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Major Prc)tessor 

If we classify variables in a program into various security then a secure information 

flow aims to that mtonnatwn in a program can flow in ways 

consistent with the sp~~cn1ea se<~uritY levels. is to ... v ........... ua.•"v the 

rules of the secure information flow as a A trend of recent 

research focuses on how to accommodate various S01)histica1;ed modern langm:tge features. 

this approach often leads to 

use. 

have received little attention. This dissertation identified 

solved hurdles to the ap]pll<~at:ton of secure information flow. 

We aa10D1Gea a mrmiJna1.1st .,.,.,...,,..,.,..'""'."'r>h to aef:ngJr:un.g 

We 

features that we 

out with a small 

most 

lenient 

,.,.,.,..,"''"o::.+,-.r.o langm:tge and only 

........... F> ..... ""f'>"" feature we 

ad<1resse:d is arrays. Due to the various lea.Kmlg CJlaiJmels associated with array op~erat1ons, 

arrays have -..nr•a'"r.an cmmptUCat€~0 and restrictive rules in other secure ............ h ........ '"'·'"'"'· We 

on:lSe:nte:d a novel for lenient array op,era.tions, which lead to and lenient 

of arrays. 
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inference is necessary because a user is 

for ou·tnllt variables of a program and would like to have all for ....,......., ............ :.w. 

l...-nY'1i-lh"""' B and variables inferred awtorna1ClC~:t11:Y 

soundness and co1np1etem~ss. 

the 

inference 

B close to the program and 

cru;ca<dmtg fashion. B and error have been Im]ple:mente:d and tested. 

Lastly, we pn~sentE~d a novel for de,v-el4JPing appll~cat;IOilS that ensure user 

information privacy. In this rra.mE~wc>rK 

that involve input/output data multiple secure flow DOJ.lCH~s 

are refined based on from the type cmec~:mJr./inte:rertce. only 

interact with code modules involved na·ri-"'"'' tJo.rcmg:n well-defined interfaces. All code 

modules are digitally to ensure their and , ............ rM'., ..... , 
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programs 
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3. rnany programs 

4. 
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error. 
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2.3 

To 

our purpose, 

f- n: int 

f- : T, 

+ 

exr)re~:;s1cm y 1, first 1 

rule the 

f- : p 

[, p. 

if 
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T I 

used 

can 
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2.4 

notion 

progrmn 

into 

nT',o::Yu•e>rd·iniT information 

notion is very 

two memories 

two mernories 

arrays into our 

secure inforn1ation 

intuitive. It 

prograrns. 

program 

3, 

prove its secure 
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can cause 

restrictions. 

If array a is L 

we can secret a 

a 1· 

i = O· 
' 

while < a. { 

if 1) 

leak i· 
' 

i++; 

} 

If not 

6 secret 



{ 

int secret 
int leak o· 
int [] a new int 

for bit 0; bit < 10; 
{ 

a % 
leak 

} 

catch 

} 

} 

6: A 

leak an 

secret is 0. 

restrictive. In 

sum = 0; 

i = 0; 

while < a. { 

sum sum + a 

i i + 1; 

} 

] 

an 

L 

H: 



while 

i i + 1 is 

must i 

A 

array 

but 

e an 

e an 

course, in 

lll 

or an array 

since 

from a. 

0, 
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not is an 
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3.3 we prove a 
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are written in the with 

7. 

Here ranges over 

in Java. The 

. ) 
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is nor an array 

two b 

assume 
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in that rules 

0, does division 0. 

Execution is 
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do 

an 

1 I 

A 

0. 

in 



E 

write 

.n 1 n.o 11 "1''r> 0 f ----+ * 
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array, 

Here are used our 

.. -

.. -

=0 

in 
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new 
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oper­

contents 
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SUBSUMP. 

Lemma 3.3.1 1- T 

1- : T cmd. 
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0, non-zero, 

3. 
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on structure It D 
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use SUBSUMP: 

CMD- we ~ T, we 

semantic to 

is TI arr T2, 

4. 

cases are 

5. c1· 

a SUBSUMP: 



we 

sernantic SEQUENCE, 

or 

0 

3.3.7 T 
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If =0 execution 
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if =0 execution have fonn: 
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semantic 
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semantic NO-OP. 
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If exist h~ 0 

exist k' 0 k' 

4. if 

is must exist IF : 

if T, 

cmd 
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If =0 two execution 
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if 
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= semantic if 

If =0 two execution 

=j.J, we 

6. 

is lllUSt 

37 



since r 1-

we 
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arrays, if 72 ~ 7 1 ~ 7, arrays 7 

If arrays to 
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agree on 

If 71 )£ two arrays on 

7. 

is so must 
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.- :71 

if 71 )£ 7' 1- : 71 

we since 1 1-

Lemma we 



t- f t- T 

'J.l'VVC:NJ. '-..IV.l.L>JU.LU;.LJ..<IJ, arrays 

se1nantic UPDATE-ARR, if 

agree on 
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brackets 

marriedTaxTable 

to an b 

~t + 1] 

or 

status. 

to our we want brackets L arr 

: L arr marriedTaxTable L is 

we incmne taxes In any returns. 

0 to 1 

taxable Income : H arr L and mari talStatus : L arr L 
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fill in income Tax 
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marriedReturns. its 

write program in 
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array 
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taxableincome : H arr L 
maritalStatus : L arr L 
brackets : L arr L 

: L arr L 

marriedTaxTable : L arr L 

: L 
marriedReturns : L 

variables: 
i lo, hi, mid 

L 

allocate incomeTax 
:= 0; 

marriedReturns 0; 
i := 0; 

while i < taxableincome. do ( 

) 

lo := 0; 
hi := brackets. 
while lo+1 < hi do ( 

mid + I 2; 
if taxableincome < brackets then 

hi mid 
else 

lo mid 
) ; 

if maritalStatus 

) 

else ( 
incomeTax : = marriedTaxTable 
marriedReturns := marriedReturns + 1 

) 

i i+1 

11: 
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marriedReturns 

mari talStatus array. 
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if < brackets ) 

hi mid; 

else 

lo mid; 
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catch 
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if E FIXED-LENGTH 
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= 71 arr 

pc, 

new If B terminates 

on array 

must 

pc, B is run on pc is in 

turn to run B on same rl B terminates returns 

4.3 

In B 
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on structure 

1. 

if E B or returns 

If ¢ B terminates returns 

2. 

B or returns 

If ¢ terminates returns 

3. 

E B or 

returns 

If E B or returns 

If B returns 

If B returns 

< 

4. 

r· 
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5. do 

we v in 

ture doc, or 

return ,::;; 

If pcV r# we v 

> pcV 

or returns some 

pc, c) ro return 

,::;; 

6. Cl C2. 

to pcV Cl. is 

in structure pcV 

or tenninates 

If pc V ' =I to we 

we 

or sorne 

pc,if Cl or terminates return 

< 

7. 

c1) ' 
either or returns 
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If 

If 

If 

recursive 

in 

prograrn 

or tenninates 

T 

v 

= Tt arr T2, 

e)= 

For 1, 

= Ta V TV T = 

v 

= 

on 

not appear in 

in B 

< 

are 

var = appears 

arr T2 = arr T2, 

TI v TI T' 

T' 

structure 
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d + 

prove appears in 

) = v 
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2, on structure 
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b 
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= 
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). 
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1:_ 

B 
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=T
1 V 
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we must 
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TV V 
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2. 

if 

3. 

4. 

pc V 

we = T2 V pc V 
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V pc 

TV pcV 
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e) 

= VpcV V 

= 

case 

pc, c)= 

if pc, 

v 
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appear in 

= V pc V 'e) 

= V pc V 

V 71 V pc V 

= 

we 

5. .-

If = 

i r· we must 

must B terrninates. is the 
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to pc, .- we r' arr TV V 
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If appear in er 
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to 
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we 
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1 V pc V 

V pcVTV 
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pc, = 
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' 
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rule COMPOSE, we have v 



2. do c. 

is 71, 

V 7 < v 71. 

{1 

If {1 i- we f- : V7 

so 

to c)= < 



3. 

V 7 < 

Ifr1 # 

so 

to 7, 

4. 

is 71, 

~ : 7{. 

= 71 arr 72. 7, 

72 V pc V 

71 V 72 V pc V 

< 

5. 

we ~ Cl: 7 

v < 71· 

~ : V7 

we 

if E 

)v 

"'V·< l'l-

< 

) ::; 

process 

arr 



we have T, = < < 

if B If # run 

Lemma are 

at some B 11 < 

7. 

D 

now a 

increase as B executes. 

contents 

an array or an array 

If cis n 

is it is easy to see 

is since are of can most h 

times. 

4.4 

our 

it runs, it raises necessary. It 

to a occurs, it is to 
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the failure to programmer, 
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L E if 
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to 

H course Inay not 

on not an 

is more B 

an 

errors in terrns source prograrn. To 

M 
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If 

to 

But suppose in 

cause 

'W2: 

be 

case 

while + 1 > do { 

while + w2 > do { 

1 := 7; 

w2 := w2 -

m m - 1 

} 

intent 

is 

e, 

to raise 

program, l : wl: 



run 

:17.6 
1 := 7; 

--left-hand side, 1, has 

has M 
and 

has W2 
and 

the join of 

in 

H because 
:15.8: 

do { 

because m has 

:16.15: 
do { 

because w2 has 

M and W2 is H 

error it 

program 

flow 

L declaration 

of control flow statement 

M declaration 

of control flow statement 

W2 declaration 

is to 

as 

w2 in 

on source program 

an error 

same 

w2 : suppose n, p, 

program: 

p := m; 

q p; 

j w1; 

j w2; 

k j; 

1 1 + q + k + n 

69 

L is not 

in 

error is 

via use 

k are 



l+q+k+ 

and j: 

vA<;A...LUt-I..L'C: 29 • 1: 
1 := 1 + q + k + n 

--left-hand side, 1, has L 
side, 1 + q + k + n, 

M because 
....,..,., ........... ,..._v:23.6: 

q := p; 

p := m; 

because 
22.6: 

flow 

declaration 
has H because 

flow 

flow 

and m has M declaration 
and 

k 

flow 
k := j; 

and 
flow 

j := w2; 

and w2 has W2 by declaration 

errors. 

to rearrange 

4.5 

70 
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and H L A1 H. 

arrays: 

• hiv [] the 

• start[] 

hiv 

start 

assume the hiv: H 

suppose we are 

program uses a .uuJ . .L.Lu•co.L 

is written o.Jl!J..UJ.f'-J.J.l•J.VJ. 

'-'-'-''ld.u.L c;u to 

may wish to think 

group 

and start: A1 L. 

15. 

arc to It 

secure 



hiv : H arr L, 
hivmedians H arr L 

: ?, j : ? k : ? 

k := 0; 
i := 0; 

: M arr L 
lk M 

m : ?, n 

while i < hiv. do { 
if hiv then { 

- start 

? . ' 

i's into 
j := 0; 
while j < n do { 

Sort 
j := 0; 
while j < n-1 do { 

m := 0; 
while m < 

] ; 

Bubble sort: 

do { 

start 

if 
t 

then { 

} 

else { 

}; 

m := m+i 
}; 

j :::::: j+i 
}; 

M arr L 

? arr ?, t 

Select median and store it into hivmedians: 
hivmedians[k] 
k := k+i 

} 

else { }; 

lk := 
i := i+i 

} 

? 



flow 

--left-hand side, lk, M declaration 

has 
and 

, has H because 
control flow statement 

then { 

H because hiv[] has H 

:63.5: nested statement 
allocate 

has flow from H the 
to be raised to H 

16: 

may 

if we start[] in reverse 

start we 

i is arr L 

program 

first message 

is 

an if statement is as a 

if two 

n start - start 
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up, if hiv 

H arr l'vf to 

program-now lk 
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in 

with to 

a is to to 
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error 

is no 

to 

use. 

errors. 
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5.1.1 
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Extensions 
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more 

on secure in-
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purpose. 

variables 
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5.1.3 
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recursive 

If an 

If no 

success, a new 

not 

return 

same process. 

if 

If a 

we 

maintain 

is constant. 

in 

same 

in turn uses 

we 

upon 



5.2 

5.2.1 

tax 

tax 

to 

in our 

involves 

is a person or '"'.._ 1,..., ..... J.LJLVUJCU'J.J. 

..~..u,. ..... '-"'U'J. ..... in our its 

what 

not secure 

common services 



Module A lA 

Module B 

Module N 

17: 

communicates with 

we a 

5.2.2 

secure 

1. 

In 

a some as b 



it. 

in 

we use 0 

a 

we 

18: Lattice 

it says 

L<>.L J,U,V'J.v.:J are to 
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A 

we 

A 

we 

says 

create a new 

process, 

we run 

to 

write 

is an A 

in a new 

A 



If 

with it. we 

inf 

we one at one 

in one or more trace. 

or 

we can is to examine error trace 

If 

some 

A 

a 

inf := c 

error we 

seen now to A B 
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we to create new in _L 

is purpose. 

an error occurs, we can it some 

to some 

new 

is a 

no new 

errors are 

5.2.3 

environment core 

communicate 

to 

access its own data. 

in 



use is 
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sent over 

class 

int 

int X { 

{ return x· } 

set { x = value· 

} 

myc = new 

myc.X 10; 

myc.X myc.X + 10; 

on 

interface 

} 

is 

a 

int X { 

int Y { set 

} } 

0; 

write 

to 

set } 

} 



core over 

core communicate 

5.2.4 

to secure various 

owners. 

It 

user. In not 

to 

core 

user 

runs 

If user or 

continue the 

If user not 

program or 

user can out or 
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in 
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program can 
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constraints in 
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constraint error in terms constraint-

process, not program a 
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In ore to use. 

is to scenarios 1nost 

secure aim to use 

to 

is 
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arrays 

propose ... -.. ... ,, ... ._, ...... ) 
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flow. 
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program ------+ ( lattice ) 

------+ 

------+ 

------+ id = (+I - I set ) 
set ------+ 

------+ 

set2 ------+ id 

------+ 
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