
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-15-2006

Artificially induced aggregation of fauna and their
effects on nutrient regimes and primary producers
in an oligotrophic subtropical estuary
Bryan M. Dewsbury
Florida International University

DOI: 10.25148/etd.FI14062256
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Biology Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Dewsbury, Bryan M., "Artificially induced aggregation of fauna and their effects on nutrient regimes and primary producers in an
oligotrophic subtropical estuary" (2006). FIU Electronic Theses and Dissertations. 2786.
https://digitalcommons.fiu.edu/etd/2786

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F2786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2786&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.fiu.edu%2Fetd%2F2786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/2786?utm_source=digitalcommons.fiu.edu%2Fetd%2F2786&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNNERSITY 

Miami, Florida 

ARTIFICIALLY INDUCED AGGREGATION OF FAUNA AND THEIR EFFECTS 

ON NUTRIENT REGIMES AND PRIMARY PRODUCERS IN AN OLIGOTROPHIC 

SUBTROPICAL ESTUARY 

A thesis submitted in partial fulfillment of the 

requirements for the degree of 

MASTER OF SCIENCE 

1n 

BIOLOGY 

by 

Bryan M. Dewsbury 

2006 



To: Interim Dean Mark Szuchman 
College of Arts and Sciences 

This thesis, written by Bryan M. Dewsbury, and entitled Artificially Induced Aggregation 
of Fauna and Their Effects on Nutrient Regimes and Primary Producers in an 
Oligotrophic Subtropical Estuary, having been approved in respect to style and 
intellectual content, is referred to you for judgment. 

We have read this thesis and recommend that it be approved. 

Date ofDefense: November 15, 2006 

The thesis of Bryan M. Dewsbury is approved. 

Joel C. Trexler 

Mike B. Robblee 

James W. Fourqurean, MaJor Professor 

Interim Dean Mark Szuchman 
College of Arts and Sciences 

Dean George Walker 
University Graduate School 

Florida International University, 2006 

11 



ABSTRACT OF THE THESIS 

ARTIFICIALLY INDUCED AGGREGATION OF FAUNA AND THEIR EFFECTS 

ON NUTRIENT REGIMES AND PRIMARY PRODUCERS IN AN OLIGOTROPHIC 

SUBTROPICAL ESTUARY 

by 

Bryan M. Dewsbury 

Florida International University, 2006 

Miami, Florida 

Professor James W. Fourqurean, Major Professor 

In order to investigate the role of faunal aggregations in concentrating nutrients in the 

oligotrophic landscape of Florida Bay, I manipulated faunal densities in Florida Bay 

sea grass beds by constructing artificial reefs. The effects of reefs and faunal aggregations 

on nutrient availability and benthic community structure were assessed. 

Over a year-long sampling period, artificial reefs had an average population of 50 fishes 

and crustaceans of various species. Faunal aggregation resulted in significant sediment 

organic matter decreases and sediment phosphorus increases. Plots with high fauna 

populations also had shorter seagrass blades presumably due to the effects of grazing. 

Chlorophyll-a concentrations in the sediment and periphyton samplers were mainly 

affected by reef presence or exclosure type and not due to the presence of aggregating 

fauna. Our results suggest that faunal aggregation may have more top-down effects on 

primary producers than bottom-up effects over smaller temporal scales. 
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Introduction 

The effects of faunal aggregation have been documented extensively in the scientific 

literature, particularly effects on nutrient regimes (Kitchell et al. 1979, Wiegbert and 

Owen 1971). Examples of this aggregation and its subsequent effects on nutrient regimes 

abound in terrestrial systems. The effects on nutrient regimes include, but are not limited 

to herbivory (Day and Detling 1990, Frank and McNaughton 1992, Lock 1971), removal 

or accumulation of organic matter (Lal 1998), and nutrient deposition via defecation 

(Joblin 1981). Of these processes, defecation has been shown to produce greater changes 

in nutrient concentration in substrates and among primary producers. Quantification and 

analysis of the impact of concentrated animal feces has been recorded for such diverse 

animals such as colonial birds (Lindeboom 1984, Bildstein et al. 1992, Post et al. 1998, 

Powell et al. 1991, Hayes and Caslick 1984, Allaway and Ashford 1984, McColl and 

Burger 1976), herding bison (Day and Detling 1990, Frank and McNaughton 1992, Lock 

1971) and nesting ants (Wagner 1997, Lugo et. al 1973, Frouz et al. 2002, Wagner and 

Jones 2004). Animal excreta have a high nutrient concentration; deposition of this excreta 

results in higher rates of primary productivity (Powell et al. 1991, Bosman et al. 1986). 

In marine systems however, faunal aggregations are often limited by lack of shelters 

such as reefs. Though there is evidence of considerable nutrient transfer when 

anadromous fishes swim upstream to spawn (Gende et al. 2002, Durbin et al. 1979), 

marine fauna aggregation effects on nutrient regimes are mostly associated with the 

habitation by fish of stationary objects such as coral reefs and artificial reefs, since these 

fish feed away from the reefs and return to the reefs for shelter where they defecate. 

Considerable amounts of research has been devoted to the role artificial reefs play in 
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inducing fish aggregations (Bartone 2006), but reports on nutrient translocation by 

aggregating species is largely limited to rocky reef systems. Convincing evidence has 

been reported to support the theory that fishes, through diel feeding patterns and 

subsequent defecation, transport nutrients to the reef systems from the surrounding 

seagrass beds (Rothans and Miller 1991, Ogden and Ehrlich 1977, Meyer et al. 1983, 

Meyer and Schultz 1985). Fish feces, which is rich in nitrogen and phosphorus not only 

provide an enriched environment for coral species, but also serves as food for other 

members of the reef community (Y oungbluth 1982). 

Fecal addition by wading birds in seagrass beds have shown long-term changes in 

species composition and macrophyte morphometries as a result of the feces deposition 

(Powell et al. 1991 ), but a similar effect has not been shown to occur from fish 

defecation. The aggregation of fauna due to the presence of reef does not only result in 

the 'bottom-up' effects associated with defecation, but also produces patterns associated 

with spatial preferences in grazing. Sea urchins (Diadema antillarum) produce a region 

of bare sediment (also called a 'halo') through intense feeding on macrophytes. This 

'halo' has been observed in both natural and artificial reef units (Randall1965, Ogden et 

al. 1973, Alevizon 2002). 

The 'defecation effect' should be more pronounced in oligotrophic environments due 

to the nutrient limitation of primary producer biomass. Changes in background nutrient 

ratios in existing nutrient-limited environments can alleviate this oligotrophy, and lead to 

changes in the structure of the benthic community. Florida Bay is an oligotrophic 

phosphorus-limited subtropical estuary that supports a seagrass-dominated landscape 

(Figure 1) (Zieman et al. 1989, Fourqurean et al. 1992). Experimental manipulations 
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using fecal deposition by piscivorous birds in Florida Bay demonstrated that seagrass 

biomass in Florida Bay is phosphorus limited, and bird feces addition resulted in 

significant sediment nutrient increases, as well as change in dominance from late 

successional Thalassia testudinum to faster growing, early successional Halodule wrightii 

(Powell et al. 1991, Fouqurean et al. 1995). Florida Bay is a system of discontinuous 

banks and mangrove islands (Zieman et al. 1989) with very little vertical reef to serve as 

refugia for fish away from mangrove prop roots. Thus, the aggregation of fish in the 

deeper areas (>1 meter) of the Bay is rare due to reef limitation. 

Using an artificial reef that followed the design of Davis' (1985) spiny lobster 

(Panulirus argus) habitat mitigation experiment, I conducted a year-long investigation of 

faunal aggregation and the effects of that aggregation on the benthic community near Bob 

Allen Keys (N 25° 02.095', W 080° 39.437'). Building on existing evidence of 

thigmotaxism, defecation rates of fauna and nutrient limitation in Florida Bay, I seek to 

answer the question: can fish concentration significantly increase concentration of 

nitrogen and phosphorus in an oligotrophic system, and do such increases affect seagrass 

community that surround the faunal aggregation? I also examine the ecological 

consequences of this nutrient deposition as reflected by changes in benthic chlorophyll, 

filamentous algae, seagrass cover and seagrass nutrient content. To answer the question 

and address the consequences I tested the hypotheses that (1) the artificial reefwill attract 

fauna from surrounding areas and (2) this increased concentration of fauna will result in 

(i) increased sediment N and P, (ii) increased sediment organic matter, (iii) increased 

sediment chlorophyll, (iv) increased periphyton chlorophyll, (v) increased seagrass tissue 
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concentration ofN and P, (vi) decreased macrophyte abundance close to reefs due to 

grazing and (vii) reduced seagrass height also due to the effects of grazing. 

Methods 

Location 

Florida Bay is a semi-enclosed estuary bordered by the Gulf of Mexico to the west, the 

Everglades to the north and the Florida Keys to the east and south (Figure 1 ). The bay 

contains numerous tree islands and mud banks which act as discontinuous barriers to 

water flow through the region. Florida Bay is primarily fed by Taylor Slough (freshwater) 

and the Gulf of Mexico (marine water). Water temperatures in Florida Bay range from 

16°C in the winter months increasing to 31 °C in the late summer and early fall sampling 

periods. Salinities typically range from 27 ppt to 38 ppt. In early summer customary 

freshwater inflows result in lower than average salinities of 17 ppt. Water turbidities 

range from 0.44 ntu to 2.87 ntu in especially turbid winter months. 

Florida Bay supports one of the largest and most expansive seagrass beds in the world 

(Iverson and Bittaker, 1986). Thalassia testudinum is the dominant species of the 1660 

km2 of seagrass beds present in the bay (Zieman et al. 1989). Syringodium filiforme can 

also be found but mainly in the western parts of the bay where marine influences are 

stronger (Zieman et al. 1989). Halodule wrightii is also common but does not have as 

large a standing crop as Thalassia testudinum (Zieman et al. 1989). Florida Bay is also 

home to a variety of species of juvenile and adult fauna (Thayer and Chester 1989). 

These fauna species (mostly juvenile) are primarily found in seagrass patches which they 
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use as habitat, food source and protection. Thus Florida Bay, like other seagrass 

dominated estuaries around the world act as a nursery for many juvenile species of fauna 

that upon maturity migrate to the reef tract or to the Gulf of Mexico. This artificial habitat 

manipulation took place to the east of the Bob Allen Keys in the east-central region of 

Florida Bay (Zieman et al. 1989). It is characterized by salinities in the 30-45 ppt range, 

low water-column and porewater nutrients (Fourqurean et al. 1992, Fourqurean et al. 

1993) and sparse Thalassia testudinum beds. Halodule wrightii is present but is located 

primarily nearer the banks and is even more sparse or altogether absent at depths >2 

meters. 

The study site was chosen because seagrass species are sparse and because another 

artificial reef is located 'involuntarily' in the same area. A small plane wreck is located to 

the east of the Bob Allen Keys and is home to many fauna species including mangrove 

snappers (Lutjanus griseus ), French grunts (Haemulon plumieri), pipefishes (Syngnathus 

floridae) and nurse sharks ( Carcharias taurus )[personal observation]. Over the years the 

area surrounding the wreckage has developed into a relatively lush seagrass meadow of 

Thalassia testudinum and Halodule wrightii (JW Fourqurean, personal communication). 

The artificial reefs and corresponding controls used in this experiment are located in the 

same general area as the sunken aircraft. 
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Experimental Design 

To address the hypotheses laid out in this experiment a 2 x 3 factorial design was 

employed. There were 2 levels of reef (reef and no reef) and three levels of ex closure (no 

ex closure, partial ex closure and exclosure ). The artificial reefs consisted of 14 0.2 x 0.2 x 

0.4 meter concrete blocks arranged in a pyramid formation (Davis, 1985). This 

arrangement results in a reef that averaged 1.3 meters in width and length and 0.6 meters 

in height. The top of the reefs were approximately 1 meter below the mean water level. 

An exclosure was constructed to control for the possible effects (shading and 

sedimentation) that the reef itself may have on the sediment and sea grasses in the absence 

of fish aggregation. The ex closure consisted of 1.3 centimeter PVC tubing in a 

rectangular table frame with legs that were planted into the sediment. The PVC was cut to 

ensure that the length of the top of the exclosure was consistent with the top of the reef. 

Monofilament netting (2.5 em mesh) was then draped over and attached to the frame. To 

control for the possible effects the ex closures may have on sediment and seagrass, a 

treatment with the PVC frame only was constructed and referred to as partial exclosure. 

Each treatment (reef, reef with partial exclosure, reef with full exclosure, seagrass, 

sea grass with partial exclosure and sea grass with full ex closure) was replicated three 

times in the field and arranged randomly in three columns for a total of 18 plots (Figure 

2). 

Statistical analyses used to evaluate possible differences accounted for possible spatial 

differences between treatments as well as the effect of time on the response variable. A 2 

x 3 ANOV A was used to investigate possible the effects of the presence of reefs and 

exclosures on seagrasses in Florida Bay. The two factors were Reef (2 levels - reef, no 
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reef) and Ex closure (3 levels -no exclosure, partial exclosure, full exclosure ). The 

experiment was tested for effects of each factor as well as within subject effects on the 

response variables. A Student-Newman-Keuls test was used to test for significant 

differences between treatments means to address specifically our hypothesis. A repeated 

measures procedure was employed to determine the effects of time on the increase or 

decrease of response variables. In the case of a significant interaction effect, the 

difference of least mean squares were used to calculate which treatments were 

significantly different. A two-way ANOV A was also used (3 x 2 factorial) to investigate 

possible differences in Thalassia nutrient concentrations. Thalassia percentage cover was 

analyzed using a Chi-squared distribution that assessed the relative independence of 

treatment levels to the frequency of macrophyte cover categories. All significant values 

are reported at the 5% level. Statistics programs were run using SAS (version 9.1.3.) 

manufactured by the SAS institute. 

Sampling 

Data collected from the treatments were all done on SCUBA. Sampling trips occurred 

every two months with the exception of January due to continuous bad weather and 

resulting poor visibility. To investigate the response of the variables outlined in the 

hypotheses the following procedures were employed. 
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Faunal abundance: The abundance of fauna at each treatment was determined by visual 

assessment on SCUBA and corroborated with short digital underwater video camera. 

Special care was taken to not scare fauna away through excessively heavy breathing. 

Sediment nutrient concentration: 

Sediment samples were retrieved using piston cores made from 1 Occ syringes with the 

tips cut. Two cores were taken adjacent to the plot and two approximately 1 meter away. 

Sixteen cores were taken per plot. Eight of these cores were used for Nand P analysis 

and the other 8 were used for sediment chlorophyll-a determination. The top 5 cc of the 

cores were then placed into a scintillation vial. The sample was dried and crushed into a 

fine powder. Sub-samples used for organic content analysis were taken from the same 

vials that provided sub-samples for Nand P. About 3g of sample was measured in a pre

weighed aluminum dish. The dish plus contents were then weighed and subsequently 

ashed in a muffle furnace for 4 hours at 500°C. The dish plus ashed contents were then 

weighed again. Percent organic matter was calculated by subtracting the final weight 

from the intial weight and calculating that figure as a percentage of the orginal sample 

amount. A sub-sample of approximately 5 mg was weighed out from each vial for 

nitrogen. Carbon and Nitrogen content were then determined using a CHN Carlo-Erba 

Elemental Analyzer (FISONS NA1500). A sub-sample of20-25 mg was used to 

determine phosphorus content. Phosphorus concentration was determined using a dry 

oxidation-acid hydrolysis extraction followed by a colorometric determination procedure 

(Fourqurean et al1992b). 
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Sediment Chlorophyll-a: The vials with sediment samples destined for Chi-a analysis 

were kept in the dark on ice in a sealed cooler until it was transferred into a freezer in the 

lab. The Chi-a samples were freeze-dried in the dark for 4 days and 20ml of 90% acetone 

were added to each vial. The samples were allowed to sit for 4 days for complete 

extraction and a relative fluorescence determination procedure was followed (Southeast 

Environmental Research Center Standard Operating Procedure [SERC SOP] 10/28/98) to 

calculate Chi-a concentration in the sample. 

Periphyton Chlorophyll-a: To determine algal concentration a periphyton sampler was 

placed at each treatment. Each sampler was fitted with ten 25 x 76mm slides. At each 

sampling event the samplers were retrieved, placed on ice in a cooler and returned to the 

lab. Each slide from each sampler was scraped and separated by treatment. The scraped 

material was diluted to 40ml. One ml of this mixture was extracted and run through a 

GF/F filter using a vacuum pump. The filtered material along with the filter were placed 

in a 2ml curvette, and stored in the dark. Twenty-four hours before Chi-a analysis 3 ml of 

acetone was added to each curvette. After 24 hrs Chl-a concentration was determined 

using the same procedure as that used for sediment Chl-a (SERC SOP 1 0/28/98). 

Thalassia N and P: Seagrass samples were only taken twice for the duration of the 

sampling period (once at the beginning and at the end of the sampling period) so that 

continued destructive sampling would not interfere with macrophyte abundance 

estimates. Six seagrass shoots were taken per treatment and stored in a clear, labeled 

plastic bag on ice. Upon return to the lab the seagrass leaves were scraped for epiphyte 
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removal, measured for length and width and stored in a pre-weighed, pre-labeled tare. 

The sample was placed in a drying oven at 70°C for 4 days. After drying, the tare and 

dried sample were weighed and dry weight of the sample calculated. The sample was 

then crushed using a mortar and pestle and placed in a lOml vial where extracts were 

used to conduct nutrient analyses using the same procedures described for sediment 

samples. 

Thalassia cover: The Braun Blanquet method for determining percent cover was adopted 

from Fourqurean et al. (1999) and was done using a 0.25 meter squared PVC quadrat. 

Percent cover was determined for each species within the quadrat and a score given to 

each species depending on what that percent was (Table 1). This assessment was 

performed twice adjacent to the plot and twice 0.5m away on each side of the treatment. 

Thalassia height: The height of seagrass shoots were measured while on SCUBA with 

30 em rulers. Three shoots were measured per quadrat sampled. Shoots were chosen at 

random in each quadrat. Height measurements were taken per quadrat and averaged per 

treatment plot. 

Results 

Faunal Response 

Faunal data was log-transformed to meet the assumptions of normality. The presence 

of artificial reefs on average resulted in significant faunal aggregation at plots that 
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contained them (ANOVA, reef main effect, p-<0.0001, Table 2). Plots that contained 

exclosures on average contained less fauna due to the presence of the exclosure 

(ANOVA, exclosure main effect, p=<O.OOOl). There was a significant interaction 

between reefs and the type of exclosure used (Table 3). Reefs with no exclosures and 

partial ex closures contained more fauna than all other plots (Table 3, reef x ex closure 

interaction, p<O.OOOl). There was a significant effect of time on all plots (ANOVA time 

main effect, p=0.0008) and the changes of faunal abundance over time depended on the 

presence of an artificial reef (Table 3, reefx time interaction, p=0.0008). The artificial 

reefs were placed at the experiment location in mid-March and by May, when the first 

sampling occurred, reefs and reefs with partial ex closure were already heavily populated 

by various fauna (Figure 3). In every month sampled, there was a significantly larger 

group of fauna at reefs and reefs with partial ex closure. Reefs and reefs with structure 

contained an average of 51 fishes and crustaceans of 8 different species. The dominant 

species present was the gray snapper (Lutjanus griseus). Schools of Atlantic Spadefish 

( Chaetodipterus faber) were abundant in the first two sampling periods but were not seen 

in appreciable numbers thereafter. Spiny lobsters (Panulirus argus) and Florida stone 

crabs (Menippe mercenaria) took refuge in the inner hollows of the concrete blocks. The 

exclosures were successful in excluding large fauna from using artificial reefs. 

Crustaceans were in general successfully excluded from occupying concrete blocks in 

reefs where full exclosures were present. Other species present in smaller numbers were 

the red grouper (Epinephelus morio), triggerfish (Balistes capriscus) and juvenile grunts 

(Haemulon spp). All fauna present were juveniles of their respective species, consistent 

with previous assessments of Florida Bay fauna. Reef fishes were generally observed to 
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swim around the reefs and through the holes in the concrete blocks and did not appear to 

be interested in retreating even in the presence of a diver. There were approximately 3 

lobsters and about 1 stone crab per reef. 

Sediment Organic Matter 

There was no effect of reef presence or exclosure type on percent organic matter 

(ANOVA, main effects Figure 4). There was an overall effect of time on all plots 

(ANOVA, time main effect, p<O.OOOl) and the level of this effect also depended on the 

presence of a reef (Table 3, reefx time interaction, p<O.OOOl). 

Sediment Nitrogen 

There was no significant evidence to reject the null hypothesis that there was no 

increase in nitrogen concentration over time (p=0.406). There were also no effects of reef 

presence of exclosure type on nitrogen concentration (Table 2). 

Sediment Phosphorus 

There was a significant effect of reef presence (ANOVA, reef main effect p=0.028, 

Table 2) and exclosure type (ANOV A, exclosure main effect, p=0.020) on sediment 

phosphorus concentration. Sediment phosphorus was lowest during May 2005, consistent 

with typical low phosphorus values for Florida Bay sediment, but showed significant 

increases in treatments with high fish abundances over the sampling period (Table 3, reef 

x exclosure x time interaction, p<O.OOOl). The reef with partial exclosure treatment 

showed steady increase in percent phosphorus for every month sampled. Phosphorus 

concentration increased significantly with time at reef only and reef with partial ex closure 
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treatments by the end of the sampling period (p=O.OSO). By May 2006 reef only 

treatments averaged 0.0089% phosphorus and reef with structure treatments averaged 

0.0087% phosphorus. Phosphorus values fluctuated between treatments and over 

sampling months, but phosphorus concentrations were higher at the aforementioned 

treatments in the last two sampling months. 

Sediment Chi-a 

Sediment chlorophyll-a concentrations fluctuated throughout the yearlong sampling 

but reached higher values in plots with reefs (ANOVA, reef main effect, p=0.050) 

compared to plots without reefs. During the months of July, September and November 

there seemed to be an uncharacteristic rise in chlorophyll-a numbers for all treatments 

(>400 ug/m2
), but sampling in the two months of2006 yielded extremely low values. 

Periphyton Chi-a 

Chlorophyll-a measured from periphyton samplers varied both spatially and 

temporally. There was a significant effect of time averaged across all treatments 

(ANOVA, time effect, p<O.OOl, Table 2). Chlorophyll-a concentrations also varied 

significantly with the type of exclosure present (ANOV A, exclosure main effect, 

p=O.OOOl). There were also differences in periphyton chlorophyll-a also showed 

treatments with full exclosures having greater abundance than treatments with no 

exclosures and partial exclosures (Table 3, reefx exclosure interaction, p=<O.OOOl). Plots 

with full exclosures generally produced higher values that plots without them (Table 3, 

reefx exclosure x time interaction p<O.OOOl). Samplers were first put out during the May 

sampling event and asuch the first analyses were done on July samples. Hurricane events 

in south Florida resulted in the loss ofperiphyton samplers placed in July and therefore 
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no data was recorded for September. New periphytometers were placed which represents 

the November collection. Periphytometers collected in March 2006 were placed in 

January 2006 such that data collected still represented a two-month time interval. For 

most sampling events, periphyton chlorophyll-a was greatest at the treatments with full 

ex closures. 

Thalassia Nutrients 

Thalassia shoots at plots with artificial reefs had significant higher concentrations of 

nitrogen at the reef treatments compared to the non-reef treatments (ANOVA, reef main 

effects, p=0.012) (Figure 4). Nitrogen concentrations in Thalassia ranged between 2.75o/o 

and 2.89% at the beginning of the sampling period. There were no changes in Thalassia 

phosphorus concentrations between the beginning and the end of the sampling period at 

any treatment and no differences were observed between treatments in May 2006. 

Thalassia cover 

There was no significant difference in Thalassia abundance between treatments 

(X2 = 20.023<31.41 0 = X 0.95). In March 2006 a 'halo' began to develop around reef, reef 

with reef as well as reef with exclosure treatments. In May 2006 the successional 

seagrass species Halodule wrightii began growing within the 'halo'. These new shoots 

were sparse and only covered 0-5% of the quadrat area. 

Thalassia height 

There was a significant difference however in height of seagrass shoots when 

measured from the sediment surface to the tip (p=O.OOO). This difference only occurred in 

March 2006 and May 2006 of the sampling period (Figure 6). Shoots around reef only 
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and reef with partial exclosure treatments were shorter presumably due to the effect of 

grazing. Fish biting seagrass leaves was often witnessed while samples were being taken. 

Discussion 

Artificial reefs and artificial reefs with partial exclosures caused strong and consistent 

faunal aggregation over a year-long sampling period supporting my original hypothesis 

about the effect of structure. Artificial reefs containing full exclosures were successful at 

excluding fish from populating reefs. At the plots containing high abundances of fauna 

there were measurable changes in the nutrient regime as well as top-down effects 

attributable to the fauna present. There was a significant decrease of organic matter at 

plots containing fauna which was considerably different to what I expected. There was a 

significant increase of phosphorus content of the sediment at reefs over the year. I did not 

see the expected change in nitrogen concentrations in the sediment as it remained stable 

throughout the sampling period. Chlorophyll-a measured in periphytometers were greater 

at plots containing full exclosures as opposed to plots with high faunal abundance as I 

predicted. Sediment chlorophyll-a was higher at all reef plots and not only where there 

were aggregations of fauna. Thalassia nitrogen increased at reef plots but phosphorus 

remained similar for all plots. There was strong evidence to support my top-down 

hypothesis as I saw strong grazing effects on Thalassia as reflected by decreases in 

Thalassia height at plots with high abundances. 
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The response of the animal community is not completely surprising as the literature 

abounds with many examples of this phenomenon (e.g. Kitchell et al. 1979). The 

magnitude and speed of the faunal response to the presence of these reefs however was 

comparable to other small scale experiments of this nature carried out near systems with 

known higher abundances. Reefs were placed near Bob Allen Keys in mid-March and 

were teeming with high abundances of fauna by early May. Fauna were virtually absent 

(with one or two exceptions) from reefs with exclosure and all plots with no reefs. Fishes 

present were mostly juveniles. In later sampling months (March and May 2006), fishes 

were visibly larger, but since no sampling mechanism was setup to assess this, I cannot 

report with certainty the apparent change in average size. The faunal response to reefs at 

Bob Allen Keys thus supports studies from other different but related experiments 

(Alevizon 2002) on artificial reefs as attractants to fauna (Stone et al. 1979, Randall 

1963). It especially corroborates evidence brought forward by Davis (1985) on the use of 

artificial reefs in the design used here, as mitigation for juvenile lobster habitat as there 

was a consistent presence of spiny lobsters in the reefs on every sampling event. 

I did not detect organic matter increases attributable to faunal defecation at these reefs 

over a temporal scale of one year probably for three reasons. First, areas of seagrass 

growth in Florida Bay generally have high organic matter loading rates due to the 

presence of dead short shoots that form mats around live plants (Gallagher et al. 1984). 

The high residence time of Florida Bay waters means that organic matter will accumulate 

(Fourqurean and Zieman, 1992). Furthermore, Florida Bay is a system of discontinuous 

banks and mangrove islands (Fourqurean and Robblee 1999). One of these banks lie 

about 100 meters to the south of the experiment location further exacerbating the 'basin 
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effect' of trapping organic matter in the area before it. Secondly, the organic matter 

loading rate of marine fauna is very low, especially when compared to that ofpiscivorous 

birds, whose guano was used to perform a similar manipulation in Florida Bay (Powell et 

al. 1991 ). Piscivorous birds release 2-4g of excrement per day (Powell et al. 1991 ). 

Thirdly, the reefs and exclosure mechanisms also act as trapping objects. Mobile organic 

matter was trapped behind cinderblocks and was sometimes caught in the monofilament. 

Continuous replacement and cleaning of the monofilament cages may not necessarily 

have been enough to completely alleviate the effect of this trapping. These and other 

factors would have made our prediction of higher organic matter concentrations difficult 

to detect. What I did discover however was almost the complete opposite. Treatments 

with strong faunal abundances yielded significantly lower organic matter concentrations, 

in spite of high existing levels of organic matter in this area and ongoing faunal 

defecation. There are a number of factors that may have contributed to this phenomenon. 

The 'halo effect' in the later months of sampling presents an area with lower seagrass 

cover and subsequently lower organic matter from seagrass. Also, reefs without 

exclosures were also populated by large amounts of bivalves (personal observation), not 

seen in similar abundances at any of the other treatments. These filter feeders along with 

other nondescript organisms may have played a role in removing organic matter from the 

system. Faunal presence, increased organic matter and changes in the primary producer 

community may have also resulted in increases in microbial processes that can result in 

the breakdown and subsequent removal of organic matter. Mineralization of organic 

matter is nutrient-limited and nutrient addition may have increased decomposition of 

organic matter. 
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Variations (or lack thereof) in sediment concentrations of nitrogen and phosphorus 

may be related to the nutrient limitation that affects Florida Bay as a whole (Powell et al. 

1989) and may not be solely due to defecation. The increases I saw in phosphorus 

concentration and lack of change in nitrogen concentration may be related to phosphorus 

limitation and nitrogen saturation in Florida Bay. While this experiment does not in itself 

provide evidence of nutrient limitation, previous manipulations involving piscivorous 

birds allows us to make suppositions based on phosphorus limitation (F ourqurean et al. 

1992). The largest phosphorus source for Florida Bay is the Gulf of Mexico with very 

little coming in from Everglades slough runoff (Fourqurean et al. 1992). The location of 

this phosphorus source means that there is a gradation of this limitation from the easterly 

to the westerly portions of the Bay (Powell et al. 1989). Bob Allen is located in central 

Florida Bay where strong limitation exists (Armitage et al. 2006). Nitrogen is not a 

limiting nutrient and is present in saturation. The 3-month water residence time of Florida 

Bay means that there is a net buildup of nitrogen derived primarily from bacterial 

processes. Further addition of nitrogen through excretion may not be in quantities large 

enough to detect significant increases in concentration. In the relatively short duration of 

my experiments however, phosphorus is present in small quantities. Small additions of 

phosphorus will therefore be more easily detectable. The phosphorus increases at reefs 

adds to the body of evidence of phosphorus limitation in Florida Bay, where in this case 

marine fauna provide the alleviating nutrient. I can ascertain this by the fact that 

complementary increases were not observed at treatments where there weren't high fish 

abundances. 
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Significant changes in sediment chlorophyll-a due to reef presence may simply be 

due to accumulation of benthic microalgae around reefs. Periphyton Chi-a concentrations 

were higher at treatments with exclosures largely because the monofilament netting used 

trapped seagrass leaves and itself contained algal growth. Even with consistent cleaning 

and removal, it is highly likely that trapped material is responsible for the significant 

increases in Chl-a values at these treatments. 

The time scale of this experiment was probably too short to observe any significant 

uptake of phosphorus in the seagrass tissue surrounding the reef, considering that the 

previously discusses bird experiment with higher loading rates required multiple years for 

changes to be seen. The factors that have resulted in nitrogen concentration increase in 

seagrass tissue at reef treatments remain unclear, especially since a similar pattern was 

not observed in sediment nitrogen concentration. A longer time period may be needed to 

properly elucidate this effect. Loading rates and time scales may also be the main factor 

in the unchanging seagrass beds surrounding reefs and controls (Ogden and Ebersole, 

1981). In the last sampling event however, the growth of new shoots ofshoalgrass 

Halodule wrightii was observed in the 'halo' (Randal11965) around one of the reef only 

treatments. Shoalgrass, a successional species which has a selective advantage in high 

nutrient environments (Powell et al. 1991) commonly appears when blowouts occur or 

over mounds. The presence of this species is an indication of the beginning of a possible 

shift in species composition, but the completion of such a change can only take place 

over much larger temporal scales. 

I saw strong top-down effects of herbivory that may do more to shape the primary 

producer community than nutrient addition at these sites over smaller temporal scales. 
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The strong grazing effect at the reefs with high fish populations was a phenomenon that 

was seen by divers during sampling events. Trigger fish and grunts were seen snipping at 

the seagrass blades, the algae on the reef itself and the growth on the periphytometers. 

This action indicates that the effects on seagrass height may not be solely due to 

herbivorous fish but may also be due to grazers that feed on epiphytic organisms that 

dwell on seagrass blades. I attribute the strong significant differences in seagrass height 

between the reef, reef with partial ex closure and all others to this grazing effect that may 

have extended well beyond the distance sampled. It would be premature to completely 

blame reduced seagrass coverage around fauna populated treatments to the grazing 

effects as the sedimentation around reefs, blowouts from inclement weather may also 

have played roles in the 'halo effect'. 

The effect fish and invertebrate aggregations have on coral reefs and their immediate 

environs have been reported on at length. I present evidence here that faunal aggregations 

impact seagrass meadows in oligotrophic estuarine waters. I report significant increases 

in sediment phosphorus that is directly attributed to the aggregation of fish around these 

reefs as evidenced by the lack of a similar increase in corresponding controls. The 

consequences of faunal aggregation are not limited to nutrient concentration and in this 

manipulation I witnessed measurable top-down effects of herbivory on both seagrass and 

algal species. This short-term experiment not only underscores the grouping nature of 

marine fauna in an estuarine environment, but also shows that the bottom-up effects of 

this grouping are largely determined by the existing state of nutrient limitation. Nutrient 

cycling in terrestrial systems as affected by faunal movement and aggregation is well

studied (Joblin 1981, Hayes and Caslick, 1984, Kitchell et al. 1999, Day and Detling, 
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1990). With the increasing prevalence of use of artificial reefs in the marine environment 

for management (Stone 1985, Briones-Fourzan and Lozano Alvarez 2001, Campos and 

Gamboaa, 2006, W atanuki and Gonzales 2006) and recreational purposes (Leeworthy et 

al. 2006), the need for greater scientific understanding of both top-down and bottom-up 

effects of the resulting aggregation and nutrient cycling is of paramount importance. I 

recommend further experiments of this nature to continue to understand the ecological 

theory regarding aggregation of marine fauna in natural habitats, as well as application of 

this understanding in situations where this aggregation is induced. 

21 



Score Cover 
0 Taxa absent from quadrat 

0.1 Taxa represented by a solitary shoot, <5% cover 

0.5 Taxa represented by a few (<5) shoots, <5% cover 

1 Taxa represented by many (>5) shoots, <5% cover 

2 Taxa represented by many (>5) shoots, 5 - 25°/o cover 

3 Taxa represented by many (>5) shoots, 25 - 50% cover 

4 Taxa represented by many (>5) shoots, 50 - 75% cover 

5 Taxa represented by many (>5) shoots, 75- 100% cover 

Table 1. Braun Blanquet scoring adjusted for scoring marine macrophyte abundance 

(Fourqurean 1999). 
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Variable Effect D.F. F-value p-value 

Fauna Reef 12 73.62 <0.0001 
abundance Exclosure 12 420.36 <0.0001 

Reef x Exclosure 12 73.62 <0.0001 
Time 60 4.88 0.0008 
Exclosure x Time 60 0.58 0.8244 
Reefx Time 60 4.88 0.0008 
Reef x Ex closure x Time 60 0.58 0.8244 

%Organic Reef 12 0 .. 61 0.561 
matter Exclosure 12 0.13 0.723 

Reef x Exclosure 12 0.12 0.884 
Time 60 191.06 <0.0001 
Exclosure x Time 60 1.21 0.304 
Reefx Time 60 7.02 <0.0001 
Reef x Exclosure x Time 60 2.77 0.0069 

%Sediment Reef 12 1.04 0.384 
Nitrogen Exclosure 12 1.15 0.305 

Reef x Exclosure 12 0.93 0.420 
Time 60 1.03 0.406 
Exclosure x Time 60 0.99 0.465 
Reefx Time 60 0.95 0.459 
Reef x Exclosure x Time 60 1.01 0.443 

%Sediment Reef 12 4.89 0.028 
Phosphorus Ex closure 12 7.18 0.020 

Reefx Exclosure 12 0.11 0.898 
Time 60 99.34 <0.0001 
Exclosure x Time 60 3.08 0.003 
Reefx Time 60 10.27 <0.001 
Reef x Exclosure x Time 60 1.92 0.050 

Sediment Chl- Reef 12 3.73 0.050 
a Exclosure 12 2.87 0..116 

Reef x Exclosure 12 2.52 0.123 
Time 60 45.12 <0.0001 
Exclosure x Time 60 1.45 0.181 
Reefx Time 60 0.55 0.735 
Reef x Exclosure x Time 60 0.91 0.528 

Periphyton Reef 12 16.90 0.0003 
Chi-a Exclosure 12 32.13 0.0001 



Reef x Exclosure 12 10.74 0.0021 
Time 60 88.09 <0.0001 
Exclosure x Time 60 9.45 <0.0001 
Reefx Time 60 11.73 <0.0001 
Reefx Exclosure x Time 60 7.99 <0.0001 

% Thalassia Reef 1 8.643 0.012 
Nitrogen Exclosure 2 0.323 0.730 

Reefx Exclosure 2 0.351 0.711 

% Thalassia Reef 1 2.291 0.156 
Phosphorus Exclosure 2 1.147 0.350 

Reef x Exclosure 2 0.507 0.615 

Thalassia Reef 1 209.660 <0.0001 
height Exclosure 2 48.480 <0.0001 

Reef x Ex closure 2 54.235 <0.0001 

Table 2. Results from statistical analyses of response variables. Most response variables 

were analyzed using repeated measures. Since Thalassia was only collected in the first 

and last sampling month, a two-way ANOV A was used to test the differences between 

the two months sampled. SNK tests on Thalassia height revealed that reef and reef with 

partial exclosure were significantly different to all other treatments (p<0.0001). 
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Difference of Least Square Means 

Resp. Effect Reef Excl Time *Reef *Excl *Time Df Adj P 
Variable 

Fauna Exclx 1 1 2 1 12 <0.0001 
Reef 
Exclx 1 1 1 3 12 <0.0001 
Reef 
Excl x 1 2 1 3 12 <0.0001 
Reef 
Reef 1 1 1 6 60 <0.0001 
X 

Time 
Organic Reef 1 1 1 6 60 <0.0001 
Matter X 

Time 
Reef 1 1 1 5 60 0.0003 
X 

Time 
Reef 1 1 1 1 1 5 60 <0.0001 
x Excl 
X 

Time 
Reef 1 2 1 1 2 6 60 <0.0001 
x Excl 
X 

Time 
Sediment Reef 1 1 1 1 1 6 60 <0.0001 

Phosphorus x Excl 
X 

Time 
Reef 1 2 1 1 2 6 60 <0.0001 
x Excl 
X 

Time 
Periphyton Reef 1 3 2 1 3 4 36 <0.0001 

Chi-a x Excl 
X 

Time 
Reef 1 1 1 1 1 4 36 <0.0001 
x Excl 
X 

Time 

Table 3. Differences of least mean squares of significant treatment combinations 
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July '05 

Reef 13.127 ± 
5.137 

Reefw/ reef 18.413 ± 
7.621 

Reefw/ 18.440 ± 
exclosure 11.179 
Sea grass 13.657 ± 

0.559 
Seagras w/ 24.923 ± 
reef 14.894 
Seagrass w/ 19.420 ± 
exclosure 11.564 

Periphytometer Chl-a uglml 

Nov '05 March '06 May '06 

22.297 ± 22.591 23.071 ± 19.603 11.950 ± 9.189 

25.933 9.088 5.066 ± 1.660 26.144 ± 12.530 

117.947± 30.100 ± 19.705 28.616 ± 12.838 
12.120 
74.493 ± 22.924 54.406 ± 8.773 13.024 ± 8.550 

115.497 ± 35.533 ± 4.976 15.796 ± 9.609 
26.365 
97.967 ± 13.296 36.691 ± 2.829 33.124 ± 1.762 

Table 4. Values represent chlorophyll-a concentrations for each treatment over the 

sampling period. Samplers were first put out in May and recollected during the July 

sampling event. There were significantly higher concentrations of periphyton chlorophyll 

at exclosure treatments at the end of the sampling periods (p<0.022). Treatments with no 

exclosure showed decreases in chlorophyll concentrations compared to other treatments 

(p<O. 0001 ). All values mean± standard deviation 
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Figure 1. Map of central portion of Florida Bay with Florida state inset. Artificial reefs 

were located to the northeast of Bob Allen Keys. 



Experimental Layout 

North 

Reefwl partial exclosure Reef(RNE2) Seagrass wl partial 
(RPE1) exclosure (SPE3) 

N 25 02.095 
N 25 02.095 W080 39.461 N 25 02.095 
W080 39.471 W080 39.451 
Seagrass w I full ex closure Reef w I partial ex closure Reefwl full exclosure 
(SFE1) (RPE2) (RFE3) 

N 25 02.085 N 25 02.085 N 25 02.085 
W080 39.471 W080 39.461 W080 39.451 
Reefwl full exclosure Seagrass wl partial Seagrass (SNE3) 
(RFE1) exclosure (SPE2) 

N 25 02.075 
N 25 02.075 N 25 02.075 W080 39.451 
W080 39.471 W080 39.461 
Seagrass (SNE1) Seagrass wl full exclosure Reef(RNE3) 

(SFE2) 
N 25 02.065 N 25 02.065 
W080 39.471 N 25 02.065 W080 39.451 

W080 39.461 
Seagrass wl partial Reefwl full exclosure Reef w I partial ex closure 
exclosure (SPE 1) (RFE2) (RPE3) 

N 25 02.055 N 25 02.055 N 25 02.055 
W080 39.471 W080 39.461 W080 39.451 
Reef(RNEl) Seagrass (SNE2) Seagrass w I full exclosure 

(SFE3) 
N 25 02.045 N 25 02.045 
W080 39.471 W080 39.461 N 25 02.045 

W080 39.451 
Figure 2. Layout of treatments and replicates in the field. 
RNE = Reefwl no exclosure, RPE = Reefwl partial exclosure ,RFE = Reefwl full 
exclosure, SNE = Seagrass wl no exclosure, SPE = Seagrass wl partial exclosure, SFE = 
Sea grass w I full ex closure 
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Figure 3. Log transformed faunal abundances for all treatments in May 2006. There were 

significantly higher fish abundances at reefs and reefs with reef treatments. Fauna 

abundance showed no significant variation among treatment types over the year-long 

sampling period. Graph represents typical abundances at reefs and corresponding 

controls. Error bars represent standard error. 
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Figure 4. Graphs represent changes in nutrient concentrations throughout the sample 

period between reef and no reef treatments. Error bars represent standard error. 

(NE == no ex closure, PE == partial ex closure, FE == full ex closure) 
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