{tt, t2) (3.1)

where y(tt,t2) is the degraded image,x is the original image, hcis a continuous and

spatially varying transformation, and describes an additive noise random process.

By assuming all image objects are in focus and that higher order lens effects are 

negligible, the degradation model above conforms to one of a spatially invariant filtering 

of the original imaged signal [Kats84]. In this case, the general degradation model 

simplifies to the two-dimensional convolution of the original image x and the filter 

function hc, plus the noise?;. This is expressed as follows:

10



[ [ K{h ^2 ’^2 )̂dzxdT2 + t]{tx, t2) (3.2)
J ~oo J  — oo

3.1.1 Infinite Extent Discrete Convolution

In typical fashion, the discretized convolution model is obtained by sampling the 

continuous relationship just described. Specifically, with uniform sampling on the input, 

the model of equation (3.2) can be reduced to a discrete approximation of the form in 

equation (3.3) to

00 oo

y{tl,t1)=  lim £  + ^ , , 0
x ~* k, =-oo k 7 = —oo

„  (3-3)

A, =-00 k2 =-00

where Tx is the sample spacing along each spatial axis used in approximating the 

convolution integral. If we also sample the “output” (or degraded image y) along each 

spatial axis with spacing T , we obtain

y{n?y, n j y) *  j r  t . f y ' k T , - K T x,n2Ty - k j M W ’k j J  + ^ T ^ n ^ )  (3.4)
£,=-00 k 2 = —oo

Since it is common to assume that the “input” and “output” signals have the same 

sampling period, we will let T -  Tx - T  . Note that if  Tx <Ty , we would be dealing with

the more difficult problem of superresolution as the input samples would need to be 

determined at a finer sample spacing that those in the observed image y. So, combining 

hc and T  into an equivalent filter, we have

y{ntT,n2T)=  £  £ h ( ( n , - k t)T,(n2 - k 2)r)x(k,T,k2T) + T]{n,T,nj)  (3.5)
kl=-<xskl=sD

where h = Txhc. Eqn. (3.5) will equivalently be expressed as the sequence relation

11



(3.6)

= h[nl,n1}*x[nl,n1}+r]\nl,nt }

where * denotes convolution. In our notation, we will use square brackets [ ] to denote a 

sequence o f samples and rounded brackets ( )  to denote a continuous function.

3.1,2 Finite Extent Discrete Convolution

When performing deconvolution, only a finite amount of observed, sampled data 

will be available. Therefore, we need to develop a fmite-extent convolution model from 

the discretized one in eqn. (3.6) that is defined over a limited number of samples, i.e.

x N 2 number of rows and columns of the observed image y. The result of this extent 

limiting is given by

for n} = 0 ,... , TV, -1  and n2 = 0 ,. . . , 7V2 -1  and where

In eqn. (3.8), represents the number of samples in the region of support of the discrete 

point spread function h along dimension i where i = 1,2. That is, h is an M, x M 2 sized 

finite impulse response filter. Without loss of generality, we will assume M i is an odd 

number for this presentation.

Notice that /z[mj,m2] is defined for m, = and m2 = - K 2, . . . ,K2 and is.

considered zero outside this support region. In this way, is defined over samples

(3.7)
1̂ —Wj —Afj &2 — 2̂
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kx = ~ K l, . . . ,Nl + K t ~ 1 and k2 = - K 2, . . . ,N2 + K 2 - 1 .  Figure 3 4  serves to graphically 

illustrate the two dimensional convolution between the finite extent x and h that results in 

the y  o f eqn. (3.7). Note that x has support size of (Nx + M x -  l)x (N2 + M 2 - 1) samples, 

M x andM 2 are the support size (number of rows and columns) of h, and y  has support 

size Nl x N 2. This definition is one where all observed points in y  result from the point 

spread function’s weighted sum on the original samples of x. In this finite extent model, 

we say y  results from the ‘valid5 portion of the convolution between defined samples of x 

and h.

It is very convenient to express the finite extent convolution of eqn. (3.7) in

matrix/vector form. This is particularly useful and compact when convolution-related

derivatives must be found. This equivalent form of eqn. (3.7) is

y = Hx  + r} (3.9)

where H is a N{N 2 x (N{ + M l - l )  (N2 + M 2 - 1) matrix known as a convolution matrix 

and y, x andtj are vectors containing the samples of their respective signals. To explain 

how to establish this matrix, we begin with a one dimensional version of eqn. (3.7). That 

is, consider the relation

n +K

y[n]= ^ h [ n- k ] x [ k ]  (3.10)
k = n - K

where n = 0 ,..., N  - 1 and k = - K , ..., N  + K  - 1. From this, we see y  is a sequence of N  

samples n = 0 , . . . , N - I ,  his  a sequence of M  samples and x is a sequence of N  + M - I  

samples. In matrix/vector form, we write

13
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Figure 3-1. G raphical Illustration of the two dimensional convolution between the 
finite extent x  (which is represented by the big square) and “sliding window” h 
(which Is represented by the grayed-in region). Notice tha t our finite extent 
convolution of “valid” pixels results In the smaller and bold square region tha t Is y. 
In this example, we have used M\  = Mi  = 3, N\  = Ni  = 6 and this results in an x  size 
of Ni +Mt -1  = N2 +M2-1 = 8.
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N samples

= H - x

N+M ~l samples

(3.11)

such that

h(n-k)  -  K  < n - k  < K
otherwise

k = - K , . . . , N + K - 1

(3.12)
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Note that the notation in eqn. (3.12) is a compact form of expressing the elements of a 

matrix. That is, z  = \z(n, «9)L=o.. /v.-i would indicate that Z is an N\ x N2 matrix where
( V * ’ n2=0,...,N2-l

element (n{,n2) in this matrix comes from value z(«15«2). In eqn. (3.12), we see that, 

using eqn. (3.8), H is an N x ( N  + M  - l )  matrix whose (n,k) element comes from the 

condition in the curly braces {}. Also note that the first column index into matrix H is 

k = - K  for the purpose of populating this matrix but that typically arrays are indexed 

either starting from 0 or 1 when programming. This is not a problem as array indexing 

and the coordinate origin which these indices represent are left to the users’ discretion. 

Now, we assume that A is a separable filter such that

A[m1?m2] = hl[m1]h2[m2]T (3.13)

Then, in the two dimensional case, notice that

W] -f ATj
^[”l.«2]= E  2Z , «2 -  *2 ] [̂*l>*2]

= £  2 ^ 1  ["i ~ k\]hi[n2 - k2]X[k\’k2] (3-14)

/Zj f  2̂+̂ 2 ^
= E  h l [ n x ~ k x \  E  > *2 ] *2 [«2 -  *2 ]

k[=nl - K l j

The parenthesized term in the last line of eqn. (3.14) is equivalent to the 1-D convolution 

of eqn. (3.10) when working along the k2 dimension. So eqn. (3.14) just performs a 1-D

convolution in the k2 dimension and then uses this result to perform another 1-D

convolution along the k\ dimension. In matrix/vector form, eqn. (3.14) can be expressed 

as

Y = H ,(X H 2) (3.15)
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where

H, =
hx («! - k x) - K x<nx- k x< K x

(3.16)
0 otherwise

and

(3.17)

Notice that H 2 is equal to the transpose of Hj and that the parenthesized term in eqn. 

(3.15) represents the parenthesized one in eqn. (3.14). As such, Hj has the same form as 

eqn. (3.12). By applying the vectorizing operator to both sides of eqn. (3.15), we have

(3.18) has been written in the same equation form of eqn. (3.11). However, they are 

intrinsically different as the convolution matrix H in the 2D case is equal to

3.2 Deconvolution by Filtering

Now that we have established our convolution model, we will explain how 

deconvolution is performed by filtering. These are the standard approaches to 

deconvolution and are typically the easiest to implement (hence their popularity). 

However, this ease of implementation usually limits the extent to which these approaches

y = vec(Y)
= vec(H,XHj)

= (h * <g>H2)vec(x) 

= H x

(3.18)

where vec( ) is the operator that stacks the columns of a matrix one on top of the other to

yield a vector and where “ ® ” is the matrix kronecker product [Nand03]. Notice that eqn.

h = h / ® h (3.19)
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can be practically used. Nonetheless, their inherent usefulness and point-of-comparison

applicability warrants their inclusion. Also, we can gain insights into the deconvolution

problem by examining these approaches. We will examine the inverse filter approach as 

well as the Wiener filter here.

3.2.1 The Inverse Filter

In this section, we will find a solution to x in our finite extent convolution model 

of eqn. (3.11), by determining the so-called inverse filter. We will explain in more detail 

how this inverse filter is found in time and also in the frequency domain. Recall that in 

the previous section 3.1.2, we defined the finite extent convolution of eqn. (3.7) in 

matrix/vector form as

y = H x  (3.20)

Because H in eqn. (3.20) is NlN 2 x (Nt + M l - l )  (N2 + M 2 - l )  in size, it is necessarily a 

rank-deficient matrix. This means there are less rows than columns in eqn. (3.20) which 

translates to having less equations than unknowns (in x). There is clearly no unique 

solution for such a case. This is one of the main difficulties in deconvolution. 

Nonetheless, one of the useful unique solutions to eqn. (3.20) is the minimum-norm one. 

It is the least squares solution of minimum norm. Thus, the least squares minimum norm 

solution to eqn. (3.20), i.e. xb, is

xt, = H r(HHr)~'y (3.21)

This fact can be easily shown and is given in Appendix A. Notice that multiplying both 

sides o f eqn. (3.21) by H results in
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H x„ = H H r (HHr ) 'y  = y (3.22)

Since H H r (HHr ) ' =1 (assuming H H r is invertible), this implies that the inverse filter 

must be

H,,v = H r (HHr )"’ (3.23)

in matrix form. Generally, in all practical FIR filtering applications, H is full row rank 

thus the inverse of H H r exists. This does not mean that x ls is the perfectly recovered 

image that we seek. It is only the minimum norm (energy) solution that satisfies the 

convolution relation of eqn. (3.20). In fact, the quality of the solution will depend on the 

characteristics of the filter h. This will be addressed a little later. For now, we are

interested in determining the inverse FIR filter hinv to which H inv is the matrix

counterpart. In this way, we can perform a deconvolution by convolving y  with the 

inverse filter, i.e. x = hinv * y  = hinv*h*x  = x if  indeed hinv is the true inverse filter to h

such that hinv *h = 8  with 8  representing the unit delta sequence.

In determining the inverse filter, we repeat that H x  in eqn. (3.20) is the matrix 

counterpart to h*x  in the finite extent “valid” convolution model thus H is viewed as the 

“valid” convolution matrix that performs the operation of eqn. (3.14). What then is H r ? 

As it turns out, H r is the matrix equivalent of a “full” linear correlation filtering. It is 

essentially the same as the “valid” convolution operation except the filter is not “flipped” 

and the output resulting from this filtering results in the full linear correlation. 

Specifically, for a filter h of support size M  with m = - K , . . . , K  as in eqn. (3.10), the full
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linear correlation of h with a length N  signal x defined for k = 0 , . . N - I  would yield an 

output y  of length N + M  -1  as

m in(A M ,n+A r)

= ^  x[fc j/z[£ - n  + K]  (3.24)
k= vcax(o ,n~ K )

for n ~ - K , . . . , N  + K - \ .  As an example in 1-D, if  N  = 4 such that x = [x0,x1,x2,x3] and 

K  = 1 such that h = [h0,hx,h2\, then y = [x0h2, xQhx + xxh2, x0h0 + xxhx + x 2h2, xxhQ + x2hx 

+ x 3h2, x 2h0 + x 3hx, x 3h0 ] is the full linear correlation. The significance of this is

that H multiplied with any vector yields a “valid” or truncated convolution and H r 

multiplied with any vector yields a full linear correlation. With this in mind, H H r = R  is 

a truncated correlation matrix. To see this, consider the autocorrelation sequence of a 3- 

tap filter h = [hQ, hx, h2] defined for n = I such that 

r = h-kh
bo">bx,h2]★[/?(),hx,h2] ^  ^

HqH2, h0hx + hxh0, Hq + hx + h2 ,h^hx + hxh2,h^h2 J
,r [” 2], r[—1], r[0], r[l], r[2]] 

where ‘ *  ’ is being used to denote correlation and where eqn. (3.24) was used in 

obtaining r by

m in( i£ ,n + ,g )

r[n\ = 2^h[k]h[k-n + K ] (3.26)
k = m a x (-K  ,n —K )

for n -  - 2 K , . . . , 2 K .

Now, consider the matrix equivalent of h'kh, i.e. H H r , so that
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H H r =
h2 hx k  o o
0 h2 hx h0 0
0 0 hn k  hn

(valid convolutio n )

h, 0 0
h, h, 0

K  K K
0 ha h,
0 0 h.

n
(full correlation)

'(a0*+ * * + * ,’) ( h , K + h A )  i K K )
(* ,* .+ * ,* ,) ( h ; + h ; + h i )  { h A + l > A )  (3-27)

(h2ha) ( h A + K K )  ( K + h ; + h i \
' r[0] r[l] r[2] 
r[-l] r[0] r[l]
r[-2] r [-l] r[ 0]

Having this background, we examine the H H r case for infinitely long convolutions. 

This will help in explaining how the inverse filter is derived. We first consider this H H r 

in eqn. (3.28)

HHr =

r 1

1
1

| h[-K]

h{-K]  • • h[ 0 ]  ■ ■ h[K] j h[0)

h[~~K\ • ■ M  •
• h[K] - |  h[K]

! o

h[-K] • ■ h[ 0 ]  • • h[K] ! o
(

- -
i
J 0
I
I

0
h[~K\

m
h[K]

0

0
0

h [ - K ]

M0]

0 0 h[K]
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~r[-2K] ■■■ r{-K] ■■■ r[0] • ■ r[K] • ■ A2K]

r[-2K] - r[-K] ■■ K2] • • r[K] -  r[2K]

-
r[~2K] • r[-K] • r[-0] -  r[K] • • r[2iq

= R

(3.28)

Since these matrices are infinitely long and wide, we have underlined elements in the 

middle rows and columns of these matrices to indicate the origin of our coordinate 

system. We have also shown, using dashed lines in the matrices, how by selecting a finite 

number of rows about the origin o f H (which corresponds to a finite number of columns 

about its origin in H r ), how the H H r operation would result in a finite sized square and 

truncated auto correlation matrix R. This is depicted as the square dashed box in matrix R  

of eqn. (3.28). Because of this, we define R  = H H r . The importance of this is that, since 

we have argued that the matrix version of the inverse filter is

H /w = H r ( H H r ) 1 = H r R _1, it will be the manner in which we trancate H (and hence 

R) that affects the accuracy of the inverse filter.

Before proceeding, notice that in the equivalent operation of the

filter h appears in every row of H. Likewise, we would have an equivalence of 

R x  ricx since the autocorrelation sequence r  appears shifted in every row of R. By

noting this and that R 1 must be a symmetric matrix since R  is itself symmetric, then all 

rows in R ”1 must also be shifted versions of the sequence r~l . That, along with the fact
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that r * r = S  is a property that must hold for all sequence with inverses, we must then 

have that R r '1 = 8 . The system of equations is

R r ”1 = S

~r[~2K] ••• r[~K] ••• ^[0] • • r[K] •

1
 ̂

1
'S 

• 
5

! I

0

r[-2K] - r[~K] • ■ r[K] }-.
-----------— I r[2K] ^ [ 0 ]  

r ‘[1]
— 1

0

- r[-2K] • ■ r[-K]  ■• r[-0] )'■I r[K] • ■ r [ 2Kl
_

(3.29)

Since we can’t deal with an infinitely long system of equations, we truncate the system in 

eqn. (3,29) about the origin to a finite number of equations in as many unknowns, 

yielding R  Tr^1 = ST where the subscript T denotes truncated versions of these matrices

and vectors. For example, is h was a 3-tap filter and r~l was being approximated out to 5 

samples, then R r would be 5 x 5 and given by

' r[0] r[ 1] r[2] 0 0
r[—1] r[ 0] r[ 1] r[ 2] 0

R . = r[-2] r [ - 1] r[0] r[ 1] r[2] (3,
0 r[-2] r [ - 1] r[ 0] r[ 1]
0 0 r [ -  2] r [ - 1] r[0]

while rf' = [r_1[—2],r_1 [—l]r_1 [0],r"‘[ 1 ] , [2]]r and ST = [0 ,0 ,l,0 ,0f. We would simply

find - 1 as

rTl = R  j 8 (3.31)

Finally, using our matrix and sequence equivalents, we have that H inv = H r (ffi l r ) 1 = 

H ^ R - ^ H ' R ; 1 <^him=h-kr~' *h+rT-'.
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Thus, the inverse filter is, approximately (due to truncation)

Kv = h* rTX C3-32)

In the non approximate case,

hinv=h*r~l (333)

and notice that, convolving both sides of eqn. (3.33) by h, we get h * hinv = h *  (h+r~l ). In

the case that A is a symmetric filter, as we will use in this thesis, then autocorrelation is 

equivalent to convolution and

h*hinv = h*{h'kr~1)

= h* {h'kr~l ) = (h-khykr'1 (3 34)

= r*r~x
= 8

where we used the properties in eqn. (3.25), (3.33) and the communitative properties of 

the linear operators of convolution and correlation.

Now, in the frequency domain the relation between the inverse filter and blurring 

function h o f eqn. (3.34) is given by the following relation

= 1 (3.35)

as convolution in time is the same as multiplication in the frequency domain. Thus, the 

inverse filter in the frequency domain is easily solved to be

= j (3-36)H{m)

So, an inverse filter is possible to find in the frequency domain via eqn. (3.36), or in the 

time domain via eqn. (3.33), as long as the filter is well behaved, i.e. has no frequency 

nulls or values where H(co) = 0. When dealing with a “badly” behaved filter, in the sense
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of deconvolution, only approximate inverse filters can result. We have not shown how to 

achieve this approximation in the frequency domain as this is not sufficiently relevant to 

this thesis.

What is more relevant is the effects of noise amplification as a result o f inverse 

filtering. We can view this both in the time and frequency domains. By considering the 

convolution model of y  = h * x + rj, wg see that inverse filtering results in a deconvolved 

estimate of x, called x , that is

X = K ,  *y  = K , * ( h * x  + Tj) = hi„ * h * x  + him *T]

= x + K , * n

or, in the frequency domain, working with the power spectra of our signals, we have

+ (3-38)

In any case, we can see from eqn. (3.37) or (3.38) that, regardless of the blurring filter’s 

behavior, we cannot avoid noise amplification with inverse filtering. The situation is 

clearly worse when h has frequency nulls. In the absence of noise such that

and as long as the filter is well behaved, x = x so deconvolution with inverse filtering is 

possible. Even when noise is not absent, as long as the signal-to-noise ratio (SNR) is 

relatively high, inverse filtering with well behaved filters is a good option. But, when the 

SNR is not sufficiently high and/or the filter h is a poorly behaved, alternative approaches 

to deconvolution are required.
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3.2.2 The W iener Filter

The Wiener filter is less sensitive to noise than the inverse filter. This filter is a 

linear, spatially invariant filter in which the point spread function is the one that 

minimizes the mean-squared error (MSE) between the ideal and the restored image 

[LageOO]. This filter minimizes the difference between the ideal and restored images on 

the average as

where x[nl,n2] has the form of eqn. (3.1). The solution of this minimization problem is 

known as restoration by Wiener filtering. The Wiener filter is typically given in the 

frequency domain as

image and the noise, respectively. The power spectrum is the average signal power per

Notice that the Wiener filter defaults to the inverse filter in the noiseless case, i.e. when

(3.39)

(3.40)

where H*(col ,co2) is the complex conjugate of the point spread function’s frequency 

response H(cal,co2) and Sx (co1,co2) and SN(m1,co2) are the power spectra of the ideal

spatial frequency (co^co^ contained in a signal. Using eqn. (3.40), the restored image is 

then obtained by

(®,.'<*>, ) = )H  (®,» ) (3.41)

(^i ’  ̂'
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When the degraded image is noisy, the Wiener filter trades-off restoration by 

inverse filtering with suppression of noise at those frequencies where H(ml,o)2)  is close 

to zero. In general then, the Wiener filter approaches the inverse filter when 

SN{ml,o)2) « S x (mlym2) ,  and when SN(col,co2) »  Sx (cd1, co2) it acts as a frequency

rejection filter, i.e. H wiener((DliQ)2) - > 0 . To find an expression for SN{a\,a>2), it is

common to assume that the noise is uncorrelated and white. In this case, the power 

spectrum is determined by the noise variance to be

SN{ml,w2) = (j2N fo r  all (a)l fG>2) (3.42)

In using the Wiener filter, we will observe that for small values o f <j 2n , the restored

image will be close to that obtained when inverse filtering. In the case where the noise 

variance is large, the Wiener filter will over-smooth the restored image. Estimation of 

Sx ,o)2) is problematic since the ideal image x is clearly never available. Instead, it is 

typical to approximate Sx (col,co2) by an estimate of the power spectrum of the blurred 

image y  that is available and subsequently compensate for the variance of the noise. That 

is,

( ® 1 SY ip 15 ) _ ~ T7T7~ ̂  i p  1> )^(®l > ) — &N (3.43)
1 2

Note that N { x N 2 is the size of image y  and that the frequency response is obtained using

the discrete time Fourier transform such that

N l - \ N 2- l

Y(m„m2)=  £  Z dy[n„n2]-e-J(‘v,'*"1"l) (3.44)
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In chapter 5, we will compare the performance of the Wiener filter and the inverse filter 

with the method proposed in this thesis.

3.3 Implementation Notes

The finite extent convolution model necessarily has more samples in x that we are 

solving for than samples in y  that are observed. Specifically, we have said that for a filter 

of size M x x M 2 and observed image y  of size N{ x N 2, the restored image would be of 

size (jVj + M 1 - 1) x (N2 + M 2 - 1). After any deconvolution restoration, one will notice a 

larger error around the borders of the restored image compared to the samples in the 

interior o f the restored image. This is due to the relatively smaller number of observed 

samples in y  that any sample of x near a border can affect, hence there is less reliability in 

these border pixels’ estimation. Because of this, the restored image is most reliably 

determined to be those interior Nx x N 2 image samples in the

- M 2 - 1) samples that were solved for. As such, evaluation of quality 

of restoration should only make use o f those “reliably restored” samples in x against 

their original samples in x.

Another important implementation note concerns the Wiener filter. That is, it is 

important to keep the finite extent convolution model in mind when Wiener filtering. 

This is the reason that “ringing” occurs near the borders of the restored image. That is, 

keep in mind that the Wiener filter is approximately the inverse filter of the original 

blurring filter. As such, it has a usually longer region of support than h and when 

“convolved” with the degraded image, results in the oscillations usually evident near the 

borders.
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In any case, we can see for eqn. (3,37) or (3.38) that, regardless of the blurring 

filter’s behavior, we cannot avoid noise amplification with inverse filtering. The situation 

is clearly worse when H has frequency nulls. In the absence of noise SN {a\ , c$2) = 0 and

as long as the filter is well behaved, x = x so deconvolution with inverse filtering is 

possible. Even when noise is not absent, as long as the signal-to-noise ratio (SNR) is 

relatively high, inverse filtering with a well behaved filter is a good option. But, when the 

SNR is not sufficiently high and/or the filter h is a poorly behaved, alternative approaches 

to deconvolution are required.
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C hapter 4

Noise and Range Constrained Deconvolution

In the two standard deconvolution approaches presented in chapter 3, the effects 

o f noise largely influenced the resulting solution. In the case o f inverse filtering, noise 

amplification becomes increasingly unacceptable as the SNR decreases. In the case of 

Wiener filtering, noise amplification is controlled but at the expense of unacceptable 

smoothing on the restored image. In effect, noise is the main limiting factor to successful 

deconvolution with the point spread functions’ nulling characteristics being the second 

(and usually not as serious) limiting factor. There is no way to get rid of noise, just 

different ways to mitigating its effects. The key is to restore the image without having the 

noise be modified in an unacceptable manner. In this chapter, we present two techniques 

that suppress the amplification of noise and though not removing it, aids in maintaining 

the noise level while the image is restored.

The techniques we present involve constraining the space of pixel values 

acceptable in the solution as well as constraining the moments o f the error signal 

(difference between the degraded image and the re-blurred estimate of x) to coincide 

statistically with the characteristics of the noise. The original motivation for the range 

constraint was that if the lens effects or source of blurring had not been present, we could 

have captured a sharp image at the pixel precision allowable by the camera. That is, if  we 

were working with an 8 bit per pixel device, then our sharp image would have also been 

represented with this precision. As it turns out, this constraint indirectly helps control the 

amplification of noise. The motivation for the noise moment constraint was to not
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amplify noise in the solution while the deblurring was taking place. It seemed reasonable 

to enforce this via the use of a random variable’s moments rather than through its 

probability density function. We now detail the constraints used and discuss how we 

perform the constrained deconvolution optimally in an unconstrained manner,

4.1 Range Constraint

In this thesis, a non-linear variable transformation is used to simplify the solution 

of the signal x while enforcing a range-limiting constraint. In our implementation, we 

have elected to work with normalized pixel values such that 0 < x < 1. Although this 

range interval is arbitrary, it is mathematically convenient. In our development, we will 

express the original image x as the nonlinear m apping /of an auxiliary variable % as

* = / ( * )  (4-D

w here/is  equal to

/ W = | tanhW  + |  (4'2)

As such, our solution will be in terms of the auxiliary variable % » not x. The usefulness 

of this auxiliary parameterization is that % can take a value -  oo < % < m and so there are 

no constraints in its value. And, since the mapping f (%)  does yield the desired range for 

x, we can indirectly constrain the solution without directly enforcing this constraint in the 

optimization’s procedure -  thus simplifying the deconvolution approach in general.

4.2 Noise M oment Constraints

Having prior knowledge of the statistics of the additive noise corrupting the 

blurred image is important because it can improve the performance of the deconvolution
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process. It also serves as an objective means of establishing a stopping criteria to iterative 

deconvoluting approaches -  in contrast to typical subjective approaches. This will be 

addressed later. These moment constraints are a new means of allowing for the 

constraining of the deconvolution solution. In this approach, we desire that the error 

vector exhibit samples consistent with the noise distribution rj. We accomplish this by 

ensuring that one or more moment estimates from the error signal match the true 

moments of 7 7 .

Two types of moment constraints on the additive noise rj will be mentioned in 

this section: those using standard moments and those involving probability weighted 

moments (PWM). Standard moments use unbiased statistical estimators on the samples 

from the convolution error signal. The statistical standard moments that we are used to 

seeing are given by

mP = E\np]= (4.3)

where is [•] is the expectation operator [Papo02], m is the pth moment of 7 7 , and f n(r/) is

the probability density function of random variable 7 7 . The unbiased sample estimator of

these moments is given by

= 7 7 2 X H  (4-4)
n=0

with mp representing the estimate of mp where the hat <A’ indicates “estimate” and 

where the error samples e[n] in our convolution are interpreted as samples of the noise 

distribution 7].
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Because the use of standard moments in the optimization is computationally 

involved, probability weighted moments (PWM) provide an alternative moment 

definition that we can use. As will be described, they simplify the mathematical 

complexity related with the moment estimation computations. Their attractiveness lies in 

the linear transformation used to obtain the estimate. This is in contrast to the nonlinear,

i.e. exponentiating, operation required in obtaining mp in eqn. (4.4). The PWM moment

estimates mp are found with the following linear transformation on the error samples:

mp = J^bp[n]e0[n] = b Tpe0 (4.5)
n=l

where b p = [fe/,[l],...,Z>(,[Ar]]r is the probability weighted p th moment estimator vector,

is a vector with the samples of the error signal ordered in

ascending order. The ordering comes from the rank-order statistics that the PWMs are 

based upon. These moments are now further detailed.

4.3 The Probability Weighted Moments

In this section, the PW moments are defined and described. The PW moments o f a 

uniform and a Gaussian distribution will then be derived and detailed. The r th PW 

moment1,/? , , of an arbitrary distribution is defined as

Pr = E [xFx (X)] = J_” XFX (X)fx (x)dx (4 '6)

1 There are other probability weighted moment definitions but the one we present is convenient for our
deconvolution approach. See [Gree79, Land79] for the general PW moment definition.
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where, for RV X , f x (x) is its probability density function (PDF) and Fx (x) is its

cumulative distribution function (CDF). This is in contrast to the typical r th moment of 

RV X  that was defined as

in eqn. (4.3) and is reproduced here for convenience.

4.3.1 Uniformly D istributed PW  Moments

The probability weighted moments of a uniform distribution are found by 

substituting the CDF and the PDF of the uniform distribution into eqn. (4.6). We note that 

the CDF Fx (x) of a uniformly distributed RV X  is

(4.7)

0 x < a

F Y(x) = < ——— a < x  < b (4.8)
b - a

1 b < x
and its PDF f x (x) is

(4.9)

Using equations (4.8) and (4.9) in (4.6), we obtain

(4.10)

Since a and b are constant, they can be moved out of the integral yielding

(4.11)

then, letting y  = x - a  so that dy = dx ,we have
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P ' = (b -  a)r 
1

(b -  a)r 

1

t  (y + a)yrdy

r  (y  + ay My

(b -  a)r+l 

1

y + a • y
r + 2

(b - a T
r + 2

r + 1

+ a { b - a T
r + 1( b - a ) "

b ~ a ^  a _ (r +1 \ b  - a ) +  a(r + 2) 
r + 2 r + 1 (r + 2 \ r  + 1)
rb + b -  ar -  a + ar + 2a

(r + 2 \ r  + l) 
rb + b + a

(4.12)

(r + 2%r + 1)

As an example, the first ten PW moments of a uniform distribution over the unit interval 

[0,1] are shown in Table 4-1.

Table 4-1 First tee PW  moments of a uniform  distribution on the unit interval

r I%
1 0.5000
2 0.3333
3 0.2500
4 0.2000
5 0.1667
6 0.1429
7 0.1250
8 0.1111
9 0.1000
10 0.0909

4.3.2 Gaussian D istributed PW  Moments

For a Gaussian distribution, its CDF. of which there is no closed form, is

F , (*) = - = = £  e ^ ^ ' d u .  (4.13)
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Its PDF is given by

f x ( x) =
1 - ( x- m Y / 2 g-2 (4.14)
71(7

and note this distribution is parameterized by its mean ji and standard deviation a . 

Substituting eqn. (4.13) and (4.14) into eqn. (4.6) yields

Pr =  ( * ) / * ( * ) < &

= r  J  i r - r L ^ e - ^ - ^ d x  
J-“ LV2n l<° J -i'Zna1

f“ J  V e ^ ^ d u \ e ^ ^ c b c
J  — 00 J - 0 0

(4.15)

(2?r)ir+1 ^ .2  CT

It is observed that there is no closed form solution for this integral. It can however be 

approximated numerically. Table 4-2 shows the first ten PW moments of the standard 

normal Gaussian distribution, i . e .X -  N(0,l).

Table 4-2 First ten PW  moment of a standard norm al Gaussian distributed function

r
1 0
2 0.2821
3 0.2821
4 0.2573
5 0.2326
6 0.2112
7 0.1982
8 0.1780
9 0.1650
10 0.1539

Note that when dealing with a general Gaussian model, i.e .X  ~ the PW

moments are obtained following the procedure developed by Hoskings and described in 

Appendix B.
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4.4 Estim ating Probability Weighted Moments

The unbiased estimate o f th e rrtPWM, computed from n data values xxx2, . . .xf

such that xw< x w+1,Le., they are sorted in increasing order, is given by

i n
- t x ,  r  = 0J

j=1 (4.16)
I f  ( . / - 1*./-2 ). ..(./-/•) Y r = 1 N

This is in contrast to those moment estimates found in eqn. (4.4) of the standard 

moments. We can see that mr in eqn. (4.16) results from a linear combination of data 

samples, hence the inner product of eqn. (4.5).

From the moment estimates in eqn. (4.16) we can conveniently determine a 

moment estimator matrix that can estimate the N  PW moments o f a sample vector x of 

length N. This moment estimation is written in matrix form as

ra = B x0 (4.17)

where x0 = [x1,x2,...,x iV]r is the vector of sorted data samples. The moment estimator

matrix is an upper diagonal matrix with all elements below the diagonal being zero. We 

establish the elements in the moment estimator matrix as in Algorithm 1. If we assume 

matrix B ’s indices i j  start from zero, then an algorithm for computing the moment 

estimator matrix B for a length N  sample vector is
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Algorithm 1:

for i = —1
for j  = i,...,N

if i = 0

L J J  N

else

Rf: ,1 Q'X/ -I ) '"  O' - t + l )  J_
( N - \ y . { N - i )  ' n

end
end

end

where N  is equal to the length of our data vector x. As an example, the first 3 rows and 

columns of the moment estimator matrix B for an N - 5 length data vector is

b[o : 2 ,0 : 2] =
0.2000 0.2000 0.2000 

0 0.0500 0.1000
0 0 0.0333

4.5 Performing the Deconvolution

The deconvolution process will be setup as a constrained optimization. We do so 

by establishing a cost that minimizes the energy of the error signal while enforcing 

constraints such that this error signal’s samples approximately correspond to a desired 

distribution. This optimization process proceeds by first establishing a Lagrangian 

function. This Lagrangian function is composed of a cost function and established 

constraints and is parameterized by the auxiliary image x (described in eqn. (4.1)) and 

the Lagrange multipliers X. Its form is
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L(x, A) = /(x )+  \ C X (x)+ h2C2 (x)+.. .  + /lMCM (x)
Nl- l N 2- l  M ~ \  / a  >

= Z  Z e2 ["i > n 2 ]+ X  m M«(=0»2=0 p=0 V
where

(4.18)

4 x ) =  £ Z e 2[«,,n2] (4-19)
n,=0 n,=0

is the mean squared error o f our estimation and

C , ( x ) = m [ p ] - i » [ p ]  (4 -2 ° )

is the p th constraint equation such that the error signal’s samples (which will only 

correspond to noise samples at the true solution) agrees, via moments, with the noise 

model we have assumed.

Notice that the x shows up in the error signal since the error signal is equal to 

e = y - y = y - h * x = y - h *  f ( x ) ,  where y  is the true image and y  is the estimated 

signal described in eqn, (3.14). And, because the error signal is a part of eqn. (4.19) and 

also (4.20) by way of the moment estimate, the notation /(x )  and Cp (x) was used. The

first term in eqn. (4.18) is the cost to minimize and any constraints are included by way 

of Lagrange multipliers X .

An optimal minimum, solution is found when the vector pair {X, x} minimizes L 

where A = \Xx,...,XM\ and

X = vec\ {z[tnx, m2 ]}L .„n+kx-i . (4.21)
V lm2=~K2,...,N+K2- 1 J

At least for a local minimum, this requires that the gradient of L with respect to both %

and A be zero, i.e. V %L = 0 and V XL = 0. In general, minimizing L is increasingly
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complex as the number of constraints M  increases. In actuality, if  all constraints can not 

be satisfied, a solution that trades off constraints is reached. Note also that the choice of 

moments used will affect the final form of eqn. (4.18) as the moment estimator mp will

change. We can use either eqn. (4.4) or (4.5) in this regard. Finally, note that the 

Lagrangian of eqn. (4.18) can be expressed in matrix/vector form as

L(x, X) = er e + Ar (m - m )  (4.22)

where e = vec(e[nx,n2]), m = and m = M u , . .  ,m [M]].

4.6 Optimization Using Standard M oment Constraints

Using eqn. (4.18) with standard moments as constraints, we can substitute the 2-D 

form of eqn. (4.4) into eqn. (4.18) to get

M - l  i  A?j-1 JV j-l

L{ \ : > ) =ZJ ^ e 2{n„n2] ^ X p 7 7 ^ - ^  '£leP[nl,n1]
«i=0«2=0 p-0 N tN 2 n1=0«2=0

■m\p\
J

(4.23)

We square the constraint in eqn. (4.23) because the Langrangian function must be twice 

continuously differentiable. This is a condition for any local minima-Lagrange multiplier 

pair to be a point of attraction to gradient descent-type optimization [Bert95]. Also, by 

squaring the constraints, we can have better control over the oscillatory behavior in each 

iteration. This type of cost and constraints has been used previously in [Cand04].

To find an optimal minimum solution, we find the vector pair {X,x} that 

minimizes L (at least locally). That is, we must satisfy VXZ = 0 and VXZ = 0. The 

gradient of L with respect to % is found by determining

dL{z,X)  = dL(x,X) dx[px, p2] ^  ^
dl [mlym2] dx[px, p 2] dx[mx,m2]
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where we see that

dL{%\)  

dxlPi ,P2l d 4Pi ,P2]i?of2

P) n , - \ n 2- \

Z S c J[»,.«2]

+
dx[px, p 2]

(i)

M - 1

p =o 1 2  n,=0n2=0
-m [p ]

(4.25)

( 2)

To simplify our analysis, we divide eqn. (4.25) into two terms, (1) and (2). Then the 

derivative of term (1) with respect to x is equal to

I  =

iVj-i /v2-i

= 2 - S  3 -  j>[«l» «2 ]) ,  r.,-o»,-o 5 4 ^ , / - 23
W,-1JV2-1 -3

= ~2 ' Z Z  ’ W2 ] “  v«2 ])''
«!=0 w2=0 dx[pv p 2]

where the derivative of the estimate ofy  is equal to

(y[nv n2]~ y[nl,n2])(4.26)

( P K ^ ] )

dxlp\>p2] 5 i ^ 2  ]  \ * 1= « 1 -^ 1  k2 =n2- K

= hb i - P i ’n2 - P 2]

Then, by substituting eqn. (4.27) into eqn. (4.26), term (1) yields

(4.27)

= ~2 ■ £  £ (y K ’ w21 - y ini> «2])• -  a  > «2 -  a  ] (4-28)
d*[A»/>2H n,=0 «j=0 «!=0 n2=0

The derivative of term (2) with respect to x is equal to
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5 P 2 ] P=0

1 Â -lÂ -l 

1 2 «i=0«2=0

\2

M-1
= X V 2 '

/j =0 _ 1 2 «!=0«2=0

-m l> ]

{y[nx,n2] - y i n ^ n ^ 1

M - 1

= Z V 2 '
p=0

r

1
^ 2 X > p k ^ ]  

V 1 V 2 «i=0 «2=°
- ^ [ P l

h,=0«2=0
X  X  P ' ( y K  ’ W2 ] ~  ^ [«1  ’ W2 ] ) P_1

M - l

= 5 > , - 2
p = 0

1 Â -lÂ -l

V 1 V 2 «|=0«2=0 
W,-1JV2-1

-W[p]

1 Ni’-iNj—1
7777“ i I P ' c M K ’” 2 ]■*[»! - P i . ” 2 - P 2]
 ̂* r ’2 «i=0n2=0

M - l

= 2 I > a ;
P =0

1 ,̂-1̂ 2-1

¥ r  v 2 «i=o «2=o

M-liVWiV j '—1 iV 2 —1

~ P l ’n2 ~ P 2]
n,= 0 n2=0

(4.29)

Thus, the gradient of L with respect to x is found by substituting (4.28) and (4.29) into 

(4.25). This yields

dL(%X) v
----  i = _ 2 L Z Je^ i’w2]M«i ~Px,n2 ~~ P2]

n, =0 «2=0

M - l

+ 2 £  /?■/!,
p=0 N\N2 nt=0 n2=0

£ 5 V [ n , , r c 2] m[p]
V  W,-1W2-1

E ^ (H)K . « 2 ] %  - ^ 1 ^ 2 - ^ ]
=0 n2=0

(4.30)

This is the gradient needed for a moment-only constrained solution, i.e. no range 

constraints have been considered. If a range constrained solution is sought, then notice 

that
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dL(x,X) dx[px, p 2\
dx[ml,m2] dx[px, p 2] dx[mx,m2]

= ”“2 L z ^ ^ wi’w2 ]M « i - m x,n2 - m 2]

df ixlPi ’Pi])
dximi ’m2]

(4.31)

where

df(x[Pi>P2]) = dxlPi,P2] 
dx[mx,m2] dx[mx,m2]

= 2 - f (x[ml,m2])-[l~ f { x i m i> m2 ])] (4.32)

because each pixel x[pl, p 1\ is only related to x \ PvP^\• The nonlinear mapping was 

given previously in eqn. (4.2) and note that the derivative form of eqn. (4.32) is derived 

in Appendix C. Finally, the gradient of L with respect to X is

Making use of the gradients in eqns. (4.31) and (4.33), we solve for x  using the 

conjugate gradient approach as described in [Cand04].

4.7 Optimization Using Probability Weighted Moment Constraints

In this section, it is useful to address the optimization with PW moments in 

matrix/vector notation as both the one and the two dimensional cases can be described in 

this single notation. We will use the notation mp or m[p] interchangeably to represent

(4.33)
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the estimates of the p th probability weighted moment. These estimates, previously 

described in eqns. (4.16) and (4.17), are written

m p = m [ p \ =  X b [a;K L/'] (4.34)
j=0

for p  = 0,.. . ,M  -1  and where NlN 2 is the total number of samples in our image y, B is 

the matrix o f Algorithm 1 and e0 is the sequence of samples of the error signal e ordered 

in ascending order, i.e.,

eob'] = 4 indxb l  (4-35)

where indx[j]; j  = 0, . , . ,NlN 2 -1  represents the mapping (or re-ordering) of indices j  so 

that the samples in e can be sorted in ascending order. Eqn. (4.35) is also expressed in 

matrix/vector form as

e = P e (4.36)

where P represents a permutation matrix. This permutation matrix performs the re­

ordering mapping of indx\j] that sorts the samples in the error vector signal. For

example, if  e = [3,2,l,4]r is a vector of error samples and e0 = [l,2,3,4]r is its sorted 

counterpart, then using eqn. (4.36), we would have

P =

0 0 1 0  
0 1 0  0 
1 0  0 0 
0 0 0 1

in order to achieve our ordering.

In following our matrix/vector convention, recall that m =

e = vec(e[nl,n2]), y  = vec(y[nv n2]) and
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B =

B[0,0] B[0,1] 
0 B[l,l]

0

B [ 0 , ^ 2 -1]
-  B[l,AyV2- l ]

0 M[M -  I,NlN2 -1]

With these definitions, the Lagrangian function of eqn. (4.18) is expressed in matrix form 

as follows:

£(x,A) = j(x )+ A rC(x)

= eTe +Ar(B P e-m )

= eor eo + A7'(B e „ -m )

(4.37)

where eqn. (4.17) and (4.36) were inserted into eqn. (4.18) to yield the last term on the 

right hand side. Notice that the sum of squared elements in a vector yields the same

answer whether those elements were sorted or not, hence eTe = e0re0 . And, since the

expression for the error vector using eqn. (3.9) yields

e = y - y  
= y - H - x

we can substitute this in eqn. (4.37), noting that e0 = P e , to get

(438)

L(x, x ) = [p(y -  H x)f [p(y -  Hx)] + XT (BP(y -  Hx) -  m)

= yrPrP y - 2 y rPrPHx + xrHrPrPHx + Ar(BPy - m  -  BPHx) (4.39) 

= yr y - 2 y r Hx + xrHr Hx+ \ T (BPy -  m -  BPHx)

The last equality resulted from P r P = I . Please refer to proof in Appendix D.

Having established the form of our Lagrangian function and noting that this is in 

quadratic form, a globally optimal solution can be found. This is obtained by solving

V i  = 0

and
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V xz  = 0 (4.41)

From eqn. (4.39) and (4.40), we require

Vx£ = ( -2 y r + 2 x rHr +XrBP)H = 0 (4.42)

and

V kL = BPe - m  = 0. (4.43)

Now, from eqn. (4.42), we solve for the Lagrange multipliers and find that

XT = —2(y- H x)7'PrBr(BBT)‘1 (4.44)

Then, since BPe = m , which is also equal to

B P(y- Hx)  = m (4.45)

we can substitute eqn. (4.45) into eqn. (4.44) and we see that

\ T = -2 m T(BB7')'1 (4.46)

Notice that the Lagrange multipliers A only depend on prior knowledge of the noise 

distribution since A only depends on the true moment vector m. Now, having solved for 

A, we only need to solve for x in eqn. (4.42). In the case where we choose to include 

range constraints, x is related to x by a nonlinear mapping (as explained in eqns. (4.1) 

and (4.2)) and a closed form solution is not available. Instead, x is found by using an 

iterative gradient method such as the steepest descent method (where we will later

explain the reason for choosing this particular method). In the method of steepest descent,

also called the gradient descent method, we start at a point x0 which is an initial guess of

our solution. We then update x proportionally to the gradient of our last guess x* as

X*+1 = Xt - a V xL(xt ) (4.47)
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A good choice o f initial guess uses the image that we are given. That is, given an image y  

and the nonlinear mapping of eqn. (4.2), we let

Xo = / “' O ’) = tanlT'f 2 ^  -  |Y j  (4.48)

Note that y  must have samples values in between (0,1) in order to prevent complex

and/or infinite values when evaluating tanlT1. It also important to note that y  is an 

N} x N 2 sample sequence but \  will be (Nt + M t - l ) x  (N2 + M 2 - l )  in size. Since \  has 

more samples than y,  we use a mirrored extension of y  in all direction such that 

(Nt +M j -l)x (iV 2 + M 2 - l )  samples results. This is used in eqn. (4.48) to generate the 

initial values of x0 •

In the implementation, we note that a  in eqn. (4.47) is a small constant 

and VxX(Xi) is equal to

V / ( x J  = VeI - V xe-V xx
r ? (4 49)

= [2er +XrB p]-[-H  \ d iag { f ' {x t ))

where diag{z) represents a diagonal matrix whose elements are given by the vector z and

where we have used the facts that VeZ = [2er + Xr B P ] , Vxx = diag(f'(Xk)) and

Vxe = -H  . As such, we obtain

V L(x , ) = [2er - 2m r(BBr)"BP] [ - H ]/"(x,)

= 2[(mr (BBr)" BP -  er )h]o f ' ( Xl ) (4.50)

= 2 / ' ( x > [ ( m r(BBr)- 'B P -e ’> ]
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where “ q ” represents the Schur product or element by element matrix multiplication and 

/ '(x * )  is the derivative vector of our range mapping / (x )  of eqn. (4.2). The derivative 

o f this mapping function is given by

/ '(x )  = | ( l  -  tanh2 (x)) (4.51)

This equation is equivalent to (see Appendix C for derivation)

/ ( x )  = 2 ■ / ( x )  ■ (l -  /(x ) )  (4.52)

Thus, with the iterating procedure of eqn. (4.47), the initialization of eqn. (4.48), the 

gradient of eqn. (4.50) and the derivative range mapping of eqn. (4.52), the deconvolution 

operator based on PWMs can be performed.

We now note some important points:

1. Because of the nature of PW moments, we require any data vector to be sorted 

prior to estimating the moments. In our implementation we have a sorting 

operation that performs the equivalent role of the permutation matrix P.

2. The Lagrangian of eqn. (4.39) has a constraint of BPe - m  . This means, at the 

solution for x , we take our error vector e = y -  H x and sort out the samples (via 

the Pe operation). The problem is that we would need to know the solution in 

order to obtain the correct sorting order for P and this is clearly not possible. 

And, to obtain the correct noise estimates, one needs to sort the error samples (this 

operation cannot be ignored).

3. Since we need to sort samples for our PW moment estimates, it seems that a 

reasonable way of arriving at the solution for x is to slowly perform updates to x 

(or similarly x ) while making sure the PW moment constraints on the error signal
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are being satisfied. Thus, along the way, we will be sorting e by performing the 

equivalent of updating the permutation matrix P. This slow update suggests a 

steepest descent update formula with small constant update parameter a . A  

conjugate gradient approach would be converging way too quickly to ensure 

moment constraint are reasonably satisfied. In this regard, we could use 

something like an iterative LMS algorithm [LageOO].

4. The stopping criteria is also important. We want to satisfy the constraints as much 

as possible so that our solution will make the most sense. We can notice however 

that our Langrangian has two kinds of competing criteria. That is, in the cost, we 

want to minimize the energy of our error signal as much as possible. But, in the 

constraint, we need the error signal to be such that the moments estimated from it 

match the known noise moments. This suggests that one should continue 

decreasing the cost until the average relative error between the true and estimated 

moments starts increasing. If we did not do this, the algorithm would naturally 

continue minimizing the error energy (the cost ere) even if this meant that the 

constraints were no longer truly satisfied. This is our objective stopping criteria 

that we could use to terminate the deconvolution iterations.
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C hapter 5

Experim ental Results

This chapter will present deconvolution results on four different restoration 

approaches: inverse filtering and Wiener filtering as described in chapter 3 and 

constrained deconvolution using the standard and PW moments described in chapter 4. 

The noise constrained approaches will be examined both with and without pixel range 

constraints. We will show results using the standard “Lena” image for both well behaved 

and poorly behaved filters and do so over a wide range of signal-to-noise ratios.

5.1 Filters Considered

In order to test a deconvolution algorithm we must have an original image and a 

degraded version of this original. In this way, the deconvolution algorithm’s ability to 

restore the degraded image can be directly quantified numerically as well as qualified 

visually. Our degrading will consist of low pass filtering the original image and then 

adding noise to the resulting blurred image.

Because we have previously mentioned that the filter’s characteristics influence to 

what extent an image can be restored, i.e. any nulling of frequency components in the 

signal cannot be recovered without a priori knowledge of signal content, we will show 

results using two different “well behaved” filters that “softly” attenuate frequencies 

without nulling any signal components and two different “poor behaved” filters that do 

null signal components.

We will assume each of these filters is separable, symmetric and energy 

preserving. This last criteria means the filter must satisfy
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K  K

2  Y , himi’m2 ] = l (5'
Wj =—Kx K2

It is a condition such that the filtered image retains its mean-value, i.e. there is no 

darkening or lightening of the image as a result of the filtering. The separability of the 

filter means that the 2-D filter’s form can be expressed as the product o f two 1-D filters. 

This is given in eqn. (5.2) in sequence form as

h[ml ,m2] = hl[ml ]h2 [m2] (5.2)

or equivalently in matrix form as

h = h ^  (5.3)

The first “well behaved” filter is symmetric and is based on fa, = [0.2,0.6,0.2]r .

Thus, using eqn. (5.3), we get a filter of

"0.04 0.12 0.04”
fa = 0.12 0.36 0.12 (5.4)

0.04 0.12 0.04

Making a spectral plot of this filter, as done in fig (5.1), we can notice that there are no 

frequency nulls. We have provided the spectral response of in 1-D to better appreciate 

the filter’s character. Then, in fig (5.1b), we have included the spectral response of the 2- 

D filter of eqn. (5.4) for completeness.

The second “well behaved” filter is a 5-tap low pass filter. It is given by 

h, = [0.05,0.2,0.4,0.2,0 .0 5 f/0 .9 . it is also symmetric, separable and energy preserving 

and is given by
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Figure 5-1. Spectral response of the “well-behaved” low pass filter given by eqn.
(5.4). (a) Spectra of h, = [0.2,0.6,0 .2 fupon  which eqn. (5,4) is based, (b) Spectra of
2-D filter.
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h =

0.0028 0.0111 0.0222 0.0111 0.0028

0.0111 0.0444 0.0889 0.0444 0.0111
0.0222 0.0889 0.1778 0.0889 0.0222

0.0111 0.0444 0.0889 0.0444 0.0111
0.0028 0.0111 0.0222 0.0111 0.0028

(5.5)

As with the previous filter example, fig (5.2) illustrates the spectral characteristics of this 

filter. Notice that there are no frequencies nulled in this filter response.

For the “poorly behaved” filters, we will be using moving average (MA) filters. 

One will be a 3-tap MA filter and the other a 5-tap MA filter. We can notice that these are 

also symmetric and energy preserving as h, = [l,l,l]r /3 in one case and 

h j = [l, 1,1, l , l f / 5  in the other so that

h =
1 1 1 
1 1 1
1 1 1

(5.6)

and

h =

”1 1 1 1 f
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
I 1 1 1 1_

25
(5.7)

respectively. The “poor” deconvolution characteristics in these filters is clear upon 

examining their spectral responses. One can clearly see the frequency nulling properties 

these filters exhibit in figs. (5-3) and (5-4).
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Figure 5-2. Spectral response of the second “well-behaved” low pass filter given by 
eqn. (5.5). (a) Spectra of h, = [0.05,0.2,0.4,0.2,0.05]r /0.9 upon which eqn. (5.5) is 
based, (b) Spectra of 2-D filter.
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Figure 5-3. Spectral response of the “poorly” behaved low pass filter given by eqn.
(5.6). (a) Spectra of h, = [l,l,l]r /3  upon which eqn. (5.6) Is based, (b) Spectra of 2-D
filter.
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Figure 5-4. Spectral response of the “poorly” behaved low pass filter given by eqn.
(5.7). (a) Spectra of h, = [l,l,l, l , l f / 5  upon which eqn. (5.7) Is based, (b) Spectra of
2-D filter.
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In this section, we analyze the results of the four deconvolution algorithms we 

have introduced in this thesis. All our experiments are controlled in that we convolve a 

known original image with one of the low pass filters described in the previous section. 

Then, Gaussian noise of known characteristics is added to the convolved original image. 

The noise added will be conveniently specified in terms of signal-to-noise (SNR) ratio. 

This is done to give a more intuitive sense o f the amount of noise added to an image as 

different images likely require that the noise variance used to achieve the same SNR be 

different. In other words, a corrupted image with an SNR of 30 dB is usually slightly 

visibly noisy and SNRs > 40 dB usually result in images very near the original image 

with noise barely, if  at all, noticeable. In contrast, it is more difficult to “get a feel” of 

how noisy an image corrupted with a standard deviation of a  = 3.23, for example, is 

because this specification is not intuitively relative to anything.

5.2.1 Quantitative M easures Used

The power of noise added to an image is determined from the desired signal-to- 

noise ratio. Since noise is added to the blurred image, the signal power must be 

determined from the blurred image. To determine the appropriate noise power, we use the 

SNR relation of

5,2 Analysis and Comparison

SNR = 10- log,
( P \

signal 

\  noise /

(5.8)
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Note that because we are adding noise to the blurred image, the SNR we refer to is 

sometimes known as the blurred signal to noise ratio. We will just refer to it as the SNR 

with this understanding in mind.

Since we are working with zero mean Gaussian noise, the noise variance needed 

for generating the appropriate noise samples to add comes from eqn. (5.8). It is seen to be

where the signal power Psignal is estimated as the variance of the blurred image’s samples, 

that is

for an image z of size N x x N 2 samples.

To quantitatively demonstrate an algorithm’s performance, we will employ the 

commonly used measure of peak-signal to noise ratio (PSNR). It is known that this 

measure does not always correlate reconstruction error with visual quality, but since no 

such measure has been rigorously established nor does a de facto metric exist, we use 

PSNR. The definition of PSNR is

P.signal
noise SNR/i Tic

(5.9)
10 /10

PSNR = -10 log10(eJ (5.11)

where

e;rms
2

T7T7" Z,  E  > n2 ] -  *[”>. n21)'
i  V 1 i  V 0 =0 n*. =0l i V 2 nx-Q n 2~0

(5.12)
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Notice that x[nl,n2] and x[nx, n2] in eqn. (5.12) take values relative to the unit interval 

[0,1] according to the pixel normalization utilized in this thesis and that x refers to the 

original image while x refers to the restored image.

5.2.2 Perform ance of Methods

In this section, we demonstrate the results of the four deconvolution algorithms 

under different filtering, noise and constraint conditions. We will work with the “Lena” 

image, common in the image processing literature, throughout. This image will be shown 

in the top left portion of the figures along side the restoration image results. The results to 

be demonstrated make use of the four filters described in section 5.1. We also 

demonstrate results for deconvolution when either M  = 1 or M  = 3 noise moments are 

considered. Please note that several plots and/or images will be presented in this section. 

This is but a small sampling of all o f the possible combinations that could have been 

considered in analyzing the deconvolution routines’ performance. That is, if  you 

considered running tests over Nt images, Nf filters, Nm moment constraints, Nn noise 

condition, etc., you end up with a large number of scenarios for which to analyze and 

report results. In this thesis, we have elected to present a sufficient set of results that can 

characterize the performance of the deconvolution methods while not inundating the 

reader in details. The main results consist of plots of restoration performance over a wide 

range of degraded image SNR. Specifically, for SNRs from 5 to 100 dB (in increments of 

5 dB), we plot the restored, images’ PSNR for each of the six approaches considered: 

Wiener filtering, inverse filtering, PWM optimization with and without range constraints 

and standard moment constraints with and without range constraints. We now note that
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inverse filtering results will not be reported when analyzing the poorly behaved filters as 

no inverse filter exists in these cases.

To present the results in an organized manner, there will be one figure with plots 

for each of the four filters considered (and discussed in section 5.1). The ‘(a) ’ plot 

sub figures will correspond to utilizing 1 noise-moment constraint and the ‘(b)’ plot 

sub figures will show results using 3 noise-moment constraints. Then, following each of 

the four quantitative (in terms of PSNR) restoration result plots, there are several image 

based figures that allow the reader to qualitatively inspect the restored images. This is 

useful as PSNR is not always a faithful indicator of restoration quality for SNRs < 35 dB 

usually. Note that the image figures following each plot are but a subset of all the images 

generated when creating the PSNR vs. SNR curves. Also, due to the large amount o f 

figures, all result are found at the end of this chapter.

Both the Wiener and inverse filters were implemented as described in chapter 3. 

For the Wiener filter, we implemented eqn. (3.40) and we also used the approximation 

» Sy(cox,cq̂ )-<j 2n o f eqn. (3.43) in the definition. Because we were degrading

the images in a controlled environment, we knew what the noise variance a 2 was 

exactly. This information was used in carrying out the experiments. The inverse filter was 

only used in those cases where we had a “well behaved” filter, that is the ones of eqns. 

(5.4) and (5.5). This is why there are no inverse filtering results shown when the filter 

used was “poorly” behaved. When we do show inverse filtered images, note that the size 

of the image is smaller that the degraded image being deconvolved. This is because we 

only kept the “valid” part of the inverse filtered convolution so that we could make a fair 

comparison of the restored image in terms of PSNR.
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In the first set of results, we used the 3-tap “well behaved” filter of eqn. (5.4) for 

blurring the original “Lena” image. Noise was then added to this image such that SNRs 

of 5, 10,..., 100 dB where achieved following eqns. (5.8)-(5.10). The PSNR vs. SNR 

curves for the M  = 1 and M  = 3 noise constraint cases are given in fig. (5-5a) and (5- 

5b), respectively. In general, we can see that the noise moment constrained approaches 

perform better than the inverse-filter-related approaches o f the Wiener and inverse filters 

for SNRs > 15 dB. It is interesting to note that the standard noise moment constraints 

approach performs very well for SNRs > 30 dB. In contrast, the PWM approach performs 

better than the inverse filtering and standard moment approaches for the 15 dB < SNR < 

22 dB range. That is, in clean (very little noise images), the standard approach is 

preferred. For substantial noise in an image, the PWM approach is preferred. But when 

the image is saturated with noise, the Wiener filter might provide the best trade off (at 

least visually) between smoothing the image while suppressing noise. These effects can 

be seen visually by inspecting the images of figs. (5-6)-(5.11). In each of these figures, 

we illustrate the original and degraded (“Blurred + Noise”) images as well as the 

probability weighted moment constrained with range (“PWM-with range”) and without 

range (“PWM-no range”) restored images, the standard noise moment constrained with 

range (“SNM-with range”) and without range (“SNM-no range”) restored images and the 

Wiener and inverse filtered images. In these images we can see that the inverse filtered 

images amplify noise unacceptably at low SNRs (< 15 dB). The Wiener filtered images 

trade-off image sharpness (restoration) for noise attenuation at low SNRs. The standard 

noise moment images do the best job of removing the blurring effect but do not handle 

noise as well as the PWM approach does. That is, the PWM images “control” the noise
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variance to its proper level but do not show unblurring results as effective as the SNM 

images do. Finally, we can see in the plots that using M  = 1 and M  = 3 noise constraints 

did not affect the results significantly.

In the next case analyzed, a 5-tap well behaved filter was used. The plots of fig. 

(5-12) demonstrate similar behavior to that of the “well behaved” 3-tap filter case but the 

Wiener filtering performance is now only superior in PSNR to the noise constrained 

approaches when SNR < 1 0  dB. Otherwise, the performances o f all methods are very 

similar to that shown previously. What we see different in this scenario is that, due to the 

greater blurring on the original image, it is a bit more difficult to remove the blurring and 

recover a sharp, restored image in this case relative to the 3-tap case shown before. The 

images resulting from the 5-tap case (corresponding to a subset of the results of the plots 

in fig. (5-12)) are given in figs. (5-13)-(5-18). In the “well-behaved” filter case, all o f the 

approaches perform fairly well when the noise level is reasonably low. The Wiener filter 

experiences border effects and this is partly the reason for the lower PSNR that is shown 

in the plots relative to the other approaches. As previously explained, that is a common 

problem with direct inverse filtering based approaches. These “ringing” border effects are 

not present in the noise moment constrained approaches.

The next pair of plots will illustrate deconvolution performance when the blurring 

function is “poorly-behaved” in the sense o f deconvolution processing. These filters 

necessarily have frequencies nulled in their spectral responses. The first of these sets of 

results uses the “poorly-behaved” 3-tap moving average filter of eqn. (5.6). The plots are 

shown in fig. (5-19). Again, Wiener filter performance surpasses all others5 in PSNR for 

SNR < 10 dB approximately. There is similar behavior in the moment constrained
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approaches where the PWM approach controls noise better in the 15 dB < SNR< 25 dB 

range approximately but, after the noise level becomes small enough, the deblurring 

ability of the SNM approach produces a sharper image than the PWM case. Note that the 

routines cannot restore a perfectly sharp image since the frequency nulling properties of 

the filter prevent certain spatial frequencies from being recovered. Without a priori 

knowledge of the original image, these spatial frequencies could never be recovered 

automatically.

The image resulting from the deconvolution procedures are pictured in fig. (5-20) 

through (5-25). The PWM approach produces images just as sharp, if  not sharper, than 

the Wiener filtering images. However, we can notice the “ringing” behavior in the 

Wiener images becomes more pronounced as the noise variance decreased (SNR 

increases). This ringing border effect becomes unacceptable at high SNRs. The SNM 

approach produces the sharpest images at high SNRs. It has not been mentioned until 

now, but the range constraining does not have much of an effect in the moment 

constrained deconvolution approaches when the SNR > 10 dB. It seems only in very low 

SNR cases does this have much of an effect.

The final series o f results make use of the “poorly-behaved” 5-tap MA filter of 

eqn. (5.7). Again, behavior performance follows the same trend as that previously 

described. Notice that the 5-tap MA filter is more aggressively filtering the image relative 

to the other filtering that has been performed. There are more frequency nulls in this filter 

too. The PSNR vs. SNR plots are given in fig. (5-26) for this case. Some image results 

corresponding to these plots are provided in fig. (5-27) to (5-32). In general, it is more
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difficult to restore the degraded image in this case due to the relatively poor 

characteristics of this filter compared to the others.

Given all the results we have presented, we can conclude the following regarding 

these deconvolution approaches:

• Deconvolution becomes increasingly more difficult, in general, as the amount of 

frequency nulling increases.

• Deconvolution becomes increasingly more difficult, in general, as the SNR of the 

degraded image decreases.

• Direct inverse filtering is useful with well-behaved filters (no frequency nulls) 

when the SNR is high.

• Wiener filtering is most useful with well behaved filters or at low SNR with 

poorly behaved filters. In either case, the Wiener filter is highly susceptible to 

“ringing” effects at the borders of images. This type of filtering is usually used to 

trade off filter uninvertibility with smoothing of the results. In essence, this type 

o f operation just uses a smoother approximation to the inverse filter.

• The noise moment constrained approaches are most effective at higher SNRs. 

They do not suffer from ringing effects at the borders and are useful at 

maintaining a given noise level. Rather than trading off smoothness with noise 

attenuation, they attempt to unblur the image while not amplifying noise. This 

non-amplification effect is more effective when using PWM moments relative to 

standard moments but the standard moments do a better job o f correcting for the 

blurring that has occurred.
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Figure 5-5. Results with the 3-tap “well-behaved” filter where h, = [0.2,0.6,0.2]r 
(a) Curves using M=  1 noise moment (b) curves using M= 3 noise moments.
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Figure 5-6. Restoration results corresponding to the plot in fig. (5-5a) when SNR=5dB and M — 1.



Blurred + Noise PWM-with range SNM-with range

Figure 5-7. Restoration results corresponding to the plot in fig. (5-5a) when SNR=15dB and M= 1



Original PWM-no range SNM-no range

Figure 5-8. Restoration results corresponding to the plot In fig. (5-5a) when SNR=25dB and M= 1
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Figure 5-9. Restoration results corresponding to the plot In fig. (5-5b) when SNR=5dB and M= 3.
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Figure 5-10. Restoration results corresponding to the plot In fig. (5-5b) when SNR=15dB and M= 3.



Original PWM-no range SNM-no range Wiener

Figure 5-11. Restoration results corresponding to the plot in fig. (5-5b) when SNR=25dB and M= 3.
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Figure 5-12, Results with the 5-tap “well-behaved” filter where 
h = [0.05,0.2,0.4,0.2,0.05]r / 0 .9 . (a) Curves using M= 1 noise moment (b) curves 
using M =3 noise moments.
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Original PWM-no range SNIVl-no range Wiener

Figure 5-13. Restoration results corresponding to the plot in fig. (5-12a) when SNR=15dB and M= 1.



Original PWM-no range SNM-no range

Figure 5-14. Restoration results corresponding to the plot in fig. (5-12a) when SNR=25dB and M — 1.



Original PWM-no range SNM-no range Wiener

Figure 5-15. Restoration results corresponding to the plot in fig. (5-12a) when SNR=35dB and M =l.
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Figure 5-16. Restoration results corresponding to the plot in fig, (5-12b) when SNR=15dB and M=3.



Figure 5-17. Restoration results corresponding to the plot In fig. (5-12b) when SNR=25dB and M= 3.
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Figure 5-18. Restoration results corresponding to the plot In fig. (5-12b) when SNR=35dB and M =3
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Figure 5-19. Results with the 3-tap “poorly behaved” l i te r  where hj = [ l , l , l ] r /3 .  
(a) Curves using M= 1 noise moment (b) curves using M= 3 noise moments.
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Original PWM-no range SNM-no range Wiener

Figure 5-20. Restoration results corresponding to the plot in fig. (5-19a) when SNR=15dB and M= 1.



Figure 5-21. Restoration results corresponding to the plot in fig. (5-19a) when SNR=25dB and M =  1.



Original PWM-no range SNM-no range

Figure 5-22. Restoration results corresponding to the plot in fig. (5-19a) when SNR=35dB and M - 1



Figure 5-23. Restoration results corresponding to the plot in fig. (5-19b) when SNR=15dB and M= 3.
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Figure 5-24. Restoration results corresponding to the plot in fig. (5-19b) when SNR=25dB and M= 3.
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Figure 5-25. Restoration results corresponding to the plot in fig. (5-19b) when SNR=35dB and M=3.
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Opl'm;;';,->!K5-; Us:n?; SiancfetfO Moment Constra*:** <*nO Range Cofwlrjfcfits
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Figure 5-27. Restoration results corresponding to the plot in fig. (5-26a) when SNR=15dB and M= 1.



Original PWM-no range SNM-no range

Figure 5-28. Restoration results corresponding to the plot in fig. (5-26a) when SNR=25dB and M=
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Figure 5-30. Restoration results corresponding to the plot in fig. (5-26b) when SNR=15dB and M - 3.



Figure 5-31. Restoration results corresponding to the plot In fig. (5-26b) when SNR—25dB and M — 3.



Figure 5-32. Restoration results corresponding to the plot In fig. (5-26b) when SNR=35dB and M — 3.



C hapter 6

Conclusion and Future W ork

In this thesis we have proposed an optimally constraining image deconvolution 

algorithm employing range and noise moment constraints. This algorithm uses a non­

linear variable transformation to simplify the deconvolution solution and to enforce 

range-limiting data constraints. It relies on prior knowledge of the statistics of the 

additive noise to ensure that the error signal matches the true moments of the noise 

distribution. Two types o f noise moment constraints on the additive noise were studied in 

this thesis: standard moments and probability weighted moments. Standard noise

moment definitions are common in probabilistic analysis but they require a nonlinear 

optimization method when used in deconvolution. Because of this, we proposed using 

probability weighted moments in our noise constraints since they simplify the 

mathematical complexity related with moment estimation computation and the 

deconvolution procedure in general. According to our analysis, the use of each type of 

moment has its advantages depending on the SNR of the degraded image.

The analysis o f the deconvolution methods was carried out quantitatively by 

plotting the peak signal to noise ratio o f the recovered images vs. the signal to noise ratio 

used in each restoration scenario. From the results, we observed that the noise moment 

constrained algorithms do not suffer from “ringing” effects at the border like the Wiener 

filter does. This is clearly evident in the case o f high SNR with “poorly” behaving 

blurring filters, i.e. those that null one or more frequencies. The noise constrained 

approaches, unlike the Wiener filter, do not trade-off noise amplification for smoothing.
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Rather, they try to maintain a given noise level while unblurring the blurred image. This 

is particularly effective at high SNR.

In our analysis, we found that incorporating range constraints in the 

deconvolution operation while enforcing noise moment constraints was not of much 

benefit at higher SNRs. It was most beneficial at very low SNRs. Also, we found that 

good deconvolution results could be achieved with as little as using one noise moment. 

Indeed, the differences between using 1 and 3 moment constraints were very little. The 

use o f noise moments was found to be both novel and effective to performing 

deconvolution.

Future Work

The field o f deconvolution has a long history. And, given all the work that has 

been performed, it is clear that constraints must somehow be employed in obtaining an 

acceptable restored image. In this thesis, we have brought to light the difference between 

attempting to deconvolve with a well behaved filter and a poorly behaved one (in the 

sense o f deconvolution processing). When dealing with well behaved filters, the focus is 

on dealing with the ill-effects of noise. Further study on how effective noise moment 

constraints are with different types of noise is an interesting topic that was beyond the 

scope o f this thesis. When dealing with poorly behaved filters, the deconvolution 

approach must not only consider the effects of noise but also how this, coupled with 

unrecoverable spatial frequency content, can best be addressed so that an acceptable 

image can be produced. It is not clear presently how reliably noise moment constraints 

deal with this problem. By solving this issue, one would positively influence the future 

directions and efforts of deconvolution-based research.
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Appendix A. M inimum Norm Solution of Underdeterm ined Linear Equations

The problem is to solve the constrained quadratic program

J  = xrx subject to A x = b (A .l)

where A is M  x N  with M  < N . To solve for x, we will establish a Lagrangian function

as

L = x rx + Ar (A x -  b) (A.2)

Having established the form of our Lagrangian function an optimal minimum solution is 

found when the vector pair {X, x} minimizes L. This requires that the gradient o f L with 

respect to both x and X be zero, i.e. Vx£ = 0 and VXL = 0, or

V xjL = 2x + A r X = 0 (A.3)

and

V XL = A x - b  = 0 (A.4)

Solving for x, we first multiply both sides of eqn. (A.3) by A to yield an expression for X

as

2A x + A A r X = 0 (A.5)

Eqn. (A.5) is equivalent to

X = -2 (a A t)"'Ax (A. 6)

By substituting Ax = b in eqn. (A.6), it can be expressed as

A = -2 (a  A r )~' b (A. 7)

To solve for x, we substitute eqn. (A.7) into eqn. (A.3) to get

2 x — 2Ar (a  A r ) ' b = 0 (A.8)
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Finally, the solution of x, which is the minimum norm solution, is

x = Ar (a  Ar ) b (A.9)
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Appendix B. Deriving Gaussian PW Moments for X  ~ iV(0,l)

To find the PW moments of a general normal distribution, we will first define 

useful probability moments. This is done because, as shown in [Hosk96], we can generate 

Gaussian PW moments from these other more easily tabulated moments.

Z -  M oments

The Z-moments are quantities useful in the summation and estimation of 

probability distributions [Gree79]. The first 20 Z-moments are tabulated below:

Table B -l. First 20 Z -  moments

Z\ 0
Z2 0.564189583547756287
Z3 0
Z4 0.122601719540890947
Z5 0
Z6 0.436611538950024944e-l
Z7 0
Zg 0.218431360332508776e-l
z9 0
210 0.129635015801507746e-l
z\\ 0
Z \2 0.852962124191705402e-2
Zl3 0
Z\4 0.601389015179323333e-2
Z\5 0
Z \6 0.445558258647650150e-2
Z\1 0
Z\% 0.342643243578076985e-2
Z\9 0
Z20 0.271267963048139365e-2

Note that all odd-order Z-moments are 0 and that the even Z-moments have been 

provided out to 20 digit precision for accurate PW moment computation.
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X -  Moments

The Z-moments are related to X-moments as follow

x2 = <j - z 2 (B.l)

X* = z n for n > 3

L- Moments

L-moments are certain linear combinations of probability weighted moments. The 

L-moments are related to the x-moments as

Xx — xx
X2 = x2 03-2)

K  = ^2 'xn for n >  3

Note that the use of X has nothing to do with Lagrange multipliers here. We use this 

notation as it is commonly encountered in the literature.

PW Moments

Finally, the PW moments are related to L-moments by the following equation

b . = Q.X. +"' + Q X m = I,...,n  (B.3)m-l *£"1 1 -wm m ? y \  /

where Q{ represents a weighting coefficient. One can notice that the p, and a

parameters o f a Gaussian distribution are directly related to the Z-moments as in eqn.

(B.l).

Using Table B-l and eqns. (B .l) and (B.3), finding the n PW moments of a 

Gaussian distribution requires solving the following linear system of equations:

Lb = A (B.4)
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where X = [Zl,A2,.. . ,An] and the Xi values are obtained in eqn. (B.2), b = [b0,b1,.. . ,bn_x]

is the vector of PW moments to solve for and L is an nxn  matrix of values that comes 

from the coefficients of shifted Legendre polynomials. We establish the elements in 

matrix L as described in Algorithm B-l,

Algorithm B -l :

L[l,l] = 1 
fo r  r = 1,.

for k = 0,...,r 

S = ( - 1)
p  =  1 

if  k >  0 
for  I = 0 , . . . , k - l

{r — k + 1 + 2- l \ r  — k + 1 + 2, • (I + 1))
p = p  ( T ^ f

end
end
L[r + l ,k  + 1] = p - S

end
end

Thus, the first n PW moments o f a Gaussian distribution is obtained by solving b = L-1A 

where L is always invertible (although it becomes increasingly sensitive to machine 

precision as n increases). Note also that L is a lower triangular matrix so any values not 

indexed in matrix L in Algorithm B -l means that those entries in L are supposed to be 0.
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Appendix C. Derivative of the Range M apping Function

The expression of x as resulting from the nonlinear mapping /  on an auxiliary 

variable % is given by

* = / ( * )  (C-1)

w here /is  equal to

/ W = | t a n h ( * ) + i  (C.2)

To demonstrate that the derivative of the nonlinear mapping has the form of

/ '( * ) =  2 - / ( * M l - / t o )  (C-3)

we square eqn. (C.2), that is

f2(z)= 7‘tanh2(^)+ i-tanh(^ )+ i (C.4)
4 2 4

It is simple to see that eqn. (C.4) can be re-expressed as

/ 2 ( z ) = i - t a n h 2( j ) + i -  tan h (z )+ ^

' jRj) ^

= j- ta n h  2( x ) + f ( x ) ~ \  (C-5)
4  4

= / W + ^ - ( i - tanh2W )

or that

4 - ( / 2W - / ( z ) ) = ( l - t a n h 2W )  (c -6)

Since the derivative of eqn. (C.2) is equal to

f  W = | ( l - t a i * 2 W ) (C.7)

we substitute eqn. (C.6 ) into eqn. (C.7) to get eqn. (C.3) as follows
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f i x )  = | ( l  -  tanh2 (z )) = i  ■ 4 • [ f 2 {X ) -  f { x ) \ = 2 • ( / 2 i x ) -  /  W ) (C.8)
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Appendix D. Proof of PrP= I 

Let P be a permutation matrix, where

P = UZVr

is its singular value decomposition (SVD) . Then the transpose of the permutation matrix 

is expressed as

Pr = VEr l f

Since P is a square matrix, Ur = 1T1, Vr = V -1 and these result from properties of the 

SVD. Also Zr = X = 2T1 = I since any permutation matrix has all singular values equal to 

one. Given this,

P r = VX7Ur 

= V ^ S ^ U " 1 

= (u x v r)_1
= P"1

Multiplying both sides o f this equality by P on the right, yields the completed proof:

P r P = I .
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