Florida International University

FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-20-2000

Efficient storage and retrieval of georeferenced
objects in a semantic database for web-based
applications

Debra Lee Davis

Florida International University

DOI: 10.25148/etd.F114062210
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

b Part of the Databases and Information Systems Commons

Recommended Citation

Davis, Debra Lee, "Efficient storage and retrieval of georeferenced objects in a semantic database for web-based applications” (2000).
FIU Electronic Theses and Dissertations. 2744.
https://digitalcommons.fiu.edu/etd/2744

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in

FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.fiu.edu%2Fetd%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/2744?utm_source=digitalcommons.fiu.edu%2Fetd%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

EFFICIENT STORAGE AND RETRIEVAL OF GEOREFERENCED OBJECTS IN A

SEMANTIC DATABASE FOR WEB-BASED APPLICATIONS

A thesis submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE
in

COMPUTER SCIENCE

by

Debra Lee Davis

2000

To: Dean Arthur W. Herriott
College of Arts and Sciences

This thesis, written by Debra Lee Davis, and entitled Efficient Storage and Retrieval of
Georeferenced Objects in a Semantic Database for Web-Based Applications, having been
approved in respect to style and intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Naphtali Rishe

Shu-Ching Chen

Nagarajan Prabakar, Major Professor

Date of Defense: November 20, 2000

The thesis of Debra Lee Davis is approved.

Dean Arthur W. Herriott
College of Arts and Sciences

Interim Dean Samuel S. Shapiro
Division of Graduate Studies

Florida International University, 2000

Copyright 2000 by Florida International University
High Performance Database Research Center

All rights reserved.

DEDICATION

| dedicate this thesis to my husband, David Chu, Jr., and my grandmother, Maria
Gil. They have supported me and encouraged me in all my endeavors, and have helped
me reach for the stars and fulfill my dreams. | am eternally grateful to them and love

them to the very depth of my soul.

ACKNOWLEDGMENTS*
I would like to thank everyone who has played a role in helping me accomplish
this important work. If it wasn’t for the support of those around me, | would not be

where | am today.

| particularly would like to thank Dr. Nagarajan Prabakar. He has spent many
hours guiding me and helping me accomplish this work, as well as providing much
needed advice and mentoring for my education and career. | also extend a big thank you
to Dr. Naphtali Rishe, Dr. Maxim Chekmasov and Dr. Shu-Ching Chen for their advice

and guidance in this work.

There are many others to whom | am grateful. My biggest thanks goes to my
husband, David Chu, Jr.,, and my grandmother, Maria Gil. Without their patience,
nurturance and understanding, | would never have made it this far. Many thanks go to
Dmitre Raposo, Dmitry Vasilevsky and Dr. Andriy Selivonenko for their technical
support and encouragement, and to my friends Martha Gutierrez, Jorge Vidal, Tin Ho and

many others, for their encouragement and emotional support.

*This research was supported in part by NASA (under grants NAG5-9478, NAGW-
4080, NAG5-5095, NAS5-97222, and NAG5-6830) and NSF (CDA-9711582, IRI-

9409661, HRD-9707076, and ANI-9876409).

ABSTRACT OF THE THESIS

EFFICIENT STORAGE AND RETRIEVAL OF GEOREFERENCED OBJECTS IN A
SEMANTIC DATABASE FOR WEB-BASED APPLICATIONS
by
Debra Lee Davis
Florida International University, 2000
Miami, Florida

Professor Nagarajan Prabakar, Major Professor

The use and dissemination of remotely-sensed data is an important resource that can be
used for environmental, commercial and educational purposes. Because of this, the use
and availability of remotely-sensed data has increased dramatically in recent years. This
usefulness, however, is often overshadowed by the difficulty encountered with trying to
deal with this type of data. The amount of data available is immense. Storing, searching
and retrieving the data of interest is often difficult, time consuming and inefficient. This
is particularly true when these types of data need to be rapidly and continually accessed
via the Internet, or combined with other types of remotely-sensed data, such as
combining Aerial Photography with US Census vector data. This thesis addresses some
of these difficulties, a two-fold approach has been taken. First, a database schema which
can store various types of remotely-sensed data in one database has been designed for use
in a Semantic Object-Oriented Database System (Sem-ODB). This database schema

includes in its design a linear addressing scheme for remotely-sensed objects which maps

an objects 2-dimentional (latitude/longitude) location information to a 1-dimensional
integrated integer value. The advantages of using this Semantic schema with remotely-
sensed data is discussed and the use of this addressing scheme to rapidly search for and
retrieve point-based vector data is investigated. In conjunction with this, an algorithm for
transforming a remotely-sensed range search into a number of linear segments of objects
in the 1-dimensional array is investigated. The main issues and the combination of

solutions involved are discussed.

TABLE OF CONTENTS

CHAPTER PAGE
I T gl X e KU T ol o To Y o TSRS 1
LT Lt 7SSOSR 3
(O UL T o ATV o 1 o TSRS 9
Il Remotely Sensed Data .ottt ettt e be e s te s sbe e sabae e sabae s 11
ACTIAl PROTOGIAPNY oottt e n e rennn 1
Multispectral SAtellite Data.......ccccooiiiiiiiiiiiii e e e 12
=Y a Lo - O OO SO SOOO O SRPURPSRPSRPPO 13
FKKON O S sttt et s st e R e st e R e et e e et et b e s et ese st e s et e st e bt e st e be e ebenears 15
Digital VECtOr DAt@ S TS . .iiiiiiiiiiici ettt re b e b re b sae e e 16
HI. Spatial Data STrUCTUIES .ottt e et st e b e nneeans 18
QUA-TIEES ANU KD T rBES ciiiiiiitiiiieie ettt e sttt et eesa e e s testestesaeseeseeneenens 19
POINE QUAT T TS ittt ettt ettt e et et e et e beeae et e ebe et e be e s e beetaeateeneenbenns 20
N B I I =3 PRSP RRTRT 22
REGION QUAH T FBES . cuiiieiitiitise ettt e sttt te st e st e b eteeseebe s be st e stesaeste e eseereanennenees 24
IMEX QU - T TS ittt ettt ettt ettt ettt e et e e be e e b e e ae e s besbe et e sbeeabebeeneesbeabeensentens 24
PR QU T TS ittt ettt ettt e st e st e e te et esbe e st e sbeebeesbeetaesbestaesresbeesaestesaeennens 26
ol I =T - ST 28
A B N = o F= =Y =R OSSR 31
WHY USE @ D atADaSE 7.ttt ettt bbbt bt sbenis 31
Relational Database SY STEM S .o ittt es 33
Object-Oriented Database SYSTEMS. ..o e 35
Semantic Object-Oriented Database System (SemM-ODB)....cccccovireiincienninee e, 39
V. Semantic Database SChema ..ottt e et 43
Semantic Analysis of the APPliCAtiON. ... 43

Data Storage REQUITEMENTS.....c.cccviveiieereccsiee ettt 44

Data FOrmat DeSCIiPLION....coiiiiii ettt se e 46

RASTEI/TMAQGE D ALA...ciciiiciie et st a st e resre e b s e aeneas 46
Vector/Textual Digital D ata......coccooieiiinniee s 48
SemMantiCc SChEMA D ESIGN ciiiiiiii et se e reeren 53
TerraFly Database Subschema 1. Raster DataStorage......c.ccoceveveeiecesivesecececeeas 54
TerraFly Database Subschema 2: VectorDigital Data.......cccoeoenreiiniiiiciicncnee 69
Shared Categories and RelationS........ccviiiiiieiiec e 70

Place Categories and RelationS.. ... 73

Street and Address Range Categoriesand RelationsS.......ccvevieiniiiinesiencne e 75

Area Categories and RelatiONS. ... 80

VI AdAressing SCREmM e ettt ae bbbt st ettt e sttt se ettt nens e 84
Addressing SChEME O VEIVIBW ...oviuiiiiiieie ettt es 85
Database IMpPlementation. ... et seen 87
Mapping of the Spatial Address to a Linear AddresS....ccveveveveievinse e 87
SEANCH ATGOTTENM Sttt bt s et ettt et s 89
POSSIDIE APPIICAtIONS. ..ottt nre e 91

Y L I O Y o T ol U E=T T o TSSO 95
DG = =N =N -1 s K o= 99

LIST OF FIGURES

FIGURE PAGE
Figure 1. WebTerraFly User Interface 4
Figure 2. Point Quad-Tree 21
Figure 3. K-D Tree 23
Figure 4. MX Quad-Tree 25
Figure 5. PR Quad -Tree 217
Figure 6. R-Tree 29
Figure 7. Structure of an Object-Oriented Database System 36
Figure 8. TerraFly Database Schema, Subschema 1 55
Figure 9. TerraFly Database Schema, Subschema 2 71
Figure 10. Quad-tree Representation of the Addressing Scheme 86

. Introduction

The demand for remotely-sensed data and the technology used to access this data
is increasingly moving from solely the realm of the GIS expert to include the average
computer user’s desktop. The information that can be gleaned from spatial data is vast
and the number of domains to which this information can be applied is increasing on a
daily basis. Remotely-sensed data has traditionally been used for applications such as
Cartography, Cadastral Mapping, hydrogeological surveys, natural resource exploration
and other geological/environmental applications. In recent years, the availability and
demand for remotely-sensed data has increased, and, consequently, the cost of acquiring
it has decreased. This has made spatial data more affordable for a wider variety of
applications. It has begun to be used for applications as diverse as real estate endeavors

and sales, vacation planning, education and product marketing.

Spatial data provides a great deal of information for numerous applications. This
wealth of information, however, comes at a cost. A large part of this cost is the
complexity involved with dealing with this type of data. Remotely-sensed data is
inherently very large and difficult to deal with. It is not unusual for one file to be larger
than 20 Megabyes or for remotely-sensed data libraries to contain over 1 Terabyte of
data. This data’s use often requires powerful hardware and software systems such as
Arcinfo, ENVI or ERDAS Imagine. These systems are rather expensive, difficult to use

and require that the user have substantial understanding of the data prior to use.

Use of remotely-sensed data is further complicated by the various file formats that
the data can come in. For example, there are numerous satellites (e.g., LANDSATS5,
LANDSAT7, AVHRR, GOES-8, SPOT, SPIN2, etc.) which collect data while orbiting
the earth, each of which provides data in a different format. As technology advances and
more uses for remotely-sensed data are discovered, new ways of acquiring remotely-
sensed data are also found. Satellites with more precise data collection instruments, such
as the IKONOS satellite, have recently been launched and new types of data, such as
AltM data, is being collected. With the proliferation of various sources of data, there is
an increase in the number of different remotely-sensed data file formats, and thus, an

increase in the complexity involved in dealing with this data.

Spatial data is not limited to imagery-type data such as aerial photography and
satellite imagery. Vector data (e.g., point, line and polygon data), often stored in the
form of textual data, is also increasingly being used and combined with other types of
remotely-sensed data, such as integrating remotely-sensed raster data (e.g., aerial
photography, satellite imagery, etc.) [MUFF87] with textual-based digital data sets. The
scope and importance of the information that can be gleaned from this data is immense.
This data, however, brings with it additional problems. For wide area networks, such as
the Internet, remotely-sensed data transmission is based on the raster data model. With
this type of data, file size tends to remain predictable and constant regardless of its
complexity. For other types of georeferenced data, such as textual-based digital data sets,

this is not the case [BUT99]. This is particularly problematic as this type of data not only

provides information on its own, it is also an invaluable tool for better understanding of

raster data types.

Because of these issues, storage and retrieval of remotely-sensed data is often
cumbersome at best. These complexities are further aggravated when more difficult data
handling techniques are required such as when remotely-sensed data needs to be rapidly
and continually accessed via the Internet, or combined with other types of remotely-
sensed data. Nevertheless, the increased usefulness, along with an increase in the
availability of remotely-sensed data, has greatly increased the demand for the ability to

access the data quickly and easily.

TerraFly

To address some of these issues, the High Performance Database Research Center
at Florida International University has been developing TerraFly, an interactive vehicle
for “flying’ over and manipulating remotely-sensed data using any standard, Java-enabled
Web browser. Through the use of a friendly graphical user interface, TerraFly allows
even novice users to work with large amounts of spatial data without special hardware or
software on their machines. All data is stored on the TerraFly server and retrieved for

transmission over the Internet only as needed.

A screen shot depicting TerraFly’s user interface can be seen in Figure 1. Some of

the features currently available in TerraFly are:

* Internet-enabled: Users can access TerraFly through the use of any standard, Java-

enabled Web browser such as Internet Explorer or Netscape.

Reload Home Search Netscape Prim Security Shop Stop
a~Bookmarks L. Location ihtip/ftvwwterrallycom/ 1 *3 ' Whet'3Related

lalx iUSWHWig]

ssfs

felWfcifr'

Resolution.

lunsigned Ja’

Insignet

Document: Dore

Figure 1. Web TerraFly User Interface

e Multiple Data Types: TerraFly is designed to support virtually any standard

remotely-sensed data type. Multiple data types can be loaded simulaneously.

* Multiple Resolution: Users can view the available data at numerous resolutions,

limited only by the resolution of the data itself (i.e., TerraFly does not interpolate

images. The finest resolution available is determined by the data itself.).

e Multiple Flight Windows'. Each flight window displays a spatial data image and

allows users to fly over the available images. Users may open additional windows

and load different data types and/or resolutions in each flight window.

* Smooth, Continuous Flight: Users ‘fly’ over the data in all flight windows

simultaneously. All retrieved data has been preprocessed so that flight is smooth and
continuous. The user need not deal with manipulations such as mosaicking adjacent

images as this is automatically done for them by the system.

* Fine Flight Direction and Compass Control. Users can control flight in one of two
ways. First, a compass control tool is provided on the Control Panel where users can
use the mouse to click on the direction they desire to “fly’ on the compass image.
This provides very fine direction control. Alternately, users may click on the image

itself to determine flight direction.

Varied Flight Speed: The user may vary the speed of the flight by either increasing or

decreasing the speed using the Compass Control tool (which provides finer control), or by

positioning the cursor closer to the edge of the Main Flight Window to fly faster and

positioning the cursor closer to the center of the window to fly slower.

» Varied Refresh Rate: Users may adjust the refresh rate of the images while flying using the
Compass Control tool. For a smoother flight on fast Internet connections, user should
increase the refresh rate. For slower Internet connections, users should decrease the refresh

rate.

e Informational and Drop-down textboxes: These are textboxes and drop-down menus
from which the user may select the desired information or data. These include:
e Datasete Spectral Band Information
e Data resolutions Image Coordinate Information

* RGB Intensity (either Latitude/Longitude or UTM)

 Go-To Coordinate Function: This function allows the user to specify the coordinate
(either latitude/longitude or UTM) to which he or she wishes to travel by entering the
information in the text boxes on the Control Panel. This loads the desired location

directly.

« Go-To Place and Address Functions: These functions allow the user to retrieve and
select a place of interest, or enter a street address, and have the location of interest

loaded in all flight windows simultaneously.

Look-up Feature: Using TerraFly’s Ctrl+click option, users can retrieve information
regarding any point on the screen. If using during flight, the point’s coordinates are
displayed. If used while not moving, information regarding the closest populated
place and point of interest is displayed in addition to the point’s coordinates.

 Look-up Feature Configuration: Users may select the specific type of place

information retrieved for any given point.

Sensor Band Controls: These controls allow the user to manipulate the sensor band

combinations of spectral data (i.e., Landsat TM, Hyperspectral, etc.) to view false

color images. This provides greater flexibility and availability of information. For

example, with the Landsat data, users are able to select from a list of seven possible

sensors for each color band. TerraFly provides two ways of doing this:

* Pre-defined Three-Band Combinations: This is a drop-down menu that provides
commonly used, predefined sensor band combinations.

 Advanced Three-Band Combinations: This is a series of three drop down menus
{Red, Green and Blue) in which the more scientific user may choose any desired

three-band combination they wish to study or analyze.

RGB Intensity Control: This control allows the user to increase or decrease the

intensity of each flight window’s color intensity.

» Data Dispensing Capability. TerraFly allows users to graphically select an area of
interest and retrieve the desired type of data for that area in the user’s preferred file

format and resolution.

 Animated Help Tutorial. This gives the user detailed, step-by-step, animated

instructions on how to use the features of the TerraFly system.

TerraFly has been designed as a thin client, with most of the work taking place on
the server side of the system. This allows for faster processing time and the use of fewer
resources on the client side, which has limited resources due to browser and related
limitations. To further enhance performance, both static and dynamic processes are used
by TerraFly to process and display the data [DAVI99]. During the static display process,
data for each band is retrieved on the server side, decompressed and used to create a false
color composite image. The data is then sent to the client to be displayed on the screen.
Once on the client side, the dynamic process builds on top of the static process by use of
a double buffering system. The images that are currently being displayed on the screen
are in the main buffer. A secondary buffer contains additional images that correspond to
areas that are contiguous to the screen image. This double buffering system provides
TerraFly with the ability to pre-fetch images, thus guaranteeing faster processing and a

smooth flight.

Current Work

In order for TerraFly to fly smoothly and continuously over remotely-sensed data,
the system must be able to quickly retrieve, process and display the data. At the same
time, the security and integrity of the data must be maintained. As was stated previously,
because spatial data is inherently large, storage, retrieval and real-time processing of
these large data sets can be slow and cumbersome. This thesis addresses this issue.
Specifically, this thesis discusses a database schema which can effectively store and
retrieve diverse types of remotely-sensed data in one database. It has been designed for
use in a Semantic Object-Oriented Database System (Sem-ODB). This database schema
includes in its design a linear addressing scheme for remotely-sensed objects which maps
an objects 2-dimentional (latitude/longitude) location information to a 1-dimensional
integrated integer value. The advantages of using this Semantic schema with remotely-
sensed data is discussed and the use of this addressing scheme to rapidly search for and
retrieve point-based vector data is investigated. In conjunction with this, an algorithm for
transforming a remotely-sensed range search into a number of linear segments of objects
in the 1-dimensional array is investigated. The main issues and the combination of

solutions involved are discussed.

The remainder of this thesis is organized as follows. Chapter 2 provides basic
information regarding the different types of data involved in this work. Chapter 3
provides a general survey of database storage technology, including Relation, Object-
oriented and Semantic database technologies. Chapter 4 discusses the overall Semantic

database schema in this thesis. Chapters 5 discusses spatial data structures relevant to the

spatial addressing scheme investigated in this thesis and chapter 6 provides detail and
algorithms for the spatial addressing scheme itself. Chapters 7 and 8 present conclusions

and suggestions for future work, respectively.

10

II. Remotely Sensed Data

There is a vast number of different types of remotely-sensed data. Each of these
different types can be used by scientists and engineers to better understand what is
occurring on the Earth’s surface, as well as by other professionals for anything from
planning to information gathering to the marketing of commercial products. This chapter
describes the main types of data currently used in the TerraFly system. It is not an
exhaustive list of the data types that the TerraFly system supports, or of the types of
spatial data that are available, but rather the most commonly used data by TerraFly’s

users.

Aerial Photography

Aerial photography is typically high resolution imagery that comes in black and
white, natural color or color-infrared. With resolutions as fine as 3 inches per pixel, its
potential applications are endless. Aerial photographs are primarily obtained by aircraft
equipped with instruments that can record the visible and invisible portions of the
electromagnetic spectrum. The portion of the spectrum that is visible to the human eye is
the colors that we see every day, such as when we look at a rainbow. Other parts of the
spectrum which are not visible to the human eye, such as near-infrared wavelengths, can
provide important information. Near-infrared and visible wavelengths can be
simultaneously recorded using standard color and color-infrared films, and later

combined to provide unique and valuable views of the earth and its features. So, aerial

photographs are recorded on film, and can then be scanned to create image files or

printed onto photographic paper.

Color infrared aerial photography is particularly useful to scientists. Healthy
green vegetation reflects high levels of near-infrared wavelengths. Thus, when images
are processed as color-infrared composites, anything that is green visibly looks red

[USINT].

Aerial photography can be obtained from numerous sources and the number of
square miles covered by one aerial photograph depends upon the data source. There are
many private corporations which can be hired to provide custom services and fly over
specific areas of interest. The largest source of aerial photography, particularly color-
infrared photography, is from the National Aerial Photography Program (NAPP) by the
USGS. They fly over most areas of the U.S. on regular intervals, typically every five

years.

Multispectral Satellite Data

When most people think of imagery of the earth, satellite imagery is what comes
to mind. Satellite data, however, is not merely a visual picture of the earth. Satellite data
typically contains much more information than what can be found in the visible field,
providing invaluable information that would otherwise be difficult or impossible to

collect. This gathering of ‘more than the eye can see’is possible through the use of

12

spectral bands. When these satellites are launched, they have on board multispectral
sensors which record information at different wavelength ranges for different spectral
bands. These ranges often differ for different instruments. Once downlinked and
processed, information from these bands can be combined to provide not only a natural
looking image of the earth, but also information such as vegetation cover, ground
temperature readings, urban development, coastal characteristics and other geographical
information. Two commonly used types of multispectral satellite data come from the

Landsat and IKONOS satellites. Brief descriptions of each are found below.

Landsat

The first Landsat satellite was launched in 1972 to provide global coverage of the
Earth. Since then, other Landsat satellites have been launched, with the most recent
being Landsat 7, launched in 1999. The Landsat satellites carry electronic sensors which
record the visible and near-infrared light levels of Earth’s reflected energy. This data is
transmitted to back to Earth in 4 to 7 spectral wavelength bands [USINT]. Landsats 1-5
each carried a multispectal scanner (MSS) which simultaneously collected data for four
bands at an overall resolution of approximately 80 meters. Landsats 4 and 5 carry the
thematic mapper (TM) sensor and Landsat 7 carries the enhanced TM (ETM+) sensor (at
this time, only Landsat 5 and 7 are still in orbit collecting data). The TM sensor collects
data for seven bands and the ETM+ collects data for eight bands. They both have an
overall resolution of approximately 30 meters. Having a larger number of bands yields

more detailed spectral information [AERIAL],

13

Spectral Range(microns) Ground Resolution(m)

1 .45 to .515 30
2 525 to .605 30
3 .63 to .690 30
4 .75 to .90 30
5 155to 1.75 30
6 10.40 to 125 60
7 2.09 to 2.35 30
Pan .52 to .90 15

Table 1. Landsat 7 and ETM+ Characteristics

Because of the number of spectral bands and the resolution of the TM sensor, the
color composite images created when the various spectral bands are combined provide a
wealth of detailed information. Landsat 7, for example, has a total of eight bands. Three
bands are visible light, three bands are infrared, one band is panchromatic and one band
is thermal infrared. Different combinations of these bands can provide information such
as discriminating vegetative, crop and timber types, monitoring urban growth,
investigating volcanic surface deposits, estimating snow melt runoff, tracking beach
erosion, and assessing grass and forest fires. Information on the specific wavelengths and

bands for Landsat 7 can be found in Table 1 [LAND7Y].

14

Band Number Spectral Range (microns)

1 45 - 52 (blue)
2 53 - 61 (green)
3 64 - .72 (red)
4 77- 88 (NIR)
Panchromatic 45-.90

Table 2. IKONOS Data Characteristics

IKONQOS

The IKONOS satellite is the first satellite launched which provides a commercial
source for one meter resolution satellite data. Launched in the Fall of 1999, IKONOS
provides data with spatial resolutions of one meter panchromatic (black and white), four
meter multispectral and one meter pan-sharpened (panchromatic data colorized with the
four meter data for a natural view). Although IKONOS data does not provide as many
bands as Landsat imagery, it provides much higher resolution and, thus, greater detail of
the area of interest. With a revisit time of five days (i.e., IKONOS can provide new
imagery for any area of the world every five days), IKONOS is particularly useful for
local governments, utilities and the telecommunications industry. Information on the

specific wavelengths and bands for Landsat 7 can be found in Table 2 [IKONOS].

15

Digital Vector Data Sets

There are many types of georeferenced digital data (e.g. point, line, polygon and
textual data) available on the market. Two of the most popular are GNIS (Geographic
Names Information System) [GNIS] and US Census Tiger/Line files [TIGER], GNIS
data primarily consists of names and types of places along with associated coordinate
point information. This data is compiled by the United States Geological Survey in
conjunction with the U.S. Board on Geographic Names (BGN). This data contains
information about nearly 2 million physical and cultural geographic features in the United
States, its territories as well as Antarctica. Each feature described in the database is
identified by its Federally recognized name, and a feature’s location is referenced by
state, county and geographic coordinates. The GNIS data currently used in this thesis

includes data for the entire US and its territories.

US Census Tiger/Line data consists of point, line and polygon data which
provides information such as feature types, address ranges and ZIP Codes, codes for legal
and statistical entities, landmark point features, area landmarks, latitude/longitude
coordinates of linear and point features, key geographic features and area boundaries.
These files are not comprised of graphical data or images similar to raster-type data, but
rather digital data sets describing identified geographic features. The Tiger/Line data
currently used in this thesis includes information regarding US highways, major roads,
streets/addresses and populated-area/county-subdivision shape coordinate points data.

The US highways, major roads and street/address data is line data, with each line segment

16

consisting of a series of ordered points with separate beginning and ending points. The
populated-area/county-subdivision data is polygon data consisting of a series of ordered

points that form a polygon shape.

17

HI. Spatial Data Structures

Managing spatial data has been a topic of research for a number of years, and the
topic of this thesis. Because relational database systems are notoriously inefficient at
handling spatial data, a great deal of research has gone into creating efficient spatial data
structures. In relational database systems, the data structures used for indexing favors
searches based on comparisons. Most queries to spatial data, however, are proximity
based (see Chapter 4 for a more detailed discussion). With spatial data, a user is much
more likely to be interested in what is near a particular place of interest. For example, a
real estate agent might be interested in finding the nearest shopping mall to a particular

house that they are trying to sell.

According to Knuth [KNUTH73], there are three main types of spatial data
queries:
e Pointquery - determines whether a given data point is in the database and
retrieves the record
* Range query - retrieves a set of data whose keys have specific values or a
range of values
* Boolean query - combination queries of the above two types of queries along

with Boolean operators such as AND, NOT, OR, etc.

A common type of query which falls under the range query category is the nearest

neighbor query [ROUS95]. In this type of query, the nlhnearest neighbors of any given

18

point are retrieved. In the example above, a real estate agent could query the database for

all of the shopping malls within a five mile radius of a particular home.

The data structures specifically designed for spatial data can effectively deal with
searches comparable to this. These data structures are typically proximity-based, storing
objects near each other. There are numerous spatial data structures that can be discussed,
and a number of surveys have been written discussing the major structures and their
applications [SAMET90a][SAMET90b][GUT94]. In this thesis, the most relevant of
these data structures and their variants will be discussed, namely, quad-trees
[SAMET90a][SAMET90b], k-d trees [BENT75][SAMET90a] and R-trees [GUTT84]

[CHENOO].

Quad-Trees and K-D Trees

Quad-trees are hierarchical data structures which are based on the principle of a
recursive decomposition of space. They are commonly used to store data such as points,
areas, curves, surfaces and volumes. In the tree representation, the root node represents
an entire array. Each node of the tree, except for the leaf nodes, have up to four child
nodes. These child nodes represent the four quadrants of the parent node, namely the
northwest, northeast, southwest and southeast quadrants. The leaf nodes represent the
quadrants for which further subdivision is not needed. The resulting rectangles in quad-

trees are non-overlapping.

19

There are many different variants of quad-trees. The most common are point
quad-trees and region quad-trees. Closely related to these are k-d trees. Brief

descriptions of each of these variants can be found below.

Point Quad-Trees

The point quad-tree was formally presented in 1974 by Finkel and Bentley
[FINK74], This tree structure contains non-uniform sized blocks, each of which contains
one data element. In two-dimensional space where each data element is unique, each
node (and thus each data element) is represented as a record of type node with seven
attributes. The first four attributes are pointers to the four child nodes, each
corresponding to the different quadrants (NW, NE, SW and SE). The next two attributes
contain the X and Y location coordinates (e.g., latitude and longitude) of the specific data
element. The last attribute contains the name or description of the data the node

represents (e.g., U.S. Capital Building).

Record insertion into a point quad tree is similar to that of a binary search tree. A
given node X is used to divide an area into quads by drawing two lines, one horizontal
and one vertical, through the element’s point coordinates. This creates the four
quadrants, each of which correspond to the child nodes. An example of a point quad-tree

is illustrated in Figure 3.

20

FIU

AV

International
Mali

Figure 2. A Point Quad-Tree and its Visualization

Point quad-trees are well suited for applications which require proximity searches,
as with the above real estate example. Its efficiency lies in its ability to reduce the
amount of searching required. It does not search through many records that do not need
to be examined. Further, data points can be searched for in any connected figure. For
example, there are a number of algorithms available for searching within an arbitrarily
sized rectangular window [FINK74], The cost of searching through has been studied by
a number of researchers [LEE77], They have shown that, in the worst case, range

searching a compete two-dimensional point quad-tree takes 0(2 * N A) time.

Point quad-trees do have several disadvantages:

« all k keys for a A:-dimensional quad-tree must be tested for each node

21

» leaf nodes are costly in terms of space due to the four null pointers
* nodes for a -dimensional tree are large because it takes k + 2k+ 1 words for
each

Some of these deficiencies are alleviated and improved upon by the k-d tree.

K-D Trees

The k in k-d tree signifies the representative state’s dimensionality. A k-d tree is
basically a binary search tree where the direction a branch is to be created is determined
by testing a different key at each level. This tree structure contains non-uniform sized
blocks, and each data element is represented by one node. In two-dimensional space, x-
coordinate values are compared at the root and at even depths. Y-coordinate values are
compared at odd depths. Each node (and thus each data element) is represented as a
record of type node with six attributes. The first two attributes are pointers to the two
child nodes, each corresponding to the different directions, left and right. The next two
attributes contain the X and Y location coordinates (e.g., latitude and longitude) of the
specific data element. The next attribute contains the name or description of the data the
node represents (e.g., U.S. Capital Building). The last attribute indicates the name of the

coordinate to be tested via its level.

Record insertion into a k-d tree is analogous to that of a binary search tree.
Records are searched for based on x and y coordinate values. X coordinate values are
compared at even depths and y coordinate values are compared at odd depths. If a node’s

level is even, then nodes whose x values are less than the current node’s x value will be

22

International ~*MIA International

Mall (45,75) *> (80.85) Mall
FIU FI1U Dadeland
(10,65) >
UM
(65,55)
MIA
Dadeland
(55,20)

Figure 3. A K-D Tree and Its Visualization

placed in the left subtree (e.g., node.x > leftchild.x). Even level nodes whose x values are
greater than the current node’s x value are place in the right subtree (e.g., node.x <
rightchild.x). If a node’s level is odd, then nodes whose y values are less than the current
node’s y value will be placed in the left subtree (e.g., node.y > leftchild.y). Odd level
nodes whose y values are greater than the current node’s y value are place in the right
subtree (e.g., node.y < rightchild.y). Once the bottom of the tree is reached, the node is

inserted. An example of a point quad-tree is illustrated in Figure 4.

K-d trees are also well suited for applications which require proximity searches,
as with the previous real estate example. As with point quad-trees, its efficiency lies in
its ability to reduce the amount of searching required. It does not search through many

records that do not need to be examined. The cost of searching depends upon the type of

23

query. In the worst case, given N points, the cost of a range query for a complete k-d tree

is 0(k * nM/k) [LEESO],

The k-d tree alleviates the many of the problems with point quad-trees noted
earlier. Point quad-trees, however do have one main advantage over k-d trees. Point
quad trees are inherently a parallel data structure, whereas k-d trees can be thought of
more as serial data structures. In a point quad-tree, parallel key comparison operations

can be performed for the k key values. This can not be done with the k-d tree.

Region Quad-Trees

For point quad-trees and k-d trees, space is decomposed based on the points
themselves. This leads to regions of unequal size. Region quad-trees add the
requirement that subdivisions should be of equal size. There are two main types of

region quad-trees, namely MX and PR quad-trees.

MX Quad-Trees
An MX quad-tree is very similar to a point quad-tree. The main difference is that
the tree structure contains uniform sized blocks, and the root node represents the entire
area of interest. The node structure of MS quad-trees is the same as that of point quad-

trees, containing the same seven attributes.

24

To create the tree, the regions in the tree are split evenly, producing four

guadrants (e.g., the child nodes NW, NE, SE, SW). Splitting of each subsequent node

5

Internati 3naL MIAI
Mall

FIUj

—\

UM

Dadeland

25

continues until each data point in the quad-tree corresponds to a 1 x 1square. Data points
are inserted into the tree by searching for them and then coloring the corresponding leaf
node black. Data points are always contained in the leaf nodes. An example of an MX

quad-tree is illustrated in Figure 5.

Unlike point quad-trees and k-d trees, the shape of the MX quad-tree is
independent of the order that data is inserted into the tree. Range searches are performed
in MX quad-trees as they are in point quad-trees. The cost of searching for all points in a
rectangle whose sides are parallel to the quadrant lines is, in the worst case, 0(f+ 2n)

where/is the number of points found and n is the maximum depth.

As long as the domain of the points finite and discrete, the M X quad-tree is
feasible. Otherwise, it is not. Therefore, an alternative has been created, the PR quad-

tree.

PR Quad-Trees
PR quad-trees associate point data which does not need to be discrete to
quadrants. The tree structure contains uniform sized blocks, and the root node represents
the entire area of interest. Each leaf node is either empty or contains one data point. The
node structure of PR quad-trees contains eight attributes. The first four attributes are
pointers to the four child nodes, each corresponding to the different quadrants (NW, NE,
SW and SE). The fifth attribute indicates whether the node contains a data point, or if it’s

a non-leaf node. The next attribute contains the name or description of the data the node

26

Inten lational

Mall .
*FlU
UM
Dadeland
root
B

d7\Db [/Ton

Int’l FIU MIA
Mall

UM Dadeland

Figure 5. A PR Quad-Tree and Its Visualization

represents (e.g., U.S. Capital Building). The last two attributes contain the X and Y

location coordinates (e.g., latitude and longitude) of the specific data element.

27

Tree creation is similar to the MX tree. The difference is that, although one point
corresponds to one quadrant, the point need not lie on a quadrant boundary. Data points
are inserted into the tree in a manner analogous to point quad-tree. Data points are

always in the leaves. An example of a PR quad-tree is illustrated in Figure 6.

Similar to the MX quad-tree, the shape of the tree is independent of the order that
the data is inserted. However, the order does matter for the shape of the intermediate
trees. Range searches are performed in PR quad-tree as they are in MX and point quad-
trees. The cost of searching for all points in a rectangle whose nodes are parallel to the
quadrant lines is, in the worst case,, 0(f +2n) where/is the number of points found and

n is the maximum depth.

R-Trees

R-trees are hierarchical data structures which are based on B+-trees. They are
commonly used to store d-dimensional objects through the use of minimum bounding d-
dimensional boxes. In the tree representation, each node represents the rectangular area
which encompasses its child nodes. The leaf nodes represent the objects themselves
(i.e., if contained in a database, the leaf nodes contain pointers to the objects). The

resulting rectangles in R-trees may be overlapping.

R-trees must follow a number of rules:

« all leaves reside on the same level

28

International
Mall fi- MIA

Mall of Americas

C

FIU UM

Dadeland

Int’l FIU / \' MIA Ml of

Mall [\ Amer-
Dadeland

Figure 6. An R-Tree and Its Visualization

every leaf pair is of the form (MR, O) such that MR is the minimal rectangle
containing the object O

other nodes are of the form (MR,P) such that MR is the minimal rectangle
containing the rectangles of its child nodes and P is a pointer to a child node
an R-tree is classified as (m,M) where, with the exception of the root node
which has at least two pairs if it is not a leaf, all nodes contain between m and

M pairs with m <rMza-L

29

R-tree construction is dynamic, and inserts and deletions can take place in-

between searches. An example of an R-tree is illustrated in Figure 7.

30

IV. Databases

Why Use a Database?

It has been estimated that over sixty percent of the cost of installing a GIS system
constitutes cost related to the development of an appropriate database. These costs
increase over the life of the system as the system needs to be maintained. So why use a

database at all? Why not just keep the data in a file system or in a data structure in main

memory?

Using a file system to store data is a simple, easy to understand and accomplish
solution. File systems, however, do suffer from a number of drawbacks. These

drawbacks include:

« Data Redundancy: The same data might be stored in different locations.

 Poor Data Control: Redundant data is not always appropriately updated, so all the

data may not be up to date at the different locations.

* Inability to Easily Manipulate Data: Much of the data modification must be done

manually (i.e., there is no standard way of querying all types of data files). This is

a tedious and error prone activity.

31

» Cryptic Work Flows: Accessing the data can take excessive programming effort

and is too difficult for real-users (as opposed to programmers) [Sol98],

e Lack of Security: File systems do not provide sufficient security for sensitive or

important applications.

Although these limitations of file systems are substantial for GIS applications, one
paramount reason the use of a database is needed for large-scale GIS applications
involves the amount of data that needs to be stored. As was stated previously, remotely-
sensed data in inherently very large. A file system simply would not be able to handle
searching and retrieving spatial data in an efficiently, particularly when a great deal of

data needs to be stored.

Database systems are designed to handle and efficiently organize large amounts
of data. A database is a computerized record keeping system, yet it is more than that. A
database is a system which effectively stores the data of interest, provides a standardized
method for searching, retrieving and updating the data, and allows storage and retrieval
of the data easily and efficiently regardless of the amount of data being manipulated
[SOL98], In short, some of the requirements of a database for a large GIS system, such

as TerraFly, are:

32

e Support multiple types of data - As was stated previously, there are many
different types of spatial data available in the market today. A database for a GIS

system should be able to store various types of data in the same database

* Provide Scalability - As more data is acquired, the size of the database will
increase. It is also likely that the number of users will grow. This will require the
system to be able to efficiently distribute data over a growing number of servers

while maintaining efficient access to the data.

* Provide Good Performance - The database must be able to provide data fast

enough to allow for real-time, interactive visualization of the data.

e Provide Data Security - The data must be secure against simultaneous updates or

data corruption due to human error.

Relational Database Systems

The relational database was first formally introduced in 1970 by Edgar F. Codd
[CODD70]. Since then, the use of relational databases has grown and they are now the
most widely used type of database system. Relational databases are table-based database
systems where records that relate to each other are stored in a table, similar to a
spreadsheet. . For example, records for a company’s employees would be stored in one

table, the employee table.

33

Each table consists of a number of records where the field names in the table are
the same, but the field values differ. For example, in the employee table mentioned
above, field names may include employee name, position and salary, whereas the field
values would be each employee’s actual name (e.g., Bill Press, Joann Smith, etc.),
position (e.g., Vice-President, CEO, etc.) and salary (500K, 750K, etc.). Every table has
a unique identifier called a primary key. This is a field or combination of fields that
provide a means to individually distinguish each record. Thus, no two records may have

the same value in their primary key.

Most applications require more than one table. In relation databases, relationships
between tables can be defined. These relationships connect one table to another based on
fields common to both tables. Relational databases work well for certain applications,
typically any type of data which works well as tabular data. This is often, but not always,
the case with textual-based data such as financial data. Information on relational
databases and its advantages is widely available [cite]. Some of the most popular

commercial relation databases are Microsoft Access, Oracle, Sybase and IBM’s DB2.

Relational databases, however, have been found to be lacking when dealing with
other types of more complicated data [RISHE94], This is particularly true when one is
dealing with data such as spatial data. Remotely-sensed data tends to contain complex
data structures such as line and polygon data, arbitrary data types, large unstructured and

irregular data such as surfaces (e.g., aerial photography, satellite imagery, etc), and null

34

values when specific data is missing. This complex type of data is best dealt with using
hierarchical modeling [SAMET90], The table-based approach of relation databases does
not have the mechanisms needed to deal with this well. Most relational databases do
have the capacity to store binary objects such as an aerial photograph, but many must

store different kinds of data in different physical databases [WAUGH].

The deficiencies of relational database systems when dealing with remotely-
sensed data have been considered in detail in various publications [KEAT87],
[LORIE84], [EGEN94]. Due to these deficiencies, many researchers have been looking
for alternatives which are better designed to deal with spatial data. This is one of the
motivations for the development of object-oriented database systems. These systems are
designed to continue to provide most of the advantages of relational database systems
while offering better handling of hierarchical data models and data similar to remotely-

sensed data.

Object-Oriented Database Systems

Research into object-oriented databases began in the late 1970’s [LOCK79] and
by the early 1980’s, was well established as a significant area of research. Object-
oriented database technology can be described as a system in which object-oriented
programming technologies are combined with traditional database technologies to

support functionality such as query, transaction and security along with the ability to

35

Figure 7. Structure of an Object-Oriented Database System

persistently handle objects and object identifiers. Figure 2 [MCFAR99] provides an

illustration demonstrating object-oriented databases.

There are a number of differences between relational and object-oriented database

systems. As quoted from Mnushkin [MNUSH], the main differences are:

« “A RDB stores simple, fixed length data in tables. If your data fits naturally in

tables, this will work fine.

e An OODB supports arbitrary structures, nested structures, dynamically varying

structures, arbitrary many-to-many relationships and most others you can think of.

36

 An RDB supports simple operations such as select, project, and join over

localized amounts of data through the use of SQL.

 An OODB allows arbitrary operations, defined by users, with arbitrary
complexity. These operations might traverse inter-object relationships, affect

many objects in different databases, or do any number of user-defined tasks.

One of the most notable characteristics of object-oriented database technology is
its combination of database technology with object-oriented programming to furnish an
integrated system for application development. McFarland et. al. [MCFAR99] notes that
including the operational definitions with definition of the data has a number of
advantages. “First, the defined operations apply ubiquitously and are not dependent on
the particular database application running at the moment. Second, the data types can be
extended to support complex data such as multi-media by defining new object classes

that have operations to support the new kinds of information.”

There are other well known strengths of object-oriented modeling which, in
combination, provide productivity advantages to developers. Inheritance, encapsulation,
object identity, polymorphism and dynamic binding are a few examples. Inheritance
permits the incremental development of solutions to complex problems by defining new

objects as subcategories of existing objects. With encapsulation, an object contains both

37

behavior and data specifications. Unlike most relational databases, which are value-
based, most object-oriented databases are identity-based where each data representation
has its own identifiers. Polymorphism and dynamic binding allow for the composition of
objects that provide solutions without having to write code that is object specific. That is,
these provide the ability to define operations for one object and then share its
specifications with others. These objects can then, in turn, extend these operations to

provide unique behaviors to those objects [MNUSH][MCFAR99].

Object-oriented databases represent relationships between objectsexplicitly. This
is a significant difference from relational databases and allowsbothnavigational and
associative access to the data. This is particularly beneficial if the relationships between
objects are rather complex. The more complex the relationships, the greater the
advantages of representing the relations explicitly. This explicit representation also
provides improved performance over relational value-based relationships when accessing

data [MCFAR99],

With these advantages, it is clear that object-oriented databases can be of great
use to a number of applications that relational databases traditionally do not manage well.
This is particularly true when the problem scope contains [RISHE98B][MCFAR99]
[MNUSH]:

* many different data types

e numerous relationships between the objects

» objects with complex behaviors

38

Although the use object-oriented database systems provides improvement in the
management and manipulation of remotely-sensed data, it still has its drawbacks. For
example, most object-oriented database systems do not support standard SQL. Because

of these deficiencies, Semantic database systems have come into existence.

Semantic Object-Oriented Database System (Sem-ODB)

Due to the inherently large size of spatial data, the storage and retrieval method
used in this thesis is central to its success. The Semantic Object-oriented Database (Sem-
ODB) technology under development at HPDRC has been designed to be efficient at
dealing with spatial data and related products. It is a general-purpose database
management system (DBMS) that supports a wide spectrum of applications ranging from
transaction-oriented to decision-support systems. A Multi-user Semantic Database
Engine is currently operational and a main goal at HPDRC has been to achieve the

quality that would make the Sem-ODB server viable as a commercial product.

Sem-ODB is designed to store varied types of data in an efficient and logical
manner, and it easily deals with non-conventional data such as spatial data. It has a
number of key advantages over current database technology. A few of Sem-ODB’s

advantages are:

« Sem-ODB gives the user control via an intuitive structure of information.

39

e The end-user is empowered to pose complex ad hoc queries.

» A conceptual data model of the enterprise is directly supported.

* Queries are made simple and very short. Queries can be up to ten times shorter (and
S0 easier to pose) than in relational databases. For example, the user need not bother

about "joins" (cross-references between relational tables), many-to-many relations

and inheritance.

» User programs for a semantic view are substantially shorter than for a relational

view, achieving major improvements in the application software development cycle,

maintenance and reliability.

e SQL, the standard relational database language, has been adapted to work with
semantic databases. This runs counter to most object-oriented database systems.
Further, programs in SQL for Sem-ODB tend to be an order of magnitude simpler

and shorter than for relational database systems.

e Sem-ODB’s ODBC driver allows SQL querying of a semantic database and
interoperability with relational database tools, e.g. end-user systems like MS Access

Query-By-Example or Crystal Reports. In these tools the number of user keystrokes

40

required is proportional to the size of the generated SQL program. So again, savings

are realized and simplicity is attained through the use of the semantic view.

Varied types of data can be stored in one database. Most DBMS are unable to do
this and must store different types of data in separate databases. This is inefficient

and can make them difficult to use.

Data types are unlimited — strings can be of any length and techniques have been

developed to represent numbers of unlimited length and precision.

Algorithms have been developed to provide very efficient full indexing, allowing fast
access to every single fact in the database. Further, a proprietary algorithm
guarantees optimality of the basic queries defined in our Semantic Algebra; this

includes optimality of range queries.

Objects can belong to several different categories at the same time. The operation to

categorize/de-categorize objects can be performed efficiently and on-line.

There is no need for NULL attributes. Sparse tables in relational databases may

waste space and processing time.

There is no need for tables and indices. This reduces the space allocation required,

an aspect of particular importance when dealing with spatial data.

41

 No keys are needed. Referential integrity constraints are supported automatically by

the semantic database.

Sem-ODB can easily handle Terabytes of data. To further improve performance
and flexibility, Sem-ODB can be used as a distributed database. Data for TerraFly can be
stored in a distributed Sem-ODB database. In this way, data could be stored on multiple
servers and in multiple locations, and retrieved simultaneously from the various
locations, greatly expanding application capabilities. This organization, of course, would

be invisible to the user; access to the various locations would be automatic.

Thus, Sem-ODB can be said to provide the best of both worlds. It has many of
the advantages of both relational and object-oriented databases, and is specifically
designed to work well with spatial data. The use of Sem-ODB as the database for this
project is one component responsible for the efficiency of the storage and retrieval of the

data.

42

V. Semantic Database Schema

Because of the inherently large size of the data and the complexity of the project,
the database used in this thesis is the Sem-ODB system. Sem-ODB is designed to
efficiently store and handle spatial and related data in one database. This chapter will
discuss the semantic analysis of the application and its data, as well as the semantic

database schema design based on this analysis.

Semantic Analysis of the Application

The database design for this thesis is intended for use with the TerraFly system.
At the same time, the design should be reasonable for use with other systems. Thus, the
data and information on its metadata must be preserved while, at the same time,
additional information needed by TerraFly, such as information associated with

preprocessing, is preserved.

Recall that TerraFly is an interactive vehicle for flying over and manipulating
remotely-sensed and related data via any standard Web-browser. TerraFly’s database
must be designed in such a way that the storage and retrieval of the data is fast, efficient,
logical and secure. At the same time, it must be flexible enough to deal with the demands
of other potential applications, as well as TerraFly. In this section, the types of data used
by the TerraFly system will be discussed and analyzed for the creation of TerraFly’s

integrated database schema.

43

Data Storage Requirements

Because we need to store many different data sets, their metadata and
preprocessing information, there are a number of storage requirements that must be met.

The main requirements are:

» Storage ofvaried types of data. Although the use of Sem-ODB provides this
ability, the database schema must still be structured in such a way that
different types of spatial data can be stored logically and efficiently in the

database.

« Storage ofdata in a uniformformat. When dealing with the different types of
spatial data, data needs to be stored in a uniform manner for easier and more
efficient retrieval. We would not, for example want to have a different
database structure for every different type of spatial data. This would prove
inefficient and waste resources as every time a new type of data is
encountered, a new database structure (and related tools) would need to be
created. It would be prudent to minimize the new coding needed when a new

data type is used in the system.

» Storage of the same type and area of data with varied acquisition dates. The
database schema must be able to efficiently store historical data. Historical
data is an extremely useful and important tool for many users. A true GIS

database would need to have the ability to support this type of information.

44

 Provide structuresforfast and efficient data retrieval. The schema should be
optimized for faster data retrieval when possible, particularly when dealing

with the vector data. The logic, however, should still be maintained.

 Provide a secure and logical database design. The database design must be
easy to understand and appropriately represent the data being stored. The
design should include constraints which help control the data and reduce the

possibility of data corruption.

« Storage of metadata and preprocessing information. Storage of the metadata
is particularly important for understanding the data in the database. |In
TerraFly’s previous databases, this information was not stored in the database
and was, instead, hard coded into TerraFly’s code or stored in scripts. This
severely limits the usefulness and flexibility of the database, and can be quite
problematic should information about the data be required by someone who
does not have access to TerraFly’s code or scripts. Further, the inclusion of
preprocessing information can help TerraFly provide a more interesting, easier

to use and appealing interface for the user.

In order to deal effectively with different types of spatial data, similarly structured

data can be stored in the same framework (i.e., using the same categories and relations).

As can be seen below, spatial data can generally be categorized as either raster (e.g.,

45

Aerial Photography, Satellite imagery, etc.) or vector data (e.g., points, lines and
polygons). As such, the same type of database query can request either Landsat or

Ikonos imagery by indicating the type of data needed as opposed to having to search for a

separate category.

Data Format Description

To further understand the needs of the database and appropriately represent the
data, the components of each data type and the information that each component provides
must be defined. The specific data format and components of the data used in this thesis

are discussed below.

Raster/Image Data

The raster data typically used by TerraFly, and thus for this thesis, includes both
imagery and multispectral data. Images are commonly in TIFF, World-TIFF and JPEG
image formats. Multispectral data is often in PPM format and contains different numbers
of spectral bands that can be combined to create false color composite images. These
composite images provide different types of information depending on the data source
and spectral band combination used (see Chapter 2 for a more detailed discussion).
Nevertheless, image and multispectral data is similar enough that they can be categorized
together as raster data, and can be stored in the database using the same catogories and

relationships.

46

Because Sem-ODB can store both textual and binary data in the same database,
the data itself can be stored in the database along with its metadata. For raster type data,

this metadata includes:

e Data type and name » Geographic projection

e Data resolution (pixel size) e Acquisition date

e Compression method/data e Spectral band number (for
format multispectral data only)

Origin coordinates

Additional information related to preprocessing of the data also needs to be stored
in the database. As was stated previously, this is data which TerraFly can specifically use

to aid in dealing with the data. This information includes:

* Zoom level * Predefined band combinations

e Tile height and width Image color range

e Coverage information such as Default blue, green and red
County, State and Country band values

e Default color saturation

One of the primary challenges of storing different types of raster data in the same
type of framework involves dealing with multispectral and non-multispectral (image)
data together. Ideally, the database schema should be able to store these two different
types of data using the same categories and relations. This will likely mean that when

image data is stored, a number of attributes, relations and categories will be null.

47

Because we are using Sem-ODB, however, this is not a problem as null information does

not take up additional space.

Vector/Textual Digital Data

The storage requirements and data format of the different types of raster data is
fairly straightforward. Vector data, however, consists of points, lines and polygons, all of
which are often found in the same data set. With this type of structure, it can be a more
difficult to generalize data organization than it is for raster data. Thus, a closer look at
the specific formats of the data of interest is needed. As was stated previously, the two
types of data specifically used by TerraFly is Geographic Names Information System
(GNIS) and U.S. Census Tiger/Line data. Detailed descriptions of the data formats of

these two types of data are discussed in this subsection.

Geographic Names Information Systems (GNIS)

As was stated previously, GNIS data consists of names and types of places along
with associated coordinate information. Thus, GNIS data contains point data which is
categorized by the type of information each point represents. Each record contains the
following fields:

Place_Name: String

Place_Type: String

Latitude: Integer or Float

Longitude: Integer or Float

48

All four of these fields are required. Each place has a Place_Name, but each
name is not necessarily unique. Each place also has a Place_Type. Naturally, these place
types are shared among the place names. There is also associated Latitude and Longitude
coordinates. GNIS data provides these coordinate points in both
degrees/minutes/seconds (as an integer) and decimal formats so that the desired format
may be used without the need to convert between them. Each coordinate pair is not
unique. One particular point may be associated with more than one place. For example,
one GNIS record is:

Place_Name: Florida International University

Place_Type: school

Latitude: 25.667

Longitude: -80.57487

U.S. Census Tiger/Line

US Census Tiger/Line data consists of point, line and polygon data which
provides information such as feature types, address ranges and ZIP Codes, codes for legal
and statistical entities, landmark point features, area landmarks, latitude/longitude
coordinates of linear and point features, key geographic features and area boundaries.
This data is considerably more complicated than GNIS data because of the inclusion of
this additional information. Tiger/Line data provides a wealth of information. We are
going to focus on place information, street information and area feature information when
dealing with the point, line and polygon data respectively. This data is most relevant for

TerraFly and quite representative of other similar data provided by the U.S. Census.

49

Place Data
The format of the Tiger/Line place data is similar to that of GNIS data. Each
record includes a place name, place type and associated latitude/longitude coordinates.
As with GNIS data, a particular place name may be associated with more than one place
record and location. Similarly, each latitude/longitude coordinate point may be

associated with more than one place.

Street and Address Range Data
U.S. Census Tiger/Line street and address range data is line data and its
associated information. It provides information on street names, street types, associated
address ranges, beginning and ending latitude/longitude coordinate points as well as zip

code information. The original data files are grouped by state and county.

Although the street information provided by Tiger/Line files seems
straightforward, the actual structure of the data is not. The main reason for this is that
most streets are not straight, continuous lines from beginning to end. Streets often curve,
sometimes breaks or obstructions occur in a street and streets sometimes have different
names in different areas. Because of this, streets are broken down into street segments
and street sections. Together, these create what is commonly considered one street. The

structure of the street information is discussed below.

50

Tiger/Line street data is organized by county and state. A street, as defined in the
Tiger/Line data, is unique to each county. If an actual street crosses a county line, then it
is considered a different street. An actual street is made up of street sections. Each street
section has a unique street ID, as well as street name and street type. Each street section
can have multiple names, and each street name can be associated with many street
sections that are logically related. Each street section is classified by a street type. For
example, one street section may have the following format:

Street_Section_ID: F1298395739589

Street_ Name: Bird Road, SW 40th Street, etc.

Street_Type: Major Road

Each street section is made up of a number of street segments, and can not exist
without at least one street segment. A street segment must be part of only one street
section. Each street segment has associated with it coordinate point information, zip code
information, and left and right side address ranges for the starting and ending points.
The latitude/longitude points of each line segment are not unique. One street section’s
ending point is often the starting point of another street section (or, if it is a multiple-way
intersection, it can be the starting point of another street section). Address ranges are also
not unique. Two parallel street segments may have the same starting address ranges
and/or ending address ranges. Naturally, zip codes associated with the start and end of
each street segment are not unique, including in the same street segment. Finally, not all
street segments include information on address ranges or zip codes. An example of a

street section would be as follows:

51

Associated _Street_Section: F7385729783
To_Latitude: 25.78837
To_Longitude: -80.783297
From_Latitude: 25.79023
From_Longitude: -80.784837

Left Starting_Address: 1500
Right_Starting_Address: 1501

Left Ending_Address: 1598
Right_Ending_Address: 1599
Left Zip Code: 33173

Right_Zip_Code: 33183

Each street segment can be visualized as a straight line between two points.

Hence, a street section can be visualized as a series of connected line segments.

Area Feature Data
U.S. Census Tiger/Line area features is polygon data and its related information.
This type of data represents objects such as municipal and geographic boundaries. As

with other Tiger/Line data, area features are organized by state and county.

To represent a polygon area, an ordered list of point coordinates is used. The first

coordinate point in the list is always both the starting and ending point. By following the

points in order, the boundary of the area of interest is established. Points in this boundary

52

are not unique. It is often the case that two or more area features share at least part of
their boundary coordinates with each other and other area features. The number of points
used to delimit different area boundaries is not uniform. Some areas may require ten
points to delineate their boundaries whereas other areas may require significantly more.
An example of an area feature would be as follows:

Area_Name: Kendall

Coordinate_List: 25.8798, -80.83789

25.8978, -80.84987

25.7878, -80.82739

Semantic Schema Design

To deal effectively with this data, a Semantic database schema has been designed
for use with TerraFly. In creating the database schema for this thesis, a number of issues
must be taken into consideration. In short, these issues include relevant applications, data
storage requirements, the characteristics of the data and possible future expansion of the
project. These issues have been discussed in detail in previous chapters. This section
will present and discuss the schema design in detail as well as how these issues effected
its design. The subschema which deals with raster data is first discussed, followed by a

discussion of the subschema which stores the vector digital data.

53

TerraFly Database Subschema 1. Raster Data Storage

There are two main goals that were focused upon when designing this part of the
database schema. First, we wanted to be able to effectively store varied types of raster
data, as well as its metadata and preprocessing information, in a uniform format. Second,
we needed to ensure that structures for fast and efficient data retrieval and a logical
design are supported. To accomplish this, the category DATASET was created and can
be considered the central category of this subschema. A discussion of each category,
starting with the DATASET category, can be found below. Subschema 1is illustrated in

Figure 8.

DATASET — category (A record of data set objects. This is, for example, 1995 color

infra-red aerial photography for Florida.)

The DATASET category represents each data set object. It contains attributes
and relations relevant to each data set, including relations to relevant counties and states.
Each data set can be identified by its name. For example, one data set currently used by
TerraFly is HPDRCAP, color infra-red aerial photography over Miami-Dade county.
Another example is LANDSAT, which currently includes mosaicked Landsat 5 data over

the state of Florida.

METADATA ATTRIBUTES

data-type-name — attribute of DATASET, range: String (key) (The unique name

of each specific data set (i.e., Landsat-Miami).)

54

Figure 8. TerraFly Database Subschema 1. Raster Data Storage

55

pixel-size — attribute of DATASET, range: Integer (m:1) (The pixel-size in bits of
the data-type.)
collection-date — attribute of DATASET, range: Date-time (m:l) (The

acquisition date of the data set (e.g., the date the data set was collected).)

PREPROCESSING INFORMATIONATTRIBUTES
The tile height and width attributes are used to indicate the size of the tiles used
for each data set. Including these two attributes allows for an arbitrary tile size which can
be set based on the requirements of the user or application, thus providing greater
flexibility. For example, previous versions of TerraFly used a tile height of 256 pixels.
The current version of TerraFly uses atile height of 512 pixels.
tile-height — attribute of DATASET, range: Integer (m:l) (The tile-height in
pixels of the data set. This attribute allows for an arbitrary tile size, providing
greater flexibility for various applications.)
tile-width — attribute of DATASET, range: Integer (m:I) (The tile-width in pixels
of the data set. This attribute allows for an arbitrary tile size, providing greater

flexibility for various applications.)

The initial x and y position attributes are used to indicate the default center point
coordinates of the data to be retrieved from the data set should the requesting application
not provide this information in its request. Including these two attributes allows a default
position to be indicated without having to hard code this information into either

application code or scripts.

56

initial-x-position — attribute of DATASET, range: Integer (m:l) (The initial
UTM x/northing coordinate position of the data set. This attribute can be used
to indicate what the default center coordinate of the data set should specific
coordinates not be requested by the application retrieving the data.)

initial-y-position — attribute of DATASET, range: Integer (m:l) (The initial
UTM yl/easting coordinate position of the data set. This attribute can be used
to indicate what the default center coordinate of the data set should specific

coordinates not be requested by the application retrieving the data.)

The default blue, green and red attributes are used to indicate the default spatial
band values for each data set when dealing with multispectral data. Including these three
attributes allows for the creation of a default composite image without having to hard
code this information into either application code or scripts. For example, for a Landsat 5
data set, the default can be set at band 3, band 2 and band 1 (for red, green, blue
respectively) for a natural view.

default-blue — attribute of DATASET, range: Integer (m:1) (The default blue

spatial band value of the data set when dealing with multispectral data should
this information not be included in a data query by the application retrieving
the data)

default-green — attribute of DATASET, range: Integer (m:I) (The default green

spatial band value of the data set when dealing with multispectral data should
this information not be included in a data query by the application retrieving

the data)

57

default-red — attribute of DATASET, range: Integer (m:I) (The default red
spatial band value of the data set when dealing with multispectral data should

this information not be included in a data query by the application retrieving

the data)

comments — attribute of DATASET, range: String (m:I) (This attribute provides

an area where comments or a description of the data may be entered.)

RELATIONS

the-data-type — relation from DATASET to DATA-TYPE (m:l,total) (The data

set’s data type.. A data set can not exist without a data type.)

The following four relations can be used to determine the rectangular boundary of
each data set. Because all data used with TerraFly must be georeferenced, the upper left
UTM coordinate is required for each data set. The other origin coordinates are
recommended, but not required.

upper-left-utm — relation from DATASET to ORIGIN-UTM {m:l,total) (The
upper left UTM coordinates of the area encompassed by the data set. This
coordinate is required for any given data set.)

upper-right-utm — relation from DATASET to ORIGIN-UTM (m:1) (The upper

right UTM coordinates of the area encompassed by the data set. This
coordinate is recommended but not required for any given data set.)

lower-left-utm — relation from DATASET to ORIGIN-UTM (m:I) (The lower

58

left UTM coordinates of the area encompassed by the data set. This coordinate
is recommended but not required for any given data set.)

lower-right-utm — relation from DATASET to ORIGIN-UTM (m:1) (The lower
right UTM coordinates of the area encompassed by the data set. This

coordinate is recommended but not required for any given data set.)

the-compression — relation from DATASET to COMPRESSION-METHOD
(m:1) (The type of compression or data format the data set is stored in. Some
examples are JPEG, TIFF, PPM, G-ZIP, etc.)

covers — relation from DATASET to COUNTY (jn:m) (This relation indicates
which counties are at least partially covered by each particular data set.
Because a data set may potentially include data for multiple counties or even

states, this is a many-to-many relation.)

DATA-TYPE — category (A record of data types. This is, for example, aerial

photography, Landsat 5, Landsat 7, IKONQOS, etc.)

The DATA-TYPE category represents each data type object. Each data type is its
own object which has attributes and relations relevant specifically to data types (as
opposed to information specific to a particular data set). Each data type can be identified
by its name. For example, one data type currently is Landsat 7. Another example is

IKONOS imagery.

59

ATTRIBUTES

type-name — attribute of DATA-TYPE, range: String (key) (The unique name of
each specific data type (i.e., Aerial Photography).)

no-of-bands — attribute of DATA-TYPE, range: Integer (m:l) (This attribute
indicates the number of spectral bands for the data type. If this attribute is
NULL, then there can not be a PREDEFINED-BAND-COMBO associated with
this object (i.e., there can not be a for relation between them).)

description — attribute of DATA-TYPE, range: String (m:1) (This attribute

provides an area where a description of the data type may be entered.)

PREDEFINED-BAND-COMBO — category (A record of the predefined-band-combo

objects.)

The PREDEFINED-BAND-COMBO category represents a specific predefined
band combination associated with a specific data type object. Each predefined band
combination is its own object which has attributes and relations relevant specifically to
these combinations. There can be numerous predefined band combinations for each data

type, but a predefined band combination can not exist without a relation to a data type.

ATTRIBUTES
combo-name — attribute of PREDEFINED-BAND-COMBO, range: String (m:1)
(The name of the predefined-name-combo. The name is commonly the type of

information that the band combination provides. Some examples are natural

60

view, subsea vegetation, urban development, etc.)
description — attribute of PREDEFINED-BAND-COMBO, range: String (m:1)

(This attribute provides an area where a description of the predefined band

combination may be entered.)

The red, blue and green band numbers are used to indicate which bands should be
combined to create the false color composite image for the predefined band combination.
All three attributes must contain values for the predefined band combination to exist.

green-band-no — attribute of PREDEFINED-BAND-COMBO, range: Integer

(m:ltotal) (The spectral sensor number used in the green band to create the
predefined band combination.)

blue-band-no — attribute of PREDEFINED-BAND-COMBO, range: Integer

(m:1,total) (The spectral sensor number used in the blue band to create the
predefined band combination.)

red-band-no — attribute of PREDEFINED-BAND-COMBO, range: Integer

(m: L total) (The spectral sensor number used in the red band to create the

predefined band combination.)

RELATIONS
for — relation from PREDEFINED-BAND-COMBO to DATA-TYPE (m:I,total)
(The data type the predefined band belongs to. The band combination used to
create different views of the data will be different for different data types. For

example, the band combination used to create a natural view for Landsat7 will

61

be different from the combination used for Hyperspectral data.)
the-saturation — relation from PREDEFINED-BAND-COMBO to DEFAULT-
COLOR-SATURATION (m:I) (The color saturation that should be used for a

particular predefined band combination.)

DEFAULT-COLOR-SATURATION — category (A record of default-color-

saturation.)

The DEFAULT-COLOR-SATURATION category represents an image color
saturation associated with one or more predefined band combination objects. Each color
saturation is its own object which has three attributes which defines it. The information
used to create this object is created during preprocessing. lIts main purpose is to provide a

visually more appealing false color composite image.

ATTRIBUTES

blue-saturation — attribute of DEFAULT-COLOR-SATURATION, range:
Integer (m:1) (The percentage of blue color saturation in the default color
saturation object.)

green-saturation — attribute of DEFAULT-COLOR-SATURATION, range:
Integer (m:l) (The percentage of blue color saturation in the default color
saturation object.)

red-saturation — attribute of DEFAULT-COLOR-SATURATION, range: Integer

(m:1) (The percentage of blue color saturation in the default color saturation

62

object.)

ORIGIN-UTM — category (A record of OriginUTM types.)

The ORIGIN-UTM category represents a UTM coordinate which acts as a
geographic point of reference for the origin of a data set. A set of two or four origin
UTM objects (i.e., upper left and lower right, lower left and upper right, or upper left,
upper right, lower left and lower right) associated with one data set is used to delimit the
rectangular area the data set encompasses. Each origin UTM is uniquely identified by its

northing and easting attribute values, and its UTM zone.

ATTRIBUTES
easting — attribute of ORIGIN-UTM, range: Integer (key/3) (The easting of the
origin UTM coordinate.)
northing — attribute of ORIGIN-UTM, range: Integer (key/3) (The northing of
the origin UTM coordinate.)
description — attribute of ORIGIN-UTM, range: String (m:l) (This attribute

provides an area where a description of the origin UTM object may be

entered.)

RELATIONS

the-utm-zone — relation from ORIGIN-UTM to UTM-ZONE (key/3) (The UTM

zone for a given UTM origin coordinates.)

63

UTM-ZONE — category (A record of UTM-Zone types.)

The UTM-ZONE category represents a specific UTM zone object. This
information is used to determine where on the earth the origin UTM coordinates

associated with it are found. An origin UTM object can not exist without an associated

UTM zone object.

ATTRIBUTES
zone — attribute of UTM-ZONE, range: String (key) (The zone of the UTM-zone

object.)
description — attribute of UTM-ZONE, range: String (m:l) (This attribute

provides an area where a description of the UTM zone object may be entered.)

ZOOM-LEVEL — category (A record of original and derived zoom (resolution) levels.)

The ZOOM-LEVEL category represents an original or derived zoom level. Each
zoom level is uniquely identified by its zoom level number and the data set associated
with it. A zoom level of O indicates that the tiles associated with the zoom level are at
the original resolution of the data. All other levels are derived from this. This category
includes as its attributes both data resolution and zoom level number. It could be argued
that including both of these is redundant and unnecessary. However, there may be cases

where the original data set is not loaded into the database, yet a way of calculating the

64

resolution of the original data set is still desired. For example, there may occur a case
where a given data set is provided on the terms that the data not be placed in the database
at its original resolution for viewing in TerraFly. Yet it is still available for purchase
through TerraFly. By including information for both of these attributes, the original

resolution can easily be calculated without human intervention.

ATTRIBUTES
zoom-level-no — attribute of ZOOM-LEVEL, range: Integer (key/2) (The level
number of the zoom level. The original resolution of the data set is always set
at level 0. Additional levels are derived from there.)
meter-resolution — attribute of ZOOM-LEVEL, range: Integer (m: 1 total) (The

resolution in meters of the zoom level.)

The following four attributes hold preprocessed information. Although this
information can be derived from other related data, the inclusion of this information
without having to calculate it can improve image processing speed and database retrieval,

no-x-tiles — attribute of ZOOM-LEVEL, range: Integer (m:l) (The number of x

tiles that makes up this zoom level.)

no-y-tiles — attribute of ZOOM-LEVEL, range: Integer (m:l) (The number of y

tiles that makes up this zoom level.)

virtual-image-height — attribute of ZOOM-LEVEL, range: Integer (m:I) (The

number of pixels in the height of this zoom level of the data set.)

virtual-image-width — attribute of ZOOM-LEVEL, range: Integer (m:l) (The

65

number of pixels in the width of this zoom level of the data set.)

description — attribute of ZOOM-LEVEL, range: String (m:1) (This attribute

provides an area where a description of the zoom level object may be entered.)

RELATIONS
the-dataset — relation from ZOOM-LEVEL to DATASET (key/2) (The data set
that this zoom level belongs to. A zoom level can not exist with out an

associated data set.)

TILE — category (A record of tile objects.)

The TILE category represents each individual tile of the data set, categorized by
zoom level. In order to be able to retrieve raster data from the data base in a fast and
efficient manner, the original data is mosaicked together (if more than one data file is
involved) and cut into tiles prior to being put in the database. In this way, data can be
retrieved only as needed tile by tile, instead of having to retrieve the entire data set. Each
tile is uniquely identified by its tile ID, spatial sensor number and the zoom level
associated with it. If the data set this tile belongs to is not multispectral data, then the

sensor number defaults to zero.

ATTRIBUTES

bitmap — attribute of TILE, range: Binary (m:1) (The bitmap data of the tile.)

66

tile-id attribute of TILE, range: String (key/3) (The tile ID created during the

static tile grid mosaicking process.)
sensor attribute of TILE, range: Integer (key/3) (The spatial sensor number of

the tile. If the data set the tile belongs to is not mulitspectral, the sensor

number defaults to zero.)
access-level — attribute of TILE, range: Integer (m:l) (The access level that a

user must have to be able to view this tile; the default is 0, which is HPDRC

access)

RELATIONS

of — relation from TILE to ZOOM-LEVEL (key/3) (The zoom level the tile

belongs to.)

COMPRESSION-METHOD — category (A record of compression method/data format

objects.)

The COMPRESSION-METHOD category represents the compression
method/data format used for the data set. Each compression method is uniquely

identified by its type.

ATTRIBUTES

compress-type — attribute of COMPRESSION-METHOD, range: String (key)

(The compression type of the compression method. Some examples of this are

67

JPEG, TIFF, GZIP, etc.)
description — attribute of COMPRESSION-METHOD, range: String (m :1) (This

attribute provides an area where a description of the compression method

object may be entered.)

COLOR-RANGE — category

The COLOR-RANGE category represents the optimal color range for the data set.
This range is determined during preprocessing of the data and is used to make the data
set’s images more visually appealing. Each color range is uniquely identified by its band
number and the data set associated with it. The range is typically between 0 and 256. A
limitation on this range has not been put in place, however, to allow for any future image

processing changes that may occur to the standard range.

ATTRIBUTES
min-range-value — attribute of COLOR-RANGE, range: Integer (m:1) (The
minimum color range value for this color range object.)
max-range-value — attribute of COLOR-RANGE, range: Integer (m:1) (The
maximum color range value for this color range object.)
band-no — attribute of COLOR-RANGE, range: Integer (key/2) (The spectral
sensor number associated with this color range. If the data is not multispectral

data, this attribute defaults to zero.)

68

RELATIONS

the-dataset — relation from COLOR-RANGE to DATASET (key/2) (The data set

that the color range belongs to.)

COUNTY — category (See subschema ss2.)

TerraFly Database Subschema 2: Vector Digital Data

This part of the database schema deals with the efficient storage and retrieval of
the vector digital data, namely the GNIS and U.S. Census Tiger;/Line data, previously
discussed. As with the previous subschema, we want to be able to effectively store
varied types of similar data in a uniform format. A logical design with fast data access
capabilities is also required. To help accomplish this, a combination of a good schema

design and data preprocessing is used.

One thing to note when looking at this subschema is that the names given to the
categories are based on U.S. data and information specific to the TerraFly application.
This was primarily done for better understanding of the schema since this is the data that
is primarily dealt with at HPDRC. The file format of the Tiger/Line files, in particular,
are rather complex and difficult to understand. Having similarly named categories will
help with understanding how the data maps to the schema. However, information
regarding similar types of non-U.S. data (e.g., Canadian Geographic Names Database,

Canadian Street Files, etc.) have been analyzed and incorporated into the design of the

69

subschema. The effects of this are noted in the discussions of the individual categories

and relations.

Unlike subschema 1, this part of the database schema does not center upon one
category, but its organization can be subcategorized into three areas of interest. These
areas involve dealing with place data (i.e., point-based data), street and address range
data (i.e., line data) and area data (i.e., polygon data). Although these three areas can be
viewed as quasi-independent of each other, they do have shared categories in common.
A discussion of each category, starting with the shared categories, can be found below.

Subschema 2 is illustrated in Figure 9.

Shared Categories and Relations

COUNTY — category (A record of counties. This is, for example, Miami-Dade County.
For countries other than the U.S., municipal areas equivalent to a County would be

placed in this category.)

The COUNTY category represents each County level municipal object. It
contains two attributes and one relation. Both GNIS and U.S.
Census Tiger/Line files organize data by county and state. Each county can be identified
by its name and which state it is a county of. For example, Miami-Dade county is

identified by Miami-Dade and Florida.

70

Figure 9. TerraFly Database Subschema 2: Vector Digital Data Storage.

71

ATTRIBUTES
name — attribute of COUNTY, range: String (key/2) (The name of the county.)
description — attribute of COUNTY, range: String (m:1) (This attribute provides

an area where a description of the data may be entered.)

RELATIONS
county-of— relation from COUNTY to STATE (key/2) (The state or province the

county belongs to. A county can not exist without a state.)

STATE — category (A record of states, territories and provinces.)

The STATE category represents each State, Territory or Province level object.
Although not represented in this subschema (due to space limitations), in addition to its
three attributes, it should also have a relation to a country category, and perhaps in the far
future, the country should have a relation to a planetoid category. With the inclusion of a

country category, each state can be identified by its name and country.

ATTRIBUTES
state-name — attribute of STATE, range: String (key) (The name of the state,
territory or province.)
state-abbreviation — attribute of STATE, range: String (m:l) (A short

abbreviation used to represent the state, usually containing two letters.)

72

description — attribute of STATE, range: String (m:1) (This attribute provides an

area where a description of the data may be entered.)

LOCATION — category (A record of latitude/longitude point coordinates.)

The LOCATION category represents a latitude/longitude point location. Each
location must have a latitude and longitude coordinate. Each location point can be

associated with all three main types of vector digital data.

ATTRIBUTES

latitude — attribute of LOCATION, range: -90.0000..90.0000 (m:l,total) (The
latitude of the location in decimal format. If the original coordinate is in
degrees, minutes and seconds, it is converted prior to being put in the
database.)

longitude — attribute of LOCATION, range: -180.0000..180.0000 (m:l,total)
(The longitude of the location in decimal format. If the original coordinate is
in degrees, minutes and seconds, it is converted prior to being put in the

database.)

Place Categories and Relations

PLACE — category (A record of places of interest.)

73

The PLACE category represents point of interest objects. A place object must
have a name, location vector and a relation to country it is in. Neither place names nor
location vectors are unique. A place’s location vector is created using the place’s
latitude/longitude coordinate during preprocessing of the data and exists to increase range

search efficiency. It is part of the addressing scheme and is discussed in detail in Chapter

ATTRIBUTES

place-name — attribute of PLACE, range: String (m:l,total) (The name of the
place.)

location-vector — attribute of PLACE, range: String (m:1,total) (This attributes
represents the place's latitude/longitude coordinates using bit interleaving. This
attribute is included to increase search and retrieval speed. The location object
associated with the place object can not be changed unless the location vector
is also changed. Similarly, the location vector can not be changed unless the
location object is changed.)

description — attribute of PLACE, range: String (m:I) (This attribute provides an

area where a description of the data may be entered.)

RELATIONS

in — relation from PLACE to COUNTY (m:l,total) (The county in which the
place is located.)

the-location — relation from PLACE to LOCATION (m:1,total) (The

74

georeferenced location of the place.)

the-type — relation from PLACE to PLACE-TYPE (m:1) (The type of the place.)

PLACE-TYPE — category (A list of types of places of interest.)

The PLACE-TYPE category represents type of place objects. A place type object
has a type name and virtual size. The value for the virtual size attribute is created at the
time the data is entered in the database. It is an estimate of the average size of the type of

place and can be used to limit the type of places retrieved from the database.

ATTRIBUTES
type — attribute of PLACE-TYPE, range: String (m:1) (The type of the place.)
virtual-size-meters — attribute of PLACE-TYPE, range: Integer (m:l) (The
virtual size of the place type.)
description — attribute of PLACE-TYPE, range: String (m:l) (This attribute

provides an area where a description of the data may be entered.)

Streetand Address Range Categories and Relations

STREET-SECTION — category (A record of streets.)

The STREET-SECTION category represents a street object. In U.S. Census

Tiger/Line data, a street section represents a street within a county. This is not

75

necessarily the case with other types of data such as Canadian Street Files. Each street
section is uniquely identified by its ID, and usually has a street name and street type. It

can have more than one name, but only one street type.

ATTRIBUTES
street-section-id — attribute of STREET-SECTION, range: String (key) (The
street ID uniquely identifies the street.)
description — attribute of STREET-SECTION, range: String (m:1) (This attribute

provides an area where a description of the data may be entered.)

RELATIONS
name-of — relation from STREET-SECTION to STREET-NAME (m:m) (The
name of the street. Each street section can have more than one name and each
name can be associated with more than one street section.)
the-type — relation from STREET-SECTION to STREET-TYPE (m:1) (The

street’s type.)

STREET-NAME — category (A record of street names.)

The STREET-NAME category represents the names of streets. A street name

must have a name and no other street name object can have the same name.

76

ATTRIBUTES

name — attribute of STREET-NAME, range: String (1:1, total) (The street name.)

STREET-TYPE — category (A record of street types.)

The STREET-TYPE category represents a type of street. A street type is uniquely
identified by its type name. Each street type can be associated with many street sections,

but each street section can only be of one street type.

ATTRIBUTES
type — attribute of STREET-TYPE, range: String (key) (Contains the name of the
type of street.)
description — attribute of STREET-TYPE, range: String (m:1) (This attribute

provides an area where a description of the data may be entered.)

STREET-SEGMENT — category (A record of segments.)

The STREET-SEGMENT category represents part of a street which can be
represented by a single line segment. A street section is made up of one or more street
segments. A street segment can not exist which is not part of a street section. Each street
segment has starting and ending address range attributes, left and right side zip codes, and
to and from location vectors. As with the place location vector, the to and from location

vectors are created using the street segment’s latitude/longitude coordinates during

77

preprocessing of the data. They exist to increase range search efficiency and are part of

the addressing scheme discussed in detail in Chapter 6.

The street segment also has a relation with the county it is located in. For U.S.
Census Tiger/Line data, street sections are more directly associated with counties. As
such, it would be more appropriate to have the ‘inside’ relation from street section to
county. However, in gathering information on the street files of other countries (e.g.,
Canadian Street Network Files), having the relation from the smaller street segments to

the county objects would be more flexible and representative of these other types of data

sets.

ATTRIBUTES

right-st-address — attribute of STREET-SEGMENT, range: Integer (m:I) (The
right starting address of the street segment.)

left-st-address — attribute of STREET-SEGMENT, range: Integer (m:1) (The left
starting address of the street segment.)

right-end-address — attribute of STREET-SEGMENT, range: Integer (m:I) (The
right ending address of the street segment.)

left-end-address — attribute of STREET-SEGMENT, range: Integer (m:1) (The
left ending address of the street segment.)

to-location-vector — attribute of STREET-SEGMENT, range: String (m:ltotal)
(This attributes represents each of the street segment’s latitude/longitude

coordinates using bit interleaving. This attribute is included to increase search

78

and retrieval speed. The location object associated with the street segment’s to
relation can not be changed unless the to location vector is also changed.
Similarly, the to location vector can not be changed unless the corresponding
location object is changed.)

from-location-vector — attribute of STREET-SEGMENT, range: String
(m:Ltotal) (This attributes represents each of the street segment’s
latitude/longitude coordinates using bit interleaving. This attribute is included
to increase search and retrieval speed. The location object associated with the
street segment’s to relation can not be changed unless the location vector is
also changed. Similarly, the to location vector can not be changed unless the

corresponding location object is changed.)

RELATIONS

the-street — relation from STREET-SEGMENT to STREET-SECTION (m: I, total)
(The street which the street segment is part of.)

from _ relation from STREET-SEGMENT to LOCATION (m:ltotal) (The
starting georeferenced location of the street segment.)

to — relation from STREET-SEGMENT to LOCATION (m: I,total) (The ending
georeferenced location of the street segment.)

inside — relation from STREET-SEGMENT to COUNTY (m:I) (The county in
which the street segment is located.)

left — relation from STREET-SEGMENT to ZIP-CODE (m:l) (The zip code of

the left side of the segment.)

79

right — relation from STREET-SEGMENT to Z1P-CODE (m:I) (The zip code of

the right side of the segment.)

ZIP-CODE — category (A record of zip-codes.)

The ZIP-CODE category represents a zip code. A zip code object can not exist

without its code.

ATTRIBUTES

code — attribute of ZIP-CODE, range: Char(5) (1:1, total) (The zip code.)

Area Categories and Relations

AREA — category (A record of areas.)

The AREA category represents a two-dimensional polygon area, often delimiting
a municipal boundary. An area is uniquely identified by its name and the county it is
located in. An area can be a city, suburb or any place of interest that occupies a region as
opposed to a point (although it is not unusual for an area’s center point to be included in
the place data as a point). An area also has a relation with other areas. The relation
indicates which areas lie within each other. This data is not currently included in the
database as it would require substantial preprocessing, but the relation is included for

possible future use.

80

ATTRIBUTES

area-name — attribute of AREA, range: String (key/2) (The name of the area.)
description — attribute of AREA, range: String (m:1) (This attribute provides an

area where a description of the data may be entered.)

RELATIONS
within — relation from AREA to AREA (m:m) (The area this area is encompassed
by.)
located-in — relation from AREA to COUNTY (key/2) (The county the area is

located in.)

BOUNDRY-VERTEX — category (A record of area boundary vertices.)

The BOUNDRY-VERTEX category represents one element of an area’s ordered
point boundary. Taken together, the set of an area’s boundary vertices creates the
polygon shape of the area. Each boundary vertex is uniquely identified by its sequence
number and the area it is part of. There is no standard number of boundary vertexes per

area.

ATTRIBUTES
seq-no — attribute of BOUNDRY-VERTEX, range: Integer (key/2) (The

sequential number of the vertex of an area.)

81

RELATIONS

°f relation from BOUNDRY-VERTEX to AREA (key/2) (The area the vertex is

part of.)

coordinates — relation from BOUNDRY-VERTEX to LOCATION (m:l,total)

(The geographic location of the vertex.)

MIN-BOUNDING-BOX — category (The minimal bounding box which contains the

related area.)

The MIN-BOUNDING-BOX category represents the minimum bounding box
which encompasses the area. It must have four location coordinates associated with it,

one for each corner of the box.

RELATIONS

upper-left — relation from MIN-BOUNDING-BOX to LOCATION (m:l,total)
(The upper left coordinate of the bounding box)

upper-right — relation from MIN-BOUNDING-BOX to LOCATION (m:l, total)
(The upper right coordinate of the bounding box.)

lower-left — relation from MIN-BOUNDING-BOX to LOCATION (m:I, total)
(The lower left coordinate of the bounding box.)

lower-right — relation from MIN-BOUNDING-BOX to LOCATION (m:l,total)

(The lower right coordinates of the bounding box.)

82

of — relation from MIN-BOUNDING-BOX to AREA (m:1) (The area to which

this bounding box belongs.)

83

VI. Addressing Scheme

When dealing with vector-based digital data, it is most often the case that a much
larger number of objects must be retrieved at once from the database than with raster
data. This typically involves the use of range searches which are based on positional

values rather than searches based on comparisons.

Relational databases search based on comparison and are inefficient when it
comes to proximity searchers. Sem-ODB, like the spatial data structures discussed in
Chapter 3, is quite efficient at these types of searches. The reason for this is because the
Sem-ODB engine uses a B-tree structure to help organize the data. Spatial objects are

stored both physically and logically close to each other in the database.

Although this structure does provide efficient proximity-based range searches, the
efficiency of these searches when dealing with two-dimensional data can be enhanced by
preprocessing the data and using a one-dimensional addressing scheme. In short, this
linear addressing scheme maps an objects 2-dimentional (latitude/longitude) location
information to a 1-dimensional integrated integer value. Range searches are then
performed based on these 1-dimensional integrated integer values. This chapter discusses
the implementation of this linear addressing scheme in TerraFly’s database schema, as
well as an efficient search algorithm and possible applications for which this addressing

scheme is potentially valuable.

84

Addressing Scheme Overview

As was discussed in Chapter 3, there are a number of data structures which are
quite efficient at handling spatial data. These techniques are often employed in relational
database systems to provide more appropriate means of storing and retrieving spatial
data. Implementing these data structures in a database, however, can be quite complex.
Because of the way Sem-ODB handles spatial data, a simpler yet still highly effective
manner of dealing with spatial data, specifically range searches of point data, can be

implemented. We are calling this technique our linear addressing scheme.

This addressing scheme involves converting latitude and longitude coordinates
into 32-bit binary representations and interleaving the bits of these two representations to
create a 64-bit integer representation of the point’s location (i.e., its linear address).
Then, when a place object is entered into the database, its corresponding 64-bit linear
address is entered with it. This will allow users to query the database via this linear

address.

To query the database, a decomposition of the spatial area is accomplished using
the linear address. When data for an area of interest is requested, it is in the form of a
bounding box containing the area of interest. The coordinates of this box (e.g., lower left
and upper right) are used in a recursive search algorithm to narrow down the range search
and query the database via the linear addresses of these coordinates. Doing this, in

essence, provides a decomposition of the spatial area. The use of this structure emulates

85

0, 20 10,20 20, 20

Inten tational

Mall . MIA
(8,16)
*FIU
(5.13) UM
*
Dadeland
0,0 20,0

Figure 10. Quad-tree Representation of the Addressing Scheme

the use of a quad tree in Sem-ODB, where the searching algorithm recursively calculates

how to conduct the range query.

A simplified example is illustrated in Figure 10. If the range query is for all
points in the shaded area, then the lower left (0,10) and upper right (10,20) coordinates
would be used to create the query. Only the points within that shaded area would be
retrieved. Note how this structure is similar to the PR quad-tree discussed in Chapter 3.
Of course, although the structure looks similar, this is more of an emulation than an
actual implementation of a PR quad-tree. The actual process is discussed in detail in the

next two subsections of this chapter.

86

Database Implementation

In order to more effectively deal with the two-dimensional point data within the
database, the location-vector is represented as an attribute of the place category in
subschema 2 of TerraFly’s database. Through the use of this location-vector, range
searches for point data can be executed by examining a single attribute which is a sorted
linear representation of the object’s spatial location. This subsection will discuss the

process and reasoning behind the creation and use of the location-vector attribute.

M apping of the Spatial Address to a Linear Address
A place object’s location-vector is created prior to the insertion of the data into
the database by combining the place’s latitude/longitude location coordinates into a one-

dimensional linear address via bit interleaving. The process for doing this is as follows.

Step 1: Convert the point’s latitude coordinates (in decimal format) to a 32-bit

binary representation format. This is accomplished as follows:

» The most significant bit (MSB) indicates the sign where 1is negative and 0 is
positive.

e The next 8 bits represent the degrees in binary format. Because we are
dealing with latitude, this number will range between 00 and 90. When
needed, leading zeros will be used to fill out the 8 bits.

« The next 23 bits represent the binary representation of the decimal portion of

the latitude coordinate. This number will range between 000000 and 999999.

87

Step 2: Convert the point’s longitude coordinates (in decimal format) to a 32-bit

binary representation format. This is accomplished as follows:
« The most significant bit (MSB) indicates the sign where 1 is negative and 0 is
positive.
e The next 8 bhits represent the degrees in binary format. Because we are
dealing with longitude, this number will range between 000 and 180.
e The next 23 bits represent the binary representation of the decimal portion of

the latitude coordinate. This number will range between 000000 and 999999.

Step 3: Use bit interleaving to create a 64-bit vector representing the point’s
location. This vector is entered as the data value for location-vector and is used to more
effectively retrieve the point data. This is accomplished by:

« Take the MSB of the 32-bit latitude representation as the MSB of the 64 bit

vector.

e The MSB bhit of the 32-bit longitude representation is then taken as the next

bit of the 64-bit vector.

e This interleaving of the 32-bit latitude and 32-bit longitude representations

would continue until the 64-bit vector is completed.

Thus, the most significant two bits of the 64-bit vector represent the sign values of

the latitude and longitude coordinates respectively. If the original 32-bit representations

88

were numbered from 31 to O, then the resulting 64-bit vector would look something like

this:

Lat3i1LongaiLat3oLong3o... LatiLongiLatoLongo

As a result of this, each static GIS place object is stored in the database with its
64-bit vector. Because we are using Sem-ODB, objects that have the same latitude and
longitude coordinates will have similar location-vectors and will be clustered in adjacent
positions. This would necessitate an additional constraint on the database. The original
latitude and longitude values of any stored object which includes a location-vector
attribute should not be modified without the associated modification of the location-
vector attribute. Further, the location vector cannot be modified unless the original

latitude and longitude values are first modified

Search Algorithms

This subsection discusses the algorithm used to perform the range query for point-
based data. As was stated previously, the range query is in the form of a bounding box
where the lower left (LL) and upper right (UR) coordinates are used as the search
parameters. When a small spatial range includes a major quad segment boundary (e.g.
LLJatitude: 25.9888 and URJatitude: 26.12345), the linear range becomes too large to
encompass both adjacent major quad regions. This, in turn, increases the number of
objects retrieved and deteriorates the performance. Thus, a solution is to segment the

spatial range into multiple sub-spatial ranges.

89

A recursive algorithm to accomplish this solution takes the boundary coordinates
of a bounding box as its input. Processing of the bounding box coordinates determines
whether the bounding box needs to be further reduced and the algorithm called

recursively with the smaller bounding boxes. The algorithms is as follows:

Step 1. Convert these two sets of coordinates (LL and UR) into 32-bit and then
64-bit representations. The process for this is the same as for the creation of the location-

vector as described above.

Step 2. Perform an exclusive OR (XOR) between the 64-bit representations of LL
and UR. The index of the leading bit on the resulting vector is the position of the left
most bit that has a value of 1 in the 64-bit vector (with index range 63...0). The

actual_variation_length of the resulting vector is the index of the leading bit plus one.

Step 3. Calculate the absolute numerical difference between the LL and UR
latitude, and convert this difference into the 32-bit representation as described above.
The same should be done with the LL and UR longitude coordinates. These two 32-bit
representations should then be interleaved to create a 64-bit representation. The length of
resulting value is assigned as the minimum_variation_length value. Note that the
minimum_variation_length value will always be less than or equal to the

actual_variation_length value.

90

Step 4. Determine whether the bounding box should be further reduced or if all of

the points encompassed by the bounding box should be retrieved. This is done as

follows:
If (actual_variation_length - minimum_variation_length) > variation_length_threshold
{
find (subdividing-latitude-boundary and subdividing-longitude-boundary)
split the bounding box using these boundaries

recursively process these new bounding boxes

¥

else return data from the bounding box
Where the subdividing-latitude-boundary and subdividing-longitude-boundary are
determined by the leading bit of the actual variation_length XOR bits, and the

variation_length_threshold is a user-defined acceptable length variant.

This process may seem complex, but in order to appropriately limit the number of

objects retrieved, it is essential.

Possible Applications

There are numerous applications for which the addressing scheme can be
particularly useful. It can be used to enhance some of TerraFly’s current features such as
retrieving objects for the Go-To Place feature. More interestingly, new features which

would require fast database retrieval of point-based data can be added to TerraFly.

91

One new possible feature would involve querying for the nearest street
intersections. In discussing the usefulness of street information with TerraFly’s current
users, many indicated that information regarding the closest intersection would be more
useful than merely information regarding the closest street. Although the street and
address range data is line-based data, to-location-vector and from-location-vector
attributes were added to the database schema allow this data to be queried as if one were
dealing with point-based data. The algorithm for data retrieval would be similar to that of

places. This algorithm would be as follows:

Step 1. From the current position, create a bounding box with a radial distance r

between the current position and the bounding box’s boundaries.

Step 2. Apply a recursive function to determine whether the bounding box should
be further reduced or if all of the points encompassed by the bounding box should be
retrieved.

For each bounding box

Find the set of location vectors

For each vector

find the set of associated segments

If two or more segments are related to the same location

92

Then it is an intersection

Another new feature could involve constant searching and display of the retrieved
point-based data on the client side. More specifically, the place closest to the center point
of the image would be displayed while the user is ‘flying’ over the data. Because the
greatest lag when retrieving data involves transmittal over the Internet, this would

involve constant searching on the client side. This would work as follows:

Step 1. A range search as described above would be performed on the server side

to retrieve the data of interest.

Step 2. Once the data is retrieved, it is placed into a data structure which can
quickly and easily be searched. The data structure recommended for this task is an R-
tree. R-trees have been found to be very efficient at dealing with two-dimensional point
data, particularly when the R-tree is stored in memory as it would be on the client side. A

description of the R-tree data structure can be found in Chapter 3.

Step 3. Once the data is in the appropriate data structure, it can be sent to the

client as one package (e.g., XML can be used to accomplish this)

93

Step 4. Once the client receives the data, searching for the place closest to the
center point of the image can begin. This will continue until a preset boundary is crossed

and a new set of data is requested and received from the server.

94

VII. CONCLUSION

The ability to efficiently store and retrieve spatial data is an area which is steadily
growing in importance. This is primarily due to the increased demand, availability and
usefulness of this data. The information that can be gleaned from this data is enormous,
and its increased availability and new technology has reduced the cost of acquiring this
data. As a result, it has begun to be used for applications from real estate endeavors to

cadastral mapping.

Remotely-sensed data, however, is complex and difficult to deal with. This data
is inherently very large and storage of the data often involves large amounts of data. Use
of the data often requires powerful and expensive hardware and software systems, greatly
limiting potential users. TerraFly, a prototype interactive vehicle for flying over and
manipulating remotely-sensed data via any standard Java-enabled Web browser, is
currently under development to address some of these issues. In order for TerraFly to
work effectively, it must have an efficient and secure way of storing and retrieving its
data. This thesis has addressed this issue by researching various storage requirements

and options, and providing a combination of solutions.

A substantial amount of research has been done on various data structures that can
be used to efficiently store spatial data. These structures include, but are not limited to
point quad-trees, K-D trees, region quad-trees and R-trees. Each of these has its own

advantages and disadvantages when dealing with different types of data. A main

95

disadvantage of these types of structures is the complexity involved in implementing
them, particularly when trying to implement them within a database. The general
implementation of these structures in a database also does not take into account any

specialized capabilities a particular database system may have.

Many GIS systems employ the use of a database to store and retrieve spatial data.
Because of the large size and value of the data, efficient and secure databases are needed
for data storage. Relational database systems have been found to be very inefficient at
dealing with spatial data. Research into other types of databases, such as Object-oriented
database systems, has shown that they are more effective at handling spatial data. The
Semantic Object-oriented Database Management System (Sem-ODB) was specifically
designed to deal effectively with spatial data. As a result, Sem-ODB was chosen as the

database for this thesis.

To effectively deal with TerraFly’s data storage requirements, a semantic schema
has been designed to efficiently store different types of spatial data in the same database.
This schema provides a uniform manner of storing data from various sources.
Specifically, different types of raster data are uniformly stored using the same database
categories and relations, as are the point, line and polygon types of data. Structures for
fast and efficient data retrieval were included in the database schema, and metadata and
preprocessing information regarding the data has been preserved. This was all

accomplished while providing a logical and secure database schema design.

96

To provide more effective retrieval of large amounts of point-based vector data,
this database schema includes in its design a linear addressing scheme for remotely-
sensed objects which maps an objects 2-dimentional (latitude/longitude) location
information to a 1-dimensional integrated integer value. In conjunction with this, an
algorithm for transforming a remotely-sensed range search into a number of linear
segments of objects in the 1-dimensional array was investigated. Through the use of a
binary representation and bit interleaving, this addressing scheme can be used to quickly

and easily perform a range search to retrieve point-based vector data from Sem-ODB.

The research involved with this thesis focused on the effective storage and
retrieval of remotely-sensed data and its relation information. There is still a great deal of
research that can be done on various levels to further improve the storage and retrieval of
spatial data, as well as the dissemination of this data to the public. Some of the suggested
areas of future research includes:

e Using the data storage and retrieval capabilities discussed in this thesis to
create new features for the TerraFly system. For example, a number of
possible extensions of the TerraFly system were discussed in Chapter 6 which
could take advantage of fast retrieval of places and street intersections.

» Creating more efficient structures for the storage and retrieval of line-based
street data and polygon-based area information. The current system provides
the capability to store preprocessing information related to these two types of
data, such as a minimum bounding box for the area data. These two areas,

however, were not focused upon as the point-based data was. Future work

97

could focus more on finding more efficient algorithms for dealing with these
types of data

Investigating efficient storage and retrieval of higher dimensional spatial data
from a semantic database. The current research focuses on two-dimensional
data. It is likely that in the future, TerraFly will support higher dimensional
data, such as three-dimensional data. More efficient data storage and retrieval

algorithms for these types of data should be investigated.

98

IX. References

[AERIAL]

[BENT75]

[CHENOO]

[CODD70]

[DAV199]

[EGEN92]

[FINK74]

[GNIS]

[GUT94]

[GUTT84]

[IKONOS]

[KEAT87]

[KNUTH73]

Aerial Photographs and Satellite Images, United States Geological Survey,
URL: http://mapping.usgs.gov/mac/isb/pubs/booklets/aerial/aerial.html

J.L. Bentley, “Multidimensional Binary Search Trees Used for Associated
Searching”, Communications ofthe ACM, pp. 509-517, 1975.

Chen, S., Rishe, N., Wang, X. and Weiss, M.A. “A User-Friendly
Multimeida System for Querying and Visualizing of Geographic Data.”
Unpublished Manuscript, Florida International University, 2000.

E. Codd, “A Relational Model of Data for Large Shared Data Banks,"
Communications ofthe ACM, Vol. 13, No. 6, June 1970.

Debra Davis-Chu, Elma Alvarez, and Naphtali Rishe, “The Creation of a
System for 3D Satellite and Terrain Imagery.” Proc. Thirteenth
International Conference on Applied Geological Remote Sensing,
Vancouver, BC, Canada, 1-3 March 1999, vol. 2, pp. 329-336.

M. Egenhofer, “Why not SQL!” In International Journal on Geographical
Information Systems, 6(2), p. 71-85, 1992.

R. Finkey, J. Bentley, “Quadtrees: A data structure for retrieval on
Composite Keys”, pp. 57-97, 1974.

USGS mapping Information: Geographic Names Information System (GNIS),
URL: http://mapping.usgs.gov/www/gnis/

R.H. Guting, “An introduction to spatial database systems”, VLDB
Journal, 3(4), p. 357-400, 1994.

A. Guttman, “R-trees: A dynamic index structure for spatial searching”, In
Proceedings ACM SIGACT-SIGMOD Conference on the Principles of
Database Systems, p. 569-592, 1984.

Space Imaging Catalog of Products and Services, September, 1999.

T. Keating, W. Phillips, and K. Ingram. "An Integrated Topologic
Database Design for Geographic Information Systems.” Photogrammetric

Engineering and Remote Sensing, vol. 53, no. 10, 1987, pp. 1399-1402

D.E. Knuth, “The art of computer programming, volume 3, Sorting and
Searching”, Addison-Wesley, Reading, MA, 1973.

99

http://mapping.usgs.gov/mac/isb/pubs/booklets/aerial/aerial.html
http://mapping.usgs.gov/www/gnis/

[LAND7]

[LEE77]

[LEESO]

[LOCK79]

[LORIES4]

[MCFAR99]

[MNUSH]

[MUFF87]

[RISHE92]

[RISHE94]

[RISHE98A]

[RISHE98B]

Landsat Project Policy and History: Landsat 7 Mission Specifications,
NASA Goddard Space Flight Center, URL.:

http ://Itpwww .gsfc. nasa. gov/LANDS AT/CAMPAIGN DOCS/PROJECT/
L7 Specifications.html

D.T. Lee and F.P. Preparata, “An improved algorithms for the rectangle
enclosure problem”, SIAM Journal on Computing, 6(3), pp. 594-606,1977.

D.T. Lee and B.J. Shacter, “Two algorithms for constructing a Delaunay
Triangulation, International Journal of Computer Information Sciences, 3,
pp. 219-242,1980.

P.C. Lockemann, H.C. W.H. Weil, W H. Wohlleber, “Data Abstraction for
Database Systems.” ACM Transactions on Database Systems, 4(1), 1979.

R.A. Lorie and A. Meier. Using a Relational DBMS for Geographical
Databases. Geo-Processing, vol. 2, 1984, pp. 243- 257.

Gregory McFarland, Andres Rudmik, and David Lange, “Object-Oriented
Database Management Systems Revisited”, Technical Report for Air
Force Research Laboratory - Information Directorate, Modus Operandi,
Indialantic, FL, 1999.

D. Mnushkin, “Object Oriented Databases”, URL.:
http://spuds.cpsc.ucalgary.ca/courses/547-96/tamw/547/00t/#00DB.

G. Muffin, “Raster versus Vector Data Encoding and Handling: A
Commentary”, Photogrammetric Engineering and Remote Sensing, Vol.
53, No. 10, pp. 1397-1398, 1987

N. Rishe, “A Database Design: The Semantic Modeling Approach”,
McGraw-Hill, 1992.

N. Rishe, and Q. Li, “Storage of Spatial Data in Semantic Databases.” In
Proceedings ofthe 1994 ASME International Computer in Engineering
Conference, Minneapolis, MN, pp. 793-800, Sept 11-14, 1994.

N. Rishe, D. Barton, M. Chekmasov, K. Madhyanapu, S. Graham, and M.
Chekmasova, "Everglades Data Integration using a Semantic Database
System." International Conference Geospatial Information in Agriculture
and Forestry, Lake Buena Vista, FL, pp. 1-567 -1-573, June 1-3, 1998a.

N. Rishe, D. Barton, F. Urban, M. Chekmasov, M. Martinez, E. Alvarez,
M. Gutierrez, and P. Pardo, "High Performance Database Management for

100

http://spuds.cpsc.ucalgary.ca/courses/547-96/tamw/547/oot/%23OODB

[ROUS95]

[SOL98]

[SAM90a]

[SAM90b]

[Tiger]

[USINT]

[WAUGH]

Earth Sciences." NASA University Research Center Technical Conference,
Huntsville, AL,, pp. 539-544, Feb 22-25, 1998b.

N. Roussopoulos, C. Faloutsos, and T. Sellis, “Nearest Neighbor Queries”,
In Proc. ACM SIGMOD International Conference on Management of
Data, pp. 71-79, 1995.

Selena Sol, “Introduction to Databases for the Web”, 1998, URL:
http://wdvl.com/Authoring/DB/Intro/index3.html.
H. Samet, “The design and analysis of spatial data structures”, Addison-

Wesley, Reading, MA,1990.

H. Samet, “Applications of spatial data structures”, Addison-Wesley,
Reading, MA, 1990.

Tiger Overview, United States Census Bureau, Tiger/Line data, URL:
http://www.census.gov/geo/www/tiger/overview.html

Understanding Color-Infrared Photographs. U.S. Department of Interior,
U.S. Geological Survey.

T.C. Waugh, and R.G. Healey, “The GEOVDEW Design: A Relational

Database Approach to Geographical Data Handling”, International Journal
of Geographical Informal Systems, Vol. 1, No. 2, pp. 101-118, 1987.

101

http://wdvl.com/Authoring/DB/Intro/index3.html
http://www.census.gov/geo/www/tiger/overview.html

	Florida International University
	FIU Digital Commons
	11-20-2000

	Efficient storage and retrieval of georeferenced objects in a semantic database for web-based applications
	Debra Lee Davis
	Recommended Citation

	tmp.1487623021.pdf.RH87p

