
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-22-2005

Practical secure information flow in programming
languages
Zhenyue Deng
Florida International University

DOI: 10.25148/etd.FI14062241
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Programming Languages and Compilers Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Deng, Zhenyue, "Practical secure information flow in programming languages" (2005). FIU Electronic Theses and Dissertations. 2771.
https://digitalcommons.fiu.edu/etd/2771

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F2771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2771&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.fiu.edu%2Fetd%2F2771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/2771?utm_source=digitalcommons.fiu.edu%2Fetd%2F2771&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

in

2005

To:

We

Dean
of Arts

dissertation

2005

of

it

is

ii

I would like to thank my committee m<:~miDei~s for their Qlll'"'IT'\I'"'Ir't. and comments. I would

like to thank my Dr. for ... ,_, -... r-. me into the exc:at1.ng area

of secure information all his

would like to thank all the staff and

iii

IN

Florida 2005

.. u ... u..u.,, ... , Florida

Major Prc)tessor

If we classify variables in a program into various security then a secure information

flow aims to that mtonnatwn in a program can flow in ways

consistent with the sp~~cn1ea se<~uritY levels. is to ... v ua.•"v the

rules of the secure information flow as a A trend of recent

research focuses on how to accommodate various S01)histica1;ed modern langm:tge features.

this approach often leads to

use.

have received little attention. This dissertation identified

solved hurdles to the ap]pll<~at:ton of secure information flow.

We aa10D1Gea a mrmiJna1.1st .,.,.,...,,..,.,..'""'."'r>h to aef:ngJr:un.g

We

features that we

out with a small

most

lenient

,.,.,.,..,"''"o::.+,-.r.o langm:tge and only

........... F> ""f'>"" feature we

ad<1resse:d is arrays. Due to the various lea.Kmlg CJlaiJmels associated with array op~erat1ons,

arrays have -..nr•a'"r.an cmmptUCat€~0 and restrictive rules in other secure h '"'·'"'"'· We

on:lSe:nte:d a novel for lenient array op,era.tions, which lead to and lenient

of arrays.

iv

inference is necessary because a user is

for ou·tnllt variables of a program and would like to have all for,......., :.w.

l...-nY'1i-lh"""' B and variables inferred awtorna1ClC~:t11:Y

soundness and co1np1etem~ss.

the

inference

B close to the program and

cru;ca<dmtg fashion. B and error have been Im]ple:mente:d and tested.

Lastly, we pn~sentE~d a novel for de,v-el4JPing appll~cat;IOilS that ensure user

information privacy. In this rra.mE~wc>rK

that involve input/output data multiple secure flow DOJ.lCH~s

are refined based on from the type cmec~:mJr./inte:rertce. only

interact with code modules involved na·ri-"'"'' tJo.rcmg:n well-defined interfaces. All code

modules are digitally to ensure their and , rM'., ,

v

1

2

3

3.2
3.3
3.4
3.5

4

5

6

List of teiE~ren,ces

1

7

10

19

49

66

76

76
77
78

87

90

1 Tax

2 A

3

14

14

6 A 17

7 20

21

9

10

11

12

B.

14

15 72

16

17 Environrnent

18 Lattice

vii

1

to

may b

is 0 b execution

statement.

program

a := b;

while (a > 0)

terminate in a V~'JUL~~'JLv amount we can it is

program up

We assume prograrns tern1inate.

programs

notion

two mernories

150 papers were

6,

in

1.1 A

is it is

in

for very restrictive concurrent

in

1.

2. programmers.

3. rnany programs

4.

5. error programrner root

error.

in rnore

is

arrays into prove

t-r.nt- 11
'"'"'

0 to our H.A;J.!.F,LJLUF;,v

programs in

to

in

progrannner

error

com-

program.

In

cornpany he a program

may v.u.<~~~,.,~ situation

.UiA.V.L.LI.J-1-"V'-'--''--'- may progran1.

tax returns were

tax to

1:

revenue

is is a cmnpany

to

user If a

user must

trust in

in

up 1nany

even into

on trust

con1pany

in to attract customers even

information

a user can --~IJ'"" .. ''-""~"-' program from '"""""'-/VL.I.J. or

infonnation

to progra1n,

program

Tax Com

IRS

2: A

1.2

is to secure

out

is secure on

7

2

is

2.1

two

E

L

to

E

notion

a p p

y, in

1. <

~y y~ =y,

3. y~

1, 2 3 are

is may

~ y nor y ~

A set in upper

j_

s

E E

9

1.

all

a

yE a

In our assume

2.2

in

y

p .. - I c

In

10

v

+ I
= I

It

y

to to

maps .I.~'~.I..H'-LL.I.'v-'-

in memory JL.

for

11

2.3

To

our purpose,

f- n: int

f- : T,

+

exr)re~:;s1cm y 1, first 1

rule the

f- : p

[, p.

if

our

T .. -

T I

used

can

T

to an

we are sure

no

\VHILE

WHILE T or

The S lattice into

among

in

f- n:

r f- : T cmd

'f- : r

f- : T

p p

14

2.4

notion

progrmn

into

nT',o::Yu•e>rd·iniT information

notion is very

two memories

two mernories

arrays into our

secure inforn1ation

intuitive. It

prograrns.

program

3,

prove its secure

3

can cause

restrictions.

If array a is L

we can secret a

a 1·

i = O·
'

while < a. {

if 1)

leak i·
'

i++;

}

If not

6 secret

{

int secret
int leak o·
int [] a new int

for bit 0; bit < 10;
{

a %
leak

}

catch

}

}

6: A

leak an

secret is 0.

restrictive. In

sum = 0;

i = 0;

while < a. {

sum sum + a

i i + 1;

}

]

an

L

H:

while

i i + 1 is

must i

A

array

but

e an

e an

course, in

lll

or an array

since

from a.

0,

L.

not is an

in

3.3 we prove a

of tax prograin.

3.1

are written in the with

7.

Here ranges over

in Java. The

.)

19

is nor an array

two b

assume

in memory fl·

in that rules

0, does division 0.

Execution is

in

p .. -

+

if

do

an

1 I

A

0.

in

E

write

.n 1 n.o 11 "1''r> 0 f ----+ *

3.2

at ions.

array,

Here are used our

.. -

.. -

=0

in

I
T I

0

new

I 'Tl

oper­

contents

' .. '

array

In any array T!

It prove

P2·

an

in 10.

in

We In rule

is in

22

:T

'1- : T

:T

10:

v v

it

L

it L

3.3

In prove

SUBSUMP.

Lemma 3.3.1 1- T

1- : T cmd.

one to terrninate:

1. if

:T

CMD-, must T~ we :T

~ :T smnantic BRANCH, can or we

~ :T

2. Cl·

must vVHILE

use SUBSUMP:

~ : T'

must T ~

f ~ : T

3.

must

must :T

semantic

or

:T :T

COMPOSE.

0

if

T

an array = T1 arr

'f- : T fL : ,,

1.

It

2.

0, non-zero,

3.

array is an

4.

is if out

O·
'

D

If- : T fl, :

on structure It D

Lemma 3.3.4 0

on If

we can k=l. since 1 2:: 1, we k<

If

exists k 0 k < - 1,

0 k 1

D

we are to our ensures

sorne

7

WHILE,

7

3.3.2 l/ to 7,

on

v the

r- :T

L

use

var

=

2.

end with use

use of

3.

use

4.

must a QUOTIENT

a use SUBSUMP.

we :r : r.

semantic

D

I-

r

30

1.

CMD-, we must c T, we

semantic is

= var, so

2.

must

use SUBSUMP:

T, T.

is T1

31

use SUBSUMP:

CMD- we ~ T, we

semantic to

is TI arr T2,

4.

cases are

5. c1·

a SUBSUMP:

we

sernantic SEQUENCE,

or

0

3.3.7 T

on

ence

1.

2.

semantic LOOP, if 0

do do

If =0 execution

3. if c1 else

semantic BRANCH, if

if =0 execution have fonn:

e

0

on

1.

must exist

=

if since r f- : T'

we

:T we

semantic

2.

semantic NO-OP.

3.

If exist h~ 0

exist k' 0 k'

4. if

is must exist IF :

if T,

cmd

c .T

semantic

the form:

If =0 two execution

5.

so rnust WHILE:

if

36

1--c

C since I- : T

= semantic if

If =0 two execution

=j.J, we

6.

is lllUSt

37

since r 1-

we

since r 1-

= CALLOC, if >

auoc<:ttea to array v.

arrays, if 72 ~ 7 1 ~ 7, arrays 7

If arrays to

in arrays, if

agree on

If 71)£ two arrays on

7.

is so must

1-

.- :71

if 71)£ 7' 1- : 71

we since 1 1-

Lemma we

t- f t- T

'J.l'VVC:NJ. '-..IV.l.L>JU.LU;.LJ..<IJ, arrays

se1nantic UPDATE-ARR, if

agree on

If out J.l,=

V=

0

3.4

now our

we

tax

an array

we arrays

39

brackets

marriedTaxTable

to an b

~t + 1]

or

status.

to our we want brackets L arr

: L arr marriedTaxTable L is

we incmne taxes In any returns.

0 to 1

taxable Income : H arr L and mari talStatus : L arr L

40

fill in income Tax

are incomeTax : marriedReturns:

we must

taxableincome is

hi lo :

mid: as if ,.,,_..._ u.. '-.1. a:::~~l.l!.Ilt:> to

marriedReturns. its

write program in

v'-I.UU~~hOV,wecan to

on progra1n. If we

then program seen1s LiVIJvJLvO•:J• <~<•<<<LU.Clv

array

brackets L

our

in 11.

mid.

To

i: L.

taxableincome : H arr L
maritalStatus : L arr L
brackets : L arr L

: L arr L

marriedTaxTable : L arr L

: L
marriedReturns : L

variables:
i lo, hi, mid

L

allocate incomeTax
:= 0;

marriedReturns 0;
i := 0;

while i < taxableincome. do (

)

lo := 0;
hi := brackets.
while lo+1 < hi do (

mid + I 2;
if taxableincome < brackets then

hi mid
else

lo mid
) ;

if maritalStatus

)

else (
incomeTax : = marriedTaxTable
marriedReturns := marriedReturns + 1

)

i i+1

11:

42

marriedReturns. It seem we rewrite

marriedReturns

mari talStatus array.

if

we

in a as

{

if < brackets)

hi mid;

else

lo mid;

}

catch

3.5

our

on

our

our

we

uu.,-.,,~- U'VUJ.~U..:J array program

to to our .. "",,,, ... " semantics.

In our program, we it some to

out to program

progra1n. It hr>.nr.•~r. H--U~1U.:J0-1LI1v to

next

4

prograrnrner for

it is very convenient

in constraints f3 are is

constraints are constraint

it

atomic constraints over time

ence prograrn may

or not set constraints is

in

errors. If progranrr to

This the information flow:

< !low

which is not

error.

users to source errors.

is

constraint error is

cause

we propose

46

to

error messages.

4.1 B

upon

an

is off"

47

than or to

the

on

on are to

scenarios

cases

out

may

in

miniinuin

we

to

and in progrmn.

for

if an

an instance

our

we

our

4.2

a: H arr

contents is H is to

to

are

49

in

B returns a new in

as necessary to prograrn .

._..,,,..,.v·~ 13. It makes use an U>u .• -.u, ...

ret tuns

comment on some of

pc, .- If a

of

50

c

rl

in if

·-

in if

- V pcV

if r=
c)

if r=
pc,

71 arr 72 =
in if E 72 V pc V i 71

if E FIXED-LENGTH

.- V 72 V pc V arr pc V

.-
71 arr 72 =

in if E 72 V pc V el) V 71

.- v V pcV) v arr

B

51

+
v

= 71 arr

pc,

new If B terminates

on array

must

pc, B is run on pc is in

turn to run B on same rl B terminates returns

4.3

In B

52

on structure

1.

if E B or returns

If ¢ B terminates returns

2.

B or returns

If ¢ terminates returns

3.

E B or

returns

If E B or returns

If B returns

If B returns

<

4.

r·

53

5. do

we v in

ture doc, or

return ,::;;

If pcV r# we v

> pcV

or returns some

pc, c) ro return

,::;;

6. Cl C2.

to pcV Cl. is

in structure pcV

or tenninates

If pc V ' =I to we

we

or sorne

pc,if Cl or terminates return

<

7.

c1) '
either or returns

D

1.

b

If

If

If

recursive

in

prograrn

or tenninates

T

v

= Tt arr T2,

e)=

For 1,

= Ta V TV T =

v

=

on

not appear in

in B

<

are

var = appears

arr T2 = arr T2,

TI v TI T'

T'

structure

we

d +

prove appears in

) = v

+

2, on structure

a x1

not appear in e, it

b

not appear in it

must appear in

we

= Tl

=

) .

56

v

v

v

v

= T
1 V

XI

)V

)v

e1 +

) = T
1 V

) .

v

=

d +

appears in

v

=

case 3, on structure

a

not appear in it

b

must appear in e 1·

= arr , we

57

v

v

v

v

v

)v

+

) = v

v

).

d e1 +

prove case

0

Lemma 4.3.3

1. := e.

Ifr=

its

appears in

).

pc, c) =

1:_

B

pc, := = , we

=T
1 V

,pc,

we must

terminates. is

TV V

v

=

2.

if

3.

4.

pc V

we = T2 V pc V

V pcV

V pc

TV pcV

V pcV

e)

= VpcV V

=

case

pc, c)=

if pc,

v

V pc

pc,

If E 72 must be

= V pcV

appear in

= V pc V 'e)

= V pc V

V 71 V pc V

=

we

5. .-

If =

i r· we must

must B terrninates. is the

its raised.

to pc, .- we r' arr TV V

=

If appear in er

=

6. C1; C2.

to

=

we

,pc,c1;

7.

pc,

0

=

case

V pcV

V pcV

T
1 V pc V

V pcVTV

case

{2 rr

pc, =

case

'

61

we pc,

,pc,cl) =

62

rule COMPOSE, we have v

2. do c.

is 71,

V 7 < v 71.

{1

If {1 i- we f- : V7

so

to c)= <

3.

V 7 <

Ifr1 #

so

to 7,

4.

is 71,

~ : 7{.

= 71 arr 72. 7,

72 V pc V

71 V 72 V pc V

<

5.

we ~ Cl: 7

v < 71·

~ : V7

we

if E

)v

"'V·< l'l-

<

) ::;

process

arr

we have T, = < <

if B If # run

Lemma are

at some B 11 <

7.

D

now a

increase as B executes.

contents

an array or an array

If cis n

is it is easy to see

is since are of can most h

times.

4.4

our

it runs, it raises necessary. It

to a occurs, it is to

66

the failure to programmer,

and can it.

L E if

Hi L. How

to

H course Inay not

on not an

is more B

an

errors in terrns source prograrn. To

M

67

If

to

But suppose in

cause

'W2:

be

case

while + 1 > do {

while + w2 > do {

1 := 7;

w2 := w2 -

m m - 1

}

intent

is

e,

to raise

program, l : wl:

run

:17.6
1 := 7;

--left-hand side, 1, has

has M
and

has W2
and

the join of

in

H because
:15.8:

do {

because m has

:16.15:
do {

because w2 has

M and W2 is H

error it

program

flow

L declaration

of control flow statement

M declaration

of control flow statement

W2 declaration

is to

as

w2 in

on source program

an error

same

w2 : suppose n, p,

program:

p := m;

q p;

j w1;

j w2;

k j;

1 1 + q + k + n

69

L is not

in

error is

via use

k are

l+q+k+

and j:

vA<;A...LUt-I..L'C: 29 • 1:
1 := 1 + q + k + n

--left-hand side, 1, has L
side, 1 + q + k + n,

M because
....,..,., ,..._v:23.6:

q := p;

p := m;

because
22.6:

flow

declaration
has H because

flow

flow

and m has M declaration
and

k

flow
k := j;

and
flow

j := w2;

and w2 has W2 by declaration

errors.

to rearrange

4.5

70

program to to correct

some

and H L A1 H.

arrays:

• hiv [] the

• start[]

hiv

start

assume the hiv: H

suppose we are

program uses a .uuJ . .L.Lu•co.L

is written o.Jl!J..UJ.f'-J.J.l•J.VJ.

'-'-'-''ld.u.L c;u to

may wish to think

group

and start: A1 L.

15.

arc to It

secure

hiv : H arr L,
hivmedians H arr L

: ?, j : ? k : ?

k := 0;
i := 0;

: M arr L
lk M

m : ?, n

while i < hiv. do {
if hiv then {

- start

? . '

i's into
j := 0;
while j < n do {

Sort
j := 0;
while j < n-1 do {

m := 0;
while m <

] ;

Bubble sort:

do {

start

if
t

then {

}

else {

};

m := m+i
};

j :::::: j+i
};

M arr L

? arr ?, t

Select median and store it into hivmedians:
hivmedians[k]
k := k+i

}

else { };

lk :=
i := i+i

}

?

flow

--left-hand side, lk, M declaration

has
and

, has H because
control flow statement

then {

H because hiv[] has H

:63.5: nested statement
allocate

has flow from H the
to be raised to H

16:

may

if we start[] in reverse

start we

i is arr L

program

first message

is

an if statement is as a

if two

n start - start

73

of

lk: we

is H.

up, if hiv

H arr l'vf to

program-now lk

4.6

in

with to

a is to to

jifc

error

is no

to

use.

errors.

in

5

In

as

tion

5.1

5.1.1

5.1.2

Extensions

it is no

more

on secure in-

information

purpose.

variables

T

5.1.3

is

recursive

If an

If no

success, a new

not

return

same process.

if

If a

we

maintain

is constant.

in

same

in turn uses

we

upon

5.2

5.2.1

tax

tax

to

in our

involves

is a person or '"'.._ 1,..., J.LJLVUJCU'J.J.

..~..u,. '-"'U'J. in our its

what

not secure

common services

Module A lA

Module B

Module N

17:

communicates with

we a

5.2.2

secure

1.

In

a some as b

it.

in

we use 0

a

we

18: Lattice

it says

L<>.L J,U,V'J.v.:J are to

If

A

we

A

we

says

create a new

process,

we run

to

write

is an A

in a new

A

If

with it. we

inf

we one at one

in one or more trace.

or

we can is to examine error trace

If

some

A

a

inf := c

error we

seen now to A B

B

we to create new in _L

is purpose.

an error occurs, we can it some

to some

new

is a

no new

errors are

5.2.3

environment core

communicate

to

access its own data.

in

use is

see

sent over

class

int

int X {

{ return x· }

set { x = value·

}

myc = new

myc.X 10;

myc.X myc.X + 10;

on

interface

}

is

a

int X {

int Y { set

} }

0;

write

to

set }

}

core over

core communicate

5.2.4

to secure various

owners.

It

user. In not

to

core

user

runs

If user or

continue the

If user not

program or

user can out or

5.3

in

is

program can

trust. to """''"'',..'"'

paper.

6

ten

constraints in

constraint set is not

constraint error in terms constraint-

process, not program a

in terms

In ore to use.

is to scenarios 1nost

secure aim to use

to

is

its one

87

1111

for

is

arrays

propose ... -.. ... ,,_,)

our lenient execution

how our in

flow.

In

In carry on

seems

to can be

In it is necessary

ways to we

etc.

scenarios.

we

scenario in to

we

scenarios

89

List of References

"

IEEE

"

sum

,,id=98294,00.html?source=ttcom4home1.

[16]

in a

91

.microsoft. com.

program ------+ (lattice)

------+

------+

------+ id = (+I - I set)
set ------+

------+

set2 ------+ id

------+

----t

----t

----t

----t arr

exp ----t

----t int

----t

----t [exp J

----t (exp)

----t exp + exp

----t exp- exp

----t exp exp

----t exp / exp

----t exp = exp

-----+ exp exp

-----+ := exp

-----+

-----+

-----+)
-----+ (
-----+ [exp]

-----+

------+

China

1996-2000

Institute

	Florida International University
	FIU Digital Commons
	6-22-2005

	Practical secure information flow in programming languages
	Zhenyue Deng
	Recommended Citation

	tmp.1489787596.pdf.yC2da

