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ABSTRACT OF THE THESIS

DEGRADATION OF AZO DYES IN AQUEOUS SOLUTION BY
H 2O2/Fe2+ AND H20 2/Fe

by

Sangeeta Dhulashia

Florida International University, 1998

Miami, Florida

Professor Walter Z. Tang, Major Professor

An advanced oxidation process, which uses Fenton's Reagent (H 2O2/Fe2 +), is

studied in the destruction of three different classes of azo dyes. The optimal pH and

stochiometry for H20 2 and Fe 2+ in the oxidation of the azo dyes were investigated; an

experimental optmal ratio was also compared to a theoretical optimal ratio of H202 to

Fe2+. The optimal oxidation of monoazo and disazo dyes is at pH 3 and pH 4,

respectively. The optimal ratio for monoazo and disazo dyes ranged from. 1 to 10. The

experimentally determined optimal ratios are in excellent agreement with theoretically

predicted optimal H20 2 to Fe2+ratio of 11. Complexation was observed in oxidation of

trisazo dye Direct Blue 71. A lower optimal ratio of H202 to Fe 2+ for trisazo dye than

ratios required for mono and disazo dyes, is due to a larger amount of Fe2+ associated

with Fe complexation of chromophore.

Due to a relatively large amount of sludge, which is generated by the common

Fenton's Reagent, this study was expanded to characterize the performance of a novel



H2 0 2 and Fe powder system. This system decolorizes the same dyes from Fenton's

treatment. Kinetics and mechanism of the reaction were studied. The kinetics followed

pseudo-first order and Fenton's Reagent was the major mechanism. The degradation rate

depends upon both numbers of azo bonds and auxiliary groups. The rate of decolorization

of the dye decreases as the pH level increases. Hydrogen peroxide and iron powder

system resulted in higher color removal, at lower sludge production, for selected dyes at

lower pH than the Fenton's Reagent treatment option.

Keywords: Azo dyes, Fenton's Reagent, Hydrogen Peroxide, Zero Valent Iron, Hydroxyl

Radical, Advanced Oxidation Process, Oxidation, and Optimal Ratio of H20 2/Fe 2 +
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DEGRADATION OF AZO DYES IN AQUEOUS SOLUTION BY
H20 2/FeAND H 20 2/Fe

GENERAL INTRODUCTION

Dyeing and finishing are the major sources of pollution in the textile industry. In

a typical dyeing and finishing mill, about 100 L of water are consumed for every ton of

textiles processed (Internal Technical Report, 1994). In the dyeing process, the reactions

necessary to fix dye onto textiles do not always go to completion as designed. Ten to

15% of the dye is lost in the dyeing process effluent (Vaidya and Datye, 1982).

Therefore, the removal of color from non-biodegradable dyes in wastewater is of

significant concern to the textile industry. This effluent is either discharged directly to a

watercourse or to a sewer, which is then partially treated by municipal sewage treatment

plants. The other major pollutants in textile wastewater include high suspended solids

(SS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), heat, acidity

and basicity, and other soluble substances. If a textile wastewater is not properly treated,

dyes and other process chemicals undergo chemical as well as biological changes by

consuming dissolved oxygen in the stream, which impact the balanced ecosystem

necessary for aquatic life. Based on the chemical structure of the chromophoric group,

synthetic dyes are classified as azo dyes, anthraquinone dyes, triarylmethane dyes, etc.

(Allen, 1971).

Ao dyes are used in greater quantity than any other (Zollinger, 1987). Azo bonds

have the general formula of -N=N- which is known as an azo group. Dyes are classified

1



as monoazo if there is one azo group, disazo if there are two azo groups and trisazo if

there are three azo groups present. Several mono-substituted azo dyes, including 4-

phenylazoaniline and N-methyl- and N, N-dimethyl-4-phenlyazoamilines, are mutagenic

as well as carcinogenic (McCann and Ames, 1975). Carcinogenicity of an azo dye may

be due to the dye itself or to aryl amine derivatives generated during the reductive

biotransformation of the aryl linkage. In mammals, azo dyes are reduced to the aryl

amines by cytochrome P-450 (Fujita and Peisach, 1977) and by a flavin dependent

cytosolic reductase (Huang et al., 1979). Aryl amines in mammals can be oxidized to

corresponding N-hydroxy derivatives, which are subsequently transformed to reactive

electrophiles capable of forming covalent linkages with DNA (Tarpley et al., 1980).

Because of the carcinogenicity and mutagenicity, some European countries have banned

azo dyes (Perenich, 1996).

Conventional treatment technologies used to decolorize textile wastewater include

adsorption by activated carbon (Porter, 1972; McKay, 1980), electrochemical treatment

(Lin and Peng, 1994), biological treatment, and ozonation (Sinder and Porter, 1977).

However, activated carbon adsorption does not destroy the dye molecules. Ozonation has

high operation and maintenance cost. Synthetic dyes often containing substitutions such

as azo, nitro, and sulfo groups are resistant to aerobic degradation by bacteria. The strong

electron-withdrawing character of the azo group stabilizes these aromatic pollutants

against conversions by oxygenases (Flores et al., 1997). Several treatment alternatives

such as ultrafiltration, electrochemical treatment, and membrane filtration are currently

2



under investigation so that effective and economic treatment technologies can be

developed for the textile wastewater treatment.

One of the research areas includes advanced oxidation processes. Several

advanced oxidation processes seem to be very effective in destruction of azo dyes.

Hydrogen Peroxide and Fe2
+ (Kuo, 1992), UV/H20 2, and TiO 2/UV (Tang et al., 1995;

Cunningham et al., 1992; and Tang et al., 1996) have been used to destroy dye in textile

wastewater at a laboratory scale. Also, Fenton's reagent, a mixture of hydrogen peroxide

and ferrous sulfate has been used to (Kuo, 1992; Lin and Peng, 1995) decolorize and

reduce the COD content of the textile wastewater's that contain various types of reactive,

direct, basic, acid, and disperse dyes. Fenton's reagent is relatively economical, and easy

to apply, compared to other oxidation processes (Venkatadri et al., 1993). In fact,

Fenton's reagent is effective in treating several different types of industrial wastewater

(Barbeni et al., 1987; Watts et al., 1990; Sedlak and Andren, 1991; Porter and Roth,

1993; Venkatadri and Peters, 1993).

Fenton's reagent is a combination of any ferrous salt and H20 2 solutions,

described as follows:

Fe2 + +H O2  Fe3 ++ OH +HO' (1)

where kr is the initiation rate constant of hydroxyl radical generation that has a value of

51 M 1 s-1. Walling (1975) simplified the overall Fenton chemistry by taking the

dissociation of water into consideration:

3



2Fe 2 + H2 O2 + H-+2Fe+ +H 2  (2)

This equation shows that an acidic environment is required in order to produce a

maximum amount of hydroxyl radicals (Tang and Huang, 1996). In the presence of

organic substrates such as dye molecules RH, hydroxyl radicals, and ferrous ions at low

pH can produce organic free radical R ,

HO'+RH=H 2O+R (3)

The organic free radical may then be oxidized by Fe3 , reduced by Fe2 }, or dimerized

(Kuo, 1992), according to the following reactions:

R + Fe3  R + Fe2+ (Oxidation) (4)

R + Fe2+ -+ R + Fe3 + (Reduction) (5)

2R -+ R-R (Dimerization) (6)

Another competitive reaction is that excessive Fe2+ can scavenge hydroxyl radicals

through the following reaction:

kt2

HO -Fe -+ OH + Fe (7)

Where ki2 has a value of 3*10 8 M-s 1 , in addition to this, excessive H20 2 also consumes

hydroxyl radicals as shown by:

4



H20 2 +HO -+HO 2 +H2. (8)

Where k a has a value of 2.7 * 107 Ms--1. The reactions in equations 3, 7 and 8

demonstrate that there is a competition for hydroxyl radical by Fe2+, H202 and the azo

dye, which leads to the nonproductive decomposition of hydrogen peroxide and limits the

production of hydroxylated organic compounds. Therefore, it is necessary to establish a

stoichiometric relationship among H202, Fe2+ and the dye to maximize the degradation of

azo dyes efficiently.

This thesis is presented in two main parts. Part I investigates several aspects of

the conventional Fenton's treatment. These aspects include: (1) The stoichiometric

requirements of Fenton's reagent in degrading different classes of azo dyes, and (2) The

effect of pH on the degradation rate of each class of dyes. It also compares the

theoretical optimal ratio to experimental optimal ratios. The eleven azo dyes studied in

this thesis were the same group selected in previous studies that focused on the TiO 2/UV

process; in addition, they were also easily available.

Part II expands on the information of Part I. Due to a relatively large amount of

sludge, which is generated by the common Fenton's Reagent, this study was extended to

characterize the performance of a novel H2 0 2 and Fe powder system. This system

decolorizes the same dyes from Fenton's treatment. Kinetics and mechanism of the

reaction is studied in Part II. Effect of the number of azo bonds, auxiliary functional

5



groups, and pH on degradation kinetics by hydrogen peroxide and zerovalent iron powder

is also investigated. Based on the used experimental approaches, an effort was made to

compare the hydrogen peroxide and iron powder treatment process with Fenton's

treatment process.
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PART I. DEGRADATION OF AZO DYES IN AQUEOUS SOLUTION BY

11202/ Fe 2 +

1 INTRODUCTION

Hydrogen Peroxide (H202) catalyzed by Fe2 +, is called Fenton's Reagent. The

process was named after Professor Fenton because he was the first person who reported a

brief description of powerful oxidizing properties of a mixture of hydrogen peroxide and

ferrous salts and published this unique reaction (1881). Fenton tested this mixture to

oxidize different organic acids including formic, glycollic, lactic, tartronic, malic,

saccharic, mucic, glyceric, benzoic, picric, dihydroxytartaric, dihydroxymaleic, and

acetylenedicarboxlyic (Fenton 1900). In the absence of ferrous salt, the degradation of

hydrogen peroxide proceeded at lower rates with little or no oxidation of the organic

acids (Fenton 1899, 1900). Cross and Bevan (1898), Morrell and Crofts (1899), Bernieck

(1899), Fenton (1900), and Bertelan (1920), reported enhanced degradation of hydrogen

peroxide by ferrous salts. Able (1920) published the first proposed kinetic mechanism

followed by the work of Bray and Livingston (1923). Early studies were conducted by

Martinon (1885), and Goldhammer (1927), to see the effect of Fenton's Reagent on

phenols. Manchot and Lehmann (1928), carried out some experiments and found that for

each equivalent of Fe2 +, three equivalents of H202 were decomposed. They also noted

that in concentrated hydrogen peroxide solutions, each Fe2+ decomposed twenty-four

equivalents of hydrogen peroxide.
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Haber and Weiss (1931), were the first who proposed that free radicals existed as

intermediates during the chemical reactions in a solution. In 1932, Haber and Weiss

published a paper proposing that Fenton chemistry was the result of chain reactions

dependent on concentration of the reactants. The paper disproved the original theory of

Fenton's reaction, which was explained through the interaction of six-valent iron-oxygen

compounds with hydrogen peroxide. In 1934, Haber and Weiss proposed that Fenton's

Reagent was actually the result of a chain mechanism and free radical reaction resulting

in highly reactive intermediate compounds. The concentration of free hydroxyl radical

was determined to be directly proportional to the concentration of hydrogen peroxide. It

was also noted by them that breaking of chain length was increased at lower pH so that

the propagation cycle was extended before termination.

Baxendalo et al. (1946) concluded that in an oxygen-free environment, Fenton's

Reagent initiated very rapid polymerization of methyl acrylate, methacrylic acid, methyl

methacrylate, acroylonitrile, and styrene. The reaction was a function of formation of

hydroxyl radicals. In the presence of oxygen, no polymerization occurred. In 1949, Barb

et al., concluded an extensive investigation of Fenton's Reagent chemistry. When

[H 20 2]/ [Fe2+] ratios are low, the reaction rate is the second order and stoichiometry is

2[Fe 2+][H 2O2], but in the presence of polymerizable vinyl compound the reaction

remained second order and the stoichiometry changed to [Fe 2+][H2O2]. Thus, they

concluded that the polymerization of vinyl compound results in a polymer with terminal

hydroxyl groups. They also suggested inhibition effect of hydroxyl radical due to higher

concentration of hydrogen peroxide. To explain this mechanism it was proposed that

8



hydroxyl radicals react with hydrogen peroxide to form hydrogen dioxide. This reaction

takes place over the ferrous iron and hydrogen peroxide reaction and significantly

decreases hydroxyl radical formation. Hydrogen dioxide was not a strong oxidizing agent

to break the bonds of vinyl compound or oxidize other organic substances.

Merz and Water (1949) showed that oxidation of organic compounds by Fenton's

Reagent could proceed by chain as well as non-chain mechanisms, which was later

confirmed by Ingles (1972). Gabriel and Stein (1951) studied the effect of Fenton's

Reagent on phenol with specific interest on ferric ions. They confirmed that once ferric

ions were produced, the ferric-ferric system was catalytic in nature, which accounted for

relatively constant concentration of ferrous ion in solutions. It was also proposed by

them that complexation inhibited aromatic oxidation. In the late seventies, there were

two different theories proposed, free radical mechanism by Walling (1977) and complex

formation by Kremer (1977). It was first established by Walling that Fenton's oxidation

takes place by free radical mechanism, while Kremer discovered that complexation also

exists. To resolve these conflicts Walling (1985) performed some experiments and

proved that only free radical mechanism is dominant. Later work of Kremer (1985)

suggested that one of the assumptions by Walling was significant and thus concluded that

both mechanisms occur simultaneously.

During the late seventies, a simultaneous effort was made to see the application of

Fenton's Reagent in the field of environment. Various contaminants were studied in the

laboratory and several optimum conditions examined. Practical applications of Fenton's
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Reagent to treat contaminants are also examined by pilot plants and continuous treatment

systems in textile wastewater's, etc. From the early nineties, Bigda (1994) has made an

effort to design a reactor for Fenton's Reagent to treat various contaminants. In order to

design a reactor specific to a contaminant, the study of optimal stoichiometric ratios of

H2O2/Fe2+ for a contaminant needs to be studied (Bigda, 1994).

Part I of this thesis investigates several important fundamental factors. These

include: (1) The stoichiometric requirements of Fenton's Reagent in degrading different

classes of azo dyes, and (2) The effect of pH on the degradation rate of each class of

dyes. It also compares the theoretical optimal ratio to experimental optimal ratios.

2 FUNDAMENTAL THEORY

2.1 Hydrogen Peroxide

The compound hydrogen peroxide, H20 2, was first identified by Thenard in 1818

(Schumb et al., 1955). Commercially available since the middle of 19th century, large-

scale production and industrial use has increased rapidly since 1925, when electrolytic

processes for production were introduced and applications in industrial bleaching became

increasingly important. Commercially, H202 is handled as an aqueous solution with a

wide range of concentration. The important properties and uses of hydrogen peroxide

result from the covalent oxygen-oxygen bond. Hydrogen peroxide is a liquid at normal
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temperatures; melting point, -0.3 C: boiling point at 760 mm, 15.2 0C. Most constants

are related to aqueous solutions used commercially instead of the pure compound.

2.1.1 Molecular Structure

The four atoms in the hydrogen peroxide molecule are structurally joined by

simple covalent bonds, H-0-0-H, in a non-polar structure. The structure can be defined

by four parameters: the 0-0 distance, the 0-H distance the 0-0-H angle, and the angle

between two planes, each of which is defined by the two oxygen atoms and one of the

hydrogen atoms. The best values in the solid state are 0-0 distance: 1.453 0.007 A; 0-H

distance, 0.988 0.005 A: 0-0-H angle 102.7 0.3 A: and dihedral angle between the 0-0-

H planes: 90.2 0.6 A. The dihedral angle appears sensitive to surrounding and thus may

be different in the vapor phase or in other crystals containing H2 0 2 (Kirk Othmer, 1979).

2.1.2 Speciation of Hydrogen Peroxide

The coordinates for the solid-liquid phase diagram recommended from a critical

study are listed in Table 1.
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Table 1. Recommended Coordinates of Solid-Liquid Phase Diagram for the

Hydrogen Peroxide Water System (Kirk Othmer, 1979)

H202 concentration, Freezing pt, 0 C H202 concentration, Freezing pt,
wt % wt %

0 50 -52.2
10 -6.4 60 -55.5
20 -14.6 61 -56.1a
30 -25.7 65 -49
35 33 70 -40.3
40 41.4 80 -24.8
45 51.7 90 -11.5

45.2 52.2a 100 -0.43
48.6 52

a Eutectic b Compound, H202.2H 20

The eutectics exist at 45.2 and 61.2 wt % H202, and that the compound

H2 02.2H 20 (48.6 wt % H20 2) exists in the solid state. Solid solutions are not formed in

this system although it is extremely difficult to obtain water free of solid H20 2. The

recommended value for the heat of fusion of H202 is 87.84 cal/g. For liquid-vapor phase

relationship for aqueous hydrogen peroxide, partial pressures of the vapors over the

liquid are lower than the calculated value for ideal solutions but there are no azeotropes.

Table 2 shows atmospheric boiling points and related liquid and vapor compositions

interpolated.
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Table 2. Atmospheric Boiling Points of Hydrogen Peroxide Solutions

(Kirk-Othmer, 1979).

Liquid composition, Boiling point, Vapor composition,
wt % H 2 0 2  C Wt% H 2 0 2

0 100 0
10 101.7 0.9
20 103.6 2.1
30 106.2 4.2
35 107.9 5.8
40 109.6 7.6
50 113.8 13.0
60 119 20.8
70 125.5 33.4
80 132.9 51.5
90 141.3 75.0
100 150.2 100

The heat of vaporization of aqueous hydrogen peroxide at 250 C and 600 C is listed in

table 3.

Table 3. Total Heat of Vaporization of Aqueous H202 (Kirk Othmer, 1979).

H2 0 2  Heat of vaporization cal/g solution
Concentration, wt %

250 C 600C

0 582.1 563.2
20 543.5 526.4
40 503.1 487.4
60 460.4 446.0
80 414.1 401.3
100 362.7 351.3
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2.1.3 Thermodynamics of Hydrogen Peroxide

The values for the number of thermodynamic functions of H2 0 2 can be obtained

from the handbook of chemical engineering data. However, some of these values are

based on the interpretation of infrared spectra, some modifications should be made based

on the latest absorption spectra data. The average heat capacity from 25 to 600 C for 100

% H202 is 0.628 cal/(g) ("C). The heat of mixing of H20 2 and (100%) water ranges from

-590 cal/mole H202 at 00 C to -1110 cal/mole H202 at 750 C. The heat of formation H202

from the reaction

H2(g)+ O2(g)+ H202(g) (9)

at 25"C has been calculated at -32.52 kcal/mole (K&M). The free energy of formation of

anhydrous H202 liquid at 25'C is calculated as -2878 kcal/mole. The heat of

decomposition of pure liquid H202 to water and oxygen at 25*C is -23.44 kcal/mole.

2.1.4 Reaction Mechanism

Depending on the usage, hydrogen peroxide is a versatile and effective oxidizing

agent as a source of active oxygen compared to molecular oxygen resulting from simple

decomposition. The reactions can be simplified to five general types:

1) Decomposition
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2 H202 -2 H2 0 + 02 (10)

2) Molecular Addition

H2 0 2 +Y -Y H2 0 2  
(11)

3) Substitution

H 2 0 2 + RX- ROOH +HX (12a)

or

H20 2 +2RX -> ROOR+2HX (12b)

4) H202 as a reducing agent

H20 2 +Z -+ZH 2 +0 2  (13)

5) H202 as an oxidizing agent

H20 2 +W -+W +H 20 (14)

Undergoing these reactions, hydrogen peroxide may react as a molecule, be

ionized, or be dissociated into free radicals. The mechanism is very complex in many

cases and may depend on the type of catalyst and reaction conditions.

2.1.4.1 Ionization

Hydrogen peroxide exhibits a weakly acidic character, having a dissociation

constant of about 1,5 X 1012 Thus, pure aqueous solutions of hydrogen peroxide have

pH values below 7. The activation hydrogen peroxide might be natural as it exhibits

weakly acidic character in aqueous solutions.
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H o H + pKa= 10- (15)

Depending on the pH of the medium, chemist will be able to generate in huge

concentrations, ionic species having either nucleophilic character (pH>7) or electrophilic

character (pH <7). In alkaline medium, it reacts with hydroxyl anions to give

perhydroxyl anions H00~ according to the following equilibrium equation.

0 H + ~OH & H0~ + H2 0 (16)

This equilibrium is shifted to the right when the basicity of the medium increases. This

emphasizes the nucleophilic character of the peroxidic linkage 0-0, due to formation of

HOO~ anion. This perhydroxyl anion is considered as a supemucleophile as its reactivity

is about two hundred times higher than that of HO anion.

2.1.4.2 Free Radical Formation

Hydrogen peroxide can dissociate into free radicals by breaking either an H-0

bond or the 0-0 bond.

H O
0 ~H O + 0

H 0 - . (17)
0H+H

+ 

+

0 H H0* +0OH

H 0 ~HO' + OH- 18
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Depending on the fact whether the electron pair of the broken bond is shared or

not by the two new entities, the reaction sequence will involve either an ionic or a free

radical pathway as shown in equation 17 and 18. The heat for reaction in equation 17 is

88 kcal/mole and for reaction in equation 18 is about 50 kcal/mole. The later reaction

predominates in uncatalyzed vapor-phase decomposition and photochemically initiated

reactions.

2.1.4.3 Decomposition.

The reaction shown by equation 1 is very important because the stoichiometry

must be controlled at all times when hydrogen peroxide is being manufactured, stored,

shipped and used. In a few application cases, it is necessary to decompose the peroxide

under controlled conditions but in rest cases it is necessary to minimize decomposition as

the release of oxygen, and heat causes safety problems and results in poor efficiency of

utilization, In the absence of any reagent, the HOO~ anion is able to oxidize another

molecule of hydrogen peroxide, by an unstable transition complex that decomposes with

release of molecular oxygen.

H H -H.
+ , 0 H 2 +H 20+HO (19)

U. H O_ "PH H

This decomposition reaction can be completely over ridden in the presence of an

electrophilic substrate. One of the main industrial applications is the synthesis of

aliphatic amine-oxides, which are used in manufacturing of detergents.
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Aminohydroperoxides and aminoperoxides can also be formed very easily at room

temperature starting from ammonia, hydrogen peroxide and a carbonyl derivative.

In acidic medium, hydrogen peroxide is more stable as equilibrium is completely

shifted to the left.

H O H HOO+H* (20)

Due to solvation of protons by hydrogen peroxide oxonium structure is observed as in

equation 21, this structure changes the nature of the peroxide bond and thus increases its

stability.

H H + H H + 21

When the reaction medium contains a substrate, which is more powerful

nucleophile such as and acid, alcohol, ketone or oxometal group protonation occurs on

the latter and a new electrophilic intermediate is generated and reacts with hydrogen

peroxide. This is a very important pathway where peroxidic linkage 0-0 is conserved

and transferred into a new disymmetric molecule, which is, called "peroxycompound"

These reactions are carried out on large scale in industry to manufacture performic acid

or peracetic acid leading to various kinds of epoxides such as soybean oil, linseed oil etc,
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2.1.4.4 H202 as a Reducing Agent.

Hydrogen peroxide will reduce strong oxidizing agents as chlorine, hypochlorites,

potassium permanganate and ceric sulfate

C12 + H2 0 2 -2 HCl + 0 2  (22)

2 KMn 4 +5 H2 0 2 + 3 H2 S04 -+K 2 S 4 +2 MnS04 +8H 2 0+5 02 (23)

2.1.4.5 H202 as an Oxidizing Agent

Hydrogen peroxide is a strong oxidant with standard oxidation potential of 1.8 V

and 0.87 V at pH 0 and 14 respectively. Hydrogen peroxide oxidizes large number of

organic and inorganic compounds. However the mechanism varies greatly with the

reductive substrate, the catalyst used and other reaction conditions. Compounds oxidized

range from iodide ions to organic color bodies of unknown structure in cellulose fibers.

Numerous applications of hydrogen peroxide in removal of organic contaminants

including prevention of odors of sulfides from wastewater collection and treatment units,

removal of sulfites, hypochlorites, nitrites, cyanides, and chlorine are available. It is also

useful to treat gaseous pollutants such as sulfur oxides and nitrogen oxides by conversion

to corresponding acids.
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2.2 Fenton's Reagent

2.2.1 Reaction Mechanism

2.2.1.1 Fenton's Kinetic Model

Fenton (1894) first studied the oxidizing capacity of ferrous salt and hydrogen

peroxide. In studying the behavior of tartaric and racemic acids, a violet color in caustic

alkali was observed. The color disappeared if acid was added. It was noticed that fresh

external air is more active than the room air,.

Fenton performed different experiments using different amounts of ferrous salt

(Fe2 ) and hydrogen peroxides and proposed that iron has a catalytic action on this

reaction, and small amount of iron is sufficient to determine oxidation of unlimited

amounts of tartaric acid. In tartaric acid, he proposed that two atoms of hydrogen are

removed from a molecule of acid with a result in production of dihydroxymaleic acid.

The most oxidizing agent was hydrogen peroxide (others such as chlorine, potassium

permanganate, atmospheric oxygen and electrolysis were also compared).

Fenton's work was extended to alcohols (1899), and organic acids (1910). While

oxidizing monohydric alcohols, they failed to detect aldehyde, which was later explained

by Goldschmidt and Pauncz that Fenton used an excess of hydrogen peroxide in the

work. Attempts to identify the intermediates and products of several organic acids and
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alcohols were made, but there was no explanation as to why the phenomenon was taking

place.

2.2.1.2 Chain Reaction Mechanism by Merz and Waters (1947)

Goldschmidt and Pauncz (1933), showed that the reaction was not due to

peroxides of iron and considered that the process was a chain reaction involving the same

reactive intermediate as the one concerned in the catalytic decomposition.

2H202= 2H 2 0 +02 (24)

It was also showed that the ratio (alcohol oxidized/Fe 2+ oxidized) could be greater

than unity. Baxendale, et al., (1957) showed that hydroxyl radical concerned in initiating

the chain polymerization of olefins by hydrogen peroxide was identical with that which

effects the rapid oxidation of glycollic acid. It was confirmed by Merz and Waters

(1947), that the simple water soluble alcohols are oxidized rapidly by Fenton's Reagent,

the primary alcohols oxidized to aldehydes which further oxidized at comparable rates by

exactly the same mechanism. Merz and Waters (1947), proposed the mechanism of

oxidation of alcohol's and aldehydes with sodium persulphate, hydrogen peroxide and

excess of ferrous salt as follows:

1) Chain Starting:

Fe 2++ H202= Fe 3+ + OHf+ OH (25)
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2) Reaction Chain:

RCH 2 OH + OH = R-CHOH + H-OH (reversible) (26)

R-CHOH- + HO-OH = R-CHO + OH{ + H20 (27)

3) Chain ending at low substrate concentration:

Fe2+ + OH = Fe3 + O (28)

4) Chain ending at high substrate (alcohol) concentration:

2R-CHOH = R-CHO + R-CH2OH (disproportionation) (29)

In 1949, Merz and Waters determined the values for ratio of rate constants k2/k3

that indicated which particular radical reduced hydrogen peroxide. They grouped

compounds in three classes, those reacting by chain process, where only small amount of

reducing agent is required, those reacting by nonchain process, where all oxidation is

effected by hydroxyl radical and there is considerable loss of hydroxyl radical and those

reacting negligibly with Fenton's Reagent. The rate of reaction of organic radical for

chain reaction was given as follows:

d[H 2 0 2]/d[RH] = 1 + k2[Fe 2+]/k 3[RH] (30)

and for non chain reaction was given as follows:

d[H 2 0 2]/d[RH] = 2 + k2[Fe 2+]/k 3[RH] (31)
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They were able to determine values for the ratio of rate constants k2/k3 and to

indicate whether a particular radical reduced hydrogen peroxide from intercept of their

graphs.

2.2.1.3 Redox Formulation by Barb et al (1951)

Barb et al. (1951) gave the redox formulation, which involved the reaction

sequence as follows:

ki
Fe3+ + H202 = Fe2+ + H2- +H+ (32)

k2

Fe2+ + H20 2 = Fe3++ OT + 01 (33)

HO + H20 2 = H20 + HO2  (34)

k4

H2 + Fe3 = Fe2 ++ H + 02 (35)

k5

HO2 + Fe2 = Fe3+ + OH2 (36)

OH + Fe2 = Fe3+ + OT (37)

where k1 and k2 showed inverse [H+] dependence.
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2.2.1.4 Complex Mechanism by Kremer and Stein (1963)

The scheme presented by Kremer and Stein (1959), was elaborated by Kremer

(1963), which involved the following sequences:

ka
Fe3+ + H2 02e> Fe0H 2+ + H* (C1) (38)

kb
Fe0H 2

+ = HO + Fe0 3 + (C2) (39)

Fe0 3 + H20 2 = Fe3 + H20+0 2  (40)

where C1 = H* and C2 = Fe0 3 + and ka and kd showed inverse [H+] dependence and kb

ka>>kc, so C1 could be taken as a low concentration intermediate to a good approximation

[C1] = K[H202] [Fe3+], K=ka/kb (41)

[Fe3+]t = [C 2] + [Fe 2+] (42)

-d[H 2 0 2]/dt = keK[Fe3+]t [H202] + (kd-koK) [C 2 ] [11202] (43)

d[ 2/t = kd [C2] [1202] (44)

d[C2 ]/dt = kjK [Fe3+]t [H202] - (kd + k K) [C 2] [H20 2] (45)

[C 2 ] rises continually during reaction approaching a saturation value kCK[Fe 3 ]t/(k K+kd)

and -d[H 2 0 2 ]/dt will always be greater than twice d[0 2]/dt. At the end of the reaction
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some hydrogen peroxide will be stored as C2, less than one-half mole of 02 will be

liberated per mole of H2 0 2 decomposed.

2.2.15 Walling's Modified Kinetic Model

Walling and Kato (1971), modified this reaction mechanism model proposed by

Mertz and Waters (1949) as follows:

Fe2+ + H20 2 = Fe3+ + OK + OH k1= 76 (46)

OH+ Fe2+= Fe+ +0 k2=3 x 10 8  (47)

k3i
0H + RiH = H20 + RF (48)

k3j
OH +RH=H 2 0 + R (49)

k3k
OH + RkH=H 20 + R k3 = 107-101 (50)

Ri + Fe3+ = Fe2+ + product (51)

k5

2Rj= product (dimer) (52)

R- + Fe2+ = Fe 3
+ + RkH (53)

where k's in L/mol. sec from literature. The reaction conditions were chosen to minimize

the competing processes as follows:
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HO + H202 H20 + H2 k= (1.2-4.5) x 1O7(54)

2110 = H202 k=53 x 109 (55)

Thus the stoichiometry was given as follows:

R= 2ar (1-R)+ b (56)

where R = A[Fe 2+]/2A[H2 0 2], r = [Fe 2+]/2[RH], a = k2/Xk 3, b = (k3, + 2k3k)/2X k3

This mechanism is referred as 'Free Radical Mechanism'.

2.2.1.6 Ingles Approach

In 1972, Ingles studied Fenton's Reagent using redox titration and supported

Kremer's 'complex' mechanism theory. It was concluded that when suitable complexes

are formed, substrates are not oxidized by free radicals. A new mechanism involving

electron transfer was proposed.

Fenton's reaction scheme was modified by Ingles when substrate was present in

large amounts in the form of substrate-iron-peroxide complexes, and suggested that

electron transfer occurs within this complex. All substrates were considered to compete

as ligands in iron complexes and to modify the reaction characteristics of each other and

of the complex. The reaction in equation 41 yields hydroxyl radical thus sequence of free

radical mechanism previously proposed by walling appears to be possible. However, the
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reaction in equations 41, 42, 41a, and 42a involved electron transfer and did not lead to

formation of hydroxyl radicals. Equations 43 and 43a involve ionic mechanism.

R-F OH FedR -Fe T -O + 'OH (41)

R F OCH RI + Fe =O + Off (42)

R- O 4 H R' + Fe 1 -O + Off (42a)

F -'H R Fet =O + Off+R 2  (43)

2

R Fe I R-FeM=0 + H+ R2 (a
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3 LITERATURE REVIEW

3.1 Oxidation Kinetics and Mechanisms of Aliphatic Organic Pollutants

3.1.1 Trihalomethanes (THM)

Trihalomethanes (THMs) are priority pollutants listed by EPA. They are

recalcitrant in nature, thus their destruction is difficult. The most commonly encountered

THMs in drinking water concerned to human health are chloroform,

bromodichloromethane, dibromochloromethane and bromoform. Tang and Tassos

(1997) studied oxidation kinetics and mechanisms of trihalomethanes. This study mainly

focused on the above mentioned four THMs.

Effect of H2O2 :Fe 2+ on oxidation kinetics, oxidation kinetics of THM mixtures,

and effect of number of chlorine atom in a THM on its oxidation was investigated. Since

bromoform is among the easiest to be oxidized of the four THMs, it was used to study the

effect of Fenton's Reagent ratio on the oxidation kinetics. Bromoform concentrations

used were 49.2, 98.3 and 295 pg/L. It was observed that as the ratio of H2O2 :Fe2+

increased the removal increased at equilibrium, with increasing initial concentration of

bromoform. This may indicate the hydroxyl radical had a preference towards organic

compound resulting in proportionally less scavenging effect by H2O2 :Fe 2 + and MeOH.

For higher H2O2 :Fe 2+ ratio of 10:1, the amount of bromoform removal appeared to show

dependence on initial bromoform concentration. As initial organic substrate
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concentration increases, less scavenging of OH Occurs. It was observed that at

H2O2 :Fe2+ ratio of 100:1 bromoform removal was only 25%, while at a ratio of 5:1, 83%

removal was observed. As the ratio decreased from 5:1 to 2:1, no increase in removal of

bromoform was observed. Thus, optimum ratio needs to be maintained to achieve

maximum degradation. Both H202 and Fe2+ are able to scavenge hydroxyl radicals

generated through Fenton's Reagent, if any one of them is not present in optimum dosage

it has an ability to scavenge hydroxyl radicals and reduce its availability to the substrate.

Oxidative destruction of THM is more difficult because THM is a saturated aliphatic and

has only one C-H bond, so oxidation is solely due to hydrogen abstraction, which is more

difficult than hydroxylation in reacting with unsaturated compounds. This may require a

higher concentration of hydroxyl radicals, which implies that higher concentrations of

Fe2+ and hydrogen peroxide are needed. Hydroxyl radicals are also scavenged by organic

compounds as well as chloride and bromide ions, which could be shown by the following

reactions:

OH + RH-* H 2O + R (60)

OH+R ROH (61)

CHBr 3 + OH -+ 'CBr 3 + H20 (62)

CBr 3 + OH -+ HO-CBr 3  (63)

HO=CRr3 + OH' -+ O=CBr 2 + H20+ Br (64)

Br + OH- BrOHT (65)
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The inhibitory effect of chloride and Bromide ions is not significant unless free

ion concentration exceeds a range from 1 X 10- to 5 X 1O2 M. Dehalogenation is

believed to be a slower process than oxidation of the parent compound, the proposed

general reaction is as follows:

OH

THM + OH -4 halogenated intermediates -+ X~+CO 2+ H2 0+end products (66)

There were fluctuations in bromoform concentration even after triplicate runs this was

explained by recombination of bromoform radical as follows:

CHBr3 +OH - CBr 3 + H 20 (67)

Fe2+ + CBr3 + H+ - Fe3 + + CHBr 3  (68)

This recombination requires either the presence of hydrogen radicals (I) or the presence

of both Hi and e. As the experiments were carried out in acidic conditions (pH=3.5),

electron transfer was possible because Fenton's chemistry does not generate hydrogen

radical Huang et al. (1993).

During the kinetic studies of THMs, it was found that the oxidation rates for

bromoform were slower than the oxidation rates of unsaturated chlorinated aliphatic

compounds such as TCE, because the hydroxylation rate constant of TCE was lO9Mals1

and hydrogen abstraction of bromoform was 1.1 X 18 M4 s1. Hydroxyl radicals react

with aromatics and alkenes through hydroxyl addition to double bonds, while hydrogen

atom abstraction of saturated organic compounds is slower than hydroxylation. No
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oxidative destruction of chloroform by Fenton's Reagent was experimentally observed,

because both H2 0 2 and Fe2
+ had about one magnitude higher rate constant with respect

to hydroxyl radicals than chloroform.

The effect of number of chlorine atoms in a THM molecule on its oxidation

was studied by Tang and Tassos (1997). It was observed once again that oxidative

destruction decreases as the number of chlorine atoms present in substrate molecule

increases. It was found that the relationship between removal rate and number of

chlorine atoms was linear. This phenomena was contributed by the fact that the bromine

substituents were better leaving groups than chlorine substituents (Solomons, 1988).

Another consideration was electronegativity and bond energy. An equation in which

bond energy between atoms A and B is given as a function of electronegativity is given

by Sharp (1990) as follows:

DA= 0.5 (D + DBB) + 23 (XA-XB) 2  (69)

where DAB, DA, and DBB are the bond energies between A and B, A and A, and B and B

respectively. Bond energy decreases as electronegativity decreases. Thus ease of

dehalogenation of an organic compound is directly proportional to bond energy between

carbon and halogen atoms, 95 and 67 Kcal/mol for C-Cl and C-Br bonds, respectively.

Therefore, brominated compounds were more easily oxidized than those containing

proportionately more chlorine (Tang, and Tassos, 1997).
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3.1.2 Hydroxymethanesulfonic acid

Hydroxymethanesulfonic acid (HMSA) is a complex formed from formaldehyde

and S(IV) in solution, it has a high resistance to oxidation, such as oxidation towards

hydrogen peroxide and oxygen as well as ferric ions and oxygen. It was found in

atmospheric liquids, i.e., rain and snow. Martin et al. (1989), first studied oxidation of

HMSA. It was proposed by Graedel et al. (1985) that Fenton's type reactions are

possible in atmospheric liquid water.

Martin et al. (1989) studied the oxidation of HMSA by Fenton's Reagent to look

at the decomposition of hydrogen peroxide, decomposition of HMSA, estimation of

absolute rate of reaction with hydroxyl radical. In the laboratory experiments, it was

shown that decomposition of hydrogen peroxide was the first order processes and was

measured by oxygen evolution. The decomposition of hydrogen peroxide can be

kinetically described as follows:

-d(H 2 0 2)/dt = k (Fe 2+) (H202) (70)

where k was 0.044 M 1 sI at pH 2 and temperature 25"C:

The actual oxidation rate by free radicals was established by subtracting the rate

of formation of S 4
2 (from decomposition of HMSA) from the observed Fenton's rate.

The rate of decomposition of HMSA was observed to be the first order and the shape of
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the curve suggested that doubly ionized HMSA decomposed more readily than singly

ionized HMSA. The rate levels off until second ionization is complete and this would

occur at high pH. Similar experiment was performed for acetaldehyde-bisulfite complex

HESA and it was seen that acetaldehyde complex, HESA, should not be as effective as

HMSA at protecting S(IV) from oxidation. Fenton's Reagent studies were carried out at

different pH of 1, 2, 3 and 4. Results showed that the oxidation was a first order process

with respect to different initial Fe2+concentration and different pH at 101M H202 and 10-2

M HMSA, At higher concentrations of iron ion, there was a slight fall off that was

attributed to less hydrogen peroxide and thus less hydroxyl radicals in the system.

Similar experiments were carried out at different initial hydrogen peroxide concentrations

and the oxidation was seen to be of first order, but at larger concentrations it deviated

from first order due to lesser amount of Fe 2 +. With the pH studies, it was observed that

maximum oxidation rate occurred at pH 3.5.

The data from pH 1 to 3 were approximated by an empirical rate law as follows:

-d(HMSA)/(HMSA) dt =k (Fe2+) (H)' (H20 2)2/3  (71)

with k-1.4 0.2 X 103 (1/mol) 2/3 s-, thus if assumed that 10 5M H20 2 and 106 M Fe are

present at pH 3, the oxidation rate was 2.3 X 104 % h1 (very low).

Oxidation of HMSA was studied relative to pinacol to estimate absolute rate of

oxidation of HMSA with OH radicals in solution. Pinacol oxidizes to acetone in
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Fenton's oxidation. The rate of reaction of OH radicals with pinacol (k=3.2 X 10 M's')

and acetone (k=4.3 x 10 7 M's®) were reported by Anbar and Neta (1967). Oxidation

rates of pinacol (10" 2M), pinacol-HMSA (102 M each) and HMSA alone, with Fe2+ = 104

M, H2 0 2 = 0.1 M and pH of 2 was studied. Oxidation rates for each molecule were

different in separated and mixed reactions as steady state concentration of free radicals

depends on chemistry of organic substrates in solution. Thus, the work was concluded on

basis of the assumption that HMSA is more reactive than pinacol by factor of 3.9 0.8.

Thus, if absolute rate of reaction of pinacol with OH radicals was taken as 3.2 X 108 M1

s4 then:

HMSA + OH products (72)

and k = 1.25 0.25 X 109 Ms-1. This rate constant suggested that HMSA may be

consumed fairly rapidly in tropospheric clouds as OH from other sources should be

abundant to give a large reaction rate.

3.2 Oxidation Kinetics and Mechanism of Aromatic Organic Pollutants

3.2.1 Phenolic Waste

Phenolic wastes are one of the most prevalent forms of chemical pollutants in

industry. The major sources of phenolic waste are insulation, fiberglass manufacturing,

petroleum refineries, textile mills, steel making, plywood, hardboard, organic products
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manufacture, paint stripping, and wood preservatives. Eisenhauer (1964) first studied the

oxidation of phenolic wastes with Fenton's Reagent. It has been demonstrated that the

oxidation phenol involves the intermediate formation of catechol and hydroquinone

which are formed by ferric ion formed to corresponding quinones (Merz et al., 1949;

Stein et al., 1951 and Wieland et al, 1928). Catechol can be oxidized in high yield to

muconic acid by hydrogen peroxide and ferrous salt (Pospisil, 1957). Thus Eisenhauer

showed that phenol oxidation proceeds according to the following equation:

O OH

OH 0 COOH

OH Fe
3+ OH COH

I (73)

Preliminary experiments were carried out with pure phenol solutions in distilled

water at a concentration of 50 ppm. Experiments were carried out at pH 3 and at a

temperature of 10 C. It has been demonstrated that oxygen, provided by bubbling air

through the reaction mixture plays a major role in reaction, by increasing reaction rate

and driving the reaction to completion. As noted in table 1, optimum results were

obtained when reaction was carried out using one mole of ferrous salt and three moles of

hydrogen peroxide per mole of phenol. Optimum results were obtained in pH range of 3

to 4 as seen in Figure 1.
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Figure 1. Effect of pH on Oxidation of phenol with Fenton's Reagent

(Eisenhauer, 1964)

Substituted Phenols

The oxidation of a number of substituted phenolic wastes by Fenton's Reagent

was first studied by Eisenhauer (1964), and was carried out in the same manner as for

phenol. It was observed that the greater the degree of substitution, the slower was the

rate of reaction, especially when substituents were ortho and para directing. When all

available positions were blocked, as in case of pentachlorphenol, no reaction occurred.

Halophenols were rapidly oxidized, and the reaction rate in decreasing order was given

by Cl>Br>I, which is attributed to electronegativity of halogen group. Phenols

containing meta-directing groups such as carboxyl and nitro groups were very rapidly

oxidized by Fenton's Reagent and methyl substituted phenols (Cresols) were more

resistant to oxidation. Effluents from refinery, steel plant and insulation plant were

treated. Refinery effluent was stripped and the ratio of H20 2/Fe2+ was 9:1 per mole of

phenol, which completely removed the phenol. Steel plant effluent contained some
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cyanide, which interfered with the reaction, and 16 moles of hydrogen peroxide per mole

of phenol decreased the phenol level to 35 %. For insulation plant Fenton's Reagent was

successful in reducing phenol and COD.

Edward et al. (1978) studied eighteen different phenolic compounds. The

reaction was started at pH 5 to 6 as the pH decreased in the system due to the generation

of protons by Fenton's Reagent. Table 4 indicates that all the mono substituted phenols

were readily oxidized within one hour. The effect of oxidation of di-substituted phenols

was dependent on character and position of ring substituents. Dichlorophenols, were

readily oxidized than electron donating substituents of dimethyl phenols. Since Fenton's

Reagent is a free radical mechanism, any substituent that increases the electron density of

the ring will slow the reaction. So methyl phenol, with an electron-donating group will

oxidize slowly. Variations in catalyst conditions were also studied for phenol reduction

as shown in table 5 and 6.

It was recommended that catalyst concentration levels from 10-20 g/g iron ion

should be used for phenolic wastewater no greater than 2000 pg/g. Higher phenol

concentrations require at least 100:1 phenol: iron ratios and optimum results occur when

phenol solution is initially at a pH between 5 and 6.
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Table 4. Oxidation ofPhenolic Compound, 3:1 Hydrogen Peroxide:iPhenol, Mole

Ratio (Edward et aL., 1978)

Phenolic Compound % Oxidized-1 hr (No Fe2+) % Oxidized-i hr (with Fe2 )

Phenol 0 100
2-Chlorophenol 9 100
3-Chlorophenol 50 100
4-Chlorophenol 20 100
2, 4-Dichlorophenol 0 100
2,5-Dichlorophenol 2 74
Pentachlorophenol 6 100
o-Cresol 0 100
m-Cresol 0 100
p-Cresol 6 100
2, 4-Dimethyl phenol 10 72
2, 5-Dimethyl phenol 6 0
2-Nitrophenol 34 100
4-Nitrophenol 0 100
2, 4-Dinitrophenol 2 30
2, 5-Dinitrophenol 10 73
a-Napthol 8.5 100
b-Napthol 9.5 100

Table 5. Variation of Catalyst Conditions (Edward et al., 1978)

% Reduction
Iron Phenol:Iron H20 2 :Iron 15 min 30 min 60 mi

50 ptg/g Fe 1:1 3:1 100 100
50 pgFe+3 96 100 100
50 pg/g Fe+2  2:2 6:1 97 100 100
50 pg/g Fe 3  92 98 100
50 jg/g Fe 2  10:1 30:1 91 99+ 99+
50 pg/g Fe 94 97 99+

Initial Conditions: 50 jg/g phenol, 150 g H202, pH= 5-6, T= 25' C
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Table 6. Variation of Catalyst Conditions (Edward et al., 1978)

% Reduction
Iron Phenol:Iron H20 2 :Iron 15 min 30 min 60 mi

5 pg/g Fe 2  100:1 300:1 85 91 95
5 pg/g Fe+3  79 93 99
1 pg/g Fe+2  500:1 1500:1 42 66 70
1 pg/g Fe+3  21 51 70

Initial Conditions: 500 pg/g phenol, 1500 jtg/g H202, pH = 5-6, T = 25 0C

Barbeni et al. (1987) studied five different chlorophenols and compared their half-

life. They demonstrated that the appearance of chloride ion is independent of the

disappearance of parent organic during Fenton's oxidation of 2-chlorophenol and it took

30 minutes to oxidize 50 mg/i of aqueous chloro-phenol (CP). Table 7 summarizes the

time necessary to reduce the initial concentration of CP in solution by a factor of two and

is a practical operational parameter, which should not be confused with kinetic parameter.

Table 7. Half lives (t/2) of Decomposition of Various Chlorinated Phenols

[Fe2+1 = 5 X i04 M, [H2021 = 5 X 10_ M, [CP] = 3 X 0~4 M (Barbeni et al., 1987)

Compound t/2 at 5 X 101M T/2 at 1.5 X 10-2 M
HclO4 (mm) HlO4 (mm)

3- Chlorophenol 6.5 34
2-Chlorophenol 14.5 125
4-Chlorophenol 12.5 180
3, 4-Dichlorophenol 6.3 16
2, 4, 5-Trichlorophenol 12 36
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Thus, among monochlorphenols meta chloro substitution induces more rapid

degradation than either of ortho or para substitution. The formation of Cl~ was slower

than the disappearance of the 3, 4- DCP which suggested that chloroaliphatic

intermediate(s) may be formed after the opening of benzene ring and the time lag

between appearance of Cl~ ion disappearance of phenol depends on the number of chloro

substituents on aromatic ring. Experiments were also carried out at different ferrous

concentrations. It was found that increasing ferrous concentration in solution for a fixed

hydrogen peroxide at 5 X 10 M increased the rate of decomposition. Similar

experiments were also carried out with ferric ions. It was observed that when equimolar

amount of ferrous and ferric ions were used in same reaction mixture the reaction rate

(t/2) ~ 20 min where as it was 50 min if only ferrous ions were used, thus ferric ion is

an important species in the degradation process.

Barbeni et al. (1987) suggested that the hydroxyl radicals formed as a result of

reaction between Fe2 + and H2 0 2 are good electrophiles. The electrophilic interaction of

OH with aromatic ring is favored by the presence of activating substituent (OH).

H

(OH) ClC6 H3H + OH - (0H)CC'6 H 3  (74)

OH

(OH)CIC6H3H(OH) -> (OH)C1C6H3 H + Hi (75)

The degradative oxidation of chlorophenols proceeds by a hydroxylated species (reaction

74 and 75) followed by ring opening to yield aldehydes and ultimately degradation
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occurs to CO 2 and Cl-. It was suggested that the first step was the formation of radical

cation by acid- catalyzed dehydration of radical formed between the interaction of OH

with chlorophenos.

Oxygen acts as radical scavenger and forms HO 2. This HO 2 species successively

reacts with either Fe2
+ and Fe 3 to regenerate H20 2 and Fe2+ as shown in reaction in

equations 76, 77 and 78

OH OH OH

+ 2 H + HO 2  
(76)

F2+ 3
Fe + H0 2  - Fe + HO - H20 2  (77)

Fe +02--- Fe2+ + H+ + 02 (78)

Potter and Roth (1993), examined the oxidation kinetics of three

monochlorophenol isomers and five of the six dichlorophenol isomers under batch and

semibatch conditions. pH was maintained at 3.5 and the ultimate oxidation to CO 2, H2 0

and HCI was not reached but the extent of oxidation could be estimated from the

measured parameters (Potter and Roth, 1993). The mechanism of oxidation of these

species is important in determining if kinetics is feasible. The proposed reaction pathway

suggested by Potter and Roth is as follows:
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Fe2+ + H20 2  Fe 3  + OH + HO"

0 FOH H Fe3+ + Fe2+

Phenol Dihydroxybenzyl Catechol Ferrous
Radical

Fe 3 +

Ferric Catecholate

H 2 0 2  H

Oe 3+ -

002Fe2+ + Fe Fe3H

Figure 2. Reaction Pathway for Oxidation of Phenol (Potter and Roth, 1993).

Two possible pathways for mineralization of p-Chlorophenol had been proposed.

First, Metilitsa (1971) proposed mineralization by substitution by hydroxyl radical.

Second, Pieken and Kozarich (1989) proposed the route by elimination. Following are

the proposed routes.
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Fe2+ + H20 2  Fe(OH) 2
+ + HO*

Mineralization by Substitution

Cl HO Fe2  HO + Cl + Fe3
OH OH OH

p-Clhorophenol Hydroquinone
HO L- ----------------------

c>KOH:
Fe3+ Mineralization by EliminationI t

CC Ot ~

C OH Fe 3+ - O Fe 3+ Q0

O 0 0 Lactone

4-Chlorocatechol Chloromuconic Acid +
a t

1 CF

Figure 3. Two Possible Pathways for degradation of p-Chlorophenol

(Potter and Roth, 1993).

The experiments conducted by potter and Roth showed agreement to previous

work that monochlorophenols tend to mineralize to a greater extent than dichlorophenols,

which was carried by Edward et al. (1978) and Barbeni et al. (1987). They showed that

mineralization may be favored as the initial concentration of organic species decreases,

and mineralization occurs primarily with daughter products.
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Rate constants of 2, 4- Dichlorophenol (DCP) and 2, 4, 6-Trichlorophenol (TCP)

were determined by competitive method by Tang and Huang (1996). The equation used

to calculate the rate constants is as follows:

k Ho..,= k 1ioR * In ([S]/[S]o)/ In ([R]/[R]o) (79)

where:

k HO, s= rate constant between any organic compound and hydroxyl radical

k HO, = rate constant between reference compound and hydroxyl radical

[S] - concentration of the substrate at any time

[So] = initial concentration of the substrate

[R] = concentration of the reference compound at any time

[R] = initial concentration of the reference compound (2-CP)

t

It was observed that the oxidation rate decreases with increasing degree of

chlorine content according to the following order in terms of both elementary rate

constants and the observed pseudo-first order rate constants as 2-CP > 2, 4-DCP > 2, 4, 6-

TCP. In their work, the oxidation rate constant between hydroxyl radicals and 2, 4-DCP

was 7,22* 109 M's'- and 2, 4, 6-TCP is found to be 6.27*109 Ms-1. The optimum pH

was found to be 3.5.
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Pentachlorophenol

Pentachlorophenol, a widely used wood preservative is considered to be

moderately biorefractory with a biodegradation rate constant of 3 X 10®12 L/cell.hour, a

log K.w of 5.01 and a vapor pressure of 1.1X 104 mm Hg at 200 C. Watts et al. (1990)

carried out completely mixed batch tests by treating pentachlorophenol contaminated

soils with Fenton's Reagent. The soil characteristics are shown in table 8.

Table 8: Soil Characteristics (Watts et al., 1990).

Soil I Soil I
Classification Ramona soil Ramona Soil

A horizon; C horizon, fine-loamy,
Fine-loamy, mixed, Mixed,

Thermic, typic Thermic Haploxeralfs
Hploxeralfs

Crystalline Fe Oxides (%) 0.46 0.28
PH 8.00 8.00
Organic Carbon (%) 0.58 0.05
Cation Exchange Capacity 5.34 4.32
(meq/100 g)

Mineralization of PCP was studied in commercially available silica sand and two

natural soils by removal of parent compound and total organic carbon with corresponding

stoichiometric recovery of chloride. Figure 4 shows the rate of reaction as a function of

pH.
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Figure 4. Effect of pH on the Rates of Fenton's Treatment of Pentachiorophenol

(Watts et al, 1990).

It was reported that the soluble iron concentration decreased over the first three

hours of treatment and the concentration remained relatively constant there after. A

possible mechanism for iron precipitation was defined as follows:

Fe 2++ 1/2 02+2 0H y-FeOOH + H20 (80)

which has a reaction half-life of 25 minutes at neutral pH (Sung and Morgan, 1980).

Hypothetically the decomposition rate of Fenton's system is zero because the production

of hydroxyl radical should approach steady state. However, in this experiment the

decomposition rates were not linear. Watts et al. (1990), proposed zero, first, and second

order kinetic models, but concluded that first order was the best with r2> 0.9 for plots of

the natural logarithm of concentration as a function of time. They observed that the
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reaction occurring in Fenton's system are complex. However, the empirical fit of

experimental data to the first-order model provided the most accurate means of

comparing different treatment conditions. The tests also showed that organic carbon was

removed rapidly after PCP degradation, which illustrates that hydroxyl radical attack on

the products is more rapid than on the parent compound. It was also observed that the

addition of Fe2
+ significantly increased the degradation rate constant at low pH. Table 9

shows the results of the kinetics at different pH levels with or without soluble iron

addition.

Table 9: Fenton's Reagent Treatment Efficiencies (Watts et al, 1990).

kPcp
kH2o2

PH 2 3 4 5 6 7 8

Silica + Fe 13.7 25 10.5 11.6 0.9 1.2 1.1
Soil 1 no Fe 12.5 4 6.7 0.67 0.63 0.18 0.12
Soil 1 + Fe 5 3.4 2 1.4 1 0.13 0.082
Soil 2 no Fe 8 17.6 2 11 4.5 1.1 0.36
Soil 2+ Fe 7.3 11.3 8.2 4.6 3.7 0.72 0.3

Based on the first order rate constant for PCP degradation, at pH 3 five hours

were required for 99% PCP degradation with Fe2+ addition, and 39 hours without Fe2+

degradation.
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Nitro Phenols

Nitrophenols are persistent pollutants and commonly found in industrial

wastewater. Degradation of nitrophenols to less dangerous materials or mineralization is

difficult process involving biodegradation or oxidation via natural processes.

Nitrophenols are commonly found in degradation of pesticides such as parathion and

nitrofen. The corrosive materials found in sewage plants and are recognized as priority

pollutants.

Studies conducted by Kiwi et al. (1994) showed efficient photo and dark

oxidation via Fenton-like reactions on 2 and 4-nitrophenols. Photolysis of acidic

solutions of H20 2 give OH radicals as primary photoproducts (Baxendale and Wilson,

1957) as follows:

hv

H2 0 2 -+ 20H (81)

along with small amounts of HO2 radicals:

hv
H202 -+ H + H0 2  (82)

The irradiated 2-nitrophenol forms a triplet state that reacts with H20 2 (Kiwi, et al.,

1993).
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HO C6H4 - N0 2*+11202 -+ HO - C6H9 - NO2H + H12 (83)

Irradiation results showed that photoproducts were formed as hydroquinones,

benzoquinones and nitrophenols. Under experimental conditions Fe3+ ion is known to

promote decomposition of H2O2 as follows:

Fe3+ +1H202 -+ HO2 + H+ Fe (84)

or according to the mechanism

hv
Fe3 ++ H20 -> HO' + H++ Fe2+ (85)

with Fe2+ ion additionally producing OH radicals as follows:

Fe2 + H20 2 -> H + +Fe3 + (86)

Degradation of 2-nitorphenol using different conditions as direct photolysis, some Fe3 as

catalyst, H2 0 2/dark and H2 0 2/light was studied and the results are shown in Figure 5. The

effect of temperature was studied and was found to be beneficial on light activated

degradation. The time was reduced by 40% for dark processes and 50% for similar

processes under light. 2-nitrophenol degradation could be induced by sunlight where

temperatures above 30*C are available in nature under favorable conditions. Light
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improves reaction 86 of the system Fe2+-H2O2 significantly. The degradation of 2-

nitrophenol seems to favor the regeneration of Fe2+-ions in reaction in equation 87. Fe2+

produces OH radicals than the dark Fenton system where Fe 2+:OH Ratio is 1:1.

45 - - - - - - - - - - -

40

E 35
30

E 25
20

S15
10

0
0 10 Time (hrs) 2 0  30

* Direct light, U Fe-ion light, A H202 dark, X H202 light.

Figure 5. Photodegradation of 2- nitrophenol (Kiwi et aL, 1994)

The overall oxidation of 2-nitrophenol by OH radicals could be expressed as

follows:

-H

O2N - C6H4 - OH+ OH-+ O2N - C6H3 - (0H)2

- intermediates -+ CO 2 +1120 + H ++N / N03NO (87)

the overall reaction is written as follows:

C6H5NO3 + 6 'OH(3H2O2)+ 11/2 02 -+ 6C0 2 +5 H202 HNO3 (88)
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Reaction in equations from 84 to 88 show that only H2 0 2 is consumed during the light

degradation process present in the following reactions:

Fe2++ H20 2  Fe+ OH + Of (89)

H+ Fe3 ++ OH -> 1OH + Fe2 + + H+ (90)

( H + H20 2 -+ @ 0H1+ H20 (91)

It was observed that two processes were taking place side by side leading to the

degradation of 2-nitrophenol. This process is represented by Kiwi et al.. (1993) in Figure

5. It was considered that the overall rate for TOC or DOC degradation at 600 C in the

first 2 hours was 10 times faster than the rate subsequently observed for this reaction

between 2 and 5 hours. It was also observed that under light, 4-nitrophenol degradation

proceeded two times faster than 2-nitrophenol. The rates of OH oxidation are about the

same for both compounds. In a benzoic ring the nitro withdrawing effect is preferentially

marked in ortho and para positions and in 2- nitrophenol hydroxylation of 6 position

leads to dihydroxy compound as shown in figure 6. In case of hydroxylated 4-

nitrophenol, the two bonds between adjacent- OH groups might undergo easy oxidative

scission but in 2-nitrophenol only one bond of this type is found in hydroxylation. This

explains why the photo-Fenton degradation observed for 2-nitrophenol proceeds at about

half the rate than the homologue 4-nitrophenol.
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OH OH
N02 OH N 2

~~+OCO2 + HO2
k

OH

0H4 k2

N 2

+ CO 2 + H20

k3

[Aliphatic compounds] + CO2 + H20

H*/NOj + CO2 + H20

Figure 6. Degradation pathway of Nitrophenol (Kiwi et al, 1994)

3.2.2 Benzenes

Chlorobenzenes have been widely used as solvents, degreasing agents, pesticides,

and dielectric fluids and as industrial precursors in production of phenols, DDT, aniline

and dyestuff intermediates. Chlorobenzenes represent a unique class of compounds

because their hydrophobicity increases with chlorine substitution, while the rates of

hydroxyl radical attack on the ring are nearly equal regardless of the degree of

chlorination (Watts, et al., 1997). Sedlak and Andren (1991) investigated the degradation

of chlorinated aromatic hydrocarbons (CAHs) by Fenton's Reagent using bench scale

experiments. Twelve different intermediates identified during oxidation were 2-

52



Chlorophenol, Chlorobenzoquinone, 3- Chlorophenol, 4-Chlorophenol, 2, 2 -DCB, 2, 3'-

DCB, 2, 4'-DCB, 3, 3'-DCB, 3, 4'-DCB, 4, 4'-DCB, MHClBps and DHClBps. Figure 7

shows the result of oxidation of chlorobenzene by Fenton's Reagent at Ferrous

concentration of 0.5 mM and pH of 3.

Chlorobenzene and all intermediate products (Figure 8) disappeared in the first 2

hours of reaction. The experiment was conducted in the presence of oxygen at pH 3, and

approximately 5 mol of H202/ mol of chlorobenzene was required to completely remove

the aromatic intermediates from solution. Reactions in the absence of oxygen yielded

much higher concentrations of dichlorobiphenyls when compared to those in air. DOC

analysis indicated that the aromatic intermediates undergoes ring cleavage prior to

mineralization. The reaction almost ceases after approximately 4 hrs, this is shown by

stabilization of DOC concentration, pH, and Fe2+ and can be due to the inability of many

ring-cleavage intermediates to regenerate Fe2e+ The reaction mechanism is shown in

Figure 9.
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Chlorobenzene U Total Chlorophenols, AChlorobenzoquinon

Figure 7.Oxidation of Chlorobenzene wit Fenton's Reagent

(Sedlak and Andren, 1991)
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Figure 8. Formation of Three Dichiorobiphenyl Isomers during Oxidation of

Chlorobenzene (Sedlak and Andren, 1991)
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H20 + 3
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Cl C

H+H20 I0 + HO2

Figure 9. Proposed Reaction Pathway for Oxidation of Chlorobenzene by

Fenton's Reagent (Sedlak and Andren, 1991)
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The first step in this sequence is the hydroxyl radical attack on chlorobenzene

(reaction 2), which likely results in the formation of chlorohydroxycyclohexadienyl

(CIHCD) radical I (Dorfman et al., 1962, and Eberhardt and Yoshida, 1973). This may

undergo one of several possible further reactions. In the absence of strong oxidants, two

predominant reactions are dimerization to produce dichlorbiphenyls (reaction 3) and

bimolecular disproportionation to produce chlorophenol and chlorbenzene (reaction 4).

Both reactions showed the stoichiometry of 2 mol of H2 0 2/mol of chlorobenzene

oxidized. In the presence of oxygen or strong oxidants several additional reactions

contribute to product formation. Reactions of oxidant with CICHCD radical (reactions 5

and 6) predominates because they are first order with respect to C1CHCD radical, where

as reactions 3 and 4 are second order with respect to the radical. The presence of oxygen

or other strong oxidants favors the more direct oxidation pathway and follows a

stoichiometry in which less hydrogen peroxide is required to degrade the CAHs. The

oxidation of chlorobenzene and chlorophenol isomers is most likely attributable to the

formation of phenolic polymers. Disappearance of broad band absorption and dimers as

the reaction progressed suggests that these polymers and dimers are ultimately amenable

to oxidation.

Watts et al. (1997) investigated the effects of hydrogen peroxide concentration

and desorption rates on oxidation of series of four chlorobenzene on hematite which is a

naturally occurring iron oxide found in soils and subsurface systems. The focus was to

look at the relationship between desorption and oxidation of chlorobenzene sorbed on

heratite. Hydrogen peroxide concentrations from 0.1 to 5% were used and the rates of
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oxidation and were compared with rates of desorption. The desorption experiments

showed that 0.1 mol/Kg 1,3,5-trichlorobenzene, 1,2,3,4-tetrachlorobenzene,

pentachlorobenzene and hexachlorobenzene partitioned on hematite. Desorption

followed first order kinetics with respect to each chlorobenzene, and rate constants were

inversely proportional to chlorine substitution and octanol-water partition coefficient.

This study indicated that degradation of 1,3,5-trichlorobenzene with initial

concentrations of 0.1, 1, 2, and 5% H20 2 in relation to deionized water control,

trichlorobenzene desorption and H20 2 consumption. The data suggested that oxidation

occurred at least in the sorbed state with hydrogen peroxide concentrations 2%.

Several studies have shown that the optimum oxidation rate is reached at 2% H20 2,

because 2% is the minimum H20 2 concentration capable of oxidizing sorbed

contaminants. These experiments showed that although the rate constants for hydroxyl

radical attack on chlorobenzene are nearly equal, degradation rates decreased from lower

to higher chlorine substitution. Chlorobenzene oxidation by hematite catalyzed Fenton-

like reactions was highly dependent on desorption rate. Hexachlorobenzene was not

desorbed or oxidized, which shows that hydroxyl radicals do not degrade even reactive

substrates while sorbed on the surface of hematite.

The reaction mechanism was explained as follows. Reaction 92 shows the

heterogeneous decomposition of H20 2 (Kitajima et al., 1978).

S+ H2O 2 -+ S+ OH'+ Of (92)
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where S is mineral surface and S+ is oxidized region of surface. Hydroxyl radicals

generated by above reaction reacts with all four chlorobenzenes in aqueous phase (not

sorbed) and oxidizes them.

PhHnCl1-n(aqueous) + OH -+ Products (93)

PhHnCl6n(sorbed) + OH -+ No reaction (94)

Higher concentrations of H20 2 increases hydroxyl radicals or higher system redox

potential may increase the oxidation state on mineral surfaces (Sn"), which might lead to

oxidation of sorbed 1,3,5-trichlorobenzene, 1,2,3,4-tetrachlorobenzene and

pentachlorobenzene.

S+ + nH2O 2 -+ S"* + nOH + OH~ [H 20 2] > 2% (95)

S+ + nOH + H+ S" + nH 2  [H 2 O2] <2% (96)

Where n" is a more oxidized mineral surface relative to S+, this is capable of degrading

chlorobenzenes with at least one C-H bond but not perhalogenated hexachlorobenzene.

PhHCl1n(sorbed) + n" -+ Products (n = 1) (97)

PhCl6(sorbed) + S"' -+ No reaction (98)
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Thus, mineral-catalyzed Fenton-like reactions are controlled by desorption, H20 2

concentration and contaminant structure. Watts et al. (1994) also studied sorption and

degradation of hexachlorobenzene on geothite as iron catalyst.

3.2.3 Toluene

2,4-Dinitrotoluenes (DNT) are generated from ammunition factories and other

chemical industries. It is used in making 2,4 diaminotoluene for isocyanate production.

They are also used for production of dyes, explosives, and organic synthesis and as a

propellant additive. Mothanty and Wei (1993) carried out experiment to study the effect

of H2 02 /DNT ratio on removal, rate of DNT removal, effect of temperature and effect of

sequential addition on oxidation. They also compared Fenton's Reagent with UV/H2 0 2

system to see which process is more effective way to generate hydroxyl radicals.

The effect of H2 0 2 :DNT ratio was studied using the ratios from 5:1 to 80:1. The

ratio of Fe2+/ H2 0 2 was 0.024, the initial pH varied from 4 to 5. Figure 10 shows average

removal of DNT with variation of H2 0 2 :DNT ratio for contact time of 1 hour.

The concentration of by-products decreased with increasing H20 2 . The

consumption of H20 2 increased with the amount of DNT applied. At higher H2 0 2

concentrations, there was greater amount of self decomposition as the OH, generated

would react with H202 and hence reaction in equation 99 would be prominent,

H 2 0 2 +0H H 2 +H 20 (99)
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Figure 10 shows that greater than 99% of DNT is removed at a ratio of 20. The

rate of removal of DNT was seen to follow a pseudo first order reaction with a rate

coefficient of 0.035/min at a molar ratio of 15:1:1.8 of H2 0 2 :DNT:Fe2+. To study the

effect of sequential addition, three different experiments were performed.
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Figure 10. Removal of 2, 4-DNT with Change in H20 2 :DNT Ratio

(Mohanty and Wei, 1993)

TOC, H20 2 and pH were monitored during the course of experiment as seen in

table 10. During reaction, there is an excess of Fe2+ and hence reaction in equations 100

and 101 dominates as the ratio of substrate to H202 is high, thus reaction in equation 1

becomes unimportant.

H202 + Fe2+  0 +0 + Fe3 + (100)

Fe2+ + OH-> OI + Fe3 (101)
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Table 10. Experimental conditions for sequential addition (Mohanty and Wei, 1993)

Exp. Initial DNT H2 O2 :DNT:Fe2 + Comments
mM/L

1 0.42 20:1:2.5 H202 in 20 equal steps

2 0.42 20:1:2.5 Fe 2+ in 20 equal steps

3 0.42 20:1:2.5 H20 2 and Fe2+ applied
initially in a single dose

Sequential dosing of H202 had lower concentration of reaction by-products when

compared with experiment without sequential dosing. The retention time of these

byproducts was higher than their parent compounds. One of these by-products might be

a dimer. If there is excess of H202 available, reaction in equations 99, 100, and 102 gain

importance.

Fe 2+ HO2 -+ Fe3+ + H2~ -+ H202 (102)

The removal of TOC was minimum which indicated losses of H202 and showed

the importance of reaction (99). No removal of TOC was observed during the first 30

ninutes, this as due to lower Fe2+ concentration and thus low hydroxyl radical

availability for oxidation of organics. In the presence of oxygen the rate of degradation

and extent of oxidation increased dramatically, but there was no major difference in
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removal of TOC and COD. The reaction was also run at three different temperatures; 210

C, 300 C and 400 C with all other conditions constant. Figure 11 shows that temperature

affects the reaction rate considerably.
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Figure 11. Effect of Temperature on Removal of TOC

(Mohanty and Wei, 1993)

Hydrogen peroxide was depleted in 5, 4 and 2.5 hours for the reactions at

temperatures of 210 C, 30 'C and 400 C, respectively. TOC removal was also greater at

higher temperatures. Initial presence of Fe3' and Cu 2+ enhanced the evolution of oxygen

in the absence of substrates. Figure 12 shows the result of effect of Fe3+ and Cu2+ on

degradation.
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Figure 12. Effect of Metals on Removal of TOC (Mohanty and Wei, 1993)

The rate of removal of DNT was pseudo first order and the behavior of rate of removal

was a straight line with regression coefficient of 0.98.

Benzene, Toluene and Xylene (BTX)

Benzene, toluene and xylene (BTX) is highly soluble in water and are found in

oil-contaminated groundwater. It was found by Garrogunino et al.. (1992) that the

toxicity of contaminated ground water is primarily due to BTX. BTX present in ground

water in dilute concentrations present a challenge to drinking water supply resources

The most common source of point source pollution is underground oil storage tanks and

is distributed around the regions as in petroleum stations, factories and oil-refinery-

plants. Owing to large amount and location in a densely populated area of these tanks,

the adverse effect is significant to human beings if a leakage occurs.
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Lou and Lee (1995) oxidized BTX in a batch reactor using Fenton's Reagent to

simulate the fuel hydrocarbon-contaminated groundwater from a spill site. Change of

BTX concentration with time, pH, H20, Fe2+ optimum ratio o H202: T Fe2+, and

rate expression of BTX was reported. Results were obtained in terms of destruction

efficiency of BTX, which is expressed as follows:

DRE%=C0 -C X 100 (103)
Ct

where C0 is the initial concentration of BTX (mg/L) and C1 is the concentration of BTX

after t minutes (mg/L). At H202: BTX: Fe2+ ratio of 2.4:1:12 (mg/L) the removal of BTX

is significantly oxidized by Fenton's Reagent, benzene and toluene removal was about

86% and xylene removal was 80 %. After about ten minutes, the concentration of BTX

remained almost unchanged and had reached 90-94% removal after 60 minutes. The

destruction efficiencies of BTX as a function of pH is shown in Figure 13. When H202

was 120 mg/L, Fe 2+was 600 mg/L, and BTX 50 mg/L.

The DRE of BTX decreased with increasing pH value for pH > 4. At pH<4, the

DRE of benzene, toluene and xylene changed insignificantly with values about 87%, 88%

and 83%, respectively. The relation between DRE of BTX and H202 is shown in Figure

14 and shows that at a fixed pH and Fe2 +, the DRE of BTX increased almost linearly with

increasing 11202 concentration till 60 mg/I, and with an increase in concentration of H202

the DRE of BTX remained at 80% to 90%, showing zero order reaction.
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Figure 13. Effect of pH on Destruction Efficiency of BTX (Lou and Lee, 1995)
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Figure 14. Effect of H202/ Fe2 Concentration Ratio on Destruction of BTX

(Lou and Lee, 1995)

As proposed by Harber and Weiss (1934), which may be due to the fact that at

lower H20 2 concentrations and fixed Fe2 +, the oxidation approaches second order. But
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when the ratio of H202/ Fe2+ increases, the reaction kinetics approach zero order and the

reaction process depends on the competition between hydroxyl radical and superoxide

radical. If there is excess of hydrogen peroxide, reaction in equations 99, 100, and 102

are dominant for 2, 4-Dinitrotoluene. The amount of H202 was consumed rapidly,

thereby indicating the importance of equation 99. Figure 14 indicates that DRE of BTX

was small, which indicated the lack of H2 0 2 and shows the importance of reaction in

equation 99.

Figure 15 shows the effect of Fe2+ on DRE of BTX, it indicated that at zero Fe2+

the DRE of BTX oxidized by H202 was below 20%, and it increased with increasing

concentration of Fe2+. At Fe2+ > 600 mg/L, the DRE of BTX reached the maximum

value of approximately 82% for benzene and toluene and 73% for xylene. Lou and Lee

(1995), found that the DRE of BTX caused by Fenton's Reagent cannot be further raised

due to lack of available H202, the H202 was consumed rapidly and DRE of BTX were

minimum, thus it suggests that reaction in equation 99 is very important.

To study the optimal ratio of H202: BTX: Fe 2+, the concentration of BTX was

kept at 50 mg/L and pH was varied from 4 to 5. The range of the ratio studied was from.

0 to 20. After 10 minutes of contact period, the DRE of BTX with change in ratio was

indicated as in fig 14, which showed that the DRE increased with an increase in the ratio

in range from 0 to 5, but further increase in the ratio actually decreased the DRE of BTX

and the optimal ratio was found to be 0.2. Effect of H202: BTX ratio on removal was

also studied by varying this ratio from 2.4 to 12. The ratio of H202: Fe2+ for this was 0.2.
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The destruction of BTX versus H202: BTX ratio revealed that the optimal DRE of BTX

was found to be around 98% to 100% for xylene and benzene & toluene, respectively,

when H202: BTX ratio was 12:1. Lou and Lee concluded that benzene, toluene and

xylene can be effectively oxidize at H20 2 : BTX: Fe2+ ratio of 12:1:60 (mg/L) in less than

ten minutes. The results of chromatograms indicated that the concentration of by-product

was insignificant and very low. The plot of reaction time with BTX concentration

showed the rate to follow a pseudo first-order reaction at 20C. At an applied

concentration ratio of 2.4:1:12 (H202: BTX: Fe2
+), the rate coefficients of benzene,

toluene and xylene were calculated to be 4.03 (h') and 2.91 (hi) respectively.
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Figure 15. Effect of Fe2+ Concentration Ratio on Destruction of BTX

(Lou and Lee, 1995)
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Removal of BTX was found to be pseudo first order. The coefficient of linear

regression was found to be 0.991 and 0.994 for xylene and for benzene & toluene,

respectively. The rate expression for benzene and toluene was given as follows:

In C = 3.92 - 4,03 (t) (104)

for Xylene as follows:

In C =3.89 - 2.91 (t) (105)

where C was concentration of benzene, toluene and xylene after t hours in ppm, t is

reaction time in hours.

3.2.4 Polychlorinated Biphenyls (PCBs)

In most wastes and wastewater, PCBs are found in aqueous phase as well as in

association with particulate matter. The fraction of PCB associated with each phase

depends on the hydrophobicity of the congener and the congeners containing more

chlorine substituents have a stronger tendency to associate with particulate. PCBs sorbed

to surfaces as diatomaceous earth are not oxidized by aqueous OH at an appreciable rate,

relative to the rate of reaction of OH with solution phase PCBs. To evaluate

quantitatively the effect of sorption to particulate matter on PCB oxidation by OH a

study was performed by Sedlak and Andren (1994). Transformations of three PCB
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cogeners, 2-monochiorobiphenyl (MClBp), 2,2',5-trichlorobiphenyl (TrClBp),

2 ,2 ',4,5,5'-pentachlorobiphenly (PeClBp) were studied at an initial concentration of 1pM

of each of them, expressed as if all of the PCB was in solution. Data from the

experiments were compared with predictions from quantitative kinetic models that used

independently determined data on reaction rates and OH concentrations.

Hydroxyl radicals were generated through the photo-Fenton reaction. The first

step in reaction was photoreduction of ferric hydroxy complex by radiation from a black

light.

FeOH2
++ hv - Fe2+ +0H (106)

Ferrous iron produced is then oxidized by H202 in Fenton's reaction

Fe2++ H20 2 -+ FeOH 2+ + + OH (107)

Reaction 107 was significantly faster than reaction 106.

The consumption rate of H2O2 and the 01 production was directly related to total

iron concentration. The concentration of hydroxyl radical produced by the reaction in

equations 106 and 107 were controlled by the rate of reaction with dissolved constituents.

Rate constants for adsorption (ka) and desorption (kd) of PCBs from particles were

determined. Desorption rate constants were calculated by regression of data from 1.5 to 5
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h. Adsorption rate constants were estimated from equation 108 assuming that the

partitioning observed between 2 and 5 h in the experiments without OH could be used

for calculation of equilibrium partition coefficients (Kp).

p = ka/ kd (108)

Kp were calculated by averaging the partitioning data collected after 2 h in the

experiments conducted in the absence of OH. Equation 108 may be employed to model

partitioning kinetics over short time intervals for the particles used in these experiments

as equilibrium models may not adequately predict partitioning over extended time

intervals for many types of particles. Partitioning data and reaction rate constants

calculated for 2,2',5-trichlorobipheny and 2,2',4,4',5-pentachlorobiphenyl by Sedlak and

Andren (1994) is shown in table 11.

Table 11. Partitioning Data and Reaction Rate Constants Calculated for 2, 2', 5-

Trichiorobiphenyl and 2,2',4,4',5-Pentachlorobiphenyl (Sedlak and Andren, 1994)

Variable 2,2 5-Trichlorobiphenyl 2,2',4,5,5'-
Pentochlorobiphenyl

kd*( X 104 s) 2.04 ( 0.10) 4.53( 0.03)

ka(1 gs 1) 0.39 ( 0.15) 1.41( 0.34)

K, (1 ga) 1860 ( 615) 31,600( 5,400)

ko (X 109 mol s-) 6.9 4.6
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Sedlak and Andren (1991,b) modeled hydroxyl radical reaction kinetics in the

presence of particulate. They found that the reaction kinetics for PCB oxidation in

presence of particulate resulted from the comnplex interplay between solution-phase OH

reactions and reversible adsorption-desorption reactions. A model predicting kinetics of

reactions must at least consider following reactions:

PCB= S ->PCB +S (109)
ka

koH

OH + PCB -* PCB-OH (110)

where PCB =S = particle-associated PCB concentration (mol/g)

PCB= dissolved PCB concentration(M)

S= particle concentration(g/L)

[OH] = steady-state hydroxyl radical concentration(M)

PCB-OH = hydroxylated PCB concentration (M)

There were several possible options for modeling reaction in equations 109 and

110, and the choice of an appropriate model depended on the relationship between the

rate constants and degree of accuracy desired. When the compound of interest was not

strongly associated with the solid phase or when the reaction rate was much lower than

the desorption rate, it was possible to model the transformation as a pseudo-first order
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process, this was based on the assumption that reaction in equation 109 was insignificant

relative to reaction 110 (i.e. [PCB]=PCBtot). The transformation rate was then

approximated by equation 111.

- d[PCB]/ dt = koH [OH] [PCB] (111)

where kon is the second order reaction rate constant (M-s')

With an assumption that the steady-state OH concentration was constant,

transformation of the solute could be modeled as a pseudo-first-order process with an

apparent first-order rate constant of kon[OH]. This model was applied to results for

MCIBp, good predictions were obtained of transformation rates of PCB. Results

suggested that the pseudo first order model can be applied only a small fraction of total

PCB present was associated with particulate-phase. The main advantage of this model

was that accurate predictions of reaction rates could be made without determination of

adsorption-desorption rate constants, since particle associated PCB concentrations were

low and desorption rates fast adsorption-desorption kinetics were not necessary.

When a larger fraction of HOC was associated with particulate phase, numerical

solution of equations 109 and 110 were required to predict PCB transformation rates.

The instantaneous concentration of dissolved PCB was estimated by incorporating the

terms [S] and [OH] into the rate constant expressions for reaction in equations 111 and

112.
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[PCB] = kd [CBJ e-"t - et] (112)

where [PCB]O = initial total PCB concentration

cp = kdkoH[OHI]

a+ = kd + ka [S] + kox [OH]

The rate of PCB transformation by OR was then calculated using equation 112 at

discreet time intervals using the dissolved PCB concentrations predicted by equation 110.

The predictions of the numerical solution model were compared with experimental data

for TcClBp. The model was in good agreement with the data, the measured

concentrations were within approximately 10% of the predicted values.

Transformation rates were much more sensitive to changes in kd than OH- The strong

affinity of PeClBp for the particulate phase prevented the transformation of significant

amounts of PeClBp over the time period considered in these experiments.

These experiments provided valuable insight into the nature of HOC

transformations in the presence of particles. Pseudo-first-order models adequately

predicted transformation rates when only a small fraction of solute was associated with

the particulate phase. When a substantial fraction of HOC was associated with

particulate phase, more complex models based on solution of kinetic expressions

describing reversible sorption and 0H transformation reactions, were required to predict
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transformation kinetics. HoC, which were almost completely associated with particulate

phase, underwent transformation reactions at very slow rates.

3.2.5.9 Pesticides

Atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)- s-triazine) is one of the

most commonly used pesticides in the United States and its usage accounts for 12% of

the pesticides. Arnold et al. (1995) studied the effects of different reaction conditions on

the efficacy of Fenton's Reagent for degrading atrazine. Atrazine degradation and

product formation rates were determined as a function of FeSO 4 and H202 concentrations

and the ratios and solution pH. The ratios of FeSO 4 : H20 2 were used at 1:1, 1:200 and

2:lat concentrations from 0.1 to 25 mM. FeSO 4 and H202 ratio of 1:1 and its effect on

Atrazine degradation was studied. During this study seven major products were identified

such as CDIT, CIAT, CDET, CEAT, ODIT, CDAT and CAAT (Abbreviations with

chemical structures, common name and chemical name is shown in table 12).

It was observed that at concentrations of 2.69, the reaction mixtures were depleted

of the CDIT, CIAT, CEAT, and ODIT. But CDAT, CAAT and six minor unidentified

atrazine derivatives persisted at Fenton's Reagent concentrations up to 25 mM. Fenton's

Reagent treatmert was ineffective in degrading CDAT and CAAT due to the low

reactivity of oxidized products toward OH. At low FeSO 4: H202 ratio, a complete

treatment was achieved with lower Fe2 concentrations as compared to 2.69 mM

treatment, but increasing H20 2 concentration 100-fold lowered the reactions efficiency
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since larger amounts of chlorinated products (CDAT and CAAT) remained. Excess of

hydrogen peroxide might have lead to dealkylation, thus decreasing dechlorination.

Increase in Fe2
+ concentration lowered reaction efficiency as excess Fe2+ reacts with OH

at FeSO4 : H 2 02 of2:1.

Table 12. Names and Abbreviations of Atrazine and Fenton's Reagent-Generated

Degradation Products (Arnold et al. (1995)

Common Name Chemical Name Abbreviation

Atrazine 2-chloro-4-(ethylamino)-6- CIET
(isopropylamino)-s-triazine

Atrazine Amide 2-acetamido-4-6- CDIT
(isopropylamino)-s-triazine

Diethylatarazine 2-amino-4-chloro-6- CIAT
(isopropylamino)-s-triazine

Simazine amide 2-acetamido-4-chloro-6- CDET
(ethylamino)-s-triazine

Deisopropylatrazine 2-amino-4-chloro-6- CEAT
(ethylamino)-s-triazine

Hydroxyatrazine amide 2-acetamido-4-hydroxy-6- ODIT
(isopropylamino)-s-triazine

Deisopropylatrazine amide 2-acetamido-4-amino-6-chloro- CDAT
s-triazine

Chlorodiamino-s-triazine 2-chloro-4,6-diamino-s-triazine CAAT

Ammeline 2,4-diamino-6-hydroxy-s- OAAT
triazine
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Atrazine degradation rates were studied at an Atrazine concentration of 132 M

with Fenton's Reagent (1:1) in range of 1 06-2.69 mM. Almost 98% of Atrazine was

removed in less than 30 seconds. The remaining atrazine degradation was slow and after

24 hour 1% of the initial amount remained. Using Fenton's Reagent with concentrations

greater than or equal to 1.42 , atrazine was degraded in less than 30 seconds below

detection limits. Fenton's Reagent with concentrations of 2.69 mM showed that atrazine

transformation products accounted for less than 5% each of initial atrazine concentration

and were depleted within 3 h. After 11.5 h of treatment only products remained were

CDAT and CAAT. Excess H202 resulted in slower degradation of atrazine and followed

pseudo-first-order kinetics. The half-life (t 1 2) of atrazine in 1:100, FeSO 4 : H202 was 1.9

h. Table 13 lists half-life of atrazine using various technologies.

Table 13. Half-life of Atrazine from Various Technologies (Arnold et al., 1995)

Technology Atrazine Half-life (ti 2) Reference

(pM) (in)

Fenton's Reagent(1.42mM;1:1) 132 0.5 Arnold et 1., 1995
TiO 2/UV 116 20 Pelizzetti et al., 1990
H20 2/UV 96 1.8 Beltran et al., 1993
Ozone 465 16 Kearney et al., 1988
Fe(C10 4)3 (0.26mM)/UV 5.2 1.4 Larson et al., 1991

Thus as seen from Table 13, Fenton's Reagent shows the fastest depletion of

atrazine. In chloride balance Arnold et al. (1995) found that OH- may react with Cl at
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low pH to produce HOC1~ and C12 causing underestimation of Cl~ concentrations, but

the results suggested that Cl scavenging by OHf was minimal. It was indicated by the

study that dechlorination and dealkylation occur simultaneously and the batch treatment

showed that dechlorination occurred more readily with alkylated s-triazines. Chlorinated

products accounted for a large part of s-triazines present at end of Fenton's reaction. It is

important to find the chlorinated products, as they may be as toxic as the parent

compound.

Three different degradation mechanisms were proposed. In the first mechanism,

the hydroxyl radical attacks atrazine by hydrogen abstraction from the secondary carbon

of ethylamino side chain producing a free radical as shown in equation 113.

HO- + RNHCH 2CH3 = RNHC'HCH3 + H20 (113)

(RNHCH 2CH 3 = atrazine) (114)

02+ RNCHCH3 = RNHC(0&)HCH 3  (115)

RNHC(OO-)HCH 3 + Fe2+ + H = RNHC(OOH)HCH 3 + Fe3 + (116)

Molecular oxygen reacting with the free radical producing a peroxy radical of

atrazine as in equation 115. This is reduced by Fe2+ to form a hydroperoxide. The

rearrangement of the hydroperoxide forms amide through oxidation of secondary carbon

with loss of a water molecule as in equation 117 (Larson et al., 1991; Kearney et al,

1988; Masten et al., 1994; and Pelizzetti et al., 1992).
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RNHC(OOH)HCH 3 = RNHC(O)CH 3 + H20 (117)

The second mechanism proposed was dealkylation by hydrogen abstraction of the

secondary carbon followed by introduction of an oxygen atom from either HO or a high

valent iron-oxo species forming an alcohol adjacent to electronegative nitrogen. The

iron-oxo is unstable and decomposes to aldehyde and N-dealkylated s-triazine. The third

mechanism is that dechlorination could occur by OH, radical attack of the s-triazine ring

at the position occupied by chlorine group oxidizing the aromatic heterocyclic ring of

atrazine as proposed by Potter and Roth (1993). Reduction of the ring by Fe2+ results in

dechlorination to give hydroxylated s-triazine, Fe3+ and Cl. The degradation pathway

was proposed accounting for type and pattern of products generated in the study by

Arnold et al. (1995). This is shown in Figure 16.

Reactions from a to e show that dechlorination, alkyl side chain oxidation and/or

cleavage occur as parallel reactions giving CDIT, CIAT, CDET, CEAT or ODIT.

Reactions f and g show that dealkylation gives CIAT and CDAT, this undergoes side

chain oxidation and/or cleavage to form CDAT and/or CAAT as in reaction j, 1 and m,

Similar reactions occur with CDET and CEAT to give CDAT and CAAT as main chloro-

s-triazine compounds at end of Fenton's Reagent treatment as in reactions h, I, k, m, and

n, Similar side chain cleavage is expected to occur with dechlorinated products as in

reaction p.
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It was suggested that dechlorination of alkylated s-triazine derivatives in reaction

q is most likely a sequential treatment of terminal products CDAT and CAAT resulted in

only major transformation (reaction 0) to deaminated or/and dechlorinated products such

as OAAT. The amide was unstable during isolation procedure CDIT, CDET and CDAT

formed small amounts of CIAT, CEAT and CAAT respectively which indicated that the

amide was easily cleaved.

3.2.6 Herbicides

2,4-D and 2,4-T are important post emergent herbicides, they were discontinued

in U.S. in the mid-1970s. Pignatello (1992) studied their degradation and mineralization

in presence and in absence of visible light containing small portion of UV component. 2,

4-D in concentration of 0.1 mM was treated with [Fe2+] and [H202] both greater than

1mM. 2,4-D was transformed in less than 1 min. The reaction took nearly 2 min at

lower [Fe2+] and [H20 2] concentration (0.25 mM) and gave 76-88% transformation.

Transformation was independent of initial pH, but when Fe3+ (instead of Fe2
+) was used,

the disappearance of parent compound was more sensitive to pH. The optimum

conditions for the transformation of 2, 4-D by Fe3'/H 20 2 in both perchlorate and sulfate

solution was at [Fe+]=1mM, [H 20 2]= 2.5-10 , pH=2.7-2.8, [2, 4-D]= 0. 1mM.

Transformation of 2,4,5-T at pH 2.8 was slower. It was also observed that the

transformation was inhibited by methanol or chloride due to scavenging of active oxidant

and by sulfate due to complexation of Fe3  The intermediates were polychlorphenols

(DCP) and trichlorophenol (TCP). This reaction was sensitive to anion in solution. 2,4-
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D was rapidly converted to highly hydrophilic intermediates. Herbicide concentration

(0.1 vs. 0.5 mM 2,4-D) had no effect on 2,4-D mineralization. It was observed that it had

no substantial effect on the extent or rate of mineralization on 2,4-D if Fe2+ was replaced

by Fe3 +.

The transformation and mineralization of herbicides by Fe 3
+/H2O2 were promoted

by irradiation with visible light with small UY component. In bright Fe3 /H2 O2/ hv

system transformation of 2, 4, 5-T was complete in less than 0.3 hour and mineralization

was complete in less than 2 hour. The transformations were observed to be 2.7 and 1.6

times faster for 2, 4-D and 2, 4, 5-T than in Fe 3+/H20 2 (dark) respectively. Fenton's

Reagent transformed the herbicides faster than Fe 3 / H20 2 and was seen to be important if

the removal of parent compound was required without mineralization. Retardation of

2,4-D at low pH was attributed to prior complexation of Fe3 + and H20 2 where as

retardation at pH above 3 was attributed to precipitation of Fe3+ to amorphous

oxyhydroxides (Fe2 O3.nH2 ). It was also observed that hydroxyl radicals could be

scavenged by chloride and sulfate as follows:

H+ ci-

OH+ Cl ++ HOC ++ Cl + H 2O ++ Cl2 (118)

OH + HSO -+ H20 + SO 4  (119)

OH- + 2,4-D -+ initial products (120)
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Reaction 118 was predicted to be slower than reaction 119. Chloride strongly

inhibited 2,4-D transformation which suggested that the chloride ligand had minimal

effect on Fe 3+ reactivity and inhibition of 2, 4-D was mainly due to scavenging of OH'.

Scavenging of OH by chloride at pH ~3 would begin to be significant when [Cl~] was

above few millimolar. Dechlorination occurred rapidly after herbicide transformation.

Phenoxy acetic acid decarboxylated to yield phenoxymethyl radical (PhOCH2 ). If the

corresponding (aryloxy) methyl radical was produced from 2,4-D and 2,4,5-T a reaction

pathway to generate phenol was oxidation-hydrolysis-elimination as follows:

ArOCH 2 - ArOCH 2 -+ [ArOCH2 OH] -+ ArOH (121)

Irradiation with weak intensity light above 300 nm strongly accelerated degradation, the

total mineralization was observed to be as in equation 121 when 2,4-D:Fe 3}:H 2O 2 was

consumed as 1:4:5.

CH C120 3 +7202 + 402 - 2HC + 8C0 2 + 91120 (122)

Pignatello and Baehr (1994) studied herbicides 2, 4-Dichlorophenoxy acetic acid

(2, 4-D) and Metolachlor. Both the herbicides showed contrasting behavior to each other

in a way that metolachlor was mostly sorbed and 2, 4-D was mostly in solution. The

sorption studies indicated that about 10 to 16% of total 2, 4-D was sorbed where as 89%

of total metolachlor was sorbed. Reactions were carried out in lab to study the behavior

of herbicide and iron (III) complexes in soil, herbicide degradation, and comparison of

81



iron(III)-L with iron (II). Five Fe-L for the study were gallic acid (GAL), picolinic acid

(PIC), rhodizonic acid (RHO), hydroxyethyleniminodiacetic acid (NTA) were used, these

structures are shown in Figure 17.

CH3
,CH 2 CO0H CH3  ,CH-CH 2-O-CH3

CI 'C-CH 2CI

CH2

COH 3
Metolachior

2, 4-D

,H ,CH2 COOH
HOCHCHCO

N COOH CH2CO

C HEIDA

COOH 0
OH /CH 2 C0H

I HN-CH2C00H"CH2COO
HO OH 0 OH H H

OH 0
GAL RHO NTA

Figure 17. Molecular Structure of Ligands Studied in Degradation of Herbicides

(Pignatello and Baehr, 1994)

To study the herbicide degradation, it was assumed that the oxidation is solution

phase process. Complexes Fe-GAL, -HEIDA, and -NTA were chosen to study as they
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have relatively greater ability to stay in solution (due to the assumption). Studies were

carried out with 2000 mg/Kg of 2,4-D equilibrated for 24 h, treated with 0.1 mol/Kg and

1 X 102 mol/Kg Fe-L or corresponding free ligand. It was observed that a Fe-L system

was superior to free ligand alone and that free ligand did not extract enough Fe from soil

to achieve practical levels of degradation. Fe-GAL was inferior to Fe-HEIDA and Fe-

NTA. The complexes Fe-HEIDA and Fe-NTA gave significantly less removal at 0.1

mol/Kg hydrogen peroxide and nearly complete removal at 0.5 mol/Kg H202.

Metolachlor was treated using Fe-NTA and 0.5 mol/Kg H202, about 92% was removed

and the results indicated that even compounds that are initially mostly sorbed can react

with hydroxyl radicals. It is unclear whether desorption proceeds reaction or sorbed

molecules are attacked. This indicated that a mass ratio of H202 to herbicide of 5.6 to 8.5

is required to remove the parent compound. The degree of ring and carboxy carbon

mineralization increased in the order GAL>HEIDA>NTA. The mineralization was

favored as H2 0 2increased from 0.1 to 0.5 mol/Kg, but decreased with further increase to

1 mol/Kg. As H202 increased the extractable 14C decreased in the order

GAL>HEIDA>NTA. The remaining radioactivity increased with H202 concentration

and followed order GAL>HEIDA>NTA

Pignatello and Baehr (1994) also compared iron (III)-L with iron (II) to remove

the herbicides. Simple Fe2+ removed 61% of 2,4-D and 7% metolachlor, and Fe-NTA

removed 99.3% of 2,4-D and 87% of metolachlor. Addition of NTA with Fe 2+ was found

to be as effective as Fe-NTA in removing metolachlor, This meant that Fe2+ is oxidized

by H202 in milliseconds in situ to active Fe(III)-L complex.
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Table 14. Phase Distribution of Herbicides in 1:1 Soil Suspension (Pignatello and
Baehr, 1994)

Compound Application rate Time (hour) Cs/Ca (L/Kg)
(mg/Kg)

2,4-D 1580 0 0.190 0.02

2,4-D 1580 3 0.11 0.02

Metolachlor 3020 0 8 1.3

3.2.7 Dyes

The major problem with dye wastewater is the color produced by residual dyes

during the dyeing process. If higher concentration of dyes and color of streams increase

the transparency of streams will be reduced and thus plants in drainage would perish and

ecosystem will be seriously damaged. Several amino-substituted azo dyes are mutagenic

and carcinogenic. Attempt was first being made by Kuo (1992), to decolorize dye

wastewater using Fenton's Reagent. It was suggested that dye decolorization was

contributed to both oxidation as well as coagulation processes. During oxidation process,

the hydroxyl radicals would attack organic substrate RH such as unsaturated dye

molecule. The chromophore of the dye molecule would be destroyed and decolorized.

Ferric ions generated from Fenton's reaction might form ferric hydroxo complexes with

hydroxide ions as in reactions 123 and 124.
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[Fe(H 2O) 6 ]2
++ H20 ++ [Fe(H 20)s0H]2++ H30+ (123)

[Fe(H 2 0)sH] 2+ + H2 0 ++ [Fe(H 2 0)4 (0H)2]2+ (124)

These complexes have a pronounced tendency to polymerize at pH 3.5-7 as in equation

125, 126, and 127:

2[Fe(H 0)s0H] 2+++ [Fe 2(H2 0)$(0H) 2] 4+ + 2 120 (125)

[Fe 2(H2 0)s(0H) 2]4+ + H20 ++ [Fe2(H20)7(OH)3]3 + H30+ (126)

[Fe2(H20)7(0H)3]3 + [Fe(H 2 0)s0H] 2+++ [Fe 3(H2 0)s(OH) 4]5+ 2 H20 (127)

As a result, coagulation inevitably remove portion of ferric ions. The experiments

carried out showed that hydrogen peroxide and ferrous ions were more stable when pH

was lower than 3.5. In basic solutions hydrogen peroxide was unstable and decomposed

easily. Disperse dyes showed notable color removal above pH 9, this was attributed to

coagulation generated by ferrous ions. The ferrous ions release electrons in basic

solutions and forms ferric ions these ferric ions may form ferric hydroxo complexes

which can coagulate the disperse dyes. Disperse dye is nonionic/insoluble dye and has

very low activity to be readily reactive with hydrogen peroxide. Thus, active substance

such as H202 would not deplete quickly and it would not be prompted to decompose

further. Disperse dyes contain some dispersants which may react with the active

substances and hydrogen peroxide is also prompted to decompose.

85



Ferrous sulfate was also studied and has a beneficial effect on dye degradation,

because high ferrous concentration will make the redox reaction complete and increase

coagulation, which improves decolorization. As for temperature effect, lower

temperature reactions required longer time than higher temperature. Wastewater from

dyeing and finishing mills are usually equal to 50' C. Kuo (1992) also studied five

different types of dye wastewater randomly selected from mills and the results were in

good agreement with those from the laboratory studies. The average percent COD

removal was about 90% and average decolorization was above 97%. Kuo showed that

effective pH should not be greater than 3.5. Effective dosage of H202 and ferrous sulfate

was different for different types of dyes, decolorization is affected by different dye

structures, the auxiliary group on the dye molecule, and temperature.

Degradation of azo dyes by Fenton's Reagent was studied by Spadaro et al.

(1994). They studied different types of azo dyes and effort to identify benzene was

made. The proposed mechanism by Spadaro for benzene generation is shown in fig 18.

According to this mechanism, the hydroxyl radical adds to the azo linkage bearing carbon

(C-) of amine or hydroxy substituted ring. The hydroxyl radical adduct breaks to

produce phenyldiazene and phenoxy radical. Hydroxyl radical or molecular oxygen can

readily oxidize phenyldiazene by one electron to yield phenyldiazene radical an

phenyldiazene is extremely unstable, Phenyldiazene radical is also unstable and cleaves

homolytically to generate phenyl radical and molecular nitrogen. The phenyl radical

might abstract hydrogen radical from 0 2H or dye degradation products to produce

benzene. Phenyl radical is not likely to be scavenged by molecular oxygen as it reacts
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sluggishly with oxygen. The phenoxy radical might react with hydroxyl radical and

oxygen to result in aromatic ring degradation. The study showed that there was a benzene

generation with phenylazo substituted azo dyes. Benzene being priority pollutant,

structure and concentration of individual azo dyes should be known before effluent is

treated using process, which relies on hydroxyl radical chemistry.

Treatment of textile wastewater from a large dyeing and finishing mill by a

continuous process of combined chemical coagulation, Fenton's Reagent and activated

sludge process was investigated (Lin and Peng, 1995). The textile wastewater reservoir

held 300 L of screened raw textile wastewater and was adjusted to pH. This was pumped

into chemical coagulation tank where the front section contained polyalumminum

chloride at dosage of 100 mg/L with a mixer operating at 150 rpm. Polymer was added

in back section of tank at a concentration of 0.5 mg/L and mixer speed here was 50 rpm.

The retention time was 2 minutes in each section. The sedimentation tank followed by

chemical coagulation had a retention time of 60 minutes. This went to Fenton's reactor

with a size of 25 x 25 x 88 cm. The treated textile wastewater from Fenton's rector went

to second sedimentation tank with a 60 min retention time. The top textile wastewater

was finally passed to activated sludge tank where it was mixed with equal volume of

activated sludge. They used a 1:1 ratio of H2O2:Fey.

Decolorization of azo dyes was also studied by Solozhenko et al. (1995) by

studying Active Yellow Lightfast 2KT (AYL). The kinetic measurements are shown in
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Appendix A. AYL elimination depended on initial concentration of H20 2, decolorization

was accelerated by raising temperature or under sunlight influence.

N==N R

\/ o- 0 /R

H

02'+ O2 R

HNC
0C

Figure 18. Proposed Mechanism for Benzene generation during Degradation of Azo

Dyes (Spadaro et al., 1994)
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3.3 Environmental Applications of Fenton's Reagent

Environmental applications in detoxification of hazardous substances require the

treated concentration of toxic pollutants to a level of parts per million (ppm) and even

parts per billion (ppb). Due to this stringent levels a need of truly elegant chemistry

arises. These purity levels which were rarely considered in product synthesis are now

possible for wastewater due to Fenton's Reagent.

Fenton's chemistry is a cost-effective and relatively easy way to destroy many

toxics (Bigda, 1996). It attacks all reactive substrate concentrations under most adverse

conditions. Hydrogen peroxide is used to remove contaminants as cyanide, sulfides,

sulfites, chrome and heavy metals by varying batch conditions, with an iron catalyst, the

process often oxidizes organics, as well as reducing hexavalent chrome to trivalent

precipitable form. Batch reactors give great flexibility and can be programmed to treat

many different wastewater's. Commercial Fenton reactors have been used for industrial

wastewater treatment during the past 10 to 15 years (Bigda, 1996). An important

application illustrating this is removal of phenol, formic acid and other organics from

paint stripper rinse water in aerospace industry (Bigda, 1996). Large volumes of rinse

water are generated when paint is removed from airline and military aircraft's, which

would contain paint flakes, dirt, pigments, solvents, oil and chrome. Phenol levels of

over 20,000 ppm in the rinse water have been reduced to less than one ppm using an

automated Fenton system (Bigda, 1996). One commercial system has a computer or PLC

programmed with 58 sequential commands to control the reactor and produce, for
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discharge, purified wastewater which meets all local and EPA regulations. The treatment

process can be set for simple neutralization, oxidation of organics, removal of volatile

organic compounds (VOCs), reduction of chrome 6 and precipitation of heavy metals.

Fenton's Reagent can be used either as a single process or as one step in

combination with other processes for wastewater treatment. Fenton's Reagent is used for

treating specialty chemicals, process waters, in refinery and fuel terminals, in engine and

metal cleaning, groundwater detoxification and site remediation.

Specialty chemical manufacturing includes manufacture of paint strippers as

phenol and formic acid, wood treating chemicals as creosols and copper and plastics and

adhesives as phenol formaldehyde. They generate wastewater similar to aerospace

industry and contain chelating compounds. Wood preserving plants employ cresols,

chlorophenols, arsenic and copper compounds. BTX and phenols often contaminate

refinery wastewater streams and tank bottoms at fuel terminals. Plywood, laminates, and

composite producers using adhesives can eradicate toxic residues from their effluent.

Process waters can be treated from the industries manufacturing explosives such

as TNT and RDX, insecticides, dyes and ink, photochemicals, hazardous waste,

pharmaceuticals and other chemicals (Bigda, 1996). Most photo chemicals can be

economically treated with catalyzed peroxide. Munitions and demilitarization operations

produce pink water containing explosives. TNT, RDX, HIMX and others can be oxidized

in water using Fenton's Reagent.
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Fenton's chemistry has also been experimented to remediate sites and

groundwater contaminated with pesticides, chlorinated organics, explosives and a variety

of other toxics. Processes have also been cited to treat wastewater generated from soil

washing.

Processes using Fenton's Reagent are advantageous where alternative

technologies such as biological treatment processes are not effective. Reactions of

Fenton's Reagent are faster then the biological processes. In decolorizing dye

wastewater many commercial dyes are toxic to microorganisms involved. These types of

compounds include high molecular weight PAHs and PCE. Fenton's Reagent has an

advantage over UV/ H20 2 methods, where colored organic compounds interfere with UV/

H20 2 process by UV light absorption and can be successfully degraded by Fenton's

Reagent. Fenton's Reagent is a chemical destruction process, thus it destroys the

contaminant rather then just transferring them from one phase to another as in the case of

physical treatments such as coagulation, adsorption etc. Capital equipment costs for

application of Fenton's Reagent can be expected to be very low compared to UV/ H202

process. Fenton's Reagent has less operation and maintenance cost compared to

ozonation process, operating costs depend primarily on reagent consumption.

Fenton's Reagent is most likely to be effective for on-site treatment applications

rather than insitu because the reaction would require through mixing of the contaminants

and the substrates. The optimum pH range for effective treatment by Fenton's Reagent is
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in the acidic range of 2 to 4, this implies that a post treatment step is required for the pH

adjustment. This treatment technology may not be applicable to alkaline soils and

sludges with strong buffering capacities. Proper sludge disposal is required after the

treatment. The primary factor contributing to chemical cost is the cost of hydrogen

peroxide, it may be important due to this reason to optimize the amount of peroxide

required. Fenton's reaction does not oxidize several chemicals which includes acetic

acid, acetone, carbon tetrachloride, chloroform, maleic acid, malonic acid, methylene

chloride, oxalic acid, n-paraffins, tetrachlorethane, and trichlorethane (Bigda, 1995).

Fenton's reaction is highly exothermic, The reaction may be slow to start particularly if

the temperature is below 65"F. Since initiation of the process may be sudden, especially

if peroxide concentration is high, care must be taken while peroxide is added slowly for

temperature to rise above 800F.

4 OBJECTIVES

In the literature, no research has been conducted on Fenton's degradation of azo

dyes comparing three different classes. The optimal dosages for Fe2+, H2 0 2, and pH are

not determined for azo dyes. The effect of a number of azo bonds and auxiliary groups

on Fenton's degradation of azo dyes is not documented. Therefore, eleven different azo

dyes with three different classes (mono, dis and trisazo dyes) will be studied in this work.

The objectives of this part of the Thesis are:
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1) To establish a stoichiometric relationship among H202, Fe' for the three

classes of azo dyes to maximize the degradation efficiency.

2) To study the effect of pH an individual class of dyes.

3) To study the effect of a number of azo bonds and auxiliary groups on the

degradation rate of azo dyes.

4) To compare the experimental optimal ratio with the theoretically derived

optimal ratio of H20 2/Fe2+ for azo dyes.

5 EXPERIMENTAL

5.1 Materials

H202 (30%-35%) was obtained from Fisher Scientific Co. Stock solution of Fe2+

was prepared with FeSO 4(7H 20) crystals. Monoazo dyes, Acid Blue 92, Acid Orange 8,

Acid Red 8, Acid Blue 161, disazo dyes Acid Yellow 38, Acid Red 97, Direct Violet 51

and a trisazo dye Direct Blue 71 were also purchased from Aldrich Chemical Company.

All solutions of H202, Fe2+ and NaGH were prepared with deionized water. The chemical

structures of eleven azo dyes are shown below in Figure 19, 20 and 21. The maximum

absorption wavelengths of the dye solutions are listed in Table 15.
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Figure 19. Molecular Structure of Monoazo Dyes (Aldrich Chemical Co.)
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Figure 20. Molecular Structure of Disazo Dyes (Aldrich Chemical Co.)
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Figure 21. Molecular Structure of Trisazo Dyes (Aldrich Chemical Co.)
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Table 15. Maximum Absorption Wavelengths of the Azo Dyes

Dye Maximum Dye Maximum
absorption absorption
wavelength wavelength

Acid Blue 92 572 Acid Yellow 25 395
Acid Red 8 508 Acid Red 97 496

Acid Blue 161 602 Direct Violet 51 548
Acid Orange 8 490 Acid Yellow 38 374
Direct Blue 71 584

5.2 Experimental Procedure

Experiments were performed in an open batch system of 50 mL beaker at room

temperature of 23 0C. Solutions of the dye were adjusted to the desired pH by adding 1

M H2 S0 4 or 1 M NaOH. A stock solution of the dye with water was prepared and the pH

was adjusted as desired. The test procedures are presented as the following groups:

* To assure quality control, duplicates were run to verify the accuracy of two sets of

experimental data: [Dye] = 0.1 M, time = 1 min, [Fe>] = 0.001 M for Acid

Orange 8

pH 2, 3,4

[H 20 2]= 0.00001 M, 0,0001 M, 0.001 M, 0.01 M, 0.1 M
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* The effect of [H22 ] on dye: [Dye] = 0.1 M, time=1 min, [Fe2 ] = 0.001 M

pH = 2, 2.5, 3, 3.5, 4 for Acid Yellow 38 and Acid Orange 8

pH = 3 for all monoazo dyes

pH= 4 for all disazo dyes

pH = 2, 3, and 4 for trisazo dye

[H202] = 0.00001 M, 0.0001 M, 0.001 M, 0.01 M, 0.1 M

* The effect of [Fe 2 +] on dye: [Dye] = 0.1 M, time=1 min, [H202]= 0.001 M

pH = 2, 2.5, 3, 3.5, 4 for Acid Yellow 38 and Acid Orange 8

pH = 3 for all monoazo dyes

pH = 4 for all disazo dyes

pH = 2,3,and 4 for trisazo dye,

[Fe2+] = 0,0005 M, 0.001 M, 0.005 M, 0.01 M,

* The effect of pH: [Dye] = 0.1 M, Reaction time = 1 min,

[H202] = 0.001 M, when [Fe2 +]= 0.0005 M, 0.001 M, 0.005 M, 0.01 M,

[Fe2+] = 0.001 M, when [H202] = 0.00001 M, 0.0001 M, 0.001 M, 0.01 M,

0.1 M

pH = 2, 2.,5, 3,35 and 4

A magnetic stirrer ensured a complete mixing condition at 400 rpm. The reaction

time was 1 minute, and the equilibrium studies were performed. A control experiment

was measured by adding a quantity of water equal to Fenton's Reagent and was measured

as a sample. A control for [H202] in absence of [Fe2+] with dye was measured, and a

control for [Fe 2+] was measured in absence of [H202]. A drop of 4 N NaOH was used to
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terminate the oxidation by raising the pH to 9 in order to prevent the further generation of

hydroxyl radicals through Fenton's reaction. For some of the dyes, the addition of

NaOH resulted in sludge formation. In these cases a sample was taken and was

immediately filtered through a 0.45 pm syringe filter (Acrodisc) and analyzed using a

UV-Visible Diode Array Spectrophotometer (HP 8452A). Advanced quantification

software is connected with the spectrophotometer, which can show the results by

numerical analysis and in graphic forms based on statistical analysis. The color is

measured by the absorbance intensity at the maximum absorbance wavelength according

to Beer's Law. The calibration curve of each dye was established by the corresponding

standard solutions. The number of standards used for calibration was three to four. Least

Square method was used to calculate the standard deviation. The standard deviation of

calibration ranged from 0.0003 to 0.0007. The correlation coefficient (r2 ) was 0.999.

One way analysis of a variance was performed on the duplicates to verify the standard

deviation of the duplicates on statistical software SPSS. The method used to measure the

samples is the same as that of Tang and Chen (1996) for both parts of the thesis.

6 RESULTS AND DISCUSSION

6.1 Quality Control

Several measures were taken to assure quality control. The removal of color was

normalized with the initial dye concentration. A control experiment was conducted by

adding a quantity of water equal to Fenton's Reagent and was measured as a sample. A
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control for H20 2 in absence of Fe2+ with the dye was measured, and a control for Fe>2

was measured in absence of H2 0 2 . Both the controls gave the same concentration as the

initial concentration of the dye. The color change was measured immediately after the

reaction, in order to assure accuracy.

Two sets of duplicates were carried out. These duplicates were carried out to see

if any experimental errors existed, which might be the reason for the lines to fall closely

for different pH. The duplicates were also carried out to verify the optimal pH range for

monoazo dye Acid Orange 8 and the optimal pH ratio for the color removal. These

duplicates were measured at a dye concentration of 1 M, pH levels of 2, 3, and 4 which

was the main pH range of interest and at H2 0 2 levels of 0.1 M, 0.01 M, 0.001 M, 0.0001

M, and 0.00001 M for the reaction time of one minute.

From the removal of dye the results were very close for both of the runs. Thus,

error bars were not the right choice to determine the statistics of proximity of the points.

The data was run through a statistical software SPSS, and a one-way analysis of variance

was performed on all the points. Estimated marginal means were calculated, and these

are plotted as shown in Figure 22.

The 'tests of between subjects effects' showed very small P-values, which means

that the probability of getting such extreme results if no interaction exists is very low.

The case summary indicates that at H202 concentrations of 0.00001 M at all pH values

the removal of color is almost equal, it is also the same for H20 2 concentration of 0.0001
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M at pH 3 and 4, but for higher concentrations, these values are significantly different,

and their probability of being same for one concentration at different pH is nil (P-value).

The standard deviation was also calculated for the mean and is listed in table 16 along

with a case summary.

Table 16. Case Summary and Standard Deviation of Duplicates

ID H202 (M) pH %Rem. 1 %Rem. 2 Mean Std. Dev.

1 0.00001 2 0.0151 0.0253 0.0202 0.0072
2 0.0001 2 0.0847 0.0798 0.0822 0.0034
3 0.001 2 0.2058 0.2023 0.2040 0.0025
4 0.01 2 0.2220 0.1741 0.1981 0.0339
5 0.1 2 0.1196 0.0775 0.0985 0.0298
6 0.00001 3 0.0266 0.0360 0.0313 0.0662
7 0.0001 3 0.1642 0.1363 0.1503 0.0197
8 0.001 3 0.4200 0.4060 0.4130 0.0099
9 0.01 3 0.4687 0.4953 0.4820 0.0188
10 0.1 3 0.2766 0.2730 0.2748 0.0025
11 0.00001 4 0.0271 0.0213 0.0242 0.0041
12 0.0001 4 0.1457 0.1179 0.1318 0.0196
13 0.001 4 0.3734 0.3617 0.3675 0.0083
14 0.01 4 0.4425 0.4241 0.4333 0.0129
15 0.1 4 0.2411 0.2335 0.2328 0.0054

Total 0.1526

Figure 22 also demonstrates two major points. First, the optimal pH for the color

removal of monoazo dye Acid Orange 8 is 3, and second, the optimal 202 concentration

for color removal in this treatment ranges from 0.001 M to 0.01 M which means that

H2O2/Fe2 + ratio for monoazo dye Acid Orange 8 ranges from 1 to 10 at Fe2

concentration of 0.001 M. The descriptive statistics from the general linear model is
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listed in table 17, The total of the mean of different H202 concentrations was calculated

for pH 2, 3 and 4. The total of mean shows that the highest removal is observed at H202

concentration of 0.01 M, indicating the experimental optimal H202 /Fe 2
+ ratio of 10. This

result agrees well with the theoretical optimal H20 2/Fe2+ ratio of 11.

From the mean of the descriptive statistics, the total mean of color removal is

highest for H202 concentration of 0.01 M and the decreasing order is 0.01M, 0.001 M,

0.1 M, 0.0001 M and 0.00001 M. This implies that the optimal ratio of H20 2/Fe2+ in the

decreasing order is 10, 1, 100, 0.1 and 0.01. The statistics also imply that pH 3 shows

the greatest removal compared to pH 2 and pH 4. Since the standard deviation is very

low, it is reasonable to say that the experimental error is nil.
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Figure 22. Estimated Marginal Means of Removal
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Table 17. General Linear Model: Descriptive Statistics

HP pH Mean Std. Deviation N

0.00001 2 0.02021 0.007234 2
3 0.03126 0,006628 2
4 0.02424 0.0040932 2

Total 0,02524 0.0068998 6

0.0001 2 0.08222 0.003445 2
3 0.15027 0.019716 2
4 0.1318 0.096134 2

Total 0.1214 0.033882 6

0.001 2 0.20408 0.0024977 2
3 0.41303 0.0099001 2
4 0.3675 0.0082717 2

Total 0.3282 0.098456 6

0.01 2 0.19805 0,033934 2
3 0,481965 0,01879 2
4 0.43331 0.012962 2

Total 0.371108 0.13703 6

0.1 2 0.09854 0.0298 2
3 0.27479 0.0025169 2
4 0.237277 0.0053723 2

Total 0.203538 0.084149 6

Total 2 0.120621 0,076097 10
3 0.27027 0.1746 10
4 0,23883 0.15792 10

Total 0.209907 0.152614 30
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6.2 Oxidation of Monoazo Dyes

6.2.1 Fe2 + and pH Effect on Acid Orange 8

Acid Orange 8 was selected as a representative dye to study the optimal pH for

monoazo dyes. The effect of pH with different concentrations of Fe2+ for Acid Orange 8

degradation is shown in figure 23. The optimal pH for Fenton's Reagent usually changes

for the organic compounds to be oxidized. For example, the optimal pH is 3.5 for

chlorinated phenols (Potter and Roth, 1993), 2 to 3 for pentachlorophenol (Watts et al.,

1990), 3.5 for 2, 4-dichlorophenol (Tang and Huang, 1997), 3 for chlorobenzene (Sedlak

and Andren, 1991), 3.5 for chlorinated aliphatic organic (Tang and Huang, 1996), 4 to 5

for 2, 4-dinitrotoluene (Mohanty and Wei, 1993), 3.5 to 4 for decolorizing dye (Kuo,

1992) and 4 for continuous treatment of a textile wastewater (Lin and Peng, 1995). Since

the optimal pH may range from 2 to 4, the pH levels to be studied for each model dye are

selected as 2, 2.5, 3, 3.5, and 4.

Figure 23 shows that the percentage removal of Acid Orange 8 increases with

increasing Fe2+ concentration upto 0.0005M. Above this concentration at pH 2 and 2.5

the percentage removal is 80 - 85 %. At an Fe 2+concentration of 0.001 M, the degradation

curve at pH 2 and 2.5 are almost the same. At pH 3.5 and 4, the maximum percentage

removal is 85.6 % at Fe2+ concentration of 0.005 M. Figure 23 suggested that the optimal

pH is approximately 3 to 3.5, for most cases and optimal Fe 2+ is from 0.001 M to 0.005

M.
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Figure 23. Effect of pH and Fe2 on Degradation of the Monoazo Acid Orange
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6.2.2 pH and H202Effect on Acid Orange 8

The degradation of Acid Orange 8 as a function of H202 and pH is shown in

figure 24. The degradation of Acid Orange 8 increases with an increasing concentration

of hydrogen peroxide. When H202 concentration lies within 0.001 M to 0.01 M the

degradation is greatest. Further increase in H202 concentration does not significantly

increase degradation. These results from figure 24 agree well with the figure 22. The

maximum degradation of the dye is also at pH 3 for all the concentrations of H202,

except at the concentrations of 0.01 M and 0.1 M of H202 where the maximum

degradation at pH 2.5 is 1 to 2% more than that at pH 3. The degradation of pH 3 and 4

lies very closely but since experimental error is nil, figure 22 proves that the probability

of them being same if no interaction exists is extremely low. This suggests that high

concentrations of H202 require an acidic environment where H202 is more stable. At pH

2, the degradation rate decreases with further increasing 11202 concentration.

In an acidic solution, an oxonium structure is formed as:

0 H1

1-0-0-H+ H* H 0 (128)

In a strongly acidic medium, the oxonium ion may split into 0H* and water as:

106



H 0 ++ HO* + H20 (129)

The OHi is strongly electrophilic in nature, which will facilitate electron transfer from

Fe2+ to H22. Therefore, hydroxyl radicals will be more efficiently generated. As pH

increases from 3 to 4, the degradation of Acid Orange 8 increases only with an increasing

concentration of hydrogen peroxide. For most concentrations of hydrogen peroxide, pH

3 had the maximum degradation. Therefore, pH 3 was selected as the optimal pH to

study the effect of H20 2 on the other monoazo dyes.

6.2.2 Effect of Fe2+ on Monoazo Dyes

The effect of Fe2+ on degradation of monoazo dyes at H202 concentration of

0.001M and pH 3 is shown in figure 25. Figure 25 demonstrates that the monoazo dyes

such as Acid Red 8, Acid Blue 161 and Acid Blue 92 have similar degradation patterns at

different Fe2+ concentrations. For these three dyes the maximum degradation was

observed at Fe2+ concentration of 0.001 M. This means that the optimal ratio of

H20 2/Fe2+ for these dyes is 1, which is the same as Acid Orange 8. Therefore, the

optimal ratio of H20 2/Fe2+ for all the monoazo dyes is 1. Apparently, the degradation of

dyes is a function of the molecular structure of dyes. In our previous studies, the number

of azo bonds contained in an azo dye is also an important factor in determining the
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degradation rates by different oxidation processes (Tang et al., 1996; Tang and Chen

1996; Kuo, 1992; and Tang and An, 1995). The degradation rates of monoazo dyes in

decreasing order is given by Acid Blue 92, Acid Red 8, Acid Orange 8 and Acid Blue

161 at the H2O2/Fe 2+ ratio of 1.

6.2.4 Effect of H202 on Monoazo Dyes

Figure 26 shows the percentage degradation of dyes at pH 3. It shows that the

degradation of all the monoazo dyes increases with H202 concentration. However, there

is an optimal amount of H20 2 required to degrade each dye efficiently. The optimal ratio

for Acid Red 8, Acid Blue 92, Acid Blue 161 and Acid Orange 8 ranges from 10, 1-10,

0.1, to 1-10, respectively.

6.3 Oxidation of Disazo Dyes

6.3.1 pH and Fe2 + Effect on Acid Yellow 38

Acid Yellow 38, selected as a representative disazo dye, was investigated under

the same experimental conditions employed for the monoazo dye, Acid Orange 8. Figure

27 shows the degradation of Acid Yellow 38 at different pH levels as function of Fe+.

These data suggest that the degradation of Acid Yellow 38 at pH 4 is significantly better

than that at pH 2. In addition, pH also effects the optimal H2O 2/Fe2 + ratio. For example,

the optimal H20 2/Fe2 + ratio is 0.2 at pH 2, while the optimal H2O 2/Fe2 + ratio is 1 at pH 4.

Since disazo dyes contain two azo bonds, complexation between the azo dye and Fe2+

should be favorable at higher pH due to less electrical repulsive forces. As a result,
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hydroxyl radicals generated through the use of Fenton's Reagent should be more readily

available to the dye molecule, for the degradation at a high pH of 4, becomes faster than

at low pH of 2.

6.3.2 pH and H202 Effect on Acid Yellow 38

Figure 28 shows the degradation of Acid Yellow 38 as a function of pH and H202

dosage. Figure 28 supports the fact that more hydroxyl radicals are generated at pH 4 in

oxidizing the disazo dye at pH 4 than at any other pH, because at pH 4 the degradation of

Acid Yellow 38 is highest for all the dosage of H202. This figure also indicates that the

degradation of Acid Yellow 38 also increases to a certain level with an increase in H202

and then either remains steady as in case of pH 3.5 or decreases as in the cases of pH 2

and 2.5. Degradation of the dye increases at pH 3 and 4 with an increase in concentration

of H2 0 2. Figures 22 and 23 indicate that pH 4 was optimal pH and was selected for all

the other disazo dyes studied.

6.3.3 Effect of Fe on Disazo Dye

Figure 29 shows the relationship between percentage removal of disazo dyes and

Fe2 dosage at the optimal pH 4. The maximum degradation of disazo dye is observed at

an Fe dosage of 0.001 M. The degradation decreases for Acid Yellow 8 at higher

concentrations of ferrous ions whereas degradation increases to about 2% at 0.005 M and

then decreases to 26% at 0.001 M after 1 minute for Direct Violet 51. For Acid Red 97,
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degradation increases about 1 % each with an increase in concentrations of Fe2+ at 0.005

M and 0.001 M. Therefore, the optimal amount of Fe2+ is 0.001 M. The decrease in the

degradation rate or the steady degradation rate with further increase in Fe2+

concentrations can be attributed to the fact that Fe2+ can also react with hydroxyl radicals

through the reaction given in equation 7.

6.3.4 Effect of H202 on Disazo Dye

Figure 30 shows the relationship between percentage removal and H202

concentration for the other disazo dyes. At fixed pH and Fe2+ concentrations, the

percentage removal of the disazo dyes increases with increasing H20 2. When the H202

concentration further increases, the degradation increases to about 8% for Acid Yellow

38, as H202 concentration increases from 0.001 M to 0.1 M. However, degradation is not

significantly increased for Direct Violet 51, whereas degradation is decreased for Acid

Red 97. This is consistent with equation 9, where a superoxide radical is formed at

constant Fe2+ and excess of H2 0 2 which competes with the hydroxyl radical, resulting in

the lower degradation of the organic substrate. Different dyes have different optimal

dosages of H202, but an optimal range of dosages occurs for molecules with similar

structures. From figure 30, the optimal H202/ Fe2 range for disazo dyes is 1 to 10.
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Figure 24. Effect of pH and H202 on Degradation of the Monoazo Acid Orange 8
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Figure 26. Effect of pH and 1202 on Degradation of the Monoazo Dyes
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6.4 Oxidation of Trisazo Dye

Degradation of trisazo dye Direct Blue 71 was studied at pH of 2, 3 and 4. At pH

2 the degradation was observed to be similar to that of mono and disazo dyes, but at pH 3

and 4 the dye degraded into a colorless liquid in few seconds. To study this rapid

reaction, experiments were carried out by lowering the concentration of Fenton's

Reagent. For example, the concentration of Fe 2+ was lowered from 0.001 M to 0.0001 M

to study the effect of H20 2 and the concentration of H202 was lowered from 0.001 M to

0.0001 M to study the effect of Fe2+,

6.4.1 Effect of Fe2+ on Direct Blue 71

Figure 31 shows the relationship between percentage removal of trisazo dye

Direct Blue 71 and Fe2 +. The optimal amount of Fe2+ required for degradation of Direct

Blue 71 is 0.001 M at pH 2, and the optimal ratio of H20 2/Fe2+ is one for Direct Blue 71.

Further increase in ferrous ions at a constant amount of hydrogen peroxide results in

excess of ferrous ions which will be oxidized to ferric ions by consuming hydroxyl

radicals. As a result, the percentage removal of trisazo dye decreases.

6.4.2 Effect of H202 on Direct Blue 71

Figure 32 relates the degradation of Direct Blue 71 in the presence of different

concentrations of H202. The figure shows that at pH 2 the degradation of Direct Blue 71
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increases linearly with increase in H202, till H202 concentration of .001 M, with further

increase in concentration, the degradation is same, which has also been observed during

the destruction of BTX by Fenton's Reagent (Lou and Lee, 1995). As explained by

Harber and Weiss (1934) the oxidation of organic compounds is second order at low

H2 0 2 and fixed Fe2
+. But with an increase in the ratio of H20 2 /Fe 2+, the reaction

approaches zero order kinetics and depends on the competition between hydroxyl radicals

and superoxide radicals (Mohanty and Wei, 1993). Thus, at fixed Fe2+ and higher H202,

fewer hydroxyl radicals are available due to the limited Fe 2+ concentration.

Apparently, the degradation of dyes is a function of the molecular structure of

dyes. In our previous studies, the number of azo bonds in an azo dye is also an important

factor in determining the degradation rates by different oxidation processes (Tang et al.,

1997; Tang and Chen 1996; Kuo, 1992; and Tang and An, 1995). The degradation rates

of monoazo dyes in decreasing order is Acid Blue 92, Acid Red 8, Acid Orange 8 and

Acid Blue 161 degradation at the H202/ Fe2+ ratio of one.
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6.5 The Optimal Ratio of H 2O2/Fe2+

As an excess of H202 and Fe2+ will scavenge hydroxyl radicals, the H202 to Fe2+

ratio has to be maintained at an optimal range for the maximum degradation rate of azo

dyes to be achieved. Table 16 summarizes the optimal ratio of H20 2 to Fe 2+ for the

degradation of different classes of azo dyes at different pH levels. For each dye at

optimal pH, effects of H20 2 on dye degradation at a constant Fe2+ concentration, and the

effect of Fe2
+ on dye degradation at a constant H20 2 concentration have been investigated

independently. The range of the optimal ratio of H20 2 to Fe was obtained. Table 16

suggests that the optimal ratio of monoazo dyes and disazo dyes varies from 1 to 10, and

that for trisazo dye is 1 in both cases (color removal at different H20 2 concentration when

Fe2+ concentration is constant and color removal at different Fe2+ concentration when

H2 0 2 concentration is constant).

Supporting these findings are extensive reports of the H20 2 to Fe2+ ratio in the

literature for organic compounds. The optimal H20 2/Fe2+ ratio was reported as 3 to 9 for

phenol (Eisenhauer, 1964; and Keating et al., 1978), 0.122 for a textile wastewater (Kuo,

1992), 83 for dinitrotoluene (DNT) (Mohanty and Wei, 1993), 1 for atrazine (Arnold et

al., 1995), 0.2 for benzene, toluene and xylene (BTX) (Lou and Lee, 1995) and 2 for

trihalomethanes (THIM (Tang and Tassos, 1997).
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Table 18. Optimal Ratio of H2 O2 to Fe> for Degradation of Azo Dyes

Optimal over pH range of 2 to 4
Azo Dyes 2 2.5 3 3.5 4

Monoazo Acid Orange 8 1 to 10
Acid Red 8 ito 10
Acid Blue 161 0.1 to 1
Acid Blue 92 1 to 10

Disazo Acid Yellow 38 1 to 10
Acid Red 97 1 to 10
Direct Violet 51 1 to 10

Trisazo Direct Blue 71 1

So far, no theoretical treatment has been reported for predicting the optimal ratio

of H20 2 to Fe2+ for azo dyes. This thesis presents the comparison of theoretical and

experimental values for azo dyes to resolve this problem for the first time. To

theoretically predict the optimal ratio of H202 to Fe2+ the kinetic model reflecting the

effect of H202, Fe2+, and organic compounds on the oxidation kinetics developed by

Tang and Huang (1997). Briefly, the reaction in equation 1 is the key initiation step in

the generation of hydroxyl radicals. Because azo dyes are unsaturated compounds, the

first step is the addition of a hydroxyl radical to the double bond of the molecule. After

hydroxylation, an activated complex can be assumed as the transition state intermediate.

The activated complex will either dissociate to form products such as carbon dioxide and

water or return back to the original reactant:

Fe2+ +H 2 02= Fe3 + + OH + OH kl= 76 (130)
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kf * p
R -N=N-R 2 + OH- ® (R 1 - -N-R 2) -+R -N -N -R 2 +H 20 (131)

kb I OH
OH 0

Where: kf is the rate constant for formation of activated intermediate after the reaction of

hydroxyl radicals with the azo dyes [k = 4.4* 109 (M 1 s )]. kb is the rate constant for

decomposition of activated intermediate after hydroxyl radicals reaction with the azo

dyes and kp is the rate constant for formation of products by dissociation of the activated

intermediate.

In addition to the above reaction in equation, hydroxyl radicals may be terminated

through the following reactions at constant pH.

Based upon the above reactions, the kinetic model was developed as follows:

n

k 2 ] [ 2] (s) (132)s kobserved k[ + ke[ 2 ]}

Where n is the number of hydroxyl radicals needed for the oxidation of one azo dye

molecule, rs is the rate constant of reaction in equation ki = 51 M-1 s; k 2 = 3 * 108 M

1 s-1 and kt = 2.7 * 107 M- 1 s1 are the values for reaction given in equations 1, 7 and 8,

on pages 3 and 4, respectively, and

k, kf
kobserved

kb
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Equation 132 assumes that the oxidation kinetics are pseudo-first order to the

concentration of dyes, based on the experimental observation by Watts et al. (1990) when

hydroxyl radical concentration is constant.

To obtain the optimal ratio of H202 to Fe2 +, equation 132 can be differentiated

with respect to H20 2, and set to zero assuming that H2 0 2 is the optimal concentration

defined as (H 20 2)opt. We set:

dr,/ d[H 20 2] = 0 (133)

The optimal concentration of H20 2 can be expressed as follows by solving the above
equation.

[H 2 2j 0 pt = - kt2 [Fe2 ]opt (s) / 2kt (134)

The optimal concentration of Fe2+ expressed as (Fe2
+)pt. can be derived from the same

mathematical approach:

dr / d[Fe = 0 (135)

Then, the optimal concentration of Fe2+ is:

[Fe2 ]opt = - kt [H 2 2)opt (s) / 2kt2  (136)

Dividing equation 134 by equation 136, derives the optimal ratio of 1202 to Fe+:

[H202] k 2  Fe+]

[Fe+] k2 [H202] (137)
opt. opt.
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Therefore, the final form of the optimal ratio between H202 and Fe2+ is:

[H2021

[Fe2+] } k (138)

opt.

202] k2 = 3x0 8 = 11 (139)
[Fe2+] k 2.7 x 107

opt.

Substituting the numerical values into equation 138, produces an estimate of the

theoretical optimal ratio of H202 to Fe2+ as the following:

Experimental values from this study ranging from 1 to 10 suggest that a greater

amount of iron salt is required, if degradation was only due to the hydroxyl radical

oxidation. Thus, the experimental results suggest that there is another mechanism,

contributing to the consumption of Fey+. One possible loss could be that the ferrous ion

can serve as ligand for the azo bond and formn a complex as follows:

Fe2

Fe2
++ R N=N-R 2  + Ri - N-N-R 2  (140)

If this complexation with dye molecule occurs, a lesser amount of Fe2+ than the initial

Fe concentration will be available for hydroxyl radical production. Recall from Table

18, that the optimal ratio of H2 0 2 to Fe2 is 1 for trisazo dye. Since trisazo dyes have
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three chromophore groups, the lower ratio is probably due to more azo bonds (-N=N-)

available to complex with ferrous ions. During the experiments for trisazo dye Direct

Blue 71, it was noted that the dye changed the color from blue to purple at pH greater

than 2, this supports that complexes are formed. Figure 33 shows the evidence of

complexation as the maximum wavelength shifted peaks during varying concentration of

Fe2+. The experiments were carried out at pH 4, at an Fe2+ concentration of 0.0001 M

and different H202 concentration for curves 1 to 6 and at an H202 concentration of 0.0001

M and different Fe2+ concentration for curves 6 to 10. The change in H202 concentration

did not decrease the color of the dye, but with the change in Fe2+ concentration the

complexation was observed, since the color of the dye was changed from blue to purple

and the peak of wavelength shifted. Greater complexation of Fe2+ with dye molecules

occurs, as the number of azo bond increases is also consistent with the findings in this

thesis
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7 CONCLUSION

Degradation of eight different azo dyes over the range of pH 2 to 4,

concentrations of Fe2
+ from 0.05 M to 0.001 M and concentration of H20 2 from 0.1 M to

0.00001 M was studied.

* For monoazo and disazo dyes this optimal ratio ranges from 1 to 10, and

for trisazo dyes it is 1.

* The optimal pH for degradation of disazo dye by Fenton's Reagent is pH

4, and for monoazo dye is 3.

* As the number of azo bonds increases, the degree of complexation

increases, which requires a greater amount of iron salts for the reaction.

In the rapid degradation of Direct Blue 71, a purple colored complex is

formed at pH greater than 2.

* The observed optimal ratio of H20 2 to Fe2
+ agreed to a limited degree with

the theoretical value of 11, probably because of complexation and

variance with the structure of the organics to be destroyed.
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8 RECOMMENDATIONS

The recommendations for future investigations in this part is as follows:

Experiments with mixture of dyes: More experiments needs to be carried out,

using a mixture of monoazo dyes, disazo dyes and trisazo dyes individually based on this

study. The removal efficiency should be studied for this mixture for different dye

concentrations and optimal ratio and optimal pH should be determined for this mixture.

After individual class evaluation, a mixture of different classes should also be studied to

see the optimal color removal conditions.

Intermediates: The formation of toxic intermediates and products is not well

understood at this time for the Fenton's Reagent treatment. Color changes observed

during the experiments are indicative of the formation of several intermediates during the

process. Before these processes can be widely applied, the degradation pathways should

be defined and the toxicity investigated.

Selection of Optimal Ratio for Process: The optimal ratio of H20 2/ Fe2+ was

found to lie between 1-10 for most of the dyes. The amount of color removal at these

optimal ratios should be correlated with the cost of H202 , since in certain cases the

difference in color removal is not significant for both 1 and 10. In such cases, the

selection of optimal ratio should depend on the time for the reaction and the cost of H20 2.
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PART II. DEGRADATION OF AZO DYES IN AQUEOUS SOLUTION BY

H2O2/Fe POWDER

9 INTRODUCTION

No single unit process is effective to treat textile effluents. Fenton's Reagent

seems to be economical and effective treatment only if used in conjunction with

flocculation, coagulation and followed by filtration. Nevertheless, Fenton's Reagent

produces large amounts of sludge due to the hydrolysis of Fe2+ and Fe3 +. To determine if

the additional cost associated with sludge handling can be reduced, Fe powder was used

in this study to replace Fe2 +

The use of zero-valent iron to reduce chlorinated hydrocarbons was first reported

in patent literature by Sweeny and Fischer in 1972. However, Sweeny and Fischer never

published in peer reviewed journals; therefore, their work was overlooked by the research

community (Gillham et al., 1994). In the late eighties, Glenn Reynolds, a graduate

student at the University of Waterloo in Ontario, was researching the corrosion of PVC

and iron pipes by water contaminated with organics. Reynolds observed that the organics

would disappear from the iron pipes and reported the information to his supervising

professor, Robert Gillham. Since the focus of the research project was on the degradation

of plastics in pipes, the "discovery" was not given much thought. Several years later,

Gillham realized the potential of using the reduction ability of zero-valent iron for

practical purposes. He founded EnviroMetal technologies Inc. and holds several patents
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for the application of zero-valent iron degradation of organic compounds (Wilson, 1995).

Paul Tratnyek, an assistant professor at the Oregon Graduate Institute, had also made

contributions to the zero-valent iron research by the analysis of the reactions and the

mechanism behind the reduction process. The use of zero-valent iron as a treatment

process is effective, economical, and receiving increasing attention in the industry. In this

part, the degradation kinetics of seven monoazo dyes, three disazo dyes and one trisazo

dye are investigated and the reaction mechanisms are proposed. The objectives of this

component of the study is to investigate the effect of the number of azo bonds, auxiliary

functional groups, and pH on degradation kinetics by hydrogen peroxide and zerovalent

iron powder.

10 FUNDAMENTAL THEORY

Tang and Chen (1996) first demonstrated that zero valent iron powder (Fe) could

be quickly and economically produce the iron salt (Fe 2
+) required in Fenton's chemistry

(Fe2
+/ H2 0 2) in presence of H202. This process modification has an advantage of

reducing the sludge formation over the conventional Fenton's treatment system. The use

of metallic iron makes separation of iron easy, and has the dual advantage of adsorpting

and oxidizing azo dyes. Four different processes, namely, iron dissolution, dye

adsorption, dye reduction, and dye oxidation are very important in removing dye from

aqueous solutions (Tang and Chen, 1995). Iron powder reacts with water and dissolves

as Fe2+
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Fe' + 2 202 -+ Fe2 + 2 OH~ + H2T (iron dissolution) (141)

When added to this solution, dye molecules RH form complexes with the metal, referred

as chemisorption. The metal ions complex with the functional group of the dye

molecules, i.e. the ligands, as:

Fe0 + RH -> Fe-RH (adsorption) (142)

Fe
2+

Fe2+ +R-N=N-R-+ R-N-N-R (complexation) (143)

Fe 2++H202 -> Fe + OH + OH - (Fenton's oxidation) (144)

In the presence of organic substrates such as dye molecules RH, hydroxyl radicals HO -,

and ferrous ion (Fe2
+) at low pH can produce organic free radicals, R:

HO + RH-+ H2 +R (145)

The organic free radical may then be oxidized by Fe"+, reduced by Fe2 +, or dimerized

(Kuo, 1992):

R + Fe3 + R + Fe2
+ (Oxidation) (146)

R + Fe2+- * + Fe (Reduction) (147)

2R -+R-R (Dimerization) (148)
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The rate of dye degradation depends on the ratio of H2 0 2 to Fe+2 which is also shown in

previous work (Kuo, 1992; Lin et al., 1995; Lou et al., 1995; Tang and Chen, 1995; Tang

and Chen, 1996). The desired reaction for the production of the hydroxyl radical is:

k tt
20H H20 2  (149)

where k t is 5.3 * 109 M1 s-1. Competitive reaction is that excessive Fe2 can scavenge

hydroxyl radicals:

kt2

HO + Fe 2+-+ OH + Fe3+ (150)

where kt2 is 3* 108 M s1. In addition, excessive H2 0 2 also consumes hydroxyl radicals

as:

k t3
H2 O2 + HO -* HO2 + H 2  (151)

Where k t is 2.7 * 10 7M- -1. Given the competitive reactions, it is extremely important

that an optimal ratio of H202 to Fe+2 is maintained. If H20 2 is in excess super oxide

radicals (HO2 ) are formed which is a weaker oxidant than hydroxyl radical (HO). The

superoxide radical acts as a competitor with the hydroxyl radical during oxidation. As a

result the degradation is slower.
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11 LITERATURE REVIEW

11.1 Dyes

Advanced oxidation processes have gained considerable attention in decolorizing

textile wastewater. However, there was no well documented information in the area of

H20 2 /Fe powder before Tang and Chens work (1996). Role of Fe0 dissolution in the

adsorption of reactive red 120 dye by iron powder was investigated in their work (1996).

Reactions were carried out in a well mixed batch reactor. Iron powder dissolution

in deionized water with and without H202 was studied at pH of 2, 2.5, 3, 3.5 and 4.

Samples were taken at 0, 0.5, 1.5, 2, until 10 minutes. It showed that Fe2
+ concentration

increased dramatically in the first 2 to 5 minutes. Fe2+ concentration increased much

faster at lower pH than at higher pH. F" was described as a oxidation reduction process

during which metallic iron powder is oxidized by dissolved oxygen. The reaction was

described as follows:

Fe0 -+Fe2++ 2e" (152)

1/20 2 + H20 2 + 2e-+ 2H (153 )

H*+ H~-+H20 (154)

The overall reaction can be summarized as follows
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FeO + 1/20 2 + 2H Fe2+ +H20 (155)

The above reaction in equation implies that acidic environment is necessary to

enhance iron dissolution. The experiments showed that the final pH increased from 3 to

5.3. The dissolved Fe2+ concentration in first minute was low, indicating iron dissolution

a slow process. After one minute the Fe2+ concentration increased rapidly. It was also

observed that oxidation of Fe2+ by dissolved oxygen is a faster process than iron

dissolution. At pH greater than 3.5, the ferric ions formed ferric hydroxides or insoluble

hydroxide particles, which resulted in the decrease of ferric ion concentration. Iron

dissolution constant of 0.1213 mM/s at pH 2 was 30 times greater than 0.0047 mM/s at

pH 4. To evaluate iron dissolution in presence of H202, studies were carried out at pH 3

and iron powder concentration of 1 g/L. Different H202 concentrations were used and it

was found that the maximum Fe2+ concentration occurred at 11202 concentration of 104

M. The accelerating and inhibitive properties of H202 in iron corrosion is explained as,

when H202 concentration is low, it can only serve as an electron acceptor from the iron

powder surface, therefore it enhances iron dissolution. When the H202 concentrations

exceeded 5 x 10 -4 M, the Fe 2+ dissolved quickly and was oxidized by excess H202. High

H202 concentration lead to the passivation by forming Fe3-0 4 on the iron powder

surface. The total Fe powder dissolution rate decreased when H202 concentration was

greater than 0.001 M.

Dye adsorption is considered one of the important processes during decolorization

in this study. The dye studied was reactive red 120, which has several functional groups
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containing oxygen and nitrogen atoms, chemisorption was considered as an important

part of adsorption process. Since chemisorption is a single layer adsorption, Langmuir

adsorption model was used to describe adsorption kinetics. Effect of pH on adsorption of

reactive red 120 was studied and it was found that, the lower the pH value, the more the

dye adsorbed. Dye adsorption at pH 2 was about five times higher than that at pH 4. It

was also proposed that part of the dissolved Fe2+ and Fe3+ exists in electrical double layer

of Fe powder surface, due to which the dye molecule will have more Fe and Fe 3 ions

on the Fe powder surface to complex with. Also, less Fe2 + concentration was detected in

solution at high pHs of 3.5 and 4 than at pH 2 and 2.5, which means adsorption of Fe2 on

Fe powder surface should be relatively low at high pH levels of 3.5 to 4.

The effect of iron powder concentration on dye adsorption was also studied, dye

adsorption per unit weight of Fe was not linearly proportional to iron powder

concentration. The reason for this was not understood clearly. Adsorption equilibrium

studies were performed for 30 minutes. The results from the adsorption equilibrium

study obeyed the Langmuir adsorption isotherm. The maximum adsorption capacity was

calculated to be 200 mg dye per gram of iron powder.

Since adsorption transfers the contaminant from one phase to another rather than

destroying the contaminant, Tang and Chen (1996) also studied with oxidation of this

dye. Investigation of pH effect showed that the optimal pH ranged from 3 to 3.5. Lower

dye concentrations were found easier to be decolorized during the study of dye

concentration effect. The study showed that Fenton's reaction was more important in
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decolorization than adsorption. The optimal ratio between H2 0 2 and iron powder was

0.001 M to 1.0 g/ L (1/5.5 to 1/8.7). This ratio may vary with the type of substrate, as it

does for Fenton's Reagent, thus it may vary with different types of dyes.

12 OBJECTIVES

Three different classes of mono, dis and tris azo dyes are studied in this thesis.

The objective is to generalize the work by Tang and Chen (1996) and to apply it to a

single family of dyes (azo dye) with three different classes.

1) To investigate the effect of pH on decolorization of five monoazo dyes, three

disazo dyes and one trisazo dye by H20 2 and Fe0 powder.

2) To investigate the effect on decolorization by H20 2 and Fe0 powder due to the

presence of number of azo bonds and the auxiliary groups on azo dyes.

3) To investigate the kinetics and mechanism of degradation of the dyes by H20 2

and Fe0 powder.

4) To evaluate H20 2/Fe2 + and H2 0 2/Fe0 processes by comparing them.
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13 EXPERIMENTAL

13.1 Materials

Hydrogen Peroxide (30%-35%) was obtained from Fisher Scientific Co. The

iron powder used was a metallic powder less that 10 pm, and purity greater than 99%

(Aldrich Chemical Company, Inc.). Monoazo dyes Acid Yellow 25, Acid Blue 92, Basic

Red 29, Acid Orange 8, Acid Red 8, Basic Blue 41, Acid Blue 161, disazo dyes Acid

Yellow 38, Acid Red 97, Direct Violet 51 and a trisazo dye Direct Blue 71 were also

purchased from Aldrich Chemical Company. These dyes are the same as those

mentioned in part I of this thesis.

13.2 Experimental Procedure

Experiments were performed in an open batch systemn of 1000 mL at a room

temperature of 23 C. Complete mixing conditions were ensured at 100 rpm. Under

complete mixing conditions 10 ml of 0.1 M H2 0 2 and 1 g of Fe powder were added to the

system, according to the optimum ratio of H202 to Fe powder reported by Tang and Chen

(1996). The pH of the solution containing iron powder was adjusted. Solutions of the

dye were adjusted to the desired pH of 2.5, 3, and 3.5 by adding 1 M H2S0 4 or 1 M

NaOH. A 1 M stock solution of dye was used to make 0.1 M aqueous solutions. A

sample was taken as soon as the dye was added. Hydrogen peroxide was added to the

reactor at the beginning of the experiment. A sample was taken to determine how much
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dye was adsorbed on iron powder initially before oxidation began. Samples were

withdrawn at 0, 0.5, 1, 2, 5, 10, 20, 30 and 60 min using a 10 mL syringe. A drop of 4 N

NaOH was used to terminate the oxidation by raising the pH to 9 to prevent further

generation of hydroxyl radicals through Fenton's reaction. The samples were then

filtered through a 0.45 pm syringe filter from Acrodisc and were analyzed using a UV-

Visible Diode Array Spectrophotometer (HP 8452A). Advanced quantification software

is connected with the spectrophotometer, which can show the results, by numerical

analysis and graphic forms based on statistical analysis. The color is measured by the

absorbance intensity at the maximum absorbance wavelength according to the Beer's

law, the calibration curve for each dye was established by the corresponding standard

solutions. The calibration curve was established in the same way as mentioned in part I

of the thesis. Controls were measured for each dye without Fe powder and H202. The

removal of dye color was normalized with the initial concentration. The kinetics of the

degradation was studied for 60 minutes for all the dyes. Two monoazo dyes were basic

dyes, and were suspected to precipitate in basic conditions, therefore no Reagents were

added and the precipitation kinetics for Basic Blue 41 and Basic Red 29 were studied at

pH levels of 9, 10, 11, and 12.
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14 RESULTS AND DISCUSSION

14.1 Effect of pH on Degradation of Monoazo Dyes

The pH effect on the oxidation kinetics of five different monoazo dyes is shown

in figures 34, 35, and 36 The maximum degradation of the dye appears to occur at pH

2.5 or less for all the monoazo dyes. As pH increased from 2.5 to 3.5, the degradation

decreased. To quantitatively evaluate the decolorization kinetics, during the first 10

minutes, the reaction is described using the first order kinetics:

dCdye / dt = - kCdye (156)

where Cdye is the concentration of dye (mM) and k is the first order degradation constant

(1/min). Table 19 shows the first order constants for different monoazo dyes at pH 2.5, 3,

and 3.5, and an initial concentration of 0.1 mM.

Table 19. First Order Rate Constants of Different Monoazo Dyes

Monoazo dyes pH 2.5 pH 3 pH 3.5
k(1/min) r2  k(1/min) r2  k(1/min) r2

Acid Yellow 25 0.1754 0.977 0.5711 0.999 0.0072 0.9111
Acid Red 8 0.5295 0.9694 0.4351 0.916 0.0319 0.9185
Acid Blue 161 0.589 0.9775 0.4337 0.9486 0.0078 0.9491
Acid Orange 8 0.0088 0.9863 0.012 0.9877 0.0191 0.9997
Acid Blue92 * 0.3742 0.9527 0.1732 0.9637

* The first-order oxidation rate constant cannot be determined due to rapid
decolorization.
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At pH 2.5 the degradation rates of monoazo dyes in the decreasing order is given

by Acid Blue 161 > Acid Red 8 > Acid Yellow 25 > Acid Orange 8 > Acid Blue 92.

Acid Blue 161 also has significant adsorption followed by oxidation. Degradation of

Acid Red 8 is similar to Acid Blue 161. Thus, at pH 2.5 Acid Blue 92, Acid Blue 161,

and Acid Red 8 are easily adsorbed due to naphthalene ring. Acid Blue 92 is adsorbed at

a very fast rate. Acid Yellow 25 is moderately degraded and Acid Orange 8 is the least

degraded dye.

Fe1 is a transition metal ion present in a hydrated form that forms a wide variety

of ligands with electron donors such as N and 0 in the dye molecule. Since, the

molecular structure has lesser functional groups, than that of Acid Red 8 and Acid Blue

161, Acid Orange 8 has lesser ligands to complex with Fe 2}. This may be one of the

reasons for the low degradation rate of Acid Orange 8.
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Figure 34: Degradation of Monoazo Dyes at pH 2.5
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Figure 37. First-order Rate Constants of Different Monoazo Dyes at pH 2.5
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Figure 37 shows the degradation kinetics of monoazo dyes at pH 3. Acid Blue

161 and Acid Blue 92 have similar molecular structures with two conjugate naphthalene

rings and thus are relatively easy to oxidize due to the t electron density, which is higher

than Acid Red 8 containing one naphthalene ring. Acid Orange 8 is the most difficult

dye to oxidize. One possible reason is that Acid Orange 8 only contains one naphthalene

ring. Therefore, the n electron density may be much less than monoazo dyes containing

two naphthalene rings.

Significant reduction of degradation rate constants was observed at pH 3.5. For

most of the monoazo dyes except Acid Blue 92, the rate constants decreased one order of

magnitude from an average rate constant of 0.45 1/min to an average rate constant of 0.02

1/min. Interestingly, the order of degradation reversed compared with pH 2.5. At pH

3.5, Acid Blue 92 and Acid Red 8 were degraded fastest, while these dyes are the slowest

to be degraded at pH 2.5. The number of sulfonic functional group plays an important

role. Negatively charged, if it is not associated with H+, a sulfonic group will be present

in negative ionic form as pH increases from 2.5 to 3.5. As a result, the aromatic ring will

have denser electronic cloud, which allows the dye to degrade more readily by a hydroxyl

radical at pH 3.5, than at pH 2.5, because the elementary iron surface is positive at low

pH of 2.5 to 3.5, due to excessive number of protons in the solution.
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Figure 38. First-order Rate Constants of Different Monoazo Dyes at pH 3
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Figure 39. First-order Rate Constants of Different Monoazo Dyes at pH 3.5
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4.2 Effect of pH on Degradation of Disazo Dyes

Three disazo dyes Acid Red 97, Acid Yellow 38, and Direct Violet 51 were

studied. At pH 3, the oxidation rate of Acid Yellow 38 was higher compared to Direct

Violet 51, but Direct Violet 51 was highly adsorbed at this pH. Almost 95% was

decolorized in 2 minutes reducing oxidation. Whereas for Acid Yellow 38 the adsorption

was relatively less than the oxidation. At pH 2.5, Acid Yellow 38 is more adsorbed and

less oxidized than at pH 3. Direct Violet 51 is only slightly decolorized and no oxidation

is observed at pH 2.5, this shows that at pH 2.5 oxidation is not a controlling mechanism

for the degradation of disazo dyes. While at pH 3.5 significant amount of Direct Violet

51 is decolorized and oxidation is dominant, which is also observed for Acid Yellow 38.

The oxidation kinetic data of figure 40 and 41 are used to derive the first order rate

constants listed in table 20.

Table 20. First Order Rate Constants of Different Disazo Dyes

Disazo pH 2.5 pH 3 pH 3.5
k(1/min) r k(l/min) r K(1/min) r

Acid Yellow 38 0.0814 0.9814 0.3808 0.9704 0.0231 0.9001
Direct Violet 51 * 0.9973 0.0058 0.91 0.0833 0.9706

Acid Red 97 * * * * * *

SThe first-order oxidation rate constant is zero,
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14.3 Effect of pH on Degradation of Trisazo Dye

The pH effect on the degradation of a trisazo dye Direct Blue 71 in figure 42 for a

pH of 2.5, 3, and 3.5 is similar to the effect for monoazo dyes. At pH 2.5 the maximum

degradation of Direct Blue 71 was observed. During the first ten minutes, the

degradation for Direct Blue was faster at pH 2.5 than at pH 3 and 3.5. After ten minutes

the degradation pattern at all three pH were similar. Since iron dissolution is faster at

lower pH, more dissolved iron (Fe2+) is available for Fenton's oxidation at pH 2.5.

Figure 42 also shows that, oxidation of a trisazo dye Direct Blue 71 is highest at

pH 2.5. This is also due to higher iron dissolution at low pH in first 10 minutes and

availability of Fe2+ for Fenton's oxidation of trisazo dye due to iron dissolution. From

the kinetic data the degradation kinetic rate constants are 0.057 1/min (R2 = 0.9975) and

0.0359 (R2 = 0.9211) at pH 2.5 and 3, respectively.

For most of the dyes, which have been studied, it can be concluded that oxidation

rates were high at a lower pH. At pH 3.5, in most cases like Direct Blue 71, if the iron

dissolution is less than the simultaneous oxidation is also less. Thus, it could be seen that

the dissolved iron at different pH plays an important role in the dye degradation through

Fenton's mechanism. Degradation is rapid in the first ten minutes of the reaction time.
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More Fe 2 than that required by the optimum ratio will not enhance oxidation as

no hydrogen peroxide is available to generate additional hydroxyl radicals. Thus at a

lower pH, all hydrogen peroxide reacts with Fe2 to generate hydroxyl radical which

enhances the degradation rate of the dye.

14.4 Effect of Molecular Structure

The number of azo bonds and the type of auxiliary group attached to the dyes has

a significant effect on the rate of degradation (Kuo, 1992; Tang et al., 1996; Tang and

Chen, 1995; 1996). Based on the removal kinetics of several dyes, chemisorption is an

important mechanism. Chemisorption depends on the type of auxiliary group attached to

the dye molecule. As discussed before Acid Orange 8 has a much lower degradation rate

at all pH. One of the explanations may be that this molecule has the least number of

functional groups compared to the other dyes. Since similar rates of degradation of Acid

Orange 8 is observed at different values of pH, chemisorption may be the major initial

rate controlling mechanism. By contrast Acid Blue 92 is adsorbed instantaneously and is

almost completely degraded at lower pH values within 2 minutes, even though the dye

has a very similar structure to Acid Blue 161. It is the same case with Direct Blue 51.

One possible explanation for this is that both of these dyes contain one amide

group, which is very easily adsorbed on metal. The rate of oxidation also depends on the

molecular structure of dyes, this has been observed previously (Tang et al., 1997) and is

verified in this study with Acid Red 8 and Acid Blue 161 at pH 3. Under this condition
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the degradation rate of Acid Red 8 is faster than Acid Blue 161. Acid Red 8 has only one

naphthalene ring while Acid Blue 161 has two conjugate naphthalene rings, which

introduces a steric constraint. It supports that at pH 3, oxidation is also a controlling

mechanism. For disazo dyes, Acid Yellow 38 is less difficult to degrade than Direct Blue

71, possibly because Acid Yellow 38 has a thiol group which is difficult to degrade. The

rate of oxidation is influenced by the number of azo bonds attached to the dye molecule.

As seen from the rate constants at pH 3.5, degradation rates of azo dye decrease as the

number of azo bond increases. For example, the degradation rates decrease in the order

of monoazo dye Acid Blue 92> disazo dye Direct Violet 51 > trisazo dye Direct Blue 71.

14.5 Precipitation of Basic Monoazo Dyes

Basic dyes precipitate in basic solutions because of a positive charge on the

molecule. When a base is added, the positive charge of the dye reacts with the hydroxide

ions of the base and neutralizes the positive dye. Figure 43 shows the pH effect on the

precipitation kinetics of Basic Red 29. In these studies, almost all the dye particles are

precipitated at the bottom of the reactor within 10 minutes. As the pH increases, more

dye particles settle which is clearly shown in figure 43. At pH 9 almost 55% of the dye is

removed, at pH 10 more than 75 % of the dye is precipitated and at pH 10, 95 % removal

of the dye is observed. At pH 11 and 12 the precipitation of Basic Red is completed in

seconds and is hardly possible to measure, The rate of precipitation of Basic Red 29 is

greater than the rate of precipitation of Basic Blue 42. Figure 43 presents the

precipitation kinetics of Basic Blue 41.
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Table 21. First Order Rate Constants for Precipitation of Basic Monoazo Dyes

Monoazo pH 9 pH 10 pH 11 pH 12
dyes

K r2  K r2  K r2  Kr2
(1/nin) (1/mm) (1/mm) (1/mi)

Basic Blue 0.0309 0.9431 0.0793 0.9372 0.3512 0.91 0.8247 0,977
41

Basic Red 0.2501 0.9613 0.7223 0.9081 0.1415 0.8162 * *

29
Decolorization is rapid to calculate the first-order oxidation rate constant.

Figure 44 compares the precipitation kinetics of Basic Red 29 at pH 9 and pH 10.

At higher pH of 11 and 12 the dye molecules degraded instantly within half a minute and

it was hardly possible to calculate the rate constants. At pH 10 the precipitation rate of

Basic Red 29 is greater than that at pH 9. This is because the positive charge of the basic

dye is attacked by more hydroxide ions at pH 10 compared to pH 9 and same is true for

pH 11 and pH 12 where the precipitation increases.
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Figure 46 compares the precipitation rate constants of the Basic Blue 41 at pH 9,

10, 11 and 12. The rate of precipitation reaction increases with increasing pH. This

shows that as the pH increases more hydroxide ions are available to react with positive

charge of the dye thus destroying the dye molecule. At pH 12 almost 98 % of the dye is

degraded in 20 minutes. At pH 11 almost same amount of degradation of the dye is seen

after 50 minutes as seen for pH 12 at 50 minutes which means that the increase in the pH

beyond pH 11 increases the rate of precipitation but the degradation efficiency is the

same after 50 min.

It can be concluded from table 5 that at pH 9 and 10 the precipitation rate of Basic

Red 8 is greater than Basic Blue 41. The reason for this is that Basic Red 29 has a

positive charge on a smaller molecule, which is linked with chromophore. Since

chromophore is responsible for the color, the color quickly disappeared once it had been

destroyed. For Basic Blue 41, the positive charge lies on a larger molecule attached to

the azo bond (chromophore). Thus, when these two basic dyes are neutralized by

hydroxide ions, the larger dye of Basic Blue 41 will be neutralized slower than Basic Red

29. Since the color was removed so quickly it was not necessary to carry out the

oxidation reaction.
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15 CONCLUSIONS

* At lower pH the dye degradation is faster in first 10 minutes, the pH range

was found to be 2.5-3. While at higher pH dye degradation was slower

in first ten minutes and the pH range was 3-3.5.

* The decolorization kinetics for mono azo dye is of pseudo first order.

* The rate of decolorization depends on the number of azo bonds present in

the dye molecule and on the type of auxiliary group present in the dye

molecule. Oxidation takes place at the chromophore structure, thus similar

dye molecules have similar rate of degradation.

* In H2 0 2 and Fe powder system, adsorption as well as oxidation of dye

takes place simultaneously, thus offering a dual advantage in removal.

Due. to the continuous dissolution of Fe powder and dye adsorption on Fe

powder, H202/ Fe powder may better than H2 0 2/ Fe2+ system at lower pH.

16 RECOMMENDATIONS

Good research not only advances the understanding of processes but also raises

more questions when properly pursued. In this investigation, the following additional

suggestions are the most important for future work:

Mechanisms: The mechanism is not well understood in the Fe powder/H202

system for all these dyes, research is needed to study each of these azo dyes and their
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behavior in different systems. These systems include study of adsorption of azo dyes in

the presence of iron powder, amount of Fe2+ and Fe 3+ present in the solution. This would

in turn indicate the available Fe2+ for Fenton's reaction and Fe 2 + and Fe3+ available for

chemisorption for each dye.

Chemisorption and Oxidation: In order to understand chemisorption, all the dyes

should be studied only with iron powder. This will indicate how much dye is adsorbed at

different pH levels. The oxidation of trisazo dye at a high concentration and pH of 4

indicated complexation in Fenton's treatment. Such condition for all the other dyes

might also be possible at higher concentrations or in different experimental conditions.

An advantage of the dual mechanism of chemisorption and oxidation should be taken

while designing the treatment unit to enhance the rapid color removal. Thus, different

experimental conditions need to be studied for all the azo dyes.

Optimal Condition Studies: A study needs to be performed for the Fe

powder/H20 2 system to determine the optimal pH, H20 2 and iron powder for each dye.

These studies can be performed once the amount of Fe2+ and Fe 3
+ present in the solution

is determined.

Surface Analysis: Several different types of powdered iron are available

commercially with which the degradation of all the dyes should be investigated. Since,

surface area is a major factor in Fe powder dissolution and dye adsorption, a specific

surface area of iron powder should be determined.
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Intermediates: The formation of toxic intermediates and products is not clearly

understood at this time for the Fe powder/H 202 system. Color changes observed during

the experiments are indicative of the formation of several intermediates during the

process. Before these processes can be widely applied, the degradation pathways should

be defined and the toxicity investigated.
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OVERALL CONCLUSIONS

Fenton's Reagent (H2 O2/Fe 2
+) was discovered in 1891 by H. J. H. Fenton. The

reaction mechanism was studied 50 years after the discovery and a universal mechanism

was accepted in 1971. In the late eighties, Fenton's Reagent was studied to treat

contaminants in the environment. Zero valent iron powders potential as a reducing agent

to treat contaminants in environment was discovered in late eighties. Tang and Chen

(1995) discovered zero valent irons' oxidation potential in the presence of H20 2

(H20 2/Fe). The reaction mechanism for H20 2/Fe consists of adsorption besides Fenton's

oxidation, the extent of which is still not clear.

This thesis addressed the degradation of eleven azo dyes at 0.1 M concentration

by H2O2/Fe2+ and H202/Fe powder processes. Among the eleven azo dyes Basic Blue 41

and Basic Red 29 (monoazo) were not degraded because they completely precipitated in

alkaline solutions; thus, oxidation was necessary by either of the two studied processes.

ANOVA analysis were conducted to support any different observations among the

variables on removal by the process in the study.

Kinetics

The reaction kinetics for Fe2+/H2O2 was already studied (Lou and Lee, 1995) and

was found to be pseudo first order reaction. The reaction kinetics for Fe/H 20 2 system

was not studied before. The second part of the thesis shows that the reaction kinetics for
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Fe/H 20 2 is also pseudo first order for the first ten minutes of decolorization for the azo

dyes. The decolorization for the azo dyes was almost complete in the first minute of the

reaction time for the Fe2+/H2O 2 treatment system. Whereas the decolorization for the

Fe/H202 treatment system took nearly 60 minutes for most of the dyes, the maximum

decolorization was achieved within first ten minutes. Both the treatment systems used

H2 0 2 concentration of 0.001 M for all the dyes. The initial concentration of all the dyes

was 0.1 M. In order to compare both processes, Acid Yellow 38 was selected as a model

dye. For H2 0 2/Fe powder system, the amount of Fe2+ present in deionized water at

different pH with respect to time is known (Chen, 1995). Thus, the amount of Fe2+

present in the H2 2/Fe powder system at 1 minute and at pH 2.5 was 0.005 M, pH 3 and

pH 3.5 was 0.0005 M. These values are an approximation and represent the maximum

possible amount of Fe2+, which can be present. These molar concentrations of Fe2+ for

same pH and time were used for the H20 2/Fe2+ system to see the amount of removal by

Fenton's treatment. The percentage removal was then compared as shown in the figure

47. Figure 47 shows that the removal of color is high for the H2 2/Fe powder system at a

lower pH and it decreases as pH level increases.
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Mechanisms

Reaction mechanism for Fe2 +/H2 O2, is the Fenton's reaction. This mechanism is

common for both systems.

2Fe 2+ +H 202+ H+* 2Fe3++H 2 0 (156)

This equation shows that an acidic environment is required in order to produce a

maximum amount of hydroxyl radicals (Tang and Huang, 1996). In the presence of

organic substrates such as dye molecules RH, hydroxyl radicals, and ferrous ion at low

pH can produce organic free radicals R -,

HO'+RH=H 2O+R, (157)

The organic free radical may then be oxidized by Fe3y, reduced by Fe2 +, or dimerized

(Kuo, 1992), according to the following reactions:

R + Fe -+ R+ + Fe2+ (Oxidation) (158)

R + Fe2+-+ R + Fe + (Reduction) (159)

2R -+ R-R (Dimerization) (160)

Another competitive reaction is that excessive Fe2+ can scavenge droxyl radicals

through the following reaction:
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HO -+ Fe2 +  H ~ + Fe3+ (161)

Where kt2 has a value of 3*10 8 M-ts-1 , in addition to this, excessive H202 also consumes

hydroxyl radicals as shown by:

kt3

H2O2 + ~ H02'+H20 (162)

In addition to oxidation, the Fe/11202 system offers an advantage of adsorption and

complexation (chemisorption).

Fe' + 2 11202- Fe2 + 2 0H+ H2T (Iron dissolution) (163)

When H202 and Fe2+ is added to the aqueous solution containing azo dyes, the dye

molecules form a complex with the metal, which is referred to as chemisorption where

metal ions form complex with the functional group of the dye molecules, i.e. ligands.

Fe + dye molecule -+ Fe-Dye (Adsorption) (164)

Fe2 +

Fe 2 +R -N=N-R- R-N-N -R (Complexation) (165)
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Thus, the Fe/H 2O2 system offers a dual advantage of adsorption along with oxidation,

compared to Fe2 +/H2O 2 system, which is only oxidation.

Moreover, Fe2 /H2O2 has all the iron in dissolved form and thus a large amount of

Fe2+ reacts with the hydroxyl ions to form sludge, which has to be removed by

coagulation and flocculation followed by filtration. For Fe/H 2O2, some of the iron is

available for adsorption or chemisorption, whereas rest of it is dissolved in form of Fe2+

and oxidized by Fenton's oxidation. This will result in a lesser amount of sludge to be

handled. Thus, in order to select the process, the reaction time as well as the amount of

sludge produced should be considered.

OVERALL RECOMMENDATIONS

In order to enhance the comparative efforts of this study for the two processes, it

is recommended that future experiments should be conducted using the same

experimental approaches for both of the processes. In order to improve statistical

analysis, future studies should consider additional replicates of individual tests and

complete experiments. The other recommendations are the same as those for individual

parts.
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APPENDIX B

Experimental Data of Part I.

Table B.A. Degradation of Acid Orange 8, H202 = 0.001 M, Time = 1 min

H202 (M) pH= 2 pH=3 p1=4
t=1in t=1min t=1min

Co 0.821 0.8428 0.08292
0 0 0 0

0.00001 0.8086 0.8204 0.8067
0.0001 0.7515 0.7044 0.7084

0.001 0.652 0.4888 0.5196
0.01 0.6387 0.4478 0.4623

0.1 0.7228 0.6097 0.6293

Table B.2. Degradation of Acid Orange 8, Duplicate of Table B.1, H202= 0.001 M,
Time = 1 min

H20 2 (M) pH=2 pH=3 pH=4
t=1 min t=1 min t=1 min

Co 0.0821 0.08428 0.08292
0 0 0 0

0.00001 0.08002 0.08125 0.08115
0.0001 0.07555 0.07279 0.07314

0.001 0.06549 0.05006 0.05293
0.01 0.06781 0.04254 0.04775

0.1 0.07574 0.06127 0.06356

Table B.3. Degradation of Acid Orange 8, H202= 0.001 M, Time = 1 min

Fe2 (M) Concentration Concentration Concentration Concentration Concentration of
of Dye at of Dye at of Dye at of Dye at Dye at
pH=2 pH=2.5 p=3 pH=3.5 pH= 4

0 0.084 0.084 0.084 0.084 0.084
0.0005 0.030114 0.025074 0.017413 0.018094 0.034532
0.001 0.005565 0.003588 0.003807 0.004252 0.010947
0.005 0.001349 0.001088 0.000548 0.000612 0.001576
0.01 0.00037 0.0004 7.4E-5 0.000153 0.000467
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Table B.4. Degradation of Acid Orange 8, Fe+= 0.001 M, Time = 1 mil

H202 (M) Concentration Concentration Concentration Concentration Concentration of
of Dye at of Dye at of Dye at of Dye at Dye at
pH_=2 pH=2.5 pH=3 pH=3.5 pH=4

0 0.0805 0.084 0.0805 0.0805 0.0805
0.00001 0.079856 0.079716 0.056865 0.065229 0.058749
0,0001 0.065242 0.065705 0.03454 0.046574 0.037658
0.001 0.012057 0.029047 0.00755 0.010945 0.011938
0.01 0.003111 0.02074 0.001885 0.003623 0.003653
0.1 0.001726 0.021731 0.000522 0.001025 0.001465

Table B.5. Degradation of Monoazo Dyes, H202= 0.001 M, Time = 1 mi

Fe2 (M) Acid Red 8 Acid Blue 92 Acid Blue 161 Acid Orange8

(M) (M) (M) (M)
0 0.08695 0.11135 0.1035 0.084

0.0005 0.02733 0.00462 0.03716 0.017413
0.001 0.01002 0.00033 0.03262 0.003807
0.005 0.01914 0.01396 0.05052 0.000548
0.01 0.0347 0.02419 0.05982 7.4E-05

Table B.6. Degradation of Monoazo Dyes, Fe = 0.001 M, Time = 1 min

H202 (M) Acid Red 8 Acid Blue 92 Acid Blue 161 Acid Orange8
(M) (M) (M) (M)

0 0.08695 0.11135 0.1035 0.084
0.00001 0.07915 0.055953 0.037664 0.059338
0.0001 0.06637 0.0242 0.002207 0.036042
0.001 0.02322 0.001028 0.000824 0.007879
0.01 0.0035 5.42E-05 0.000737 0.001967
0.1 0.03217 3.15E-05 0.000737 0.000545

Table B.7. Degradation of Acid Yellow 38, H20 2 0.001 M, Time =1 mn

Fe (M) Concentration Concentration Concentration Concentration Concentration of

of Dye at of Dye at of Dye at of Dye at Dye at
pH=2 pH=2.5  pH=3 pH= 3 5 pH=4

0 0.1 0.14 0.077 0.1238 0.1286
0.0005 0.1 0.1085 0.0302 0.0499 0.0474
0,001 0.091 0.0707 0.0358 0.0364 0.0358
0.005 0.094 0.0879 0.0716 0.0707 0,0589
0.01 0.1 0.1148 0.102 0.0967 0.0966
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Table B.8. Degradation of Acid Yellow 38, Fe2 += 0.001 M, Time = 1 min

H202 (M) Concentration concentration concentration concentration Concentration of
of Dye at of Dye at of Dye at of Dye at Dye at

H=2 pH =2.5 pH=3 pH= 3 .5 p 4

0 0.1 0.14 0.077 0.1238 0.1286
0.00001 0.1 0.13 0.074 0.0507 0.0688
0.0001 o.1 0.12 0.0739 0.0695 0.0577
0.001 0.0979 0,0809 0.0443 0.0423 0.037
0.01 0.0709 0.0395 0.0294 0.0305 0.032
0'1 0.1 0.044 0.0265 0.0311 0.0259

Table B.9 Degradation of Disazo Dyes at pH 4, H2 02 = 0.001 M, Time 1 min

Fe2 + (M Direct Violet 51 Acid Red 97 Acid Yellow 38
(M) (M ( M)

0 0.1048 0.1111 0.1286
0.0005 0.0221 0.0244 0.0474
0.001 0.0093 0.0059 0.0358
0.005 0.0071 0.0048 0.0589
0.01 0.0081 0.0038 0.0966

Table B.10. Degradation of Disazo Dyes at pH 4, Fe2
+ = 0.001 M, Time = 1 min

H202 (M) Direct Violet 51 Acid Red 97 Acid Yellow 38
(M) (M) (M)

0 0.1048 0.1111 0.1286
0.00001 0.0771 0.0188 0.0688
0.0001 0.024 0.018 0.0577
0.001 0.0088 0.0052 0.037
0.01 0.0048 0.0011 0.032
0.1 0.0042 0.0123 0.0259

196



Experimental Data of Part I.

Table B.11. Degradation of Monoazo Dyes at pH 2.5

Time Acid Red 8 Acid Yellow 25 Acid Orae Acid lue 92 Acid Blue 161

0 .1 0.112 0.1195 0.05264 0.09109
0 .05 0.1198 0.116 0.01894 0.06655
1 .03238 0.08889 0.1151 0.00173 0.04454
2 .02521 0.0884 0.1148 0.0001 0.03654
5 .01557 0.0792 0.114 0.0001 0.03121
10 .006 0.025 0.1128 0.0001 0.02022
20 .0047 0.02 0.1124 0.0001 0.00961
30 .0033 0.0168 0.1121 0.0001 0.00938
60 .0015 0.0153 0.00985 0.0001 0.00851

Table B.12. Degradation of Monoazo Dyes at pH 3

Time Acid Red 8 Acid Yellow 25 Acid Orange 8 Acid Blue 92 Acid Blue 161
(M) (M) (M) (M) (M)

0 0.1228 0.102 0.1263 012963 0.08375
0 0.1157 0.0978 0.1256 0.10834 0.08029
1 0.1116 0.09124 0.1255 0.09978 0.07277
2 0.1113 0.09059 0.1211 0.08728 0.064063
5 0.1108 0.090288 0.1209 0.08461 0.05122
10 0.0862 0.08929 0.1185 0.07321 0.03955
20 0.0328 0.08692 0.1183 0.04654 0.01142
30 0.0275 0.084177 0.1182 0.02827 0.01129
60 0.0073 0.0784 0.108 0.0001 0.01128

Table B.13. Degradation of Monoazo Dyes at pH 3.5

Time Acid Red 8 Acid Yellow 25 Acid Orange 8 Acid Blue 92 Acid Blue 161
(M) (M) (M) (M) (M)

0 0.12 0.0995 0.1295 0.07264 0.09084
0 0.1198 0.0919 0.128 0.06578 0.09062
1 0.1164 0.08012 0.1271 0.06515 0.09058
2 0.1103 0.0801 0.1263 0.6466 0.09053
5 0.1103 0.07042 0,1245 0.599 0.08956
10 0.107 0.0564 0.1233 0.4824 0.08858
20 0.1008 0.0438 0.1209 0.3901 0.08808
30 0.0953 0.03881 0.1183 0.3705 0.085
6 0.087 0.3864 0.1122 0.3072 0.0836
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Table B.14. Degradation of Disazo Acid Yellow 38

.Time pH2.5 p3 pH 3 5S
0 0.1259 0.1211 0.1432
0 0.0917 0.1097 0.1307
1 0.0705 0.1017 0.1306
2 0.0689 0.0964 0.1288
5 0.0615 0.08896 0.1242
10 0.0593 0.0682 0.123
20 0.052 0.04154 0.112
30 0.0496 0.0222 01069
60 0.049 0.01076 01

Table B.15. Degradation of Disazo Direct Violet 51

Time pH 2.5 pH 3 p 3.5
0 0.0991 0.1 0.0956
0 0.09638 0.1084 0.0813
1 0.09638 0.0871 0.0582
2 0.09638 0.0736 0.0534
5 0.09638 0.0607 0.0516
10 0,09638 0.0533 0.0446
20 0.09638 0.0444 0.0363
30 0.09638 0.0347 0.031
60 0.09638 0.034 0.0247

Table B.16. Degradation of Disazo Dye Acid Red 97

Tie p112.5

0 0.11
1 0,10814
2 0.10467
5 0.10467
10 0.10467
20 0.10467
30 0.1029
60 0.10237
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Table B17. Degradation of Trisazo Direct Blue 71

Time pH2.5 pH3 pH3 5
0 0.1098 0.119 0.0991
0 0.1064 0.119 0.099
1 0.106 0.114 0.0929
2 0.106 0.114 0.087
5 0.106 0.114 0.084
10 0.106 0.112 0.0781
20 0.106 0.106 0.076
30 0.106 0.101 0.0709
60 0.104 0.1005 0.0605

Table B.18. Comparison of Degradation of Acid Yellow 38 by Both Processes

pH % Removal by H2O2/Fe2  % Removal by H20 2/Fe powder

Ci C C C

2.5 0.14 0.0879 0.1259 0.0705
3 0.077 0.0302 0.1211 0.1017

35 0.1238 0.0499 0.1432 0.1306
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