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ABSTRACT OF THE THESIS

MYOELECTRIC SIGNAL RECOGNITION USING ARTIFICIAL

NEURAL NETWORKS IN REAL TIME

by

Adrian Del Boca, M.D.

Florida International University, 1993

Miami, Florida

Dong C. Park, Major Professor

Application of EMG-controlled functional neuromuscular stimulation to a
denervated muscle depends largely on the successful discrimination of the EMG
signal by which the subject desires to execute control over the impeded movement.
This can be achieved by an adaptive and flexible interface regardless of electrodes
location, strength of remaining muscle activity or even personal conditions.
Adaptability is a natural and important characteristic of artificial neural networks.
This research work is restricted to the development of a real-time application of
artificial neural network to the EMG signature recognition. Through this new
approach, EMG features extracted by Fourier analysis are presented to a multilayer
perceptron type neural network. The neural network learns the most relevant
features of the control signal. For real-time operation, a digital signal processor
operates over the resulting set of weights from the learning process, and maps the
incoming signal to the stimulus control domain. Results showed a highly accurate
discrimination of the EMG signal over interference patterns.
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Chapter 1: INTRODUCTION

Functional Neuromuscular Stimulation (FNS) is a technique by which

paralyzed or paretic muscles are electrically stimulated in order to provide

muscular contraction and functionally useful movement. An important

consideration in such a system concerns the nature of the command signal

needed to trigger the stimulation required to initiate the movement of the

paralyzed extremity. In providing such a command signal, one aims to

bypass the lesion in some manner, thus allowing the patient to regain

voluntary control over the paralyzed muscles. This can be achieved by

taking advantage of the liaison between the desire to move the paralyzed

limb and the contraction for another nonparalyzed muscle. This liaison may

be either natural (inborn) or conditioned (learned). The contraction can be

manifested by means of a myoelectric signal which can be used as an input

to an electronic processor in order to control the stimulation of the

paralyzed limb. One of the criteria for an acceptable control signal is that

the movement which the patient must perform in order to produce the

required signal should be as natural as possible. The possibility of fulfilling

this criterion makes the use of myoelectrical activity as a control signal

particularly attractive.

When attempting to use the electromyogram (EMG) as a command or

control signal, one needs to process the signal in order to extract from it the
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necessary information for these purposes. The application of EMG-

controlled functional neuromuscular stimulation to a denervated muscle

depends to a large extend on the successful discrimination of the EMG

signal by which the subject desires to execute control over the impeded

movement. This can be achieved by an adaptive and flexible interface that

disregard electrode location, strength of remaining muscle activity or even

personal conditions. The focus of this research aims to investigate a flexible

and adaptive system that would extract from the patient inherent movement,

such a control signal disregarding personal conditions such as age, sex, or

muscular trophism. When a person must provide high bandwidth control of

a complex physical device, a compatible mapping between the person's

movements and the behavior of the device becomes crucial. Adaptive

interfaces are a natural and important class of applications for artificial

neural networks. Using adaptive nature of artificial neural networks, it may

now be possible to built device interfaces where the mapping adapts

automatically during a training phase. Such adaptive interfaces would

simplify the process of designing a compatible mapping and would also

allow the mapping to be tailored to each individual user.

The scope of this research work is limited to the investigation on the

real-time application of artificial neural network based algorithms that

would recognize the EMG signature. In this research, the EMG feature

extraction through Fourier analysis is submitted to a multilayer perceptron

type network. Thus, this structure will learn the most relevant features of the

control signal upon subject's decision. For real-time operation, a digital

signal processor will operate over the resulting set of weights, mapping the
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incoming signal to the stimulus control domain. Preliminary results showed

a highly accurate discrimination of the control signal over interference

patterns.

1.1 State of the Knowledge

Dynamic electromyography offers a means of directly tracking

muscle activity. The myoelectric signal sufficiently parallels the intensity of

muscle action to serve as a useful indicator of its mechanical activity. Its

multispike, random amplitude quality, defies simple interpretation. To

overcome this limitation, multiple processing and interpretive techniques

have evolved. Time domain analysis for quantification of the EMG signal

include:

+ Root Mean Square value (RMS), obtained by integrating the square of

the signal over the time T followed by a division by T.

9 Average rectified value, obtained by integrating the absolute value of the

detected EMG signal over time T with a subsequent division by T.

+ XINGS, the number of zero crossings per T which is the number of times

the EMG signal crosses the zero volt value.

4 TURNS parameter which is measure of the number of changes in the sign

of the slope of the EMG signal [5].



- WAMPL which is the analysis of potentials reversals that exceed the

threshold level of 100 $gV.$ [6]. Saridis et al. [1] have developed a

control system for a prosthetic arm based on a statistical analysis of the

EMG signal involving a study of zero crossings.

9 Autoregressive model: Heffiner et al.[2] have studied the above-lesion

EMG signals for the control of FNS by using pure autoregressive

parametric models. However, the use of single channel autoregressive

model to extract the features of EMG linear envelope (LE) has shown

rather poor classification results [4].

Present studies show different feature extraction and clustering

methods of the EMG signal in the frequency domain. The myoelectric

signal, a nonperiodic signal, possesses all the characteristics of a random

signal and consequently can be analyzed using Fourier analysis. The EMG

power spectrum represents a continuous distribution of the power of the

signal as a function of its frequency.

For describing single channel activity patterns, temporal features,

such as the amplitude of the EMG signal, the time of occurrence and the

duration of the phase are required. Studies had compared the relative

importance of the phase and magnitude spectra concluding that the general

patterns of the EMG LE resemble the LB's from which they inherit the

phase spectra. For EMG LE clustering approached by Fourier analysis, the

number of harmonics determines the pattern vector dimension and affects

the clustering results. EMG pattern classification was done by choosing an
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appropriate number of harmonics and classified by measuring distances

intracluster and intercluster of percent power and phase angle. Based on

this features, clustering was performed using K-means-DYNOC algorithms

[9].

Synergy pattern analysis investigates the relationship among the

activity of several individual muscles [3]. For analyzing multichannel

patterns, various feature extraction methods have been used in a number of

pattern recognition applications. These techniques are considered as a

multivariate time-series approach. However, model-based time-series

techniques have not shown to be applicable to complex synergy analysis.

One of the reasons is because a clear multivariate time-series model for the

LB has not been established while the interplay of several muscles further

complicates the modeling. Synergy pattern classification requires, in

addition to temporal features, the interphasic spatial and temporal

information between channels. To represent the phasic activity pattern, the

LB can be expressed in terms of unnormalized Gaussian pulses [4]. Many

methods have been proposed to estimate the parameters of a Gaussian

function. Among them, the methods of moments (MOM) and maximum-

likelihood estimation (MLE) are the most used. However, equations

associated with them usually converge very slowly and occasionally to

spurious maxima.

The reason for using neural-net technology is simple enough: It can

solve problems that conventional statistical methods cannot, at least not
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within acceptable cost/performance criteria. The architectural foundations

of neural nets are patterned after simple models of biological systems.

In this research work, a number of criteria for such a control system

are investigated. The general concepts underlying muscle physiology are

described and the suitability of several methods as a means of processing

electromyographic signals are studied. A newly developed method is

introduced by the use of neural networks algorithms to classify the

incoming EMG signal and mapped into the control domain in real time.
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Chapter 2: BIOLOGICAL BACKGROUND

2.1 Muscle Physiology

Electromyography involves the measurement of electrical events in a

muscle. Let us start by understanding why an organ with an strictly

mechanical function generates electricity at all. The contractile apparatus of

striated skeletal muscle consists of longitudinally arranged, interdigitated

sets of the filamentous proteins actin and myosin. In the presence of

calcium ions, small extension arms spaced out along each myosin filament

respond by bonding to receptor sites on adjacent actin filaments.

Having done so, they exert a sliding force like little lever arms. The

force is provided by high-energy bonds in locally bound adenosine

triphosphate (ATP) molecules. At each cross-bridge, this force falls to zero

when the filaments slide far enough past each other to relax the strain in the

bonds. The muscle fiber controls the amount of force being generated at any

time by the release of calcium ions into the general intracellular space and

its re-uptake into a compartmentalized space called the sarcoplasmic

reticulum. Under normal resting conditions, almost all of the intracellular

calcium is held in the sarcoplasmic reticulum, so that the muscle has few or

no active cross-bridges and is relaxed, generating little or no tension.
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In most muscles, the fibers are actually syncytia, consisting of many

fused cells that are some tens of microns in diameter. They may run the

entire length of the muscle, often from many centimeters. Obviously, if

calcium ions were to be released among the sliding filaments in one region

of the fiber but not in others, this region would contract at the expense of

simply stretching out the inactive regions. No force would then be conveyed

to the bone or tendons at either end of the muscle. Some means must be

devised for coordinating the release of calcium ions, so that calcium is

released almost simultaneously over the entire muscle fiber. This is the role

of the myoelectrical action potentials that make up the EMG.

In terms of its electrical properties, the muscle fiber can be thought of

as a large-diameter, unmyelinated nerve axon, somewhat like the squid's

giant axon of neurophysiological renown. The axon of the motoneuron

terminates on a motor end plate usually located near the longitudinal

midpoint of the muscle fiber. When a nerve impulse arrives, the electrical

disturbance in the nerve terminal leads to the release of a neurotransmitter

(acetylcholine in vertebrates). This quickly diffuses across the synaptic

cleft, where it binds to receptors in the muscle fiber membrane and opens

channels in that membrane. The muscle fiber, like any neuron, actively

maintains its intracellular environment at a potential of about 80 mV

negative with respect to its surroundings. The fiber collects potassium ions

and evicts sodium ions, thereby creating the concentration gradients that

produce the resting potential (as quantified by the Nernst equation).

Whenever the acetylcholine-controlled channels are opened, this resting
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potential drops momentarily; this, in turn, leads to the opening of voltage-

sensitive channels that admit only sodium ions.

Still more electrical current rushes into the cell at these places, in turn

depolarizing even more remote sections of the cell membrane of the muscle

fiber.

The whole chain of events move physically down the muscle fiber at

about 2 to 5 m per second, so every part of a muscle fiber several

centimeters long will experience the action potential within a few

milliseconds.

The electrical signal reaches the sarcomers deeply within the muscle

fiber via the T tubules. The conducted disturbance in the resting membrane

potential is the trigger that open voltage-sensitive channels in the cistern of

the sarcoplasmic reticulum. Because the time course for the diffusion and

re-uptake of the calcium last tens of milliseconds, the start of the resulting

contraction is, for all practical purposes, simultaneous along the length of

the muscle fiber. Branched motoneurons assure simultaneous and

mechanically balanced tension over the length of the fascicles.

2.2 The Motor Unit

The structural unit of contraction is the muscle cell or muscle fiber.

Best described as a very fine thread, this muscle fiber has a length ranging
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from a few millimeters to 30 centimeters and a diameter of 10 to 100 pm.

On contracting it will shorten to about 57% of its resting length.

Spinal cord

j 0

Cell body
Nerve fibre of neurone

Muscle
fibres

Figure 2.1: Motor Unit

In normal mammalian skeletal muscle, the fibers probably never

contract as individuals. Instead, small groups of them contract

asynchronously in which the fibers are undergoing very rapid contractions

and relaxations. On investigation, all the muscle fibers of each of these

groups are supplied by the terminal branches of one nerve fiber or axon

whose cell body resides in the anterior horn the spinal gray matter. This cell

soma (alpha motoneuron) plus the long axon running down the motor nerve,

plus its terminal branches and the muscle fibers enervated by these

branches, together constitute the minimum anatomical expression to impel a

movement. This structure constitute a motor unit. (Figure 2.1) The motor

unit is, therefore, the functional unit of striated muscle, since an action
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potential descending through the axon causes all the muscle in one motor

unit to contract quasi-synchronously. The termination of the axon of the

muscle fiber defines an area known as the endplate region. These endplate

(neuromuscular junctions) are usually, but not always, located near the

middle of the muscular fibers. Recent studies correlates this fact with the

shape of the muscle. This appear to be more frequent in long muscles like

the tibialis anterior than in others asymmetric muscle geometries like the

one shown by the trapezium or the serratus muscle. The disparity in time

activation of different muscle fibers of the same motor unit is due to the

delay originated by the random discharged of neurotransmitter

(acetylcholine) molecules released at the endplate space. Because this is a

random, quantum process, the excitation of each muscle fiber of a motor

unit is a random function of time. "This random excitation appear as a jitter

when the electrical discharges of the individual muscle are monitored"

Ekstedt (1964).

Investigations have shown that exist a hierarchical arrangement of

motor units within a muscle. Butchal et aL. (1957), demonstrated that (in

the human biceps braquii) the fibers of each motor unit were localized in a

centroid arrangement with an average diameter of 5 mm, but in some cases

reaching a spread of 20 mm. The fiber distribution of single motor units has

been mapped in a few, mainly mammalian, muscles. It appears that the

fibers of such units are randomly distributed over a considerable proportion

between one third and one half of the cross-sectional area of the muscle.
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On investigation, the number of muscle fibers that are served by one

motoneuron varies largely. Generally, it has been agreed that muscles

controlling fine movements and adjustments (eyeball and the larynx

muscles) have the smallest ratio of muscles fibers per motor unit. On the

other hand, large coarse-acting muscles, i.e., those in the limbs, have a

greater enervation ratio. This difference is better shown by observations

done by Feinstein (1955) who reported a median ratio of 9 muscle

fibers/motor unit in the lateral human rectus (ocular muscle), 108 in the first

lumbrical of the hand, and around 2000 in the medial head of the human

gastrocnemius.

2.3 Description and Analysis of the EMG Signal

The EMG signal is the electrical activity that emanates from the

neuromuscular activation associated with a contracting muscle. It is an

complex signal, extremely affected by the anatomical and physiological

properties of muscles, as well as the characteristics of the instrumentation

used to detect and observe it.

In the following paragraphs, it will be introduced a basic but

essential discussion of an approach for interpreting the formation content of

the EMG signal. The extent to which a proposed model contributes to the

understanding of the signal is restricted to the limited amount of

physiological knowledge currently available. However, even in its present

form, the modeling approach supplies an enlightening insight into the

composition of the EMG signal.
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2.4 The Motor Unit Action Potential

Under normal conditions, an action potential propagating down a

motoneuron activates all the muscle fibers of a motor unit. As a

consequence, the postsynaptic membrane of a muscle fiber is depolarized,

accompanied by a movement of ions, which generates an electromagnet

field in the vicinity of the muscle fibers. An electrode located in this field

will detect the potential or voltage (with respect to ground), whose time

excursion is known as an action potential.

0 0 h(t)

Detection Place

Figure 2.2: Electrophysiology of the Motor Unit Action Potential.

A schematic representation of this situation is presented in Figure 2.2.

In the diagram, the integer n represents the total number of muscle fibers of

one motor unit whose electrical activity will be pick-up by the recording

electrode. The individual muscle fiber action potential represent the

contribution that each active muscle fiber makes to the signal detected at the

electrode site. For technical reasons, the detection electrode is typically

bipolar, and the signal is amplified differentially. The waveform of the

observed action potential will depend on the orientation of the detection
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electrode contacts with respect to the active fibers. When the muscle fibers

are disposed in a parallel configuration with the electrode, the observed

action potentials of the muscle fibers will have a biphasic shape, and the

sign of the phases will depend upon the direction from which the muscle

membrane depolarization approaches the detection site.

In the Figure 2.2, a depolarization approaching from the right side is

reflected as a negative phase in the action potential and vice versa. Note

that when the depolarization of the muscle fiber membranes reaches the

point marked by the two lines, the corresponding muscle fiber action

potential will have a biphasic symmetrical shape. The amplitude of the

action potentials is governed by the diameter of the muscle fiber given by

V=ka 2 , where a is the muscle fiber and k is a constant. The distance

between the active muscle fiber and the detection site are related

approximately inversely proportional with the signal amplitude. The

filtering properties of a bipolar electrode are a function of the size of the

detection surfaces, the distance between the contacts, and the chemical

properties of the metal-electrolyte interface. This, also, affects the amplitude

of the signal involved.

The duration of the action potentials will be inversely related to the

conduction velocity of the muscle fiber, which ranges from 3 to 6 m/s. The

initiation delay of each action potential is directly proportional to the

difference in the length of the nerve branches, and the distance the

depolarization must propagate along the muscle fibers before they approach

the detectable range (pickup area) of the electrode. This relative time of
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initiation is also inversely proportional to the conduction velocities of the

nerve branch because of the much faster alpha-motoneuron conduction

velocity (in the order of 50 to 90 mns).

Thus far, muscle fiber action potentials have been considered as

distinguishable individual events. However, since the depolarization of the

muscle fibers of one motor unit overlap in time, the resultant signal present

at the detection site will constitute a spatial-temporal integration of the

contributions of the individual action potentials. The resultant signal is

called the motor unit action potential (MUAP) and will be designated as

h(t). A graphic representation of the signal integration is shown on the right

side of Figure 2.2. This particular example presents a triphasic MUAP. The

shape and the amplitude of the MUAP are dependent on the geometric

arrangement of the active muscle fibers with respect to the electrode site as

well as all the previously mentioned factors which affect the action

potential.

If muscle fibers belonging to other motor units in the detectable

vicinity of the electrode are excited, their MUAPs will also be detected.

However, the shape of each MUAP will generally vary due to the unique

geometric arrangement of the fibers of each motor unit with respect to the

detection site. MUAPs from different motor units may have similar

amplitude and shape when the muscle fibers of each motor unit in the

detectable vicinity of the electrode have a similar spatial arrangement. Even

slight movements of indwelling electrodes will significantly alter the
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geometric arrangement and, consequently, the amplitude and shape of the

MUAP.

Given the various factors that affect the shape of an observed MUAP,

it is not surprising to find variations in the amplitude, number of phases, and

duration of MUAPs, detected by one electrode, and even larger variations if

MUAPs are detected with different electrodes. In normal muscle, the peak-

to-peak amplitude of a MUAP detected with indwelling electrodes (needle

or wire) may range from a few microvolts to 5 mV, with a typical value of

500 pV. According to Buchthal, the number of phases of MUAPs detected

with bipolar needle electrodes may range from one to four with the

following distribution: 3% monophasic, 49% biphasic, 37% triphasic, and

11% quadriphasic. MUAPs having more than four phases are rare in normal

muscle tissue but do appear in abnormal muscle tissue. The time duration

of MUAPs may also vary greatly, ranging from less than 1 to 13 ms.

It should be emphasized that the amplitude and shape of an observed

MUAP by surface electrodes are a function of the geometrical properties of

the motor unit, interposed tissue, electrode-skin interface characteristics

and detection electrode properties. The filtering properties of the electrode

(and possibly the cable connecting the electrode to the preamplifiers, as well

as the preamplifiers themselves) can cause the observed MUAPs to have

additional phases and/or longer duration. This is an inevitable behavior of

most filter networks. These effects were known empirically when Petersen

and Kugelberg, in the early stages of the electromyography, reported that
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the configuration of the electrode affected the duration and amplitude of the

detected action potentials.

The electrical manifestation of a MUAP is accompanied by a twitch

of the muscle fibers. In order to sustain a muscle contraction, the motor

units must be repeatedly activated. The resulting sequence of MUAPs is

called a motor unit action potential train (MUAPT). The waveform of the

MUAPs within a MUAPT will remain constant if the geometric relationship

between the electrode and the active muscle fibers remains constant, if the

properties of the recording electrode do not change, and if there are no

significant biochemical changes in the muscle tissue. Biochemical changes

within the muscle could affect the conduction velocity of the muscle fiber

and filtering properties of the muscle tissue.

The relationship between the force exerted and the EMG activity

detected from a muscle has been an issue of debate since the advent of EMG

recording techniques. The force exerted by a contracting muscle has been

shown to be a function of a range of factors such as firing rate of the motor

nerve, number of motor units in the muscle size and type of the motor units

in the muscle and duration of the contraction. It has been shown that in

specific levels of contraction different factors appear to dominate the force

modulation. Up to a contraction of 30 percent of maximal voluntary

contraction (MVC), recruitment of new motor units was observed to be the

dominant factor in force modulation while in the 30 to 75 percent range of

MVC the firing rate was shown to dominate the force control.
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As we can see in the EMG signal the parameters of interest can be

roughly divided into two groups:

1. Illustrates the state of the effector, and in particular the parameters

of individuals MUAPs.

2. Concerns the central commands of muscular contraction, and in

particular the firing rate and the discharge mode of motor units.

It is clear that the temporal representation is more adequate to study

MUAP shapes, as long as the individual potentials can be more or less

easily identified, visually or by pattern recognition techniques. However, as

the signal becomes too rich, these techniques loose effectiveness. The

electrical record of overlapped potentials is termed the "interference

pattern". As for firing rates and discharge mode, the frequency domain

seems to be the obvious choice: the discharge frequency peak emerges from

the low frequency power spectrum and the synchronization mechanism

modifies the harmonics frequency. Several methods were suggested for

quantifying this pattern in order to detect abnormalities in the larger motor

units which are only recruited at stronger force of contraction. Blinowska et

al (1987) based their study on a simple statistical model. The EMG signal

collected with any type of electrode is produced by a set of pulse emitters.

If there is a certain characteristic frequency, that is if all or at least a great

number of emitters have a common discharge frequency, this characteristic

frequency should appear in the spectrum, in one way or another. They

found that in the range of small and moderate forces the character of power
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spectra is, in most cases predicted by a random and uncorrelated motor unit

activity. The firing rate maximum shift towards higher frequencies with

increasing force. Both the frequencies values and their shift as a function of

force are in good agreement with result obtained by other authors, using

different methods. Inbar et al sustain that the change in internal muscle

force required to maintain a constant torque at different joint angles cannot

explain the consistent spectral shifts [7]. Other possibilities exists to

explain the observed EMG spectral changes, rather than length changes;

however they cannot yield the consistent results observed. Such

possibilities are the shift in electrode position relative to the enervation zone

and the shift in MU fibers and their orientation under the recording

electrodes. It has been suggested that propagation velocity may change

with fibre length due to its dependence on the fibre diameter, and this may

explain the spectral changes in surface EMG with length.

Of particular interest is the method of analyzing the IP in terms of the

number of potential reversals (turns) per second and the mean amplitude

between turns per second. Initially, it was suggested that the IP should be

analyzed at a constant force. A better diagnostic yield was later found by

using a single fixed standard of relative force (30% of maximum) Several

recent modifications of IP analysis attempted to avoid the complication of

measuring the constant or relative force. This new approach was based on

evidence that the mean amplitude and the turns are both related to force,

hence these two parameters should be related to each other, independent of

the force measurement. In fact, the relationship of mean amplitude to turns
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was found to be of diagnostic importance in children and adult patients with

neuromuscular disorders.

2.5 Frequency Analysis of the EMG Signal

There has been much interest in spectral analysis of EMG signals

during the past few years, although one suspects that it is related much

more to the general availability of signal processing algorithms in faster

computers. Since the appear of electricity and signal theory, it has been

known that any time-varying signal, however complex, can be described in

terms of the relative energy present in each of a harmonically related series

of sinusoidal frequencies encompassing its bandwidth. The analysis of the

EMG signal in the frequency domain involves measurements and

parameters which describe specific aspects of the frequency spectrum of the

signal. Fast Fourier Transform techniques are commonly available and are

convenient for obtaining the power density spectrum of the signal.

As the level of recruitment of muscles changes, certain processes may

occur that will change the frequency distribution of this energy as well as its

overall amplitude. The recruitment of higher threshold, fast-twitch muscle

fibers may be associated with higher frequency components in the signal

because the larger diameter muscle fibers conduct action potentials more

rapidly past the recording electrodes.

On the other hand, intensely activated muscles frequently

demonstrate synchronization of the motoneuron activity, presumably as a

20



result of complex interneural linkages. Such synchronization's show up as

an increase in the low-frequency energy. Somewhat lower frequency

components are present in the various forms of tremor, which are associated

with finely controlled movements in both normal and pathological subjects.

Very low values are also observed in the truly slow (tonic) muscle fibers.

Obviously, many complex and often poorly understood factors contribute to

the spectral content of EMG signals, as revealed by Fourier analysis.
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Figure 2.3: Typical power density spectrum of the EMG signal

A representation of the power density spectrum of the EMG signal,

along with various parameters of interest, is presented in Figure 2.3. Note

that this plot has linear scales, because such a representation provides a

more direct expression of the power distribution. A logarithmic scale, which

is the scale of preference in other disciplines such as acoustics, would

compress the spectrum and unnecessarily distort the distribution.
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Three parameters of the power density spectrum may be conveniently

used to provide useful measures of the spectrum They are: The median

frequency, the mean frequency, and the bandwidth of the spectrum. Other

parameters such as the mode frequency and ratios of segments of the power

density spectrum have been used by some investigators but are not

considered reliable measures, given the inevitably noisy nature of the

spectrum. The median frequency and the mean frequency are defined by the

following equations:

Sm(f)df= f S(f)df

2.1

where Sm(f) is the power density spectrum of the EMG signal. Stulen

and De Luca (1981) performed a mathematical analysis to investigate the

restrictions in estimating various parameters of the power density spectrum.

The median and mean frequency parameters were found to be the most

reliable, and of these two, the median frequency was found to be less

sensitive to noise.

2.6 Biological Events-Power Spectrum Relationship

In the study of localized muscular fatigue, analysis of the EMG

signal, detected on the surface of the skin over a muscle, has been
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extensively employed. Since the historic work of Piper (1912), the

frequency components of the surface EMG signal have been known to

decrease when a contraction is sustained. Cobb and Forbes (1923) noted this

shift in frequencies toward the low end with fatigue and also observed a

consistent increase in amplitude of the EMG signal recorded with surface

electrodes. Lindstrom et al (1970) and De Luca (1979) explained the

interrelationship by noting that during a sustained contraction the low-

frequency components of the EMG signal increase and, hence, more EMG

signal energy will be transmitted through the low-pass filtering effect of the

body tissue. Then, the magnitude of the two related phenomena is

dependent on many factors, such as force level of contraction, time of the

contraction, the type of electrode used to obtain the EMG signal, the

characteristics of the subcutaneous tissue, and the particular muscle

investigated.

Most of the work in this area has been performed on data obtained

during constant-force contractions. Three explanations have been proposed

to account for the increase in amplitude and the frequency shift of the EMG

signal observed during a sustained, constant-force, isometric contraction.

They are: motor unit recruitment; motor unit synchronization, and changes

in the conduction velocity of muscle fibers.

In any case, it has not been able to find one report in the literature that

without doubt and ambiguity present evidence that new motor unit are

recruited during constant-force contractions of some particular muscle. This

phenomenon may well exist, but it remains to be proven.
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Synchronization, as is the tendency for motor units to discharge at of

nearly the same time, has often been cited as the cause of both frequency

shifts and amplitude increase. However, synchronization of motor units has

been reported to be more evident as the time duration of the contraction

progresses. Nevertheless, the frequency shift is more pronounced at the

beginning of a contraction. Hence, the behavior of these two phenomena is

not complimentary during a sustained contraction, indicating a lack of a

powerful association.

2.7 Factors Affecting the Waveform of the MUAP

It is reasonable to infer that a considerable amount of the frequency

shift of the power density spectrum of the EMG signal is cause by a change

in the spectral characteristics of the MUAPs which comprise the signal.

Such changes may only occur if the waveform of the MUAPs changes. The

waveform may be altered by either varying the shape of the waveform or by

scaling the waveform by linear operators. In the latter case, the shape of the

waveform remains unaltered, but characteristics of the shape are altered.

This distinction between the meaning of waveform and shape is important

in subsequent discussions. Note that a linear multiplication in either the time

scale or amplitude scale does not change the shape. Modifications in the

shape are induced by nonlinear transformations. Currently known factors

directly determine or influence the waveform of the MUAPs. One factor, the

tissue filtering, determines the actual MUAP shape; the other factor,
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conduction velocity of the muscle fibers, modifies the characteristics of the

waveform.

The amount of tissue filtering is determined mainly by three factors:

1. the relative three-dimensional arrangement of the muscle

fibers of one active motor unit,

2. the distance between the surface electrode contacts and the

active muscle fibers, and

3. the location of the electrode on the surface of the muscle as a

function of the distance between the enervation zone and the

tendon of the muscle.

Of these three factors, the depth measure of the muscle fiber location

is an important concern when additional motor units are recruited or

decruited (such as when the force output of the muscle is varied) because

their centers of electrical activity are most likely situated in differing

location within the muscle. The distance between the active fiber and the

electrode describes the current path between these two points, which is not

necessarily the shortest distance, depending on the degree of homogeneity

of the tissues.

The conduction velocity of the muscle fibers is monotonically related

to the diameter of the muscle fibers and is greatly affected by the

25



intramuscular pH. The relationship between conduction velocity and muscle

fiber diameter has been known for many years and is widely accepted.

The biochemical-mechanical processes which result in a muscle fiber

contraction have as a by-product the formation of lactic acid and pyruvic

acid which pass through the muscle fiber membrane into the surrounding

interstitial fluid. The amount of hydrogen ions that accumulates inside and

outside the muscle fiber membrane will also be dependent on the rate of

hydrogen ion removal, either by physical transport of by chemical reaction.

The relative and absolute effects of both processes are likely to differ in

muscles having considerably different fiber type constituency and tissue

consistency. Generally, during repetitive muscle fiber twitches (as would be

the case in sustained contractions), the hydrogen ion concentration

increases, and the pH decreases. It has been postulated that hydrogen ions

play a significant role in the generation of action potentials in excitable

membranes. They affect the process, possibly by causing physical changes

in the arrangement of membrane proteins and/or via the electric field

generated by their charge. On investigations, it was demonstrated that the

membrane excitability decreased when intracellular pH decreased. The

conduction velocity is directly related to the membrane excitability.

Therefore, introduction of acidic by-products in the membrane environment

may be expected to cause a decrease in the membrane conduction velocity.

It is the net amount of hydrogen ions in the membrane environment

that is of importance. Therefore, in addition to the amount of hydrogen ions
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that are formed during a muscle contraction, it is also necessary to consider

any mechanism that removes them from the membrane environment.

The removal of acidic by-products will be a function of many factors,

the most obvious being the functional capacity of the vascularization in the

muscle and the force level of the contraction. As the force output of the

muscle increases from zero, the oxygen demand of the muscle increases,

requiring an increase in the blood flow. However, the intramuscular

pressure also increases, eventually resulting in occlusion of the arterioles

and diminution of blood flow in the muscle.

In summary, the waveform of the MUAPs, detected by a

surface electrode will be a function of the particular muscle that is

contracting and the force level of the contraction. These two variables

determine the fiber type, number, firing rate, and location of the motor units

that are involved, as well as the state of the blood flow. (Some evidence

exists that exercise may be a contributing factor by possibly altering the

fiber diameter and blood flow). During sustained contractions, two factors

will have the greatest effect on the motor unit action potential waveform. In

constant-force contractions, in which the number of active motor units is

essentially fixed, the dominant factor is the amount of acidic by-products

which remain in the muscle fiber membrane environment. During force-

varying contractions, the effect of tissue filtering of the newly recruited

motor units also plays a prominent role.
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Chapter 3 : ELECTRODE CONFIGURATIONS

The electrodes used in electromyography are actually, of a wide

variety of types and construction. Their use depends on the first principle

that they must be relatively harmless and must be brought close enough to

the muscle under study to pick up the current generated by the ionic

movement. The segment of the electrode which makes direct electrical

contact with the tissue will be referred to as the detection surface. In

electromyography these are used either singularly or in pairs. These

configurations will be referred to as monopolar and bipolar.

The two main types of electrodes used for the study of muscle

behavior are surface (or skin) electrodes and inserted (wire and needle)

electrodes. Since this work only involved the use of surface electrodes, the

following discussion will only concern their principal characteristics.

3.1 Surface Electrodes

Surface electrodes can be constructed as either passive or active. In

the passive configurations, the electrode consists of a detection surface that

senses the current on the skin through its skin-electrode interface. In the

active configuration, the input impedance of the electrodes is greatly

increased, rendering it less sensitive to the impedance (and therefore

quality) of the electrode-skin interface.
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One of the earliest reported usages of surface electrodes specifically

for the purpose of detecting EMG signals from a human muscle was by

Piper (1912). The design of passive surface electrodes has not changed

much since Piper's days; conceptually, the metal electrodes used for this

purpose today function similarly.

Often one finds that the simple silver discs used widely in

electroencephalography are also used as passive surface electrodes in

electromyography. Their advantages revolve around one point:

convenience. For example, they are readily obtained from supply houses;

they can be applied to the skin after very little training and with reasonable

success (within the limitations to be discussed); and they give little

discomfort to the subject.

Since a poor contact must be avoided, continued pressure is

important. The pressure provided by the adhesive strips or collars used to

secure the electrodes is usually adequate. Electrical contact is greatly

improved by the use of a saline gel or paste; this is retained between

electrode and skin by making the silver disc slightly concave on the aspect

to be applied to the skin. The dead surface layer or the skin, along with its

protective oils, must be removed to lower the electrical impedance. This is

best done by light abrasion of the skin at the site chosen for electrode

application. In recent years, it have been found that is best produced by

"rubbing in" those types of electrode gels that have powdered abrasive

included in their formula.
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In attempting to reduce the mass of the electrode, silver-metal films

have been painted on the skin. Although they may be convenient for special

applications, such as detecting perioral muscle activity or for long-lasting

recording sessions such as space flights, they generally provide an inferior

performance, as compared to that of conventional passive surface

electrodes.

The lack of chemical equilibrium at the metal-electrolyte junction sets

up a polarization potential that may vary with temperature fluctuations.

Sweat accumulation, changes in electrolyte concentration of the paste of

gel, relative movement of the metal and skin, and the amount of current at

flowing into the electrode. Various construction designs have been

implemented attempting to stabilize the polarization potential. It is

important to note that the polarization potential has both a dc and ac

component. The ac component is greatly reduced by providing a reversible

chloride exchange interface with the metal of the electrode. Such an

arrangement is found in the widely used silver-silver chloride electrodes

which are commercially available (e.g Beckman miniature mode. This type

of electrode has become highly popular in electromyography due to its light

mass (250 mg), small size (11 mm. diameter), and high reliability and

durability. The diminished polarization potential associated with this

electrode is a major benefit. The dc component of the polarization potential

is nullified by electrotonic means when the electrodes are used in pairs. This

point will be elaborated upon in later sections of this work.
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An adequately large input impedance is achieved when the resistance

is in the order of 1012 Ohm and the capacitance is small (typically, 3 or 4

pF). The advent of JFET microelectronics has made possible the

construction of amplifiers housed in integrated circuitry which have the

required input impedance and associated necessary characteristics.

However, the physical construction of the active electrode remains

important because the input capacitance from the metal surfaces to the input

of the active circuitry is to be minimized.

The active surface electrodes have been developed to eliminate the

need for skin preparation and conducting medium. They are often referred

to as "dry" electrodes or "pasteless" electrodes. These electrodes can been

either resistively coupled or capacitively coupled to the skin. In the case of

the capacitively coupled electrode, the detection surface is coated with a

thin layer of dielectric (non-conducting) substance, and the skin electrode

junction behaves as a capacitor. Although the capacitively coupled

electrodes have the advantage of not requiring a conductive medium, they

have a higher inherent noise level. Also, these electrodes do not have long-

term reliability because their dielectric properties are susceptible to change

with the presence of perspiration and the erosion of the dielectric substance.

The active surface electrodes are preferable not only because they are

convenient to use. Within a few years, it seems that they will inevitably be

the preferred type of surface electrode in the research environment.

The main disadvantages of surface electrodes are that they may be

used effectively only with superficial muscles and that they cannot be used
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to detect signals selectively from small muscles. In the latter case, the

detection of "cross-talk" signals from other adjacent muscles becomes a

concern.

The surface electrodes are commonly used to detect gross EMG

signals consisting of the electrical activity from numerous individual motor

unit within the pickup area of the detection surfaces.

3.2 Impedance Reduction

The effects of the skin preparation is of significant importance. Cram

et al (1989) conducted a series of studies varying the level of skin

preparation (abrade vs. no abrade) and electrolytic agent (paste vs. no

paste). Each muscular site was studied under four conditions using a two by

two design. Two levels of abrading the skin (No abrade and Alcohol Wipe

Abrade) and two levels of electrolytic medium (No Paste and Electrode

Paste). The findings for the impedance study are of particular interest. On

an a priori basis, they hypothesized that the two Paste conditions would be

superior to the Abrade conditions owing to the presence of concentrated

electrolytic solution to help conduct the EMG signal from the body tissue to

the electrode. Instead, the two alcohol Abrade conditions were superior; the

"light" alcohol Abrade removed enough of the insulating layers and oils

providing abundant electrolyte to bring the impedance levels down to below

100 Kohms. It should be notice that this impedance increased over time,

owing to the evaporation of the alcohol. In this study the No Abrade/No

32



Paste condition initially provides a very noisy signal which clearly make it

an invalid technique for EMG muscle-scanning purposes.

Surface electrodes would also be cleaned after each application. If

the electrodes are of the type which require a conductive paste or gel, then

any residual paste or gel should be removed by wiping them with a gauze

dampened in distilled water before the conductive material hardens. If the

surface electrode is of the type which does not require conductive paste or

gel, it is recommended that the metallic contacts of the electrode be

regularly cleaned in order to remove any oxide layer which may accumulate

on the detection surface.

3.3 The Selection of an Appropriate Electrode

The specifics of the type of electrode that is chose to detect the EMG

signal depend on the particular application and the convenience of use. The

application refers to the information that is expected to be obtained from the

signal, for example, obtaining individual MUAPs or the gross EMG signal

reflecting the activity of many muscle fibers.

The following electrode usage criteria is suggested:

Surface electrodes

Time-force relationship of EMG signal

Kinesiological studies of surface muscles
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Neurophysiological studies of surface muscles

Psychophysiological studies

Interfacing an individual with external electromechanical devices

Needle electrode

MUAP characteristics

Control properties of motor unit (firing rate, recruitment, etc.)

Exploratory clinical electromyography

Wire electrodes

Kinesiological studies of deep muscles

Limited studies on motor unit properties

Comfortable recording procedure from deep muscles

The electrical activity inside a muscle or on the surface of the skin

outside a muscle may be easily acquired by placing an electrode with only

one detection surface in either environment and detecting the electrical

potential at this point with respect to a "reference" electrode located in an

environment which is either electrically quiet or contains electrical signals

which are unrelated to those being detected (By unrelated, it is meant that

the two signals have minimal physiological and anatomical association). A

surface electrode is commonly used as the reference electrode. Such an

arrangement is called monopolar. Schematic arrangement of the monopolar

detection configuration may be seen in Figure 3.1.
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The monopolar configuration has the drawback that it will detect all

the electrical signals in the vicinity of the detection surface; that includes

unwanted electrical signal from sources other than the muscle being

investigated.

The bipolar detection configuration overcomes this limitation. This

configuration is also displayed in Figure. 3.1. In this case, two detection

surfaces are used to detect two potentials in the muscle tissue of interest,

each with respect to the reference electrode. The two signals are then fed to

a differential amplifier which amplifies the difference of the two signals,

thus eliminating any "common mode" components in the two signals.

Signals emanating from the muscle tissue of interest near the detection

surface will be dissimilar at each detection surface due to the localized

electrochemical events occurring in contracting muscle fibers.
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Figure 3.: Unipolar and Bipolar electrode configuration
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Whereas "ac noise" signals originating from a more distant source

(such as polarization potential in the metal-electrolyte junction) will be

detected with an essentially similar amplitude at both detection surfaces

and, therefore, will be subtracted prior to being amplified. The measure of

the ability of the differential amplifier to eliminate the common mode signal

is called the common mode rejection ratio.

3.4 Decrement Function of Muscle Tissue

Muscle tissue presents an internal impedance to the propagation of

electric currents. The impedance is frequency dependent; it is less for lower

frequencies than for higher frequencies. It will also be a function of the

distance between the sources of the EMG signal and the detection surfaces

of the electrode. Thus, the muscle and adjacent tissues may be considered

as a distance-dependent filter.
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Figure 3.2: Decrement function
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Lindstrom through elaborate mathematical modeling, was able to calculate

the tissue filter functions. His results, which are a simplified representation

of the real environment, are nonetheless very helpful in providing guidance

and insight in the behavior of tissue properties. They are presented in Figure

3.2. These curves represent the tissue filter properties as a function of

distance perpendicular of the muscle fiber.

In reality, the impedance of muscle tissue is not isotropic, i. e., similar

in all directions. In fact, it is highly direction dependent, i. e., anisotropic.

The anisotropy is due to the non-homogeneity of the anatomical

construction of a muscle; muscle fibers are normally arranged lengthwise,

and the surrounding extracellular fluid forms lengthwise channels parallel to

the muscle fibers. These "channels" of lower impedance branching

throughout the muscle make it very difficult to define precisely the current

distribution within a muscle. In fact, the situation is considerably

aggravated when the signal propagates through the fatty tissue and the skin

to reach the surface of the skin, where it may be detected by surface

electrodes. The considerably different electrical properties of the muscle

tissue, fatty tissue, vessels mesh and skin cause inflections in the current

field.

This anisotropic property of the muscle tissue impedance has been

known since the earliest attempts were made to measure it. Recently,

investigations have reported detailed measurements which indicate that the
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magnitude of the impedance in the perpendicular direction is 7 to 10 times

greater than in the longitudinal direction. These results are consistent with

other reported measurements of a similar nature.

Referring to Figure 3.2, it can be seen that at higher frequencies, the

signal amplitude will decline sharply near the surface of the muscle fiber (D

= 0) and then gradually diminish. This measure is known as the "decrement

function." This function is typically obtained by plotting the peak-to-peak

amplitude of a muscle fiber action potential observed as the detecting

electrode is moved away from the active muscle fiber along a perpendicular

direction. (Note that the peaks of the action potential contain high

frequency components. It is for this reason that the high frequency region

of Figure 3.2 is used to provide a comparison in the frequency domain for

the peak-to-peak decrease in the time domain.)
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Figure 3.3: Decrement function of different electrode configurations
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The information in Figure 3.3 indicates that small displacements of

the electrode with respect to the active fibers, when the electrode is near the

surface of the active fiber, cause drastic changes in the waveform of the

detected signal. If the electrode is moved 100 pm from the surface of a

fiber, the peak-to-peak amplitude decreases by approximately 75%. It is

this sharp decline which accounts for the sometimes drastic modifications of

MUAP waveforms during muscle contractions. Even attempted constant-

force isometric contractions may provide sufficient relative movement

between the electrode and active muscle fibers to seriously disturb the

amplitude and shape of the signal. At times this disturbance may be

sufficient to avoid the identification of MUAPs belonging to the same

MUAPT.

3.5 Electrode Selectivity and Cross-Talk

When an electrical current propagates in a volume conductor, it is

theoretically possible to detect a potential at any location throughout the

medium. But, as is evidenced in Figure 3.3, the voltage gradient decreases

quickly. Therefore, if an electrode is placed more than 2 or 3 mm from the

surface of an active muscle fiber the detected signal will have a very low

amplitude, possibly lower than that of the extraneous unwanted signals, and

thus will provide no useful information. It is, therefore, necessary to

establish an arbitrary demarcation value that define the pickup area. Studies

suggested that it be designated by the distance where the amplitude of the

action potential diminishes to 200 pV. The definitions relating to the

percentage decrease are more direct than those referring to an absolute
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value. The selectivity of an electrode will depend on the area of the

detection surface, and in the case of bipolar electrodes, on the distance

between the two detection surfaces. Studies have obtained pick-up area

values for monopolar electrodes, bipolar electrodes oriented perpendicularly

to the muscle fibers, and bipolar electrodes oriented in parallel to the muscle

fibers. Figure 3.4 presents the borders of the pickup area (decrease to 25%)

for electrodes whose detection surface has a diameter of 25 pm. It is

interesting to note that the monopolar configuration is less sensitive (larger

pickup area) than the bipolar configuration; and in the latter case the

selectivity increases when the detection surfaces are oriented

perpendicularly to the muscle fibers.

1 2 KMonopolar electrode ot position 1

100 um

Bipotar perpendicutar electrode with detection
surface of positions 1 and 2

Figure 3.4: Pick-up area for unipolar and bipolar configurations

In their study, they estimated that for the monopolar configuration, 9

to 17 muscle fibers are located in the pickup area. For a bipolar

configuration (24 pim diameter wires spaced 50 pm apart), 2 to 9 muscle

fibers would be circumscribed by the pickup area if the detection surfaces
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were oriented perpendicularly to the fibers, 5 to 9 if oriented parallel to the

muscle fibers. It is important to be aware that these numbers would be

higher if a more generous measure of the pickup area were used, say, a

decrease to 10% of the amplitude. In any case, it is apparent that the most

selective electrode is the bipolar electrode, which is constructed with the

smallest detection surfaces and with the smallest separation between the

detection surfaces. The selectivity is further accentuated by orienting the

detection surfaces in a direction perpendicular to that of the muscle fibers.

It is important to emphasize that during submaximal contractions, not all the

muscle fibers will be active and that adjacent fibers commonly belong to

different motor units. Therefore, by judiciously placing a highly selective

monopolar or bipolar needle electrode in the muscle, it is possible to detect

extracellular action potentials from single muscle fibers during submaximal

contractions. This is the basis of single fiber electromyography.

Wire electrodes, which generally have larger detection surfaces and

are usually spaced 1 to 2 mm apart, therefore will have a larger pickup area.

However, unlike needle electrodes they may move within the muscle

without external indications. Such hidden relative movements between the

detecting surfaces and the active fibers may cast serious ambiguity on the

reliability of data relating to properties of individual motor units.

Surface electrodes, even the ones which have relatively small (less

than 2 mm) detection surfaces, are not generally considered to be selective.

In fact, an efficient design of surface electrodes is directed at obtaining as

much activity as possible from one muscle. However, such attempts must be
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counterbalanced with the discrimination of EMG signals from adjacent

muscles, including muscles deep to the one of interest. This "interference"

of EMG signals from muscles other than the one(s) under the electrode is

referred to as cross-talk. There is no fixed solution for guarding against

cross-talk. Each electrode configuration and anatomical architecture of the

adjacent musculature requires a specific solution to the design of the surface

electrode.

Surface electrodes are generally used in the bipolar configuration.

The differential amplification arrangement is essential to remove the

unwanted "noise" signals on the surface of the skin which are generally

present in most environments. The size of the detecting surfaces is not

highly critical. Although, ideally they should be as large as possible, the

advantages of increasing their dimension quickly disappears above a

diameter of 5 mm. Therefore, the major question with respect to selectivity

is how far apart the detection surfaces should be located. If the electrical

characteristics of the tissue(s) beneath the electrode are reasonably

homogeneous, the distance between the detecting surfaces corresponds

roughly to the distance from which muscle fiber will contribute

meaningfully to the EMG signal.

It is recommend that a standard interdetection-surface spacing of 1

cm be used in surface electrodes. This spacing is compatible with the

anatomical architecture of most muscles in the human body. In the

following section, discussing signal bandwidth considerations, it will be

seen that this spacing has other advantages.
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3.6 Electrodes Filtering Properties

The electrode-electrolyte interface have an impedance consisting of

resistance and capacitance. The signal emanated by the muscle can be

thought as a current source that will generate a voltage on the electrode once

it goes through the high-pass filter that this interface represents.

As it has been shown, the bipolar configuration amplifies the

difference of both incoming signals. Then, if the two detection surfaces are

placed in parallel to the muscle fibers, the MUAP will reach one detecting

surface before the other one. The difference in the time of arrival will be a

function of the conduction velocity of the muscle fiber and the

interdetection surface separation (d). It follows that the frequency

components of the propagated signal whose wavelength is equal to d will

cancel out. By the same token, those signals whose wavelength is equal to

2d will be amplified with no loss. This will apply for every multiple

integral frequency value. The corresponding cancellation frequency and

pass frequency values may be expressed as:

nav nv
fcanceation = 2 pads d nv n=1,2,..

3.1

where v is the conduction velocity along the muscle and d is the

interdetection surface separation.
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The complete differential filter function was derived by Lindstrom,

whose magnitude may be expressed as:

R( ,d) =Ksin2
2v

3.2

where K is a scaling factor representing the various gain factors of the

electrode-electrolyte interface. Equation 3.2 indicates that the bandwidth of

the electrode filter function increases as the interdetection surface distance d

decreases.

Now it must be pointed out that these functions have been calculated

for one muscle fiber which is modeled as an infinitely long cylinder in an

unbounded medium, a clearly unrealistic representation which, nonetheless,

does provide a useful expression of the filtering characteristics of the filter.

Of greater concern in the environment of real muscle fibers is that they are

not all necessarily oriented parallel to each other and therefore, parallel to

the electrode, and that they do not all have identical conduction velocities.

Thus, the resulting filter function of the bipolar electrodes to the EMG

signal, which may be thought of as a summation of the individual filter

functions of the action potential, in all likelihood will not be so well

defined.
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Chapter 4: ELECTRONIC CONSIDERATIONS

It is now apparent that the EMG signal is filtered by the tissue and the

electrode in the process of being detected. Before the signal may be

observed, it is necessary to amplify it. This latter procedure may also

modify the frequency characteristics of the signal. In order to describe this

process, it is necessary to describe some properties and parameters of

electronic amplifiers.

They are:

(1) Noise characteristics

(2) Gain

(3) Common mode-rejection ratio

(4) Input impedance and input bias current

(5) Bandwidth

4.1 Noise Characteristics

This term can be defined as any undesired signal which is detected

together with the desired signal. Our environment is inundated with infinite

electrostatic and electromagnetic fields. The presence of electrostatic fields

has been completely overlooked in electromyography. This oversight has
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been mainly due to the fact that the equipment used generally filters out dc

signals. However, the presence of "static electricity" on the surface of a

subject may reach proportions which may damage the electrode

characteristics and, possibly, the amplifiers. High levels of static electricity

are often present when a subject wears polyester clothing and the humidity

level of the air is low. Electromagnetic fields are ever present in a variety of

forms such as 50 or 60 Hz from power lines and electrical devices which

operate on line current, radio signals, television signals, and

communications signals, among other sources.

To these, also add electrical noise generated by the equipment which

we employ to detect and record the EMG signal. These are: (1) the "thermal

noise" generated by the electrodes; this physical property of metals is

proportional to the square root of the resistance of the detection surface and

cannot be eliminated but may be reduced to the point that is not a factor of

concern by cleaning the electrode contacts, as described previously; (2) the

noise generated by the first stage of the amplifiers; this is a physical

property of semiconductors and cannot be completely eliminated, but may

be reduced by the continual advances that are being made in semiconductor

physics. There is no recourse but to choose (or construct) an amplifier that

has low noise.

To the above sources we should add another which assumes

particular importance in electromyography, that is, motion artifact. This

disturbance may occur in two locations; at the electrode-tissue interface or

at the wire leads connecting the electrodes to the amplifier. The prior source
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has two origins. One is any relative movement of the electrode with respect

to the tissue. As described previously, when any two materials having

dissimilar electrical properties come in contact with each other, there is a

lack of chemical equilibrium at the junction, which in turn generates a

polarization potential. Any relative movement at the junction modulates the

polarization potential and generates an ac current, which generates the noise

signal. The other is the "skin potential." Under normal conditions, a voltage

of approximately 20 mV exists across the skin layers. It is generally

believed that this potential is originated by "injury currents" of the dead

cells as they migrate to the surface of the skin. In any case, the voltage

varies as the skin is stretched, as is the case when the muscles underneath it

contract of as a limb is displaced. It is of interest to point out that abrasion

of the skin reduces this component of motion artifact because as the skin is

pierced, the voltage across the skin is shorted out. The noise resulting from

the leads movement is caused by the natural phenomenon that is used to

create current in a generator. That is a metallic wire (the lead) is moved

through electromagnetic fields. The voltage resulting from these mechanical

artifacts may be large (several milivolts) so that they seriously contaminate

the EMG signals. This problem is accentuated when the input impedance of

the amplifier is high because a small current passing through a high

impedance may generate a high voltage. It is important to point out that

because these forms of electrical noise are induced by movements of the

body tissues, they will be limited to frequency components that are less than

30 Hz.
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All these noise sources are the critical ones because they are added to

the signal prior to amplification; therefore any amplification will increase

both signals.

In any scheme for detecting, amplifying, or recording signals, the

ratio of the wanted signal to the unwanted signal is the single most

important factor to be considered and is called signal-to-noise ratio. It is the

factor which measures the quality of the signal.

4.2 Gain

The idealized representation for the differential amplification

associated with the bipolar detection configuration indicates that if the noise

signal fed to the amplifier is similar in all respects (amplitude, phase and

frequency components), then it will be totally eliminated. This perfect

cancellation does not occur in real differential amplifiers for two reasons.

First, the amplifiers cannot subtract perfectly. The measure of how well the

differential amplifier subtract (reject) the common mode signal is called the

"common mode rejection ratio". The second reason is that the noise signal

reaching the two input stages of the differential amplifier is not necessarily

common mode. This is particularly true if the tissue media is anisotropic.

Referring to Figure 3.1, we can describe the amplification of the detected

signal in the following fashion:

Monopolar amplified signal = G(m + n)
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Bipolar amplified signal = G(m] + n) - (m2 + n)

= G(m] - m2)

The advantage of the bipolar configuration is now apparent. Ideally,

the noise component is removed.

Another point that should be mentioned concerns the amount of

amplification required to observe the EMG signal. It is apparent in the

above formulation that the bipolar configuration will require greater

amplification. However, this is of no concern because the values of the

gains required are within the capabilities of ordinary electronics amplifiers.

4.3 Common Mode Rejection Ratio (CMRR)

In practice, the performance of differential amplifier circuits departs

from the ideal characteristics mentioned above. Gain imbalance and

nonlinearities in the amplifier's differential input stages cause errors in the

subtraction process. As a result, signals common to each input Ecm do not

cancel completely and produce an undesirable common-mode error voltage

at the amplifier output Fe. The ratio between the common-mode voltage

Ecm of the amplifier and its common-mode error voltage Fe is defined as

the common-mode refection ratio (CMRR).

CMR R = '
Fe

4.1
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The importance of the CMRR becomes apparent when dealing with

the effects of external fields such as power line-induced interference

radiating from the environment. Referring to Figure 4.1, we can model the

effect of an external signal field acting on the tissue media as two current

sources in in parallel with their respective tissue impedance Zts. If the tissue

media impedance Zs is isotropic, and the external field gradient across the

tissue media is constant, then the fields induced current in at each input are

equal and will cancel. Obviously, the higher the CMRR of the amplifier, the

better the cancellation of these undesirable currents.

MUSCLE FASCIA SKIN

Z is

NOISE

Figure 4.1: Electrode-tissue interface model
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4.4 Input Impedance and Input bias Current

In order to accurately measure the amplitude and waveshape

parameters of the EMG signal, it is necessary to understand how the input

impedance and input bias current of the differential amplifier can influence

these parameters. The input bias current may be thought of as the minimal

constant current required to keep the amplifier active. Since the differential

amplifier is not ideal, it has a finite impedance at each input and nonzero

input bias current. As demonstrated in Figure 4.1, the bias current flows out

of the amplifier. Thus, it stands to reason that any signal which has a

current less than the bias current will not be amplified. In modem amplifiers

this current is considerably small (< 100 pA) so that it does not present any

danger to the subject when the electrode is on the skin or in a skeletal

muscle. However, in needle electrodes which have small detection surfaces

(<100 pm), the current may be sufficient to alter the chemical structure of

the surface layer over repeated applications. This, in turn will alter the

metal-electrolyte filtering characteristics of the electrode.

The distributed impedance of the EMG signal source is determined by

the impedance characteristics of the tissue Zts and the tissue-electrode

interface, Zte. As discussed in previous sections, these impedance have both

resistive and reactive components due to the capacitive effects of tissue

media and electrode interface. The value of the distributed source

impedance can vary greatly, depending on the impedance of the surface

electrode interface configuration Zte and the amount of intervening tissue

Zts, typically 1O4 to 106 ohms at 1 kHz. To minimize waveshape distortion
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and attenuation of the signal source due to the shunting by the amplifier,

the input impedance Za should be much larger (1012 in parallel with Spf)

than the distributed source impedance.

4.5 Bandwidth

All amplifiers have limits on the range of frequency over which they

operate. In fact, limitations of amplifiers are commonly measured in gain-

bandwidth quotient. The value of the quotient is defined by the type of

semiconductor components used. This limitation does not present a problem

in electromyography because amplifiers providing the required gain over

the necessary bandwidth are commonly available and easy to design. The

bandwidth of an amplifier may be conceptualized as a window in the

frequency domain. The frequencies of a signal that coincide between the

borders of the window, i.e., the bandwidth, will pass with minimal, if any,

diminution; whereas, frequency components outside the bandwidth will be

suppressed or eliminated.

In electromyography, it is highly advisable not to dc couple the

electrodes to the amplifiers for the following reasons:

1. The dc polarization potential present at the electrode-electrolyte interface

may be as large as the EMG signal being detected.

2. Motion artifacts in the lead wire will generally have low frequencies (<

20 Hz), and thus they would also be amplified.
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3. The frequency components of the EMG signal below 20 Hz are unstable

and fluctuate with a considerable amount of unpredictability.

For these reasons, it is recommended that for general applications the

low-frequency 3 dB point be set at 20 Hz. The high frequency 3 dB point

should be set to a value slightly higher than the highest frequency

components of the wanted signal. This value is dependent on the type of

electrode used to detect the signal. Any noise signal having frequency

components greater than the high 3 dB point will be attenuated, thus

increasing the signal-to-noise ratio of the amplified signal. The high corner

frequency will greatly varied depending the type of electrode chosen. For

surface electrode, the signal will be bandlimited between 20-500 Hz.
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Chapter 5: SIGNAL PROCESSING

5.1 Signal Filtering

A filter is considered as a specially developed system with specific

transfer properties which are determined beforehand. The input signal is

converted into the output signal following a transfer function that has been

developed corresponding to the conditions. With such a system the signals

are inhibited in certain intervals of the frequency range and are allowed to

pass in other intervals; with an ideal filter signals are completely inhibited.

Only ideal filters have a rectangular shape of the transfer function, but exist

only theoretically. Real filters are in general more or less satisfactory

approaches. Four different types of filters are known: low pass filters, high

pass filters, bandpass filters and notch filters.

Low pass filters are used to inhibit frequency components in a signal

above a chosen cut-off frequency (pass band) to pass with the least possible

distortion.

With high pass filters, frequency parts of a signal above the chosen

cut-off frequency are let through and lower frequency parts are suppressed.

These filters are able to filter slow changes, e.g. zero drift or motion

artifacts, out of the source signal. Band pass filters and notch filters are a

combination of these two filter types. Notch filters are employed to suppress
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a particular frequency band in a signal. A suppression of the annoying 60

Hz power ripple could be achieved by means of a very steep notch filter.

In the experimental analysis of muscle action potentials a cross-talk

of signals from various sources cannot always be avoided. In particular

EMG-investigations within the area of physical science, orthopedics and

ergonomics, where the collection of data has to be carried out under field

conditions, the measured signals are often incorrect due to movements of

the subject. In particular dc offset-voltages, movements of electrodes and

cables, 60 Hz interference and electrostatic interference should be

considered. One of the widespread methods is to filter already during

analog data acquisition. This method has two disadvantages: it does not

show the amount of the interference on the signal that is to be used, and the

signal cannot be regenerated, since it is lost during the filtering procedure.

However, it is necessary to band limit the signal before being acquired to

comply with the Sampling Theorem 1 . This type of filtering, called anti-

aliasing filtering, usually minimized the adverse effects of any remaining

frequencies beyond the desired frequency range. Analog filters that sharply

attenuate these above range frequencies should be interposed between each

sensor device and the data acquisition multiplexer.

For all cases where signal processing is not to be carried out in real-

time, digital filtering of the data sets can be implemented. Additional

hardware can be saved and various types of digital filters can be set up in

1 If a signal contains no frequency components above a frequency fmax the signal can be uniquely represented by
equally spaced samples if the sampling frequency fs is greater than twice fmax. That is, the sampling frequency must
satisfy the inequality fs > 2 fma.
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little time, once they are programmed. A further advantage as compared to

analog systems is the independence of problems with hardware, such as

production tolerances, temperature dependence and changes in the

characteristics due to aging.

The filter effect on the EMG-signal shows that relevant information

occurs only in ranges above 5-10 Hz. In experiments on motor research

artifacts are expected in very low frequency ranges. The movement artifacts

will appear according to the rhythm of the movement. With movements like

running, bicycling, rowing or other cyclical movements, the velocity of the

movement usually ranges around a few hertz. This is an important fact

because the frequency ranges of the source signal and the drop-in do not

cross over. Moreover, from the crosstalk of signals, it cannot be determined

which parts of the signal can be attributed to the source signal. The filtering

of power supply ripples in the 60 Hz range of the EMG-signal

characteristics would cause greater problems. The signals overlap

completely in the frequency range. The necessary filtering process will cut-

off informative parts from the source signal. These filters must be equipped

with especially steep transfer characteristics in order to keep errors as low

as possible when a filtering cannot be avoided by employing other methods.

5.2 Signal Conversion

The objective of an A/D converter is to determine the output digital

word for a given analog input. The digital representation of a continuous
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analog signal is discrete in both time (predetermined by the sampling rate)

and amplitude (determined by the number of bits in a sampled data word). A

variety of circuit configurations are available for converting signals between

the analog and digital domains. It is beyond the scope this work the

investigation of the different attributes of A/D converter circuits. Refer to

Chapter 7 where insights of the A/D converter used, are fully explained.

When several signals need to be converted, it is necessary to either

provide an A/D converter for each signal or use an analog multiplexer to

direct the various signals to a single converter. For most biomedical signals,

the required conversion rates are low enough that multiplexing the signals is

the appropriate choice.

Sp-type

Vin Vout

Tn-type
0

Figure 5.1: Analog Switch

Common analog multiplexers utilize either JFET or CMOS

transistors. Figure 5.1 shows a a simple CMOS analog switch circuit. A

number of these switches are connected to a single Vout to make a

multiplexer. The switches should operate in a break-before-make fashion to

ensure that two input lines are not shorted together. Other attributes to be
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considered include the on-resistance, leakage current, cross-talk, and

settling time.

5.2.1 On-Resistance

Although the resistance change is not large at higher supply voltages,

the ON-resistance of CMOS switches does vary with changes in applied

signal voltage. RON can introduce attenuation, and its variation can produce

distortion into the signal path. If the input impedance of the A/D converter

circuit is sufficiently high, distortion effects can be neglected. However,

excessively large impedance values can incur high noise levels.

5.2.2 Leakage Current

The dc OFF-isolation of an analog switch is determined by the

leakage current flowing between the source and drain terminals. However,

there exist various contributions to leakage current which are difficult to

quantify. The problem of leakage current gets worse at elevated

temperatures. Leakage tends to double with every 100 C increase in

temperature.

5.2.3 Cross-Talk

This is the amount of spurious signal crossover from the signal input

of an OFF-channel to the input of nearby ON channel. Crosstalk in analog
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switches is mainly due to capacitive between channels and is defined as the

ratio VIN ON / VIN OFF.

5.2.4 Switching Speed and Settling Time

Analog switches and multiplexers are commonly used to sample

several input signals for subsequent analog-to-digital conversation. The

maximum sampling rate of the switches is determined by the propagation

delay of the switch drivers and the time taken for the switch output to settle

to within the required error band of the A/D converter. Propagation delay is

quantified by the turn-on and turn-off times of the switch.

Settling time, from an arbitrary point on the analog output transition

(e.g., 10%) to within a specified percentage on the final value, is a function

of the signal source impedance, the switch ON-resistance and the

capacitance at the switch output.

5.3 Window Weighting

A signal observed for a finite interval of time (window) may have

distorted spectral information in the Fourier transform due to the ringing of

the sin (f)/f spectral peaks of the rectangular window. To avoid of minimize

this distortion, a signal is multiplied by a window-weighting function before

the DFT is performed. Window choice is crucial for separation of spectral

components which are near one another in frequency or where one

component is much smaller than another.
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The spectrum of a sine wave of infinite duration peaks at a single

frequency. But if the sine wave is observed over a finite interval, the single

spectral peak is spread into a range of frequencies. This is called spectral

leakage. Spectral leakage can be understood by noting that the finite

interval in effect multiplies the sine wave by a pulse of magnitude 1 during

the observation window and magnitude 0 elsewhere. In the frequency

domain, the broadened spectrum is the convolution of the delta-function

peak with the sin(x)/x spectrum of the pulse.

The discontinuities in the time domain result in leakage in the

frequency domain, because many spectral terms are needed to fit the

discontinuity. As the frequency moves from off-channel to on-channel, the

discontinuity vanishes. This can be used to advantage for signals whose

components are harmonically related; the window can be adjusted during

the sampling of after the fact to embrace an integral number of cycles, so

that all spectral peaks are essentially delta functions.

Since this is not usually possible, window weighting functions of

shapes other than rectangular are chosen to multiply the data so as to

minimize the effect of the discontinuity, by bringing the signal (and as many

derivatives as possible) to zero at the edges of the window. But if the

windowing causes too much of the signal to be lost, the loss of information

produces a spectrum with broader peaks and less definition. Window

selection requires a compromise between these effects.
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5.3.5 Window Function Parameters

Window features can be compared by a few parameters, as follows:

1. The width of the central peak (WCP) is measured by the

distance from the origin to either the first zeros or a specified dB

reduction from the peak.

2. The 6-dB point is a measure of the closest two frequencies

which can be resolved.

3. The highest sidelobe (HSL) and rate of sidelobe falloff (RSF)

measure how well a weak spectral peak will emerge from the

background of sidelobes from stronger terms in the spectrum.

4. The equivalent noise bandwidth (ENBW) is a better measure of

spectral sharpness than the width of the central peak alone. The ENBW

specifies how well the window function concentrates spectral

information.

Name: Rectangular Hamming Blackman

WCP 2.0 5.0 (zero) 7.0 (zero)

6-dB point 1.21 1.81 2.35

HSL -13 -43 -58

RSF -6 -6 -18

ENBW 1.00 1.36 1.73

Table 5.1 : Numerical characteristics of common window functions.
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5.4 Spectrum Analysis

The basic idea of spectrum analysis is to determine the frequency

content of a signal; that is, if the signal is represented as a sum of sinusoids,

what frequencies are present and what are their amplitudes?. Characteristic

features which are entirely obscured in the time domain often become

explicit in the frequency domain. In essence, the Discrete Fourier

Transforms (DFTs) is simply a mapping of one ordered set of N complex

numbers (time domain) to a different ordered set (frequency domain). DFT

are important tools in digital signal processing; they are used to compute the

Fourier transform with discrete frequency intervals.

The precise definition of the DFT is

N-1

X(k)= f x(n) e-nk/N

n=O

5.1

where n is used as the sequence rmember index (sample number) in

the input discrete signal and k as the index of the transformed signal. DFT's

are thus computed by a series of multiply-and-add steps. In each case, the

finite series is a sufficient and a unique representation of the sampled signal

or spectrum. The finite sum is sufficient because of the sampling: both the

signal and its spectrum are repeated or aliased, hence there is no need to
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carry the sum beyond the edges of the window in time or the interval in

frequency. The uniqueness follows because the complex exponential

function, exp(j2m nk/N), is orthogonal, even over the finite interval.

A DFT computation involves multiplication by an exponential and

integration (summation) over time, as in Equation 5.1. A separate

summation is required for each frequency point in the spectrum. With N

terms to the sum and N spectral points, N2 multiplications are required.

Multiply time is, therefore, a serious limitation. For example, suppose that

the software multiply time of a microcomputer is about 100 s. A 1,000-

point transform, done directly, takes 10-4s x 103 = 0.1 s, for each point in

the spectrum, and must be repeated 1,000 times for a full spectrum (about

100 s overall). This would make the real-time Fourier transform unrealistic.

Therefore, straightforward evaluation of DFT is excessively time-

consuming, but Fast Fourier Transforms (FFTs), among the most powerful

general-purpose DSP algorithms, provide a means of greatly speeding up

DFT computations.

The faster algorithm due to Cooley and Tukey (1964), and its

clones and variations, have come into universal use and are generically

called the FFT-abbreviation of Fast Fourier Transform. FFT algorithms

reduce the N-point FT to about (N/2)log2(N) complex multiplications. Once

the multiply time becomes comparable to CPU instruction cycle time, the

multiply bottleneck is removed. But the potential is clear: high real-time

bandwidth is within reach with a modest hardware investment. The FFT,

like filtering, becomes a key real-time DSP application.
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Algorithms in which the decomposition is based on splitting the

sequence x(n) into smaller sequences are called decimation-in-time

algorithms (DIT). The principle of decimation in time is presented below for

N equal to an integer power of 2. We can consider, in this case, X (k) to be

formed by two N/2-point sequences consisting of the even-numbered points

in x(n) and odd-numbered points in x(n), respectively. Thus, we obtain

X(k)= x(n)W" + Xx(n)W"k
n=2p+]. n=2p

5.2

where

W"k =- j2nnk/ N

5.3

It can also be written as

N/2-1 N12-1

X(k) = x(2p)Wk + Xx(2p + 1)W 2P+1>k

p=o p=o

5.4

But W = WN/ 2 and consequently can be written

N2-1 N12-1

X(k)= X x(2p)WN1 + N x(2p +1)W = Xeven(k)+W Xodd(k)
p=o p=

5.5
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After the two DFT's are computed, they are combined to give the

DFT for the original N-point sequence. It can be proceeded further by

decomposing each of the two N/2-point DFT's into two N/4-point DFT's,

and so forth. Finally, the computation is reduced from the N-point DFT to

the computation of the 2-point DFT and the necessary additions and

multiplications.

Is not in the scope of this work to explain in detail the

implementation of the FFT algorithm (butterfly). The reader is referred to

Chapter 7, to verify the application of the algorithm to the EMG signal

feature extraction.
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Chapter 6: ARTIFICIAL NEURAL NETWORKS

Adaptive interfaces are a natural and important class of applications

for artificial neural networks (ANN). When a person must provide high

bandwidth control of a complex physical device, a compatible mapping

between the person's movements and the behavior of the device becomes

crucial. With many devices the mapping is fixed and if a poor mapping is

used, the device is difficult to control. Using adaptive nature of ANN, it

may now be possible to built device interfaces where the mapping adapts

automatically during a training phase. Such adaptive interfaces would

simplify the process of designing a compatible mapping and would also

allow the mapping to be tailored to each individual user.

The key features of ANN in the context of adaptive interfaces are the

following:

1. Neural networks learn input/output functions from examples

provided by the user who demonstrates the input that should lead to a

specific output.

2. Adapting the interface to the peculiarities of a new user is simple.

The new user has only to create example data to retrain the network.

3. Once trained, the network run very quickly during the association

or classification phase in the feedforward mode.
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6.1 Biological Neurons and their Artificial Models

A human brain is composed of approximately 1011 computing

elements called neurons. They communicate through a connection network

of axons and synapses by means of electrical impulses. The Central Nervous

System (CNS) can be considered a densely connected electrical switching

network conditioned largely by biochemical processes. The vast neural

network has an elaborated structure with very complex interconnections.

The input to the network is provided by sensory receptors. Receptors deliver

stimuli both from within the body (body positioning, pain receptors), as well

as from sense organs (tactile, olfatory, etc.). The stimuli are in the form of

electrical impulses that convey the information into the neural network for

further processing. As the result of it, the effectors are controlled and give

human responses in the form of diverse actions.

Central

Nervous

Systern

Sensory Mater

Organs Intemnal Organs .

Figure 6.1: Schematic Diagram of Central Nervous System (CNS)
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As we can see in Figure 6.1 The information is processed, evaluated

and compared with the stored information in the CNS.

6.1.1 Biological Neuron

The CNS is composed of elementary cells called neurons. A typical

neuron has three mayor regions: the cell body or soma, long fibers that

serves as transmission lines called axons and structures through which are

connected to other neurons called dendrites. The axon-dendrite contact

organ is called synapse. The synapse is where the neuron relays its signal to

the following neuron in the neural path. The interneuronal transmission

even when ultimately is electrical, it was based on the release of chemical

transmitter at the synapse. Thus, terminal boutons release the

neurotransmitter that affects the receiving neuron. The receiving neuron

either generates an impulse to its axon, or produces no response. The neuron

is able to respond to the temporal and spatial summation of its inputs at any

given time. This response is generated if the total potential of its membrane

reaches a certain level. Since a synaptic connection can either cause an

excitatory or an inhibitory reaction of the receiving neuron, it is practical to

assign positive and negative unity weight values, respectively, to such

connection. After carrying a pulse, an axon fiber is in a state of complete

nonexcitability for a certain time called refractory period. For this time

interval the nerve does not conduct any signal, regardless of the intensity of

the excitation.
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The above discussion is extremely simplified when seen from a

neurobiological point of view, though is valuable for gaining insight into

the principles of "biological computations".

6.2 Error-Back Propagation

The error-back propagation method is a learning procedure for

multilayered, feedforward neural networks. By means of this procedure, the

network can learn to map a set of inputs to a set of outputs. The mapping is

specified by giving the desired activation state of the output units (the target

vector) for each presented state of the input units (the input vector).

Learning is carried out by iteratively adjusting the coupling strength in the

network so as to minimize the differences between the actual output state

vector of the network and the target state vector. This technique is called

supervised learning.
input layer

X i

01 hidden layer

output layer

69kJ 0k

X5 - 0

X64

Figure 6.2 Multi-layer Prceptron
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During the learning process, an input vector is presented to the

network and propagated forward through the layers to determine the output

signal. The output vector is then compared with the target vector resulting

in an error signal, which is back-propagated through the network in order to

adjust the coupling weights. This learning process is repeated until the

network responds for each input vector with an output vector sufficiently

close to the desired one.

The network topology chosen was the feedforward variety with one

hidden layer and trained using backpropagation. Here we consider a three-

layered network consisting of a layer of input units (presented by x), a layer

of hidden units (y), and a layer of output units (o). See Figure 6.2. In a

feedforward network, each unit has an activity level that is determined by

the input received from units in the layer below.

The total input, xi, received by unit jth is defined to be

N

net. xiv i +
i=1

6.1

where xi is the state of the ith unit and vji is the weight on the

connection from jth (hidden) to the ith unit (input), and hj is the threshold or

bias for unit j. This bias can be conceived of as a coupling to a unit with

full activation, and is in practice treated just like another weight. The

network is initialized with small random coupling strength. The lowest
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layer contains the input units and an external input vector is supplied to the

network by clamping the states of these units. The state of any other unit in

the network is determined by its activation function. Many activation

functions can be used. The classical monotonic nonlinear function of its

total input was used. The general formula for the activation f(net) of each

unit in the network (except for the input unit whose activation is clamped by

the input vector) is given by:

1
f (net j)= _ n

1+e

6.2

Among the different error functions that can be used, it was chosen

the sum-squared error which is simply the sum of the squared difference

between actual and desired output activities. The total error is given by:

2 c=1 j=1

6.3

where c runs over all cases (input vectors with their corresponding

target vectors). Nc is the total number of cases, zj is the actual value of

output unit j, given the input vector, Nz is the total output of output neurons,

and t is the target value of unitj.
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The delta training rule can be formally derived for a multilayer

perceptron. Let us assume that the gradient descendent search is performed

to reduce the error E through the adjustment of weights as follows

Awk = - E

Dwkj

6.4

For each node in the output layer o, k=1,2,..,K, we can write

J
nek = yJWk +hk

j=1

6.5

It is obvious that the gradient descendent aE/a wkJ depends only on

the netk of a single neuron, since the error at the output of the k'th neuron is

contributed only by the weights wkj. Thus using the chain rule

a (nntk)
~wkj -dnetk) JWkj

6.6

The error signal term 6 called delta produced by the k'th neuron is

defined for this layer as follows

tne'k) (netk)

6.7
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The second term of the product in Equation 6.6 is the derivative of

the sum of products of weights and patterns.

Then, for a fixed pattern at the input we obtain

D(netk )

~wkj

6.8

The combining Equations 6.7 and 6.8 we obtain

Wk ,f(netk)Yj

6.9

or we may express the weight adjustment as

Awk 1f(netk)Yj

6.10

Expression 6.10 represents the general formula for delta

training/learning weight adjustments for a single layer neuron or for the

outmost multilayer perceptron. To adapt the weights, the error signal term

delta introduced in 6.7 needs to be computed for the k'th neuron.
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f(netk) Dok (netk)

6.11

Denoting the second term as the derivative of the activation function

C1

k =f' k(netk )
3(netk)

6.12

and noting that

6.13

also rewriting formula 6.11 as follows

Df(netk) = -(dk -Ok)fk (nek)

614

The derivative of the activation function can be solve as follows

fk' (net) = k( 1 -Ok )

6.15
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The final formula for the weight adjustment of the single layer

network or the outmost layer of a multi-layer perceptron is

Awkj = T1O( - ok )yj(dk - Ok)

6.16

where (t +1) epoch will adjust the coupling strength as follows

6.17

Layer with neurons whose outputs are not directly accessible are

called internal or hidden layers. In the following considerations it will be

derived the general expression for the weight increment Avji for the hidden

layer of neurons.

JE

6.18

To minimize E, each coupling strength is updated by an amount

proportional to the partial derivative of E with respect to that coupling

strength.

E 3E 3(netj)

avj 3ne ) avj

6.19
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The error signal term 5 called delta produced by the j'th neuron is

defined for this layer as follows

f(neti) 
(net;)

6.20

The second term of the product 6.19 is the derivative of the sum of

products of weights and patterns. Then, for a fixed pattern at the input we

obtain

D(net 
_

6.21

We may express the weight adjustment as

Avi = 1S f(netj)xi

6.22

where the error signal 6 can be expressed also as

DE ay1
fcnet,> y (net J

6.23
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where the first term can be expressed in the compact form

DE K
- 5f (nek )W kj

Iy k=1

6.24

and the second

y =f' j(net)
D(net1 )

6.25

combining equations 6.24 and 6.25 and rearranging we obtain that

the weight adjustment for the hidden neuron now becomes

K

Av;i = ifI' (net )x X ,f(netk)wkj
k=1

6.26

where (t +1) epoch will adjust the coupling strength as follows

v' j_=v +Avjj

6.27
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The error-back propagation algorithm performs the gradient

descendent on a hyper surface in coupling strength space, where at any

point in that space the error of the performance is the height of the surface.

The method is not guaranteed to find the global minimum of E since

gradient descendent may reach a local minima, where it will stay

indefinitely.

In practice, back-error propagation has proven to be a suitable

algorithm in establishing a set of coupling strengths that enable the network

to perform certain input-output mappings.
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Chapter 7: METHODS

It is now apparent that the entire procedure of acquiring an observable

EMG signal consists of a catenation of processes, each of which modifies,

in some respects, the amplitude and frequency characteristics of the

observed signal This section will describe the procedure used to approach

each of these processes at the same time that their most noticeable aspects

will be overview

D SGNAL

Pr-pifer F~ilerin _Wusto ~ fPreto

Figure 7.1: Block diagram of the system

It is important to remember that the characteristics of the observed

EMG signal are a function of the apparatus used to acquire the signal as

well as the electrical current which is generated by the membrane of the

muscle fibers.
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7.1 Surface Electrodes Design

All the surface electrodes traditionally described required an

electrolyte paste to establish and maintain contact between the electrode and

the skin. Recent advances in solid-state electronic technology have made

possible to record surface biopotentials from electrodes that can be applied

directly to the skin without an intermediate layer of electrolyte paste. The

significant feature of these electrodes is a self-contained, very high input

impedance amplifier.

R8

Cd

Figure 7.2: Metal-Electrolyte Equivalent Circuit

A metal electrode placed against the skin establishes some contact

with the skin; and even though there is no metal-electrolyte interface, an

equivalent circuit to that of Figure 7.2 still exist. In this case the impedance

is primarily resistive, but there is capacitive component resulting from the

metal plate contacting the stratum corneum (outermost layer of the skin).

The stratum corneum has a relatively high impedance, but the deeper layers

of the skin have a higher conductivity. Thus, a capacitor still exists with the

electrode and dermis as the plates and the stratum corneum serving as the
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dielectric. The spacing between the plates of this capacitor is much greater

than it is for the double layer of charge of the electrode-electrolyte interface,

so the capacitance is considerably lower than the capacitance Cd for wet

electrodes. A resistance, which is much higher than for the electrode-

electrolyte case, is in parallel with the capacitor due to the resistance of the

stratum corneum. The series resistance Rs represents the resistance through

the body. In addition, if there is any moisture (such as perspiration) on the

skin surface, it can establish a half-cell potential, although this is usually

neglected. Thus the overall effect of this equivalent circuit is primarily a

resistive one, with the resistance being several orders of magnitude higher

than observed for wet electrodes. By putting an impedance-converting

amplifier on the electrode, we can detect the biopotentials, even though is

has a very high source impedance, with minimal or no distortion. The input

impedance of the amplifier on the electrode must be at least of 109 Q for

good results.

The electrode built itself consist of two 1/2" x 1 1/8" tin plated

surfaces with an inter-detection space of 1/4" . The greater the inter-

detection surface spacing, the greater the susceptibility of the electrode to

detecting measurable amplitudes of EMG signals from adjacent and deep

muscles and, therefore, will render a lower bandwidth. A rule of thumb is

that the electrodes will detect measurable signals from a distance equal to

the inter-detection surfaces spacing. However, the anisotropy of the tissues

beneath the electrode may increase the sensitivity of the electrodes along the

surface of the muscle creating cross-talk.
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The length of the leads to input of the amplifier (actually, the first

stage of the amplification) should be as short as possible and should not be

susceptible to movement. This may be accomplished by building the first

stage of the amplifier (the preamplifier) in a small configuration which may

be physically located near (within 4") of the electrode. Following this

criteria, an integrated-circuit microelectronic impedance-converting

amplifier was mounted inside a shielded enclosure nearby the bipolar

electrode and its inputs connected to their plates. The back surface of the

electrode was mounted on an elastic band that could be strapped to the limb

and obtain the EMG signal from the muscle under study. A twisted-pair of

fine leads (shielded) provides the connection to the power supply ( 12

volts) and signal conditioning hardware. Shielded twisted pairs are

recommended for frequencies below 100 kHz.

Typical settings and characteristics of the instrumentation amplifier are:

a. Gain: such that it renders the output with an amplitude of approximately

1 Volt.

b. Input impedance > 1012 ohms resistance in parallel with 5 pf

capacitance.

c. Common mode rejection ratio: > 100 dB

d. Input bias current: as low as possible (typically less than 50 pA)

e. Noise < 5pVRMS

f. Bandwidth (3 dB points for 12 dB/octave rolloff):

Surface electrodes 50-500 Hz
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The amplifier circuit used in the electrode was the Analog Devices

AD624AN Integrated Circuit. The AD624 is a monolithic instrumentation

amplifier based on a modification of the classic three-op-amp

instrumentation amplifier. Monolithic construction and laser-wafer-

trimming allow the tight matching and tracking of circuit components and

the high level of performance that this circuit architecture is capable of. It is

primarily designed for use on high resolution data acquisition systems. The

AD624A provides an outstanding combination of ultra-low noise (0.2pV.

Vp-p 0.1 Hz. to 10 Hz), high gain accuracy, low gain temperature

coefficient, and low non linearity (0.001% max.). In addition, the AD624A

has an input impedance of 109 2, an input offset voltage drift of less than

0.25 V/0 C, output offset voltage drift of less than 10 pV/0 C , and a high

common mode rejection ratio of above 100 dB at G=10. This

instrumentation amplifier IC does not required the use of external

components. Pin programmable gains are provided on the chip. This feature

was highly desirable since one of the mayor objectives was the construction

of a self contained, light weight electrode. However, a single high precision

resistor was included to set the AD624's gain to a G=35 20%. The gain is

set by choosing the value of Rg from the equation

40kG2
Gain= +1

Rg

7.1

In addition, decoupling capacitors were included on the PC-board

layout, to eliminate coupling between circuits and keep power supply noise

from entering the circuit.
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Although dry electrodes offer the advantage of not requiring

electrolyte paste, they embody certain disadvantages as well. For the metal-

type dry electrodes, care must be taken so that any half-cell potentials that

might exist do not saturate the amplifier. Another serious source of artifact

in dry electrodes is a result of the very-high-input impedance amplifier.

Pickup of voltages from electric fields in the vicinity of the electrode and

the amplifier input can produce unwanted interference. It is for this reason

that it is so important for the amplifier to be located directly at the electrode,

since a lead wire connecting the amplifier to the electrode is all the more

susceptible to this kind of pickup. Static electricity generated in dry

environments, especially when the subjects are in the vicinity of fabrics

made from synthetic fibers, can produce serious artifacts with this type of

electrode. Although the AD624 can withstand a value of 2.5V

continuously, momentary overloads of lV are not expected to harm the

device.

7.2 Antialiasing Filtering

Following the reviewed bibliography and through personal empirical

results, the EMG signal obtained by surface electromyography is restricted

to the spectrum between 30 Hz and 500 Hz. The frequency spectrum below

that range is contaminated with noise originated mainly by artifact effects

such as electrode displacement. The rest of the spectrum above 500 Hz is,

also, widely contaminated with different sources of noise as it was

described in earlier sections.
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A bandpass filter was designed not only to obtain the EMG

information without spurious signals but, also, to avoid the aliasing of

higher frequencies on the desired spectrum. For that purpose, it was decided

to build a Butterworth filter since it offers the flattest passband in

combination with a moderately fast initial falloff and reasonable overshoot.

Probably the simplest-second order active filter a designer can

implement as a building block, is the Sallen-Key circuit. In general, this

circuits consist of two cascaded RC sections driving a high-input-

impedance non-inverting amplifier. Feedback from the output to one of the

resistors or capacitors bolsters what would normally be a drooping, highly

damped, cascaded RC response. This positive feedback provides extra gain

near the cut-off frequency to give value of damping required. In addition to

this feedback, a part of the voltage output is also fed back to the negative

terminal via resistors R and R. Strictly speaking, this is really a mixed

feedback topology containing both positive and negative feedback. Sallen-

Key second-order low-pass filters can usually be redrawn into a passive

network with an active source that look like Figure 7.3

R1 R2 ea= 1
V

C1 -- C2

e-in i2

Ke-a= K

e-out

Figure 7.3: sallen-Key equivalent circuit
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Since the network has to behave identically for any reasonable voltage at

any point, it is convenient to let ea=] V and eout=Kea=K.

Solve for i1 ,i2 , and i3 and sum them:

1volt
is -=- jC2

Zc2

7.2

v=1+R2i =1+j C2R2

7,3

. e- v

1 Ri

7.4

i2 =(K-v)joC1

7.5

Then i + i2 i can be expressed as:

e-v
i +(K - v)jmC1 = J C2
R1

7.6

ei= jR +C2 +v -(K - v)jwR1C1

7.7
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ein= (1o) R1C1R2C2+(jo)[RC1l+ R2C2+(1- K)RlCl]+1

7.8

Letting S=jw and dividing by RlR2ClC2

et- R1R2C1C2

ei 2 1 + 1 +(1-K) 1 1R1R2C1C2
2 C 1 1 C 1 R 2 C 2 ]1 2.

7.9

A low-pass filter circuit was implemented using the equal-

component-value technique. It is based on forcing both resistors to identical

values and both capacitors to identical values. Since resistors and capacitors

are identical in respective values design considerations are trivial. The gain

of the amplifiers controls the damping (d) by the formula Gain =3- d. In

addition, it is simple to convert the circuit to an identical high-pass filter,

just by switching the capacitors and resistors to their opposite positions. In

this case, since it was pursued a faster initial fall-off, different resistors

where used. This involved the tradeoff of having an initial hump.
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Characteristics of the filters constructed are, as follows:

7.2.1 Low-Pass Section

Desired cut-offfrequencyfc 500 Hz.

Passband extending from f=0 to f =400 Hz., the attenuation O-dB

Stopband extending from fs=3.OkHz to fi=o , the attenuation 40 dB

Passband gain k = 3.4

Then

a min=4dB max =O.IdB

fc = 500Hz. fp=400Hz. fs=3000Hz

tog[(1 """"" -1) /(10""110 _ 1)]
n -

2log(f, / f,)

7.10

Then replacing and solving give us n = 3.78.

Then, the filter to be designed should be at least of a 4th order.

Given the use of equal-component-values the 3dB corner frequency is

obtained by:

1
f
fO2RC

7.11
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Then if

R=R1=R2=R3=R4=6.7K2 and

C=C1=C2=C3=C4=0.047gF,

fo = 505.4 Hz.

Passband gain of both low-pass sections is given by:

+ R3 +R7k=r1+J 1+-~L
R4 R8

for R3=R7=33K2 and R4=R8=39Kg

k = (1.84)2 = 3.41

Actual values obtained: k = 3.4

where k=3-d, then d=3-k for each of the sections

d=1.15 (slightly underdamped)

then for equal-component-values each low-pass section has

11
Q= -=0.866
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7.2.2 High-Pass Section

Desired cut-off frequency f 20 Hz.

Fassband extending from fp=3O Hz to f=oo Hz., the attenuation O.dB

Stopband extending from f=O to fs=1 Hz, the attenuation 20 dB

Passband gain k = 4.0

Then

a min= 20dB ( max = dB

fc = 2 0 Hz. fp= 30 Hz. fs= 10 Hz

og(1l0""" -- 1)1 (1O«"I1 -1)]

2log(f, / f,)

7.12

Then replacing and solving give us n = 3.80.

Then, the filter to be designed should be at least of a 4th order.

The 3dB corner frequency is obtained by:

1

7.13

Then if

R1=R9=R13=52K2

R2=R1O=R14=39K
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C=C5=C6=C7=C8=0. 5pF,

fo = 23.5 Hz.

Passband gain of both high-pass sections is given by:

= 1+ R12 1+ R16
R11 R15

for R11=R12=R13=R14= 47KQ

k=(2.O) 2 =4.O

Actual values obtained: 4.5

One way of achieving an active band-pass response is by cascading a

low-pass with a high-pass filter. As was mentioned before, it was pursued

the design of a 4th order band-pass filter with a roll-off of -24dB per octave.

Then, it follows the cascading of two sections, low-pass and high-pass,

corresponding each to a 4 th order filter with a corner frequency of

approximately 50 Hz and 500 Hz, respectively. Each of this sections was,

also achieved by cascading two 2th order filters, either low or high pass.

This portion was intentionally left blank
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7.2.3 Amplification Section

A final amplification stage was included in the circuitry in order to

adjust the different channels to be sampled. A classical noninverting

scheme using a high-input impedance op-amp (LF353 JFET Input OP-

AMP) was approached.

The gain of this section is controlled by the variable resistor R17 and

is given by the formula

R16 -Av =1+ =R15+ R17

7.14

Amplitude response of the overall band-pass filter is shown in Figure 7.4
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7.3 Signal Acquisition

7.3.1 Sampling Considerations

The EMG signal was locally amplified, bandlimited and further

amplified to voltage levels in order to maximize the dynamic range of the

A/D converter. Signal from four identical electrode settings was fed into

respective channels of an analog multiplexer for proper routing into the A/D

converter circuitry.

The reasons beyond deciding on the number of electrodes is twofold.

First, it was desirable to obtain as much information as possible at any given

time from a single or multiple muscles. This would lead to the phase

analysis of different motor units groups in a single muscle. On the other

hand, analysis of synergic muscles involvement would also require the

obvious use of multiple electrodes.

Second, limitations on the data acquisition system to sample data at a

rate below 8 kHz, force to use this bandwidth in a more efficiently manner.

The A/D converter is a key component in data acquisition systems,

such as those found in digital audio systems, high accuracy measurements

and communications. The AID converter used in this research work is the

Motorola DSP56ADC16. It is a single chip, linear, 16-bit which employs

sigma-delta technology yielding a 96-dB dynamic range. Delta-Modulation

is based on quantizing the change in the signal from sample to sample rather
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the absolute value of the signal each sample. This is achieved by the use of

a low resolution A/D converter (one-bit quantizer), noise shaping, and a

very high over-sampling rate (64 times for the DSP56ADC16). High

resolution is achieved by a decimation process. One of the characteristics is

the absent of conversion control as successive approximation or flash

conversion technology provides. These A/D are always converting the

incoming signal and pumping serial data into the processor through the

serial synchronous port. The conversion is done at a rate of CLKIN/128,

which in the case of the DSP56ADC16, extends from 7812.5 Hz. (using an

oscillator of 1MHz) to 100 kHz (using an oscillator of 12.8 MHz) at 16 bit

resolution. As it can be seen, the lower range is still too high for a signal as

the EMG. Some strategy had to be undertaken to reduce the bandwidth.

The decision of using four channels will become apparent after

discussing the tradeoff involved between the sampling rate and number of

points acquired per window.

Signal acquisition must comply with the Sampling Theorem as was

described on Chapter 5: Signal Processing. The desired bandwidth sets the

minimum sampling rate. To avoid the aliasing of frequencies on the desired

spectrum, the sampling frequency fs must be a least

fs f Nyquistx 2

Frequency zooming or high-resolution frequency description can be

achieved by reducing the sampling rate or simply decimating the signal in
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the time-domain. On the other hand, higher sampling rates or time-

interpolation would lead to compression of the spectral information. Since

the EMG signal is confined to a bandwidth of 20 to 500 Hz then the

sampling frequency must be at least in the order of 1000 Hz. Therefore,

upon analysis of the different possibilities, it was decided to sample four

channels at a rate of 1,953 Hz each, by multiplexing the lowest sampling

frequency available (7,812 Hz).

Also, the signal must be divided up into windows, Tw, short enough

to ensure that individual features will not be averaged out in the Fourier

Transform. But Tw must be long enough to give adequate spectral

resolution.

In order to achieve real time operation, the computation time per

window, tFFT+ANN, must be much less than Tw, which is set by sampling

laws:

w= ts X ts > > tFFT+ANN

The window width is determined to be a compromise between the

number of frequency components that the FFT will describe, the speed of

the algorithm, and the available memory space.

A 256-data samples window

Tw = Npts x s 256 x 1/1,953 131 s
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Fresolution =f/ Npts = 7.6 Hz

If the calculation is not complete within much less than Tw, real-time

processing is not possible, and the computation would have to be done off-

line. Attempting to speed up computation by reducing the number of points

at the cost of reduced spectral definition does not help significantly.

In summary, an approach that not only solved the problem but also

improved the determination with accuracy of the EMG signal was essayed

successfully. Four memory buffers addressed incoming data from four

electrodes, in such a way the lowest sampling frequency available (7,812.5

Hz) would be equally divided into them. Following this procedure the A/D

converter allocated 256 samples of each electrode sampled at 1,953 cycles

per second. This was achieved by analog multiplexing the signals under

processor control, at a rate of 128 s from one channel to the next. A total

of 1024 samples was an adequate size of RAM usage. In this sense, the

highest EMG frequency component the FFT would be able to describe will

be in the order of 976 Hz with a frequency resolution of 7.628 Hz., which is

a significant improvement of the bandwidth. In addition, the availability of

four electrode locations provided a better option for system expandability

and flexibility.

The usage of an A/D converter which did not provide a means of

control of the sampling (start/end) and the need of multiplexing four

different channels cause a difficult problem. As was explained in previous

paragraphs, Sigma-Delta modulation A/D converters relies on a continuous
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analog signal to be sampled. This is because they are based on quantizing

the change in the signal from sample to sample rather the absolute value of

the signal each sample. Now, the signal multiplexing obviously creates a

discontinuity on the signal submitted to the A/D converter. The settling time

of the A/D converter was longer than the time any channel would be

asserted. This incongruency was manifested by meaningless data after the

sampling process. In order to comply with the sampling specifications stated

above, it was necessary to oversample the signal by a N number of times

and decimated by the same N.1 Following this approach, the signal will

appear to be sample at the specified rate but actually a higher number of

samples were acquired from the same channel and discarded all but the last

one, which was stored. After this was completed it was followed the

switching to the next channel. These extra number of samples acquired

served the purpose of maintaining the signal long enough exposed to the

A/D converter to become stable in the digital domain. Now, the

oversampling of the signal without decimation would not solved the

problem since it obviously would imply a higher sampling rate which was

not desirable. The technique was applied for 2x oversampling and

decimation by 2, obtaining successful results.

7.3.2 Signal Windowing

Further digital signal processing was applied to the data acquired by

windowing techniques. As was described in Chapter 5, an equally spaced

1Notice that for any N number of signal oversampling and decimation will imply the same overall

sampling period.
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train of unit impulses constitutes an ideal sampling function. Multiplication

of a continuous signal by the sampling function yields an ideally sampled

version of the waveform, consisting of a train of impulses whose weights

correspond to the instantaneous value of the signal at the sampling

moments. Window weighting functions of shapes other than rectangular are

chosen to multiply the data so as to minimize the effect of the discontinuity,

by bringing the signal to zero at the edge of the window. But if the

windowing causes too much of signal to be lost, the loss of information

causes a spectrum with broader peaks and less definition. Window

selection requires a compromise between these effects. This section shows

the results of a sampling of a 100 Hz signal from one of the channels,

windowed by the three functions compared beforehand and represented in

the frequency domain.

Figure 7.7: Actual power spectrum o a 100 z sine wave.
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Notice that the spectrum of the sine wave over the finite period is spread

into a range of frequencies. This is called spectral leakage. This is more

evident when the rectangular window was used as is shown in Figure 7.7

The Hamming and Blackman windows seek to cancel the sidelobes by

adding terms in the Fourier series of the form

N/2

w(n) = a cos(2iunn /N)
0

7.15

The computational cost is slightly higher than using a rectangular

function. However, the more terms included for narrowing the peak in the

signal domain, the wider will be the spectral peak as is shown in figures 7.8

and 7.9.

Figure 7:Actual power spectum of a 100 z sine wave.
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From the discussion above, an obvious trade-off is involved between

spectral resolution against frequency leakage. AHamming window seemed

to be the best choice since it was pursued the highest possible frequency

resolution. Sidelobes frequencies tat would occur below -40 dB due to

spectral leakage would be almost irrelevant to the following signal

processing stage, the artificial neural network.

7.4 Fast Fourier Transform

Amacro was used which performed the complete Fast Fourier

Transform oncomplex data. The basic algorithm is the Decimation-in-Time

(DIT), Radix 2 FFT algorithm using 2bit fixed-point arithmetic. The

algorithm uses a sine-cosine look-up table for the FFT coefficients (twiddle

factors). The macro is called to perform the FFT of the 256-points of each of

the EMG data banks.
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All data and coefficients are complex, with the real part in X Data

memory and the imaginary part in Y Data memory. For an N point FFT the

data buffer requires N X Data and N Y Data memory locations. The

algorithm is performed "in-place", meaning that only one data buffer is

required for both input and output data. The input data is assumed to be in

normal (time-sequential) order and the output is in bit-reversed order.

The macro uses "twiddle factors" (cosine and sine tables) stored in

data memory. For maximum speed, the FFT macro performs a lookup table

operation to get new sine and cosine values for each group of butterflies. A

SINCOS macro was used to generate these tables at compiling time. For an

N point FFT, N/2 X Data and N/2 Y Data locations are required. Sine and

cosine values could be calculated in real-time to save data memory at the

expense of execution time.

7.5 Neural Network Interface

All four EMG signal data sets, already preprocessed by windowing

techniques and in the frequency domain, served as training data to the

neural network interface. Fifty isometric contractions at various joints

positions being represented by ten records each, were obtained from

different subjects. A total of five hundred EMG magnitude/hertz vectors and

three hundred interference patterns were submitted to be learned by an off-

line multilayer-perceptron algorithm running on a DECstation 5000/125

platform. Once the network converged to desired values and the error was

considered to be sufficiently small, the weights obtained were used in a
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second program executed on the D5P56001 Application Development

Module.

HOST COMPUTER

OSCILLLSCOPE EEE-488 GPIB

SENSOR

M56001

MULTIPLEXING

DSP DEVELOPMENT MODUL

PRE-AMP ANTI-ALIASING
FILTERING

AMP

Figure 7.10: Overall system configuration

This program performed the uploading of the obtained weights and

later on the acquisition, windowing and Fourier transformation in the same

fashion as the first one. In addition, the data obtained was feedforward

through the network using the weights, therefore, obtaining the target values

prior learned. See Figure 7.10. Notice that in terms of implementation,

Equation 6.1 is very well suited to be coded and executed by a DSP

processor with minimum computational cost, given the availability of the

MAC (Multiply and Accumulate) instruction in one bus cycle.

This macro used a sigmoid function lookup table for the activation

function. This table was also calculated and downloaded to RAM prior to
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program execution. The result of the neural-net was output through the D/A

converter and acquired by a storage oscilloscope in sync with the incoming

EMG data. At 10.25 MIPS the D5P56001 execute this code at 140.75 is.

per iteration at the expense of 93% of the time in data acquisition (131.07

ms.). The prototype achieved real-time operation by delivering 7.6 results

per second corresponding to four incoming signal's discrimination.

Pseudocode is given for both assembly programs written on the

AD556000 Development Module.

1) Signal Acquisition:

Open 4 output files pointers

Setup parallel port to output for signal multiplexing

DO RECORDS ,end_records

Setup rO,nO,mO for four circular buffers

DO 256 POINTS,endacq

DO 2 OVERSAMPLING ,end_sampling

Acquire data from A/D converter

Scale down n times

Store result and advance pointer

endsampling

next channel

enacq

Clear Imaginary buffer

Multiply buffers by Hamming Windows function

Get FFT
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Get Power

Save buffers in file output pointer

endrecords

end.

2) Signal Discrimination

Open 2 input files pointers for hidden weights and output weights

Setup parallel port to output for signal multiplexing

start:

Setup rO,nO,mO for four circular buffers

DO 256 POINTS,endacq

DO 2 OVERSAMPLINGendsampling

Acquire data from AID converter

Scale down n times

Store result and advance pointer

end-sampling

next channel

end_acq

Clear Imaginary buffer

Multiply buffers by Hamming Windows function

Get FFT

Get Power

Feedforward through Multilayer-perceptron

Output D/A

back to start:-

105



Chapter 8: RESULTS

In order to expedite the process of acquire data, verify its integrity,

label each of the records, train and test the neural network, an interface

program was designed and implemented. It consists of a C-language

program running under DOS operating system with some modules running

also under UNIX. It was named Neural Integrated Environment. The NIE

is capable of accepting user's network topology and learning parameters,

and handling a small database which contains subject information,

electrodes position, and date and notes about the test. It is also capable of

interfacing the ADS56000 Development Module to acquire data (by running

remotely the acquisition program) and display the four power spectrum

distributions. Each of the records being acquired, can be labeled with a

target value or admitted the suggestion the NIB gives the user based on

previous experience. After the labeling procedure in complete, the NIE

starts the process of learning showing the course of convergence in a

graphic manner. The process runs automatically until the error is

sufficiently small or the number of iterations are completed, in which the

weights are subsequently saved . Finally, the NIE can interface -through the

second program- the ADS56000 module, downloading the generated

weights in proper format and start\quit the recognition of the EMG signal.
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8.1 Experiment I: Single Frequency Recognition

In order to validate the pattern recognition of an EMG signal, which

as we have seen, contains multiple frequencies in the spectrum domain, a

much simpler experiment had to be performed in advance. This is the

recognition of a simple sine wave of a predetermined frequency within the

spectrum of the EMG signal. For that purpose, different frequency signals

were input, in replacement of the EMG surface electrodes, and acquired

through the system for later neural network training. Figures 8.1 through

8.5 show the actual frequency patterns acquired and submitted to the

network training.
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Figure 8.1 Frequency Pattern Number 22 (100 Hz)
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Figure 8.2 Frequency Pattern Number 42 (200 Hz)
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The neural network was trained with 87 frequency pattern of 64

dimensions. Each dimension represents the frequency coefficient with a

resolution of 7.6 Hz. Characteristic patterns of the five pure frequencies

with which the network was trained are shown in Figures 8.1 through 8.5

Figure .: Testing the Neural Network. (See Text)

Figure 8.6 shows t series wih perfectly match each other after

network training, "Series 1" represents the desired output while "Series 2"

represents the result of the network testing. This means, as an example, that

for frequency pattern 22(100 Hz), 42 (200 Hz), 62 (300 Hz), and 82 (400

Hz), it would be desirable too btain network output of 0.1. Meanwhile, for

sample number 52, representing a frequency of 250 Hz, the network output

would be forced to output avalue=0.9. Frequency values in between the
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frequencies submitted to the network are expected to be interpolated an

output accordingly. Figures 8.7 through 8.12 show the actual value obtaine

through an storage oscilloscope of the frequency input to the network an

its output.

N 2m. 4. V6 ' K

II

Figure 8.7: Frequency: 100Hz, NN Output: 0.1

- c~s 2V A 2m 455 V VERT ---

ICh12 I 280 H

CH2d

Figure 8.8: Frequency: 200Hz, NN Output: 0.1
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Figure 8.9: Frequency: 246Hz, NN Output: 0.1-0.9

CHI A d

Figure 8.10: Frequency: 250Hz, NN Output: 0.9
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Ct1 i V A 2mo 4. 56 V VERT

Figure 8.1: Frequency: 300Hz, NN Output: .1
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144

Figure 8.13: Frequency: 400Hz, NN Output: 0.1

This sequence of figures represents the time varying input signal on

the bottom half of the oscilloscope screen while on the top half the output of

the neural network in real time. It can be seen that the network response is

positive for the bandwidth between approximately 245-265 Hz while not for

other frequency under the learned spectrum. No conclusion about network

response speed can be drawn from this experiment.
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8.2 Experiment II: Multiple Frequencies-EMG Signal Recognition-.

The second experiment about to be described represents one of

multiple have performed of the same nature. All of them sought the same

purpose: the recognition, in real time, of an EMG signal in relationship

with a compatible muscular activity, from some predetermined

interference patterns. A typical case will be discussed prior to show results

of reproducibility among the different trials.

A total of five hundred EMG -64 dimensions- vectors and three

hundred interference patterns were submitted to be learned by an off-line

multilayer-perceptron algorithm. This program, given the dimension of the

training data, was run on a DECstation 5000/125 computer under UNIX

operating system. The EMG data was obtained from a single subject's

biceps muscle per experiment since it was intended the network learns its

own signal signature. The neural network used an error of 0.003 to avoid

memorization of the patterns, and a learning rate of 0.4 to ensure a smooth

convergence. The whole training set was exposed to the network less than

2,000 times (iterations) in order to achieve the desired error. The weights

obtained from the learning process were used on the final program executed

on the DSP56001 Application Development Module.

Figure 8.14 shows a graph of testing data feedforward through the

network. In the graph, "series 1" shows the expected values while "series 2"

represents the network output. It is significant the close relationship

between both series.
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Figure 8.14: Relationship between desired and obtained output

Following the same criteria from the previous experiment, it will be

shown typical patterns of EMG signals which were submitted to be learned

and its correspondent input-output pair traces in real time. Notice that since

the EMG is a non-periodic signal the frequency patterns varied accordingly

with a throuput of 7 values per second. It is important, though, to verify the

overall network output changes within an acceptable range for the muscle

activity under test. Figures 8.15 through 8.20 represent typical patterns in

the time, frequency and neural net output domain of the EMG signal at

different levels of muscle contraction. Figures 8.21 through 8.24 represent

patterns from the same muscle source at resting position when exposed at

two interference patterns.
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Figure 8.17: Typical frequency pattern of muscle at 50 % contraction
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Figure 8.18: Input: EMG at 50% of contraction. NN Out: Medium activity.
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Figure 8.19: Typical frequency pattern of muscle at 90 % contraction.
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Figure 8.20: Input: EMG at 90% of contraction. NN Out: High activity.
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Figure 8.25: Fast muscle contraction. NN response within one frame acquisition.

It can be easily verified that when the input signal was a "pure"

myoelectric signal, the network response was within the range of 0.2 to 0.9

depending of the degree of muscle firing (Figures 8.15-8.20). When given

the condition of muscle at resting, was input an interference pattern, the

network respond by either ignoring the spurious signal (Fig 8.23-8.24) or at

a very minor level (Fig 8.21-8.22). This response characteristics were set at

network training time and obtained at testing execution time. Figure 8.25

shows a very fast twitch muscle EMG signal to verify how fast the system

respond to the signal. It can be verified that given a response of

approximately 140 is, the system react to the input signal within the first

pattern recognized.
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Chapter 9: Summary and Future Research

This work has been studied the EMG fingerprint as a mean of

controlling a functional neuromuscular stimulation device. This study is

based, up-to-date on the power spectra features of the myoelectric signal

and using this information to train an artificial neural network structure. In a

second stage the weights, obtained as a consequence of the multi-layer

perceptron learning, were used to recognize the signal in real-time

operation.

It can be verified through the results obtained that EMG signal

recognition finds a natural match to highly nonlinear mapping ANN

algorithms. Indeed, ANNs algorithms have been shown to be able to

robustly perform time-series prediction and classification problems for other

nonlinear and complex relationships. The successful implementation of the

algorithm in real-time, makes it more attractive and closer to the real

environment.

Although it was obtained very promising results over realistic EMG

signals, it is not proven it will perform adequately on every possible

environment. The present inclination of the research is to find a mean of

classifying the signal to be trained in a more efficient manner. The continue

increase in amount of data to process, makes that target the obvious next

step. Fuzzy clustering of the training data by reducing the 64 dimensions

into n number of pattern classes this set involves, has shown good

preliminary results.
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Long terms goals include:

s Improvements on the signal sensor: Probably the weakest subsystem is

the actual sensor given to all the circumstances they are exposed.

Intrafascicular electrodes have shown a much better performance in

terms of signal pick-up, motion artifacts, tissue filtering and cross-talk

characteristics. They introduce a series of disadvantage such as decrease

of sensitivity because of scar tissue formation and power degradation.

They represent, though, a very attractive idea to be able to limit spurious

signal on behalf of the EMG.

Stimulation Device: Development of a functional neuromuscular

stimulator array and interface to the system output. Study of synergic

muscles activity in normal and disabled subjects. Application of

system to last population.

System Integration: Implementation of the system in VLSI: Reduction

of the size of the system is mandatory for portable operation.

System Automation: Development of an adaptive learning and self

contained system which adapts itself to the subject by the only means of

its usage. It should be able to distinguish effectively EMG patterns from

interference patterns without have been exposed to them.
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APPENDIX A: DSP56000/1 Digital Signal Processor

A.1 Microprocessor Features

The DSP56000 and DSP56001, user-programmable, CMOS digital

signal processors (DSPs), are optimized to execute DSP algorithms in a few

operations as possible while maintaining a high degree of accuracy. The

architecture has been designed to maximize throughput in data-intensive

DSP applications. This design has resulted in a dual-natured, expandable

architecture with sophisticated on-chip peripherals and general-purpose 1/0.

The architecture, on-chip peripherals, and the low power consumption of

the DSP56000/DSP56001 have minimized the complexity, cost, and design

time needed to add the power of DSP to any design.

Being read-only memory (ROM) based, the DSP56000 is factory

programmed with user software for minimum cost in high-volume

applications. Being random-access memory (RAM) based, the DSP56001 is
an off-the-shelf processor designed to load its program from an external

source.

A.1.1 Arquitectural Overview and Bus Structure

The DSP56000/DSP56001 architecture has been designed to
maximize throughput in data-intensive digital signal processor (DSP)
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applications. This objective has resulted in a dual-natured, expandable

architecture with sophisticated on-chip peripherals and general-purpose I/O.

The architecture is dual natured in that there are two independent,

expandable data memory spaces, two address generation units (AGUs), and

a data arithmetic logic unit (ALU) having two accumulators and two

shifter/limiter circuits. The duality of the architecture facilitates writing

software for DSP applications. For example, data is naturally partitioned

into X and Y spaces for graphics and image-processing applications, into

coefficient data spaces for filtering applications, and into real and imaginary

spaces for performing complex arithmetic.

The major components of the DSP56000/DS56001 are as follows:

. Data Buses

* Address Buses

* Data ALU

.AGU

. X Data Memory

. Y Data Memory

" Program Controller

. Program Memory

. Input/Output:

e Memory Expansion (Port A)

e General-Purpose I/O (Ports B and C)
e Host Interface
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* Serial Communication Interface (SCI)

e Synchronous Serial Interface (SSI)

A brief description is given for each component in the following

paragraphs. The processors differ only in the on-chip memory resources.

A.1.2 Data Buses

The D5P56000/D5P56001 is organized around the registers of a

central processor composed of three independent execution units. The buses

move data and instructions while instructions are being executed inside the

execution units. Data movement on the chip occurs over four, bidirectional,

24-bit buses: the X data bus (XDB), the Y data bus (YDB), the program

data bus (PDB), and the global data bus (GDB). The X and Y data buses

may also be treated by certain instructions and one 48-bit data bus by

concatenation of XDB and YDB. Data transfers between the data ALU and

the X data memory or Y data memory occur over XDB and YDB,

respectively. XDB and YDB are kept local on the chip to maximize speed

and minimize power dissipation. All other data transfers, such as I/O

transfers with peripherals, occur over the GDB. Instructions word prefetches

occur in parallel over the PDB.

A.1.3 Address Buses

Addresses are specifies for internal X data memory and Y data

memory on two, undirectional, 16-bit buses - X address bus (XAB) and Y
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address bus (YAB). Program memory addresses are specified on the

bidirectional program address bus (PAB).

A.1.4 Data Arithmetic Logic Unit (ALU)

The data ALU has been designed to be fast and to provide the

capability of processing signals having a wide dynamic range. Special

circuitry has been provided to facilitate handling data overflows and

roundoff errors.

The data ALU performs all of the arithmetic and logical operations on

data operands. It consists of four 24-bit input registers, two 48-bit

accumulator registers, two 8-bit accumulator extension registers, an

accumulator shifter, two data bus shifter/limiter circuits, and a parallel,

single-cycle, nonpipelined multiply-accumulator (MAC) unit. Data ALU

operations use fractional twos-complement arithmetic. The data ALU is

capable of performing any of the following operations in a single

instructions cycle- multiplication, multiply accumulate with positive or

negative accumulation and convergent rounding, addition, subtraction, a

divide iteration, a normalization iteration, shifting, and logical operations.

Data ALU source operands, which may be 24, 48, or, in some cases, 56 bits,

always originate from data ALU registers. Arithmetic operations always

have a 56-bit result stored in an accumulator whereas, logical operations are

performed on 24-bit operands, yielding 24-bit results in one of the two

accumulators.
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The 24-bit data word provides 144 dB of dynamic range, which is

sufficient for most real world applications since the majority of data

converters are 16 bits or less, and certainly not greater than 24 bits.

The data shifter/limiter circuits provide special postprocessing on

data read from the ALU accumulator registers A and B out to the XDB or

YDB. The data shifters can shift data one bit to the left for one bit to the

digit as well as pass the data unshifted. Each data shifter has a 24-bit output

with overflow indication. The data shifter are controlled by the scaling

model bits in the status register. These shifter permit dynamic scaling of

fixed-point data without modifying the program code, which allows block

floating -point algorithms to be implemented in a regular fashion. For

example, fast Fourier transform (FFT) routines can use this feature to

selectively call each butterfly pass.

Saturation arithmetic is provided to minimize errors due to overflow.

Overflow occurs when a source operand requires more bits for accurate

representation than are available in the destination. To minimize error due

to overflow, the DSP56000 writes the maximum (or "limited") signed value

the destination can assume when an overflow condition is detected).

A.1.5 Address Generation Unit (AGU)

All of the storage and effective address calculations necessary to

indirectly address data operands in memory are performed in the AGU. This
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unit operates in parallel with other chip resources to minimize address-

generation overhead. The AGU contains eight address registers (RO-R7),

eight offset registers (NO-N7), and eight modifier registers (MO-M7). Rn are

16-bit registers that may contain an address or data. The contents of each Rn

may be output to the XAB (65,536 locations), YAB (65,536 locations), or

PAB (65,536 locations). Nn and Mn, which are 16-bit registers normally

used in updating or modifying Rn registers, can also be used to store 16-bit

data.

A.1.6 Program Controller

The program controller performs instruction prefetch, instruction

decoding, hardware DO loop control, and exception processing. The

program controller contains a 15-level by 21-bit system stack memory and

six directly addressable registers: the program counter (PC), loop address

(LA), loop counter (LC), status register (SR) operating mode register

(OMR), and stack pointer (SP). The 16-bit PC can address 65,536 locations

in program memory space.

A.1.7 Input/Output

The I/O structure consists of and extremely flexible, 47-pin expansion

port (port A and 24 additional I/O pins. These pins may be used as general-

purpose I/O pins, called port B and port C, or allocated to on-chip

peripherals under software control. Three on-chip peripherals are provided

on the DSP56000/DSP56001: an 8-bit parallel host microprocessor
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unit/direct memory access (MPU/DMA) interface, an SCI, and an SSI. Port

B is a 15-bit I/O interface that may be used as general-purpose I/O pins of

as host MPU/DMA interface pins. Port C is a 9-bit I/O interface that may be

used as general-purpose I/O pins or as SCI and SSI pins.

A.1.8 Serial Communication Interface

The SCI provides a full-duplex port for 8-bit data serial

communication to other DSPs, MPUs, or peripherals such as modems. The

communications can be either direct or via RS232C-type lines. This

interface uses three dedicated pins-transmit data (TXD), receive date

(RXD), and SCI serial clock (SCLK). It supports industry-standard

asynchronous bit rates and protocols as well as high-speed (up to 2.5

Mbits/sec) synchronous data transmission. The asynchronous protocols

include a multidrop mode for master/slave operation. The SCI consists of

separate transmit and receive sections having operations that can be

asynchronous with respect to each other by using the internal clock for one

and an external clock for the other. A programmable baud-rate generator is

included to generate the transmit and receive clocks. An enable and

interrupt vector are included so that the baud-rate generator can function as

a general-purpose timer when it is not being used by the SCI peripheral.

Synchronous Serial Interface

The SSI is an extremely flexible, full-duplex serial interface that

allows the DSP56000/DSP56001 to communicate with a variety of serial
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devices. These devices include one of more industry-standard codecs, other

DSPs, MPUs, and peripherals, The following characteristics of the SSI can
be independently defined by the user: the number of bits per word, the
protocol, the clock, and the transmit/receive synchronization. The most

common minimum configuration is three pins; transmit data (STD), receive

data (SRD), and clock (SCK).
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APPENDIX B: Electronic Diagrams
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