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ABSTRACT OF THE DISSERTATION
PRACTICAL SECURE INFORMATION FLOW IN PROGRAMMING LANGUAGES
by
Zhenyue Deng
Florida International University, 2005
Miami, Florida

Professor Geoffrey Smith, Major Professor

If we classify variables in a program into various security levels, then a secure information
flow analysis aims to verify statically that information in a program can flow only in ways
consistent with the specified security levels. One well-studied approach is to formulate the
rules of the secure vinformation flow analysis as a type system. A major trend of recent
research focuses on how to accommodate various sophisticated modern language features.
However, this approach often leads to overly comblicated_ and restrictive type systems,
making them unfit for practical use. Also, problems essential to practical use, such as type
inference and error reporting, have received little attention. This dissertation identified and
solved major theoretical and practical hurdles to the application of secure information flow.

We adopted a minimalist approach to designing our language to ensure a simple lenient
type system. We started out with a small simple imperative language and only added
features that we deemed most important for practical use. One language feature we
addressed is arrays. Due to the various leaking channels associated with array operations,
arrays have received complicated and restrictive typing rules in other secure languages. We
presented a novel approach for lenient array operations, which lead to simple and lenient

typing of arrays.
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Type inference is necessary because usually a user is only concerned with the security
types for input/output variables of a program and Wouid like to have all types for auxiliary
variables inferred automatically. We presented a type inference algorithm B and proved
its soundness and completeness. Moreover, algorithm B stays close to the program and
the type system and therefore facilitates informative error reporting that is generated in a
cascading fashion. Algorithm B and error reporting have been implemented and tested.

Lastly, we presented a novel framework for developing applications that ensure user
information piivacy. In this framework, core computations are defined as code modules
that involve input/output data from multiple parties. Incrementally, secure flow policies
are refined based on feedback from the type checking/inference. Core computations only
interact with code modules from involved parties through well-defined interfaces. All code

modules are digitally signed to ensure their authenticity and integrity.
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1 Introduction

In the context of language-based secure information How, variables in a program are
associated with security levels. Information in variables of lower security levels are allowed
to flow to variables of higher security levels, but not vice versa. We call all the rules that
govérn how information may flow the secure policy.

In an imperative language, we are mainly concerned with two channels of information
flow: explicit flows and implicit lows. Explicit flows occur through direct assignments. For
example, in assignment hi := lo, information in variable lo flows to variable hi. Implicit
Hows occur through program context, that is, whether or not a statement gets executed
may reflect the value of some variables. For example, if a > 0 then b:=1 else b := 0, we
can tell whether a is greater than 0 by examining the value of b after the execution of the
statement.

Another channel for information flow is program termination. For example, if a programn

that contains this code segment:

while (a > 0 ) {}

does not terminate in a reasonable amount of time, we can say that it is likely that the
program ends up in an infinite loop and variable a is greater than 0. Because
non-termination requires close observation of the running of the program and is usually
not something demonstrated by normal programs, we do not consider this channel in our
study. We assume all programs terminate. We call our study termination insensitive.

The problem of secure information flow in programs was first studied in the 1970s by
the Dennings [1]. Their original study had no formal definition of information How and

used syntactical analysis to check programs for flow violations. Their method of syntactical



analysis does not facilitate a soundness proof. The research area received little attention
until the break-through work in 1996 by Volpano, Smith, and Irvine [2]. They used the
notion of noninterference to establish formally what it means for a program to be considered
free of secure information flow violations. Noninterference says that if we run a program
side by side under any two memories that only differs in variables of higher security levels,
after termination, the two memories should still agree on values in variables of lower security
levels. In a novel approach, they used type systems to describe and enforce security policies,
which led to the proof of the noninterference property. Since then, the research in the area
has exploded. In a survey paper published in early 2003 by Sabelfeld and Myers [3], about
150 papers were cited.

Secure information flow has been studied in various language settings. Numerous works
have been carried out in the context of functional languages [4, 5, 6, 7]. Secure information
flow has also been studied in 7-calculus [8, 9].

One of the major trends of active research in recent vears studies how to accommo-
date various features of modern languages. For example, Volpano and Smith [10, 11]
studied type systems for secure information flow in the setting of multi-threaded languages.
Myers [12] developed JFlow (now known as Jif), an object-oriented Java-like language and
its secure type system. Banerjee and Naumann [13] presented a Java-like language with

proved security properties.

1.1 A Less-travelled Path - Making Secure Information Flow Practical
While all these research works in expanding the expressiveness of secure information
flow languages are exciting and significant, the sophisticated language features lead to more

complicated and often more restrictive type systems. For example, in JFlow [12], the type



system is so complicated that it is arguably beyond the grasp of ordinary programmers.
Moreover, errors in secure information flow are often not localized due to implicit flows,
making it harder to explain in the context of a more complicated type system. Some
language features call for very restrictive type systems. For example, in the concurrent
language proposed by Smith [11], while statements with variables of higher security levels in
their guard expression cannot be followed by assignments to lower variables. This restriction
surely will disqualify a great number of programs.

In this dissertation, we pursue a less-travelled direction - making secure inforamtion flow

more practical. In order to be practical, we aim to achieve the following goals:

1. The language should be reasonably computationally powerful.

o

The type system should be simple enough for regular programmers.

3. The type system should be lenient to accept as many programs as possible.

4. Type inference should be available for typing all auxiliary variables.

.Cﬂ

Informative error reporting should lead the programmer quickly to the root of an

error.

Complex language features tend to result in more complicated and restrictive type
systems. To make our type system simple and lenient, we adopt a minimalist approach: We
start out with the most basic language, and add language features that are most essential
to computation. For this matter, we start with the secure language presented in [2], which
features variable of integer data type, assignments, if-then-else and while statements. Its
type system and security property proofs are simple and elegant. One missing language

feature we identified as essential to computation is arrays. In chapter 2, we incorporate



arrays into the basic language and prove its security properties. We discuss the impact of
adding other language features to our language in Chapter 5.

When writing programs in a secure language, usually the programmer is only concerned
with the security levels for input/output variables. It would be ideal that the programmer
only need to specify the types of variables he or she is interested in, leaving all others
to be inferred automatically. In Chapter 4, we present a novel non-constraint-based type
inference algorithm that infers security types for all unspecified variables.

Type systems for secure information flow are inherently more complex than data typings
in a language like C, because the errors may not be localized due to implicit lows. When
type inference fails, therefore, it is of vital importance to give the programmer informative
error reporting that traces back to the root of the error. One of the major advantages
of our type inference algorithm is that it facilitates informative error reporting. We have
developed data structures and algorithms for displaying error traces in a cascading fashion.

We complete the picture of practical secure information flow in Chapter 5 with a novel
framework for developing secure information flow applications. We identify the code module
of an application that requires secure information flow as the core computation. Core com-
putations communicate with other non-secure-information-flow code modules only through
well-defined interfaces. We also demonstrate how to use error reporting as a guideline to
relax security specifications to achieve a well typed program.

While the problem of secure information flow in and by itself merits theoretical study, it
also has the potential real world impact on improving user privacy in computer systeins. Iu
today’s world of computing, the user does not have any control over how a program handles

his personal information. All security concerns are based on trust. Usually if the user trusts



company A, he lets a program from company A handle his personal information. Secure
information flow techniques may change the situation by giving the user the guarantee of
how his personal information may flow in the program. For example, in 2005, about 53% of
the tax returns were filed online [14]. The IRS designated numerous companies to accept
e-filings, which then forward electronic tax forms to the IRS. The whole scheme looks like

this:

tax prep. payment data
User TaxCom IRS

personal financial data personaé 1:nancnal
ata

Figure 1: Today’s Tax E-filing Scheme

The scheme involves three parties: the IRS, the internal revenue service; the user, which
is the person filing a tax return, and TaxCom, which is a company that the IRS authorizes
to accept e-filings. The user usually downloads an application from TaxCom or logs on to
the website of TaxCom via a secure Internet connection. The tax return is prepared by the
user answering a series of questions and entering his or her personal financial data. If a
fee is charged for the e-filing service, the user also need to enter his or her tax preparation
payment data such as credit card information. All this information is transmitted back to
the TaxCom, where TaxCom retains the tax preparation payment information and forwards
all the tax related personal financial data to the IRS [15].

There are two major drawbacks with this scheme. First, the user must have total
trust in the website or the application that is handling his or her personal and financial
information. Second, much information is only intended for the IRS, such as names of
dependents, social security numbers and adjusted gross income. TaxCom should not be

handling such information in the first place. The fact that TaxCom has access to this

o



information opens up many security vulnerabilities. For example, employees at TaxCom
might browse private personal information and even divulge it. Hackers might break into
TaxCom and steal personal information.

In addition, it is likely that the IRS adopted the model to distribute data load and
encourage better service and efficiency through competition among the dozens of TaxCom'’s.
However, in this area, the playground may not be leveled as the IRS would like. When people
are filing their taxes electronically, it is very likely that the concern for privacy and security
outweighs the concern for the quality of services and cost. So companies that can afford big
advertising spending have an edge here: because privacy and security are based on trust
in e-filing, people might believe that companies that can spend more on advertising would
likely spend more on security equipment and procedures. Therefore, for a start-up company
in the tax e-filing, it would be hard to attract customers even with better tax filing services,
due to lack of reputations and possibly less marketing.

With security information flow techniques, instead of going by trust, the user can
actually have the assurance of where his inforamtion might flow, and where his information
won’t flow. In the improved scheme, now instead of sending all information over to TaxCom,
a user can download a tax preparation program from TaxCom to his or her local computer.
The program is certified to ensure secure information flow. Now for all information the user
provided to the program, the user can make sure it flows only to intended parties. In our
tax example, the program would show that social security numbers only flow to the IRS,

while credit card information for tax preparation payment only flows to TaxCom.



TaxCom

tax prep.
payment data

Tax Prep.
personal financial Program

data

IRS

Figure 2: A Better Tax E-filing Scheme

1.2 Contributions

In this dissertation, our goal is to make secure information flow practical. We identify
key hurdles to the application of secure information flow and propose solutions. We start
out with a simple imperative language. We add arrays with lenient operations which lead to
a simple type system and straightforward proofs of the security properties of our language.
We present a novel type type inference algorithm that stays close to the type system and
facilitates informative error reporting. We identify user information privacy protection as
the area for application of secure information flow and present an application development
framework. In the framework, code modules that ensure secure information flow are sep-
arated from supporting code modules by well-defined interfaces. An incremental process
is proposed to refine secure flow policies and resolve errors based on feedback from type

checking/inference.



2 Basic Language and its Security Properties

In this chapter, we describe the language in [2] as the foundation upon which our work
is built. We also describe the use of lattices for specifying secure flow policies, the type
system for the language and its secure information flow properties.

We pick the language in [2] as our basic language to expand and enhance through the
latter chapters because the language is simple, with a simple and elegant type system and

proved secure information flow properties.

2.1 Security Lattice
In literature of secure information flow, lattices are widely used to describe flow policies.

Here are graphical representations of two lattices that describe flow policies.

@ H

O g

Figure 3: Two Sample Lattices

The left-hand side graph shows the simplest scenario of information ow. There are
only two security levels in the lattice, L and H. Information is allowed to flow from L
variables to H variables, but not vice versa. In the graph on the right-hand side, we have a
diamond-shaped lattice with four security levels. Information is allowed to flow from lower
security levels to higher security levels. Note that no information flow is allowed between

E and W.



Formally, the definition of lattice is based on the the notion of partial order[16, page 2|.

Definition 2.1.1 Let P be a set. A partial order on P is a binary relation < on P such

that, for all x,y,z in P,

1.z <z,

2. x <y andy <x itmply x =y,

S r<yandy <zimplyz <z

Conditions 1, 2 and 3 are referred to, respectively, as reflexivity, anti-symmetry and
transitivity.

The ordering is partial rather than total, because there may exist elements x and y for

which neither z < y nor y < 2. A set P equipped with a partial order is said to be an
ordered set, written as (P; <).

A lattice is a partially ordered set in which all finite subsets have a least upper
bound(join) and a greatest lower bound(meet). For example, for a subset of {z,y}, the
join of x and y is denoted as 2 V y; the meet of x and y is denoted as x Ay. We use L and
T to denote the greatest lower bound and the least upper bound for a whole lattice.

The greatest lower bound and the least upper bound are defined as[16, page 28]:

Definition 2.1.2 Let P be an ordered set and let S C P. An element x € P is an upper
bound of S if s < x for all s € S. A lower bound is defined dually. The set of all upper

bounds of S is denoted by S* and the set of all lower bounds by S':

S :={z e P|(¥s€ S)s <z}and S* := {x € P|(Vs € §)s > x}.

We call = the least upper bound of S if



1. x is an upper bound of S, and
2. x <y for all upper bounds of y of S.

Dually, if S' has a largest element, then x is called the greatest lower bound of S.
Finally, a lattice is defined as[16, page 29]:

Definition 2.1.3 Let P be a non-empty ordered set. If xVy and x Ay exist for all z and

y € P, then P is called a lattice.

In our study, we assume all lattices are finite.

2.2 The Language and its Semantics

The syntax of the language is as follows:

(phrases) p = ele¢

(expressions) e == z | n |
eifea | ext+ex | er—en
erxen | eg=ey | €1 < ey
(commands) ¢ u= xz:=e |
skip |
if e then ¢ else ¢ |
while e do ¢ |

C1;C2

Our starting language as in [2] is a simple language. It has integer literals(n), integer
variables(z) and binary expressions. A language phrase can be either an expression or a

command. Standard binary operators are included. Commands include assignment, if,

10



while, composition and skip. The skip command is used as a “no-op”. The composition
command is for composing programs.

Execution of commands is given by a standard structural operational semanties [17]:

(UPDATE) x € dom(p)

(2 := e, u)—plx = ue)]
(No-oP) (skip, i) —p

(BRANCH) pule) # 0

(if e then c; else cg, p)— (1, 1)

pule) =0

(if e then ¢ else ¢y, n)—(co, 1)

(Loop) ple) =

(while e do ¢, p)—pu

pe) # 0

(while e do ¢, i)—(c; while e do ¢, y)

(SEQUENCE) (cy, p)—p

(c13 e, ) —(ca, 1)

(er, p)— (e, 1)

(ers e, p)— () 2, 4')

The operational semantics is very similar to that of the C language. We use p to
denote the memory that maps identifiers to their values. We use u(e) to denote the value
of expression e in memory p. For conditional statements if and while, integer 0 stands
for the boolean value “false” while a non-zero integer stands for the boolean value “true”.
Since only integers are allowed, divisions are carried out according to the rule of the integer

division.

11



2.3 Type System
One of the major contributions of [2] is the use of type systems as the static analysis
method. A type system consists of a set of typing rules and axioms for deriving typing

judgments. For our purpose, a judgment has the following form:

vEpip

which says that under identifier typing -, program phrase p has type p. identifier typing
~ maps identifiers to their types. It gives all free variables in p their types. A typing rule
usually consists of one or more judgments as hypotheses and one judgment as the conclusion.
We say that the conclusion follows from the typing rules if all the hypotheses are met.

For example, consider a simple type system for integer expressions. We have the follow-

ing typing rules:
(1) vEn:int

(2) yhxir ifylz)="71

vy e:int

(3) ~v e int

yhe+ée tint

Rule (1) is an axiom asserting that all integer literals have type int. Rule (2) is a
judgment that says a variable as an expression will have whatever type the variable has.
Rule (3) has two hypotheses and a conclusion that states that if sub-expression e and e’ are
both of type int, expression e + €’ is of type int.

To type expression y + 1, first 1 and y are typed as integer expressions by rules (1) and

(2); then by rule (3), the whole expression is typed as integer.



Here are the types used by our type system:

(data types) 7 ==l | la | ...

(phrase types) p == 7 | Twar | 7 cmd

Data types, denoted by 7, correspond to security levels in a security lattice. They are
used as expression types. Variable types are denoted as 7 var. A variable of type 7 var
can be assigned to by an expression whose type is 7 or below. Commands also have types
denoted as 7 emd. Command types are used to track implicit flows. A command of type
7 cmd means that the command does not assign to any variable whose type is below T.
Here is a simple example that shows how to use the 7 emd type to prevent illegal implicit
flows. In the command while e do ¢, if e has type 7, then in command ¢, any assignment
to variables of type below 7 could cause an illegal implicit low. However, it we make sure
that c is typed as 7 cmd, then we are sure that ¢ does not assign to any variables whose
type is below 7 and ti}erefore no illegal implicit flow will occur. The typing rules 1F and
WHILE show how to use command types to prevent illegal implicit Hows. In typing rule
WHILE the loop body c¢ is required to have type 7 ¢md or higher to prevent possible illegal
flow from the 7 type guard expression.

The < relation of the lattice is carried over into the type system in terms of sub-typings,
denoted as C. Subtyping among data types allows the normal upward Hows in the program.
More interestingly, the sub-typing rule for commands is antimonotonic (or contravariant),
which means that if 7 C 7/, then ™ emd C 7 cmd.

The typing rules and subtyping rules are given in Figures 4 and 5.

13



(R-VAL)

(INT)

(QUOTIENT)

(ASSIGN)

(sK1p)

(1)

(WHILE)

(COMPOSE)

v(z) = T var
YT
yEn:L

yhHel 7T, yhey:T

yhej/ea:T

vy(z)=T1var, yke:T

yhxi=e:Temd
~vbEskip: T emd

yhe:T
YFoc T omd
ybEco:T emd

v if e then ¢; else ¢; : 7 cmd

yhe:T
yFc: T emd

v while e do ¢: 7 emd

Yhep T emd
vk eo:T cmd

yFoepe0 0 T emd

Figure 4: Typing Rules for Our Basic Language

(BASE)

(cmp™)

(REFLEX)

(TRANS)

7 emd C 7' emd
psp

p1 S p2, p2 & ps

p1C p3

(suBSUMP) YyEpip, oL Cp2

yhEp:pe

Figure 5: Subtyping Rules

14



2.4 Security Properties

Basically, if we classify variables into various security levels, secure information flow is
the problem of preventing information flow from variables of higher security levels into lower
security levels. The notion is very direct and intuitive. It is desirable to formalize this
notion into some provable properties of programs. Volpano and Smith [2] used nonin-
terference to formally describe the property demonstrated by programs that satisfy secure
information flow requirements. Noninterference says that for any security level 7, if we run a
program under two memories that differ onlyl in variables of type above 7, then after program
termination, the two memories still agree on variable of type 7 and below. In Chapter 3,

we add arrays into our basic language and prove its secure information flow properties.

15



3 Arrays

In this chapter, we focus on the typing of array operations in a type system for secure
information flow. Arrays are interesting because they play a major role in many nontrivial
programs and because they can cause subtle information leaks, leading existing type systems
to impose severe restrictions.

An example of a leak resulting from array indexing can be found in Denning’s early
work on sef‘,ure information flow [1, page 509]. If array a is L and secret is H, then the
assignment a[secret] = 1; is dangerous; if a is initially all zero, then after the assignment

we can deduce the value of secret by searching a for a nonzero element:

alsecret] = 1;
i=0;
while (i < a.length) {
if (afi] == 1)
leak = i;

i++;

2

Out-of-bounds array indices cause other problems. If array bounds checking is not per-
formed (as in typical C implementations), then assignments to array elements can actually
write outside the array, making it impossible to ensure any security properties whatsoever.
But, if out-of-bounds array indices lead to exceptions (as in Java), then statements sequen-
tially following an array operation may not be reached, leading to possible information Hows.

For example, Figure 6 gives a Java program that leaks a 10-bit secret by turning on each

16



class Array {
public static void main(Stringl] args) {
int secret = Integer.parselnt(args[0]);
int leak = 0;
int [} a = new int[1];

i

for {(int bit = 0; bit < 10; bit++)
try {
al1 - (secret >> bit) % 2] = 1;
leak |= (1 << bit);
}
catch (ArrayIndexOutOfBoundsException e) { }
System.out.println("The secret is " + leak);

Figure 6: A Leak Exploiting Out-of-bounds Array Indices

bit of 1eak following an array assignment that throws an exception if the corresponding bit
of secret is 0.

Recent type systems for secure information flow have imposed a variety of restrictions to
prevent leaks caused by array indexing. The simplest approach, adopted by Agat [18, page
45] (which aims to prevent timing leaks), is to require that all array indices and lengths
be L. But this is of course very restrictive. In fact, just requiring that array indices be L

already prevents something as basic as summing an array whose length is If:

while (i < a.length) {

sum = sum + ali];
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Here, the while loop causes an implicit flow [1] from a.length to i, because the assignment
i =1 + 1 is guarded by the condition i < a.length. Hence if a.length is H, then we
must make i (and sum) be H as well, making a[1] illegal, if array indices must be L.

In Jif [12], a full-featured language for secure information flow, very complex rules are
used to track information flows resulting from possible exceptions. In particular, sub-
scripting an array with a H index causes the program-counter label pc to be raised to H,
thereby preventing subsequent statements from assigning to L variables (until the potential
ArrayIndexOutOfBoundsExceptionis caught). It should be noted that the Jif type system
has not, to our knowledge, been proved to ensure a noninterference property.

A similar strategy is described in Yocum’s unpublished thesis [19]: an operation
involving a H array index or an array of H length cannot be followed sequentially by
any assignments to L variables, since those assignments will not be reached if there is an
out-of-bounds index.

Because it is so disruptive to have to address the possibility of exceptions after every
array operation involving a H index or length, we are led here to propose a lenient execution
model in which programs never abort. The language does check for out-of-bounds indices,
but

e an out-of-bounds array read simply yields 0, and

e an out-of-bounds array write is simply skipped.

This lenient execution model makes no difference on programs that are free of out-
of-bounds array indices, though it does make debugging erroneous programs harder. (Of
course, in this regard we are no worse off than in C!) But our focus here is on avoiding
insecure information fows-—we sacrifice exception reporting to L observers for the sake of

a more permissive type system.
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The lenient execution model can be used for other partial operations. For instance, we
can say that division by 0 simply yields 0, thereby avoiding the need for restrictions like
those proposed in [20]. This is also like Java’s use of 32-bit two’s compliment modular
arithmetic, avoiding the need for integer overflow exceptions [21, page 156].

Because of our lenient execution model, we are able to use a simple and permissive type
system. In our system, arrays are given types of the form 71 arr 7o, where 71 is the security
class of the array’s contents and 79 is the security class of its length. Several combinations
are useful: L arr L is a completely public array, H arr L is an array whose contents are
private but whose length is public, and H arr H is a completely private array.

The rest of the chapter is organized as follows. In Section 3.1, we describe the simple
sequential imperative language that we consider, and formally define its lenient semantics
for array operations. In Section 3.2 we present the details of our type system, and in
Section 3.3 we prove that it guarantees a noninterference property. In Section 4.5, we

discuss the behavior of the type system on an example tax calculation program.

3.1 The Language and its Semantics

Programs are written in the simple imperative language [17], extended with one-
dimensional integer arrays. The syntax of the language is as in Figure 7.

Here metavariable x ranges over identifiers and n over integer literals. The expression
z.length yields the length of array z, as in Java. The command allocate z[e] allocates
a O-initialized block of memory for array x; the size of the array is given by e. Note that
for simplicity we do not treat arrays as first-class values. (First-class arrays would lead to

issues of aliasing, which have been considered by Banerjee and Naumann [13].)
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(phrases) p = e]e¢
(expressions) e == x | n | z[e] | zlength |
erfez | er+ea |

erxes | g =ey | e — ey

(commands) ¢ u= x:=e |
zlei] =ey |
allocate z[e]| |
skip |
if e then ¢; else ¢y |
while ¢ do ¢ |

C15¢2
Figure 7: Language Syntax

A program c is executed under a memory p, which maps identifiers to values. A value
is either an integer n or an array of integers {(ng,ny,na,...,nk—1), where £ > 0. (Note
that this simple memory model is not sufficient for modeling array aliasing—in Java, for
example, two identifiers a and b can point to the same block of memory.)

We assume that expressions are evaluated atomically, with u(e) denoting the value of
expression e in memory p. The formal semantics of array expressions and division is given
in Figure 8. Note that the rules specify that an array read with an out-of-bounds index
yields 0, as does division by 0.

Execution of commands is given by a standard structural operational semantics [17].
In addition, we have new rules for array writes and array allocation; these are given in
Figure 9. These rules define a transition relation — on configurations. A configuration
is either a pair (¢, ) or simply a memory p. In the first case, ¢ is the command yet to

be executed; in the second case, the command has terminated, vielding final memory p.
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(ARR-READ) x € dom(p)

plx) = (ng,...ng—1), ple)=1i, 0<i<k

p(zle]) = n;

x € dom(p)
p(@) = (noy ... g1y, ple) =14, ((<0Vi>k)

p(zle]) =0

(GET-LENGTH)  z € dom(u), p(x) = (no,...ng1)

u(zlength) =k

(D1V) pler) =ny, plea) =na, ny#0

pler/ez) = [n1/ns]

pler) =n, ulex) =0
pler/ez) =0

Figure 8: Semantics of Array Expressions and Division

We write —* for the k-fold self composition of —, and —* for the reflexive, transitive
closure of ——.
3.2 The Type System

In this section, we extend the typing rules in [2] with new rules for typing array oper-
ations. We type arrays using types of the form 7, arr 73; here 7 describes the contents of
the array, and 7o describes its length.

Here are the types used by our type system:

(data types) Tou= Iy | o] ..

(phrase types) p == 7 | Tvar | Temd | T arr T

The I;’s are security levels drawn from a security lattice.
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(UPDATE-ARR) z € dom(p), p(x) = (ng,...ng_1),
pley) =1, 0<i <k, pler) =n

(xler] i= eq, pu)—plr = (N, ..., M1, N1« -, Ny )

x € dom(p), p(z)=(no,...ng-1), pler) =1, E<0Vi=>k)

(zler] = ea, p)—p

(caLLOC) x € dom{p), ple) >0

(allocate zle], p)—plr := (0,0,...,0 )]
N, e’

ule) of these

x € dom(u), ule) <0

(allocate xle], pu)— plx == ()]
Figure 9: Semantics of Array Commands
For the array typing, the contents type dominates the length type, because the contents
of an array implicitly includes the array’s length. It makes no sense to have an array whose
security type of its length is higher than its security type of contents. We therefore adopt

the following constraint globally:
Global Array Constraint: In any array type 71 arr 1o, we require that 7 C 7.

We now can present our type system formally. It allows us to prove typing judgments
of the form v F p : p as well as subtyping judgments of the form p; C py. Here 7 denotes
an identifier typing, which maps identifiers to phrase types of the form v var or 7y arr .
The typing rules are given in Figure 10. The subtyping rules are the same as those in our
basic language as in Figure 5.

We briefly discuss the array typing rules. In rule SUBSCR, the value of expression z[e]
depends on the length and contents of array = as well as on the subscript e. For example, if

xle] is nonzero, then we know that e is in range; that is, 0 < e < a.length. Soif z : 7y arr
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(R-VAL) Y(z) =T var

yhxT

(SUBSCR) Y(z) =T arr 7o, yhe:Ty,

v xle] 1 VT
(INT) vEn: L

(QUOTIENT) yhe T, Yhe T

yheifex:T

(ASSIGN) v(x)=Tuvar, yhFe:7

vyhxi=e:T cmd

(ASSIGN-ARR) y@)y=T71 arr 19, yhEe T, yheim

vEale] ==ey 1 emd

(LENGTH) y(z) =11 arr o

v zlength:

(ALLOCATE) v(x) =1 arr Ty, Y e:m

v - allocate zle] : 2 cmd
(sK1p) v skip: T emd

(1F) yhe:T
vyEep T emd
Yo T cmd

v if e then ¢; else ¢y : 7 emd

(WHILE) yhe:T
ybEc:7 emd

vt while e do ¢: 7 ¢md

(COMPOSE) vybker T emd
Yoo T emd

vyl e ooT omd

Figure 10: Typing Rules
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and e : 73, then we need xle] : 7y V 13 V 73, where V denotes join in the security lattice.
Given the Global Array Constraint, this simplifies to 71 V 73.

Rule ASSIGN-ARR addresses similar issues. One interesting property of this rule is that,
for example, if x : H arr L, then the command z[e;] := e can be given type H cmd, which
says intuitively that it only assigns to H variables. This is valid because it does not change
the L length of z.

In contrast, the command allocate z[e] does assign a length to x, and this length can
later be read by z.length. Hence, for example, if = : 7 arr L, then rule ALLOCATE gives

allocate xle] type L emd, to indicate that it (in effect) assigns to a L variable.

3.3 Properties of the Type System

In this section, we use relatively standard techniques to prove that our type system
guarantees noninterference.

The proofs of some of the lemmas below are complicated somewhat by subtyping. We
therefore assume, without loss of generality, that all typing derivations end with a single

(perhaps trivial) use of rule SUBSUMP.

Lemma 3.3.1 (Subject Reduction) If v F ¢ : 7emd and (c,pu)—(c', 1), then

vy T emd.

Proof. By induction on the structure of ¢. There are just three kinds of commands that

can take more than one step to terminate:

1. Case if e then ¢; else cs.

By our assumption, the typing derivation for ¢ must end with a use of rule 1r followed

by a use of SUBSUMP:



yhe:7
vEey T emd

vbeo: 7 emd

v I if e then ¢; else ¢y : 7" emd

" emd C T emd

vk if e then ¢ else ¢y : 7 emd

Hence, by rule cMp ™, we must have 7 C 7/. So by suBsuMP we have v+ ¢; : 7 emd
and vy ey 1 7 emd. By semantic rule BRANCH, ¢’ can be either ¢; or ¢y therefore, we

have v b ¢' : 7 emd.

. Case while e do ¢;.

By our assumption, the typing derivation for ¢ must end with a use of rule WHILE

followed by a use of SUBSUMP:

yhe7!

vyEep 1t emd

v+ while e do ¢; : 77 emd

7" emd C 1 emd

~ + while e do ¢ : 7 cmd

! must be

Hence, by rule cMD™, we must have 7 C 7/. By semantic rule LoOP, ¢
c; ;while e do ¢. So by rule sUBSUMP we have v F ¢; : 7 emd. By typing rule

COMPOSE, we have 7y - ¢; ; while e do ¢; : 7 emd. Therefore, we have y ¢ : 7 emd.

o
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3. Case ¢1; 9.
By our assumption, the typing derivation for ¢ must end with a use of rule COMPOSE
followed by a use of suBsuMP:

b7 emd

vEeg: T emd

vEoeyep T emd

v emd C 1 emd

v ey e T emd

Hence, by rule cMD™, we must have 7 C 7/. By SUBSUMP, we get v F ¢y : 7 emd and
vt ¢y i 7 emd. By semantic rule SEQUENCE, ¢ is either ¢ (if ¢; terminates in one
step) or else ¢}; ¢y, where (¢y, u)— (e, ¢/). For the first case, we have v b ¢g 1 7 emd.
For the second case, we have v F ¢} : 7 ¢md by induction; hence v F ¢f;¢9 : 7 cmd by
rule COMPOSE.
0

Definition 3.3.1 Memory u is consistent with identifier typing v, written p @ ~, if

dom(p) = dom(7y) and, for every x, u(x) is an integer n if v(x) = 7 var and p(zx) is

an array of integers (no, ..., ng—1) if y(x) =71 arr m9.

Lemma 3.3.2 (Total Expressions) If v F e : 7 and p : v, then ule) is a well-defined

integer.
Proof. By induction on the structure of e.
1. Cases x. n, €1 + €9, €1 — €9, €] = €.

By induction, e; and e are both well-defined integers. For these expressions, we have

standard semantic rules. It is obvious that u(e) is a well-defined integer.
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2. Case e /eq.
By induction, e; and ey are both well-defined integers. By semantic rule Div, if ey is
0, uler/eg) = 0; if ey is non-zero, e1/eq is carried out as integer division, yielding a
well-defined integer.
3. Case z.length.
By semantic rule GET-LENGTH, the actual size of the array is returned as an integer.
4. Case zle;].

By induction, ey is a well-defined integer. By semantic rule ARR-READ, if e; is out
of bounds of array z, p(zle1]) = 0; otherwise, the corresponding array element is

returned as p(zler]).
|

Lemma 3.3.3 (Progress) IfyFc:7 emd and p: vy, then there is a unique configuration

C, of the form (¢, ) or just ¢, such that (¢, n)—C and p' : .

Proof. By induction on the structure of ¢. It follows from the semantic rules. [

From the Subject Reduction and Progress lemmas, it follows that if command ¢ is well
typed under v and c¢ is executed in a memory p consistent with v, then the execution either
terminates successfully or else loops—it cannot get stuck.

We also need a lemma ahout the execution of a sequential composition:

Lemma 3.3.4 If (cy;c9, u)—71, then there exist k and p” such that 0 < k < j,

(c1, p)—*p”, and (co, ) —T7F .



Proof. By induction on j. If the derivation begins with an application of the first SEQUENCE
rule, then there exists " such that (c1, u)— " and

(13 ca, p)—(co, p")— "1yt
So we can let k= 1. And, since j — 1 > 1, we have k < j.

If the derivation begins with an application of the second SEQUENCE rule, then there

exists ¢} and py such that (¢, u)— (e}, 1) and

(c1; 02, ) —>(c); c2, ) —7 1.

By induction, there exists k and u” such that 0 < k < j — 1, (¢}, 1)—Fp”, and
(co, ") —7"17E 1! Hence (cq, p)—*t1p" and (g, p/")—7~F+0p/ And 0 < k+1 < j.

O

Now we are ready to show that our type system ensures a noninterference property for
well-typed commands ¢. Noninterference says that for some security level 7, changing the
initial values of variables of type 7 and above, cannot affect the final values of variables of
type below 7. (Note however that under typing rule WHILE, changing the initial values of

variables of type 7 and above can affect the termination of ¢.)

Definition 3.3.2 Memories p and v are equivalent up to 7, written u~, v, if
e 1 and v are both consistent with «,
e 1 and v agree on all variables of type 71 var, where 11 < T,

*

e 4 and v agree on all arrays of type 71 arr 7o, where 7y <71 and 72 < 7, and
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® 1 and v agree on the length (but not necessarily on the contents) of all arrays of type

Ty arr 1o, where 1y £ 7 and T < T.

Lemma 3.3.5 (Simple Security) IfyFe: 7 and p~,v, then pule) = v(e).

Proof. By induction on the structure of e:

1. Case 2.

By our assumption, the type derivation for z must end with a use of rule R-vAL

followed by a use of suBsumP.

v(z) = 1" var

vz

™ Cr

yhx:T

Because 7" C 7 and p~,v, we have u(x) = v(x).

2. Case z[ey].

By our assumption, the type derivation for z[e] must end with a use of rule SUBSCR

followed by a use of SUBSUMP.

v(x) =1 arr o, yFe 11,

ytale] i
T1CT
yhazle] T

71 C 7,79 C 7T, p~rv, therefore by induction, u(e) = v(e), and plx) = v(x).



3. Case z.length.

By our assumption, the type derivation for z.length must end with a use of rule

LENGTH followed by a use of SUBSUMP.

v(x) =T arr 7

v+ zlength :

o CT

v+ zlength:

4. Case e;/ey.

By our assumption, the type derivation for e; /eo must end with a use of rule QUOTIENT

followed by a use of SUBSUMP.

yhe 7, yhey: T

7%*61/62:7’

T Cr

vhejjfep:T

By typing rule suBsuMP, we have v+ e; : 7 and v + e : 7. By induction, we have
rle1) = v(er) and p(es) = v(eg). Then, by semantic rule DIV, we have u(e;/ep) =

viei/ea).
5. Cases eq + ey, 1 — €9, €1 * €9, €1 = €9 are similar.

0

Lemma 3.3.6 (Confinement) If v - ¢ : 7/ emd and (c,p)— (', 1) (or (e, pu)—p'),

then for any T such that 7' € T, p~ 1.

30



Proof. By induction on the structure of ¢:

L. Case z :=e.
By our assumption, the typing derivation for ¢ must end with a use of rule UPDATE

followed by a use of SUBSUMP:

y(z) = 1" var

yEe: 7"

yhFx:=e:7" cmd

™ emd C 7' emd

yhx:=e:7 emd

Hence, by rule cMD™, we must have 7/ C 7. Since 7/ € 7, we have 77 € 7. By
semantic rule UPDATE, x is the only variable being assigned to in command ¢ and
y(z) = 7" var, so pu~p'.

2. Case z[e1] == es.

By our assumption, the typing derivation for ¢ must end with a use of rule ASSIGN-ARR

followed by a use of suBsuMP:

Yy(x)=T1arr T, YEe T, Yhe

vyEzlel) i=ey: 71 emd

1 emd C 7' cmd

vk zle] :=ex: 7" emd

Hence, by rule cMD™, we must have 7/ C 7;. Since 7/ € 7, we have 1y € 7. By
semantic rule UPDATE-ARR, command ¢ may only assign to the contents of array z,

whose type is 71 arr 79, 80 pu~p'.
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3. Case allocate zle].

By our assumption, the typing derivation for ¢ must end with a use of rule ALLOCATE

followed by a use of suBsuMP:

y(x) =T arr o, yhe:my

v I allocate x[e] : 7o emd

Ty cmd C 7 emd

v - allocate xle] : 77 emd

Hence, by rule cMD™, we must have 7/ C 7. Since 7/ € 7, we have 9 € 7. By
semantic rule CALLOC, command ¢ may only assign to the length of array xz, whose
type is 7y arr 9, 80 i~ i

4. Cases skip, if e then ¢; else 3, and while ¢ do c.

These cases are trivial, because pu = '

5. Case c1;c9.

By our assumption, the typing derivation for ¢ must end with a use of rule COMPOSE

followed by a use of SUBSUMP:

vlep 7" emd

vybkep: 7" emd

vyEciep o T emd

7 emd C 1 emd

~vE ey e emd



C o .
Hence, by rule cMp™, we must have 7/ C 7”. By suBsump, v + ¢ @ 7" cmd. By
semantic rule SEQUENCE, (c1,p)—(c}, ') (or (e1,p)— /). So, by induction, we

have p~,p'. Therefore, either (c1;co, u)—{c}; €2, 1) or (e1; g, p)—(ca; '), we have

pe~r i

|

Corollary 3.3.7 If v - ¢ : 7" emd and (c,p)—*!, then for any 7 such that ' € T,

p~rp.

Proof. By induction on the length of the execution of (¢; u)—*p/. We consider the differ-

ence forms of ¢ :

1. Cases z := e, skip, c1; ¢, z.length, z[e1] := ey, allocate z[e].

Follows immediately from Lemma 3.3.6(Confinement).

2. Case while e do ¢;.

By semantic rule LOOP, if u(e) # 0 then execution have the form:

(while e do ¢y, )~ (c1; while e do ¢y, u)—"p/

By induction, p~,pu'.

If p(e) = 0 then execution have the form:

(while e do ¢1, p)—p

= 50 prerpt.
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3. Case if € then ¢; else co.

By semantic rule BRANCH, if p(e) # 0 then execution have the form:

(if e then c¢; else ¢, u)—(cy, pu)—" 1/

By induction, g~ g'. Similarly, if u(e) = 0 then execution have the form:

(if e then ¢; else cz,u)w*(CQ:M)“—"*/l,

By induction, p~,pu'.

1

Theorem 3.3.8 (Noninterference) Suppose that command c is well typed under v and

memories p~q.v. If (¢, u)—*y' and (c,v)—*V', then p'~.1/.

Proof. By induction on the length of the execution (¢, u)—*1'. We consider the different

forms of ¢

1. Case x :=e.

Command c is well typed, so there must exist 7’ and by typing rule ASSIGN :

y(z)y =1 var

yhe:7

vyrxzi=e:7 emd
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Soif " & 7, sincev Fx :=¢ : 7/ ¢md and (¢, p)—p’, by Lemma 3.3.6(Confinement),
we have p~,p'.  Similarly, since v F =z == e : 7 emd and (¢, v)—v', by

Lemma 3.3.6(Confinement), we have v~,v'. Therefore, p/~, /.
Or else 7/ C 7, since v e : 7 and p~,v, by Lemma 3.3.5(Simple Security), we have
p(e) = v(e). Therefore, by semantic rule UPDATE, pfz := p(e)]~,viz = v(e)].

2. Case skip.

The result follows immediately from semantic rule NO-OP.

3. Case ¢y;09.

It (c15¢0, u)—7 4 then by Lemma 3.3.4 there exist k and x” such that 0 < k < j

K

(CI»N)'—“"’CH” and (CQ,MI,)—-—*j—kLLI.

Similarly, if (clgcz,u)———ﬂ'lu’ then there exist &' and ¢” such that 0 < & < §/,

7 ;! xi
(c1,v)——F 1" and (g, ") —1" =K1/
By induction, ¢”~,". So by induction again, p'~, 1"
4. Case if e then ¢; else ¢3.

Command ¢ is well typed, so there must exist 7" and by typing rule 1F :

yhEe:7
vbep 7 emd

~Fes 7t emd

v if e then ¢; else ¢3 : 7' emd

Soif 7' € 7,since y k¢ : 7/ emd and (c, p)—*pi’, by Corollary 3.3.7, we have p~,p'.

Similarly, since v ¢ : 7" emd and (c,v)—*1/, by Corollary 3.3.7, we have v~ /.



oz}

Therefore, p~rp/. Or else 7/ C 7, since v F e : 7 and p~;v, by Lemma 3.3.5(Simple
Security), we have u(e) = v(e). By semantic rule BRANCH, if p(e) # 0 then the two

execution have the form:

(if e then ¢ else ¢y, p)——(ey, pu)—"y'

and

(if e then ¢ else ¢, v)—(cy,v)—*V,
!

By induction, p/~, v/

If pi(e) = 0 then the two execution have the form:
(if e then ¢; else ¢, pu)—{co, p)—"/

and

*_f

(if e then ¢; else ¢y, v)—(co,v)—>"1".

By induction, p'~,1v/".

. Case while e do ¢;.

Command ¢ is well typed, so there must exist 7" and by typing rule WHILE :

yheT

e emd

~v F while e do ¢; : 7/ emd

Soif 7' & 7, since y ¢ 7' emd and (¢, p)—*}, by Corollary 3.3.7, we have pi~, /.
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Similarly, since v F ¢ : 7/ emd and (c,v)——*1/, by Corollary 3.3.7, we have v~/

Therefore, p~ .

Or else 7/ C 7, since v+ e : 7 and p~,v, by Lemma 3.3.5(Simple Security), we have

u(e) = v(e). By semantic rule LOOP, if p(e) # 0 then the two execution have the

(while e do ¢1, p)—(cy; while e do ey, p)—*1/

and

(while e do ¢1,v)—(cy; while e do ¢, v)—*.

/

By induction, pu'~, /.

If p1(e) = 0 then the two execution have the form:

(while e do ¢1,pu)—pu

and

(while e do ¢;,v)—v

Since y/ = p and v/ = v, we have '~ /.

. Case allocate zfe].

Command c is well typed, so there must exist 79 and by typing rule ALLOCATE :

v(x) =711 arr T

ybe:m

v - allocate zle] : 7 cmd

37



So if 7, € 7, since v F ¢ : 72 emd and (¢, p)— ', by Lemma 3.3.6(Confinement),
. 14 ,
we have p~, /.  Similarly, since v F ¢ . 1 emd and (c,v)—v', by

o« . n !
Lemma 3.3.6(Confinement), we have v~,v/. Therefore, '~

Or else 750 C 7, since v F e : 7 and p~;v, by Lemma 3.3.5(Simple Security), we
have u(e) = v(e). By semantic rule caLLOC, if u(e) > 0, u{e) memory cells are
allocated to array z, all initialized to 0, in both 1 and v. By Global Constraint for
arrays, if 79 C 7y C 7, arrays u{x) and v(zx) agree on both the 7 contents and the 7
lengths, therefore, p'~/. If 7| € T, two arrays p(x) and v(x) agree on the 7 lengths,

therefore, u'~.v/.

If u(e) < 0, by semantic rule CALLOC, arrays u(z) and v(x) are reset to zero length

in both ¢’ and 1/, By global constraint for arrays, if o € 7y C 7, arrays u(z) and

v(z) agree on both the T contents (vacuously) and the 7 lengths, therefore, p'~; /.

If 74 € 7, two arrays ' (x) and +/(x) agree on the 7 lengths, therefore, y'~,1/.

7. Case zlej] = eq.

Command c is well typed, so there must exist 71 and by typing rule ASSIGN-ARR:

y(x) =1 arr ™
yhe :m

yhes i

vFzle] ==ex 1 omd

~Soif g 7, since vy ¢ i1y emd and (¢, p)— 1, by Lemma 3.3.6(Confinement),
we have p~cp/.  Similarly, since v + ¢ : 1 emd and (e, v)—v/, by

Lemma 3.3.6(Confinement), we have v~,1/. Therefore, Woeart!.
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Orelse ; C 7. Sincey ey : 7, vF e 7and p~yr, by Lemma 3.3.5(Simple
Security), we have u(e;) = v(er) and p(ez) = v{e).

By Global Constraint, arrays u(z) and v(x) agree on both the contents and lengths.
By semantic rule UPDA’I‘E—ARR, if p(e1) is within the bounds of array ., arrays p'(x)

and ©/(z) agree on both the contents and lengths. So p'~;1/.

If 11(e1) is out of the bounds of array @, no change will be made to memories. u = ',

v =1/, therefore, u'~, '

3.4 An Example Tax Calculation Program
We now try to get a sense of the practicality of our type system by considering its
behavior on an example tax calculation program. Suppose that we are calculating income

taxes, using a tax table like the following:

Taxable income Income tax

At least Less than | Single Married

25,200 25,250 3,434 3,084
25,250 25,300 3,441 3,091
25,300 25,350 3,449 3,099

In a richer language, we would likely represent the tax table as an array of records; here

we use three parallel arrays instead:
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brackets

25,200 | 25,250 | 25,300

singleTaxTable

3,434 | 3,441 | 3,449

marriedTaxTable

3,084 | 3,091} 3,099

Given these tables, we can calculate the income tax for taxable income ¢ by using binary

search to find an index b such that

brackets[b] <t < brackets[b+ 1]

and then returning either singleTaxTable[b] or marriedTaxTable[b], depending on the
marital status.

With respect to our type system, we want the typings brackets : L arr L,
singleTaxTable : L arr L, and marriedTaxTable : L arr L, since the tax table is
public information.

Let us further specify that we wish to calculate the income taxes for many tax returns.
We represent the tax returns using two parallel arrays, taxableIncome and maritalStatus,
using O to represent “single” and 1 to represent “married”. We choose the typings
taxableIncome : H arr L and maritalStatus : L arr L to indicate that taxable income is

private, marital status is public, and the number of tax returns to be processed is public.
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Our goal is to fill in an array incomeTax with the tax owed for each tax return. We also
wish to compute singleReturns and marriedReturns, which count the number of single
tax rgturns and married tax returns, respectively. The typings that we want for our outputs
are incémeTax : H arr L, singleReturns : L, and marriedReturns: L.

Given this specification, we would naturally write a program like the one in Figure 11.
Notice that the program makes use of four auxiliary variables: i, 1o, hi, and mid.

Now we wish to see whether the program is accepted by our type system. To do this,
we must figure out whether there are any acceptable types for the auxiliary variables. We
begin by observing that the if command within the binary search has a H guard, since
taxableIncome[i] is /. Hence the branches must not assign to L variables. This implies
that hi : H and lo : H. And then the assignment mid := (lo + hi) / 2 implies that
mid : H as well. Finally, the last if command assigns to the L variables singleReturns
and marriedReturns. As a result, its guard must be L, which implies that i : L.

With these typings for the auxiliary variables, it is straightforward to verikfy that the
tax calculation program is well typed under our type system. We find it rather encouraging
that we are able to write this program in a natural way and still have it accepted by the
type system.

In contrast, we can observe that other approaches to typing arrays for secure information
flow would run into trouble on this program. If we follow Agat’s approach [18] and require
that array indices be L, then the program seems hopeless, because it uses the H variables
lo and mid as indices. If we follow Jif’s approach [12] and disallow assignments to L
variables after array operations that might fail due to H variables, then we cannot follow

the reference to brackets[mid] with assignments to the L variables singleReturns and

41



// Tax calculation program.

//
// Inputs:
// taxablelncome : H arr L

/7 maritalStatus : L arr L
/7 brackets : L arr L
// singleTaxTable : L arr L

// marriedTaxTable : L arr L
// Outputs:

// incomeTax : H arr L

// singleReturns : L

/7 marriedReturns : L

// Auxiliary variables:
/7 i, lo, hi, mid

allocate incomeTax[taxableIncome.length];
singleReturns := 0;

marriedReturns := 0;

i:=0;

while i < taxablelIncome.length do (
lo := 0;
hi brackets.length;
while lo+1 < hi do (
mid := (lo + hi) / 2;
if taxablelncome[i] < brackets[mid] then

hi := mid
else
lo := mid
);
if maritalStatus[i] = O then (
incomeTax[i] := singleTaxTable[lo];
singleReturns := singleReturns + 1
)
else (
incomeTax[i] := marriedTaxTable[lo];
marriedReturns := marriedReturns + 1
)
i = i+l

Figure 11: Tax Calculation Program
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marriedReturns. It does seem that we could rewrite the program to satisfy Jif's typing
rules—it appears that we could move the calculation of the L variables singleReturns and
marriedReturns to the beginning of the program, before the dangerous array operations.
This has the disadvantage of requiring some duplication of work; for example, it would
require two passes through the maritalStatus array. More seriously, it is unclear whether
this sort of transformation would always be possible, especially if the lattice of security
classes is not a total order.

Alternatively, it seems that we could satisty Jif’s typing rules by wrapping each array

operation in a tight try-catch block as shown below:

try {

if (taxableIncome[i] < brackets[mid])

hi = mid;
else
lo = mid;

catch (ArrayIndexOutOfBoundsException e){}

This technique allows us to achieve an approximation to our lenient semantics within Java,

though at the cost of some syntactic clumsiness.

3.5 Conclusion
Because of our lenient execution model and our array types of the form 7y arr 7, we
are able to do secure information flow analysis on interesting programs, using simple and

permissive typing rules. The simplicity of our rules makes it straightforward to prove
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that our type system ensures noninterference. Our tax calculation example suggests that
interesting programs satisfying our typing rules can be written in a simple and natural way.

An earlier version of the work in this chapter was published in the proceedings of the
17th IEEE Security Foundations Workshop [22]. There we assumed a simple lattice of H
and L instead of the general lattices used in this chapter. At the time of the publication, we
had not found detailed information on how arrays are handled in Flow Caml. Afterwards,
we received email correspondence from Vincent Simonet, the main anthor of Flow Caml.
He noted that in their effort to overcome restrictions associated with array operations, they
adopted a semantics that specifies that out-of-bounds array operations cause the program
to abort. This is similar in effect to our lenient semantics.

In our tax calculation program, we see that it takes some pretty hard reasoning to
figure out the types for auxiliary variable lo, hi and mid to have the whole program well
typed. The example is just a relatively short program. It would become impossible to type
a large program with many auxiliary variables by this simple reasoning and try-and-error
approach. Therefore, it is very helpful to have all the types for auxiliary variables inferred

automatically. We present a type inference algorithm for our language in the next chapter.



4 Type Inference and Error Reporting

To make such secure information flow analysis practical, the programming language
needs to be reasonably expressive, and the type system needs to be understandable to
programmers. Moreover, the programmer probably wants to specify security levels only for
input/output variables, leaving the security levels of auxiliary variables unspecified. Hence
it is very convenient for the language to provide type inference, allowing the security levels
of such auxiliary variables to be inferred automatically.

Type inference for secure information flow analysis has been studied in previous works,
such as [23, 12, 24]. In these prior works, type inference uses a constraint-based approach,
in which a set of constraints of the form o < 8 (where o and [ are type terms) is gath-
ered during the type inference process. Then the constraints are analyzed by a constraint
solver for satisfiability. This way, the type inference problem is reduced to a more abstract
constraint-solving problem. Constraint solving is not always tractable, but it has been
shown that atomic constraints over a lattice can be solved in linear time [25].

Though well studied and powerful, constraint-based approaches to security type infer-
ence have some drawbacks. First, information about the original program may be lost
when the problem is reduced to a constraint-solving problem. Second, while traditional
constraint-solving algorithms are good at saying whether or not a set of constraints is sat-
isfiable, they have not been so good at explaining why. Particularly when a third-party
constraint-solving engine is used, there may be little control over the details of constraint
solving and the generation of error messages. The result is that it is very difficult to report
type errors back to the programmer in an understandable way. Indeed, good error reporting

has been a long-standing challenge for type inference in general [26].



These challenges are evident in both Flow Caml [27] and Jif [28], currently the two
most sophisticated implementations of languages with secure information flow. While Flow
Caml performs very sophisticated polymorphic type inference, it currently makes no effort
to report the source of type errors. If a program fails to type check, Flow Caml simply

reports a message like

This expression generates the following information flow:
‘high < !low

which is not legal.

giving no indication of the location of the error. Jif is more ambitious in its error reporting,
trying to find which constraint to “blame” if a system of constraints is unsolvable, but it
remains difficult for users to track down the source of errors.

For example,

Jif suffers quite heavily from the problem of confusing error messages that plague
many languages that perform constraint solving as part of type checking. The
problem is that as the compiler solves constraints, a failure may occur due to
a constraint that was introduced in a context distant from where the error is
actually reported. The constraint failure could also be the result of a number of
interacting annotations, making the cause of the problem difficult to pin down.

[29, p. 12]

In this work, we propose a novel, non-constraint-based type inference approach. We
develop our approach for the simple imperative language with arrays that is considered
n [22], but we expect that similar languages could be accommodated without difficulty.

Our approach is tightly based on the security type system and stays close to the original
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program, allowing us to track detailed information about the program. As a result, we are

able to give informative error messages.

4.1 Discovery of the B Algorithm

To search for an inference algorithm that is closely based upon the type system, we
assume that all the possible types of an inferable variable form an interval and study how
typing rules affect the intervals for the inferable variables. For example, we consider an

assignment to an inferable variable:

-
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Figure 12: Inference Diagramk

In the assignment, we have an inferable variable ¢ on the left-hand side and inferable
variables 7.1, i.2 and fixed variable f on the right-hand side. The adjustments to the
intervals for the inferable variables are shown as the crossed-out areas. According the
typing rule for assignments, the bottom portion of the interval for 7 that is below f is “cut
off” because i’s security level need to be equal to f’s or higher. Also, the top portion of

the interval for i_1 is“cut off” because the typing rule for assignments requires that i 1’s
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sécurity level be less than or equal to i’s. After these conservative ”cut-offs”, we observe
that the bottoms of the adjusted intervals guarantee the satisfaction of the typing rule
for assignments. Of course this is just one of the many scenarios for assignments, for
example, we could have fixed variable on the left-hand side with all inferable variables on
the right-hand side, or have all inferable variables on both sides. We are able to make
similar adjustments and arguments for all the scenarios for assignments.

Encouraged by the results, we studied all cases of our language commands and found
out that in each case, after minimum adjustments made according to the typing rule, the
bottoms of the intervals satisty the typing rule.

Notice that when the interval of an inferable variable changes, other inferable variables
may be affected. Therefore, we need to iteratively adjust the intervals until a stable state
is reached, that is, no more adjustments can be made according to the typing rules.

Will the iteration end up in an infinite loop? The answer is no because we have shown
that in each case, the intervals only "shrink” in height. Therefore, at some point, either
the iteration fails, that is, the required minimum adjustments cannot be made (after ad-
justments, the interval is empty), or the iteration reaches the stable state.

The fact that upon success, we only need to report the bottoms of the intervals for
inferable variables leads to a great optimization of our inference algorithm: we only need
to keep track of the bottoms of the intervals instead of the whole intervals.

Finally, we reached a surprisingly simple approach for type inference that is closely
based on the type system:

We have fixed variables and inferable variables in the program. Initially, all security

levels for inferable variables are initialized to L, the lowest level in the security lattice. In
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the process of type checking, if a typing rule is not satisfied, but raising the level of an
inferable variable can satisfy it, then we raise the level of that variable by the minimum
amount necessary. We succeed if a stable state is reached and report all the current types
for inferable variables as an instance of successful typing.

The rest of the chapter is organized as follows. We present our inference algorithm in
Section 4.2 and prove its soundness and completeness in Section 4.3. In Section 4.4, we
describe our techniques for error reporting. In Section 4.5, we illustrate the capabilities of

our approach on an example program that processes some medical information. Finally,

Section 4.6 discusses related work.

4.2 Type Inference
In practice, the identifier typing v will be determined by program declarations that
specify the security levels of the program’s variables. We allow some of these levels to be

inferred automatically by allowing declarations to include “7”. For example, the declaration

a:Harr?

declares that the security level of a’s contents is H and the security level of a’s length is to
be inferred. Given such declarations, we define three sets to record which levels are inferable

and which are fixed:

Definition 4.2.1 FIXED is the set of variables whose declarations are of the form T var.
F1XeDp-CONTENTS is the set of array variables whose declarations are of the form T arr 7 or
71 arr T2. FIXED-LENGTH is the set of array variables whose declarations are of the form

?arr 7, or 7y arr T2. (Note that a variable declared T, arr T is in both FIXED-CONTENTS

and FIXED-LENGTH. )
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Our basic approach toward type inference is to start with an identifier typing ~ in which
all inferable security levels are set to L, and then to raise such levels as necessary. As a

result, we need to extend < to identifier typings:
Definition 4.2.2 We say that v < ' if dom(7) = dom(v") and for x € dom(~), either
e v(z) =71 var, v'(z) = 7" var, and 7 < 1'; moreover, if x € FIXED, then 7 = 7/, or

o () = Tyarrmy, Y(z) = MarTy, 1 < 7, and 7o < Th; moreover, if x €

FIXED-CONTENTS, then 71 = 71, and if r € FIXED-LENGTH, then 175 = 7).

Note that that < relation between identifier typings is a partial order, that is, < is
reflexive, anti-symmetric and transitiye.

Now we are ready to describe our inference algorithm B. It takes three parameters: an
identifier typing 7, a security level pe, and a command ¢. The purpose of pe (“program
counter”) is to address implicit flows; it indicates the lowest level of variables that ¢ is
allowed to assign to. Initially, pc will be 1. B returns a new identifier typing 4’ in which
the inferable security levels have been raised as necessary to get a well-typed program.
Algorithm B is given in Figure 13. It makes use of an auxiliary function Lev(v,e) that
returns the minimal type of e under v. Lev follows straightforwardly from the typing rules
for expressions.

Algorithm B can be understood by looking at the corresponding command typing rules.
We comment on some of the cases:

B(y, pc,x := e) handles the assignment command. If x is a fixed variable, the command
fails if the join of pc and Lev(y,e) is not less than or equal to y(x). If  is an inferable

variable, then v(x) is simply updated to the join of v(z), pc, and Lev(v,e).



B(v,pe,¢) = case ¢ of

CHEE
let 1 = B(v,pc,c1)
Y2 = B(n,pe,c2)
in if v = v then g else B(vyq2, pc,c1;ca)

€T i=e.
let 7 var = v(z)
in if z € FIXED and pe V Lev(vy,e) £ 7 then fail,
vl = (T V pc V Lev(vy, e)) var]

while ¢ do ¢ :
if B(v,pcV Lev(vy,e),¢) =+ and v =+ then v/
else B(v', pc, while e do ¢)

if e then ¢; else ¢y :
it B(y,pcV Lev(wy,e),c1;¢2) =+ and v =+ then ~/

else B(v', pc,if e then c; else ¢;)

allocate zle] :
let 7y arr 7o = y(x)
in if r € FIXED-CONTENTS and 79V pc V Lev(y,e) € 71 then fail,
if z € FIXED-LENGTH and pe V Lev(y,¢) £ 19 then fail;

ylx = (1 V7V peV Lev(y,e)) arr (T V pc V Lev(y, e))]

zler] 1= ey :
let 7 arr 7y = y(x)
in if z € FIxep-CONTENTS and 75 V pe V Lev(y,e1) V Lev(ry,ea) £ 71 then fail;
Yz = (V1 VpeV Lev(y,e1) V Lev(ry,e2)) arr 1]

skip:

Figure 13: Type Inference Algorithm B



Lev('y,e) = case e of

x:

7, where y(z) = 7 var
€1+ eg:

Lev(vy,e1) Vv Lev(y,ez2)
z.length :

79, where y(x) = 1 arr T
xle] :

1 V Lev(v, e), where y(x) = 11 arr 7o

Figure 14: Helper Function Lev

In B(~, pe,while e do ¢), we simply call B on ¢ with the join of pc and Lev(7y, e) as the
new pc. If B(7y, pe, while e do ¢) succeeds and returns ', where v/ = v, then B terminates
and returns . Otherwise, we recursively call B with the newly returned ~'.

B(v, pc, allocate z[e]) is very similar to B(7, pc,  := €) because array allocation assigns
the new array size to the array length variable. The content type of the array may also
need to be raised in accordance with the Global Constraint on array types (in 71 arr 7o, we
must have 7 < 7).

In B(v,pec,c1;09), B is first run on ¢; with pe and 7, returning ~;, which is used in
turn to run B on ¢y, returning vg. If 4o is the same as v, B terminates and returns ys.

Otherwise, the whole process repeats with 9 as the new identifier typing.

4.3 Properties of the Inference Algorithm

In this section, we establish the soundness and completeness of algorithin B with respect

to the typing rules.



Lemma 4.3.1 (Termination) B(v,pec,c) either fails or terminates and returns ~' such

that v < +'.

Proof. By induction on the structure of c.

1.

]

Case z :==e.
According to B, if x € FIXED, B either fails or returns o/ such that vy = +/.

If z ¢ F1XED, B always terminates and returns 4’ such that v < +'.

. Case rle)] == eg.

According to B, if x € FIXED-CONTENTS, B either fails or returns 7' such that v = +/.

If z ¢ FIXED-CONTENTS, B always terminates and returns v’ such that v <~'.

Case allocate z[e].

According to B, if € FIXED-CONTENTS and x € FIXED-LENGTH, B either fails or

returns 4’ such that v = +/.

If 2z € FIXep-CONTENTS and z € FIXED-LENGTH, B either fails or returns ' such
that v <+/, where y(2) =7y arr 72, ¥'(2) = 1 arr 7, and 79 C 75 C 71,

If 2 ¢ FIXED-CONTENTS and z € FIXED-LENGTH, B either fails or returns ' such
that v =+/, where y(z) = ~'(2) = 7 arr .

If 2 ¢ FIXED-CONTENTS and z € FIXED-LENGTH, B always terminates and returns

+" such that v < «'.

. Case skip.

According to B, B(v, pc,skip) = 7.



3. Case while ¢ do ¢

According to B, we have B(y, pcV Lev(y, €),c¢). Since command ¢ is simpler in struc-
ture than while e do ¢, by induction, B{vy, pcV Lev (v, e), ¢) either fails or terminates

and return v such that v < «'.

If B(y,pcV Lev(y, e),c) returns " and + # +/, then according to B, we have B(v', pcV
Lev(',e),c), where v/ > ~. Under a finite lattice, we know that eventually, B(v', pcV

Lev(v',€),c) either fails or returns some 4", where B(v", pc vV Lev(v",€),¢) = .

Therefore, B(~,pc, while e do c) either fails ro terminates and return « such that

N
6. Case if e then ¢; else 3.

According to B, we have B(~,pcV Lev(y,e),cq;c2). Since command ¢y; ¢ is simpler
in structure than if e then ¢; else ¢, by induction, By, pe V Lev(~y, e), c1;¢a) either

fails or terminates and return +' such that v < ~/.

If B(vy,pc Vv Lev(vy,e),ci;co) returns 4 and v # +', then according to B, we
have B(v',pc V Lev(v',e),c1;¢2), where v/ > ~. Under a finite lattice, we know
that eventually, B(v',pc V Lev(v',€),c1;co) either fails or returns some 7”7, where

i

B, peV Lev(v”,€),c1509) = 7.

Therefore, B(7,pe,if e then c; else ¢y) either fails or terminates and return 4’ such

that v <.
7. Case cy; €.

By induction, B(v, pc, ¢) either fails or returns 7" such that v < +'. Also by induction,

B(+',pec, ¢2) either fails or returns 4" such that v < ~”.



If either B(y,pc,c1) or B{7,pe, ¢2) fails, B(v,pe, c1; o) fails.
If B(vy,pe,c1) and B(v',pe, ¢2) both terminate and v/ = ~”, case proved.

If B(vy,pe,cy) and B(vy',pec,c) both terminate and ' # ~”, then according to B,
recursively run B(y”,pe, ¢15¢2) again. B will not loop indefinitely, because with each

recursive call, some inferable variables in the starting v end up being raised higher

/"

in v”. Under the assumption that we only have a finite number of variables in a

program and a finite number of security levels in a lattice, ultimately, B either fails

or terminates with v such that v/ = 4" and v < /.
O
Lemma 4.3.2 Suppose identifier typings v and v’ are identical except for x, then

L If y(z) = 7 var, ¥ (z) = (1V 1,) var = 7" var, and x appears in expression e, then

Lev(y',e) = 7'V Lev(y,e).

2. Ify(z) =1 arr 79, ¥'(z) = (11 V 7a) arr 7o = 7' arr 7o, and x| ] appears in expression

e, then Lev(y',e) = 7'V Lev(y,e).

8. If ¥(z) = 1 arr 7, Y (2) = 1 arr (W V 7,) = 71 arr 7', and x.length appears in

- expression e, then Lev(y',e) = 7'V Lev(y,e).
Proof. For case 1, by induction on the structure of e:

a Case x,
Lev(v,2) =1, VTV T =7V Lev(y, ).
b Case xy.length.

Since z does not appear in e, it holds vacuously.

Ut
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¢ Case xeq].

Variable = must appear in e;. By induction, Lev(v',e;) = 7'V Lev(y, 1) Let v(z1)

T1 arr T, we have

Lev(y,mler]) = 71V Lev(v'.er)
= 7'VvrnV Lev(v,e1)
= 7'V Lev(y,z1le1]).

d Case e1 + e3.

We prove the case where 2 appears in both e; and ey. Other cases are similar and

simpler.
By induction, Lev(y',e1) = 7'V Lev(7, e1). By induction, Lev(v',e2) = 7'V Lev(y, e2).

So,
Lev(v',er +e2) = Lev(y',e1) V Lev(v',e2)
= 7'V Lev(vy,e1) V Lev(v,e3)

= 7'V Lev(y,e1 + e2).
For case 2, by induction on the structure of e:
a Case z1,
Since z[] does not appear in e, it holds vacuously.
b Case z1.length.
Since z[] does not appear in e, it holds vacuously.
¢ Case z1[e1].

z[] must appear in e;. By induction, Lev(v',e1) = 7'V Lev(y,e1). Let v(z;) =

v (z1) = 7{ arr 73, we have



Lev(y,ai[e]) = 7V Lev(v' e1)
= 7'Vv1V Lev(y,er)
= 7'V Lev(y,z1]e1]).
d Case e + e3.
We prove the case where z appears in both e; and eg. Other cases are similar and

simpler.
By induction, Lev(v',e1) = 7'V Lev(%, €1 ). By induction, Lev(y', e2) = 7'V Lev (7, e2).

So,
Lev(v',e1 +eq) = Lev(vy,e1)V Lev(y', eq)

= 7'V Lev(v,e1) V Lev(y,ez)

= 7'V Lev(v,e; + e2).

For case 3, by induction on the structure of e:
a Case 1,

Since z.length does not appear in e, it holds vacuously.
b Case x.length.

Lev(v,e) =71 V1,V =17Vr=1V Leu(y,e).
¢ Case r1[e;].

x.length must appear in e;. By induction, Lev(v',e;) = 7'V Lev(y,e1). Let v(xy) =

v (z1) = 71 arr 74, we have

Lev(y',zile1]) = 71V Lev(v',e1)
= 7'V1{'V Lev(y,e;)

= 7'V Lev(y, z1[e1]).
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d Case e; + esg.
We prove the case where 2 appears in both e; and ey. Other cases are similar and

simpler.

By induction, Lev(y',e1) = 7'V Lev(7, e1). By induction, Lev(v',e2) = 7'V Lev(, €2).

So,
Lev(y',e1 +e3) = Lev(y,e1)V Lev(, e)
= 7'V Lev(vy,e1) V Lev(y, e3)
= 7'V Lev(vy,e; + e2).
(]

Lemma 4.3.3 (Fixed Point) If B(v,pc,c) =7/, then B(v',pc,c) = v'.
Proof. By induction on the structure of c:

1. Case z :=e.
If v = v/, case proved.

Otherwise, from Lemma 4.3.1, v/ £ v. By algorithm B, we must have v/(z) € y(z).
Therefore, x must be inferable, and B always terminates. z is the only variable having

its type raised.

According to B(vy,pc, ¢ := e) = ~', we have v/(z) = 7" var and 7' = 7V pe V Lev (v, €).
Therefore, according to B(y',pc,c =€) =", ¥"(z) = 7" var and 7/ = 7' V pc Vv

Lev(v',€).



If 2 does not appear in e, then

™ = 1'VpeV Lev(y,e)
= (7VpcV Lev(y,€)) V peV Lev(v,e)

= 7VpcV Lev(y,e)

= T[

Therefore, 7"(x) = 7/(z), case proved.
If z does appear in e, by Lemma 4.3.4,

™ = 7'VpeV Lev(v, e)

= 7'VpeV TV Lev(v,e)

=

Therefore, 7"(x) = 7/(x), case proved.

. Case while e do .

According to B, if B(v, pc,while e do ¢) = »/, then B(¥/, pc,while e do ¢) = +/.

Case proved.

. Case if e then ¢; else ¢5.

According to B, if  B(v,pc,if e then ¢; else ) v, then

B(®,pc,if e then ¢ else ¢3) = «'. Case proved.
. Case allocate z[e].

Since B(y,pe V Lev(v,e), allocate zle]) = v/, let v(z) = 7y arr 72, ¥/ (z) = 71 arr 7},

we have 75 = 75V pc V Lev(v,e) = 15 V 7.



(@1

If 7 € FIXED-CONTENTS, 75 must be the only type raised, and 75 < 71.

= 14V peV Lev(v,e)
= 7V peV TV Lev(y,e)
= 74V peV Lev(v,e)

- 7’2,

If 71 and 7 both got raised, and z[] and z.length both appear in e and ey, we have

T8 = T4V peV Lev(v,e)
= 7VpeV(peV TV V Lev(y,e))
= 1,V TVpeV Lev(vy,e)

= 75

Similarly, we have 7{ = 7{. Case proved.

. Case z[e;] := en.

If vy =+, case proved.

Otherwise, from Lemma 4.3.1, 4" € v. By algorithm B, we must have v/(x) £ v(z).
Therefore, x must be inferable, and B always terminates. z is the only variable having

its type raised.

According to B(vy,pc,xle1] := e3) = 7/, we have ¥'(z) = 7" arr pand 7/ = 7V pc V
Lev(7y,e1)V Lev(y, ea). Therefore, according to B(v',pe,c:=¢) =~" ,+"(x) = 7" var

and 7" = 7'V pe V Lev(y/,e1) V Lev(v/, e3).
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If z does not appear in e, then

H

7 = 1'VopeV Lev(v,e1) V Lev(, e2)
= 7'VpcV Lev(y,e1) V Lev(v', e2)

= 7VpeV Lev(y,er) V Lev(vy, ez)

pumnd ’]’J

Therefore, 7”(x) = 7/(x), case proved.

If 2[} does appear in e; and ey, by Lemma 4.3.4,

7

™ = 7'VpeV Lev(y,e1) V Lev (v, e3)

= 7'VpcVTVLev(y,e) VTV Lev(y,es)

= T,

Therefore, 77(x) = 7/(x), case proved.

. Case ¢ 9.

According to B, when v9 = 1 = v/, we have B(¥,pe,c2) = 4/, by induction,
B(y,pe,c2) =+

According to B, we have B(vy7, pc,c1) =+, by induction, B(+/, pe,c1) = +'.
Therefore, B(v', pc,c15¢2) =7

. Case skip.

Since B(v, pc,skip) = v, case proved.
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Lemma 4.3.4 v+ e: Lev(y,e) holds. And if yFe:7, then Leuv(vy,e) < 7.

Proof. By looking at Leu(v,e) in algorithm B. Lev(, e) is in fact the minimal type e can
have under identifier typing .

Therefore the lemma holds. [
Lemma 4.3.5 If v <4/, then Lev(v,e) < Lev(y,e).
Proof. Proof by induction on the structure of e. [

Theorem 4.3.6 (Soundness) If B(vy,pc,c) succeeds and returns ~', then ' F ¢
pe emd.
Proof. By induction on the structure of ¢:
1. Case z :=e.
By Lemma 4.3.3, we have v'(z) = 7/ var, where 7/ = 7/ V pe V Lev(v',¢e), and ' F
e : Lev(v',e). By typing rule ASSIGN, ¥/ F 2 := e : 7/ ¢md. Since pec < 7/, we have
v b x:=e:pcemd.
2. Case while e do c.

By Lemma 4.3.3, we have B(vy/,pc V Lev(¥',¢),¢) = 7/, so by induction, we have

Y F e (peV Lev(vy',e)) emd. Also, by Lemma 4.3.4, we have v/ F e : pcV Lev(v',€).
Therefore, by WHILE, 7' - while e do ¢: (peV Lev(v/,e)) cmd.
By sub-typing rule cMp~, 4’ + while e do ¢ : pc emd.

3. Case if e then ¢; else cs.

By Lemma, 4.3.3, we have B(v', pc V Lev(v',e),c1;¢2) =4'. So by induction, we have

Y Fesen (pev Lev(v/,e)) emd.

62



By typing rule COMPOSE, we have v/ F ¢; @ (peV Lev(v',e)) cmd and S e

(peV Lev(+/',€)) cmd. Also, by Lemma 4.3.4, we have ' F e : peV Lev(y', €).
Therefore, by typing rule IF, 7' - if e then ¢; else ¢z : (pcV Lev(v',¢e)) emd.

By sub-typing rule cMp ™, o' F if e then ¢; else ¢ : pc emd.

. Case allocate x[e].

Let 4/(z) = 7{ arr 73, by Lemma 4.3.3, we have 7{ = 7{ V.74V pc V Lev(v',€), 15 =
75V peV Lev(v',e), and ' e : Lev(v',¢e). Therefore, by the Global Constraint and

ALLOCATE, we have ' - allocate x[e] : (74 V pe V Lev(v/, €)) emd.

By sub-typing rule cMp ™, v/ I allocate ze] : pc emd.

. Case zle1] := es.

By Lemma 4.3.3, we have +'(z) = 71 arr 7o, where 71 = 171 V1oV pc V Lev(y/,e1) V
VLev(v',ez). By Lemma 4.3.5, v/ F ¢e; : Lev(y,e1) and ¥ F ez : Lev(v,e2). By
typing rule ASSIGN-ARR, 7' b zle1] := e2 : 7y emd. Since pc < 11, by subtyping rule

CMD ™, we have ¥/ F z[e1] := ea : pe emd.

5. Case ¢1;¢.

By induction, we have v’ F ¢; : pc emd and v’ & ¢ : pc emd. By typing rule COMPOSE,

v+ eyse : pe emd.

. Case skip.

Since v' F skip : T emd and pc < T, by subtyping rule cMp ™, we have v b skip :

pc cmd.
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Theorem 4.3.7 (Completeness) If v/ = ¢ : 7 cemd and v < ', then B(y,T, ¢) succeeds

and returns v" such that v" < +'.

Proof. By induction on the structure of c.

1. Case z:=e.
According to the typing rules, there is 71, such that 7 < 71, and ¥/ e : 71,
Y(z) =7 var,and ¥ bz :=e : 7 cmd.
According to B(y,7,z = e), if x € FIXED, then %(z) = ~'(z) = 7 var. By
Lemma 4.3.4 and 4.3.5, lev(y,e) < lev(vy',e) < 71, so 7V lev(vy,e) < 1, B suc-
ceeds and 4" < 4. If z € FIXED, then let 75 var = y(2), since v < ', 7o < 11. So,
v (x) = (a2 V 7V Lev(y,e)) var and 7V 1V Lev(y, e) < 7y, therefore, B succeeds and

V<A
2. Case while ¢ do c.

According to the typing rules, there is 71, such that 7 < 7, v F e : 71, and

~' e emd.

By Lemma 4.3.4 and 4.3.5, Lev(y,e) V7 < Lev(v',e) V7 < 7. By induction,

B(v, Lev(vy,€) V 7,¢) = 71 succeeds and v < /.

If v1 # 4/, then by assumption and cMD ™, we have v’ F ¢ : v1(e) V 7 emd, and v, < v,
so B(yy, Lev(v1,€) V T,¢) = 72 succeeds and 5 < +'. If %1 # 72, we repeat the process

until we reach a stable type mapping v; under a finite lattice, where y; < +/'.

Therefore, according to B, B(v, 7, while e do ¢) =" and 7" <+
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3. if e then ¢; else c¢y.

According to the typing rules, there is 7y, such that 7 < 7,y Fe: 7y, and v

Ty emd, ¥ F g 1y cmd..

By Lemma 4.3.4 and 4.3.5, Lev(y,e) V7 < Lev(y',e) V7 < 7. By induction,

B(~, Lev(vy,e) V T,c1;¢2) = 71 succeeds and v, <.

If 1 # 7/, then by assumption and cMb ™, we have v' ¢ : y1{e) V7 emd, and v; <,
so B(v1, Lev(7y1,€) V T,¢) = 72 succeeds and yo < ~'. If v; # 72, we repeat the process

until we reach a stable type mapping v; under a finite lattice, where v; < /.
Therefore, according to B, By, 7,if e then ¢; else cz) = 7" and v < 4.
4. x[el] = €2.

According to the typing rules, there is 7y, such that 7 < 7y, and ¥'(z) = 7 arr 73,

v ke i and vy Fey:Ty.

Let v(z) = 1 arr 9. According to B{v,T,z[e1] := ey), if x € FIXED-CONTENTS,

then 7 V pc V Lev(vy,e1) V Lev(y,e1) < 11 = 74, ze1] := ey succeeds and v = ~/.

If z ¢ FIXED-CONTENTS, then 71 V 7 V pc V Lev(y,e1) V Lev(vy,e1) < 71, therefore,

v <.
5. Case allocate zle].

According to the typing rules, there is 71, such that 7 < 71, and ¥/ (z) = 7 arr 72,y

e; : 7y and 4 I allocate x[e] : 71 emd.
According to B, B(v,,allocate zle]) =~” succeeds, and 7" < 7.
6. Case c1;c9.

According to the typing rules, we have v/ F ¢; : 7 emd and ' - cg : 7 cmd.
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By induction, we have B(v,7,c1) = 7. n <75 By, 7c2) =72 m <72 = 7'
According to B, if v, = 72, B succeeds and returns vo as v"'. If v # 72, we run
B(vs,T,c1;¢) recursively. By Lemma 4.3.1, v; and ~; are approaching v under a

finite lattice, therefore, at some point, B succeeds and v/ = y; = 9 < 7.

7. Case skip.

Since B(7, pe,skip) =+, case proved.

|

We now make a few observations about algorithm B. First, the security levels for
inferable variables only increase as B executes. Second, whenever B fails, it must be the
result of trying to raise the level of a variable in FIXED, or the level of the contents of
an array variable in FIXED-CONTENTS, or the level of the length of an array variable in
Fixep-LENGTH.

We can calculate the running time of algorithm B as follows. If the length of ¢ is n and
the height of the lattice is A, then it is easy to see that the worst-case running time of B

is O(n?h), since there are O(n) inferable variable, each of which can be raised at most h

times.

4.4 Error Reporting
A prototype implementation of our type inference algorithm has been developed. In
this section, we describe the techniques that we have developed to do good error reporting.
As discussed above, algorithm B begins by setting all inferable security levels to L. As
it runs, it raises these levels as necessary. It fails whenever it finds that a fixed security

level needs to be raised. When such a failure ocecurs, it is important to be able to explain
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the source of the failure to the programmer, so that he or she can understand the problem
and can remedy it.

For example, suppose that y(z) = L var and z € FIxep. Then B will fail if it finds
that the type of z needs to be raised to H var, where H £ L. How might the programmer
remedy this problem? The most obvious thing to try is to change the declaration of x to
H wvar. Of course this may not work, because it could lead to other failures. More seriously,
the programmer presumably has a reason for declaring x as L var—for example, perhaps
x is intended to be output on a public channel. In this case, raising the level of z is not an
option.

What is more useful is to understand precisely why B finds it necessary to raise the level
of z. With such an understanding, the programmer may be able to modify the program so
that = no longer needs to be raised. We believe that our approach to type inference has an
advantage over the constraint-gathering approaches that have been used in previous work,
because it is easier for us to explain type errors in terms of the source program. To this
end, we introduce the notions of principal variables and security level history.

First, the principal variables of an expression e are any minimal set of variables within

e that determine its type. For example, suppose we have the following lattice:

H

w2

W1
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Ifm: M, wl: W1, and w2 : W2, then the expression m + w1 » w2 has type H and either
{m, w2} or {m, w1} could be taken as its principal variables. The intent is simply to find

some small explanation for the type of the expression.

Next, each inferable variable has a security level history which is a list of sets of principal
variables that contributed to the rise of the variable. Arrays declared as ? arr 7 actually
have two security level histories. Whenever the inferable variable is raised to a new higher
security level, the set of principal variables for the responsible expression is added to the
front of the security level history. For example, if the assignment z := e causes the type
of z to be raised because of the explicit low from e, then the principal variables of e are

added to the front of z’s security level history.

But suppose in this case that z is a fixed variable. Then the attempt to raise the type
of 2 will cause algorithm B to fail. Now we can “blame” the principal variables of e for the
type error. Further on, for each principal variable of e, we in turn look at its security level
history for the corresponding set of principal variables that are responsible for its type. We

repeat this process and generate the whole error report cascadingly.

We illustrate our techniques by considering two examples. First, we demonstrate how
accurate error reporting is given through the use of principle variables. Using the security
lattice above, consider the following program, where [ : L, m : M, w1l : W1, and w2 : W2.

while (m+ 1 > 0) do {

while (w1 + w2 > 0) do {
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We run the type checker on the program and get the following error report:

tests/examplel:17.6: illegal implicit flow
1:=7;
--left-hand side, 1, has type L by declaration
--pc has type H because
tests/examplel:15.8: guard of control flow statement
while (m + 1 > 0) do {

has type M because m has type M by declaration
and
tests/examplel:16.15: guard of control flow statement
while (wi + w2 > 0) do {

has type W2 because w2 has type W2 by declaration
and

the join of M and W2 is H

Following the error report, it is clear that the assignment to the L variable [ is not

allowed in the inner loop body because pc is H. And pe is H as a result of variable m in

the outer loop guard and variable w2 in the inner loop guard. The error report is accurate

and closely based on the source program and the typing rules.

Next, we show an example of clean, manageable error reporting via the use of principal

variables and security level histories. Using the same security lattice as before, and again

withl : L, m : M, wl : W1, and w2 : W2, suppose that n, p, ¢, j, and & are inferable

variables. Consider the following program:

P = m;
q =P
j o= wl
j o= w2,
ko= 3;
l:=1+qg+k+n
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On this program, error report from the type checker gives a detailed explanation of why
the expression [ + ¢ + k + n has type H; this requires explaining the types of the inferable

variables ¢, p, k, and j:

tests/example:29.1: illegal explicit flow
l:=1+q+k+n
--left-hand side, 1, has type L by declaration
—-right-hand side, 1 + 9 + k + n, has type H because
q has type M because
tests/example:23.6: explicit flow
q = P
and p has type M because
tests/example:22.6: explicit flow
p = m;

~ -

and m has type M by declaration
and
k has type W2 because
tests/example:26.6: explicit flow
k= j;

-

and j has type W2 because
tests/example:25.6: explicit flow
j T w2,

-

and w2 has type W2 by declaration

Given a detailed error report, we are in a position to modify the program to try to correct
the errors. For example, we may be able to change the declarations of some variables. Or,

more interestingly, we may be able to rearrange the code to eliminate an unintended implicit

flow.

4.5 A Larger Example
In this section, we develop a larger example involving the processing of medical data.

To begin with, we assume a three-level security lattice with levels L (low), M (medium),
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and H (high) satisfying L < M < H. We store information about a group of patients in

several arrays:
s hiv[] records the HIV status of each patient.

e charges[] records the charges for all of the medical incidents of all of the patients,

arranged patient by patient.
e start[] tells where the charges for each patient begin.

For example, if patient 0 is HIV-negative and has had three incidents, with charges of 100,
75, and 20 dollars, and if patient 1 is HIV-positive and has had two incidents, with charges

of 50 and 90 dollars, then the arrays would look like this:

hiv 0 1

charges | 100 { 75 { 20| 50 | 90

start 0] 3 )

We assume the typings hiv: H arr L, charges : M arr L, and start : M arr L.

Now, suppose we are interested in calculating the median charge for each of the HIV-
positive patients and storing these medians into an array, hivmedians : H arr L. To do
this, we might develop the program given in Figure 15.

The program uses a number of auxiliary variables, whose types arc to be inferred. It
is written straightforwardly, with the exception of the mysterious va.riable 1k, which is
declared to have type M. Does this program satisfy secure information flow? The reader

may wish to think about this before reading further.
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// hiv : Harr L, charges : M arr L, start : M arr L
// hivmedians : H arr L, 1k : M
//i: 7?7, :%, k:?,m:?, n:7, temp: ?arr?, t:

k = 0;
i:= 0
while i < hiv.length do {
if hiv[i] then {
n := start[i+1] - startlil;
allocate temp[n];
// Copy patient i’s charges into temp:
j =0;
while j < n do {
temp[j] := charges[i+j];

j o= g+l
5
// Sort temp using Bubble sort:
j =0
while j < n-1 do {
m := 0;

while m < n-1-j do {

if temp[m+1] < temp[m] then {
t := temp[m];
temp[m] := temp[m+1];
temp[m+1] := t

by

else {
skip

};
m := m+l

j o= g+t
}
// Select median and store it into hivmedianms:
hivmedians[k] := temp[n/2];
k= k+l
}
else { skip };

1k := temp.length;
i = i+l

}

Figure 15: Example HIV Program
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tests/hiv:94.3: illegal explicit flow
1k := temp.length;

--left-hand side, 1k, has type M by declaration
~-right~hand side, temp.length, has type H because
tests/hiv:61.6: guard of control flow statement
if hiv[i] then {
has type H because hiv[] has type H
and

tests/hiv:63.5: nested statement
allocate temp(n];

-

has implicit flow from H guard, forcing the type of
temp.length to be raised to H

Figure 16: Output for HIV Program

We may observe that the final value of 1k is the length of the last temp array that
gets allocated. As a result, 1k ends up holding the number of incidents of the last HIV-
positive patient. So if we search start[] in reverse order until we find an i such that
start[i+1]-start[i] = 1k, then we know that all patients after i are HIV-negative, and
i is (perhaps) likely to be HIV-positive. Since hiv: H arr L and 1k : M, we see that this
program does not satisfy secure information How.

When we do type inference on this program, type inference fails and we get the output
shown in Figure 16. The first message reports that the assignment to 1k is illegal, because
the type of temp.length is H. The next two messages explain why—temp is allocated
inside an if Statemént whose guard is H; as a result, the length of temp is raised to H.

Interestingly, if the two lines

n := start[i+1] - start[i];

allocate temp[n];

73



are moved up, so that they come immediately before if hiv[i], then type inference suc-
ceeds, assigning type H arr M to temp. And notice that this change eliminates the leak

from the program—now 1k simply holds the number of incidents of the last patient, and

this is M information.

4.6 Related Work

Constraint-based type inference approaches have been used in a number of previous
works on secure information flow.

Volpano and Smith [23] describe sound and complete type inference for a simple
sequential language with procedures. Procedures are polymorphic with respect to
security types.

In Jif [12], a Java-like language, type inference is used to assign labels automatically to
the methods of a class. The project is maintained by a research group at Cornell University.
Jif uses the algorithm in [30] to resolve constraints. As for error reporting, Jif’s compiler
jifc has a command line argument for more detailed error explanations. However, the
error reporting is not always accurate. Sometimes the constraint reported may not be the
culprit that prevents the program’s compiling. To our knowledge, there is no formal proofs
of the security properties of Jif or typing with type inference.

Flow Caml [31, 24] is a language based on Objective Caml, enhanced with security
annotations and analysis. Its type system and type inference have been formally proved
to be correct. Moreover, its type inference engine [32] has been implemented as a separate
module for general use. However, as discussed in the Introduction, it does not attempt to

localize type errors.
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Sun, Banerjee, and Naumann [33] discusses type inference for class libraries in a sophis-
ticated Java-like language, in which security types for class fields and methods are inferred.
Soundness and (limited) completeness are proved. A prototype is under development, but

we are unaware of any discussion of error reporting in this system.



5 Language Extensions and Application Development Framework

In Chapter 3, arrays are added to the basic language. In Chapter 4, a novel type
inference algorithm and error reporting methods are presented. Although our language and
its type system are simple and manageable as desired in our goals, it needs more language
features for practical use. In this chapter, we discuss the addition of more data types,
references and functions.

There is currently little research work on how to develop applications using secure in-
formation flow. We propose a novel application development framework that covers all
aspects from application specification to deployment. We identify the application scenario
as multi-party computations and define core computations for secure information flow. We
give procedural directions for developing core computations and the structural scheme for
putting together core computations and supporting modules. Certification and authentica-

tion of code modules are discussed for deployment purpose.

5.1 Adding More Language Features
5.1.1 Adding More Data Types

Our language so far is limited in data types. Only integer literals and variables are
allowed. However, it is no trouble at all to add data types like booleans, float poim: numbers,
and strings into our language because the data types and security types are orthogonal to
each other. Adding more data types would have no effect on security typing rules. Data

typings and security typings do not interfere with each other.

5.1.2 Adding References
We add references in a similar way as in Flow Caml. Because a reference can be accessed

through both reading and writing, it is both covariant and contravariant, i.e., it is invariant.
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So a reference type does not have any associated subtyping rules. We denote reference types

by Tref.

5.1.3 Adding Functions

Our type inference algorithm is amenable to the addition of functions in our language.
One straightforward approach is to treat functions as we are currently treating a program.
We initialize the parameters of a function with the security types of arguments. Then run
the type inference algorithm on the function. If successful, the type of the return variable
is used as the function’s return type. Inside the function body, if another function call is
made, we repeat the same process.

For recursive functions, if the parameters maintain the same security levels across
recursive calls, then the return security level is constant. They can be handled just like
non-recursive functions.

In practice, we can use caching to get better performance. When we need to do type
inference on a function call, we first check the cache for an entry with the same argument
types. If an entry is located, the return type in the entry is used as the function return
type. If no cache entry is found, type inference is carried out on the function call and upon
success, a new entry will be added to the cache.

Our straightforward approach for handling functions also accommodate global variables
visible inside the function body. If a global variable used within the function body is raised
by the type inference algorithm, we record it.

However, it is much more complicated to use cache for functions that make use of global
variables. There might be calls to other functions, which in turn uses global variables. So

building the cache index is more complicated.

77



5.2 Application Development Framework
5.2.1 Application Scenario and Core Computations

We identify multi-party computations as our application scenario, where input/output
data of multiple parties are involved for a computational purpose. For example, in our
tax e-filing example in Chapter 1, the application involves input Joutput data of multiple
parties - the user, TaxCom, and the IRS, mainly for the purpose of calculating taxes and
tax preparation fees.

Writing a useful application usually involves much complexity, such as platform APT’s,
1/0, and networking. Enforcing secure information flow on the whole application is unnec-
essary and unrealistic. We would like to limit the enforcement of secure information flow
to a code module in the application that only deals with the computation of input/output
data from multiple parties.

A core computation communicates through well-defined interfaces with supporting code
modules to set and send its input /output variables. Each supporting code module represents
a party in the application. A party is a person or organization that participates in the
application, such as the IRS and TaxCom in our tax e-filing example. Each party has its
own security specification that shows what data is sent to the core computation as input
and how the data can be shared with other parties, and what data a party gets as output
from a core computation.

Note that supporting code modules do not make use of secure information flow and are
responsible for the common services such as I/O, user interface, encryption and networking.

The structural scheme is shown in Figure 17. There we have supporting modules(A, B,

etc.) representing parties(A, B, etc.). The modules implement corresponding interfaces(IA,
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Module A 1A

Module B B8
Core

Computation

Module N

Figure 17: Core Computation and its Environment

1B, etc.), which specify input/output data for the respective modules. The core computation
communicates with the supporting modules through their well-defined interfaces.

Next, we describe how to develop and type check a core computation.

5.2.2 Development of Core Computations
Suppose initially we only have a group of parties interested in creating a secure infor-

mation flow application. We provide a 3-step procedure to develop the core computation.

1. To identify input/output variables.

In this step, the problem that involves multiple parties is identified. Data of input
and output of each party are also identified. For example, we write a : Az b Aout;
to denote that variable a holds some data as input from party A, while b some data

as output to party A.
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2. To develop the solution without regard to secure information flow.

With the problem well defined and input/output variables identified, programmers
should develop the core computation without regard to secure information flow. Stan-
dard software engineering analysis, development, and testing techniques should be

used to make sure that the core computation is algorithmically correct.

3. To incorporate and adjust secure information flow policies.

Basically, we need to inject security typing into the core computation and type check
it. We demonstrate how to develop the security lattice from the security specification

and how to adjust the security specification and the lattice in the event of a type

checking error.

First, we use the symbol e to indicate a security level for output variables, the o
symbol for a security level for input variables and inferable variables. When a security
level is defined for both input and output variables, we overlap the two symbols as a

shorthand. For example, for parties A, B and C, initially, we have this security lattice:

Figure 18: The Initial Lattice

where it says that all input and output variables are of type A, B, or C, and no input

variables are to be shared among parties.
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Now, we develop the security lattice according to the initial security specification. For

example, in

BAm

If party A allows information in i to flow to party B, that is, i can be shared between

A and B, we would give i a new security level denoted as Jap, and write as:

1A Jap

which says that variable i is an input variable from party A and can be shared with

party B.

We would also reflect the above policy in the security lattice by creating a new level

for Jap. We create a new node under A and B, with lines connected to A and B, as

shown below:

Figure 19: Lattice After Downgrading

After this process, input variables get refined security levels and a new lattice is

generated. Now we run the type checker/inference on the annotated core computation.
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If type checking/inference finishes successfully, we are finished with core computation.
If, however, the type checking/inference returns an error, we still have options to deal

with it. Chapter 4, we know the error message must be of this form:

fixed_1 := ...

inf = fixed_ 2

where we have one fixed variable at one end of the trace, followed by some inferable

variables in the middle, and one or more fixed variable at the other end of the trace.

Typing errors can be resolved either by eliminating the unintended implicit flows or
by relaxing a party’s security specification.
The first thing we can do is to examine the error trace and the program to eliminate

possible unnecessary implicit flows that contributed to raises of inferable variables.

If the type checking/inference still fails, we have to relax some security policies from
some party. For example, if we have variable a : A;, :: Jap and ¢ : Cy, at either end of
the trace, where a is a variable from party A and shared with B, while ¢ is a variable

from C and not shared:

From the error report trace, we know that variable ¢, which is intended only to be

seen by party C now needs to be shared with party A and B in computation. Now, if
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party C agrees to downgrade variable ¢ from “C only” to “shared between A, B and

C”, then declaration for ¢ would be:

C: Am N JABC

In this case, we don’t need to create a new node for J4pc in the lattice. The L node

is ideal for the purpose.

As a general rule, whenever an error occurs, we can solve it by asking some parties
to relax their security policies and downgrade some input variables. If necessary,
new nodes corresponding to the relaxed input security levels should be created in the

lattice.

One remarkable thing is that downgrading has a clear meaning with respect to security,
that is, the data through downgrading can be shared with more parties, and no new

errors are introduced by downgrading through the more relaxed security policies.

5.2.3 Development of Environment for Core Computations

Now we develop the environment where the core computation lives. We require that core
computations only communicate with modules via well-defined interfaces. All input/output
variables are defined as read-only/write-only properties in the interfaces to make sure that
a party can only access its own input/ocutput data.

Properties are a shorthand for a member function call‘that either reads or sets a public
data member of a class. In the following code sample, a property X is defined for read and

write in class MyClass.
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class MyClass{
private int x;
public int X {
get { return x; }

set { x = value; } }

}

To use properties, here is an example:

MyClass myc = new MyClass();

il

myc.X = 10;

myc.X = myc.X + 10;

We see that properties can be used just like a public variable of a class. The difference is
that properties are in fact function calls and can be defined with fine-grained read/write
attributes with respect to data access. Since properties are function calls, we can use them
to trigger actions that come along with a data read or write. For example, a simple write
operation of a property in the core computation can cause the data to be encrypted and
sent over the Internet in the supporting code module.

Properties can also be declared on interfaces. For example:

interface IMyInterface{
public int X { get ; set ; }

public int Y { set ; }

In the example, property X is for read/write, while property Y is for write only.
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Now, according to the security specification, an interface is created for each party that
have all the party’s input variables designated as read-only properties while all the party’s
output variables as write-only properties.

Each party will implement a code module that implements the party’s interface. Aside
from abiding by the interface definition, the code module is free to do whatever the party
desires. For example, a party’s code module can choose to encrypt the output data it got
from the core computation and send it over the Internet to its home website.

And core computations now only communicate with the code modules from various
parties through well-defined interfaces.

5.2.4 Certification and Authentication

To ensure authenticity and integrity, a core computation is signed by a special authority

to certify its enforcement of secure information flow, while various supporting code modules

will be signed by their owners.

Back to the tax example. It involves three parties, TaxCom, the IRS, and the end
user. In this special case, the end user does not participate in the development process.
TaxCom will act for the end user with regard to the end user’s input/output data to the
core computation and security policies. Since the end user only needs the services of the
user interface for input and output, a standard module will be provided for the purpose.

When the end user actually runs the tax e-filing application, its security policies will be
displayed up-front. If the end user agrees with the way his or her personal financial data
and tax preparation payment data flow, he or she may continue using the application and
have the absolute assurance of his information privacy. If the user does not like the way the
program handles his or her information, the user can decline to use the application. The

user can try out applications from other vendors that satisfy his or her privacy concerns.
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5.3 Related Work

There has been very little research work in the area of application of secure information
flow. One such work is Jif/Split in [34]. The basic idea for Jif/Split is that a secure
information flow program can be split into sub-programs and run on hosts of various levels

of trust. However, how to develop an application of secure information flow and achieve the

initial program is not discussed in the paper.
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6 Conclusions and Future Work

Although the problem of secure information flow has been actively researched for nearly
ten years, there has been virtually no practical impact. We believe that one reason for
the lack of application is that current type systems are overly complicated and restrictive,
making practical programming hard or impossible. Also, type inference is essential for
practical secure information low because a user is usually only concerned with the security
types for the input/output variables of a program. An inference program should try to
automatically type all the auxiliary variables and report to the user if the whole program is
typable or not. Currently, few languages feature type inference [12, 27]. And they invariably
rely on constraint-based type inference approaches, where constraints in the form of o < 3
(o and 3 are type terms) are gathered, and then usually a well-studies constraint-solving
algorithm is applied to the constraint set to check its satisfiability. While well-studied
and efficient, the constraint-solving algorithms do badly when something is not right, that
is, when the whole constraint set is not satisfiable. Usually, the algorithms will stop at
the first unsatisfiable constraint and try to explain the error in terms of the constraint-
solving process, not the original program and type system. As a result, all existing secure
information flow languages do poorly in terms of error reporting, making the inherently
more difficult type system harder to use. Another major reason for lack of practical use
is that little work has been done to identify and study scenarios most suitable for use of
secure information flow. Some researchers aim to use secure information How to achieve
“end-to-end” security properties of systems, that is, to apply secure information flow to the
whole system to achieve data confidentiality and integrity. This is a very ambitious goal.

Aside from its complexity, one inevitable situation is that some downward information flow
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must be allowed in the application. And the problem is what security properties can be
guaranteed if such downward information flows are allowed.

With the major hurdles to practical use identified, we adopt a minimalist approach to
developing our language and type system. We start out with a simple language [2] and as
we expand the language, we only add language features that we deem most important for
practical use. In this way, we manage to keep our language and type system simple and

manageable for regular programmers.

The first language feature we decided to add is arrays. Arrays are indispensable for writ-
ing useful programs. Due to the various leaking channels associated with array operations,
arrays have received complicated and restrictive typing rules in current secure information
flow languages. We propose lenient array operations to overcome restrictions. Because of
our lenient execution model and our array types of the form 7 arr 75, we are able to do
secure information flow analysis on interesting programs, using simple and permissive typing
rules. The simplicity of our rules makes it straightforward to prove that our type system
ensures noninterference. Our tax calculation example suggests that interesting programs
satisfying our typing rules can be written in a simple and natural way. In Chapter 5, we

discuss how to add more language features, such as data types, references and functions.

N

We propose a non-constraint-based approach for type inference, which leads to simple
proofs, theorems, and accurate, effective error reporting. In the future, we would like to
study how our type inference approach works in other larger languages for secure information
flow.

In the future, under the condition of keeping the language manageable and provable,
we will add more language features to eunrich the language’s expressiveness. One possible

direction is to make our language object oriented by adding classes, objects and inheritance.
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In the future, we need to carry on with the implementation of the language and the
framework. When a program passes security type checking/inference, the source code should
be translated into a commonly used language. A translation module should be developed
that accommodate our lenient array operations. As to the target language, C# [35] seems
to be the language of choice. C# has assemblies as deployment modules which can be
digitally signed and ready support for properties.

In the future, we need to investigate whether it is necessary to develop standardized
ways for the core computation to access libraries. We also need to investigate whether we
need to standardize user interface, etc.

Our research so far has been driven by examples and real world scenarios. In the future,
we need to discover and solve new problems in the development of full applications.

In this dissertation, we identify user information privacy as the scenario in which to

apply secure information flow analysis. In the future, we would like to investigate other

practical scenarios for possible application.
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Appendix A Language Specification

program — ( lattice ) decs cmd
lattice — lattice entry

enfry

id= (4 |set)(~|set)
set2

entry
set,

id
id , id

decs dec

set2

decs
dec

id id

id arr id id
id

nt
id.length
id [ exp |
(exp)

exp + exp
exp — exp

dec

exp

exp * exp

exp / exp

exp = exp

exp < eXp

id 1= exp

id[exp] := exp

skip

if exp then ( cmd ) else (emd )

emd

while exp do ( cmd )
allocate id [ exp |
cmd ; emd

e

(emd )
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