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ABSTRACT OF THE DISSERTATION

QUANTIFYING THE EFFECTS OF TEMPERATURE AND CONCENTRATION ON

VARIABLE-DENSITY FLOW IN NUMERICAL MODELING OF GROUNDWATER

SYSTEMS: IMPLICATIONS FOR PREDICTIVE UNCERTAINTY AND DATA

COLLECTION

by

Alyssa Marie Dausman

Florida International University, 2008

Miami, Florida

Professor Michael C. Sukop, Major Professor

Groundwater systems of different densities are often mathematically modeled to

understand and predict environmental behavior such as seawater intrusion or submarine

groundwater discharge. Additional data collection may be justified if it will cost-

effectively aid in reducing the uncertainty of a model's prediction. The collection of

salinity, as well as, temperature data could aid in reducing predictive uncertainty in a

variable-density model. However, before numerical models can be created, rigorous

testing of the modeling code needs to be completed. This research documents the

benchmark testing of a new modeling code, SEAWAT Version 4. The benchmark

problems include various combinations of density-dependent flow resulting from

variations in concentration and temperature. The verified code, SEAWAT, was then

applied to two different hydrological analyses to explore the capacity of a variable-

density model to guide data collection.
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The first analysis tested a linear method to guide data collection by quantifying

the contribution of different data types and locations toward reducing predictive

uncertainty in a nonlinear variable-density flow and transport model. The relative

contributions of temperature and concentration measurements, at different locations

within a simulated carbonate platform, for predicting movement of the saltwater interface

were assessed. Results from the method showed that concentration data had greater

worth than temperature data in reducing predictive uncertainty in this case. Results also

indicated that a linear method could be used to quantify data worth in a nonlinear model.

The second hydrological analysis utilized a model to identify the transient

response of the salinity, temperature, age, and amount of submarine groundwater

discharge to changes in tidal ocean stage, seasonal temperature variations, and different

types of geology. The model was compared to multiple kinds of data to (1) calibrate and

verify the model, and (2) explore the potential for the model to be used to guide the

collection of data using techniques such as electromagnetic resistivity, thermal imagery,

and seepage meters. Results indicated that the model can be used to give insight to

submarine groundwater discharge and be used to guide data collection.
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1 INTRODUCTION

1.1 Preface

The work for this dissertation was done between 2003 and 2008 in cooperation

with the U.S. Geological Survey (USGS). Funding for the work was provided by the

USGS. The dissertation is a combination of (1) benchm king a newly-developed code

that simulates variable-density flow resulting from changes in temperature and

concentration, and (2) utilizing that code to guide data collection and reduce predictive

uncertainty. The dissertation consists of five chapters. An introduction in the first

chapter provides background information, innovations of this research, and governing

equations for variable-density flow and transport from changes in concentration and

temperature. The following three chapters have been derived from peer-reviewed

publications or are in the review process for publication by the USGS. These include two

USGS Scientific Investigations Reports, a peer-reviewed publication in a refereed

symposium book, a USGS Techniques and Methods Report, and a conference paper. A

listing of the publications is presented below. Each of the chapters includes background

and literature review at the beginning of the chapter that pertains to the research in the

chapter. The final chapter contains the discussion and conclusions from the research.

Portions of this dissertation are published in the following:

Dausman, A.M. and Langevin, C.D., 2005, Movement of the saltwater interface in the
Surficial Aquifer System in response to hydrologic stresses and water-
management practices, Broward County, Florida. USGS Scientific Investigations
Report: SIR 2004-5256, 73 p.

Dausman, A.M., Langevin, C.D., and Sukop, M.C., 2007, Simulation of submarine
groundwater discharge salinity and temperature variations: implications for
remote detection. In Sanford, W., Langevin, C.D., Polemio, M., and Povinec. P,

1



eds. A new focus on groundwater-seawater interactions: IAHS Publication 312,
Oxfordshire, United Kingdom, p. 272-280.

Dausman, A.M, Doherty, J., Langevin, C.D., and Sukop, M.C., 2008, Quantifying Data
Contributions toward Reducing Predictive Uncertainty in a Variable-Density
Flow and Solute/Heat Transport Model. Conference proceedings of MODFLOW
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1.2 Problem

Numerical modeling of groundwater systems is often undertaken to understand

groundwater usage, plan for water supply, or make predictions for the future whether it

relates to contaminant transport, water supply, saltwater intrusion, or well field

protection. Modeling of groundwater systems that include relatively large changes in

concentration requires modeling codes capable of simulating variable-density flow. It is

typically assumed that the change in temperature in many groundwater systems is small

and will have minimal effect on variable-density flow; therefore, temperature c be

ignored in modeling. However, there are environments where ignoring the effects of

temperature on flow will have consequences, such as in geothermal convection, deepwell

injection, or aquifer storage and recovery (Figure 1A and 1C; Thorne and others, 2006).

In fact, temperature effects may be non-negligible in many groundwater systems

(Castendyk and Webster, 2004).
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Advances in numerical modeling and computing resources have provided to a

wider set of users the capability of simulating multiple species related to variable-density

flow (Kipp, 1997; Hughes and Sanford, 2004; Langevin and others, 2008).

Mathematically, heat transport can be solved using the same equations used for solute

transport with some minor assumptions (Anderson, 2005). Therefore, temperature effects

on variable-density flow often can be simulated with modeling codes originally designed

for solute transport. Because solute is referred to as a "species" in numerical modeling,

heat is typically referred to as a "species" as well when discussed in terms of numerical

modeling. When modeling solute or heat transport, heat can be modeled as a single

species or an additional species along with other dissolved solutes. However, numerical

complications can arise when simulating temperature. Temperature affects water slightly

differently than solute; for example, temperature changes have a greater effect on

viscosity than differences in salinity over the ranges of interest here (Figure 1B and 1D).

Also, the conduction of heat through water/rock is much higher than the diffusion of

salinity through water (Anderson, 2005).

The recently published code, SEAWAT Version 4 (Langevin and others, 2008),

can simulate the effects of multiple species on variable-density flow, including

temperature and salinity. Previous versions of SEAWAT could only simulate the effects

of variable-density flow on one species, and did not have options to simulation viscosity

variations or multiple diffusion coefficients. The code has been modified to take into

account variations in viscosity due to changes in temperature and salinity, as well as

include multiple diffusion coefficients. SEAWAT is based on two widely used and
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readily available codes, MODFLOW (Harbaugh and others, 2000) and MT3DMS (Zheng

and Wang, 1999; Zheng, 2006).
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Figure 1: Graphs showing the relationships between temperature and salinity effects on density and
viscosity published in the literature. (A) Temperature affects on the density of freshwater from five
different formulae in the literature. (B) Temperature affects on the dynamic viscosity of freshwater
from two published formulae in the literature. (C) Salinity affects on density of water at 20 *C from
two published formulae in the literature. (D) Salinity affects on dynamic viscosity of water at 20 *C
from two different formulae published in the literature.

However, for the most recent version of SEAWAT to be broadly accepted for use,

thorough benchmarking is essential (Voss and Souza, 1987). In essence, the most recent

version of the code needs to be verified against a number of other numerical codes,

analytical problems, or laboratory experiments before it can be used with confidence to
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solve "real world" problems. Thorough benchmarking of the new version of SEAWAT

would then enable the code to be widely accepted by modelers. Therefore, a new tool

would be available for modelers who already use MODFLOW or MT3DMS, to make a

relatively easy transition to simulating variable-density flow resulting from multiple

species such as concentration and temperature. This transition may be necessary to

understand complicated groundwater systems where constant-density flow and transport

models are insufficient.

Even when temperature does not have a large effect on variable-density flow,

simulating temperature could still potentially aid in model calibration. For instance,

using collected temperature data could aid in constraining model parameters in the

calibration process as well as reduce predictive uncertainty if heat is being simulated as a

species. Temperature data can be used to trace source waters and analyze flow patterns;

temperature profiles have been used to estimate surface water/groundwater exchange

(Constantz and others, 2002). However, quantifying the worth of temperature data as it

relates to modeling in some environments, particularly coastal systems, including

saltwater intrusion and submarine groundwater discharge, has not been studied.

Numerical models of groundwater systems are created to aid in understanding the

environment, and often times, to make predictions of the future. However, a well-

calibrated model does not necessarily mean that it can make good predictions (Carter and

others, 2006). Data are frequently collected to improve the model's ability to make a

prediction. Thorough studies have not been done to see if the data planned to be

collected will improve the ability of a model to make a prediction before the data are

collected. It is hypothesized that a model simulating concentration and temperature could
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be used to guide data collection therefore eliminating the costly collection of data that

might not aid in understanding the overall groundwater system.

Studies that include the collection of isotope data can be used to determine the age

of groundwater and estimate its residence times. These age data could be included in a

flow and transport model to estimate parameters if the model has the capability of

simulating apparent age (Goode, 1996). Typically, models simulating age use a particle

tracking method where advective transport of particles is used; this has proven successful

in some studies (Reilly and others, 1994). A particle tracking method to simulate age

neglects the affects of diffusion, dispersion, and mixing. However, Walker and Cook

(1991) "show how neglecting diffusion can lead to serious underestimates of

groundwater ages in unconfined aquifers where recharge rates are...low". Therefore,

calibrating a strictly advective transport model to age data, where groundwater transport

is affected by diffusion and dispersion, could result in a misidentification of parameters

that affect transport, such as dispersivity. Goode (1996) reveals how the advection-

dispersion equation can be modified to include a zero-order source. Zheng (2006)

included this in MT3DMS to simulate age; therefore, taking into account both the effects

of advection and dispersion when simulating age in a groundwater model. The capability

of simulating age in MT3DMS is now available in SEAWAT and has never been tested

or applied to a variable-density model simulating a coastal system.

1.3 Objectives

The objectives of the research presented in this dissertation are as follows:
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(1) Benchmark, evaluate, and apply the variable-density flow, solute, and heat

transport capabilities of the most recent version of SEAWAT [including the

effects of temperature on viscosity].

(2) Quantify the reduction in uncertainty of a model prediction by determining the

worth of different types of data, specifically temperature and salinity data, in a

carbonate platform model. This objective includes testing the use of a

precalibrated model before any data are collected.

(3) Quantify the effects of geologic heterogeneity when simulating temperature,

salinity, and age of submarine groundwater discharge. This includes simulating

long-term seasonal changes and short-term tidal changes in the groundwater

system/aquifer. Then, utilize the simulation to guide the collection of aerial

imagery data to detect submarine groundwater discharge in a coastal system.

1.4 Scientific Contributions of this Dissertation

The research presented in this dissertation contributes new capabilities and

innovative approaches to the field of variable-density numerical modeling, particularly in

regard to simulating heat, concentration, and age. The following document benchmarks

and verifies a new version of the code SEAWAT, and then utilizes that code to explore

the repercussions of ignoring temperature effects on viscosity, as well as presenting

innovative techniques for the use of variable-density groundwater models to guide data

collection.
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1.4.1 Benchmarking the new variable-density flow and transport code SEA WA T

Version 4

Modeling of environmental systems where the change in density of water affects

the groundwater flow requires the use of a variable-density modeling code. Typically,

variable-density models are developed for isothermal conditions where density is affected

solely by the change in concentration. Temperature is often ignored in the process

because it is assumed to have negligible affects (Konikow and Reilly, 1999). However,

where temperature differences exist, the density and viscosity changes that result in the

aquifer system can affect the groundwater flow (Figure 1; Henry and Hilleke, 1972).

This dissertation takes a new code (SEAWAT Version 4; Langevin and others,

2008) capable of simulating variable-density flow from differences in concentration and

temperature, and benchmarks it against a number of previously published lab

experiments, analytical solutions, and/or numerical solutions. The verified code can be

used in a variety of environments, such as groundwater systems affected by saltwater

intrusion and/or geothermal convection. In the process of code verification, analyses are

also done on the effects of incorporating temperature in variable-density flow modeling.

This includes studying the effects of variable viscosity and multiple diffusion coefficients

because (1) temperature can have large effects on viscosity (Figure 1), and (2) the

conduction of heat in a water/rock system is an order of magnitude greater than the

diffusion of solute in a similar system (Anderson, 2005).



1.4.2 Utilizing a linear method to quantify the worth of salinity and temperature data

in a nonlinear variable-density model

Environmental models are often developed to make predictions. Data are

frequently collected to improve the ability of a calibrated model to make a prediction;

however, how can one know that the prediction will be improved by the additional data

collected? Calibration of a model does not necessarily mean that it will make accurate

predictions (Carter and others, 2006). "The model is considered calibrated when it

reproduces historical data within some subjectively acceptable level of coherence-there

are no rules other than one's judgment." (Konikow and Bredehoeft, 1992).

A new linear technique to quantify the worth of data for making predictions is

tested and utilized in a nonlinear variable-density flow and solute/heat transport model

(developed using the most recent version of SEAWAT). This research takes the linear

method and investigates its applicability to a nonlinear model. The linear technique and

its application are innovative in that they (1) take into account the actual heterogeneity

determined by aquifer testing and geostatistical analysis, (2) can be used in a model prior

to calibration, (3) can be used in a underdetermined model (where there are more

parameters than observations), and (4) have never been applied to a nonlinear variable-

density flow and transport model to quantify the worth of data.

1.4.3 Utilizing a variable-density flow and transport model to guide data collection by

quantifying temperature, salinity, and age of submarine groundwater discharge

A variable-density numerical model representing hydrological conditions in

southeastern Florida is used to determine when and where submarine groundwater
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discharge (SGD) rates are greatest. The model is then utilized to quantify expected

temperature, salinity, and age differences between groundwater and ocean water. The

model is innovative in that it uses SEAWAT to demonstrate how a numerical model can

(1) simulate estimates of SGD flux, temperature, salinity and age, (2) be used to

understand complicated coastal systems by simulating multiple species (heat, salinity,

and age) while experimenting with different types of geology, and (3) be used to guide

and give insight to data collection efforts in studies of SGD. The model is calibrated to

hydrologic conditions in southeastern Florida and is verified against a number of different

types of data. The model is unique in that it represents SGD characteristics, including

salinity, temperature, and age, at short-term (tidal) and longer-term (seasonal) time

scales. The simulation of age is innovative in that it takes into account the effects of not

only advection, but also diffusion and dispersion.

1.5 Governing equations applied in this dissertation and utilized in SEAWAT

Version 4

SEAWAT is a coupled version of MODFLOW (Harbaugh and others, 2000) and

MT3DMS (Zheng and Wang, 1999; Zheng, 2006) where the flow equation has been

modified to include variable-density flow from multiple species, as well as the capability

of simulating age. The multiple species discussed herein are solute, heat, and age.

SEAWAT is used in all of the numerical modeling in this dissertation; therefore, an

overview of the governing equations for solute and heat transport in variable-density flow

will be briefly presented. Included in this section are the equations used in calculating

the diffusion coefficients, variations in viscosity, and the zeroth-order reaction used in the
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advection-dispersion equation to simulate age. These equations were also tested/used as

part of the research in this dissertation. A more thorough discussion can be found in

Thorne and others (2006), Zheng (2006), and Langevin and others (2008).

1.5.1 Solute and Heat Transport

Heat and solute transport are analogous in many ways (Voss, 1984; Martin and

others, 2001; Anderson, 2005; Kim and others, 2005). Mathematically, heat transport

can be solved using the same equations for solute transport with some minor

assumptions; therefore, MT3DMS (a solute transport code) can be used to solve solute

and heat transport.

The MT3DMS portion of SEAWAT solves the following solute transport

equation

1Pkd a Ok_ F(k ql k\
1+ K [D +a , C VC - C> , (+ 0 at V.I(' 0) ) 's

where

Pb is the bulk density (mass of the solids divided by the total volume) [ML 3],

dk is the distribution coefficient of species k [L 3M],

0 is porosity [-],

C& is the concentration of species k [ML-],

t is time [T],

D is the molecular diffusion coefficient [L 2T'] for species k,

a is the dispersivity tensor [L],

q is specific discharge [LT'],

11



q S is a source or sink [T'] of fluid with density P's, and

CI is the source or sink concentration [ML-3] of species k.

The dimensions of the variables are expressed using L=Length, T=Time, and M=Mass.

The solute transport equation above was altered by Thorne and others (2006) and

Langevin and others (2008) to the heat transport equation

1+ --- -PS d (.buk +
PA J id jJ Li OI~luid(2

where ps, p, and 0 are related by: pt = pS (1- 0), and

p, is the density of the solid (mass of the solid divided by the volume of the

solid) [ML-3],

p is fluid density [ML-3],

c,,Iid is the specific heat capacity of the solid [L 2 T-2 C1],

cPluid is the specific heat capacity of the fluid [L2T 2 C4 ],

T is temperature [0C],

kh is the bulk thermal conductivity of the aquifer material [MLT 3*C-], and

T is the source temperature [*C].

The similarities between Equations (1) and (2) are evident. Essentially C from

equation (1) is replaced by temperature (T) in equation (2). A few other assumptions are

made for heat to be simulated in MT3DMS. The distribution coefficient, K , which

represents the absorption of solute on solids in equation (1), is replaced by the thermal

distribution factor, Knd temp, where
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dtemp - CPsolid(3

IXPfliud

This term assumes thermal equilibration between fluid and solid, and the movement of

heat and subsequently the temperature are essentially retarded by heating of the porous

media. The thermal distribution factor is represented by the heat capacity of the solid and

its relation to the density of the fluid and the heat capacity of the fluid.

The molecular diffusion coefficient, D , from equation (1) is related to the bulk

thermal diffusivity (represented in equation (2)) as

Dm_emp = kuhlk (4)
OPCpfluid

and the bulk thermal conductivity is frequently approximated by the simple mixing

equation as

knik = OkTfuitd + (- )ksoligd (5)

with kTfluid and kTsold being the thermal conductivity of the fluid and solid, respectively.

Bulk thermal diffusivity represents how heat is conducted through the water and rock (in

equation (2)), as opposed to molecular diffusion, where solute diffuses solely through the

water (in equation (1)).

1.5.2 Variable-Density Flow

The concentration of solute and the temperature can be used to calculate the

density of the water. The equation of state for density that includes multiple species (in

this example, solute and heat) is
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p = PO + (C -Co )+ -(T-To ), (6)ac a

where

p is the reference fluid density [ML~3],

C is salt concentration [ML-3],

CO is the reference salt concentration [M- 3],

T is the reference temperature [*C], with

ap = p 0fic, and (7)

ac

-= PoP T 
(8)aT

where (/c) and (pl,) are the volumetric expansion coefficients for solute concentration and

temperature, respectively (Diersch and Kolditz, 2002). The equation of state (equation

(6)) calculates density for any combination of concentration and temperature (other

species can be used interchangeably).

The density calculated in equation (6) is used in the variable-density groundwater

flow equation in SEAWAT

V- p LKo Vho + z = ho + 0 apaCp , (9)
p ao . t ac at

where

p is dynamic viscosity [M~1 T '],

po is reference dynamic viscosity [MLT~1],

14



K0 is the hydraulic conductivity tensor of material saturated with the reference

fluid [LT'] at the reference temperature and concentration,

ho is the hydraulic head [L] measured in terms of the reference fluid of a

specified concentration and temperature (the reference fluid is commonly

freshwater), and

S, is the specific storage [ 1 ], defined as the volume of water released from

storage per unit volume per unit decline of ho.

The variable-density flow equation in SEAWAT includes the effect of multiple species

on density. It has also been altered to utilize multiple diffusion coefficients and the

effects of variable viscosity, discussed next.

1.5.3 Effects of Viscosity

The effects of solute on viscosity are often considered negligible (unless brine is

being simulated); therefore, the viscosity term, in equation (9) is typically assumed to

be one when density is calculated solely as a function of solute concentration. However,

temperature can have a significant effect on viscosity and naturally should not be ignored

in some cases (Holzbecher, 1998; Nield and Bejan, 1999). SEAWAT calculates viscosity

as a function of concentration and temperature with one of two equations. The

temperature and concentration effects on dynamic viscosity are linear in the first equation

p =po + N C (Ck _Co)+ J (T T). (10)
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However, a linear approximation for temperature effects on viscosity is not a

valid assumption over many temperature ranges. Therefore, a nonlinear equation is

available,

(T)+ (Ck -Co), (11)

where the effects of temperature on viscosity (pT (T)) can be calculated by one of two

different equations for water,

,(T A - " , or (12)

pT (T)=A, .[A 2 + A(T +A 4)}', (13)

or one equation that includes the effects of temperature on viscosity in oil,

pT (T= A -TA2 . (14)

The values for the constants, A, are specified by the user. These three equations

can be found in the literature with typical values given for A depending on the simulation

of water or oil and the temperature range in the model (Voss, 1984; Holzbecher, 1998;

Nield and Bejan, 1999; Hughes and Sanford, 2004; Guo and Zhao, 2005). The viscosity

calculated in either equation (10) or (11) as a result of changes in temperature and

concentration is then used in the variable-density flow equation (equation (9)).

1.5.4 Simulation ofAge

The effects of advection and dispersion on apparent age can be represented in

MT3DMS by including a zero-order source, which represents the rate of aging, to the

advection-dispersion transport equation (Goode, 1996; Zheng, 2006). A zero-order
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reaction increases age at a constant rate, independent of concentrations. The equation is

almost identical to equation (1) except for the zeroth-order rate coefficient at the end

k+P Kd Ja & =V [ D m+ - V C -- C'k-q's C - ,YO , (15)

where y1 is the zeroth-order rate coefficient for the dissolved phase [MLT']. If a

negative value is specified for y , then "production" is occurring in the groundwater, and

age is increasing with time.

2 SIX BENCHMARK PROBLEMS FOR TESTING HEAT AND SOLUTE

TRANSPORT USING SEAWAT VERSION 4

2.1 Introduction

Groundwater systems are often envisioned as constant-density systems where

groundwater flow is mathematically straightforward. However, groundwater systems

that have a shallow water table with high evapotranspiration rates, inputs of a highly

concentrated contaminant, or saltwater intruding into the fresh groundwater at the coast,

will contain increased solute concentrations. The increased concentrations often result in

spatial variations of fluid density that affect groundwater flow. Fluid density between

freshwater (1000 kg/m3) and seawater (1025 kg/m3) increases about 2.5%; this change in

density will typically alter the flow field (Guo and Langevin, 2002). Therefore, the

mathematical representation of variable-density groundwater systems is more

complicated than constant-density systems because the solute concentration affects the

density and the density affects the flow.
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Mathematically representing groundwater systems affected by variable-density

flow c be important for research related to coastal systems such as saltwater intrusion

or submarine groundwater discharge. Mathematical models of coastal aquifers were

created as early as 1888 by Ghyben and shortly thereafter by Herzberg (1901) to predict

the location of the saltwater-freshwater interface. The Ghyben-Herzberg model uses

simple hydrostatics to calculate the thickness of a static freshwater lens over a static

saltwater wedge. This model assumes a sharp interface. Hubbert (1940) modified the

Ghyben-Herzberg model to take into account non-static freshwater where it flows

towards the ocean; however, Hubbert still assumed a sharp interface. Glover (1959)

extended Hubbert's model to include a gap between the shoreline and the saltwater-

freshwater interface with known discharge at the coast. Cooper (1959) created a steady-

state mathematical model that accounts for the transition zone across the saltwater-

freshwater interface. Cooper's model represents the freshwater discharging at the coast

over saltwater that intrudes deep within an aquifer, rises and returns with the freshwater

at the coast (simulating a brackish-water zone and a convection cell in the saltwater).

Later, Henry (1964) provides a semianalytical solution for a saltwater-freshwater

interface in a dynamic coastal system where freshwater is flowing towards an ocean

boundary. Numerous variations of the Henry problem have been done since 1964,

including a temperature-salinity version developed both numerically and in a laboratory

setting by Henry and Hilleke (1972).

A tacit assumption in most groundwater models is that isothermal conditions

prevail and that temperature does not affect the density of the water. Therefore, the

effects of viscosity variations due to changes in temperature (and often salinity), are also
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assumed to be so small they do not influence flow patterns. These assumptions are

typically used, even in variable-density models designed to represent saltwater intrusion,

wastewater injection, and convection beneath salt lakes. Research has shown, however,

that temperature as well as salinity can affect the flow field (Henry and Hilleke, 1972),

particularly for deeper aquifer systems. In some deep aquifers, geothermal heating from

below can cause the formation of an unstable density profile (Elder, 1967).

The density of water is inversely related to temperature often causing convective

flow when warm, less-dense water is overlain by cool, more-dense water. Like fluid

density, viscosity is also a function of temperature. Thus, groundwater flow patterns may

change in response to a changing temperature distribution because of the effects on

density and viscosity. Freshwater, with a density of 1000 kg/n 3, can be decreased to

approximately 999.6 kg/m3 by a 10 0C increase in temperature. This is only about ~0.5%

reduction in density and can often times be ignored; however, when temperature changes

occur over a wider range, the decrease in density can have a significant effect on

groundwater flow (Henry and Hilleke, 1972). Therefore, the modeling of some

groundwater systems could require simulating the effects of temperature on variable-

density flow.

A number of mathematical approaches have been taken to simulate variable-

density groundwater flow such as finite-elements in SUTRA (Voss, 1984), analytical

elements by Strack (1995), and finite difference approaches such as earlier versions of

SEAWAT (Guo and Langevin, 2002; Langevin and others, 2003), MOCDENSE (Sanford

and Konikow, 1985), and HST3D (Kipp, 1987). SUTRA was modified by Hughes and

Sanford (SUTRA-MS, 2004) to simulate density-dependent flow resulting from multiple
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species such as concentration and temperature. HST3D was also modified by Kipp

(1997) to include both heat and solute transport effects on variable-density flow.

SEAWAT (Langevin and others, 2003), a combined version of MODFLOW

(Harbaugh and others, 2000) and MT3DMS (Zheng, 1990; Zheng and Wang, 1999;

Zheng, 2006), is designed to simulate three-dimensional, variable-density groundwater

flow. SEAWAT was originally designed to solve variable-density groundwater flow and

transport with the assumption that fluid density was a function of only a single solute

constituent (Guo and Bennett, 1998; Guo and Langevin, 2002; Langevin and others,

2003). Thus, these previous SEAWAT versions could not be used to simulate

simultaneous solute and heat transport. The latest version of SEAWAT, Version 4, was

designed in a general fashion so that fluid density and viscosity can be calculated as a

function of one or more species, and heat can be represented as one of the species

(Langevin and others, 2008). The code can be used to simulate different types of fluids,

including oil (as a single phase) or other fluids with variable viscosity, because the effects

of viscosity on flow can be included in the simulations. A distinct diffusion coefficient

for each species can also be included in this new version of SEAWAT.

For a numerical model to be reliable, the code must be rigorously tested to ensure

that it accurately represents physical processes. Voss and Souza (1987) suggested that

new modeling codes be tested with benchmark problems. A previous version of

SEAWAT (Langevin and others, 2003) has been tested with most of the benchmark

problems that are traditionally used to test saltwater intrusion programs. The purpose of

this chapter is to document benchmark testing of the new features in SEAWAT

(Langevin and others, 2008), including the code's ability to simulate a fluid besides water
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(for example, oil as a single phase). In the testing of this new code, the effects of

viscosity on convection and conduction are explored, as well as heat/energy transport into

and out of modeling systems and the effects of multiple diffusion coefficients. Also

included is an analysis of the repercussions of ignoring friction along a model boundary

(referred to as a slip boundary) in the simulation of Darcy flow, as opposed to a no-slip

boundary when simulating groundwater flow through a porous medium using other

equations that include the resistive drag along a model boundary.

Testing of SEAWAT was performed using a suite of six benchmark problems:

* One-dimensional flow through a linearly varying viscosity field (Thorne

and others, 2006)

* Two-dimensional oil convection in aluminum foam (Guo and Zhao, 2005)

* Horton-Rogers-Lapwood (HRL) convection (Horton and Rogers, 1945;

Lapwood, 1948)

* Double-diffusive finger convection (Pringle and others, 2002)

* Original Elder problem (Elder, 1967)

* Henry-Hilleke problem (Henry and Hilleke, 1972)

These benchmark problems are well-defined and have been represented with

laboratory experiments, analytical solutions, or with other modeling programs. Fluid

dynamics and dimensionless numbers have been used in coordination with the

benchmark problems to enable comparison between SEAWAT and other modeling

codes, lab experiments, and systems of different dimensions.
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2.2 Dimensionless Numbers

Research concerning temperature effects on the movement of liquids in a system

is part of fluid dynamics. Temperature can affect the density and viscosity of liquid;

therefore, the flow regime can also be altered by differences in temperature. These

temperature changes affect how heat is transferred by means of convection or conduction

through the liquids and solids of the system. Dimensionless numbers are often used in

the study of fluid dynamics and mass transport to characterize the transfer of heat and

solute, as well as movement of fluid. When the equations that govern the behavior of a

system are rendered in dimensionless form, a set of dimensionless numbers that

characterize the properties of the system emerges. Two systems that are described by the

same dimensionless equations (in particular, the same values of the dimensionless

numbers) and have the same dimensionless initial and boundary conditions (including

geometric similarity) are mathematically equivalent (Bird, Stewart, and Lightfoot, 2006).

The concentration of a solute in a liquid can affect the density and viscosity; and

therefore, the flow of a liquid. Because the equations for temperature and concentration

effects on a flow regime are analogous (equations (1) and (2); Thorne and others, 2006;

Langevin and others, 2008), what we leam from one system with changes in

concentration can often be transferred to another system that includes changes in

temperature. As long as the dimensionless numbers and dimensionless initial and

boundary conditions between the two different systems (one being a system with solute

and the other a system with temperature) are equal, a comparison between the two

systems can be made.
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Benchmark problems from different systems created with different codes can be

compared based on the calculation of dimensionless numbers such as the Nusselt or

Rayleigh number. Many of the dimensionless numbers used to analyze flow, viscosity,

and heat transfer through the liquid in a porous media system are discussed herein

because they are used to evaluate and compare the benchmark problems. All variables

used in this report are defined in Table 1.
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Table 1: Identification of variables. L=Length, T=Time, M=Mass, D=Degrees of
Temperature.

Input Units Definition
Parameter

q LT Darcy Flux

Q L T Volumetric Flux

H L Height of a defined system or cell

L L Length of a defined system or cell

W L Width of a defined system or cell

h L Head

x L Distance in x direction

K LT Hydraulic conductivity

k L Permeability

a L L Longitudinal dispersivity

a TL Transverse dispersivity

S - Specific yield

S - Storage

0 - Porosity

D* L2T ' Bk thermal diffusivity without porosity in the denominator

D** L Bulk thermal diffusivity with porosity

pL Density of water

p ML Density of solids

Pb ML Bulk Density

D Thermal Expansion Coefficient

c L Solutal Expansion Coefficient

v L Kinematic Viscosity

vp L2'I Reference Kinematic Viscosity

p MLT Dynamic Viscosity

p0  MLT Reference Dynamic Viscosity

T D Temperature

T D Reference Temperature for Reference Dynamic/Kinematic Viscosity

c LT2D Heat Capacity of Fluid

c L Heat Capacity of Solid

k LMTD Bulk Thermal Conductivity

k.d LMT D Thermal Conductivity of Fluid

k,,.. LMT D Thermal Conductivity of Solid

g LT Acceleration due to gravity

Ra - Rayleigh Number

Da - Darcy Number

Pr - Prandtl Number
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2.2.1 Rayleigh Number

The Rayleigh number is a dimensionless number that defines the dominance of

convection as opposed to conduction of heat (or diffusion of solute). High Rayleigh

number systems (above a critical Rayleigh number) are characterized by convective flow

and low Rayleigh number systems have stable density profiles where heat/solute is

transferred by conduction/diffusion. The critical Rayleigh number is the value above

which the change from conduction to convection of the heat/solute through the fluid will

occur. All else being equal, systems with equal Rayleigh numbers should have similar

solute or heat transport patterns.

The equation used to calculate the Rayleigh number for free thermal convection

(when porosity = 1) is

Ra = gATH3  (16)
vD *

(Rayleigh, 1916; Holzbecher, 1998; Guo and Zhao, 2005). However, another Rayleigh

number, herein referred to as Ra , is often used for porous media. Ra* = Da Ra , where

k
Ra* is the Darcy number (Da = 2 ) times the Rayleigh number (equation (16)), Ra* is

H2

also called the Darcy-Rayleigh number (the Darcy number is discussed further in the

subsequent section). Essentially, the permeability is included in the equation for Ra * to

account for the resistance of fluid flow due to the porous medium. Therefore, the

equation is

Ra* = g/TH(17)
vD*
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(Lapwood, 1948; Nield and Bejan, 1999), where bulk thermal diffusivity (a physical

property that controls the rate at which temperature changes are brought about by

conduction) is calculated using the following equation

D*- kTrnlk (18)
IMP7uid

(Holzbecher, 1998). The bulk thermal conductivity (kmhuik) is calculated using

kTulk = OkTfluid + (1- )kTsolid " (19)

Another version of the Rayleigh number for a porous medium, Ra**; uses the

following equation

Ra ** =----T (20)
OvD **

(Prasad and Simmons, 2003; Weatherhill and others, 2004). Equation (20) uses porosity

in the denominator, which is different from Ra* in equation (17) without porosity. This

is because thermal diffusivity is calculated using the following equation

D** " =kTulk (21)
OPPfluid

(Thorne and others, 2006). Porosity cancels out in the denominator for Ra**, therefore

equations (17) and (20) are both correct and equal for a porous medium, depending on

how thermal diffusivity is calculated.

Small differences in temperature, such as I 'C, can result in convective flow

depending on the aquifer and water properties of the groundwater system. For example, a

quartz aquifer system with fresh groundwater, hydraulic conductivity of 100 m/d,

porosity of 0.2, a change in density with temperature of -0.375 kg/(m3 'C), and a height
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of 100 m, results in a Rayleigh number of 59 (calculated from equation (20), assuming

the bulk thermal diffusivity is 0.32 m2/d-from Thorne and others, 2006-and the

kinematic viscosity is 0.0864 m2/ d). If the length of the aquifer system is an exact

multiple of the height of the system, 59 is above the critical Rayleigh number of 47n2

according to Horton and Rogers (1945) and Lapwood (1948). The same aquifer system,

but calcite instead of quartz, results in a higher Rayleigh number of 127. This is because

the bulk thermal diffusivity of calcite is less at 0.147m 2/d (Thorne and others, 2006).

However, if the hydraulic conductivity is decreased to 20 m/d, the calculated Rayleigh

numbers for quartz and calcite aquifers, 12 and 25 respectively, fall below the critical

Rayleigh number of 47 2 and would not result in convective flow. These results are

expected. Even a small change in temperature would result in convective flow if the

aquifer properties were conducive to high Rayleigh numbers.

Thermal Rayleigh numbers are analogous to solutal Rayleigh numbers because

they are described by the same dimensionless equations. The coefficients used in

calculation of the dimensionless Rayleigh numbers are analogous, such as:

* The thermal and solutal expansion coefficients have a similar overall

affect on the Rayleigh number. The thermal expansion coefficient

= l8p~ ap(equation (8)) is: /, = ' is negative when simulating
p fT 8T

temperature, because as temperature increases, density decreases. When

simulating concentrations and calculating the solutal expansion coefficient
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(equation (7)), ap is now p , and as concentration increases, density
aT aC

increases (the sign is now positive).

* The change in temperature term, AT, in equations (16), (17), or (20) may

be substituted with the change in concentration, AC, for solute transport

problems.

* The molecular diffusion coefficient can be used instead of the bulk

thermal diffusivity and it has a similar effect in the solute/heat transport

process.

Therefore, the dimensionless Rayleigh numbers in systems with variable-density flow

resulting from changes in temperature can be compared to systems with flow affected by

changes in concentration.

The different types of Rayleigh numbers presented are used in some of the

benchmark problems to compare the results from SEAWAT to previous research. The

following benchmark problems use at least one of the different types of Rayleigh

numbers discussed:

* Two-dimensional oil convection in aluminum foam (Guo and Zhao, 2005)

* Horton-Rogers-Lapwood (HRL) convection (Horton and Rogers, 1945;

Lapwood, 1948)

* Original Elder problem (Elder, 1967)
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2.2.2 Darcy Number

Darcy's Law calculates specific discharge in a porous medium with the following

equation

Oh
q=-K . (22)

ax

Darcy's Law is generally only valid when assuming flow is through porous media when

the pore scale Reynolds number is less than 1; Darcy's Law is not valid for free-fluid

flow except under limited circumstances (i.e., Poiseuille-like flow). The Darcy number

(Da) is a dimensionless number that tests the validity of Darcy's Law (Nield and Bejan,

1999) where k is the permeability and H is a characteristic length, such as the height of

the system being modeled

_k

Da = . (23)

The validity of Darcy's Law, measured by the Darcy number, is important when

analyzing the effects of model boundaries on simulations of groundwater flow through a

porous medium. A slip boundary condition is assumed when simulating flow based on

Darcy's Law, basically meaning that flowing water is not slowed by the presence of a

model boundary and slips along the boundary, ignoring friction at the model boundary.

A particle flowing through a porous medium is impeded by that medium. The model

boundary frictional effect on the flow is considered minimal (almost zero) in comparison

to the porous medium effect on the reduction of flow, therefore the model boundary

effect is ignored (or considered a slip boundary). However, when simulating free fluid

flow or a porous medium with high hydraulic conductivities, the slip boundary condition
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is no longer valid and the frictional effects of the model boundary on flow can no longer

be ignored. Therefore, a no-slip boundary condition has to be implemented and Darcy's

Law cannot be used to simulate flow in this environment.

According to Nield and Bejan (1999), Darcy's Law holds true for Darcy numbers

less than 103. When Darcy numbers are greater than 10-3, the system is close to an open-

channel or free fluid flow system; thus it violates the slip boundary condition assumption

in normal applications of Darcy's Law. SEAWAT solves a variable-density flow form of

Darcy's Law (Langevin and others, 2008); therefore all model simulations using

SEAWAT have to have Darcy numbers less than 10~3.

This research used the Darcy number in a benchmark problem that solves two-

dimensional oil convection in aluminum foam (Guo and Zhao, 2005). The problem

compares SEAWAT against another modeling method (Lattice Boltzmann). The Lattice

Boltzmann method is capable of solving free fluid flow; therefore, it can solve problems

with Darcy numbers greater than 10-3. However, for our purpose in comparing the two

flow systems in porous media, the Darcy numbers were limited to less than 10-3.

2.2.3 Prandtl Number

The Prandtl number is a dimensionless number used to analyze the hydrodynamic

effects on heat transfer from a bounding surface through what is called a boundary layer.

The boundary layer is a thin layer of water directly adjacent to the model boundary that is

affected by friction, essentially the fluid next the model boundary "sticks" to the

boundary surface (i.e., a no-slip boundary). The area of the model that is assumed to be
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inviscid, where viscous forces from friction along the wall are assumed to be negligible,

is farther from the model boundary outside of the boundary layer.

The Prandtl number

Pr = (24)
D*(orD**)

(Nield and Bejan, 1999; Guo and Zhao, 2005), is a ratio that aids in determining the

relative thickness of the momentum boundary layer to the thermal boundary layer.

According to Nield and Bejan, low Prandtl numbers (much less than one) indicate that

heat transfer from a wall is dominated by conduction because the diffusive/thermal

boundary layer is greater than the momentum (viscous) boundary layer.

The Prandtl number is used in the benchmark problem on two-dimensional oil

convection in aluminum foam. Guo and Zhao (2005) compute Prandtl and Darcy

numbers, showing mathematically "that for a given Prandtl number, the nonlinear drag

force [along a model boundary] becomes negligibly small only for a small Da, or in the

Darcy Regime"; and therefore Darcy's Law applies only for small Darcy numbers (as

discussed previously). The Prandtl number is identical for both the model created with

the Lattice Boltzmann method and the SEAWAT model; therefore, the two systems are

comparable.

2.2.4 Nusselt Number

The Nusselt number is a dimensionless number that enables comparison of the

actual heat (or solute) transfer across a boundary into a model layer to the heat (or solute)

transfer through the entire system if heat transfer occurred solely via conduction (or

diffusion in the case of solute transport). The Nusselt number; defined as
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Nu=and
A T 'an (25)

OD * (-)LW
H

is the ratio of the total heat/solute flux through a layer to the steady-state

conductive/diffusive flux across the model (Nusselt, 1944; Prasad and Simmons, 2005).

Systems where all solute/heat transfer is solely by diffusion or conduction have a Nusselt

number of one. Systems that are not stable with respect to their density profiles and heat

transfer occurs by free convection in addition to heat conduction, would have Nusselt

numbers greater than one. The end result is a dimensionless number representing the

energy (or mass) transferred across the system.

The Nusselt number changes with time and is typically analyzed by graphing the

Nusselt number vs. time for a system/model. The graphs for different systems are

compared to one another to analyze the timing, type of heat transfer (convection or

conduction), and the amount of heat transfer. Benchmark problems with similar graphs

of the Nusselt number with time are considered analogous. The Nusselt number is used

to compare the Elder problem solution from SEAWAT to two other benchmark

problems, the original Elder problem (Elder, 1967), and a more recent simulation by

Prassad and Simmons (2003).

2.3 Benchmark Problems

A series of benchmark problems were simulated with the newest version of

SEAWAT. The benchmark problems have a number of different equations and

parameters associated with them. The governing equations for the simulations are

presented in Chapter 1 and can also be found in Guo and Langevin (2002), Langevin and
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others (2003), and Langevin and others (2008). The dimensionless numbers used to

compare the systems were discussed in the previous section. All variables represented in

the equations are defined in Table 1.

2.3.1 One-Dimensional Flow with Linearly Varying Viscosity Field

This benchmark problem consists of one-dimensional groundwater flow between

two constant-head boundaries. The purpose of the problem is to test the implementation

of viscosity effects in SEAWAT. The implementation is tested using the premise that

simulations with a linearly varying viscosity field and a constant value for reference

hydraulic conductivity will give the same result as a simulation with a linearly varying

reference hydraulic conductivity field and a constant fluid viscosity. Thorne and others

(2006) provide an extensive discussion on the equations used for this benchmark

problem.

In the MODFLOW user's guide (Harbaugh and others, 2000), Darcy's law is

implemented as:Q = COND(hA - hB ), where the conductance (COND) is multiplied by

the difference in hydraulic head (hA -- h-) between two locations, A and B. In SEAWAT,

the conductance COND is defined as

COND = . (26)
p L

SEAWAT is formulated using "equivalent freshwater" hydraulic conductivity (Guo and

Langevin, 2002). Therefore, K values used in equation (26) represent an aquifer that is

saturated with the reference fluid at the reference temperature (normally assumed to be

freshwater at 25*C). The ratio 4 reflects the variation in dynamic viscosity u = p(C)
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from a reference viscosity po. In SEAWAT, the horizontal conductance between two

cells can be averaged by one of three ways: 1) harmonic average, 2) logarithmic average,

or 3) arithmetic average. The vertical conductance across two layers with adjacent cells

is calculated using the harmonic average.

Conductance between cells in a model can vary by changing either the hydraulic

conductivity or the viscosity ratio (s-). Equation (26) reveals that the effects of

changing the hydraulic conductivity and the viscosity ratio are inversely related.

Therefore, if the viscosity ratio in a cell is increased and hydraulic conductivity in that

same cell is proportionally decreased, the conductance between that cell and any adjacent

cell will be the same as if no increase/decrease were made in the parameters.

An analytical equation can easily be derived for steady-state, confined, one-

dimensional flow through a linearly varying hydraulic conductivity field. Two prescribed

head boundaries can arbitrarily be defined as: at x = xmi,, h = ho; at x = xmax, h = hl. A

linearly varying hydraulic conductivity field is represented by arbitrarily setting K = x

throughout the domain. Thus, Darcy's law is q=-x(dh/dx), where q is flux and dh/dx is

the hydraulic gradient. The analytical solution is obtained by setting the derivative of q

with respect to x to zero (dq/dx = 0; i.e., flux is uniform along the domain) and

integrating between xmi and xma subject to the boundary conditions, resulting in the

following equation

h = [ln(x)-ln(x)]+hO (27)
ln(x,) - ln(x )

(Thorne and others, 2006).
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The effects of viscosity on groundwater flow are implemented in SEAWAT.

Viscosity can be specified on a cell-by-cell basis, or it can be calculated as a function of

one or more MT3DMS species if the simulation includes transport. For the test problem

described herein, viscosity is specified as 1/x in the cases where hydraulic conductivity is

kept constant; this should give the exact same results as a problem where the hydraulic

conductivity is equal to x and the viscosity is held constant.

Four simulations were performed with SEAWAT for this test problem. The first

three simulations use a constant reference hydraulic conductivity and a prescribed

viscosity gradient in (a) the x-direction with 91 columns, 1 row, and 1 layer, (b) the y-

direction with 1 column, 91 rows, and 1 layer, and (c) the z-direction with 1 column, 1

row, and 91 layers. The one-dimensional simulations were performed in all three layer,

row, and column directions to ensure the implementation was coded correctly in each

direction. A fourth simulation with a constant viscosity and a prescribed hydraulic

conductivity gradient in the x-direction with 91 columns, 1 row, and 1 layer was also

performed. Head results from these simulations should match the analytical solution

exactly, with the possible exception of the third case. The analytical solution is based on

a linearly varying hydraulic conductivity field. To exactly represent a linearly varying

hydraulic conductivity field with SEAWAT, logarithmic averaging should be used to

calculate intemodal conductances. While logarithmic averaging was used in the first two

simulations, harmonic averaging is the only SEAWAT option for calculating internodal

conductances in the vertical direction (used in the third case). Results from the third

simulation, however, should be very close to the analytical solution.
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Figure 2 shows the grid with prescribed water levels on each end, 0 ft to 1 ft

(0.3048 m), and the 91 columns (or rows, or layers) with each cell being 1 ft3 (0.02832

m3 ). K(x)=1 ft/day (0.3048 m/day) in the 3 models with a prescribed viscosity gradient

where the dynamic viscosity (p) in each cell is 1/x. In the fourth case, dynamic viscosity

is constant and the hydraulic conductivity in each cell varies with distance where K(x) =

x. The PCG2 solver from MODFLOW2000 was used to solve for head in each cell. The

head change convergence criterion was set to 1 x 10-8 ft (3.048 x 109 ).

X=1.5ft X=100.5ft

h(xMIPN)= ft h(xmAx)=1 f

Figure 2: Diagram showing map view of model design in SEAWAT.

2.3.1.1 Results and Discussion

Results indicate that the four SEAWAT simulations are in good agreement with

the analytical solution (Figure 3). Although conductance is calculated using the

harmonic mean (as opposed to the continuously varying hydraulic conductivity in the

analytical solution) in the variable viscosity case with multiple layers, differences

between the models are minimal. These results indicate that the effects of viscosity on

groundwater flow have been implemented correctly in SEAWAT.
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Figure 3: Results of water-level values with distance in each of the 5EAWAT mnodels and the

analytical solution.

2 .. T o D m n i n l i C n e t o l m nmTh 
is b en ch m ark p rob lem h as n ev er b een u sed as a b en ch m ark b efore an d is

believed to be novel. It is a Lattice Boltzmann method simulation of oil convection in

aluminum foam. Convection is driven by temperature differences between two vertical

walls on opposing sides of a square cross section. Each simulation is run withan

without the effects of viscosity variations. The box problem contains oil; therefore there

is a relatively strong dependence of viscosity on temperature (as compared to water).

The purpose of this benchmark problem is to test the variable viscosity mechanism

implemented in SEAWAT (equation (14)), as well as test the capability of SEAWAT to

simulate thermally-driven convection in oil. Nield and Bej an (1999) provide a

extensive review of these types of problems modeling fluids such as water, but only for

constant viscosity.
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It is important to note that this current benchmark problem using oil is new, and

while it is described by Guo and Zhao (2005), it has not been verified against other

modeling codes or laboratory tests. Thus, the results reported by Guo and Zhao (2005)

can not be considered definitive and the status of this problem as a benchmark can only

be considered preliminary. SUTRA-MS and HST3D are not formulated to do variations

in viscosity of single phase oil. While there have been some studies on temperature-

dependent viscosity of water and oil in porous media (Home, 1975; Weber, 1975; Gary

and others, 1982; Pasa and Titaud, 2005; Afify, 2007), there is not a specific benchmark

problem simulating natural convection and variations in viscosity of single phase oil from

changes in temperature in a porous medium, particularly of aluminum foam (aside from

Guo and Zhao, 2005). More tests will need to be done to solidify Guo and Zhao's work

as a standard benchmark problem.

Guo and Zhao (2005) used Lattice Boltzmann methods to simulate convection of

PolyAlphaOlefin (PAO) oil in aluminum foam. The authors conducted a series of

simulations with different Rayleigh (equation (16)) and Darcy (equation (23)) numbers,

and also tested the effects of viscosity. The design of the problem is shown in Figure 4

with the model parameters, grid dimensions, and solution schemes given in Table 2.

The viscosity ) of a saturating fluid is often assumed to be constant if the

viscosity of the fluid is only weakly dependent upon temperature. However, when

simulating some environments with large temperature differences or environments that

contain fluids with strong temperature dependent viscosities (such as oil), variations in

viscosity cannot be ignored. The change in viscosity will affect heat transfer and fluid
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T/8Y= 0 No flow

U{

I

0 40

Porous medium

DT/DY - 0 No flow

Figure 4: Schematic diagram for problem simulating temperature-dependent viscosity of oil in
aluminum foam.

Table 2: Input parameters for problem simulating temperature-dependent viscosity of oil in
aluminum foam.

Input Parameter Value Units Comments

Number of columns 130 Assigned

Number of rows 1 Assigned

Number of layers 128 Assigned

Ax(DELR) 0.0078125 m Assigned

Ay(DELC) 0.0078125 m Assigned

Az(DELZ) 0.0078125 m Assigned

H Length and Height of "active" model
domain

K, Da = 10' 127 mis Hydraulic conductivity

K, Da = 10"7 12658 ms Hydraulic conductivity

k, Da = 10 LO X 10- m Permeability

k, Da = 102 1.0 X 10-2 m Permeability

a L 0 m Longitudinal dispersivity

a 0 m Transverse dispersivity

S 0.01 Specific yield
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S 0.01 Storage

0.58 Porosity

D* 4.7184 X 10- m/s Thermal diffusivity

10.1768.5 kg/m Density of water at 21 C (reference
temperatUe)

Ra = 1 x 10 -9.55 x 10 kg/(m C) Density change with temperature

Ra 1 x 10 5 x 10 Density change with temperature

Ra = 1 x 106 -9.55 x 10-' kg(m C) Density change with temperature

Ra = 1 x 105 1.24 x 10' 1/ C Thermal Expansion Coefficient

t , Ra =1 x 106 1.24 x 106 1/ *C Thermal Expansion Coefficient

t , Ra = 1 x 10' 1.24 x 10' 1/ *C Thermal Expansion Coefficient

7.74 x 10- m/s Reference Kinematic Viscosity

p6  0.00595 kg/(m s) Reference Dynamic Viscosity

T 21 C Reference Temperature for Reference
Dynamic Viscosity

c 1971.35 m /(s "C) Heat Capacity of Fluid

id0.1424 mkg/(s C Thermal Conductivity of Fluid

solid 170 m k (s C) Thermal Conductivity of Solid

g 9.8 m Acceleration due to gravity

Cool Temperature Boundary 6 *C Assigned

Hot Temperature Boundary 36 C Assigned

Matrix solution technique for PCG2 Assigned
flow

Head convergence value 0.001 m Assigned

Flow convergence value 1 kg/s Assigned

Advection term TVD Assigned

Dispersion and source terms Implic fte difference; Assigned

Time-step length 1-10000 s Varies between models for different
Rayleigh numbers

Temperature convergence value 1 x 10- to 1 x 101 *C Rayleigh b ers models for different

flow. Viscosity varies with temperature in PAO oil according to the equation

p(T = 0.168 T-10 868. (28)

This equation and its parameters come from Guo and Zhao (2005) and is an optional

equation for temperature dependent viscosity implemented in SEAWAT (equation (14)).
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Another equation from SEAWAT that can be used for viscosity variations with

temperature when simulating water is

248.37

u(T)=0.00002394.10 T+13315 (29)

(from equation (12)). The values for this equation come from SUTRA-MS (Hughes and

Sanford, 2004). A graph showing the change in viscosity with temperature according to

equation (28) and equation (29) is shown in Figure 5. This figure reveals that viscosity

variations with temperature are much higher when simulating oil as opposed to

simulating water.

0.1

E

0.01

8

0.001 -

a

0

0.0001
0 5 10 15 20 25 30 35 40

Temperature in Degrees Celsius

Figure 5: Graph showing the change in viscosity with temperature according to equation (28) (oil, in
black) and equation (29) (water, in pink).

The simulation uses a finite difference grid of 130 columns by 128 layers by 1

row to discretize the cross section that is 1 m high by 1.015625 m long (Figure 4). An
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insulated (i.e., zero-temperature gradient) no-flow boundary is assigned across the top

and bottom of the box. There is a no-flow, constant "cool" boundary (Tc) of 64C along

the right-hand side and a no-flow, constant "hot" temperature boundary (Th) of 36 0C

along the left-hand side. The columns containing the constant cool/hot temperature

boundaries have a lowered hydraulic conductivity to minimize the convective heat flux

from the temperature boundaries; by definition, conduction should be the sole heat

transport mechanism at the boundary. Even though there is no water entering the model

from the left and right boundaries, water flowing inside the modeled system can actually

flow into and out of the cells at left and right boundaries (but not leave the system).

SEAWAT is a finite difference code with the boundary enforced at the node in the center

of a cell; therefore, water can flow into/out of the constant temperature cells and advect

heat into the model domain (this water isn't discharged from the system, but flowing

through the cells and entering back into the model domain). This flowing water will

advect heat from the boundary as it enters back into the system if the hydraulic

conductivity is too high. Therefore, the hydraulic conductivity value is decreased to 1

r/s at the temperature boundaries, allowing conductive heat flux to more accurately

simulate similar boundary conditions to the Lattice Boltzmann simulations (where the

boundary is actually enforced at the edge, not the center of a cell). Because of this

lowered hydraulic conductivity at the boundaries, the "active" model domain is

considered to be the 128 columns, 128 layers, and 1 row where the hydraulic conductivity

is uniform at 127 i/s (in a 1 m by 1 m cross section). All dimensionless numbers are

calculated based on a 1 m by 1 m domain and a hydraulic conductivity of 127 m/s.
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The Lattice Boltzmann simulations conducted by Guo and Zhao (2005) simulated

oil in a homogeneous isotropic porous medium and used a generalized version of the

Navier-Stokes equation that accounts for all fluid forces, including the resistive drag

along a boundary (a no-slip boundary). Therefore, they can simulate flow with larger

Darcy numbers (see discassion under "Dimensionless Numbers", equation (22)). The

SEAWAT simulations presented here are only valid for conditions with relatively small

Darcy numbers (less than 10-3) because of the slip boundary condition. Table 2 lists the

calculated hydraulic conductivities using two different Darcy numbers. The hydraulic

conductivity for a Darcy number of 102 is extremely high (2,658 m/s), suggesting that

explicit representation of boundary friction (such as that provided by the Lattice

Boltzmann method) would be required. Therefore, to compare SEAWAT to the

simulations by Guo and Zhao (2005), a Darcy number of 104 is used in all the

simulations so Darcy's Law remains valid.

Guo and Zhao (2005) performed a series of Lattice Boltzmann simulations with

and without the effects of viscosity variations and multiple Rayleigh numbers between

10 and 107 (see equation (16)). They also presented Rayleigh* numbers for the same

benchmark problems (see equation (17)). Guo and Zhao (2005) likely used both

equations (16) and (17) because they experiment with porous media simulations with low

to high hydraulic conductivities; therefore, as hydraulic conductivity is increased, the

simulations moved toward simulating free fluid flow. Thermal diffusivity, used in the

Rayleigh number, is calculated using equation (18), resulting in a Prandtl number

(equation (24)) of 0.164. (See discussion under "Dimensionless Numbers" for more

details.)
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A total of six simulations were performed with SEAWAT for comparison with

Guo and Zhao (2005). The Darcy number for these simulations was 104. Three different

Rayleigh numbers were explored: 105, 106, and 107. The parameter 2p was altered to
aT

adjust the Raleigh number (Table 2). This parameter affects the calculated thermal

expansion coefficient , (f, - 1a ) used in the Rayleigh number. Therefore, by
p aT

increasing the change in density with the change in temperature, the Rayleigh number is

also increased. Two cases were run with each Rayleigh number: (1) a constant viscosity

case using the reference viscosity of 0.00595 kg/(m s) (Table 2), and (2) a variable

viscosity case using equation (28). Solvers and time step options for the models are

shown in Table 2. Models were run until temperatures reached an equilibrium

configuration.

2.3.2.1 Results and Discussion

Results from SEAWAT are compared with the results from Guo and Zhao (2005)

as shown in Figure 6 and Figure 7. The differences between the SEAWAT and the

Lattice Boltzmann simulations are likely caused from the differences in boundary

conditions (i.e., slip vs. no-slip boundaries and the decreased hydraulic conductivity

boundary in SEAWAT to reduce advective heat flux). The difference in streamline

patterns (Figure 6) between the Lattice Boltzmann and SEAWAT simulations could also

result from the SEAWAT figures being created for a qualitative visual comparison to

Guo and Zhao (2005). Quantitative values for the streamlines (or temperature contours)

were not provided in the paper by Guo and Zhao (2005).
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However, the overall streamline and temperature patterns are similar, particularly

in the constant viscosity cases. What is also important is how each of the simulations

results in flow patterns that differ between the variable and constant viscosity cases.

When viscosity variations are included, the flow patterns are asymmetric (Figure 6) for

the SEAWAT simulations, where the center of the convection cell shifts toward the

warmer wall. This shift results from the decrease in viscosity near the warmer wall and

increase in viscosity near the cooler wall. In other words, the center of the convection

cell tends to move toward the warmer wall because the overall resistance to flow is less in

the warmer parts of the domain. The asymmetry in the streamlines is discussed in Guo

and Zhao (2005); however, it is visually more difficult to see in their published figures,

which are the only results available.

The temperature contours between the Lattice Boltzmann and SEAWAT

simulations appear very close (Figure 7). Also evident is the change in temperature

contours between the variable and constant viscosity cases, as well as, a difference in

temperature contours among the different Ra* numbers. The constant viscosity cases

have slightly more vertical contours when compared to the variable viscosity cases with

the same Rayleigh number. In Figure 7, for the model with a Ra*=0, the temperature

contours are nearly vertical for the both the constant and variable viscosity cases,

revealing that the simulation is close to the critical Ra* number (the reference viscosity

used in the calculation of the Ra * is from Table 2, which is the viscosity at the reference

temperature, 21 0C, the average of the end temperatures). For the variable viscosity cases,

the temperature contours are slightly less vertical, suggesting there is more heat transfer

via convection than the similar constant viscosity case with the same Ra *. This
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No variable viscosity Variable viscosity
Da = 10-4
Ra = 105, Ra*=10

No variable viscosity Variable viscosity

a

Da = 10-4
Ra = 106, Ra*=100

No variable viscosity Variable viscosity

b"

Da = 10-4
Ra = 107, Ra*=1000

No variable viscosity Variable viscosity

C

Figure 6: Streamline results for both variable viscosity and constant viscosity (gray/black
streamlines) cases from Guo and Zhao (2005) compared with resulting streamlines from SEAWAT
(blue streamlines). (a) Results with Darcy numbers of 104 and Rayleigh* numbers of 10, (b) results
with Darcy numbers of 104 and Rayleigh* numbers of 100, and (c) results with Darcy numbers of
104 and Rayleigh* numbers of 1000.
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No variable viscosity Variable viscosity

Da = 10-4
Ra = 105, Ra*=10

No variable viscosity Variable viscosity

a
Da = 10-4
Ra = 10 6 , Ra*=100

No variable viscosity Variable viscosity

b

Da = 10-4
Ra = 107, R a*=1000

No variable viscosity Variable viscosity

C

Figure 7: Temperature isotherms for both variable viscosity and constant viscosity cases from Guo
and Zhao (2005, in gray/black and white) compared with temperature isotherms from SEAWAT (in
color). (a) Results with Darcy numbers of 10-4 and Rayleigh* numbers of 10, (b) results with Darcy
numbers of 10-4 and Rayleigh* numbers of 100, and (c) results with Darcy numbers of 10-4 and
Rayleigh* numbers of 1000.

pattern is most clearly seen where Ra* = 1000, suggesting that the critical Ra* is lower

when viscosity variations with temperature are represented in these problems. An
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increase in the Ra * with each simulation reveals the increased tendency for convection

versus conduction. The flow patterns (Figure 6) become more elongated in the horizontal

direction as Ra * increases from 10 to 1000. A similar pattern is observed with the

isotherms (Figure 7); the isotherms are more horizontal as Ra * increases.

This benchmark problem was used to test the capability of SEAWAT to simulate

variations in the viscosity of oil from differences in temperature. An important

conclusion is that the results from SEAWAT and Lattice Boltzmann methods reported by

Guo and Zhao (2005) are different in some of the streamline patterns, but similar when

analyzing the resulting temperatures. Moreover, both models show similar responses in

the simulation of temperature when the effects of viscosity variations are explicitly

represented. The consistent response between both approaches indicates that viscosity

variations can affect the shape of a convection cell as well as increase the relative

importance of convection versus conduction. However, laboratory tests or simulations by

other codes may need to be done before this problem can be considered a standard

benchmark problem.

2.3.3 Horton-Rogers-Lapwood (HRL) Convection

The HRL convection problem is based on the pioneering work of Rayleigh

(1916), Horton and Rogers (1945), and Lapwood (1948). The HRL problem consists of

an infinitely long layer of a fully saturated porous medium with a specified height of H.

The temperature assigned to the lower boundary is fixed at a value higher than the

temperature assigned for the upper boundary. Thus, there is lighter water underlying

denser water. For the HRL problem, one of two things will occur depending on the

48



values used to define the system. The fluid may remain stationary, and heat will conduct

from the lower boundary to the upper boundary. Under this condition, the entire layer is

characterized by a linear vertical temperature gradient. The other possibility is that

convection cells will form. Horton and Rogers (1945) showed that convection will occur

when Ra** (equation (20)) is greater than 4& (a value of approximately 39.48), this

value is referred to as the critical Ra** number.

Weatherhill and others (2004) conducted a series of simulations using SUTRA

and showed that the onset of convection will occur when Ra** is greater than 472. If the

values were assigned so that the resulting Ra** value was less than 42, then convection

did not occur, and all heat transport was through conduction. Instead of trying to

approximate an infinitely long layer, Weatherhill and others (2004) showed that the HRL

problem can be represented as rectangular box provided that the length of the box, L, is

an integer multiple of the height of the box, H (Figure 8). Or, for simplification, the

aspect ratio, A, defined as

_ LA-=- (30)
H

(Weatherhill and others, 2004) must be an integer if 4c is to apply as the critical Ra**

value. If A is an integer, then the center between zones of upwelling and downwelling

will occur exactly at the boundary d the critical Ra** value is 4 2 . This

characterization applies because the areas of upwelling and downwelling are related to

the height of the box. If A is not an integer, convective flow will still occur, but the

critical Ra** number will not be 4i because the center zones of upwelling/downwelling

will not be at the boundary.
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H
L=2*H L=4*H

Hot Surface

Figure 8: Simple design of Horton-Rogers-Lapwood benchmark problems where the length of the
box is 2 times (or 4 times) the height.

The HRL convection problem was simulated with SEAWAT to test the ability of

the code to represent thermally-driven convection. The basic design of the problem is

shown in Figure 9 with the model parameters, grid dimensions, and solution schemes

given in Table 3. The model simulates freshwater with a domain of 1 row, 416 columns,

and 54 layers. The top and bottom boundaries were set as constant temperature

boundaries with a decreased hydraulic conductivity of 1 x 10-6 m/d. This low hydraulic

conductivity value was assigned only to the top and bottom layers in order to minimize

the advective heat flux across the temperature boundaries; by definition, conduction

should be the sole heat transport mechanism at the boundary.

Because of the decreased hydraulic conductivity in the top and bottom layers, H is

calculated as the distance between the bottom of layer 1 and the top of layer 54 (156 m).

Constant-head boundary cells, with an arbitrary value, were placed at the upper left and

upper right corners (Figure 9) to facilitate efficient solution of the flow equation. The left

and right hand side of the model are no-flow, insulated (i.e., zero-temperature-gradient),

boundaries. The model only simulates heat transfer; solute transport is not included in
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this simulation. Although temperatures of zero and 100 degrees Celsius are used in the

test problem, the process of evaporation and condensation (i.e., freezing or boiling) is not

considered. The actual temperature values are not pertinent to this particular problem,

only the calculated Ra** number. A smaller temperature range (i.e., 30-40 degrees

Celsius) could have been used and the permeability modified to calculate an equivalent

Ra** number.

CHeadnt Constant Temperature BoundaryT=0 C No Flow Conadnt

ox

.perturbation 0

T= z
Constant Temperature Boundar T=100 C No Flow L=8*H=1248m

Figure 9: Design of the Horton-Rogers-Lapwood problem in SEAWAT. The colors from blue to red
show the initial temperatures for the simulations from 0 C in blue to 100 C in red. Height, length,
and boundary conditions are also displayed.

Table 3: Input parameters for the Horton-Rogers-Lapwood problem simulated in SEAWAT.

Input Parameter Value Units Comments
Number of columns 416 - Assigned

Number of rows 1 - Assigned

Number of layers 54 - Assigned

Ax(DELR) 3 in Assigned

Ay(DELC) 3 in Assigned

Az(DELZ) 3 i Assigned

K, where Ra** = 39 0.0385 m/d Hydraulic conductivity

K, where Ra**= 40 0.03949 m/d Hydraulic conductivity

K, where Ra**= 200 0.19744 m/d Hydraulic conductivity

k, where Ra** = 39 4.54 X 10 " n Permeability

k, where Ra**= 40 4.66 X 10" m Permeability

k, where Ra**= 200 2.33 X 10" m Permeability

a 0 n Longitudinal dispersivity

a 0 I Transverse dispersivity

S, None-steady state - Specific yield

S None-steady state Storage
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0 0.1 Porosity

D* 0.308 m/d Thermal diffusivity

P kg/rnD00 ensityof water at 4 *C

-2 kg/(m C) Density change with temperature

0.002 1/C Thermal Expansion Coefficient

v0  0.0864 mid Reference Kinematic Viscosity

86.4 kg/(m d) Reference Dynamic Viscosity

T 4 C Reference Temperature for Reference
Dynamic Viscosity

g 7.32 X 10'0 id Acceleration due to gravity

Cool Temperature Boundary 0 C Assigned

Hot Temperature Boundary 100 oC Assigned

Matrix solution technique for flow PCG2 - Assigned

Head convergence value 1 X 10" m Assigned

Flow convergence value 1 kg/d Assigned

Implicit Finite
Advection term Difference-Central in - Assigned

Space Weighting
Implicit finite

Dispersion and source terms difference; GCG, - Assigned
SSOR

Time-step length Calculated usingAssigned
Courant of 0.01 s Asge

Temperature convergence value 1 x 10- *C Assigned

Three simulations were performed with SEAWAT using Ra** values of 39, 40,

and 200. The simulations were identical except (1) the hydraulic conductivity was

adjusted in order to achieve the desired Ra** number (Table 3), and (2) the initial

temperatures for the Ra** = 200 simulation were set from the temperatures resulting

from the Ra** = 40 simulation. For the Ra** = 40 simulation, the temperature at a single

node was slightly perturbed to initiate convection in the model.
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2.3.3.1 Results and Discussion

Results show that for the first simulation (Ra** = 39) there is no convection, and

all heat transport is solely through conduction (Figure 10A). (A perturbation was

included for the simulation where Ra**=39 to test the potential for convection. The

density configuration remained stable at the end of the simulation). As the Rayleigh

number increases (Figure 10B and C), convection cells form. Convection can clearly be

seen in the velocity field, as shown in Figure 11 for the Ra** = 40 simulation. Upwelling

brings the warmer water closer to the top boundary; downwelling occurs and brings

cooler water closer to the bottom boundary (Figure 10). According to Weatherhill and

others (2004) the wavelength, k, of the convection cells is 2H and the number of

convection cells should equal L/H (the aspect ratio). Thus, for the values used here, there

should be 8 convection cells, which is the number observed in Figure lOB and C and in

Figure 11.

(B)

(C)

Figure 10: Temperature results for the Horton-Rogers-Lapwood convection problem simulated with
SEAWAT. (A) Simulation with Ra**=39, (B) Simulation with Ra**=40, and (C) Simulation'with
Ra**=200. The colors from blue to red show the temperatures for the simulations from 0 0C in blue
to 100 *C in red.
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Figure 11: Velocity vectors for the second simulation of the Horton-Rogers-Lapwood problem where
Ra**=40.

Ataie-Ashtiani and Aghayi (2006) analyzed the suitability of the HRL convection

problem for testing variable-density modeling codes. According to Ataie-Ashtiani and

Aghayi (2006), the critical Ra** number of 4 may be useful for benchmarking a code;

however, the wavelength test (X =2H) does not apply if calculated Ra** numbers are

significantly higher than 47c2. The significantly larger Ra** numbers can cause more

convection cells to develop in the model (greater than the aspect ratio, A). Similar results

to Ataie-Ashtiani and Aghayi (2006) were also observed with SEAWAT simulations of

the HRL problem; however, the research here revealed that initial temperatures affected

the number of convection cells. Results from our simulation with a Ra** number of 200

revealed that if initial temperatures were stable such as in Figure 10A, the number of

convection cells would be greater than the number expected, 8. However, if the initial

temperatures were assigned from the results of the Ra** = 40 simulation (Figure 10B),

then eight convection cells would result (as shown in Figure 10C and Figure 11). The

conflicting steady-state results for the simulation with an Ra**=200 likely results from

numerical errors, as Ataie-Ashtiani and Aghayi (2006) stated, "It seems that the steady

state solution of the IHB [Infinite Horizontal Box] problem is very sensitive to numerical

errors (including truncation and round off errors). So even when steady-state solutions of

the IHB problem converge to a specific solution... still it cannot be assured that this
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stationary solution is unique. Such a phenomenon is observed in some other numerical

problems which were based on formation of convective instabilities in porous media."

The results shown indicate that SEAWAT can correctly simulate conduction

versus convection according to results from an analytical solution. However, when

simulating density-dependent flow systems with high Ra** numbers, it is important to

note that initial temperatures can potentially alter the results. Regardless, results from

this benchmark problem lend further confidence in the application of SEAWAT to

problems that involve thermally-driven conduction and convection.

2.3.4 Double-Diffusive Finger Convection

Double-diffusive finger convection is an interesting mixing process because

density-driven fingering can occur from an initially stable density configuration (a less-

dense fluid on top of a more-dense fluid). Consider a case where two miscible solutions

with different viscosities are separated by a sharp interface. The solute in the overlying

fluid has a molecular diffusion coefficient that is less than the molecular diffusion

coefficient of the solute in the underlying fluid. Under these conditions, double-diffusive

finger convection can occur in response to small perturbations along the interface, even

though the overlying fluid is less dense than the fluid on the bottom. As explained by

Hughes and others (2005), "a parcel of fluid perturbed downward across the interface

takes on solute mass from the surrounding fluid faster than it diffuses solute mass so the

parcel continues to fall."

Pringle and others (2002) documented the process of double-diffusive finger

convection in the laboratory using a Hele-Shaw cell. Prior to convection, the cell
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consisted of a less-dense sucrose solution overlying a more-dense sodium-chloride

(NaCl) solution. The sucrose solution was about 4 kg/n 3 less dense than the underlying

NaCl solution. The Hele-Shaw cell was tilted to an angle of 25 degrees from a horizontal

plane (Figure 12 and Figure 13). A conservative dye was mixed with the NaCl solution

to allow for visual observation of the finger formation and convection. The dye was

assumed to have a minimal effect on the density of the NaCl solution. A sequence of

laboratory photographs clearly documents the formation and convection of fingers

(Figure 14). Actual times, t, are related to the dimensionless times, t*, listed in Figure 14

by the following equation

t* NaC(

where t is elapsed time in seconds and His the height of the cell, 0.1625m. By the end of

the experiment, the dye is almost entirely mixed throughout the cell.

This double-diffusive finger convection observed in the laboratory experiment

was simulated using a modified version of the SUTRA program, SUTRA-MS (Hughes

and Sanford, 2004; Hughes and others, 2005). A similar approach is used here to test

SEAWAT and its ability to simulate finger convection with multiple diffusion

coefficients and variable viscosity. The input parameters, grid dimensions, and solution

schemes for the numerical simulation are shown in Table 4. These parameters

correspond with those listed by Pringle and others (2002). The simulation domain is the

same size as the Hele-Shaw cell (0.2541 m long by 0.1625 mhigh). The model domain

is surrounded on all four sides by no-flow and zero diffusive flux conditions (Figure 13).

Constant-head cells with an arbitrary head value of 0.1625 m were placed at the top left
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12 bit CCD Camera
2033x2048 Pixel Array

with 4096 Gray Level Range "

Light 'Hele-Shaw Cell
Box _AL ' '. /AL

Concrete Support
ML L Structure

Figure 12: Hele-Shaw cell set up by Pringle and others (2002). Note that the angle of the Hele-Shaw
cell from the vertical is the reason that gravity in the simulation is set to 4.14 m/s 2.

Constant Head = 0.1625 m

LO

i.4 -

Length = 0.2541
Figure 13: Initial conditions in the Hele-Shaw cell, length and height in meters.
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a b C

d ef

9 h

1 \

Ow C/Co

4(d) t*=3.35x10 -4 (e) - =.35x10 (f) t*=5.3 x 0 (g) t = .0 0 , (h) t =7.7 104, () t* -. 9x10 ~4

0) tp=1.04x1r- 3, (k) t*=1.78x10"3, and (1) t*=3.19x10- 3. Color sequence is relative concentration of the
dye (representative of the NaCi solution).

and top right corners of the model. Random perturbations were applied to the initial

concentrations along the interface following the procedure of Hughes and Sanford

(2004).
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Table 4: SEAWAT input parameters for the lele-Shaw simulation.

Input Parameter Value Units Comments

Number of columns 1024 Assigned

Number of rows 1 Assigned

Number of layers 656 Assigned

Ax(DELR) 2.48 X 104 m Assigned

Ay(DELC) 2.48 X 10 m Assigned

Az(DELZ) 2.48 X 10 m Assigned

K 1.0784 X 1002 m/s Hydraulic conductivity

D* NaCl 1.477 X 10 m /s Molecular diffusion

D* Sucrose 4.878 X 104 m /s Molecular diffusion

D* Dye 5.670 X 10 m /s Molecular diffusion

C NaCl 0.0 kg/ Minimum concentration
0

C NaCl 0.03463 kg/r Maximum concentration

C Sucrose 0 k Minimum concentration

C Sucrose 0.05234 Maximum concentration

C Dye 0.0 kg/r Minimum concentration

C Dye 1 gm Maximum concentration

ia 

L 

0 

m 
Longitudinal 

dispersivity

a T 0 m Transverse dispersivity

9 1.0 Porosity

/9 998 kg/m Density of freshwater

NaCl 689 Density change with concentration

ap,
Sucrose 371 Density change with concentration

Dye 0 Density change with concentration

p 0.001 kg/(m s) Reference Dynamic Viscosity

NaCl .59 X 10' m Viscosity change with concentration

- Sucrose 2.75 X 10' mis Viscosity change with concentration

aCDye 0 Viscosity change with concentration

G 4.14 s Acceleration due to gravity

Matrix solution technique for flow PCG2 ~ Assigned

Head convergence value 1.0 X 10 - m Assigned

Flow convergence value 1 kg/s Assigned

Length of stress period 57600 s Steady-state model, one stress period

Implicit Finite -
Advection term Difference-Central in Assigned

Space Weighting
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Dispersion and source terms difne Assigned

Maximum transport step length 10 s Assigned

Concentration convergence value 1 x 101 kg/d Assigned

2.3.4.1 Results and Discussion

The laboratory photographs shown in Figure 14 can be directly compared to the

dye concentrations from the SEAWAT simulation shown in Figure 15. The close

comparison between the laboratory experiment and results from SEAWAT reveal that

SEAWAT is capable of representing the complex process of double-diffusive finger

convection. This is an additional demonstration of the correct implementation of

multiple diffusion coefficients, variable viscosity, and variable-density flow in the

SEAWAT code.
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a b c

k L

Om c/co
Figure 15: Results from SEAWAT at (a) t*=4.06x10~5, (b) t*=1.29x104, (c) t*=3.96x10', (d)
t*=3.35x10"4, (e) t*=4.35x10~4, (f) t*=5.36x10, (g) t*=6.03x10- 4, (h) t*=7.37x10, (i) t*=8.04x10~4, (j)
t*=1.04x10-, (k) t*=1.78x10 3, and (1 t*=3.19x10~3. Color sequence is relative concentration of the
dye (representative of the NaCi solution).

2.3.5 Elder Problem

The classic laboratory experiment reported by Elder (1967) has been widely used

to test numerical codes (i.e., Voss and Souza, 1987; Guo and Langevin, 2002). The

original Elder problem consists of two-dimensional, thermally-driven convection caused
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by a heat source centrally located at the bottom of the domain (Figure 16). As the water

is heated, it rises causing convection within the cross section.

L=600m

cool temperature boundary

Porous medium 0

constant constant
head warm temperature boundary head

L=300m

Figure 16: Set-up of Elder's original experiment that is simulated in SEAWAT. The constant-head
cells at the bottom left and right-hand side are used in the numerical simulation but do not exist in
Elder's original laboratory set-up. NOTE: The height of the model, 150 m, is a measurement of the
"active" model domain. The low hydraulic conductivity upper and lower boundaries are not
included in the measurement of height, nor are they part of the calculation of the Ra** number.

To test variable-density groundwater flow and solute transport codes, Voss and

Souza (1987) modified the original Elder problem. Instead of heating water from below,

convection in the modified version is driven by a constant-concentration solute boundary

at the top that causes the formation of dense brine. The modified Elder problem is based

on a set of parameters (Table 5) that result in an identical Rayleigh** number to that used

in the original experiment.

Table 5: Input parameters for the Elder problem simulated in SEAWAT.

Input Parameter Value Units Comments
Number of columns 88 - Assigned

Number of rows 1- Assigned

Number of layers 52 - Assigned

Ax(DELR) 6.818 m Assigned

Ay(DELC) 6.818 m Assigned
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Az(DE LZ) 3 m Assigned

K 0.411 m/d Hydraulic conductivity

k 485 X 101 m Permeability

a L. 0 m Longitudinal dispersivity

a T 0 m Transverse dispersivity

9 0.1 Porosity

D* 0.308 Bulk thermal diffusivity

P. 1000 kg/ Density of water at 4 *C

-2 kg/(m "C) Density change with temperature

A 0.002 1/*C Thermal Expansion Coefficient

vO 0.0864 m/d Reference Kinematic Viscosity

86.4 kg/(m d) Reference Dynamic Viscosity

TC Reference Temperature for
Reference Dynamic Viscosity

g 7.323 X 10) m/d Acceleration due to gravity

Cool Temperature Boundary 0 C Assigned

Hot Temperature Boundary 100 C Assigned

Matrix solution technique for PCG2 Assignedflow

Head convergence value I X 10- m Assigned

Flow convergence value 1000 kg/d Assigned

Flow time-step length 60 time steps with time d Assignedstep multiplier of 5 d Asge

Implicit Finite -
Advection term Difference: upstream Assigned

weighting

Implicit finite
Dispersion and source terms difference; GCG, Assigned

SSOR

Transport time-step length Calculated using d AssignedCourant of 0.1

Temperature convergence 1 x 10 C Assigned
value

The original Elder problem is used here to further test the ability of SEAWAT to

simulate thermally-driven convection. There is no analytical solution therefore

SEAWAT results are compared with (1) the original numerical results from Elder (1967),

(2) results from a previous version of SEAWAT (Guo and Langevin, 2002), and (3)

results from SUTRA (Voss, 1984; Voss and Souza, 1987; Prasad and Simmons, 2005).
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The design of the Elder problem simulated in SEAWAT is shown in Figure 16

with the model parameters, grid dimensions, and solution schemes given in Table 5. This

numerical model simulates freshwater with variations in temperature for 7300 days (or 20

years). The top boundary was set at a constant temperature boundary of zero. A

relatively low hydraulic conductivity value of 1 x 10- m/d was also assigned to the top

layer to minimize the advective heat flux from the boundary. The bottom boundary has a

constant temperature of 100*C from columns 23 to 66 and also has a relatively low

hydraulic conductivity value. Constant-head boundary cells of zero are placed at the

bottom left and bottom right corners to ensure convergence of the flow solution. The

initial temperature is set everywhere to zero. The temperature values of zero and 100 C

are arbitrary in this case; the value for - was calculated such that the Ra** number is
c9T

equal to 400, the value for the original Elder problem. (As stated previously, the actual

temperature values are not important for certain benchmark problems. What is pertinent

is that the correct Ra** of 400 is calculated for the "active" model domain in Figure 16.

Different temperature values could have been used with the values for or the
aT

permeability modified to calculate a Ra** number equal to 400.)

2.3.5.1 Results and Discussion

Results from SEAWAT compare reasonably well to the original Elder (1967)

results, SUTRA results from Voss and Souza (1987), and results from a previous version

of SEAWAT (Figure 17). There are visual differences in the isotherm (or isochlor)

contours and timing of the maximum penetration depth of the 60% isotherm. The
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discrepancy in results is likely due to differences in grid dimensions, time step length, or

solution schemes. Variations in discretization and solution schemes have been shown to

affect simulation results for the Elder problem (Frolkovic and Schepper, 2000; Diersch

and Kolditz, 2002; Simpson and Clement, 2004; Thorne and Sukop, 2004; Al-Maktoumi

and others, 2007).

Prasad and Simmons (2003, 2005) and Elder (1967) calculated the Nusselt

number (equation (25)) with time for their Elder simulations. The temporal variation in

the Nusselt number is shown in Figure 18 for SEAWAT, the SUTRA results from Prasad

and Simmons (2003), and the numerical results from Elder (1967). The results are

similar between the three models, particularly the results from SUTRA and SEAWAT,

however some differences are evident. These differences could be due to using different

modeling codes, numerical discretization, temporal discretization, or solution schemes.

The similarities between the graphs reveal how the simulations are alike in the timing and

amount of the transfer of energy (or solute in Prasad and Simmons, 2003), as well as the

energy transfer mechanism. Overall, the three different models have a similar total flux

compared to the expected conductive or diffusive flux. (For more details, see the

discussion of the Nusselt number in the section "Dimensionless Numbers".)

Favorable comparisons of SEAWAT Version 4 results with the results from other

programs suggest that SEAWAT is capable of simulating the complex convective flow

patterns that result from temperature variations as shown by the Elder problem. The

results from Elder, in conjunction with results from the HRL benchmark problem, reveal

that SEAWAT accurately simulates thermally-driven convection, conduction, and heat

transport.
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20 2
60 2 years 60 20
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N 1 years

2

060 % 60 2

15 years

2
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EXPLANATION

20---- SEAWAT_V4 line of relative temperature, in percent
-20- SEAWAT line of relative salinity concentration, in percent (Guo and Langevin, 2002)
-20- SUTRA line of relative salinity concentration, in percent (Voss and Souza, 1987)
-20- Elder line of relative salinity concentration, in percent (Voss and Souza, 1987)

Figure 17: Results of SEAWAT Version 4 compared to the original lab results from Elder, SUTRA
(rotated), and an older version of SEAWAT (rotated) (Figure modified from Guo and Langevin,
2002).
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Figure 18: The Nusselt number versus time showing the heat flux across the bottom boundary in
SEAWAT in black. This is compared to the concentration flux across the top boundary (in the
inverted Elder problem) simulated using SUTRA from Prasad and Simmons (2003) in red, and the
heat flux across the bottom boundary from the original Elder problem in blue (Elder, 1967).

2.3.6 Henry-Hilleke

Henry and Hilleke (1972) describe a temperature and salinity variation of the

Henry (1964) problem, which has been used as a standard benchmark problem for testing

variable-density groundwater flow and solute transport codes. The original Henry

problem has been used to verify previous versions of SEAWAT (for example, Guo and

Langevin, 2002). Henry and Hilleke (1972) described a laboratory experiment and

numerical modeling effort designed to represent the coastal part of a carbonate platform

where groundwater flow is affected by salinity and temperature variations (a more

thorough discussion will be presented in Chapter 3). The Henry and Hilleke (1972)
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numerical problem has also been used as a benchmark problem that is designed to

simulate the laboratory experiment. Hughes and Sanford (2004) use this benchmark

problem to verify two other variable-density modeling codes, HST3D (Kipp, 1987, 1997)

and SUTRA-MS (Hughes and Sanford, 2004), which include temperature and

concentration effects on variable-density flow.

The design of the Henry and Hilleke problem is shown in Figure 19. Model

parameters, grid dimensions, and solution schemes are given in Table 6. The cross

section is 1.025 m by 1.025 m in the x-z vertical plane (the aspect ratio, from equation

(30), equals one). However, the rectangular area defined by the centers of the four comer

cells is 1 m by 1 m. This allows the SEAWAT solution domain, in which nodes are at

cell centers, to better correspond with the solution domain for the SUTRA-MS

representation, in which nodes at the comers of elements. SUTRA-MS is a finite-

element code and allows for elements to be placed along boundaries. The right boundary

has seawater concentrations of 35.7 kg/ 3 with a constant-head flow boundary, and the

left boundary has a constant influx of freshwater. The model has constant temperature

cells surrounding the domain (Figure 19). The right boundary has a constant temperature

of 5*C, the lower left corner has a constant temperature of 50 C, and the upper left corner

has a constant temperature of 38.75*C. Temperatures vary linearly along the boundary.

Equations used to calculate the constant temperature at each cell along the boundary are

shown in Figure 19.

As discussed earlier, an exception to the hydraulic conductivity is along the layers

of the top and bottom boundaries (which are constant temperature cells with a lower

hydraulic conductivity of 432 m/d as compared to the bulk of the domain, 864 m/d). This
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T(0,1)=38.75C T(x,1)=38.75-33.75x T(1,1)=5 C
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T(0,0)=50 C T(x,0)-50-45x T(1,0)=5-C

Figure 19: Set-up of the Henry-Hilleke problem showing the boundary conditions that include: (1)
freshwater input, (2) seawater boundary, and (3) temperature boundaries. NOTE: Horizontal scale
is exaggerated for comparison with other modeling results.

Table 6: Input parameters for the Henry-Hilleke problem simulated in SEAWAT.

Input Parameter Value Units Comments

Number of columns 41 - Assigned

Number of rows 1Assigned

Number of layers 41 - Assigned

Ax(DE LR) 0.025 mi Assigned

Ay(DELC) 1 "m Assigned

Az(DE LZ) 0.025 mi Assigned

K 864 m/d Hydraulic conductivity

a 0 mI Longitudinal dispersivity

a T 0 "m Transverse dispersivity

0 0.35 Porosity

, 2.0571 m/d Molecular diffusivity

D* 20.571 m /d Thermal diffusivity

P f 1000 kg/m3 Density of freshwater

P , 1025 kg/m3 Density of seawater

S10.7 ~ Density change with concentration

at -0.375 kg/(m "C) Density change with temperature

Tal 60.0864 m /d Reference Kinematic Viscosity

p 86.4 kg/(m d) Reference Dynamic Viscosity

NumbeReference Temperature for
S8 C Reference Dynamic Viscosi
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Total flow in along left hand
Q 7.2 mr/d boundary. Split into 41 nodes

(0.1756 m3 /d in each node)

Matrix solution technique for PCG2 Assignedflow

Head convergence value 1 X 10-' m Assigned

Flow convergence value 1 X 10-' kg/d Assigned

Length of stress period 0.2 d One stress period, one flow time
step

Advection term TVD - Assigned

Implicit finite
Dispersion and source terms difference; GCG, - Assigned

SSOR

Transport time-step length 6.9444 x 10 d Assigned

Concentration/Temperature 1 x 10 kg/in , or Assignedconvergence value

lowered hydraulic conductivity is to minimize the convective heat flux from the

temperature boundaries. Even though there is no water entering the model from the top

and bottom boundaries, water that enters and leaves the system from the ocean and

freshwater boundaries, along the sides, can actually flow up or down through the top and

bottom cells along the boundary. This water isn't discharged from the system at the top

and bottom boundaries, but flowing through the cells and entering back into the model

domain. This flowing water advects heat from the boundary as it enters back into the

system if the hydraulic conductivity is too high at 864 m/d. The numerical Henry-Hilleke

problem simulated in SUTRA-MS (a finite difference code), does not have advective heat

flux from these boundaries (only diffusive) because the boundary is enforced right at a

node at the bounding surface.
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2.3.6.1 Results and Discussion

SEAWAT successfully simulates the Henry and Hilleke problem and results are

compared to SUTRA-MS and HST3D (Hughes and Sanford, 2004; Thorne and others,

2006), as well as the original Henry and Hilleke problem (1972). Results from SUTRA-

MS, HST3D, Henry-Hilleke, and SEAWAT are shown in Figure 20, Figure 21, and

Figure 22. Velocity vectors for SUTRA-MS and SEAWAT compare favorably with

same observed pattern in both models (Figure 22). Concentration and temperature

contours between SUTRA-MS and SEAWAT are almost identical (Figure 20 and Figure

21), and compare well with HST3D. There are slight differences between concentration

contours for HST3D and contours for SUTRA-MS and SEAWAT, but these differences

are minimal.

Concentration and temperature results from SEAWAT, SUTRA-MS, and HST3D

do not compare particularly well to the numerical solution from Henry-Hilleke, although

the general shape of the contours is the same. The differences are likely because the

Henry and Hilleke (1972) numerical solution is a "simplified form of the variable-density

flow and transport equation" (Hughes and Sanford, 2004) as compared to the equations

used in SUTRA-MS and SEAWAT. When the aspect ratio (equation (30)) is much

smaller than one however, results from Henry and Hilleke (1972) are similar to SUTRA-

MS (Hughes and Sanford, 2004). Hughes and Sanford (2004) give a more detailed

discussion of the effects of grid and mesh resolution on the numerical simulation of the

Henry and Hilleke problem. Their results show that the smaller the aspect ratio, the more

similar the results are from Henry and Hilleke (1972) and SUTRA-MS.
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Figure 20: One meter by one meter box showing resulting percent seawater concentrations from (A)
SUTRA-MS in color with the solid black lines, Henry and Hilleke numerical solution shown as the
50% contour in the solid red line, and HST3D results shown as the dashed black line (Hughes and
Sanford, 2004), and (B) SEAWAT in color with the solid black lines. NOTE: Horizontal scale is
exaggerated.0. a 0.
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Figure 20: One meter by one meter box showing resulting temperatures in degrees Celsius from (A)
SUTRA-MS in color with the solid black lines, Henry and Hilleke numerical solution shown as the
27.5 *C contour in the solid red line, and HST3D results shown as the dashed black line (Hughes and
Sanford, 2004), and (B) SEAWAT in color with solid black lines. NOTE: Horizontal scale is
exaggerated.
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proble. This is additional confirmation that SEAWT can successfully simulate

simultaneous solute and heat transport coupled with variable-density groundwater fow.

2.4 Chapter Summary and Conclusions

Numerical models of groundwater systems are often used as planning tools for

improving water supply and management, as well as understanding groundwater fow

processes. Variable-density groundwater systems such as coastal aquifers, which include

saltwater and freshwater, wastewater disposal sites, salt lakes, or deep aquifers affected

by geothermal heating, require the use of a numerical modeling code that solves the

variable-density fow equation. This equation needs to include not only the effects of

concentration on density, but also temperature.

Depending on the temperature or concentration of the water, their affects on

viscosity and molecular diffusion may nee to be included as well. The most recent
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published version of the SEAWAT program, SEAWAT Version 4, supports equations of

state for fluid density and viscosity. The code can be used to simultaneously simulate

salinity and temperature effects on variable-density flow in water, as well as, in oil (as a

single phase). Variations in viscosity from changes in temperature or concentration have

also been included, as well as the ability to implement distinct diffusion coefficients to

accommodate multiple species. Because thermal diffusivity can be an order of

magnitude higher than molecular diffusion, the capacity to include multiple diffusion

coefficients is pertinent when simulating salinity and temperature concurrently.

This chapter documents the first thorough verification of SEAWAT by

benchmarking the code against six previously published numerical modeling, analytical,

or laboratory problems. Results from the benchmark problems reveal that the following

equations and/or processes have been implemented correctly in the code: (1) density-

dependent flow due to changes in temperature and/or concentration of one or more

species, (2) temperature or concentration dependent fluid viscosity, and (3) molecular

diffusion of multiple species (including solute and heat). Results from the benchmark

problems also reveal that SEAWAT can correctly simulate convective versus conductive

transport of heat/energy through a porous medium. In the process of exploring the effects

of viscosity on convection versus conduction, it is apparent that the critical Rayleigh

number is different in a variable viscosity model.

In summary, the newest version of SEAWAT, SEAWAT Version 4, has been

expanded to simulate single phase liquids with concentrations from fresh to brine.

Included in the new version is the ability to simulate temperature and concentration

effects on density and viscosity. This expanded version of the code could be used to aid
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in solving multiple field problems such as water supply and waste disposal. This

dissertation is the first verification of this new modeling code's capabilities.

3 QUANTIFYING DATA CONTRIBUTIONS TOWARD REDUCING

PREDICTIVE UNCERTAINTY IN A VARIABLE-DENSITY FLOW AND

SOLUTE/HEAT TRANSPORT MODEL

3.1 Introduction

In deeper aquifer systems, such as the Floridan aquifer, it is theorized that heat as

well as salinity, affects flow in the aquifer (Kohout, 1965). Kohout offered a conceptual

model for groundwater flow in the Floridan Plateau (Figure 23), wherein cold seawater

enters the base of the Floridan aquifer and is warmed by geothermal heating as the water

nears the center of the platform. Then, the less-dense warm water circulates upward

toward the surface (Figure 24). In an environment such as this, it is thought that large

difference in temperature could affect overall movement of the saltwater-freshwater

interface as displayed in the laboratory experiments of Henry and Hilleke (1972).

In coastal areas, interface movement and saltwater intrusion are topics of concer

to water supply managers and scientists, primarily because saltwater in the aquifer can

contaminate coastal well fields and damage freshwater aquifer systems (Dausman and

Langevin, 2005). It is difficult to quantify movement of the interface however, because

spatial variations in recharge, aquifer hydraulic properties, tides, geothermal heating and

other complicating factors can affect patterns and rates of variable-density groundwater

flow (Henry and Hilleke, 1972), such as in the Floridan Plateau. Therefore, variable-

density numerical models are often used for management purposes to simulate
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Figure 23: Floridan Plateau where the Peninsula of Florida is on the eastern part of the plateau
(from USGS CMG InfoBank Atlas: Florida EEA regions).
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Figure 24: Kohout's conceptualization of convective flow in the Floridan Aquifer (from Kohout,
1965).
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groundwater flow in coastal aquifers, as well as make predictions such as movement of

the saltwater interface (Shoemaker and Edwards, 2003). It is hypothesized that certain

types of data, for example temperature or salinity, could improve a numerical model's

ability to make a prediction. Could temperature data be used as a tracer for the origin of

the water (Anderson, 2005) or aid in predicting movement of the saltwater-freshwater

interface in a model developed for a system (such as the Floridan Plateau)?

Models that simulate density-dependent flow resulting from differences in

temperature and solute concentrations are often complicated, and therefore costly to

develop. Highly complex models with a large number of parameters enable simulation of

complicated environmental processes as shown by Hunt and others (2007) and Moore

and Doherty (2006). However, these complex models are not necessarily capable of

making accurate predictions. As shown by Carter and others (2006) and Moore and

Doherty (2005), a model well-calibrated to historical data does not necessarily mean the

model will make accurate predictions.

Different types of analyses have been used to calculate predictive error variance

or predictive uncertainty with both linear and nonlinear numerical models designed to

make specific predictions. The "error variance" of a prediction characterizes the

potential for any prediction made by a calibrated model to be wrong. This supposes that

a model has been calibrated against field data, and is then used to make predictions of

system behavior (Tonkin and others, 2007). The calibrated model is one parameter field

that represents the system. This is a similar, but slightly different concept to that of

"predictive uncertainty". Predictive uncertainty attempts to characterize the potential

variability of a prediction, based on the uncertainty associated with multiple parameter
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fields employed by a model (Tonkin and others, 2007). The model is constrained because

the parameter fields must correctly simulate historical system behavior; however, there is

not a single calibrated model, but multiple models. When discussing linear or nonlinear

models, the term "linear" refers to the relationship between parameters employed by the

model and outputs calculated by the model. These relationships are assumed to be

representable by a simple matrix, whose coefficients have no dependence on parameter

values (essentially, an input parameter change results in a linear response in model

output). A model is considered "nonlinear" when an input parameter change does not

result in a linear response in model output. Therefore, the coefficients in a matrix, which

represents the sensitivity of a model output to parameter input, are dependent on the

parameter value (Aster and others, 2005).

Simple models, with a small number of parameters, have been used to calculate

predictive error variance using linear analysis by Draper and Smith (1981) and nonlinear

analysis by Vecchia and Cooley (1987) and Christensen and Cooley (1999). Moore and

Doherty (2005) also derive a linear equation through which post-calibration predictive

error variance can be calculated for a model. However, these models are calibrated with

a small number of parameters and the subjective judgment of the model developer plays a

large part in the simplification process. Therefore, the parameter simplification can

hinder the model's ability to make an accurate prediction. Several nonlinear methods

have also been developed to quantify predictive error of highly parameterized models

using regularized inversion including Tonkin and Doherty (2005), Tonkin and others

(2007), and Tonkin and Doherty (2008).
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When addressing predictive uncertainty, the uncertainty related to a model

prediction, there is not an assumption of a single "calibrated" model. The concept of

uncertainty is based on the fact that because model parameters and inputs are uncertain,

then so too are model outputs. "Predictive uncertainty analysis abandons the idea of

parameter uniqueness by acknowledging that many different parameter sets enable the

model to reproduce the available observations" (Tonkin and others, 2007); therefore,

models that are parameterized in many different ways c be considered to be "correct"

(at various levels of confidence) and used to make a prediction. This notion of

uncertainty is encapsulated in Bayes Theorem (1763), where parameter and predictive

probability/uncertainty can be calculated based on the available observation data and

multiple parameter sets of "maximum likelihood". Parameter and predictive uncertainty

analysis can be implemented using a constrained Monte Carlo approach (Zimmerman,

1998; Carrera and others 2005) or other methods such as the Generalized Likelihood

Uncertainty Estimation (GLUE) of Beven and Binlay (1992). A new nonlinear method,

referred to as null-space Monte Carlo, described by Tonkin and Doherty (2008) can be

readily used in the highly parameterized setting.

Previous studies have gone to great lengths to determine predictive uncertainty

and predictive error variance, using either a calibrated or uncalibrated model. However,

few modeling studies have been specifically designed to guide the collection of field data

to improve a model's ability to make predictions. The data collection strategy is often

designed to fill in "gaps" in the model domain. It is hypothesized that there are times

when the data collected will not improve the prediction for which the model was

developed. Therefore, the data are not worth collecting in order to increase the model's
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predictive capability. It is also hypothesized that the quantification of the worth of data

can be calculated prior to data acquisition. When predictive uncertainty can be

quantified, so too can the reduction in predictive uncertainty accrued through collection

of different types of data; therefore, optimization of data acquisition can be undertaken.

Two methods currently exist in groundwater modeling that address quantification

of the worth of data when analyzing predictive error variance or predictive uncertainty in

a numerical model. Hill and Tiedeman (2007) and Tonkin and others (2007) present a

method that uses the OPR-PPR (Observation-Prediction and Parameter-Prediction)

statistic to quantify the worth of data in reducing predictive error variance. The OPR-

PPR statistic can only be used in an overdetermined modeling context ("overdetermined"

is defined as having more observations than parameters; therefore, the parameters

employed by the model are few enough to be estimated uniquely on the current

calibration dataset) and the model must be calibrated before the statistic for data worth

can be calculated. In contrast, Christensen and Doherty (2008) present a methodology to

address data worth in reducing predictive uncertainty that does not rely on the need for

formulation of an overdetermined inverse problem. While the method takes into account

the existence of a historical dataset, it does not assume the existence of a calibrated

model. Therefore, its formulation of data worth is based on the reduction in predictive

uncertainty accrued through acquisition of new data, and not the reduction in predictive

error variance of a model that has notionally been calibrated against a historical dataset.

The predictive uncertainty method presented by Christensen and Doherty (2008)

is linear, which is both its strength and its weakness. The assumption of a linear

relationship between model parameters and model outputs allows for rapid computation
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of parameter/predictive uncertainty with/without inclusion of past and/or future data.

This linear relationship can be described by a matrix with coefficients that are parameter-

independent, where an input in parameter change results in a linear response in model

output. These coefficients are sometimes referred to as "sensitivities" of model outputs

with respect to parameters. Using the linear method, only sensitivities of model outputs

with respect to parameters are required for computation of uncertainty (and uncertainty

reduction); therefore, the actual values of parameters and observations comprising the

historical dataset do not need to be known. Only coefficients in the matrix that relates

parameters to model outputs are necessary (the sensitivity matrix). A disadvantage of the

linear method is that often model outputs are not linear with respect to the parameters that

they employ (the outputs are dependent on the current value of the parameter). When

applying a linear method to a nonlinear model, the results from the linear analysis may

not be reliable.

The linear method presented in Christensen and Doherty (2008) is used herein to

quantify the value of collecting temperature and solute concentration data in a variable-

density flow, heat and solute transport model. The intent is to reduce the uncertainty

associated with predicted interface movement; therefore, only data that improve such

predictions are considered necessary. According to Kohout's conceptualization (1965),

geothermal heating could potentially affect the flow in a carbonate platform; therefore the

interface position could be altered as well. The model used is the well-documented

numerical box problem, referred to as the Henry-Hilleke problem, which was developed

based on Kohout's conceptualization of the Floridan Plateau (Henry and Hilleke, 1972).

Attention is also devoted to the issue of where measurements of either type are most
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effectively made. The extent to which application of the methodology is compromised by

its linear roots is explored through repeating the analysis using a number of different

realizations of model hydraulic property fields. The Henry-Hilleke model is considered a

nonlinear model because the coefficients of a calculated sensitivity matrix (which relates

the sensitivity of model output to parameters) are parameter-dependent.

The objective here is to show that the line method from Christensen and Doherty

(2008) can be (1) applied to a nonlinear variable-density flow and transport model to

quantify the worth of temperature and concentration data, (2) shown to take into account

the actual known heterogeneity determined by aquifer testing and geostatistical analysis,

(3) used in a model prior to calibration, and (4) used in an underdetermined model (where

there are more parameters than observations).

This chapter is organized as follows. The theory of the method employed for

assessment of data worth is first presented. Then, the numerical model used in the current

study is described. The linear method is then applied to the numerical model in order to

assess the relative merits of acquisition of temperature and concentration data, and to

assess locations within the model domain at which acquisition of such data would be

most effective. The linear method is then tested against a series of numerical model

simulations with spatially varying parameter fields to test the linear method on a

nonlinear numerical model. The paper concludes with a discussion of results and

conclusions from the chapter. The conclusions include the limitations of the method with

recommendations for future research.
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3.2 Theory

From a Bayesian viewpoint, past measurements of system state that comprise a

model's calibration dataset serve to constrain the values of parameters that can be used by

that model such that only parameters which allow the model to replicate historical system

behavior are admissible. Where model parameters, as well as the noise associated with

historical measurements of system state display Gaussian variability, formulation of a

linear equation which describe the constraining effect of these measurements can be

derived.

Let x be a vector of Gaussian random variables with covariance matrix C(x). Let

it be partitioned into two sub-vectors xi and x 2 such that

x=L (32)
x2

On the basis of this same partitioning, let

[C 11  C12 ]
C(x)= L"2  C2  (33)

C1 C22

Now let it be supposed that the elements of x2 become known. Then C' 11, the

covariance matrix of xi conditional on knowing x2, is readily computed as (see, for

example, Koch, 1987)

C'1 =C - C 12 C1 22C 2 1  (34)

Before applying this concept in the environmental modeling context, vectors and

matrices of relevance to this context must be defined.
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Let p denote the set of parameters employed by a model, these presumably

representing hydraulic properties distributed throughout a model domain. It is assumed

that the parameters, p, are represented at a level of detail that is commensurate with the

sensitivity of predictions of interest to these parameters. Let the vector h represent

measurements of system state (a potential "calibration" dataset from the field), and the

vector F represent the noise associated with these measurements. X is the sensitivity of

each model output, corresponding to an observation, to each parameter in the model-the

coefficients discussed previously in the introduction to the chapter. Use of the X matrix

thus comprises an assumption of linear model behavior.

h has a relation to the parameters, p, described by

h = Xp + F (35)

Let the scalar s represent a model prediction of interest, and let the vector y

represent the sensitivity of that prediction to model parameters, where

s = yp. (36)

The precalibration uncertainty of the prediction, s, can then be defined by the variance

a 2S =Y y~ )y , (37)

Equation (37) calculates the uncertainty as a function of parameter variability and the

dependence of a prediction on model parameters. It does not consider the reduction in

uncertainty if additional data (h) are collected and added to the model.

Combining (35) with (36) leads to

(38)
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Then, using standard matrix relationships for propagation of covariance, the joint

covariance matrix of s and h is calculated as

Ct - O0 C(p) yX'

h X 1_ 0 C(C)IO I

(39)

ytC(p)y ytC(p)Xt

XC(p)y XC(p)Xt +C(F)

In equation (39), C(p) is the covariance matrix of innate parameter variability

(parameter variability that would be expected to exist in the real world), this expressing

the pre-calibration uncertainty of hydraulic properties within the model domain. The

diagonal elements of the C(p) matrix express the extent to which the hydraulic property is

unknown at any one point within the model domain. The off-diagonal elements of the

covariance matrix express the extent to which a single hydraulic property is likely to

show spatial continuity, or is likely to be correlated with properties of other types. In

practice, the information for the C(p) matrix for the aquifer system would be obtained

from aquifer tests and geostatistical analysis. The C(p) matrix could also be considered

to be an encapsulation of our present state of ignorance - an acknowledgement of the fact

that the exact values of hydraulic conductivity everywhere within the model domain are

unknown, but that realistic bounds can be placed on the variability of the system. C(c) is

the covariance matrix of measurement noise.

To condition a covariance matrix based on acquired information, the error

variance (or variance of the predictive uncertainty in this method) of a prediction s, if

data h are acquired, is as follows (application of (34) to equation (39))

85



O = y'C(p)y - y'C(p)X}XC(p)X A+ C(c)]'XC(p)y. (40)

Equation (40) (Doherty, 2007a; Christensen and Doherty, 2008) expresses the

uncertainty variance (square of standard deviation) of the prediction s. The first term on

the right side of equation (40) is the pre-calibration uncertainty of the prediction

(equation (37)). The second term expresses the amount by which this pre-calibration

uncertainty is reduced through the acquisition of additional data.

An important characteristic of equation (40) is that it contains neither parameter

values, nor the values of model outputs; it only features the sensitivities of model outputs

to parameters, these being encapsulated in the matrix X and vector y. Because only

sensitivities are necessary, actual calibration does not have to be undertaken and actual

data does not have to be collected (h represents potential observations to be collected).

Therefore, it can be used to optimize data acquisition for reducing the predictive

uncertainty by quantifying the contribution of data that have not yet been collected. The

equation can also be applied to an underdetermined model, with more parameters than

observations, because calibration is not required. Using this method, it is also possible to

upgrade an existing dataset (the dataset being the potential observations, h) with new

information by simply adding rows to the X matrix, which comprises the sensitivities of

corresponding model outputs to parameters employed by the model. The reduction in &2

thereby accrued can be considered a measure of the worth of such additions to a dataset.

The linear method is Bayesian as long as the observation and parameter values are

normally distributed, requiring only observational and predictive sensitivities to

individual parameters to be calculated by the model; actual field values are not required.
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A Bayesian method is based on the probability theory presented by Bayes (1763). Using

a Bayesian method, we are calculating probabilities to get "maximum likely" answers, as

opposed to a single correct answer. In applying a Bayesian approach to groundwater

modeling, we examine the uncertainty associated with a prediction of interest both before

and after conditioning of parameters employed by the model from potential observations

of system state. Model "calibration" from a Bayesian point of view does not lead to a

single set of parameters that can be used to make a prediction. Rather it leads to a

reduction in the uncertainty range of parameters employed by the model and on

predictions that depend on those parameters. The aim of the present study is to determine

what observations are most effective in reducing this predictive uncertainty by applying

the linear equation (40) to a specific nonlinear numerical model, discussed next.

3.3 Model Development

The model used for this analysis is the Henry-Hilleke problem (Figure 25; Table

6; Table 7; Henry and Hilleke, 1972). Henry and Hilleke (1972) described a laboratory

experiment and numerical modeling effort designed to represent a cross section through

half of Florida's carbonate platform where groundwater flow is affected by salinity and

temperature variations. SEAWAT (Thorne and others, 2006; Langevin and others, 2008)

was used to simulate this benchmark problem (results are presented in Chapter 2), in

which variable-density flow results from differences in temperature and solute

concentrations.
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Table 7: Input parameters for the Henry-Hilleke problem.

Input Parameter Value Units Comments
Columns/Layers 41 - Assigned

Ax(DELR)/Az(DELZ) 0.025 m Assigned

K 864 m/d Hydraulic conductivity

0 0.35 - Porosity

Dm 2.0571 m2/d Molecular diffusivity

D, 20.571 m2/d Bulk thermal diffusivity

s 0.01 - Storage

P sid 2710 kg/m3  Density (calcite aquifer)

Kd 2E-04 m'/kg Retardation (temperature)

a 0 m Dispersivity

P f 1000 kg/ 3  Density of freshwater

P 1025 kg/m
3  Density of seawater

0.7 - Density change with
aC concentration

-0.375 kg/(m C) Density change with temperature

7.2 m'/d Total flow in along the left-hand
Q_7.2 m_/d boundary, split into 41 nodes.

L= 1 m -
T(0,1)=38.75 C T(x,1)=38.75-33.75x T(1,1)=5 C

E -E

E r

L Porous medium !
m oil

I-=

T(0,0)=500 C T(x,0)=50-45x T(1,0)=5C

Figure 25: Set up of the Henry-Hilleke problem showing boundary conditions that include: (1)
freshwater input, (2) seawater boundary, and (3) temperature boundaries.

The design of the Henry and Hilleke problem is shown in Figure 25. Model

parameters, grid dimensions, and solution schemes are given in Table 6 and Table 7. The

cross section is 1.025 m by 1.025 m in the x-z vertical plane. However, the rectangular
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area defined by the centers of the four corner cells is 1 m by 1 m. The right boundary has

seawater concentrations of 35.7 kg/m3 with a constant-head flow boundary and the left

boundary has a constant influx of freshwater. The model has constant temperature cells

surrounding the domain (Figure 25). The right boundary has a constant temperature of

5*C, the lower left corner has a constant temperature of 50'C, and the upper left comer

has a constant temperature of 38.75*C. Temperatures vary linearly along the boundary.

Equations used to calculate the constant temperature at each cell along the boundary are

shown in Figure 25.

3.3.1 Model Parameterization

The original model is homogeneous; with constant values for vertical and

horizontal hydraulic conductivity (864 m/d), storage, and porosity. An exception to the

constant hydraulic conductivity is along the layers of the top and bottom boundaries,

which are constant temperature cells with a lower hydraulic conductivity of 432 m/d.

The hydraulic conductivity value is decreased to 432 m/d to minimize the advective heat

flux from the constant temperature cells, allowing mostly diffusive heat flux. This

enables a better match to the original Henry-Hilleke problem, which does not simulate

advective heat flux from the top and bottom boundaries (see discussion in Chapter 2).

Table 7 lists the hydraulic properties employed by the model and Figure 26 shows the

concentration and temperature fields computed using the model.
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Figure 26: Henry-Hilleke problem (a) salinity contour results, 0 kg/m 3 in light gray to 35.7 kg/m3 in
dark gray. Simulated observations: black triangles. Predictions: black squares (labeled 1-6). (b)
Temperature contour results from 5 C in light gray to 50 0C in dark gray. Predictions: white/black
squares.

The following parameter types are assumed to be approximately known in the

Henry-Hilleke model, and therefore will be used in equation (40):

" dispersivity;

" molecular and thermal diffusion;

" retardation of heat;

" density of solid;

" salinity value along right boundary;

" temperature values along all boundaries;

" porosity;

" storage coefficient;

" vertical and horizontal hydraulic conductivities.
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The first five of these were each assigned a single parameter which is attributed to

the entire model domain; that is, each was described by a single element of the p vector.

Vertical and horizontal hydraulic conductivities, porosity, and storage parameters are

defined using the pilot point method, which is a method utilizing points to spatially

assign hydraulic properties and interpolation to assign hydraulic properties to areas

between the points (Doherty, 2004). Pilot points were employed to represent the spatial

variability of the last four of the above parameter types. Pilot points were distributed

uniformly over 41 x 41 grid at a spatial interval of 0.05 m (Figure 27), so that 400 pilot

points were assigned to each of these parameter types (with the exception of

temperature). Pilot points were also employed along respective model boundaries for

representation of spatial variability of temperature boundary values; these were uniformly

emplaced with a spacing of 0.025 m. A total of 1808 parameters thus comprise the model

parameterization scheme encapsulated in the vector p; that is, the vector p possesses 1808

elements.

0.9 e a a a v a a a a a a a a a a a a a
e a aa a a a a a a e , , s

0.8 v a a * a a a o a a a a a a * *
a. a a a a a a aa a

0.7 a a a a a a a * aa a a a a a a a

v 0.6 a a a a a a a a a a a a a a a a a a

4 0. a a a s a a a a a A a * a a a a a
U . a aaa aeaaaaaaos

04 a a a a a a a a a a a a a a a a a s
0,3 a a a a a a a a a a a a a a a

a a a a v v o oe a aa a a a e
02 a a a a r a a a a a a a a a a a a *
0. s o o s a v o o v s v

0.1 * a a a a a a a a a a a a s a a * a

0.1 0.2 0.3 04 0.5 0.6 07 0.8 0.9
Distance in Meters

Figure 27: Figure showing model domain with pilot points that represent spatially varying
parameters.
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Even though the base model contains constant values for each pilot point assigned

to a property (for example, 400 horizontal hydraulic conductivity pilot points are all

assigned a value of 864 m/d), pilot points allow observation and prediction sensitivities

(the coefficients of the sensitivity matrix, X) to be calculated based on the possibility that

the parameters vary spatially. The number of pilot points was chosen to allow the

potential for a significant amount of parameter heterogeneity, while also limiting the

number of parameters to a reasonable amount for the calculation of predictive uncertainty

(for example, pilot points are not placed in every cell of the model, but in every other

cell).

3.3.2 Observations and Predictions

Thirty-two temperature and 32 concentration observations were added to the

model; these are simulated observations that do not actually exist in the field (these

observations would be represented by h from equation (35) and are seen in Figure 26).

The potential for these 32 concentration and 32 temperature measurements to reduce the

uncertainty of a defined prediction(s) can then be tested. With 64 observations, the X

matrix of equation (40) thus contains 64 rows (representing observations) and 1808

columns (representing parameters). More observations were not added to the model

because the X matrix could potentially become so large that inversion (necessary to

calculate predictive uncertainty) of the matrix would be numerically difficult.

Movement of the interface for a prediction scenario was simulated by reducing

the freshwater input along the left-hand side of the model by 25%. The change in salinity

at six prediction sites was calculated with the intent of predicting interface movement
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inland by a reduction of freshwater recharge (Figure 26). Sensitivities of each of these

concentrations (in the prediction scenario) to the 1808 parameters employed by the model

thus comprise the elements of the y vector used in equation (40). More than six

predictions could be analyzed; however, for the current purpose of predicting interface

movement, six spatially varying observations along the interface are assumed to be

sufficient.

3.3.3 Covariance Matrices

The covariance of model parameters is expressed through the C(p) matrix of

innate parameter variability discussed above and used in equation (40). The covariance

matrices created for spatially-varying model parameters are based on log-transformed

exponential variograms, with ranges of approximately 0.45 m and sills calculated from

values in Table 8 (the sill is the variance, which is the square of the standard deviations

presented in Table 8). The range was chosen based on the fact that the simulated

problem is only 1 m by 1 m. The low to high values for each parameter in Table 8 were

chosen with the assumption that a carbonate aquifer can have a high range of hydraulic

conductivities, porosities, etc... A C(p) matrix for the temperature boundary was also

created, but this was not log transformed. The C(p) matrix describing temperature

variability perturbations (from a uniform gradient) along the boundary was based on a

variogram with a sill of 0.25 C 2 (standard deviation of +/- 0.5 C) and range of 0.3 m.

Measurement error values used to create the C(c), the covariance of the

measurement error, were obtained assuming a normal distribution and utilizing margins

of error from actual field instrumentation used to collect temperature and salinity data,
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where temperature is +/- 0.011C and salinity is +/- 0.3% of the measured value. The C(c)

matrices are used with the calculated C(p) matrices employed in equation (40).

Table 8: Values used to calculate the standard deviation for the parameters used in the predictive
uncertainty exercise. The * denotes model parameters that vary spatially.

Parameter Lo o ih Lg StDev= ([log H-logi L4)

Horizontal K * [rn/d] 100 2 1200 3.079 0.269795

Vertical K * [m/d] 100 2 1200 3.079 0.269795

0* 0.1 -1 0.5 -0.301 0.174743

s * 1E-05 -5 0.1 -1 0.269795

solid [kg/rn] 1000 3 3000 3.477121 0.119280314

Kd [mr/kg] 1E-07 -7 0.001 -3 1

D,[r 2/d] 10 1 30 1.477121 0.119280314

D [r 2 /d] 1 0 3 0.477121 0.119280314

a [m] 0.02 -1.699 0.2 -0.69897 0.25

30 1.4771 40 1.60206 0.031234684

3.4 Application

The following method was employed to assess the importance of individual

observations in the reduction of predictive uncertainty in the numerical model. The

sensitivity matrix (X) was computed for the Henry-Hilleke problem, the predictive

scenario was then run (by decreasing freshwater recharge 25%) to obtain the prediction

sensitivities encapsulated in the vector, y. The variance for the predictive uncertainty for

a specific prediction is calculated using equation (40). The variance calculation includes

the effect of the 32 temperature and 32 salinity observations and the parameter C(p)

matrices described previously. One observation is then removed from the model, and the

variance is calculated again for a prediction. The difference between the variance

calculated before and after the removal of a specific observation is the increase in

uncertainty for the prediction pursuant to removal of the observation. For example, if
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removal of an observation has no effect on the uncertainty of the prediction, then that

observation is not worth collecting. However, if the uncertainty is increased for the

prediction when an observation is removed from the data set, then that specific

observation improves the accuracy with which the prediction can be made. This exercise

was completed for all six predictions.

3.4.1 Testing the Effects of Nonlinearity

As previously stated, the matrix X represents the sensitivities of model outputs (h)

to parameters employed by the model; use of this matrix (in equation (40)) thus

comprises an assumption of linear model behavior (equation (40) assumes the parameter

inputs and model outputs are linearly related). It is important distinguish between the

values of parameters employed by the model for the purpose of computation of the X

matrix and y vector of equation (40), and the type of parameter variability assumed for

the purpose of filling the C(p) matrix used in this same equation. Uniform parameters

were employed by the original Henry-Hilleke model for computation of sensitivities in

the X matrix. The C(p) matrices for equation (40) are developed based on the natural

parameter variability one would expect to calculate from field tests or geostatistical

analyses.

This research is a first attempt to investigate the extent to which nonlinear model

behavior invalidates (or not) the use of equation (40) for assessment of observation

worth. This is done by generating non-uniform parameters to compute sensitivities used

in the X matrix (as opposed to the uniform parameter field used in the original Henry-
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Hilleke simulation). Then, calculations of observation worth can be repeated using an X

matrix and y vector computed on the basis of these non-uniform parameters.

The non-uniform parameters were created by generating a series of stochastic

realizations for the temperature boundary conditions, vertical and horizontal hydraulic

conductivity, storage, and porosity. The stochastic fields were created based on the same

C(p) matrices discussed in the "Covariance Matrices" section (and used previously in

equation (40)) to describe the spatial variability of each property. Separate random

numbers were also generated for each of the parameters in Table 8 that do not vary

spatially. These new parameters were generated from a normal distribution with standard

deviations calculated from Table 8. The objective here is to test a linear method on a

nonlinear model by generating parameters fields and variables that are considered

relatively extreme in values from low to high (the parameter ranges, used to define the

sills for the variograms utilized to create the C(p) matrices, are purposely high; Table 8).

Therefore, parameter fields are quite different; however, each of these parameter sets

could theoretically represent a carbonate aquifer (such as the Floridan Plateau).

The different stochastic realizations and generated parameters were combined,

creating additional Henry-Hilleke simulations (necessary to compute the additional X

matrices). After creating multiple simulations, it was found that run times and predictive

uncertainty calculations were relatively long (numerous days to complete each analysis).

Therefore, only five new simulations were chosen to complete this analysis with the

assumption that a total of six simulations (the base Henry-Hilleke plus the additional

five) would suffice in testing the linear method on a series of nonlinear simulations.
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The resulting sensitivity matrices (X) for all six Henry-Hilleke simulations (the

base simulation plus the five additional parameter sets) are different, revealing the

nonlinearity of the model, If the Henry-Hilleke model was linear, the sensitivity matrices

(i.e., coefficients) for each simulation would be identical regardless of the parameter

values. (However, is important to note that the degree of model nonlinearity is not

known at this time and is not included in this research.) The process of computing

predictive uncertainty reductions from equation (40) related to the removal of

observations was then repeated for each of the five additional simulations. Comparing

the results from each linear analysis applied to the six different simulations is a first step

in determining the applicability of the linear method to this nonlinear model.

3.5 Results and Discussion

Reduction in uncertainty variance calculated using equation (40) is plotted at the

site of each observation. Figure 28 is an example of the results, where the changes in

variance for predictions 2 and 3 are contoured for salinity and temperature observations.

The concentrated areas with the densest contour lines reveal the observation(s) of greatest

worth. In the analysis of the original Henry-Hilleke simulation, the location of a

prediction relative to the location of the interface is most important when analyzing the

value of salinity data. (The salinity observation closest to the prediction in the direction

of interface movement reduces the predictive uncertainty the most.) When analyzing

predictive uncertainty for temperature for predictions 2 and 3, the bottom left-hand

corner, where the change in temperature with distance is the greatest, appears to be one of

the better locations to collect temperature data. This applies in the majority of the
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predictions (1-6) (Figure 28). Salinity data also contribute more to reducing predictive

uncertainty than temperature data in this particular pro blem for these six predictions.

The contribution from salinity data to reducing predictive uncertainty is an order of

magnitude higher than the contribution from temperature data.
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Given the salinity range in the model A = 35,7 kg/m3, and the temperature range

in the model AT= 45*C (5-50'C), it is not surprising that salinity data might have more

worth than temperature data for this specific prediction. The change in density with

temperature at a constant concentration, and change in density with concentration at a

constant temperature can be calculated using equation (6) and the values from Table 7.

Salinities ranging from 0-35.7 kg/m3 result in a Ap of~25 kg/ 3, whereas temperatures

ranging from 5-50'C result in a Ap of~17 kg/m3 . Even though salinity affects density

more than temperature in this particular problem, temperature effects on density cannot

be ignored, which is confirmed by Henry-Hilleke's (1972) laboratory and numerical

experiment. Therefore, it is still valid to test the worth of temperature data and determine

the best location to collect the data if it will aid in reducing uncertainty of the prediction

of interest. Although not tested with this model, it is also possible that temperature data

may be worth more than salinity data for a different prediction of interest, such as

quantification of submarine groundwater discharge (as opposed to interface movement).

When analyzing the change in variance for predictive uncertainty for each of the

five additional simulations (Figure 29), results for predictions 2 and 3 are similar to the

original simulation (Figure 28). The 50% seawater line is in a different location for each

of the models because of the spatially varying parameter fields (hydraulic conductivities,

porosity, and storage), the boundary conditions for temperature and salinity that were

modified (by the random number generation) for each of the five simulations, and the

nonlinear nature of the model. However, the salinity observation, in the direction of

interface movement, is most important for a specific prediction relative to interface

location regardless of the new parameter field. This is confirmed by the relative rank of
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each observation in reducing predictive uncertainty for Predictions 2 and 3 (Figure 30).

The same two observations have the highest rank (which means they reduce the

predictive uncertainty the most) for each of the predictions shown (2 and 3). Although

results are not shown for all six predictions, the results for the other four predictions are

similar to predictions 2 and 3.

The change in variance for the temperature observations (Figure 29) reveals that

for each stochastic realization, a number of different observations contribute to reducing

the predictive uncertainty in each simulation. However, the observation in the bottom

left comer contributes most to reducing the uncertainty in both predictions 2 and 3 for all

the simulations regardless of the location of the prediction. Results from the relative rank

of the observations to reducing the predictive uncertainty (Figure 30) confirm the results

from Figure 29, revealing that the observation in the bottom left comer is of greatest

worth to reducing predictive uncertainty in all of the simulations.

The results, indicating that the best location to collect temperature data at the

bottom left comer, were not expected prior to this analysis. It was originally

hypothesized that the salinity and temperature data would both reduce predictive

uncertainty; however, it was thought that the same observation location for both salinity

and temperature would reduce the predictive uncertainty for a specific prediction.

However, upon further investigation, the bottom left comer is where the change in

temperature with distance is the greatest and is the wa rest area in each simulation

(Figure 25 and Figure 26). This warm area is where the water is heated and the less-

dense warmed water begins to rise, causing circulatory flow to occur according to

Kohout's conceptualization (Figure 24; 1965) and laboratory results from Henry and
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Figure 29: Contours of change in variance (calculated from equation (40)) of the predictive
uncertainty for predictions 2 and 3 in the black contour lines for both salinity and temperature for
each of the 5 additional Henry-Hilleke simulations. The stochastic realizations are shown as filled
contours in gray to black and correspond to the log of the horizontal hydraulic conductivity. The
dark red line shows the 50% seawater line. NOTE: The actual values of the black contour lines
representing the change in variance/predictive uncertainty are not pertinent in this figure, only what the
contour lines represent. The densest areas of contour lines reveal the location(s) of the most important
observation(s) in reducing the uncertainty of the prediction of interest.
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Figure 30: Relative rank of observations (for each of the 6 simulations) that reduce the predictive
uncertainty the most for (a) concentration observations for prediction 2, (b) temperature
observations for prediction 2, (c) concentration observations for prediction 3, and (d) temperature
observations for prediction 3.

Hilleke (1972). Therefore, it is concluded that this circulatory flow could affect the

overall location of the interface and that a temperature observation in this warm area

could be of greatest worth when analyzing interface movement. This result, the

temperature observation of greatest worth in the bottom left corner, applies even when

the prediction related to movement of the interface is relatively far away, such as

predictions 2 and 3 (Figure 28). The results for the other predictions, although not
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shown, confirm the results from the temperature observations related to predictions 2 and

3.

3.6 Conclusions, Limitations, and Future work

Outcomes of this study are as follows:

1. The relative ranking of the salinity observations employed in this study (in terms of

their effectiveness in reducing the variance of the prediction of interest) was

unchanged regardless of whether sensitivities were computed using uniform or

heterogeneous hydraulic property fields. The locations of some of the more effective

measurements for salinity varied from case to case. However, what remained

constant were the locations of effective measurements relative to the location of the

interface. In general, salinity measurements taken closer to the interface were most

effective in reducing the predictive uncertainty of the predictions investigated in this

analysis.

2. If temperature data is being collected to predict interface movement in problems that

are analogous to the Henry-Hilleke problem investigated here, the most worthy

observation is in an area where the change in temperature with distance is relatively

sharp, in the warmest area beneath the surface.

3. Overall, salinity data contributes more worth to reducing predictive uncertainty in

interface movement than temperature data (Figure 28), with salinity data reducing

uncertainty an order of magnitude more than temperature in most cases for this

particular problem.
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4. It appears that the linear method presented can be applied to this nonlinear variable-

density flow and transport model to quantify the worth of temperature and

concentration data. The method can be applied to an underdetermined model before

calibration, while taking into account the actual heterogeneity determined through

geostatistical analysis of collected data.

The Henry-Hilleke model has been employed to demonstrate the application of an

easily-implemented methodology through which future data acquisition of maximum

worth can be targeted, and hence furnish maximum returns on the investment devoted to

its acquisition. The theoretical underpinnings of the methodology rest on an assumption

of linear model behavior. This is both its strength and its weakness. The strength of the

methodology is that it can be implemented at a relatively light numerical cost even in

complex model settings, and in highly parameterized contexts. Furthermore, the actual

values of parameters, observations, and predictions do not need to be known - for only

their dependence on parameter values employed by the model are employed in the

equations on which the methodology is based. Therefore, the methodology does not

require model calibration. However, the assumption of line model behavior is also a

limitation and weakness of the method because outcomes of calculations which rest on

this assumption are approximate, with the level of approximation increasing with the

level of model nonlinearity.

The mathematics of a linear analysis are such that, when applied to a series of

linear models, would give identical results. Therefore, if the model used in this study was

linear, the results from the linear method would result in identical sensitivities and

predictive uncertainties regardless of the parameters employed in the model. The
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sensitivities of model-calculated concentrations and temperatures, especially those in the

vicinity of an interface, with respect to parameters employed by the model are dependent

on the current position of the interface, which is in turn dependent on parameters

employed by the model. This dependence is illustrated in Figure 29, where the use of 5

different sets of parameters results in different interface locations. Here, the results from

the linear method are not identical, only alike in a relative sense in that the ranking of

observations of greatest worth are similar; consequently the Henry-Hilleke model is

nonlinear. However, the linear method still appears to work in this nonlinear model

because each simulation points towards using the same observations to reduce predictive

uncertainty regardless of parameter field.

Part of the purpose of the present study was to investigate the extent to which use

of a methodology based on an assumption of linear model behavior is invalidated by such

parameter dependence of model outcomes. This particular analysis appears to have

demonstrated that the methodology can potentially provide useful qualitative insights and

information that can guide acquisition of future data, such that the data collected is as

information-rich as possible in relation to predictions of future behavior required of a

model. However, in interpreting this information, it is incumbent on the modeler to be

cautious in the application of the method by making allowances for the nonlinear nature

of the model which he/she is potentially employing. Thus while it may not be feasible to

expect that an analysis based on equation (40) can yield the exact locations at which

information can be gathered at a specific study site (especially one at which a high level

of hydraulic property heterogeneity is expected to prevail), it may yield some important

principles on which selection of these localities can be based.
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What is presented here is a first step towards testing use of this linear method on a

nonlinear model. The degree or source of nonlinearity in the Henry-Hilleke model is not

known or studied as part of this research; therefore, there is not a clear quantification of

when the linear method can be employed with confidence to another nonlinear model.

The applicability of the linear method would depend on the degree of model nonlinearity.

More research needs to be done to develop specific guidelines for applicability of this

linear method to other nonlinear models.

The applicability of this linear method to varying degrees of nonlinear models

could potentially be accomplished with the following protocol. First, perform a nonlinear

analysis for reduction of predictive error variance on a series of nonlinear numerical

problems with different degrees of linearity. Then, compare results between the

application of the linear method presented in this paper and the results from the nonlinear

method. The nonlinear analysis for predictive error variance and/or uncertainty could be

achieved with the following steps:

1) An extensive Monte Carlo analysis with many parameter fields where each

model is required to be calibrated.

2) A prediction is then made on the basis of each model parameterization.

3) Correlation between observation worth and the predictions of interest indicate

data of greatest worth.

A nonlinear analysis, such as this, would necessitate that approximately 1000 system

realizations be created; then each system (or model) requires calibration to available data.

Even using a new, relatively fast, method available, called null-space Monte Carlo

(Tonkin and Doherty, 2008), would require an order of 5 to 10 runs per parameter field.
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However, this is very time consuming and a simpler numerical model with shorter run

times than Henry-Hilleke would be preferable if performing this nonlinear analysis.

A linear analysis is appealing because it only requires calculation of observation

and prediction sensitivities to individual parameters based on the model; therefore, the

model does not need to be calibrated and actual field data are not necessary. A linear

analysis is also attractive because the computationally intensive model runs necessary for

a nonlinear analysis are not required. The question addressed in this study is: can the

pleasing aspects of a linear analysis potentially be applied to assessing data worth in a

nonlinear model? The present study has shown, for this analysis in which a number of

parameter fields were used in a nonlinear model, that the mathematics from a linear

assumption can potentially be applied in quantifying the worth of data. The analysis is

also unique in that it can be done using information on the aquifer system obtained from

measurements and geostatistical analysis (through the C(p) matrix); therefore, the model

parameters vary based on scientific information.

A simple precalibration linear analysis, such as presented in this chapter, can be

done to help guide a data collection effort if additional data need to be acquired to aid in

reducing the uncertainty of model predictions. The analysis can potentially save time and

money, both in the calibration process and the data collection strategy, whereas a

nonlinear analysis may not be financially feasible. The results presented here are for a

benchmark problem used in the testing of numerical modeling codes; it is possible that

this conclusion is transferable to other nonlinear modeling contexts with additional

research. However, caution must be taken in applying this method because reliable

results of predictive uncertainty would depend on the degree of model nonlinearity.
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4 SIMULATION OF SUBMARINE GROUNDWATER DISCHARGE

SALINITY AND TEMPERATURE VARIATIONS: IMPLICATIONS FOR

DATA COLLECTION

4.1 Introduction

Groundwater being discharged into the sea has been noted throughout history; in

the first century, fresh groundwater discharging to the ocean was used for water supply in

the coastal area of Syria (Kohout, 1966). The study of submarine groundwater discharge

(SGD) progressed rapidly in the mid 1990's with publications from Moore (1996), Moore

and Church (1996) and Younger (1996); however, the term SGD or SGWD (submarine

groundwater discharge) emerged in the literature in the early 1970's (Zektser and others,

1973). Often referred to as submarine springs or submarine groundwater discharge, this

water varies in concentrations from fresh to brine, and has varying temperatures

depending on the source. More recently, Price and others (2006) coined the term coastal

groundwater discharge (CGD), which more specifically refers to the brackish to saline

portion of the SGD. It is difficult to quantify SGD; however, because spatial variations

in recharge, aquifer hydraulic properties, tides, and other complicating factors can

substantially affect patterns and rates of groundwater flow to the ocean. The presence of

geological heterogeneity, for example, can obscure the measurement of SGD

(Bokuniewicz and others, 2003).

In recent years, SGD in coastal areas is a topic of increasing concern to marine

scientists, primarily because terrestrially-derived groundwater could release nutrients and

other potentially harmful contaminants into ecologically sensitive marine environments
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(Moore, 1999; Taniguchi and others, 2002; Finkl and Krupa, 2003). The source of

nutrients to the groundwater system is typically from agriculture (fertilizers) and animals

or humans (waste). The nutrients can leach into the shallow fresh groundwater of a

coastal aquifer which, in turn, could discharge into the ocean as part of the SGD (Figure

31), potentially disrupting a fragile ecosystem. If the water remains in the ground for

long periods of time before being discharged, more nutrients could be leached from the

aquifer and discharged to the coast. Even the recirculated seawater portion of the SGD

could leach additional nutrients from the aquifer (Shellenbarger and others, 2006).

Studies have shown that increased nutrients in SGD could potentially cause toxic algal

blooms (Laroch and others, 1997; Breier, 2006). Research has also shown the tides can

significantly affect SGD and the contribution of land-derived chemical input (Barry and

others, 1999), as well as cause biogeochemical reactions in the tidal zone between an

estuary and the aquifer groundwater (Robinson and others, 2006a; Robinson and others,

2006b). These underground mixing zones of saltwater and freshwater in coastal aquifers

where geochemical reactions are often occurring are referred to as subterranean estuaries

(Moore, 1999).
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Figure 31: Diagram showing groundwater flow lines in a coastal area with a saltwater-freshwater

interface. SGD is fresh, brackish, or saline, depending upon the location and source of water. The

SGD can carry nutrients or other contaminant from the aquifer to the ocean.
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Groundwater that is discharged to the ocean in coastal areas is often (1) fresher,

depending upon the environment, (2) a different temperature than the surrounding ocean

water, depending on the time of year and source of groundwater, (3) a different age than

the surrounding ocean water, and (4) could contain additional nutrients or chemical

concentrations than the ocean water. Therefore, multiple data collection techniques

including aerial imagery, electromagnetic resistivity, temperature sensors, seepage

meters, and geochemistry enable different means of identifying not only the location of

SGD, but also the amount, concentration, temperature, age, and source. Combining these

different data techniques can enable a reasonable quantification of SGD.

Aerial survey techniques that utilize electromagnetic (EM) and thermal imagery

provide a direct means to map zones of increased SGD (Weiss and others, 2005). EM

methods can be used to detect subsurface salinity differences, whereas thermal imagery

can detect small water temperature variations at the sea surface (as small as 0.080C in

calm seas). Therefore, it is possible to detect SGD with an aerial survey if the salinity or

temperature difference between SGD and the ocean is relatively large. The best time to

conduct an aerial survey is when salinity and temperature differences between SGD and

surface waters are the greatest.

Other data collection techniques for quantification of SGD include temperature

and EM sensors in the ocean or ground, seepage meters on the ocean floor, and

geochemical analysis of water samples. Temperature sensors can be located in the

coastal area to measure not only temperature of surface waters, but also the temperature

of groundwater by deploying waterproof sensors in wells (Stonestrom and Blasch, 2003).

These temperature measurements can be utilized in conjunction with thermal imagery
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data in SGD mapping. Temperature measurements and temperature profiles can also be

used to trace source waters (Anderson, 2005) as well as estimate fresh SGD (Taniguchi

and others, 2002). Streaming resistivity profiling and EM resistivity instrumentation can

be used to measure salinity changes in surface and subsurface waters to give an indication

of fresh SGD (Swarzenski and others, 2004a; Swarzenski and others, 2007). Seepage

meters, which are deployed on the ocean floor, measure flux out of the aquifer into the

ocean over a specific area of the sea floor (Finkl and Krupa, 2003). Geochemical

sampling can determine the input of nutrients such as nitrates and ammonium in SGD

(Swarzenski and others, 2004a). Helium-tritium isotope techniques can be utilized to

determine the apparent age of groundwater (Price and others, 2003; Swarzenski and

others, 2004a); while radium, radon, and methane (Breier, 2006; Moore and others, 2006)

can be used to quantify SGD because groundwaters have higher concentrations of these

constituents compared to surface waters.

Variable-density numerical models are often used for management purposes to

simulate groundwater flow in coastal aquifers, including saltwater intrusion (Dausman

and Langevin, 2005) and SGD. A deep (-3 ki) model of North Carolina was developed

to investigate fresh and saline SGD, as well as geothermal convection in a coastal setting

(Wilson, 2005). Langevin (2001) used a variable-density flow and transport model to

quantify rates of fresh SGD into Biscayne Bay in southeastern Florida. Smith and

Zawadski (2003) calibrated a two-dimensional cross-sectional model to seepage

measurements in the northeastern Gulf of Mexico. Previous research with data collection

and modeling has also shown that seasonality can affect the amount of SGD resulting

from water-table changes (Michael and others, 2005). However, few numerical modeling
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studies in coastal areas, if any, have been designed to guide data collection efforts or had

the capability of simulating apparent age. Age simulations could give insight to

groundwater residence times before discharge; therefore, predictions could potentially be

made to determine the addition of nutrients leached into the SGD (Lerner and Ockelford,

2006). Age data, if collected, could additionally be used to calibrate a numerical model.

The purpose of this chapter is to reveal an innovative use of SEAWAT and

answer challenging questions about the detection of SGD. This chapter shows how a

numerical model developed using SEAWAT can (1) simulate estimates of SGD flux,

temperature, salinity and age, (2) be used to understand complicated coastal systems by

simulating multiple species (temperature, salinity, and age) with different types of

geology, and (3) be used to guide and give insight to some data collection efforts in

studies of SGD. A 3-dimensional (3-D) variable-density numerical model was developed

using generalized hydrological conditions for southeastern Florida. The model was

calibrated using existing data. This 3-D model was then used to create a 2-dimensional

(2-D) model, which had shorter run times and could simulate multiple species. The 2-D

model was verified using additional data. The 2-D model was then used to determine

when and where SGD rates are the greatest and to quantify expected temperature,

salinity, and age differences between groundwater and ocean water. The model is unique

in that it represents SGD characteristics, including salinity, temperature, and age, at short-

term (tidal) and longer-term (seasonal) time scales.
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4.2 Methods

A 3-D model was developed using idealized hydrogeological conditions and

hydraulic parameters common to the Biscayne aquifer in southeastern Florida. The 3-D

model was calibrated with water-level and salinity data collected by the USGS in

Broward County from 2001-2002 (Dausman & Langevin, 2005) (Figure 32). Parameters

from the 3-D model were then used to create a 2-D model to evaluate transient variations

in the salinity, temperature, and age of SGD (using 3 species: salinity, heat, and age).

The 2-D model has much faster run times than the 3-D model; therefore, more species

can be simulated as well as a longer time period.

The 2-D numerical model is intended to represent generalized flow conditions in

the Biscayne aquifer in southeastern Florida rather than one specific location. Results

from the 2-D model are compared to different types of data (temperature and discharge)

collected from various sources (NOAA, FiU, and USGS). The comparison of the model

to different types of data is undergone to verify the 2-D model. After the 2-D model is

verified, it is then shown how the model can be used to guide data collection and give

insight into the groundwater system and properties affecting SGD.

4.2.1 Continuous Water-Level and Salinity Data Collection

The 3-D model was calibrated with water-level and salinity data collected as part

of this research (an H-310-15 pressure transducer and a YSI-600R probe were used to

collect water levels and specific conductance). The borehole equipment collected water

levels and fluid conductivity in five fully cased monitoring wells in Broward County with

open holes or screened intervals open in the freshwater-saltwater interface in the
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Figure 32: Map of Florida with the 3 counties underlain by the Biscayne aquifer. Broward County
is enlarged showing the location of monitoring wells collecting continuous water-level and salinity
data.

Biscayne aquifer. Additionally, water levels were recorded in a shallow freshwater well

near one of these wells. The transducers collected water levels and specific conductance

every 15 minutes for 14 months. The intention of the deployment of the transducers was

to capture movement of the saltwater interface (Figure 32) resulting from tidal

fluctuations. The specific conductance was converted to total-dissolved solids using the

following equation (Langevin, 2001)

[C-]=1.10-6 (SC) 2 +0.3224(SC) 177.7, (41)
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where [Cl] is the chloride concentration, in milligrams per liter; and SC is specific

conductance, in microsiemens per centimeter. Chloride concentrations are then linearly

converted to total-dissolved solids by assuming that freshwater has a chloride and total-

dissolved solids concentration of 0 mg/L; and seawater has a chloride concentration of

19,800 mg/L and a total-dissolved solids concentration of 35,000 mg/L (Parker and

others, 1955). Simulated observation wells representing the observation wells from the

field were then placed in a in a 3-D model simulated using SEAWAT (Langevin and

others, 2003).

4.2.2 Three-Dimensional Model

The surface-water hydrology of southeastern Florida consists primarily of east-

west canals that connect inland parts of the county with the Intracoastal Waterway.

Coastal control structures (or dams, Figure 32) within the canals are often closed,

restricting the flow of freshwater to the Atlantic Ocean. The 3-D numerical model

developed was designed to utilize this commonly occurring hydrologic pattern (Figure

33). The three-dimensional finite-difference grid used for the model consists of 15

layers; the top layer is 10.5 m thick, and each underlying layer is 7.5 m thick. Each

model cell is 150 m by 150 m and the model contains 23 rows and 152 columns (a more

specific description of this model can be found in Dausman and Langevin, 2005). Rather

than developing a numerical model for all of southeastern Florida, this representative

model was developed to capture the generalized coastal flow patterns that occur in a

typical area with the Biscayne aquifer and the surficial aquifer system.
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Figure 33: 3-Dimensional model representative of the surficial aquifer system in southeastern
Florida. (A) Schematic showing conceptual view of an area where the northern part is symmetrical to
the southern part, and (B) map view, and (C) cross-sectional view of model grid showing the
boundary conditions and aquifer parameters.

Although the monitoring wells are located in different parts of Broward County

(Figure 32), data from all these wells were used to determine the representative aquifer

parameters. Consequently, the estimated values for the aquifer parameters are more

representative for all of the Biscayne aquifer than for one specific area. Simulated

observation wells are located in the model not by geographic location but instead by

distance and direction from a control structure and by the depth of the open hole. For

example, well G-2900 is about 1 km from the nearest canal, almost 2 km east of structure

S-13, and is about 35 m deep. In the model, these distances and depth correspond with
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the cell at row 16, column 103, and layer 5. The model cells that correspond with the

five other wells are determined in the same manner.

The constant-head cells used to represent the upstream and downstream parts of

the canal were based on the stages and geometries of some of the canals in Broward

County (Figure 32 and Figure 33). The constant-head cells representing the upstream

canal and the general-head boundary cells representing the connection to the Everglades,

west of the modeled area, were assigned a head value of 2.06 m. This head value is equal

to the average upstream stage for the 1990-99 period at structure S-37B on the Pompano

Canal (Figure 32). The constant-head cells that represent the downstream part of the

canal, Intracoastal Waterway, and Atlantic Ocean were assigned head values calculated

from a sine function. The sine function was designed to provide stage fluctuations with

an amplitude and frequency similar to the measured stage recorded at the downstream

side of structure S-36 (Figure 34).

A total of 14.02 cm of precipitation (or rainfall) is applied to the 1-month model,

which represents the average rainfall from 1990-99 in a series of stations located in

Broward County (rainfall data came from the South Florida Water Management District,

SFWMD). Evapotranspiration is calculated by the model based on depth to the water

table, extinction depth of about 1.5 m (~5 fi) (Langevin, 2001), and an average

maximum evapotranspiration rate based on the values presented by Merritt (1996). An

average land surface value of 3 m was used to calculate depth to water for the entire

model.
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Figure 34: Stage measured downstream at structure S-36 (Figure 31) compared to the sine wave

used as the ocean stage for the 3-D model.

A1-month simulation with 15-minute stress periods and the tidally varying ocean

boundary (using the sine wave, Figure 34) was performed to determine representative

model values for selected aquifer parameters (all other boundary conditions were held

constant). The underlying concept behind this approach is that the diurnal fluctuations in

water level and specific conductance, as measured in five of the six continuous

monitoring wells (Figure 32), are caused by ocean tides. Representative values were
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determined by adjusting parameters until simulated amplitudes from the model provided

a relatively good match to the observed amplitudes from the field. The parameters

estimated as part of this procedure include horizontal and vertical hydraulic

conductivities, porosity, specific yield, and transverse and longitudinal dispersivities.

SEAWAT (Langevin and others, 2003) was used to simulate variable-density flow driven

by changes in salinity in the 3-D simulation. Run times for the 3-D model were too long

to simulate a longer-term model with more stress periods and multiple species, necessary

to test the seasonal and tidal effects on SGD. Therefore, the model parameters from the

3-D model were used in a modified 2-D model to analyze SGD (Table 9). (Dispersivity

is slightly increased in the 2-D model to account for the longer stress periods-one

hour- and simpler discretization-two dimensional vs. three dimensional.)

Table 9: Aquifer parameters used in the variable-density 2-D cross-sectional model.

Parameter [units] Parameter definition Value

KH, [m/d] Horizontal hydraulic conductivity 1150

Km, [m/d] Vertical hydraulic conductivity 150

aL, [in] Longitudinal dispersivity 3.0

aT, [m] Transverse dispersivity 0.3

Sy [dimensionless] Specific yield 0.1

S [dimensionless] Storage 104

0 [dimensionless] Porosity 0.1

D*, [m/] Bulk thermal diffusivity 0.67996

p , [kg/(m d)] Equivalent freshwater viscosity 86.4

pf, [kg/n] Density of freshwater 1000
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p, [kg/rn] Density of seawater 1025

a= - [dimensionless] Density change with concentration 0.7

4.2.3 Two-Dimensional Model

SEAWAT was used in the 2-D model to simulate density-dependent flow caused

by changes in salinity, as well as to simulate changes in temperature and age (Thorne and

others, 2006; Langevin and others, 2008). Apparent age is simulated using a zeroth-order

reaction (see Chapter 1; Goode, 1996; Zheng, 2006). The 2-D model simulated three

species: (1) salinity, (2) heat, and (3) age. The data used in the boundary conditions for

the 2-D model were obtained from various places in southeastern Florida including Miami-

Dade, Palm Beach, and Broward Counties (Figure 32). The 2-D vertical cross-sectional

model was aligned along a west-to-east groundwater-flow line perpendicular to the

coastline. The model represents a 1-year period from 1 January 1998, to 31 December

1998, using hourly stress periods (to capture tidal to seasonal variations in the system).

Consecutive simulations were run using water levels, salinities, and temperatures from

the previous model run until salinities and temperatures achieved dynamic equilibrium.

After the salinities and temperatures reached equilibrium, the third species, age,

was added. The age of all the water in the model starts at zero. The three cases were first

run for 10 years (repeating the one-year simulation 10 times with age from the previous

model run). All new water input into the system (via recharge or the ocean) from

boundaries comes in at an age of zero. The apparent age of SGD can then be determined

by analyzing the age of the water at the areas of discharge. Also, areas of prominent

recharge can be observed by their resulting age values being close to zero after a 10-year
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simulation. Then, the three separate cases were run for 100 years to assure ages of the

main areas of SGD reached equilibrium; when the age of the main points of discharge

from the three cases is no longer changing.

The 2-D model grid contains 152 columns and 14 layers; each cell is 150 by 7.5

m, with the top layer 10.5 m (Figure 35). The model is essentially the same as a cross

section through the 3-D model (Figure 33C), without the lower part of the surficial

aquifer system and the Intracoastal Waterway. The active cells represent the Biscayne

aquifer (Table 9), which is underlain by the low-permeability unit of the lower surficial

aquifer system (represented with no-flow cells in the 2-D model). The specified-head

cells along the sea floor represent the ocean. The ocean water levels and temperature

values vary hourly according to measured data collected by National Oceanographic and

Atmospheric Administration (NOAA) at the Virginia Key station in 1998 (off the coast

of Miami-Dade County, Figure 32 and Figure 36). The salinity value is specified at 35

g/L of total-dissolved solids (TDS). General-head boundary (GHB) cells on the western

model boundary were used to represent hydraulic connection with the Florida Everglades

and were held constant at 1.48 m with a conductance of 8635 m2/day and a concentration

of zero. Temperature of the GHB cells and recharge changed hourly according to

measured data from 1998 at the NOAA Lake Worth station on the coast of southeastern

Florida in Palm Beach County (Figure 32 and Figure 36). Net recharge, approximated as

15% of rainfall, is applied to the model and changes daily according to data collected by

the SFWMD at multiple rainfall stations in Broward County (Figure 36).
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Figure 35: Boundary conditions and finite difference model grid for 2-D model.
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Figure 36: (a) The first 6 days of the stage in the ocean boundary, temperature of the ocean
boundary, and air temperature used in the recharge and general-head boundary cells in the 2-D
model. (b) Recharge applied to the 2-D model.

Three scenarios were simulated to quantify different types of hydraulic

connection with the ocean and to observe the hydrogeologic effects on salinity,

temperature, and age of SGD. In the first case, the Biscayne aquifer is in direct hydraulic

connection with the ocean (Figure 37). In Case 2, a low hydraulic conductivity layer is

assigned along the sea floor (representing low-permeability marine sediments) to reduce

the hydraulic connection with the ocean (Figure 37). Fetter (1994) documents a low-

permeability layer of sediments on the ocean floor with a range between 0.00864-0.864

m/d. This low-permeability layer is included in the model by setting the vertical and
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horizontal hydraulic conductivities of the constant-head cells (CHD) to a value of 0.05

m/d (within the range of Fetter, 1994). In this approach, the thickness of the marine

sediments is about one half of a cell thickness of each CHD cell. The storage of the low

permeability layer is assumed to be the same as that of the aquifer, 10-. The affects of

different storage values in the CHD cells was not tested. However, the decrease in

hydraulic conductivity of the low permeability layer results in a lower hydraulic

diffusivity, resulting in a damping of the ocean tides.

In southeastern Florida, the karst Biscayne aquifer contains numerous springs that

have been studied as a source of SGD and nutrients (Kohout, 1966; Byrne, 1999; Proni

and others, 2006). Therefore, Case 3 is identical to Case 2, except for the presence of a

submarine spring 1 km from the shoreline (column 137) (Figure 35 and Figure 37). At

the simulated submarine spring, the Biscayne aquifer is in direct hydraulic connection

with the ocean.

Figure 37: Conceptual models o hydraulic connection betHwen the aquifer an t ocean.

4.2.4 Data Collection of Submarine Groundwater Discharge Used to Test Two-

Dimensional Model

Ample data related to SGD have been collected in the coastal areas of

southeastern Florida, particularly in Miami-Dade County (Figure 32 and Figure 38),

where the coastal waters include Biscayne Bay. This bay is a part of a nationally
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protected park (Biscayne National Park-BNP), which contains a fragile ecosystem that

is sensitive to environmental changes such as nutrient input from SGD. Even though

there have been many types of data collected over the last 10 years, the data collected that

were used to verify the 2-D model include: (1) seepage meter data collected in Biscayne

Bay by Peter Swarzenski (2004a, 2004b, 2007) and Mike Byme (1999) from the USGS,

(2) surface water and groundwater temperature collected by Rens Price and Jeremy

Stalker (Florida International University-Fm) in Miami-Dade County near the coast,

(3) surface water and groundwater temperature data in Biscayne Bay collected by Chris

Reich from the USGS, and (4) temperature data from Biscayne Bay and at a spring in the

bay, which John Proni and others (2006) from NOAA had collected.

4.3 Results

4.3.1 Data Collection and Three-Dimensional Model

Continuous water-level and salinity data collected from monitoring wells indicate the

aquifer water levels in all six wells and salinity concentrations in some of the wells vary

with ocean tidal fluctuations (Figure 39A-F). Even though there are other impacts on

water-level and salinity fluctuations (such as rainfall and canal stage openings, Figure

39F), the goal with this data is to use the tidal fluctuations to get representative

parameters for the 3-D model. Therefore, the tidal amplitudes from the field data were

used for comparison to the model.

Numerous 1-month simulations were done to estimate values for horizontal and

vertical hydraulic conductivities, porosity, specific yield, and dispersivity until the closest

agreement was obtained between field and simulated data. Horizontal and vertical
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125



w 3 W, 6C C

----6 - ---- 40G8200 0

Fiur 39 (A-E) Cotnuu 5- vue reor ofwtrlve3n0pcfi odcanedto
Oil D

06 7~ 74G28 1,500

27 o w s ( e n ) l400
0 5 G2784(watr 1eve )300

0402 2200

020

OA y c

02

DAYS
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selected monitoring wells (Figure 32), and (F) downstream canal stage and rainfall at structure S-36.
The continuous 15-minute stage data for S-36 is shown to illustrate tidal effects.
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hydraulic conductivities were set at 1,150 and 150 m/d, respectively, for the Biscayne

aquifer. Hydraulic conductivity values were within ranges reported by Fish (1988) and

Camp, Dresser, and McKee, Inc. (1980). Porosity and specific yield for the Biscayne

Aquifer were each set at 0.1, within the range of estimated porosity in the Biscayne

aquifer (Dausman and Langevin, 2005). Model-derived longitudinal and transverse

dispersivities were set at 2 m and 0.2 m, respectively.

The approximate amplitude of measured water-level and salinity fluctuations in

each well were compared to output from corresponding simulated wells in the 1-month

model with constant amplitude fluctuations (Table 10, Figure 40A and B). The values

from Table 10 appear to be good matches between the simulated and field data,

considering that the model does not account for lithologic variations in the field because of

model cell size and lack of lithologic data in the area. Other model runs with different

parameters do not reveal as close a match as the final model run developed to simulate the

effects of tides. For example in well G-2900, tidal fluctuations from field data and

simulated water-level fluctuations differ by about 0.01 m, whereas salinity (total-dissolved

solids concentrations) fluctuations in the model are smaller than those measured in the field

(Figure 40B). Similar is true for G-2270 in Figure 40A. However, as previously

mentioned, these differences likely result from the lack of lithologic variation in the

simplified model; therefore, the results are considered a relatively good match for the

simplified model. Completion of this model enabled development of the 2-D cross

sectional model with parameters for the Biscayne aquifer from the 3-D model.
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Table 10: Approximate amplitude of the tidal fluctuations observed in measured and simulated
salinity and water-level data from selected continuous monitoring wells.

Salinity amplitude based on total-
dissolved solids concentrations Water-level amplitude (meters)

Well
Numbers (mi igrams per liter)

Measured re Measured field data Simulated
(moeln(estimated) representation

modeli model
G-2270 2.0 0.68 0.02 0.011

G-2784 None (fresh) None (fresh) 0.03 0.05

G-2785 1.0 1.0 0.03 0.05

G-2897 40.0 6.0 0.02 0.043

G-2898 30.0 58.0 0.08 0.032

G-2900 30.0 7.0 0.04 0.031

3 0. z
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Figure 40: 30-day graph of continuous 15-minute record of water levels and specific conductance
(converted to TDS) in 2 of the observation wells [(A) G-2270 and (B) G-2900J compared to simulated

observation wells in model, (NOTE: The amplitude of the fluctuations between measured and
simulated values are intended to be compared, not the actual values of water level and specific

conductance.)

4.3.2 Two-Dimensional Model

Simulation results include groundwater discharge rates (and salinities,

temperatures, and age) for each hourly stress period and for each model cell. The
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discharge rates were combined or averaged in different ways to highlight the differences

between the three cases. Flow rates to individual model cells are expressed in units of

m/d. When discharge rates are combined, they are expressed in units of m3/d per meter

of shoreline (expressed as m2/d), or in the case of a cumulative discharge, as m3 per meter

of shoreline.

4.3.2.1 Discharge

Figure 41A shows the total SGD (calculated by summing the discharge for the

ocean cells) as a function of time for the first 7 days of the simulation. The highest

discharge rates (positive indicating flow from the aquifer into the ocean) occur during

low tide; the lowest rates occur during high tide. As expected, the minimum and

maximum discharges are a function of the hydraulic connection between the aquifer and

the ocean. Case 1 has the highest discharge rates, ranging between about 150 and -150

m2/d. Case 2 has the lowest discharge rates, ranging between 50 and -50 m2/d. Because

Case 3 contains hydraulic features of both Cases 1 and 2, the discharge rates range

between Cases 1 and 2. As shown in Figure 41A, SGD rates fluctuate between positive

and negative values during a tidal cycle making it difficult to determine a net discharge

rate. For this reason, the cumulative discharge (in m3 per meter of shoreline) as a

function of time was calculated for all the model cells representing the ocean for Cases 1-

3 (Figure 41B). The final value of about 3,000 m3/m of shoreline over the course of 1

year is equivalent to an average SGD rate of about 5.5 cm/d (calculated from the 150-i

cell width). This is approximately equivalent to the freshwater discharged in all 3 models

(Figure 41C), with Case 1 discharging slightly more than Cases 2 and 3. The combined
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averaged discharge for all three simulations shown in Figure 41C reveals that the largest

total discharge occurs in Case 1, followed by Cases 3 and 2, respectively.

Figure 41: (A) The SGD) (calculated by summing discharge/recharge to/from al constant-head cells
representing the ocean) for each case over time. The first 7 days of the model run are shown. ()
Cumulative discharge to al cells representing the ocean with time (calculated using water into and

out of the constant-head cells representing the ocean). (C) Fres discharge in the model compared to
the total discharge to the ocean (these values are not calculated using water entering the model from
the ocean, only water being discharged to the ocean).

Figure 41C suggests that approximately the same amount of freshwater is

discharged to the ocean for all three models; however, more seawater is recirculated in

Case 1, resulting in a much larger total. Upon closer analysis of the water budget, the

fresh recharge applied to the top of the model is discharged either to the general-head

boundary cells on the left, or to the constant-head cells representing the ocean. InCase 1,

about 79% of the freshwater entering the model discharges to the ocean, whereas,

approximately 73% of the freshwater applied discharges to the ocean in Cases 2 and 3.

This is why the cumulative discharge fro Figure 41B is slightly higher for Case 1, than

for Cases 2 and 3.

The average annual rate of SGD as calculate for each constant-head cell

representing the ocean (Figure 42) and reveald that the geology (or type of hydraulic

cofecontan between the aquifer and the ocean) has effect on the location of SGD in

relation to the shoreline). iCase 1, most oecean cell Case 1
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also shows large components of recirculated seawater, observed as negative SGD rates

farther offshore (Figure 41C and Figure 42). The low hydraulic conductivity layer in

Case 2 impedes SGD, forcing terrestrially-derived groundwater to discharge as far as 1.8

km from the shoreline. For Case 3, most of the SGD is concentrated into the cell

representing the submarine spring and relatively low discharge rates are observed near

the shoreline. Results from Byrne's (1999) research in Biscayne Bay supports the model

results indicating that sediment characteristics and distance from shore affect the location

and amount of discharge. The highest groundwater discharge is relatively close to shore

and decreases with distance. Byrne's thesis (1999) also reveals that areas of the ocean

floor with thick, low hydraulic conductivity sediments decrease the amount of discharge.

Figure 42: Model results showing the annual average discharge with distance from the coast.

Discharge rates calculated in the 3 cases compare reasonably well with field data.

Electromagnetic seepage meter deployments in Biscayne Bay by Swarzenski (Swarzenski

and others, 2004b) show that discharge rates from the Biscayne aquifer to the bay vary

between 10-50 cm/day with an average of 23.2 cm/day. Figure 41C shows that total

discharge is between 9 cm/day in Case 2 to 35 cm/day in Case 1. Byrne (1999) calculates

an average discharge from the Biscayne aquifer into Biscayne Bay to be 20.6 m3/day per

meter of shoreline (from seepage meter results). Byrne's results compare well to model

results. There are often errors associated with seepage meter measured fluxes due to the
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seepage meter only representing a small area, while aquifer heterogeneity can cause

seepage to spatially vary over larger areas (Cable and others, 2003). However, Byrne's

number is based on the deployment of 15 seepage meters in different locations on the

floor of Biscayne Bay, which should average out some of the spatial variability. A water

budget analysis reveals that Case 2 results in a total discharge of about 13 m3/day per

meter of shoreline, and this increases to approximately 57 m3/day per meter of shoreline

in Case 1. These values are also in the range of calculations by Byrne (1999).

4.3.2.2 Salinity

The shape, thickness, and location of the interface varies between Cases 1 to 3

because of the low conductivity sediments (Figure 43). The interface is broader and

farther inland in Case 1, as compared to Cases 2 and 3 which have a more narrow

interface farther seaward. Case 3, with the submarine spring, has the interface a little

more inland than Case 2. At the coast, the interface is more mixed in Case I than in

Cases 2 and 3, which both have sharper interfaces at the coast. The low hydraulic

conductivity sediments on the ocean floor in Cases 2 and 3 decrease the mixing between

the ocean water and groundwater, causing the interface to be sharper and slightly

seaward.

The changes in salinity with time for each case appear to be caused by

fluctuations in ocean stage as shown by an inverse correlation (Figure 44); a higher ocean

stage corresponds with a smaller difference in salinity between the aquifer and ocean in

all three cases. However, the average salinity difference is only about 2 g/L TDS in Case

1, indicating that most of the SGD for this case has near-seawater salinities. This is
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Figure 43: Cross section of three different cases showing salinity contours in g/L of total-dissolved
solids.

because SGD at the coast has a large portion of recirculated seawater (Figure 41C and

Figure 42) due to the open connection between the ocean and aquifer. The inverse

correlation is also seen in Cases 2 and 3; however, at the coast the difference in salinity is

around 20 g/L and higher. The large difference in salinity correlates with the sharp
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interface seen in Figure 43 and the decreased mixing between the ocean and aquifer

(from the low conductivity sediments on the ocean floor). The difference in salinity at

the submarine spring (Figure 44) is only around 1 g/L where the majority of SGD is

occurring. Similar to Case 1, most of the SGD is near seawater salinities at the spring

due to increased mixing between the ocean and aquifer waters. However, the salinity

difference of the discharge is still inversely proportional to the ocean stage in all cases.
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Figure 44: Graphs showing the difference in salinity between the aquifer and ocean (in red, ocean-
aquifer salinity) and the ocean stage (in black) with time at the coast for Cases 1, 2, and 3. The
difference in salinity and the ocean stage at the submarine spring for Case 3.
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4.3.2.3 Temperature

The model simulates a seasonal fluctuation between the ocean and SGD, with

warmer groundwater discharging into the colder saline ocean in the winter (Figure 45).

During late summer, cooler groundwater discharges into the warmer ocean waters.

Temperature differences between groundwater and the ocean are minimal during the

spring and fall. In southern Florida, the ocean and rainfall are both warmer (-28*C,

assuming that rainfall temperature equals air temperature) during summer than during

winter (~22"C). Groundwater that is discharged to the coast remains at about 25*C,

which is a mixture of the older warmer and cooler waters from previous seasons.

Because the ocean water temperature varies from about 22 C in winter to 28 C in

summer, these are periods of greatest temperature difference between ocean waters and

older mixed aquifer waters that are discharged to the coast.

Winter Summer Spring
z=3m _,
Case 1

z=-105r
z=3m128.0

Case 2
- 26.5

~25O
235

z=-105M 220
z=3m

Case 3

z=-105m

distance=7800m distance=7800m distance=7800m

Figure 45: Temperature (in degrees Celsius) for the three cases in the winter, summer, and spring.
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The simulated seasonal change between the ocean and aquifer is verified with

observation data collected at the coast of Miami-Dade County and in Biscayne Bay

(Figure 38 and Figure 46), revealing temperature differences in winter and summer as

high as 10"C. Temperature differences simulated at the coast of all three cases compare

well to data collected by Ren6 Price and Jeremy Stalker from FIU at observation sites

AlA and BP1 at the coast (Figure 38). Data collected at groundwater wells in the field

were subtracted from data from surface water sites that correspond with the location of

the groundwater wells; the data were then graphed with simulated differences in

temperature (Figure 46). Chris Reich from the USGS collected surface water and

groundwater data from a site in Biscayne Bay called midbay approximately 7,000 meters

from the Miami-Dade coast (Figure 38 and Figure 46B). Reich's data compare relatively

well to simulated data from all three models, despite the fact that the observations in the

models are approximately 3,300 meters from the simulated coast (the model does not

extend farther seaward).

The low hydraulic conductivity layer affects the temperature pattem in the

groundwater system in each of the Cases (Figure 45). In Case 1, there is a tongue-like

area of warmer water in the winter and cooler water in the summer beneath the simulated

ocean in the underlying aquifer near the coastline. This appears to be water that has

leaked/recharged the aquifer from the ocean and is relict from the previous season. Case

3 is similar to Case 1, but the tongue-like area is beneath the simulated submarine spring

approximately 1000 meters from the coast indicating relict water that likely recharged the

aquifer in an earlier season. Case 2, with the low hydraulic conductivity sediments, has
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no specific area where water appears to have recharged the aquifer, but a constant

temperature gradient between the ocean and aquifer.

4

2

0

10

Figure 46: Graphs showing the difference between the ocean temperature and the groundwater

temperature with time. (A) Field data (Figure 38) collected at the coast (A1A and BPl) compared to

the difference in temperature at the simulated coast in Cases 1-3 (column 130 minus column 129 in

layer 1), and (B) Field data collected at the midbay surf-well (Figure 38) compared with simulated
data approximately 3,000 meters from the simulated coast (column 151 in layer 12 minus column 151

in layer 13).
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Figure 47A shows a graph of the temperature of the ocean in the model with the

output temperature of the spring from Case 3. While the ocean temperature fluctuates

daily due to warming during the day and cooling at night, the spring temperature

fluctuates tidally. This same pattern is seen in field data collected at a spring in Biscayne

Bay in 2005 by Proni and others (2006) (BBS21 in Figure 38 and Figure 47B). However,

the amplitude of the tidal fluctuations in the temperature between the model and field

data are different. The difference in amplitude is likely from how the submarine spring is

characterized in the cross-sectional model. Essentially, the cross-sectional model

represents an east-west groundwater flow line, so in theory, the spring represents a north-

south line/break along the coast. Therefore, the simulated spring is notionally larger than

the observed spring (BBS21) in Biscayne Bay. Regardless of these differences, the

observed pattems between the model and field data are similar verifying the model's

ability to simulate field conditions relatively well.

Model results at low tide (when SGD rates and salinity differences are large) and

in winter (when temperature differences between the ocean and aquifer are also large) are

shown in Figure 48 for the three cases. Temperature and salinity differences are shown

here with the SGD rates to give an indication of whether the discharge would be

detectable from an aerial survey (i.e., do the largest temperature and salinity differences

correspond with the locations of largest discharge?). For Case 1, where most of the

discharge is at the shoreline, the salinity difference is about 2 g/L and the temperature

difference is about 3C. In Case 2, the fresh SGD is not concentrated near the shoreline,

but discharged over an outflow face extending over 1 km from the coast. The low
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hydraulic conductivity layer in Case 2impedes the fao of SGD and reduces the mixing

of the aquifer and ocen waters. The reduced mixing results in a salinity difference
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between the ocean and aquifer of 6 to 23 g/L across the outflow face, with the greatest

difference near the shoreline (Figure 48). However, differences in temperature between

groundwater and the ocean in Case 2 stay relatively consistent at ~6*C across the outflow

face. Case 3 shows a relatively large amount of SGD at the submarine spring, where

fresher groundwater is allowed to discharge to the spring. The increased mixing at the

spring results in a decrease in the salinity difference between the ocean and aquifer to

approximately 3 g/L at the main point of discharge. The temperature difference between

the aquifer and ocean at the spring is approximately 3"C (Figure 48).

Figure 48: Graph showing discharge, difference in salinity, and difference in temp erature versus

distance from the coast, at tow tide in the winter (differences are calculated by subtracting simulated
aquifer salinity/temperatures from ocean/constant-head cell salinity/temperatures).

4.3.2.4 Apparent Age

Results fom the 10-year age simulations for all three Cases are shown in Figure

49. The youngest water is at the ocean boundary where the water entering the model has

anage of zero. Near the base of the aquifer, the apparent age of the water is older at

approximately 10 years in all three Cases. The recharge applied to the top of the model

also has anage of zero years; however it mixes with older waters giving anage of

approximately 5years. Cases ad 3 have tongue-like areas of young saline water that

recharge the aquifer. However, pon comparing Figure 45 and Figure 49, the younger
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water from the age simulations (the blue tongue-like area) is slightly seaward of where

the relict temperature from previous seasons occurs in Cases 1 and 3. It appears the

younger water is recharged (at the temperature of the ocean), then recirculated in the

aquifer to be discharged at a later time (and different temperature, relict of previous

seasons). The locations of the younger aquifer waters in Cases 1 and 3 are dependent

upon the hydraulic connection to the ocean and location of the submarine spring. The

water from Case 3 comes from the simulated spring and the water from Case 1 is leaking

downward at the coast. Case 2 has a relatively constant age gradient from younger water

in the ocean to older water in the aquifer.
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Figure 49: Age of water for each case after 10 years (repeating the one year simulation 10 times) and
after 100 years (repeating the one year simulation 100 times).
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The 100-year age simulation shown in Figure 49 reveals that for a longer-term

simulation, age at the base of Case 1 is older than both Cases 2 and 3. Case 1 has a

stagnant area of water near the base of the aquifer where the age is 100 years; essentially

revealing that age at the base has not reached equilibrium. However, the oldest waters

simulated in Cases 2 and 3 are approximately 50 years, revealing that these two

simulations have reached equilibrium in regards to age.

Apparent age of the main locations of discharge (Figure 42) in each Case was

extracted from the model after the 100-year simulations to get approximate residence

times of SGD. In Case 1 the age of the discharge to the first ocean cell, after a 100-year

simulation, is about 15 years (the age of SGD in Case 1 appears to have reached

equilibrium despite the stagnant water at the base of the aquifer). In Case 3, the age of

the discharge to the spring is younger at about 8 years; however, there is also water

discharged between the coast and the spring (in the first 8 cells). The average age of this

discharge in Case 3 is about 12 % years. To calculate age in Case 2, an average is taken

of the first 13 ocean cells where discharge is observed (Figure 42), resulting in an SGD

age of approximately 13 2 years. The overall age of discharge in both Cases 2 and 3 is a

few years younger than the SGD for Case 1.

The location of the interface and the amount of recirculated seawater could be

related to the difference in age of the SGD among the 3 Cases. The interface in Case 1 is

farther inland (Figure 43), therefore the flushing time for the freshwater and recirculated

seawater is likely longer than Cases 2 and 3. The longer flushing times are confirmed by

the stagnant older water at the base of the aquifer in Case 1, where the water is a

minimum of 100 years in the simulation. Whereas, in Cases 2 and 3, the oldest simulated
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water is around 50 years. The older SGD in Case 1 could also result from a higher

amount of older recirculated seawater, compared to Cases 2 and 3, as observed in Figure

41C.

4.4 Discussion

Variable-density groundwater flow models can be used to understand the complex

nature of a coastal groundwater system. This analysis illustrates how the salinity,

temperature, rate, and age of SGD are affected by the hydraulic character of the coastal

system from the geological setting to the ocean stage. The results from this type of

analysis can be used to help guide data collection efforts for studies of SGD as well as

understand the nature of the system, quantify the residence times of water, and potentially

give insight into the amount of nutrients in the SGD.

4.4.1 Model Calibration

This study shows how various types of data (tidal to seasonal salinity, water-level,

and temperature data) can be used in model calibration and verification. It also shows

that short-term tidal fluctuations, to longer-term seasonal fluctuations, can not only be

observed in the data, but represented in a model and used to obtain important information

about model parameters. Research has shown that tides are pertinent when studying SGD

(Robinson and others, 2006a, 2006b); therefore, it is important to include tides in a

numerical simulation to accurately represent SGD. Even though a model may only be

representative of a system, the model can still be developed, verified, and used to give

insight into a complicated coastal system.
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4.4.2 Implications for Data Collection

Geophysical surveys, such as EM resistivity, have the ability to detect salinity

variations at depth (beneath the ground surface/ocean floor). Electromagnetic resistivity

has successfully been used to the map the location of the saltwater-freshwater interface;

therefore, can potentially be used to detect fresh SGD above the saltwater-freshwater

transition zone (Becker, 1988; Fitterman and Deszcz-Pan, 1998, 2002a, 2002b;

Swarzenski , 2004b, 2007; Kontar and Ozorovich, 2006). While geophysical techniques

have been used to identify rock formations and the presence of saltwater versus

freshwater below land surface; Becker (1988) was one of the first scientists to show that

aerial resistivity mapping could be used to map the location of the saltwater-freshwater

interface. Later, Fitterman and Deszcz-Pan (1998, 2002a, 2002b) used aerial EM

resistivity surveys to map the location of the freshwater-saltwater interface in the

Everglades in southern Florida. The success of the resistivity surveys depended upon

borehole logs to identify the relationship between the water quality and resistivity results,

as well as a large enough difference in salinity with depth to identify the interface.

Miyaoka (2007) used electrical conductivity in groundwater wells, as well as streaming

resistivity profiles to show that groundwater-seawater interactions are affected by the

geology and tidal conditions in Japan. Having the ability to successfully map the location

of the interface can then potentially be used to give insight to estimating locations of

SGD above the saltwater-freshwater transition zone (Kontar and Ozorovich, 2006).

During all times of the year, fresher groundwater is discharged to the ocean in

southeastern Florida above this transition zone. However, the salinity difference between

the aquifer and ocean is affected by the hourly and monthly ocean stage variations
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(Weinstein and others, 2007). The modeling for this research reveals that aerial EM

surveys (or other geophysical surveys) may be best conducted at low tide and when ocean

stages are at a relative low. This is when the difference in salinities between the aquifer

and ocean are greatest (Figure 44 and Figure 48). Therefore, the results from an aerial

survey could potentially be improved by including expected ocean stage variations for the

specific target area as part of the data collection plan. Similar results were found off the

southeastern coast of Sicily by Kontar and Ozorovich (2006), where geo-electromagnetic

surveys along with seepage meter and Radon data were used to map the freshwater-

saltwater interface and give insight to SGD. Results from Kontar and Ozorovich (2006)

also revealed that tides affected the location of the interface and amount of SGD.

Modeling as part of the research presented in-this dissertation show that an aerial

survey using EM resistivity may or may not be successful depending upon the geology of

the aquifer. An aquifer in direct hydraulic connection with the ocean, such as Case 1,

may not have large enough salinity differences between the aquifer and ocean for an

aerial survey to detect (a difference of only 2 g/L at the shoreline, decreasing to 0 g/L

with distance from the shore). Case 2 contains a low hydraulic conductivity layer of

sediments across the ocean floor. Although the sediments impede SGD and increase the

zone of discharge over a larger area of the ocean floor, the difference in salinity between

the ocean and aquifer waters is relatively high in this environment (up to 23 g/L),

enabling likely detection by EM resistivity (Figure 48). If there is a fracture in the low

conductivity layer, resulting in a submarine spring, as in Case 3, the SGD across the

ocean floor and at the spring may be high enough for detection by the survey as long as

the salinity differences between the aquifer and ocean are relatively high, as in Figure 48.
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Data collection methods utilizing thermal imagery to quantify SGD are successful

in calm waters where the temperature difference between the SGD and ocean waters is

greater than 0.08'C at the ocean surface. Thermal imagery cannot detect temperature

variations below the surface; therefore, a large temperature difference between the SGD

and the ocean and a relatively large amount of SGD are necessary for detection. Thermal

images should be collected at low tide when SGD is relatively high and at a location

where SGD rates would be large enough to reach the ocean surface and affect the

temperature (Mulligan and Charette, 2006). According to the model results presented, in

southern Florida thermal imagery surveys are best conducted during the late summer or

late winter when temperature differences between SGD and the ocean waters are the

largest, ~3*C (Figure 45 and Figure 46). During the spring and fall, SGD is about the

same temperature as the ocean and would probably not be detected. This is confirmed by

data collected on Cape Cod, Massachusetts by Michael and others (2005), were seasonal

temperature changes affected the temperature of submarine groundwater discharge as

compared to the ocean water.

Model results suggest that the success of a survey using thermal imagery is

affected by the geology of the aquifer. When the aquifer is in direct hydraulic connection

to the ocean, as in Case 1, a narrow zone of high discharge exists at the shoreline close to

the surface. In this environment, the temperature difference of-3 0C between the SGD

and the ocean would probably be detected by an aerial survey using thermal imagery

(Figure 48). If there is a low conductivity layer of marine sediments producing a wide

zone of discharge across the sea floor and a decreased amount of SGD (Case 2), thermal

imagery will likely not work. Even though the temperature difference is ~6*C, the lack of
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concentrated discharge reaching the ocean surface would make SGD undetectable (Figure

48). However, if there is a submarine spring in this environment (Case 3), it would likely

be identified by thermal imagery as long as the spring exists in shallow waters, there is an

increased amount of SGD (i.e., at low tide; Shaban and others, 2005), and the

temperature difference is greater than 0.08*C (Figure 48). If the submarine spring is too

deep, thermal imagery will likely not detect the spring.

The conclusions from the modeling presented in this chapter appe to be

reasonable when compared to successful collection of thermal imagery and temperature

data in other areas around the world. Thermal imagery was successfully used off the

coast of Lebanon to identify submarine springs, submarine groundwater discharge, as

well as geologic features (Shaban and others, 2005). The thermal imagery data was

collected when the temperature differences between a carbonate aquifer and ocean were

greatest, in the late summer in early morning and late evening. Shaban and others (2005)

were also able to correlate the SGD with geologic and karstic features by comparing the

thermal imagery data with satellite images. Mulligan and Charette (2006) were also able

to successfully collect thermal imagery data in Waquoit Bay in the late summer where

groundwater temperatures were much cooler than temperatures in the bay. They also

revealed that at low tide and when ocean waters are at a relative low (as compared to the

rest of the year) were the best time to collect the thermal imagery data because SGD rates

from a sandstone aquifer were at a maximum. Thermal imagery data was used in the

Waquoit Bay study with seepage meter data and pressure transducers in monitoring wells

to detail SGD rates and locations. Taniguchi and others (2003) were also able to use

groundwater temperature to estimate SGD rates from a limestone aquifer in Australia.
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4.4.3 Implications for SGD Residence Times and Potential Nutrient Transport

Modeling of variable-density systems, which include the apparent age of the

water, could potentially be used by geochemists and ecologists in the analysis of SGD

groundwater residence times and nutrient transport. Swarzenski and others (2004a) as

well as Price and others (2003, 2006) were able to successfully use geochemical

techniques to quantify nutrients and age in SGD/CGD. Oberdorfer (2003) was also able

to show how modeling can be used in SGD estimates; however, pointing out that

numerical models often neglect the important part of recirculated seawater portion of

SGD. Simulations from research in this dissertation reveal that the recirculated seawater,

as well as estimates of age, can be successfully simulated in numerical models if the

model is designed properly. It also appears that age and residence time of SGD can be

affected by the aquifer geology/marine sediments. The geology affects not only the

amount of fresh SGD, but also the location of the interface and amount of recirculated

seawater, which in turn affects the residence time of the SGD. Weinstein and others

(2007) use seepage meter data, radon, and sea level to study SGD rates on the coast of

Israel, pointing out that recycled seawater is an important part of quantifying SGD.

An area with no marine sediments on the ocean floor impeding SGD could

contain more nutrients because of the longer groundwater residence times, likely from an

interface farther inland with longer flushing times. In areas where there are marine

sediments that impede SGD, the amount of freshwater discharge and recirculated

seawater is reduced, the interface is farther seaward, and the groundwater residence times

are less. Therefore, the amount of nutrients discharged to the coastal system could be

less.
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Tritium/helium data can be used to date groundwaters with ages of less than 50

years. Price and others (2003) successfully dated groundwaters beneath Everglades

National Park, just west of Miami-Dade County in southeastern Florida, in the surficial

aquifer system. Results from that research revealed that at depths of less than 30 meters,

groundwater ages were less than 30 years. Whereas, depths of greater than 30 meters

revealed groundwater ages greater than 30 years (however, the older o dwaters were

not specifically dated, only known to be older than 30 years because of the lack of

tritium). Resulting ages from the 100-year simulations do not contradict the age dating

performed by Price and others (2003). Simulations result in SGD ages from 12-15 years,

as well as ages of less than 30 years in the top 30 meters of the aquifer. At depths greater

than 30 meters, all three Cases result in ages of greater than 30 years.

Results from the age simulations are preliminary, only providing a first step

towards demonstrating that apparent age can be successfully simulated with SEAWAT.

However, the modeling results are encouraging because the age simulations appear to be

consistent with research done in the southeastern Florida area. Therefore, the potential

for using age to calibrate a model or guide geochemists in data collection appears

reasonable.

4.5 Chapter Summary and Conclusions

Numerical modeling can help enhance knowledge of SGD and guide SGD data

collection efforts by providing estimates of expected salinity, temperature, and age

variations. Aerial surveys using EM resistivity are more appropriate for some coastal

environments, whereas, thermal imagery is likely more successful in others. Results
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from this research indicate that modeling of a coastal environment prior to data collection

can reveal the potential for success using either type of aerial surveys. This investigation

also reveals that ignoring short-term temporal changes on the system, such as tides, could

hinder modeling efforts to guide data collection.

This modeling effort shows that not only temperature and salinity, but age can

also be simulated using SEAWAT. Simultaneously modeling these three species can

give insight to groundwater residence times and potentially nutrient transport in SGD,

which could aid geochemists and ecologists. The data from geochemists (particularly

age), as well as other types of temperature and concentration field data, could also aid

modelers in the calibration process if multiple species such as salinity, temperature, and

age are simulated.

Although the results presented here appear to be representative for southeastern

Florida, the general conclusions may also be valid for other environments with similar

hydrogeological and ocean characteristics.

5 SUMMARY AND CONCLUSIONS

This dissertation reveals how multiple species can be practically included in a

variable-density flow and transport model. Simulating species such as salinity, heat, and

age can enable better model calibration where data are available. At the same time, this

research shows how a model can be used to guide data collection. Hopefully, this

dissertation can be used to aid scientists in multiple fields (such as hydrology, geology,

geochemistry, etc...) by revealing how different types of data can be pragmatically used
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in numerical modeling and how numerical modeling can aid scientists in their data

collection efforts.

In conclusion, this dissertation reveals how the most recent version of SEAWAT

accurately simulates variable-density flow resulting from multiples species, including

concentration and temperature. This research presents successful and innovative use of

the code in two hydrologic analyses: (1) to utilize a new linear method to quantify the

worth of temperature and salinity data in a nonlinear model, and (2) to present a novel

way in which a variable-density model can be utilized to guide data collection. Results

from this research will enable a broader audience to use SEAWAT in hydrologic studies,

as well as provide original methods to use variable-density models to guide data

collection. This could potentially aid scientists in saving time and money in research

projects that combine a data collection effort with modeling.

5.1 Benchmarking of SEAWAT Version 4

SEAWAT Version 4 supports equations of state for fluid density and viscosity

and can be used to simultaneously simulate salinity and temperature effects on variable-

density flow in liquid through a porous medium. Variations in viscosity from changes in

temperature or concentration are included, as well as the ability to implement distinct

diffusion coefficients for each species.

This research documents verification of SEAWAT by benchmarking the code

against six previously published numerical modeling, analytical, or laboratory problems.

Results from the benchmark problems reveal that the following equations and/or

processes have been implemented correctly in the code: (1) density-dependent flow due
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to changes in heat and/or concentration of one or more species, (2) variations in viscosity

from differences in temperature using multiple equations, and (3) diffusion of multiple

species (including solute or heat). Results from the benchmark problems also show that

SEAWAT can be used to simulate convective versus conductive transport of heat/energy

through a porous medium. In the process of exploring the effects of viscosity on

convection versus conduction, it is apparent that the critical Rayleigh number could

change by implementing the variable viscosity mechanism.

In summary, the newest version of SEAWAT has been expanded to simulate

liquids such as oil or water with concentrations from fresh to brine. Included in the new

version is the ability to simulate the temperature and concentration effects on density and

viscosity. This research shows how the expanded version of the code could be used to

aid in solving multiple field problems such as water supply and waste disposal.

5.2 Using a linear method to quantify the worth of salinity and temperature data

in a nonlinear variable-density model

Results from the method presented in this paper, though linear, provide a first step

in showing that relative data contributions toward reducing predictive uncertainty could

potentially be applicable to a nonlinear variable-density groundwater flow and transport

model. The research here takes into account multiple, highly variable, parameter fields,

in testing the linear applicability to a nonlinear model; however, the degree of

nonlinearity of the numerical model is not defined. This research has shown how the

linear method can be used in an underdetermined model (more parameters than

observations). The analysis done in this study reveals how scientific information on the
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aquifer system supplied by hydrogeologists (through the C(p) matrix) could be used in

modeling to guide additional data collection.

This dissertation shows how an innovative linear method provides similar results

for quantifying the worth of data in a nonlinear model in regards to the relative rank of

salinity and temperature observations. The relative ranking of the salinity observations

employed in this study (in terms of their effectiveness in reducing the variance of the

prediction of interest) was unchanged regardless of whether sensitivities were computed

using uniform or heterogeneous hydraulic property fields. The locations of some of the

more effective measurements for salinity varied from case to case. However, what

remained constant were the locations of effective measurements relative to the location of

the interface. In general, salinity measurements taken closer to the interface were most

effective in reducing the predictive uncertainty of movement of the saltwater-freshwater

interface. Overall, salinity data contributes more worth to reducing predictive uncertainty

in interface movement than temperature data, with salinity data reducing uncertainty an

order of magnitude more than temperature in most cases for this particular problem.

However, if collecting temperature data to predict interface movement, an area where the

change in temperature with distance is relatively sharp, in the warmest area beneath the

surface, will be the best location to acquire the data.

The linear analysis is appealing because it only requires calculation of observation

and prediction sensitivities to individual parameters based on the model; therefore, no

calibration or field data are necessary. The linear analysis is also attractive because the

computationally intensive model runs necessary for a nonlinear analysis are not required.

However, caution must be taken before applying this linear method to other nonlinear
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models. The linearity assumption likely would not hold up in certain models depending

on the degree of nonlinearity. The author recommends future research to develop

guidelines in application of this linear method to numerical models by quantifying the

degree of nonlinearity in a numerical model in which the linear method would still apply.

5.3 Simulation of submarine groundwater discharge salinity and temperature

variations: Implications for data collection

Variable-density groundwater flow models can be used to understand the complex

nature of a coastal groundwater system. This research presents an original way to study

the salinity, temperature, rate, and age of SGD. Modeling results show how the salinity,

temperature, rate, and age of SGD are affected by the hydraulic character of the coastal

system from the geological setting to the ocean stage. The results from this research

show how this type of modeling analysis can be used to help guide data collection efforts

for studies of SGD as well as understand the nature of the system, residence times of

water, and potentially give insight to the amount of nutrients in the SGD.

This study shows how various types of data (salinity, water level, and

temperature) can be used in model calibration and verification. It also shows that short-

te tidal fluctuations, to longer-term seasonal fluctuations, can not only be observed in

the data, but represented in a model and used to obtain important information about

model parameters. Even though a model may be representative of a system, the model

can still be developed, verified, and used to give insight into a complicated coastal

system.
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The modeling in this research reveals that aerial EM surveys are best conducted at

low tide and when ocean stages are at a relative low. This is when the difference in

salinities between the aquifer and ocean are greatest. Therefore, the results from an aerial

survey could potentially be improved by including expected ocean stage variations for the

specific target area as part of the data collection plan. An aerial survey using EM

resistivity may or may not be successful depending upon the geology of the aquifer. An

aquifer in direct hydraulic connection to the ocean may not have large enough salinity

differences between the aquifer and ocean for an aerial survey to detect. Whereas, an

aquifer that contains a low hydraulic conductivity layer of sediments across the ocean

floor appears to have a large enough difference in salinity between the ocean and aquifer

to enable likely detection by EM resistivity. If there is a fracture in the low conductivity

layer, resulting in a submarine spring, the SGD across the ocean floor and at the spring

may be high enough for detection by the aerial survey as long as the salinity differences

between the aquifer and ocean are relatively high.

Thermal imagery data should be collected at low tide when SGD is relatively high

and at a location where SGD rates would be large enough to reach the ocean surface and

affect the temperature. In southern Florida, thermal imagery surveys are best conducted

during the late summer or late winter when temperature differences between SGD and the

ocean waters are the largest -31C. During the spring and fall, SGD is about the same

temperature as the ocean and would probably not be detected.

The success of a survey using thermal imagery can also be affected by the

geology of the aquifer. When the aquifer is in direct hydraulic connection to the ocean a

narrow zone of high discharge exists at the shoreline close to the surface. In this
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environment, the temperature difference of-31C between the SGD and the ocean would

probably be detected by an aerial survey using thermal imagery. If there is a low

conductivity layer of marine sediments producing a wide zone of discharge across the sea

floor and a decreased amount of SGD, thermal imagery will likely not work. However, if

there is a submarine spring in this environment, it would likely be identified by thermal

imagery as long as the spring exists in shallow waters, there is an increased amount of

SGD (i.e., at low tide), and the temperature difference is greater than 0.08*C. If the

submarine spring is too deep, thermal imagery will likely not detect the spring.

Modeling of variable-density systems that include the age of the water could

potentially be used by geochemists and ecologists in the analysis of SGD groundwater

residence times and nutrient transport. Simulations reveal the apparent age and residence

time of SGD can be affected by the aquifer geology/marine sediments. The geology

affects not only the amount of fresh SGD, but also the location of the interface and

amount of recirculated seawater, which in turn affects the residence time of the SGD. An

area with no marine sediments on the ocean floor (i.e., direct connection between the

aquifer and ocean) could contain more nutrients because of the longer groundwater

residence times, likely from an interface farther inland with longer flushing times. in

areas where there are marine sediments that impede SGD, the amount of freshwater

discharge and recirculated seawater is reduced, the interface is farther seaward, and the

groundwater residence times are less. Therefore, the amount of nutrients discharged to

the coastal system could be less.

Numerical modeling can help enhance knowledge of SGD and guide SGD data

collection efforts by providing estimates of expected salinity, temperature, and age
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variations. Aerial surveys using EM resistivity are more appropriate for some coastal

environments, whereas, thermal imagery is likely more successful in others. Results

from this research indicate that modeling of a coastal environment prior to data collection

can reveal the potential for success using either type of aerial survey. This investigation

also reveals that ignoring short-term temporal changes on the system, such as tides, could

hinder modeling efforts to guide data collection. This modeling effort also shows that

age can be simulated using SEAWAT, giving insight to groundwater residence times and

potentially nutrient transport in SGD, which could aid geochemists and ecologists.
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