
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

5-8-1996

Automating transformational design for distributed
programs
Champak Das
Florida International University

DOI: 10.25148/etd.FI14062202
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer Sciences Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Das, Champak, "Automating transformational design for distributed programs" (1996). FIU Electronic Theses and Dissertations. 2736.
https://digitalcommons.fiu.edu/etd/2736

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F2736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2736&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F2736&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/2736?utm_source=digitalcommons.fiu.edu%2Fetd%2F2736&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY
Miami, Florida

AUTOM ATING TRANSFORM ATIONAL DESIGN 
FOR DISTRIBUTED PROGRAM S

A  thesis submitted in partial satisfaction o f the 
requirements for the degree o f

M ASTER OF SCIENCE 
IN

COM PUTER SCIENCE 

by

Champak Das

1996



To: Dean Arthur W. Harriott 
College of Arts and Sciences

This thesis, written by Champak Das, and entitled AUTOMATING TRANSFOR­
MATIONAL DESIGN FOR DISTRIBUTED PROGRAMS, having been approved in 
respect to style and intellectual content, is referred to you for your judgement.

We have read this thesis and recommend that it be approved.

Michael Evangelist

15 li i nh a

Rida Bazzi

Date of Defense : May 8th, 1996 

The thesis of Champak Das is ap

Paul Attie, Major Professor

Dean Arthur W, Herriott 
College of Arts and Sciepxjes

Dr. Richard L. Campbell 
Dean of Graduate Studies

Florida International University, 1996



Acknowledgment

I would like to thank my advisor. Dr. Paul Attie, for guiding 
me into the area of distributed computing. His patience and 
deep understanding of the field saw me through the difficult 
stretches. I would like to also thank Dr. Michael Evangelist, Dr. 
Rida BazzI and Dr. Rakesh Sinha for their helpful comments 
and suggestions.

I wish to express my deepest thanks to my parents for their 
support and encouragement which enabled me to complete this 
work.



ABSTRACT OF THE THESIS

AUTOM ATING TRANSFORM ATIONAL DESIGN FOR 

DISTRIBUTED PROGRAM S 

%

C ham pak Das 

F lorida  International U niversity, 1996 

P rofessor Paul Attie, M a jo r  P rofessor

We address the problem of designing concurrent, reactive, nonterminating pro­

grams. Our approach to developing concurrent programs involves the use of correctness- 

preserving transformations to realize each step of program development. The trans­

formations we have designed automatically guarantee the preservation of the deadlock 

freedom property, and hence deadlock freedom does not have to be manually verified 

after each development step. Since our transformations are syntactic, they are easily 

mechanizable as well. This makes syntactic transformations particularly appealing for 

the development of large, complex, and correct distributed systems, where a manual 

approach would be prohibitively expensive. In this work we present a set of syntactic 

transformations along with an example of their application to the development of a 

simplified mobile telephone system.
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Chapter 1 

Introduction

We address the problem of designing concurrent, reactive, nonterminating programs. 

Nontermination implies that correctness properties cannot be stated as simple func­

tional relationships between inputs and outputs. Instead, it becomes necessary to 

express correctness properties in terms of the time varying behavior of a system. 

Correctness properties of concurrent programs are classified as follows :

• Safety properties: These imply that “nothing bad happens” e.g., simultaneous 

write access to the same file by two processes does not occur.

• Liveness properties: These imply that “progress occurs in the system” e.g., 

every request for a resource is eventually granted.

The problem of specifying and ensuring correctness properties is difficult in 

general because they are global properties and therefore depend on the entire program. 

Thus the entire program has to be considered in analysis. There have been some 

efforts at modularization [Pn85], but success has been limited.

Most of the current approaches to ensuring correctness properties are either 

impractical or excessively restricted in scope. Formal program verification tech­

niques are widely accepted as a means of guaranteeing the correctness of distributed
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programs [Ho69, Fr92, La80, V87]. The applicability of these techniques is limited 

by a number of different factors such as the excessive manual labour required, the 

possibility of errors in the proofs and the lack of appropriately trained personnel 

[DM90, DB89, FJ89, GOR94, KM90, CM81]. Even the use of theorem provers has 

not made the process significantly more feasible.

Successive refinement approaches with manual verification of each refinement 

step involve large amounts of manual formal labor for each refinement step [BKS83, 

BKS85, CM88, RM87]. Refinement is largely a matter of symbol manipulation, and, 

for humans, that activity is as error-prone as manual theorem proving or even program 

writing. The use of theorem provers to carry out formal manipulation is one way of 

reducing the possibility of error, but the labor involved is still high.

The model checking approaches suffer from exponential time complexity and 

the state explosion problem [BCMD90, CLM89, CBGM91]. They are efficient only 

for systems with large amounts of symmetry and regularity. Besides the problems 

mentioned above, all the current approaches we referred to fail to address the problem 

of designing systems.

In this work, an alternative approach to the problem of developing concurrent 

systems is proposed, namely the use of syntactic transformations to realize each step 

of program development. In order to reduce the formal labor of verifying each step, 

we aim to design correctness-peserving transformations, i.e., transformations which 

automatically guarantee the preservation of desirable properties (e.g., deadlock free­

dom). If a correctness-peserving transformation is not available for a particular step, 

then we have to rely on a manual transformation, which necessitates the manual veri­

fication that the desired properties still hold after applying the transformation. Since

2



our transformations are syntactic, they are easily mechanizable as well. This makes 

correctness-peserving transformations particularly appealing for the development of 

large, complex distributed systems, where a manual approach would be prohibitively 

expensive. As mentioned before, preservation of global properties cannot be achieved 

by considering only local structures and therefore transformations generally must 

encompass the entire system.

We take a two-fold approach to transformations. The first approach is succes­

sive refinement which lets us start with an abstract specification and incrementally 

refine it to a stage where implementation becomes relatively straightforward. In it­

self this is not a new idea. However manual verification combined with refinement 

has a number of drawbacks as explained above. This motivates our proposal for 

correctness-preserving syntactic transformations. Such transformations are mecha­

nizable and, therefore, do not involve significant amounts of manual labor. Using this 

approach, the process of development may be viewed as the human-assisted high- 

level compilation of a specification into code. Human interaction is still essential for 

choosing the appropriate transformations to apply at each stage. But verifying that a 

transformation preserves desired properties is unnecessary, in our approach, because 

this is guaranteed by the fact that the transformations are correctness-preserving. In 

chapter two we present two transformations for successive refinement.

A second approach is program composition where we create small programs and 

then attempt to merge them in a manner which is consistent with our design goals. 

The merging process also preserves important properties. The small programs we 

start with could be checked manually without spending excessive intellectual effort. 

In chapter three we present eight transformations for program composition.
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All of the transformations described in this thesis preserve deadlock freedom , an 

important safety property of concurrent programs. In principle, more general safety 

and liveness properties can be dealt with. We envision this as a possible extension of 

the work to be presented in the thesis.

It may argued that it would be very difficult, if not impossible, to create a com­

plete set of transformations which is powerful enough to deal with every conceivable 

problem. Any transformation toolbox would be restricted in scope. It is true that 

devising a large set of transformations would require a very significant amount of 

effort over a long period. However this would be a one time effort (as in writing a 

good compiler). The current work is a step in that direction.
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Chapter 2 

Model of Concurrent Computation

2*1 Notation and Syntax

A program is the composition of a fixed set of sequential processes executing con­

currently. We use the nondeterministic interleaving model of concurrency. That is, 

we view concurrency as the nondeterministic interleaving of events. An event is the 

atomic (i.e., indivisible) execution of an action, described in Definition 1. We use 

— I j || to denote sequence, choice, and parallel composition, respectively. The se­

mantics of these operators is similar to that given in CSP [Ho85]. To model state 

transitions, we employ the concept of a labeled transition system, as used in [MÍ189]. 

A  will denote the transition relation induced by action, a. The formal meaning of 

— I , || and A  is given below.

D efin ition  1 ( action)

An action, a drawn from some set, A , o f action names, is a character string (i.e., 

an identifier) .

We use lower-case letters towards the beginning of the alphabet to denote actions. 

D efin ition  2 ( action expression,)

An action expression E  is a finite expression given by the following BNF grammar:



< action„expression> ;:=

< action„expression> | <  action„expression> |

<  action.expression> —> <action.expression> |

(<  action_ expression> ) j

<  action> I e I 0

E, Fj G, H will range over the set of action expressions. We make the convention 

that —» has higher binding power than [ . Parenthesis have the highest precedence 

and are used to alter precedence where necessary. Thus E  —» F  | G denotes (E —> 

F) |] G, which is different from E  —> (F  | G). We assume that a normal form exists 

for an action expression where all actions are parenthesized as appropriate. The 

precedence rule may make some of these parenthesis redundant. For our discussions 

we will sometimes consider action expressions without the redundant parenthesis. 

Intuitively, E —> F  means execute E  and then execute F, while E | F  means execute 

either E  or F.

0, ( “Stop” ), is the identity element of | , and e ( “Skip” ), is the identity element 

of — We postulate the following axioms :

1. 0 ¡ A  =  A, A lQ  =  A , A - > e  =  A , e - * A  =  A

2. A ¡  B  =  B  I A

3. A 1 (B  1 C) =  (A 1 B) ¡ C,

A —> (B - » (7) =  (A —> S) —> C

Equating action expressions (E , F ):

• If E  and F  are syntactically identical, then E =  F .
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• If E  and F  are not syntactically identical, we first fully parenthesize both ex­

pressions using the precedence rales. Let the new expressions derived from E 

and F  be E' and F ’ respectively. If E ’ and F f are syntactically identical modulo 

the above axioms, then E =  F.

We define aE, the alphabet of action expression E, as follows.

D efin ition  3 (a )

« ( a )M, {a}

a(E 1 F) =  a(E) U a(F) 

a(E - * F )  =  a(E) U a(F)

D efin ition  4 (sequential process)

A sequential process, Pi, consists o f a process body and a process alphabet. The process 

body, (3Pi, is an expression of the form  F* —> *E{ where F{, Ei are action expressions. 

The process alphabet, aPi, is defined to be a set o f action names. The process alphabet 

must contain aFi U a E i.

Note that this definition extends the definition of “alphabet” to processes. We have 

also introduced which denotes infinite iteration. We extend =  to process bodies 

in a straightforward manner. If (3Pi =  Fi —» *Ei, and (3Pj =  Fj —» *Ej, then 

/3Pi =  ¡3Pj iff Fi =  Fj and Ei =  Ej. Finally, Pi =  Pj iff aPi =  aPj and (3Pi =  ¡3Pj. 

(Note that when we write aPi =  aPj, the =  symbol denotes standard set-theoretic 

equality, because alphabets are set.)

D efin ition  5 (program)

A program, P, is the parallel composition o f one or more sequential processes; i.e.,



P =  (|| i E <p : Pi), where Pi are processes and ip is some suitable index set. Also, 

aP =  (Ui E tp : aPi),

For sake of simplicity, we assume that all actions in a program are uniquely named. 

We extend =  to programs in the expected manner: (\\ i E (p i Pi) =  (\\ i E ^ : Qi) iff 

<p =  ip and, for all i E ip, Pi =  Qi.

D efin ition  6 (PA p)

PAp(a )  =  { i  E ip I a E aPi}

PAp(a) is the set of processes within program P that jointly and synchronously 

participate in the execution of action a. If \PAp(a)\ >  1 then a is a multiparty 

interaction of program P. If \PAp(a)\ =  1, then a is a local action of some process 

Pi (namely the Pi such that a E olPí) in program P.

2.2 Operational Semantics

We define the binary transition relation A  on the set of sequential processes as 

follows. In each case, the alphabet of the process making the transition is unchanged, 

and so we only show the process bodies. In order to avoid the well-known phenomenon 

that the behavior of E  | F  and e —» E | e —» F  is different even though they are 

“equal” , we stipulate that the transition relation cannot be applied to 0 and e, i.e., 

A  and A  are not defined. This does not cause any difficulties, since e and 0 can 

always be eliminated from an expression using the above axioms, after which the 

transition relation can be applied.

D efin ition  7 ( Transition Relation A  )



We extend A  to processes by stipulating that P{ A  P{ iff (3Pi A  f3P¡ and aPi =  aP¡. 

in other words, the alphabets are the same and the bodies are related by A  . Finally, 

we extend A  to programs as follows:

LetP =  (\ \ ie< p : Pi), P' =  (|| i 6 <p : P{). Then P A  P' iff:

1. fo r  all i G P A p(a ) : Pi A  p!

2. for  a lii € ip — P A p(a) : Pi =  P[

We write P  A  to mean that there exists a P' such that P  A  P 1, In this case, we say
a

that a is enabled in P. We also write P  />  to mean that there does not exist a P' 

such that P  A  P ;} and we say that a is disabled in P  in this case.

Suppose Pi A . Then the general form for the body of Pi is F  *E , where F  

has one of the forms c, c —» G, c | H, c —> G | i f .  All of these forms are subsumed 

by the form c G ] H  however, since c =  c —> e | 0 ,  c —> G =  c —> G [ 0, 

c I G =  c —> e 1 G. Thus the introduction of 0 and e allows us to avoid a large 

amount of tedious case-analysis.

We now present some preliminary definitions and results.

D efin ition  8 ( Independent)

Two actions b, c are independent in program P  iff PAp(b) f| P A p (c) =  0



D efin ition  9 (Derivative, Path)

I f P  %  • • • ^  P' for  some sequence a i , . . .  ,a n of actions, then ([MU89]) we say that P' 

is a derivative o f P . The sequence o i , . . . ,  an is called a path. I f path w =  a i , , an, 

then we abbreviate P  A  • • • A  P' by P  P '.

Consider a program consisting of a single process P\ =  *[a —* b | a —► c). Clearly, 

Pt A  b —> Pi, and Pi A c  —> P%. This example can easily be extended to arbitrary 

paths. Thus we see that P  A  P 1 and P  — P "  for some P, 7r does not allow us to 

conclude P ' =  P ". Thus, if P  and 7r are given, then the assertion P  A  P ' can be 

regarded as an abbreviation for “there exists a P' such that P  A  Pm.

D efin ition  10 (Equivalent)

Two paths 7r, /9 are equivalent iff one can be obtained from the other by a finite number 

o f exchanges o f adjacent independent actions.

P ro p o s itio n  1 Let P  — Q. I f tt and p are equivalent, then P  —A  Q.

Proof: The proof is by induction on the number m  of exchanges of independent 

adjacent actions required to obtain p from w.

Base Case, m  =  1.

Now p is obtained from w by one exchange. Hence we can write 7r =  ir'abn", p =  

^baw", where a, b are the exchanged independent actions. Thus we have

p j a U p ' ^ p ' ^ Q  (*)

for some P ', P ". Since a and b are independent actions, by definition 8,

P A p (a ) H PA p(b) =  0. Different sets of processes execute the actions a and b. Clearly, 

irrespective of the order in which a and b are executed, the resulting program is the
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same. Therefore P' P'\ i.e., P" can be derived from P’ by executing b and then 

a. Using this result and (*) we have P — > P ’ P"  Q. Hence P — Q. Thus 

the base case is established.

Induction Step, m =  n +  1, n >  1, where the inductive hypothesis is assumed for n 

exchanges.

Since p is obtained from w by n +  1 exchanges, there must exist a r¡ such that tj is 

obtained from w by n exchanges, and p is obtained from rj by one exchange. By the 

inductive hypothesis, we have:

P -^ U Q

Since p is obtained from rj by one exchange, we use same argument as employed in 

the base case (i.e., for a single exchange) to conclude:

P - U Q

This establishes the induction step. □

We shall use the notation described here in the rest of the work. Enhancements will 

be pointed out when necessary.
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Chapter 3 

Sequence Introduction 
Transformations

3*1 Introduction

The idea of successively refining an abstract specification until it contains enough 

details to suggest an implementation has been investigated by numerous researchers 

[BKS83, BKS85, CM88, RM87]. The emphasis to date has been on techniques that, 

unfortunately, lead to a large amount of manual formal labor for each refinement step. 

W ith such techniques, both the cost and the possibility of errors arising in formal ma­

nipulation are high. Using a theorem prover can reduce the number of manipulation 

errors, but, given current technology, the amount of labor is still daunting.

Our research explores an alternative solution to the refinement problem, namely 

the use of syntactic transformations to realize each refinement step. We reduce for­

mal labor by employing automatic transformations that guarantee the preservation 

of desirable properties —  e.g., deadlock-freedom. Automatic transformations are par­

ticularly appealing for the development of large, complex distributed systems, where 

a manual approach to refinement would be prohibitively expensive. Distributed com­

putations are, by nature, reactive and concurrent, so their correctness cannot be

12



specified as a simple functional relationship between inputs and outputs. Instead, 

specifications must describe the time-varying behavior of the system. Further dif­

ficulty is caused by the fact that such important characteristics of distribution as 

deadlock-freedom are global properties that cannot be achieved through considering 

local structures only. Transformations generally must encompass the entire system.

In this chapter we present two automatic transformations that decompose ac­

tions into a sequence of actions. These transformations are guaranteed to preserve 

freedom from deadlock. We give formal proofs of this characteristic, as well as an 

example of refinement using the transformations.

3.2 The Right-sequence Introduction Transforma­
tion

Our first transformation allows us to introduce a new action, d, in sequence with, and 

immediately after, an already-present action, c. Intuitively, we use such a transfor­

mation to refine c. In the original high-level program, c might model a complex set 

of activities. In the transformed (lower-level) program, this set of activities is split 

between c and d.

D efin ition  11 (Right-sequence Introduction Transformation)

We define the right-sequence introduction transformation [c/c c£\ in a bottom- 

up manner as follows. Let a be an arbitrary action, and E ,F  be arbitrary action 

expressions. Then, we have



c[c/c —> d¡ =  c —» d

(£  i F)[c/c ->dj =  ((E[c/c d]) [ (F[c/c -  d]))

( j j  _  F ) [c/c _  d] =  ((jB[c/c _* 4 ) _* (F [c /c  _  rf]))

In the sequel, we will use the abbreviation Et for  E[c/c —» d] /o r  an arbitrary action 

expression E.

For an arbitrary process Pi such that c £ aP¿, and /5P¿ =  F  —» *E fo r  some 

action expressions F ,E , define Pi[c/c —» d] =  Qi, where aQi =  aPi U {d }, (3Qi — 

Ft —> *Et.

L etP  = (|| i & (p : Pi) be an arbitrary program. Letijj be an arbitrary non-empty 

subset of PAp(c). We define P[c/c —> d\ =  (\\ i & ip : Pi[c/c —> d¡) || (|| i E : Pi).

If Q =  P[c/c —> d], then we say that (J results from P  by means of a rightsequence 

introduction transformation, The right-sequence introduction transformation [c/c  —> 

d\ takes a program P  containing an action c, and introduces a new action d after 

c and in sequence with c. Note that ifj is an implicit parameter of the functional 

mapping from P  to Q expressed by Q =  P[c/c —> d]. In the sequel, whenever we 

write Q =  P[c/c —» d], we shall implicitly assume that the conditions aP  U {d }  =  aQ, 

d £  a P , c £ a P , c £ aQ  are all true.

3*2.1 Discussion, and Preliminary Technical Definitions

The basic idea is that the action c in program P  is decomposed into the sequence 

of c followed by d in program Q. The transformation can be iterated any number of 

times, so that c is decomposed into a sequence c, d\t , . . ,  dn.

Having defined the right-sequence introduction transformation, we need to re­

late the behavior of the transformed program Q =  P[c/c —> d] to that of the original

14



program P. We do this by means of a modification of the notion of strong bisimulation 

(see [MÍ189], ch. 4).

D efin ition  12 (cd-bisimulation)

Let S be a binary relation over programs. Then S is a cci-bisimulation i f fP S Q  

implies:

1. a P  U {d }  =  aQ, d aP, c E aP , c E aQ

2. for  all a E olP — {c } ,  if  P  A  P'} then Q A  Q' for  some Q' such that P' S Q'

3. i f  P  A ' P', then Q Q' for some Q’ such that P' S Q'

4- fo r  all a E olP  — { c } ; if Q A  Q'f then P  A  P' for  some P ' such that P ' S Q'

5. if Q ^  Q', then P  A  P ! for some P' such that P' S Q'

D efin ition  13 Following the treatment o f strong bisimulation given in chapter 4 o f 

[MU89], we define

-  =  \J{S I 5  is a cd-bisimulation} .

From this, we can establish 

P rop os ition  2 P  rsj Q iff

1. a P  U {d }  =  aQ, d ^ aP, c E aP, c E aQ

2. for all a E aP  — { e } ,  if P A  P'} then Q A  Q' fo r  some Q' such that P ' ~ Q1 

8, if P "A P'} then Q Q' for  some Q1 such that P' ~  Q'

4. for  all a E aP — { c } ; if  Q A  Q'} then P  A  P' for  some P' such that P' ~  Q’
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5. if  Q ^  Q'} then P  A  P 1 for some P' such that P' ~  Q'

P ro o f: The proof proceeds in the same way as the proof of proposition 4 in chapter

4 of [MÍ189] (bearing in mind that the notions of bisimulation differ technically). We 

paraphrase the proof here for completeness.

First, we define the relation as follows:

P  ^  Q iff

1. a P  U {d} =  a Q , d 0  ouP, c E a P , c E  olQ

2. for all a E a P  — {c}, if P  A  P\ then Q —>Q' for some Q' such that P' ~  Q'

3. if P  A  P;, then Q ^ Q '  for some Q' such that P' ~  Q’

4. for all a E a P  — {c } ,  if Q A  then P A P '  for some P ' such that P ’ ~  Q'

5. if Q 4  Q', then P A P '  for some P ' such that P ' ~  <5'

From definition 13, we see that ~  is a cd-bisimulation. Thus from definition 12 and 

the definition of we deduce:

P  ~  Q implies P  Q (PI)

We now show

is a cd-bisimulation (P2)

Proof of P2.

Let P  Q. If we establish all the clauses of definition 12 (for S  =  ̂ ') ,  then, by

that definition, we can conclude that is a cd-bisimulation. Clause 1 follows from

(and is identical to) clause 1 of the definition of For clause 2, let a E a P  — { c }  

and P  A  P '. By the definition of ~ l, there exists Q' such that Q A  Q ' and P 1 ~  Q1. 

From P 1 ~  Q' and PI, we have P 1 Q'. Since Q A Q 7 and P' Q ;, clause 2 of
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definition 12 (for S =  ~ ')  is satisfied. Clauses 3-5 are verified in an identical manner, 

(end proof of P2).

Since is a cd-bisimulation, and ~  is the largest cd-bisimulation, we have 

P Q implies P  ~  Q. From this and PI, we get P  Q iff P ~  Q. Replacing 

P  Q by P  ~  Q in the definition of then gives us proposition 2. □

3*2*2 P roof o f Correctness

P ro p o s itio n  3 Let S  =  {(P, Q) | Q =  P[c/c —> d}}, then S is a cd-bisimulation. 

Proof: We establish each clause of definition 12 in turn. Let P  =  (\\ i £ (p : Pi), Q =  

(|| i £ ip : Qi). Let G be an action expression. We shall use Gt for G with all 

occurrences of c substituted with c —> d.

Clause 1: a P  U {d }  =  aQ , d 0  aP, c £ aP, c £ aQ.

The assumption we make on the alphabets of P, Q whenever we write Q =  P[c/c —> d] 

(see page 14), is identical to this clause. Hence clause 1 holds by assumption.

Clause 2: for all a £ a P  — { c } ,  if P  A  P', then Q A Q ' for some Q' such that P' Q' 

Let P A P '  for some P; =  (|| 2 £ ty? : P /) and a E a P  — {c } .  We show that there exists 

a =  (|| i £ (p : Q’i) such that Q A  Q' and P’ S Q1. By P A P '  and the transition 

relation definition (7), Pi A  P- for all i £ P A p(a), and Pf- =  P/ for all z € <p —PAp(a). 

We have two cases.

Case 1: i £ P A q (o).

Consider P¿, Qi, P[ for an arbitrary i £ P A q(a ). Since P» A  , /3P¿ =  (a —> F  Q G) —» 

as discussed above (page 9), for some action expressions P, G, E.

By the transition relation definition (7), rales A c t , C h , Seq applied in sequence, we
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In general, P¿ can have more than one a-derivative, since G itself could have the form 

a —» F" I G'. However, there is no loss of generality in assuming that the execution 

of the a in a —> F  leads to P/. Hence we have /3P/ =  (F —* *E).

By Q =  P[c/c —* d\ and the sequence introduction transformation definition (11), we 

have two subcases, i G Pj4.q(o) f)PAq(d) and i G PAq(a) — PAq(d).

Subcase 1.1: i G P A g(a ) f)P i4g(d).

From Q =  P[c/c —» d], the sequence introduction transformation definition (11), and 

the subcase condition, we have Q» =  Pi[c/c —» d], Since f3Pi =  (a —> F  [ G) —» we 

get /3Q* =  (a P« [ Gt) *Et, by the sequence introduction transformation (11). 

By the transition relation definition (7), rales A c t , Ch, Seq, we have 

((a  -  Ft I Gt) -> * £ 4) A  (Ft -> *Et)

Since /3Q,- =  (a P« I Gt) —» *22*, there exists a Q' such that Qi A  and =  

(Ft —> *l?t). Since /3P/ =  F —* *E } we have =  P/[c/c —» d] by the sequence 

introduction transformation (11).

Subcase 1.2: ¿ G PAq(a) — PAg(d).

From Q =  P[c/c —> d] , the sequence introduction transformation definition (11), 

and the subcase condition, we have Qi =  P». Letting Q[ be P/, we get A  and 

Qi =  Pi, since P¿ A  P/.

Case 2: i E ip — PAq(a).

Consider P¿, <3¿, P/ for an arbitrary i E <p — PAq(a).  As before, by Q = P[c/c —» d] 

and the sequence introduction transformation definition (11), we have two subcases, 

i £ (ip — PAq(a)) — PAq(d)  and i € (<p — PAq(a)) f l  PAq(d)



Subcase 2.1: i £ (<p — P A q (o )) — PAq(d).

From Q =  P[c/c —» d] , the sequence introduction transformation definition (11), and 

the subcase condition, we have Qi =  P¿. Therefore P/ =  Q[ since neither of Pi,Qi 

participate in the action a (and so Pi =  P/, Qi =  Q[).

Subcase 2.2: i £ (ip — P A q (a ))f]P A q (d ).

From Q =  P[c/c —> d\ , the sequence introduction transformation definition (11), and 

the subcase condition, we have Qi =  Pi[c/c —> <£\. Again neither of Pt, Qi participate 

in a , and so P / =  P* and =  Qi. Hence, we have QJ =  P /[c /c  —> dT].

If we now consider =  (|| i £ ^ : Qi), where the Q\ are as given by 

the preceding case analysis, we see that Q A  Q1 by the transition relation defini­

tion (7), and also that Q' =  P'[c/c d], by the sequence introduction transforma­

tion definition (11), since the above two cases cover the entire indexing set ip. Since 

S — {(P , Q) I Q =  P[c/c —» d]}, we have P' S Q' as required.

Clause 3: if P  A  P ;, then Q^ÍQ'  for some Q' such that P' S Q'

Let P A P '  for some P f =  (\\ i £ (p i P/). We show that there exists a Q' = (||

i £ ip : Qi) such that Q ^ Q 1 and P 'S Q 1. By P A P '  and the transition relation 

definition (7), Pi A  p! for all i G P A p(c), and P* =  P/ for all i G — PAp(c). We 

have three cases.

Case 1: t G PAq(d).

Consider P¿, Qi, P/ for an arbitrary i G PAq(d). By Q =  P[c/c —» d] and the sequence 

introduction transformation definition (11), we have Qi =  Pi[c/c —> d]. Since P¿ A , 

we have (3Pi =  (c —> F  | (3) —■» as discussed above (page 9), for some action

expressions P, G, E.
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( (c _> F  i Q) _> #jE?) A  [F  -  *E)

In general, Pi can have more than one c-derivative, since G  itself could have the form 

c —> F ' I G'. However, there is no loss of generality in assuming that the execution 

of the c in c —> F  leads to jP/, Hence we have /3P¡ =  F  —> *E.

Now Qi =  Pi[c/c —> d\. Since ¡3Pi =  (c —» F  | 6?) —> *E, we get (3Qi =  (c —► d —» 

I C?i) —» by the sequence introduction transformation (11), By the transition

relation definition (7), rules Act, C h, Seq applied in sequence, we have 

((c -+ d -> Ft I Gt) -> *£*) A  ( d ^ F t ^  *Et)

By rales A c t , Seq, we have

(d _  Ft -> * £ )  4  (Ff -> * £ e)

Hence, we conclude

((c _> d -> Ft I Gt) -> *Et) *  (Ft -  *Et)

Since =  (c —> d —> Ft [ Gt) —> *Et, there exists a QJ such that Qi^ÍQ'it and 

PQ'i =  Ft —> *Et, Since {3P{ =  F  —> *E, we have Q[ =  P¡[c/c —» d] by the sequence 

introduction transformation (11).

Case 2: i £ P A q (c) — PA g(d).

Consider Pí,Qí, P- for an arbitrary i €  P A q (c) — PA q(d). By Q =  P[c/c  —> d] and

the sequence introduction transformation definition (11), we have Qi =  P¿. Letting 

Q ■ be P/, we get Q, A  Q¡ and Q\ =  P¡.

Case 3: i £ <p — P A q (c).

Consider P¿, Qi, P¡  for an arbitrary i £ ip — P A q (c). By Q — P[c/c  —> d] and the

By the transition relation definition (7), rules A ct , Ch, Seq applied in sequence, we

have
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sequence introduction transformation definition (11), we have Qi =  P¿. Since Pi =  P/ 

in this case, we let Q\ =  Qi, and hence Q[ =  P¡.

If we now consider Q1 =  (|| i £ tp : Q'J, where the Q\ are as given by the

preceding case analysis, we see that Q Ql by the transition relation definition (7), 

and also that Q' =  P'[c/c —> d], by the sequence introduction transformation def­

inition (11), since the above three cases cover the entire indexing set ip. Since

S — {(P , Q) I Q =  P[c/c —* d]}, we have P 'S  Q' as required.

Clause 4: for all a £ olP — {c } ,  if Q A  Q', then P A P '  for some P ; such that P ; «S Q7 

Let Q A Q '  for some =  (|| i £ ip : (J¿) and a £ a P  — {c } .  We show that there 

exists a P ’ =  (|| i £ (p : P /) such that P A P '  and P ’ S Q'. By Q ^ Q '  and the 

transition relation definition (7), Qi A  Q\ for all i £ PAq(cl), and Qi =  Ql for all 

i £ fp _  P A q (o ). We have two cases.

Case 1: i £ P A q (o).

Consider Pi,Qi, Qi for an arbitrary i £ PAq(cl). From Q =  P[c/c —* d] and 

the sequence introduction transformation definition (11) we have two subcases, i £ 

PAq(o.) fl PAq{d) and i <E PAQ(a) -  PAq{d).

Subcase 1.1: i £ P A q (o) f) P A q ((1).

From Q =  P[c/c — d] , the sequence introduction transformation definition (11), and 

the subcase condition, we have Qi =  Pi[c/c —> d]. Since Qi A ,  we have (3Qi — (a —» 

F ’ I G’ ) —» *El for some action expressions F 1, G’ , E\ as discussed above (page 9). 

From Qi =  Pi[c/c —> d] and the sequence introduction transformation definition (11), 

we conclude that (3Pi =  (a —> F  | G) —* *E where action expressions E, F, G are 

such that F 1 =  Ft, G1 =  Gt, E’ =  Et.
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((a Ft I Gt) -> *Et) A  (Ft -  *Et)

In general, Qi can have more than one a-derivative, since Gt itself could have the form 

a —> F "  f G” . However, there is no loss of generality in assuming that the execution 

of the a in a —» Ft leads to Q[. Hence we have (3Qi =  (Ft —> *Et).

Now (3Pi =  (a —> F  I G) —» *E. By the transition relation definition (7), rules A c t , 

C h , Seq, we have

((a  -*  F  [ G) *E) A  (F -> *E)

Since (3Pi =  (a —► F  | G) —» *Ü7, there exists a P/ such that Pi A  P¡ and (3P¡ =  (F  —» 

*Ü7). Since (3Qi =  Ft —» *2^, we have =  P/[c/c —> d] by the sequence introduction 

transformation ( 1 1 ).

Subcase 1.2: ¿ G P A q (o ) — P A q (cL).

From Q =  P[c/c —* d], the sequence introduction transformation definition (11), 

and the subcase condition, we have Qi =  P¿. Letting P¡ be we get Pi A  P! and

= <35-

Case 2: i £ (fi — P A q (cl).

Consider Pi,Qi, P[ for an arbitrary i £ y? — P A q(a). By Q =  P[c/c —> d] and 

the sequence introduction transformation definition (11), we have two subcases, i G 

(ip — PAq(a)) fl PAq((1) and i G ((fi — PAq(cl)) — PA g(d).

Subcase 2.1: i G ((fi — P A g (a ))f| PA q(d).

From Q =  P[c/c —» d] , the sequence introduction transformation definition (11), and 

the subcase condition, we have Qi =  Pi[c/c —> d]. Since i £ (fi — P A q(o) these Qi 

do not participate in action a. Therefore we have Q[ =  Qi. We also have P¡ =  Pi

By the transition relation definition (7), rales Act, Ch, Seq applied in sequence, we

have
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since these P¿ do not participate in action a either. Since Qi =  Pi[c/c —> d\ we have 

Qi =  i?[c/c -> d]

Subcase 2 .2 : i £ (ip — P A q(o)) — PA g(d).

From Q =  P[c/c —> d] , the sequence introduction transformation definition (11), 

and the subcase condition, we have Qi =  Pi. Since i £ tp — P A g(a ) these do not

participate in action a. Letting P/ be we have Qi =  P¿ =  QJ =  P/.

If we now consider P f =  (|| i £ ip : P /), where the P/ are as given by the preceding 

case analysis^ we see that P A P '  by the transition relation definition (7), and also 

that Q' — P l[c/c —> d], by the sequence introduction transformation definition (11), 

since the above two cases cover the entire indexing set (p. Since S =  {(P , Q) | Q =  

P[c/c —* d]}, we have P'<5 Q’ as required.

Clause 5: if Q 4  Q;, then P A P '  for some P ; such that P' S Q'

Let Q ^ ÍQ 1 for some =  (|| ¿ G 9? : Q¿). We show that there exists a P # =  (||

i E <p : P /) such that P A P '  and P' S Q’ , By Q ^ Q 1 and the transition relation 

definition (7), for all ¿ G PAq(cí), Qí A  for all i £ P A q (c) — P A g(d ) and

Qi =  Qi for all i £ ip — P^4q(c). We have three cases.

Case 1: i £ P A q{d)

Consider Qi, Pi, Q\ for an arbitrary i £ PA g(d). From Q =  P[c/c —» d\ , the sequence 

introduction transformation definition ( 1 1 ), and the subcase condition, we have Qi — 

Pi[c/c d\. Hence, d cannot occur as an operand of | in Qi. From this and Qi Q\, 

we have (3Qi =  (c —* d F 1 | G’ ) —> *E' for some action expressions F ’ , G ', E', as 

discussed above (page 9). From Qi =  Pi[c/c —» d] and the sequence introduction 

transformation definition (11), we conclude that /3P¿ =  (c —> F  \ G) —> *E  where 

action expressions E, F, G  are such that F* =  Ft, G’ =  Gt)E l =  Et.
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By the transition relation definition (7), rale A ct, we have 

((c  d —> Ft I Gt) —> *Et) A  (c¿ —> jFí —> *Et)

By rale A ct , we have

(d —> —> * £ ,)  - i  (Ft -> * £ ,)

Hence,

(c —> d —> F( | Gt) -*  *Et 4  {Ft -*  *Et)

In general, Qi can have more than one cd-derivative, since Gt itself could have the 

form c —* d —> F "  | G" . However, there is no loss of generality in assuming that 

the execution of the c and then d in c —> d Ft leads to Q .̂ Hence we have

PQ'i =  [Ft *Et).

Now (3Pi =  (c —> d —* F \ G) —» *E. By the transition relation definition (7), rules 

Act, Ch, Seq, we have

((c  - 4  F  I (?) -> *E) A  (F  - »  *E)

Since (3Pi =  (c —» F  | G) —> *J5, there exists a P¡ such that P¿ A  P¡ and (3P¡ — F  

*E. Since /3Q\ =  Ft —* *Et, we have Q[ — P-[c/c —» d] by the sequence introduction 

transformation ( 1 1 ).

Case 2: i 6  P A q(c) — PAq(d).

Consider Pt, Qi f°r an arbitrary i € P A q(c) — PAq(d). By Q =  P[c/c —> d] and 

the sequence introduction transformation definition (11), we have =  Pt. Letting 

P / be QJ, we get P A P '  since Q A  Q'.

Case 3: i € <p — PAq(c).

Consider <5*, P¿, <3¡ for an arbitrary i £ ip — P A q ( c). By Q =  P [c /c  —*■ cf| and the 

sequence introduction transformation definition ( 1 1 ), we have Qi =  Pi. Now Qi =  Q[ 

in this case as explained above. Letting P/ =  P* we get P/ =
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If we now consider P’ — (|| % £ ip : P/), where the P¡ are as given by the preceding 

case analysis, we see that P A ? '  by the transition relation definition (7), and also 

that Q' =  P'[c/c —» d¡, by the sequence introduction transformation definition (11), 

since the above three cases cover the entire indexing set ip. Since S =  {(P , Q) | Q =  

P[c/c —> d]}, we have P' S Ql as required.

We have shown that all five clauses of definition 1 2  hold, hence S  is a cd- 

bisimulation. □

P ro p o s itio n  4 Let Q =  P[c/c —» d\. If Q' is an arbitrary derivative of Q, then

either Q' - i  , or there exists a derivative P’ o f P such that P' ~  Q'.

P ro o f : Let S  =  {(P, Q) | Q =  P[c/c - »  d\}. By proposition 3, S  is a cd-

bisimulation. Hence <S C ~  by definition 13. Since P S Q  by assumption, we

conclude P rsJ Q- Since Q' is a derivative of Q} we have Q A  • • • Q' for some 

path 7T =  o i , . . . ,  an of length n. Now w will contain some number (possibly 0) of oc­

currences of c. Furthermore, from the syntactic form of Q and the transition relation 

(definition 7), we have that every pair of successive occurrences of c along tt have 

exactly one occurrence of d between them, and likewise every pair of successive oc­

currences of d along w have exactly one occurrence of c between them. Furthermore, 

the first occurrence of c in 7r (if any) is not preceded by an occurrence of d.

Suppose that d does not occur in the suffix of 7r starting with the last occurrence 

of c in 7T. Then, from the syntactic form of Q, the transition relation (definition 7), 

and Q — Q’} we conclude Q' , and we are done. Hence we can assume in the rest 

of the proof that there is exactly one occurrence of d in the suffix of 7r starting with 

the last occurrence of c in tt. In other words, every occurrence of c can be matched 

with the subsequent occurrence of d. Consider a segment of w starting with some
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arbitrary occurrence of c in 7r and ending with the matching occurrence of d. This 

segment has the form c, . . . ,  bm, d where none of 61, ,  bn is either c or d.

From Q =  P[c/c —» d], we have that any Qi G PAd(Q) which executes c 

can only execute d as its next action; it has no other choice. Thus we conclude 

that no Qi € P A ¿(Q )  participates in any of the actions b2j b2, . . . ,  bm. Thus, by 

definition 8 , d and bj are independent, for 1 <  j  <  m. Hence, by definition 10, 

the paths c, &i, b2, . . . ,  bm, d and c, d, b2i. . . ,  bm are equivalent paths. Let p be the 

path obtained from w by replacing every segment of the form c, 61, . . . ,  bm, d by the 

segment c, d, 61, b2 l . . . ,  bm. From the definition of equivalence (def. 10), we easily 

see that equivalence is preserved by path-concatenation. Hence p is equivalent to 7r. 

Thus, by proposition 1 and Q — Q'} we have Q Q'. We now prove:

there exists a derivative P' of P  such that P' ~  Q' (PI)

Proof of PL

The proof is by induction of the length £ of p.

Base Case, £ — 0

Hence p is the empty path, and so Q’ =  Q. Let P' be P. By assumption, Q — 

P[c/c —» d]. Thus by proposition 3, P ~  Q. Hence P' ~  Q'.

Induction Step, £ =  n +  1

We assume the inductive hypothesis for i  <  n (n >  0) and establish PI for £ =  n +  1. 

Since p has length n +  1, it can be written as oi , . . . ,  an, an+i. Since every c in /9 is 

immediately followed by a d in p} an + 1 cannot be c. Thus we have two cases.

Case 1: an+i =  d.

Hence an =  c. Thus p =  a i , . . . ,  c, d. From this and Q — Q1, there is a Q " be such 

that Q %  - â 1 Q" and Q" 4  Q '. Assuming the inductive hypothesis for £ =  n — 1 ,
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we have that there exists a derivative P " of P such that P"  ~  Q". From this, Q" Q', 

and proposition 2, we have P"  A  P ’ for some P' such that P' ~  Ql. Since P' is a 

derivative of P, PI is established in this case.

Case 2: an+1 ^  d.

From p =  ai, . . . ,  an, an+1 and Q there is a Q" be such that Q A  . • • ^  Q" and

Qu ^  Q'. Assuming the inductive hypothesis for i =  n, we have that there exists a 

derivative P"  of P  such that P" ~  Q". From this, Q” â Xl Q', and proposition 2, we 

have p " 0̂ 1 P' for some P ' such that P' ~  Q'. Since P' is a derivative of P, PI is 

established in this case, which completes the induction step.

(end proof of PI)

Since PI implies the proposition, we are done. □

As stated in the introduction, our aim is to design syntactic transformations 

which automatically preserve desirable program properties. We now show that the 

right-sequence introduction transformation preserves deadlock-freedom.

Definition 14 (Deadlock-Freedom)

If for every derivative P1 of P , there is some action a such that P ‘ A  ; then P is 

deadlock-free.

Theorem 1 Let Q =  P[c/c —» d\. If P is deadlock-free, then so is Q.

Proof: Let Q’ be an arbitrary derivative of Q. By definition 14, it suffices to show

Q’ A  for some action a. From proposition 3 and Q =  P[c/c —» d], we have P ~  Q.

Thus, by proposition 4, we have

either Q' -4 ,  or there exists a derivative P' of P such that P' ~  Q'

If Q' -4 then we are done. Otherwise, there exists a derivative P; of P such that

P' ~  Q' . By assumption, P  is deadlock-free. Hence, by definition 14, P’ —* for some
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a1. If a! ^ c, then Q' A  by proposition 2. If a' =  c, then Q' ^  , again by proposition 2. 

Hence in all cases we have CJ) 1 A  for some a. □

3.3 The Left-Sequence Introduction Transforma­
tion

Our second transformation allows us to introduce a new action, d, in sequence with, 

and immediately before, an already-present action, c. Intuitively, we are again using 

the transformation to refine c.

D efin ition  15 (Left-sequence Introduction Transformation)

We define the left-sequence introduction transformation [c/d —» c] in a bottom-up 

manner as follows. Lei a be an arbitrary action, and E, F  be arbitrary action expres­

sions. Then, we have 

e[c/d —► c] =  e 

0 [c/d —> c] =  0 

a[c/d c] =  a if a ^  c 

c[c/d —> c] =  d —> c

(■® 1 f)[c/<i -  c] =  ((£?[c/d -»  c]) 1 (F [c/d ->  c]))

(E  -> i ’)[c/d -> c] =  ((£[c/d -»  c]) -> (Ffc/d -»  c]))

/ »  the sequel, we will use the abbreviation Et for E[c/d —> c] /o r  an arbitrary action 

expression E .

For an arbitrary process Pi such that c £ aP{, and {3Pi — F  —> *E  fo r  some 

action expressions F, E, define Pi[c/d —> c] =  Qi, where aQi =  aP¿ U {d}, (3Qi =  

Ft —> *Et. In addition, if  (3Pi =  c —> F  *E, for some action expressions F ,E , we 

define Pi[c/d —» c ,raf] =  Qt; where aQi =  aP{ U {d}, (3Qi =  c —* Ft —» *Et, i.e., the
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leading c action is not preceded by a d action (this is needed for  technical reasons).

Let P  =  ( || i E ip : P{) be an arbitrary program such that c £ aP , d ^ aP  

fo r  actions c, d. Let ip be an arbitrary non-empty subset of PAp(c) such that for  

all i £ ip no occurrence of c in Pi is the operand o f  Q . We define P[c/d —» c] =  

(|| i £ ip : Pi[c/d —> c]) || (|| i £ ip — ip : Pi). I f  P  A  ; then we also define 

P[c/d —► c,nl] =  ( || i £ ip : Pi[c/d —» c,nl]) || ( || i £ ip — ip : Pi).

If Q =  P[c/d —► c] or Q — P[c/d —> c,nf], then we say that Q results from P  by 

means of a left-sequence introduction transformation. The left-sequence introduction 

transformation [c/d —» c] takes a program P  containing an action c such that c is not 

involved in a choice, and introduces a new action d before c and in sequence with c. 

In the sequel, whenever we write Q =  P[c/d —» c] or Q =  P[c/d —>■ c, n¿], we shall 

implicitly assume that the conditions cuP LJ {d }  =  aQ, d 0  a P , c G a P , c £ aQ  are 

all true.

3*3.1 Discussion and Preliminary Technical Definitions

From the transition rules we conclude that if a left-sequence introduction transfor­

mation were applied to a process body where c is in a choice with other actions, it 

could lead to a deadlock. For example consider the following program:

*(e —» c) || *(e [ c)

The above program is deadlock-free. Applying a left-sequence introduction transfor­

mation to this program, we obtain:

*(e —» c) || *(e J d —* c)

Any path of the form (edc)*d ends in a deadlock state. This is why we do not allow 

occurrences of c to be operands of | in the definition of the left-sequence introduction
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transformation. We can therefore assume the following form for the body of a process 

which is ready to execute c: (c —> F )  —» *E.

However, if a process is ready to execute an action a other than c, then a can be in a 

choice with other actions and therefore the same analysis as in page 9 follows. Thus 

if a is one of the next possible actions and a ^  c then the general form for the body 

of a process is (a —» F  | G) —> *E.

We now introduce the notion of dc-bisimulation, which will be used to relate 

programs P, Q such that Q =  P[c/d —+ c] in much the same way that cd-bisimulation 

was used to relate programs P, Q such that Q =  P[c/c —» d] in the previous subsection.

D efin ition  16 Let S be a binary relation over programs. Then S is a dc-bisimulation 

iff P  S Q  implies:

1. a P  U {d }  =  aQ, d 0  aP , c £ a P , c G aQ

2. fo r  all a G ctP — {c }; i /P A  P 'f then Q ^ Q '  for some Q' such that P ' S Q'

8. i f  P A P '  then

either Q ^ Q '  for some Q' such that P' S Q' 

or Q A  (J; for some Q' such that P' S Q'

4. fo r  all a G olP — { c } ,  if Q A  Q' f then P A P '  for some P' such that P' $  Q'

5. if  Q Q', then P  $  Q', and

if  Q A  Q't then P A P '  for some P' such that P' S Q'

D efin ition  17 Following the treatment o f strong bisimulation given in chapter 4 of 

[MU89], we define

r*j =  U{<S I S is a dc-bisimulation}.
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From this, we can establish 

P ro p os ition  5 P  r\j Q iff

1. a P  U {d }  =  aQj d $  aP, c £ aP, c £ aQ

2. fo r  all a £ aP — { c } ; i / P A  P'} then Q A  Q' for some Q' such that P' ~ Q'

8. » /P A P '

either Q for some Q' such that P' ~  Q' 

or Q A  Qr for some Q' such that P' ~

fo r  all a £ aP  — { c } ; i J Q A  Q'} then P  A  P' for some P' such that P' ~ Q'

5. if  Q Q', then P  ~  Q', and

if Q Q’> then P  A  P' for some P' such that P ' ~  Q'

P ro o f : The proof proceeds in the same way as the proof of proposition 4 in chapter

4 of [MÍ189] (bearing in mind that the notions of bisimulation differ technically).

3 .3 .2  P roof o f Correctness

P ro p o s itio n  6  Lei S  =  {(P , Q) | Q =  P[c/d —* c] or Q =  P[c/d —> c ,n l]}. Then

5  is a dc-bisimulation.

P ro o f : Our approach to this proof shall be analogous to that for proposition 3. 

As before we shall use P¿ to represent processes of program P  and P/ to represent 

processes of program P'. Similarly for Qi and We observe that if (Q =  P[c/d —> c] 

or Q =  P[c/d —* c, nl]) and no occurrence of c in P  is an operand of J , then, by the 

left sequence introduction transformation definition (15), no occurrence of c in Q will 

be an operand of [ .
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Clause 1: aP U { d}  =  aQ, d 0  aP , c £ aP, c G aQ.

The assumption we make on the alphabets of P, Q whenever we write (Q =  P[c/d —> c] 

oí Q =  P[c/d —> c, n/]), (see page 29), is identical to this clause. Hence clause 1 holds 

by assumption.

Clause 2: for all a G a P  — {c}, if P A  P;, then Q A  Q' for some such that P' «S Q'

Let P A P '  for some P1 =  (|| ¿ G ip : P/) and a £ a P  — { c } .  We show that there exists 

a Q' =  (|| i G ip : QJ) such that Q A  Q; and P'¿> Q'. By P A P '  and the transition 

relation definition (7), Pi A  P- for all ¿ G P A p(a), and Pi =  P/ for all z G </? —P.Ap(a). 

We have two cases.

Case 1: i G P A g(a ).

Consider P¿, Q,, P / for an arbitrary i G PAg(o). Since P¿ A  , /?P¿ must have the form 

(a —» F  1 (?) —> *E  as discussed above (page 29), for some action expressions F, G, E. 

By the transition relation definition (7), rules Act, C h, Seq applied in sequence, we 

have

((a  -> F  1 G) —» *E) A  (F  -► *JE)

In general, P¿ can have more than one a-derivative, since G itself could have the form 

a —> F" I G'. However, there is no loss of generality in assuming that the execution 

of the action a in a —» F  leads to P/. Hence we have /3P{ =  (F  —» *E).

We have two subcases, i G PAq(a)  p) PAq(d) and i G PAq(cl) — PAq(d).

Subcase 1.1: ¿ G Pv4.Q(a) f) PAq(d).
C

Now P» -/* for all i G P A p {d )i since c is never the operand of | in P¿,¿ G P A q(d). 

From Pi ■/> and definition 15, we get Qi ^  Pi [c/d —> c, nZ]. From (Q =  P[c/d —> c] 

or Q =  P[c/d —> c,n/]), definition 15, and i G PAQ(a) f| P^-q(qQ, we get (Q¿ =  

Pi[c/d —> c] or Qi =  Pi[c/d —» c,n l]). Hence =  P¿[c/d —» c]. Since /3P¿ =  (a —>
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F  I G) —* *E, we get ¡3Qi =  (a —> Ft | Gt) —> *Et, by the sequence introduction 

transformation (15). By the transition relation definition (7), rales Act, Ch, Seq, 

we have

((a  -> Ft 1 Gt) -  *Et) A  (Ft -> *Et)

Since (3Qi =  (a —> Ft [ Gt) —> there exists a Q[ such that Qi A  Q¡, and /3QJ =  

Ft —» *Ü7e. Since /3P{ =  F  —> *E, we have Q¡- =  P/[c/cf —> c] by the sequence 

introduction transformation (15).

Subcase 1.2: i G P A q (cl) — P^4g(d).

From (Q G P[c/d —*■ c] or Q G P[c/d —> c, n/]), the sequence introduction transfor­

mation definition (15), and the subcase condition, we have Q¿ =  P¿. Letting Q¿ be 

P/, we get Qí A  Q¡ and QJ = P/, since Pi A  P/.

Case 2 : i £ (p — P A q(cl).

Consider P¿, Qi, P / for an arbitrary i £ tp — PAq(a). We have two subcases, z G 

(<p -  PAq(cl)) -  PAq(d) and i G (<p -  P A Q(a))f)PAq(d)

Subcase 2.1: i G ((p — PAq(cl)) — PAq(d).

From (Q =  P[c/d —► c] or Q G P[c/d —*• c, n!]), the sequence introduction trans­

formation definition (15), and the subcase condition, we have Qi =  Pi. Therefore 

p ! — Q'{ since neither of P¿, Qi participate in the action a (and so Pi =  P /, Qi =  Q¿). 

Subcase 2.2: i G (^ — PAq(a))  f| PAq(d).

From (Q =  P[c/d —» c] or Q =  P[c/d —> c, wf]), the sequence introduction trans­

formation definition (15), and the subcase condition, we have (Qi =  Pi[c/d —> c] or

Qi =  Pi[c/d —> c,ni]). Again neither of Pi, Qt participate in a, and so P / =  Pi and 

Q¿ =  Qi. Hence, we have (Q¿ =  P-[c/d —» c] or Q¿ =  P¡[c/d —» c ,ni]).

(end of Case 2)
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Now suppose P A q(cl) f) PAq(d)  ^ 0. Then, by subcase 1.1, Q[ =  P[\cjd —> c] 

for some i £ PAq(a)f)PAq(d).  Thus, by all the subcases above and definition 15, 

we conclude Q' =  P'[c/d —» c]. On the other hand, if PAq(a)f\PAq(d) =  0, then 

(<p ~~ PAq(a)) fl PAq(d) =  PAq(d), and therefore, by subcases 1.2, 2.1, 2.2, and 

definition 15, we conclude (Ql =  P'[c/d —» c] or Q' =  P'\c/d —> c,n l]). Thus we have 

P  S  Q in all cases.

If we now consider Q' =  (|| i £ <p : Q[), where the Q\ are as given by the 

preceding case analysis, we see that Q A  Q' by the transition relation definition (7). 

Hence clause 2 is satisfied.

Clause 3: if P A  P l, then either Q ^ Q '  for some Q' such that P ’ S  Q' 

or Q A  Q’ for some Q' such that P' S Q'

Let P A P '  for some Pl =  (|| i £ (p : P/). By P A P '  and the transition relation 

definition (7), P¿ A  P/ for all z G PAq(cÍ), P¿ A  P! for all i £ PAq(c) — PAq(d)  and 

Pi =  P[ for alI i £ (p — PAq(c).  We have two cases.

Case 1: Q - Í  .

We show that there exists a Q' — (|| i £ <p : QJ) such that Q Q' and P' S  Q ’. 

SubCase 1.1: i £ PAq(d).

Consider P», Qi, P/ for an arbitrary i £ PAq(d).  By (Q — P[c/d —> c] or Q = P[c/d —»

c, nl]), the sequence introduction transformation definition (15), and i € Pj4.q(cí), we 

get (Q t- =  Pi[c/d —> c] or Qi =  Pi [c/d —> c,n l¡). From Q - Í ,  we get Qi - i . Hence 

Qi ^  Pi[c/d —> c,n /]. Thus Q* =  Pi[c/d —> c]. Since Pi A  and i £ PAq(d), (3Pi must 

have the form (c —► F ) —> *i? as discussed above (page 29).

By the transition relation definition (7), rule A c t , Seq , we have



Hence we have

PP! =  { F -+  *E).

Now Qi =  Pi[c/d —> c]. Since (3Pi =  (c -»  F) —» *F, we get /5Q¿ =  *(d —> c —► F¿) —> 

*Et, by the sequence introduction transformation (15). By the transition relation 

definition (7), rule Act, we have

((d —> c —> F¿) —> * )  —► ((c —► jP¿) —► *jE/f)

By rule Act, we have

(c —» F* —» *F ¿ ) A  ( F t —> * F t)

Hence, we conclude

((d -> c -+ Ft) *£() *  (Ft -> *Et)

Since PQi =  ((d —> c —> i^) —» *£(), there exists a <5¿ such that Qi Í  Q¡, and 

(3Q'i =  (Ft —> *12*). Since j3P¡ =  (F —♦ *F), we have =  P/[c/d —> c] by the 

sequence introduction transformation (15).

SubCase 1.2: i £ P A q ( c) — PAq(d).

Consider P*, Qi, P/ for an arbitrary i £ P^4g(c) — P A g(d ). By (Q == P[c/d —> c] or 

Q =  P[c/d —> c, rt/]) and the sequence introduction transformation definition (15), 

we have Qi =  P¿. Letting be P/, we get Qi A  and =  P/.

5̂ XICi«̂  d>S1. * z G <p- JM g (c).

Consider Pt, Q,, P/ for an arbitrary i £ ip — PAq(c). By (Q — P[c/d —»■ c] or Q — 

P  [c jd —̂ c, 7i/]) and the sequence introduction transformation definition (15), "we have 

Qi — P¿. Since P¿ =  P/ in this case, we let QJ =  Qi, and hence Q[ =  P/.

If we now consider =  (|| i £ ip : QJ), where the QJ are as given by the 

preceding case analysis, we see that Q ^  Q' by the transition relation definition (7), 

and also that Q' =  P'lcjd —> c], by the sequence introduction transformation def-
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inition (15), since the above three cases cover the entire indexing set ip. Since

S =  {(P , Q) I Q =  P[c/d —> c] or Q — P[c/d —» c, ni]}, we have P' S Q' as required, 
d

Case 2: Q /» »

We show that there exists a Q1 =  (|| i £ (f : QJ) such that Q A  Q' and P' S Q’. By

P A P '  and the transition relation definition (7), Pi A  P{ for all i £ P A g(d ), Pi A  P-

for all i £ PA q(c) — PAg(d), P¿ = P/ for all i £ tp — PAq(c). Furthermore, from 
d d

Q , we have Qj -/* for some j  £ PA g(d). We have three subcases.

SubCase 2.1: i £ PA g(d).

Consider P¿, Qi, P{ for an arbitrary z £ PA g(d). By (Q =  P[c/d —► c] or Q =  P[c/d —»

c dc, nl}), the sequence introduction transformation definition (15), Pj —» , and Qj , we 

have Q j =  Pj[c/d —> c,nl]. Hence Q ^  P[c/d —> c]. Thus Q =  P[c/d —» c,nl]. We

therefore conclude Q¿ =  Pi[c/d —> c,nl] (for all z G P A g(d)).

Since P¿ A  and z G PAq(<¿), /3Pi must have the form (c —> P ) —» *E  as discussed 

above (page 29). By the transition relation definition (7), rule Act, Seq, we have 

((c  _> F ) -> *E ) A  ( F - +  *E)

Hence we have

(3P¡ =  (F ~ ^  *E).

Now Qi =  Pi[c/d —> c,nl]. Since ¡3Pi =  (c —> P ) —» *1?, we have /3Q¿ =  (c —» P4) —>

*Et, by the sequence introduction transformation (15). By the transition relation 

definition (7), rule A ct , we have

(c —> Ft —> *Et) A  (Ft —> *_E¿)

Since (3Qi =  ((e —> Pf) —> *ü?t), there exists a QJ such that Qi A  QJ, and /3QJ =  

( í i  —► *Et). Since f3P¡ =  (F  * E )} we have QJ =  P-[c/d —> c] by the sequence 

introduction transformation (15).
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SubCase 2.2: i £ PAq(c) — PAq(d).

Consider P,*, Qi, P / for an arbitrary i G PAq(d). By (Q =  P[c/d —> c] or Q =  P[c/d —> 

c,n f]) and the sequence introduction transformation definition (15), we have Qi =  Pt. 

Letting QJ be P/, we get Qi A  QJ and Q¡ =  P/.

SubCase 2.3: i £ ip — PAq(c).

Consider P¿, Qt, P / for an arbitrary i £ ip — PAq(c). By (Q =  P[c/d —» c] or Q =  

P[c/d —► c,n l]) and the sequence introduction transformation definition (15), we have 

=  Pi. Since Pi =  P / in this case, we let Qi =  Qi, and hence QJ =  P/.

If we now consider Q# =  (|| i £ tp : Qi), where the Q¡ are as given by the 

preceding case analysis, we see that Q A  Q’ by the transition relation definition (7), 

and also that Q' =  P'[c/d —» c], by the sequence introduction transformation def­

inition (15), since the above three cases cover the entire indexing set ip. Since 

$  =  {(P , Q) I Q £ P[c/d c] or Q G P[c/d —» c, nl]}, we have P' S  Q ' as required.

Clause 4: for all a £ aP — {c } ,  if Q A  Qf, then P A P '  for some P' such that P'«S Q' 

Let Q A Q 1 for some Q' =  (|| ¿ G : QJ) and a G a P  — {c } .  We show that there 

exists a P# =  (|| i £ ip : P/) such that P A P '  and P'SQ'. By Q A  Q' and the 

transition relation definition (7), Qi A  QJ for all ¿ G PAq(a), and Qi =  Q¿ for all

i £ ip — PAq(a). We have two cases.

Case 1: i £ PAq(a).

Consider Pi, Qi, Qi for an arbitrary i £ PAq(a). We have two subcases, 

i £ PAq(a) f) PAq(d) and i £ PAq(a) -  PAq(d).

Subcase 1.1: i £ P A q (a )f]P A q (d ).

From (Q = P[c/d —> c] or Q = P[c/d —* c, nl]), the sequence introduction trans­

formation definition (15), and the subcase condition i £ PAq(a) f) PAq(d), we have
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c
(Qi =  Pi[c/d —> c] or Q* =  P{[c/d —> c,nl]). From Qj A ,  we get Qi -f* , since no 

occurrence of c in £ PA g(d) is an operand of | . Hence ^  Pi[c/d —> c, nl].

Thus Q* =  Pj[c/d  —»■ c]. Since Q iA ,  we have (3Qi =  (a F 1 | G7) —> *F 7 

for some action expressions F 7, (7, F 7, as discussed above (page 29). From =  

Pi[c/d —* c] and the sequence introduction transformation definition (15), we con­

clude that /3Pi =  (a —» F  | G) —> *2? where action expressions F, F, G are such that 

F 1 =: Ft, G' =  Gt,E> =  Et.

By the transition relation definition (7), rales Act, Ch, Seq applied in sequence, we 

have

((a  - »  Ft ] Gt) -*  *Et) A  (Ft -> *Ft)

In general, Qi can have more than one a-derivative, since Gt itself could have the form 

a —» F / I G[. However, there is no loss of generality in assuming that the execution 

of the action a in a —» Ft leads to Q[. Hence we have pQ[ =  (Ft —> *Et).

Thus, we may assume, without loss of generality, that

PQi =  (Ft *Et)

Now Qi =  Pi[c/d —> c]. Since PQi =  (a —> Ft [ Gt) —► *Ff, we have /3P; =  (a —> 

F  | (x) *F , by the sequence introduction transformation (15). By the transition

relation definition (7), rales A c t , C h , Seq, we have 

((a  -+ F  1 G) -► *E)  A  ( F - +  *E)

Since pPi =  (a —> F  § G) —* *E, there exists a P{ such that Pi A  P- and PP¡ =  F  —* 

*F. Since /5QJ =  F* —> *Fi} we have QJ =  P{[cfd —> c] by the sequence introduction 

transformation (15).

Subcase 1.2: i E /M .g(a) — FA g(d).

From (Q =  F [c /d  —» c] or Q =  P[c/d —» c,n f]), the sequence introduction transfor­
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mation definition (15), and the subcase condition, we have Qi =  Pi. Letting P¡ be 

Q¡ we get Pi A  P! and P¡ =  Q̂ .

Case 2 : i £ (p — PAg(a).

Consider Pi, Qi, Q\ for an arbitrary i £ <p — PAg(a). We have two subcases, i £ 

(<P — PAg(a)) f| PAg(d) and i £ (ip — PAg(a)) — PAg(d).

Subcase 2.1: i £ (ip — PAg(a))f)PAg(d).

From (Q =  P[c/d —> c] or Q =  P[c/d —> c,nl}), the sequence introduction trans­

formation definition (15), and the subcase condition, we have (Qi =  Pi[c/d —» c] or 

Qi =  Pi[c/d —> c, nl]). Since i £ ip — PAg(a) these Qi do not participate in action 

a. Therefore we have QJ =  Qi. We also have P/ =  Pi since these Pi do not partic­

ipate in action a either. Since (Qi =  Pi[c/d —» c] or Qi =  Pi[c/d —» c, ni]), we have 

(Qi =  -P/[c/d -> c] or Q'i =  P{[cjd -> c,nl)).

Subcase 2.2: i £ (ip — PAg(a)) — PAg(d).

From (Q =  P[cfd —* c] or Q =  P[c/d —> c, nl]), the sequence introduction transforma­

tion definition (15), and the subcase condition, we have Qi =  Pi. Since i £ (p-PAg(a) 

these Qi do not participate in action a. Letting P¡ be Q[, we have Qi =  Pi =  Q'{ =  P-. 

(end of Case 2) Now suppose PAg(a) f| PAg(d) ^  0. Then, by subcase 1.1, Q'{ =  

P¡[c/d —» c] for some i £ PAg(a) f] PAg(d). Thus, by all the subcases above and def­

inition 15, we conclude Q1 =  P'[c/d —> c]. On the other hand, if PAg(a)f)PAg(d) =  

0, then (ip — PAg(a)) f) PAg(d) =  PAg(d), and therefore, by subcases 1.2, 2.1, 2.2, 

and definition 15, we conclude (Q’ =  P'[c/d —> c] or Q’ =  P'{c/d —► c,n l]). Since

S =  {(P, Q) I Q =  P[c/d —» c] or Q =  P[c/d —» c ,n l]}, we have P '5  Q' in all cases.

If we now consider P’ =  (\\ i £ ip : P/), where the P/ are as given by the 

preceding case analysis, we see that P A  P' by the transition relation definition (7).
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Thus, clause 4 is satisfied.

Clause 5: if Q A  Q', then P S Q', and if Q A  

then P A ? '  for some P' such that P ’ S Q‘

Let us start with the first conjunct, namely “if Q - i  Q’, then P S  Q '”

Let Q -^ Q 1 for some Q’ =  (|| i £ tp : Q[). We show that P S  Q'. By Q - Í  Q’ and 

the transition relation definition (7), Qi - i  for all ¿ £ PA g(d ) and Qi =  Q[ for all 

i E <p — P A g(d ). We have two cases.

Case 1: i £ PAq(d)

Consider Qi, Pi, Q¡ for an arbitrary i £ PA q(d). From (Q  =  P[c/d —» c] or Q =  

P[c/d —» c, nf]), the sequence introduction transformation definition (15), and the 

case condition i E PA q(d), we have (Q¿ =  Pi[c/d —* c] or <5¿ =  Pi[c/d —> c,n l]). From 

Qi - Í  , we have £¡)¿ ^  Pi[c/d —> c, n/]. Hence =  P*[c/d —> c]. From this, Qi - i  , and 

í E Pí4q(<¿), we have /3Qi =  (d c F ’) —► *E* for some action expressions F' , E 1, 

as discussed above (page 29). From Qi =  Pi[c/d —> c] and the sequence introduction 

transformation definition (15), we conclude that (3Pi =  (c —» P) —» *E  where action 

expressions E, F  are such that F' =  Ft, E' — Et.

By the transition relation definition (7), rule A ct , we have 

((d  -  c -  Ft) *Et) - i  ((c -  Ft) -  *Et)

Thus, we may assume, without loss of generality, that

PQ'i = ((«= ^  il) ^  *&)■
Since (3Pi =  (c —* F)  —> *1?, we have =  Pi[c/d —» c,n /] by the sequence introduc­

tion transformation (15).

Note that the assumption that no occurrence of c in Pi,i £ PAq(d), is an 

operand of | is crucial in carrying through the proof in this case. Suppose that this
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assumption is dropped. Then the form of ¡3Qi becomes (3Qi =  (d c F 1 | G') —► 

*E*. Also, pPi =  (c -♦ F  1 G) -> * £ . Now ((d c ^  Ft \ Gt) -> *Et) - ^ ( ( c  -> 

Ft) —* and so =  ((c —» Pt) —» *ü7t). However, since /3P¿ =  (c —» P | (7) —>

* # , we get P*[c/d —► c, nl] =  ((c —*■ Ft | Gt) —> *22*)» and so we cannot conclude 

Qi =  P»[c/^  > c,ni], due to the difference introduced by the presence of the action

expression G  in P , which can occur only if c is allowed to be the operand of | .

Case 2: i £ ip — PAq(d).

Consider P¿, Qi, Q[ for an arbitrary % £ ip — PAq(d). By (Q =  P[c/d —> c] or

Q =  P[c/d —► c,nZ]) and the sequence introduction transformation definition (15), 

we have Qi =  Pi. Since Qi =  Q¡ in this case, we have QI =  Pi.

From the preceding case analysis, we see that Q' =  P[c/d —» c,nf], by the 

sequence introduction transformation definition (15), since the above two cases cover 

the entire indexing set tp. Since S =  {(P , Q) | Q =  P[c/d —> c] ot Q =  P[c/d —> 

CjTiI]}, we have P S Q' as required. Thus the first conjunct is satisfied.

We next establish the second conjunct of the clause, namely “if Q A  Q\ then 

P A P f for some P' such that P' S Q '”

Let Q A Q 1 for some Q' =  (|| i £ ip : Qi). We show that there exists a P' =  (|| 

i £ ip : P¡) such that P A P '  and P' S Q'. By Q A Q '  and the transition relation 

definition (7), Qi A  Qi for all i £ PAq(d), Qi A  Q¡ for all i £ PAq(c) — PAq(d), and 

Qi =  Qi for all i £ ip — PAq(c). We have three cases.

Case 1: i £ PAg(d)

From (Q =  P[c/d —» c] or Q =  P[c/d —► c, nZ]) the sequence introduction transforma­

tion definition (15), and i £ PAq(d), we have (Qi =  P¿[c/d —► c] or Qi =  Pi[c/d —> 

c, nZ]). From Qi A  Q¡, we have Qt ^  P*[c/ci —> c]. Hence Qi =  Pi[c/d —► c,nZ]. Since
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Qi A  , we have (3Qi =  (c —> F' | G') —* *El for some action expressions F', G', E', as 

discussed above (page 29). Note that we can actually show (3Qi =  (c —> F ;) —> *E' 

by using the i £ P-Aq(oÍ) and our assumption that c does not occur in a choice in 

Piji £ PAq(d). However, this is not needed to push through this case, and so we 

can use the more general form (3Qi =  (c —* F 1 | G’) —» *E'. In reality, we will always 

have G1 =  0. Thus ¡3Pi =  (c —> F  | G) —> *E  where action expressions E, F, G are 

such that F ' =  Ft, G’ =  Gt, E ’ =  Et.

By the transition relation definition (7), rales Act, Ch, Seq applied in sequence, we 

have

((c -  Ft I Gt) *Et) A  (Ft -  *Et)

In general, Qi can have more than one c-derivative, since Gt itself could have the form 

c —» F¡ I G't. However, there is no loss of generality in assuming that the execution 

of the action c in c —» Ft leads to Q[. Hence we have /3Q¡ =  (Ft —> *Et).

Thus, we may assume, without loss of generality, that 

/3(5' = (F, -  *Et).

Now Qi =  Pi[c/d —» c ,nl\. Since j3Qi =  (c —► Ft J Gt) —> *Et, we have (3Pi =  (c —>

P  I (?) —> *E, by the sequence introduction transformation (15). By the transition 

relation definition (7), rales A ct , C h , Seq, we have 

((c -► F  1 G) -> *£) A  (F  -> *J57)

Since (3Pi =  (c —» F  | G) *E, there exists a P/ such that Pi A  P- and (3P¡ =  F  —> 

*E. Since /3(3J =  F¿ —» *Etl we have =  P /[c/d  —> c] by the sequence introduction 

transformation (15).

Case 2: i € P A q(c) — Pi4.g(d).

Consider P¿, Qi, Qi f°r an arbitrary i £ P A q(c) -  P A Q(d). By (Q =  P [c /d  —► c] or
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Q =  P[c/d —* c,n l]) and the sequence introduction transformation definition (15), 

we have Q¿ =  Pi. Letting P/ be QJ, we get P; A  P¡ and QJ =  P/.

Case 3: i E ip — P A q ( c).

Consider Qi, P{, QJ for an arbitrary i E <p — PAq(c).  By (Q =  P[c/d  —» c] or Q =  

P[c/d  —> c,n l]) and the sequence introduction transformation definition (15), we 

have Qi =  P¿. Now Qi =  QJ in this case as explained above. Letting P/ =  P¿ we get

= Qi.
If we now consider Pl =  (|| i E <p : P/), where the P / are as given by the preceding 

case analysis, we see that P A P '  by the transition relation definition (7), and also 

that Q' =  P'[c/d —» c], by the sequence introduction transformation definition (15), 

since the above three cases cover the entire indexing set ip. Since S =  {(P, Q) | Q =  

P[c/d —» c] or Q =  P[c/d —» c,n!]}, we have P ; 5  Q' as required.

We have shown that all five clauses of definition 16 hold, hence S  is a dc- 

bisimulation. □

P ro p o s itio n  7 Let Q =  P[c/c —» d). If Q' is an arbitrary derivative of Q, then there 

exists a derivative P' o f P such that P’ ~  Q'.

P ro o f: Let S  =  {(P, Q) | Q =  P[c/c —> d]}. By proposition 6 , 5  is a cd- 

bisimulation. Hence 5  C ~ b y  definition 17. Since P  5  Q by assumption, we conclude 

P  ~  Q. We now establish the proposition by induction on the number of steps of 

derivation of program Q. We let Q% represent a derivative of Q which has been ob­

tained after i events. Thus Q', the derivative of Q after n steps, is represented by Qn 

etc.

Base Case.

We first prove the base case for one step of the derivation. Let Q A  Q1. There
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are three cases, depending on the value of a\. First, if a\ =  d} from P  ~  Q and 

proposition 5 we conclude that P  ~  Q1. Second, if a\ =  c, from P  ~  Q and 

proposition 5 we conclude that there exists P1, a derivative of P ( P A  P1 ) such 

that P1 ~  Q1. Third, if fli ^  c and ai /  d, then from P ~  Q and proposition 5 we 

conclude that there exists P1, a derivative of P ( P ^  P1 ) such that P 1 ~  Q1. Thus 

the base case is established.

Induction Hypothesis. Let us assume that our proposition holds upto n steps of the 

derivation.

Induction Step. Let Q A  • ■ • Qn for some path p =  . . . ,  an of actions. By our

induction hypothesis , there exists a derivative P' of P  such that P' ~  Qn. Let 

Qn Qn+1. Using the same argument as the base case, we conclude that there 

exists a derivative P" of P' such that P" ~  Qn+1. Since P" is a derivative of P' which 

is a derivative of P, P" is a derivative of P. Thus our induction step is established. 

□
As before we prove that our syntactic transformation preserves the property of 

Deadlock-freedom.

Theorem 2 Let Q ==■ P[c/d —» c]. If P is deadlock-free, then so is Q.

Proof: Let Q' be an arbitrary derivative of Q. By definition 14, it suffices to show 

Q' A  for some action a. By proposition 7, we have

If Q’ is an arbitrary derivative of Q, then there exists a derivative P1 of P such 

that P ’ ~  Q'

By assumption, P  is deadlock-free. Hence, by definition 14, P ’ A  for some a'. If 

a' ^  c, then Ql —> by proposition 5. If a' =  c, then either , or Q’ A  again 

by proposition 5. Hence in all cases we have Q’ A  for some a, and therefore Q is
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deadlock-free. □

3,4 Example: The Elevator Problem

We will illustrate the transformations with the standard elevator control problem. 

Our version is defined as follows: An N elevator system is to be installed in a building 

with F floors. The internal mechanisms of the elevators are given. The problem is to 

design the logic control that moves elevators between floors according to the following 

constraints:

• Each elevator has a set of buttons, one for each floor. These illuminate when 

pressed and cause the elevator to visit the corresponding floor. The elevator- 

button illumination is canceled when the elevator stops at that floor.

• Each floor (except ground and top) has two buttons: one to request an up- 

elevator and one to request a down-elevat or. These buttons also illuminate 

when pressed. A floor button is canceled when an elevator traveling in the 

desired direction visits the floor.

• All requests for elevators (from floors and within elevators) must be served 

within a finite amount of time.

Figure 3.1 gives an initial solution to this problem. The actions in figure 3.1 perform 

the following functions:

select Indicates that a particular floor button has been pressed, selects a 

particular elevator to service the floor-button request, and enters that 

request into the schedule of the elevator.
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p—schedule Indicates that a particular panel button has been pressed and 

enters the panel-button request into the schedule of the elevator con­

taining the panel button.

/—sa tisfy  Indicates that a floor-button request has been satisfied; i.e., the 

elevator has visited the desired floor and was traveling in the desired 

direction.

p—satisfy Indicates that a panel button request has been satisfied, i.e., the 

elevator has visited the desired floor.

The select and p—schedule actions are very large-grain —  they each repre­

sent several activities. To refine these actions, we apply the left-sequence introduc­

tion transformation to figure 3.1 twice. The first application has d =  f —press and 

c =  select. The f —press action thus introduced models the pressing of the floor 

button. Hence, the granularity of select has been reduced since it now models only 

the selection of a specific elevator to service the floor-button request and the enter­

ing of that request into the schedule of the elevator. The second application has 

d =  p—press and c =  p—schedule. Again, the granularity of p—schedule has been 

reduced since it now models only the insertion of the panel-button request into the 

schedule of the elevator containing the panel button. The resulting program is shown 

in figure 3.2.

We can refine the p—schedule action further by applying the right-sequence 

introduction transformation to figure 3.2, with c =  p—schedule and d =  p—insert, 

p—insert models the actual insertion of the panel-button request into the schedule 

of the elevator containing the panel button. Afterward, p—schedule models only
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the transmission of the request from the panel-button process (p—button) to the 

elevator—controller process. We also refine the select action, using four iterated 

applications of the right-sequence introduction transformation (in all of which we 

have c =  select). The final result is shown in figure 3.3. Note that we have changed 

the name of select to select—announce, since it now only models the announcement 

of the fioor-button request to all elevators. The other actions introduced have the 

following functions:

reply The reply from the elevators to the announcement of the fioor-button 

request. This reply will contain information (i.e., its location and di­

rection of travel) that the fioor-button process will subsequently use to 

select a particular elevator to service its request.

choose The (local) action of the f —button process in which it selects the 

elevator to service its request.

in form  The action in which f —button informs all the elevators of its choice.

f —insert The (local) action in which the chosen elevator adds the fioor- 

button request to its schedule.

Although it is quite easy to verify by inspection that the program of figure 3.1 

is deadlock-free, the same property is not so readily apparent for the program of 

figure 3.3. However, we know that the latter program is deadlock-free, because it was 

derived from the former using only transformations that preserve deadlock-freedom.

Of course, a relatively small additional effort would enable us to verify the 

deadlock-freedom of the program of figure 3.3, since this example is quite simple.
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With a program of realistic size, however, the difference in complexity between the 

initial and final programs would often be substantial.

/—button :: *[ select —> f —sa tisfy  ) 

p—button :: *[ p—schedule —> p—sa tisfy  ]
\

elevator—controller :: *[ select
I

p—schedule 
i

f - s a t i s f y

Ip—satisfy

Figure 3.1: Zero-Level Elevator System
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p—button :: *[ p—press —» p—schedule —» p—sa tisfy  ]

elevat or—controller :: *[ select —*• f —insert
1

p—schedule —> p—insert
I

f —satisfy 
i

p—satisfy

f —button :: *[ f —press —» select —* f —satisfy ]

Figure 3.2: First-Level Elevator System

f —button :: *[ f —press —> select—announce —» reply —> choose —»
inform  —» / —sa tis fy  ]

I
p—button :: *[ p—press —> p—schedule —> p—satisfy ]

elevator—controller :: *[ select—announce —» reply —* in form  —» f —insert
¡

p—schedule —» p—insert
«

f —sa tisfy  
i

p—satisfy 
}

Figure 3.3: Second-Level Elevator System
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Chapter 4 

Merge Transformations

4.1 Introduction

This chapter focuses on syntactic transformation techniques for building programs 

which involve merging of deadlock free programs with constrained syntactic forms 

such that the merged program preserves the property of deadlock freedom. These 

merging techniques could be used to build large complex programs from smaller ones. 

Such tools, along with transformations which allow refinement of programs by action 

introduction, could form the basis of a promising methodology for the design and 

implementation of large, complex systems.

It is to be noted that the transformations described are mechanizable and there­

fore do not require an unreasonable amount of manual formal labour at every step, 

which is a drawback of most other similar methodologies. Manual verification can be 

done for the small programs which are used as the building blocks.

The program merging idea seems to be rather new in the domain of distributed 

programs. The only place where we have found a reference to similar techniques is 

in a paper by Sol M. Shatz [SS85]. The primary objective of his proposal is to find 

means to enhance the fault tolerance of a system. His technique uses process merging

50



to reconfigure a distributed program on detecting a faulty processing element. The 

failure element is removed from the system and the process which was being executed 

on this element is reallocated to a different element. If this element had already been 

executing a process, that process is merged with the newly migrated one to form a 

new sequential process.

In this chapter we shall use the notaion described in the introductory section. 

We next define the transition graph construct which we shall use in future.

4*2 Preliminary Technical Definitions

Corresponding to the execution of a distributed program, one can construct a tran­

sition graph such that each of its nodes corresponds to a state of the program. The 

states are encoded by tuples which are constructed by taking the indices of the pro­

cesses constituting the program. The ordering of the indices in the tuple is identical 

to the ordering of the corresponding processes in the syntactic representation o f the 

program. The “state-nodes” are connected by directed edges such that if the nodes 

S' and are connected by a directed edge labeled a, this implies that the program 

can go from state S' to S3 on execution of action a.

D efin ition  18 ( trgraph)

More formally, a transition graph Gp o f program P  is the least graph such that :

1)  The initial state P is a node in Gp.

2) I f  P 1 is a node in Gp then (P 1, a, P 2) is a directed edge in Gp for every action a 

and program configuration P 2 such that P 1 A  P 2.
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If the execution graphs of two programs are equal (upto a relabeling of the 

nodes), we will call them behavior ally equivalent. Two behaviorally equivalent pro­

grams are capable of exactly the same action sequences.

Given two programs P  and Q consisting of sets of asynchronously executing 

and communicating processes, we will attempt to do a syntactic merge of the two 

programs to form a single new program R  which embodies the functionality of both 

P  and Q.

We will now present a set of transformations Unless otherwise stated we will 

assume that the programs being merged have equal numbers of processes. In the 

syntactic representation of the concurrent programs we have not explicitly included 

the || symbol to indicate parallel composition of the processes. Parallel composition 

is always implied. We refer to an arbitrary process of a program P  as P¿.

4.3 Transformation 0

We shall start with an elementary merge transformation.

D efin ition  19 ( Transformation 0)

Consider the programs P  and Q o f the following form  and satisfying conditions 1 — 3

below.

P  = Q =
Pi * (c - - Fi) II Qi
P2 * (c —> F2) II Q 2

P„ * (c -+ Fn) Qn
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1. For any action a such that a £ a P  d  aQ,

f\i £ {1 . • .n }, a £ aPi iff a £ aQ¿.

2. f\ i £ { 1 . . .  n }, c ^ aFi A d 0  aG{

3. P  and Q are deadlock free.

We merge the programs P  and Q to produce the program R.

R =

Ri :: < ( c ~ * F 1) l ( d ^ G 1)) ||
R2 :: *((c F2) [ (d -  G2)) ||

Rn: :  * ( ( c ^ F n) l ( d ^ G n))

It is easy to observe that the actions c and d act as top level guards for the 

process bodies from programs P  and Q respectively. Suppose c is executed. Now the 

program R is forced to execute an action sequence of P  till it gets back to the top 

level choice. During this period no action sequence of Q can be executed. We will 

present a formal correctness proof in the next sub-section.

4.3*1 Discussion

The first condition is designed to avoid the possibility of deadlock in R. Its use is 

illustrated by the following example which violates the condition. Let us merge the 

programs P  and Q below. The program R is the result of the merge.

p  = Q =
Pi :: *(c —» a) ll Qi ■■■■ *(d —» e)

P2 :: *(c —» b) ll Q2 ” *(d —» a)
P3 :: *(c —► a) Q3 :: *(d e)
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Note that the action a is such that a £ a P  fl aQ.

We also have a ^ 01.P2 and a £ olQ2 which violates the first condition. After executing 

c and b the program R  is as follows and is clearly deadlocked.

R =
Ri :: a —» *(c —■» a | d —> e)
i ?2 -  *(c —■» b I d —» a)
i ?3 :: a —> *(c —>• a | d —» e)

Enforcing the first condition enables us to avoid such deadlocks.

4*3*2 P roof o f Correctness 

D efin ition  20 c—derivative

Lei Ri he a process o f an arbitrary derivative o f R. Of the actions {c, d}, if  c was the 

last action executed by the process Ri, or if Ri =  *(c —» Fi | d —> Gi), we call Ri a 

c—derivative, c—derivatives are denoted by Rf

D efin ition  21 d—derivative

Let Ri be a process o f an arbitrary derivative o f R. Of the actions {c , d}, if  d was

the last action executed by the process Ri, or if  Ri =  *(c —•» Fi | d —> Gi), or if  both

the actions c and d are enabled in R4, we call Ri a d—derivative, d—derivatives are 

denoted by R f

We define a mapping <j)p between the processes of c derivatives and the processes 

of derivatives of program P.

<j)p(Ri) =  <fip(aRi,/3Ri) =  (aPi,<l)p((3Ri)) where <j)P((3Ri) is defined as follows:



If ¡3Ri =  C ¡ ^ * ( c ^ C i l d - ^  Di) then M P R )  =  C ¡ -+ *(c -> <7¿)

If (3Ri =  *(c —» Ci | d —> D,) then </>p (¡3Rí) =  *(c —► (7¿)

We define a mapping </>q between the processes of d derivatives and the pro­

cesses of derivatives of the program Q.

M R i )  =  ^ Q ^ ik iP R i)  =  (a Qii<f}Q(0Ri)) where (¡>q(PRí) is defined as follows:

If 13 Ri =  D ¡ ^ * ( c ^ C i ¡ d ^  Di) then QRí) =  D¡ -+ *(d “ ► A )

If pRi  =  * { c - ~ * G i \ d ^  Di) then (j>Q{pR i) =  *(d -► A )

We define (¡)'P which maps derivatives of R  consisting of processes which are 

c — derivatives to derivatives of P.

# , ( < 1 5 ,. ■ • , * £ > )  = < m i * * ' . m cn ) >

We define >̂q which maps derivatives of R  consisting of processes which are 

d — derivatives to derivatives of P.

<¡>'Q{ < R { , . . . , R Í > )  =  <  * ( # ) , m i )  >

We define the mapping between the edges of the transition graphs (see 

page 51) of R  and P,

Let <  Rc,a , R c >  be an edge in Gr . Then,

# ( <  Rc,a ,R « > )  = <  ^P(Rc) , a J fP(Rc) >

The mapping (¡>q between the edges of the transition graphs of R  and Q is 

defined similarly.

Let <  Rd, a, Rd >  be an edge in Gr . Then,
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4>%{< Rd, a, Rd > )  =  <  & , ( # ) ,  o, # ,(# < ) >

We define the mapping <¡)"'{Gr)  between the transition graph of R and those of 

P and Q.

=  {^p(¿)|¿ starts with a c — derivative} (J {^(¿)|t starts with ad —

derivative}

L em m a 1 I f  <j>,n(G) is the transition graph of a deadlock-free program, then G is also 

a transition graph of a deadlock-free program.

P ro o f; We present a simple proof by contradiction. Let us assume that G is the 

transition graph of a program which deadlocks. Therefore there exists at least one 

node, say N, which has no out-going edge. N will map to some node, say Ni in 

(¡>m{G). From the definition of the mapping <f>m it is clear that N\ cannot have an 

out-going edge. Therefore we infer that the transition graph <¡>"'(G) corresponds to a 

program with a reachable deadlock state. This, however, is contrary to the premises. 

Therefore our initial assumption must be false. Therefore G is the transition graph 

of a deadlock-free program. □

Proposition 8 ^"(Gr) =  Gp \J Gq

Proof: Let <  jR1, a, R2 >  be an arbitrary edge in Gr. Therefore R1 A j ? 2. From 

the syntactic form of R we infer that this action could have resulted from any of the 

following transitions executed by processes of R.

1» a =  c and Vi E PAp(c):

Rj =  *(c —» Ci J d —» Di), R\ =  Ci —> *(c Ci I d —> D¿)
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2. a =  d and Vi £ PAg(d):

R¡ =  *(c -> 1 d -» D¿), fl? =  D¿ _> *(c -> C¿ | d -  A )

3. V¿ € P4p(a):

flí =  Cí -  *(c -> Ci [ d -> D¡), R] =  C'f ^ * ( c ^ C i l d - *  Di)

4. Vi € PAQ(a):

flí =  Di _» *(c _* d  1 d -> £>¡), fl? =  D? -> *(c -► C¿ | d -► A )

Corresponding to each of these cases we have an action executed by processes 

of P  or Q which have a corresponding edge in G p  or G q .

1. For case 1 above consider the processes (f)p(Ri) =  *(c —* Ci). By the definition 

of the transition relation (see page 8), we have :

Vi £ P A P(c% *(c -*  Ci) *(c - »  (70

2 . For case 2  above consider the processes </>q (R í) =  *(d —* Di). By the definition 

of the transition relation (see page 8 ), we have :

Vi e PAfl(d), *(d -»  Di) - i  Di -*  *(d -» A )

3. For case 3 above consider the processes ^g(Ri) — —> *(c —> (70- By the

definition of the transition relation (see page 8 ), we have :

Vi G P A P(a), Cl -> *(c -> (70 A  C'l -► *(c -► (70

4. For case 4 above consider the processes $q(R í) =  D¡ *(d —> Di). By the

definition of the transition relation (see page 8), we have ;

Vi <= P A Q(a), DI -*  *{d A )  A  D f -► *(d -+ Di)

Here it is also important to note that the alphabet restriction on the programs

which are being merged (the first condition in the set) ensures that for all a, a an
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action in i 2, the processes participating in a are exactly the same in terms of indices 

for P/ Q and R. In other words we have :

1. if a E a P  n aQ  then PAp(a) =  PAq(cl) =  P A r (o ).

2. if o ̂  a P  fi aQ  and a £ a P  then PAp(a)  =  P A r (ü).

3. if a $  a P  f! aQ  and a £ aQ  then P A q (cl) =  P A r (cl).

Thus not only do we have a Pi (or Qi) for every Ri which can execute an action a, we

are also sure that these are the only processes in program P  (or Q ) which participate 

in the action a. This allows us to make the following claim.

Any edge of <̂ 2( G r ) has a corresponding edge in either of Gp or Gq.  (a)

In a similar way we can show :

Any edge of Gp or G q is also an edge of ^ ( G r ) .  (b)

From (a) and (b) we conclude ( G r ) =  G p  U Gq. □

T h eorem  3 If P , Q are deadlock freet so is R,

P ro o f : Since by assumption G p  and G q are transition graphs of programs without 

reachable deadlock states, ( G r ) is the transition graph of a deadlock free program. 

Therefore from lemma 1 (see page 56) we can conclude that G r  is the transition

graph of a deadlock free program. Therefore R  is deadlock free. □

4.4 Transformation 1

We will now go onto a merge transformation which uses the sequence operator for 

merging. We first define the single iteration constraint which is an essential condition 

for this transformation.
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D efin ition  2 2  (Single iteration constraint)

The program P satisfies the single iteration constraint if its constituent processes Pi 

are such that any path o f computation for P starting at P goes back to P in the 

transition graph with each body ¡3Pi =  *Si having executed exactly one iteration. This 

implies that none of the constituent processes may remain at their initial local states,

i.e. not participate in any of the interactions of the path of computation. A more 

rigorous definition o f this constraint is :

For all computations tt of P, there exists a prefix p of w such that fo r  every pro­

cess Pi o f the program P , p projected onto Pi is exactly one iteration of Pi. Projecting 

the path o f computation of a program onto one o f its constituent processes yields the 

sequence o f those actions o f the path o f computation in which the process participated.

D efin ition  23 ( Transformation 1)

Consider two programs P  and Q o f the following forms and satisfying the conditions 

below (where 0  <  k <  n). k is the number of instantiations o f processes o f the 

form  *(b I c). When k =  0, there are no processes of the form *(& J c).

P =  Q =

P i : :  *Si || Q i : :  *(b I c) ||
P2 ■■■■ *s2 II <?2 :: * (4  [ c )  II

Pk r. *Sk || Qk■■ *(b¡c)  ||
Pjfc+ 1 :: *Sjfc+ i II Qk+1 ” *((&2 ->  Bt+ 1 - »  &) 1 (c2 ->  Ck+i ->  c)) ||
Pk+2 *Sk+2 II Qk+2 ■■ *((h —* Bk+2 —* b) I (c2 —> Ck-t-2 c ) )  ||

P „  :: *Sn Qn ■■■ *((¡>2 - *  Bn - »  b) J ( c 2 -+  C „  - »  c ) )

Conditions:

1. P  and Q are deadlock free.

59



2. olP fl olQ =  (p.

8. The program P  satisfies the single iteration constraint (see page 59).

4. The program Q satisfies the single iteration constraint (see page 59).

5. The actions b2j c2,b,c do not occur in the action expressions Bi or Ci.

fl>)

The following is the program R which results from applying transformation 1 to 

the programs P  and Q .

R =

Ri ■■■ *(Si - » (b 1 c)) II
R2 ■■■■ II
Rk ■■■■ *{Sk -» (b 1 c)) II
Rk+i *(Sk+i —> ((h —> Bk+i —> b) J (c2 —> Ck+i —> c))) j|
Rk+2 ” *(Sk+2 —> {{bi —► Bk+2 —> b) I (c2 —> Ck+2 —► c))) ¡j

Rn :: *{Sn ((b2 ~ * B n ^ b )  [ (c2 Cn c)))

4.4.1 Discussion

It needs to be emphasized that it is very easy to get into deadlocks if  appropriate

conditions are not specified. For an illustration consider the merge of the following

programs:

*a II 
*a II
*a

and 

*(c I d)  II
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*c
*d

If we merge these programs into:

*(a -> (c I d)) ||
*(a —> c) ||
*(a  —> d)

We find that we have produced a program which deadlocks within two steps 

(consider the action sequence a, c or a , d).

The third and fourth constraints in the set ensure that pathological cases like 

the one described above are avoided. It is easy to observe that in that example 

the program corresponding to Q does not satisfy the second condition since there 

is no path of computation which will take it from Q back to Q with each process 

body having completed exactly one iteration. Only one path of computation where 

the condition does not hold is sufficient to disqualify the program. This does seem 

a little too restrictive but the ease with which merged programs tend to deadlock 

require strict conditions to be imposed. The second condition ensures that alphabet 

restrictions do not hamper the execution of the merged program. The fifth condition 

ensures that the new processes will be synchronized at the entry and exit of the 

process bodies belonging to the programs P  and Q. This forces the execution of R 

to be composed of complete iterations of P and Q.

An inspection of the syntactic structure of R  reveals that the action sequence 

of R \  execution consists of alternating action sequences of P and Q. We have one 

iteration of P  followed by an iteration of Q and so on. The processes are synchronized 

at the entry and exit of an iteration of Q. The actions 62, C2, b and c serve as the
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synchronizers. They ensure that there is no interleaving between the iterations of P  

and Q.

4.4.2 P roof o f Correctness

We now present a formal proof of correctness for the above transformation. We begin 

by defining the prefix program, which is the core construct of the proof.

D efin ition  24 (prefix-process)

The prefix process o f a process Mi is the process created by taking the portion of the 

process body o f Mi which precedes *. In case the process body o f Mi starts with a *, 

the prefix process is constructed by taking the entire process body o f Mi, excluding *. 

P r e f iA [  *Ai) =  A'

P r e f ( * A i ) =  Ai

D efin ition  25 (prefix-program)

For a program M , the prefix program is the parallel composition o f the prefix processes 

o f the constituent processes o f M . Henceforth we shall denote the prefix program of 

M  as P r e f ( M ) .

P r e f ( M )  =  P r e f i M t ) || . . .  || P r e f ( M n)

From our operational semantics and the definition of the prefix program it 

should be obvious that P r e f ( M )  simulates the execution of M  for at least one tran­

sition. More formally we may state that P r e f ( M )  can execute the action a iff M  can 

execute the action a.

For an arbitrary derivative R’ of program R, if we could show that P r e f (R ' )  

can execute some action then it would immediately follow that the program R' can

62



execute the same action. This is sufficient to prove the deadlock freedom of R  (see 

page 27). We will use the above approach for proving deadlock freedom preservation 

of this transformation.

( l . i )

T h eorem  4 The program R, the result o f the above described merge o f the deadlock 

free programs P  and Q, is deadlock free.

P ro o f: Consider the prefix programs of R  and P.

P r e f ( R )  =

(Sl -  (* i c)) II
(S2 -  (6 1 c)) ||

(Sk -  (b I c)) ||
(Sk+i —> ((&2 —* Bk+i —> 6) I (c2 —» Ck+i —> c))) ||
(Sk+ 2  ((h —> Bk+ 2 b) j (c2 —> Ck+2 c))) 11

(Sn -> ((62 -  Bn -  b) B (c2 -  C„ -  c))) 

P r e f ( P )  =

5 ! II
5 2 II

II
£ * + 1  II
-S'jfe+a II

(1.2)

Since P  is deadlock free there exists an action which P r e f ( P )  can execute. This 

implies that P r e f (R ) ,  and therefore R  can execute some action. Due to the single 

iteration constraint on program P , the deadlock freedom of P  and the syntactic
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structure of program Q, every path of computation of the program R  leads to a

derivative R' for which P re f (R ' )  has the syntactic form (1.3). We again observe from

their respective syntactic forms that the execution of P r e f (R )  is an exact simulation 

of the execution of P  till it reaches the form (1.3).

(6  1 c) ||
b  1 4  ii

(6 I c )  ||
((52 —> Bk+i —► b) J (c2 —» Ck+i —> c)) ¡j 
((fc2 —> Bk+2 —* b) I (c2 —» Ck+2 —> c)) II

((b2 -  Bn -  5) 1 (c2 -> Cn -> c))

(1.3)

The above program (1.3) is identical to Pref(Q). Therefore P r e f (R ' )  and 

P r e f ( Q )  are able to execute the same set of actions. Since we know Q to be deadlock 

free, there exists at least one action a which Q can execute. Therefore there exists 

an action a which P r e f ( Q ) can execute. Therefore there exists an action a which 

Pref(R') can execute from which it follows that R’ can execute some action a.

From the deadlock freedom and single iteration constraints on Q we observe that 

P r e f ( Q )  executes to completion. Therefore Pref(R') will also execute to completion. 

This completes one complete iteration of the program R.

The single iteration constraint on Q and the actions b and c ensure that at that 

point all the processes of the original program are lined up at the initial state, and 

a new unwinding takes place. The unwinding would take the prefix program back 

to form (1.1). Since P  is deadlock free there exists an action which P r e f ( P )  can 

execute. Clearly this implies that P r e f (R )  and R  can execute some action. We then 

have another iteration which takes the prefix program through form (1.3) and back
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to form (1.1). When our prefix program is between the forms (1.1) and (1,3), the 

deadlock freedom of P  ensures that there is always some action which it can execute. 

When it is between the forms (1,3) and (1.1), deadlock freedom of Q ensures that 

there is always some action which it can execute. Thus the prefix program of R  is 

deadlock free. Since P r e f (R )  simulates R , R  is deadlock free too. □

4*4.3 Straightforward Extensions

From the above proof it is easy to envisage a few trivial extensions to the syntactic 

forms of the processes being merged. These extensions can be demonstrated to pre­

serve the deadlock freedom property in exactly the same way as above. We do not 

present them in detail to avoid repetition.

It is easy to see that the actions b and c need not be different. If they are 

represented by the common action 6c, the processes of R  of the form *(b [ c) would 

be modeled as *6c. Proving the merged program deadlock free can be done in exactly 

the same way as above.

Another syntactic form we can easily accommodate is where the processes of 

the program Q have the following form ::

Qi  :: *{b J c) ||
Q2 :: *(b [ c) II

Qk :: *(& I c) II
Qk+i ”  *( (h  —> Bk+i -> ((Bk+i»i b) I (£fc+i,2 —► b) I . . . ) )

[ (c2 —» Ck+l —* ((Ck+1,1 c) 1 (^Jfc+l»2 —*■ c) 1 . . . ) )  ) II

Qn ”  *( ( h  -*  Bn —> —> b) I (-Bn,2 —► fy ] • • •))
I (c2 —> Gn —> ({C n,l c) I (Cn,2 c) ¡ •••)))

The only way the above form differs from the one we have dealt with in detail
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is that instead of single occurrences of the actions b or c, every path has the synchro­

nizing actions b or c at the end. Deadlock freedom can be proved in the same way as 

above.

4.4.4 Comments

This transformation enables us to merge two programs satisfying the given set of con­

ditions and executing different layers of functionality. The point of note is that the 

new program retains the deadlock freedom property. We believe that in many physical 

systems that we would like to model, functionality can be decomposed into different 

layers which interact only at well defined interfaces. Similar ideas have been elabo­

rated in a paper by Elrad and Francez [EF82]. They group parts of processes which 

interact mutually and do not interact with other parts, into layers. Their proposal 

is essentially a divide and conquer approach which consists of developing a collection 

of layers from the specification of the distributed program and then composing these 

layers into the program while preserving their communication closedness. They have 

also proposed a language construct which does away with the requirement of having 

to take care of explicit synchronization to ensure a safe decomposition which does not 

result in inconsistent computations.

We could develop programs for the different layers separately and then merge 

them using syntactic gluing techniques on the lines of the one we described. What 

is important to ensure is that our merging techniques preserve all the properties we 

are interested in. Here we have only concerned ourselves with deadlock freedom. We 

emphasize that other properties and features such as safety and liveness are just as 

important. This work is a first step in devising property preserving transformations.
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4.5 Transformation 2

We now present a simple merge transformation which uses the choice operator to 

merge programs.

D efin ition  26 ( Transformation 2)

Consider the programs P  and Q of the following forms and satisfying condition set

(a).

P  consists o f a set o f processes each of which have the form  *(a). Q is any 

program such that the number of processes in Q is greater than or equal to that o f P . 

We shall denote the processes of Q as *Q 

Conditions:

1. Q is deadlock free.

2. a £  aQ . (a)

We construct our merged program hy putting some of the process bodies o f Q 

in choice with the action a from the process bodies of program P . A different way of 

looking at the new program is to imagine that a new action a has been introduced in 

choice with some or all o f the processes comprising the program Q. The program R  

looks as follows:

Rt :: *Q i
R2 :: *(a
R3 :: *{Q
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Rn :: *(a | Qn)

The selection of Qi which are put in choice with a is arbitrary.

An inspection of the syntactic form of R  reveals that the execution of R  consists 

of interleaved iterations of P  and Q. As before the interleaving occurs at the level of 

iterations and not among individual actions from P  and Q. Since the P  layer consists 

of only one action (a), this is a trivial observation. We give a formal proof below for 

the sake of consistency.

4*5*1 P roof o f Correctness

D efin ition  27 (Enabled Set)

The enabled set fo r  a program P  is the set o f actions which the program can execute 

next. We shall denote it by Enab(P). Formally, Enab(P)  =  {a  | P A } .  If the 

program is deadlocked then Enab(P) =  0.

T h eorem  5 The program R, the result o f the above described merge o f the deadlock 

free programs P  and Q, is deadlock free.

P ro o f : Let us set up a mapping $ from the processes of R  (and its derivatives) to 

the processes of Q (and its derivatives).

¿(Ri)  =  </)(aRi,(3Ri) =  (aRi -  a, <fr(/3Ri)) where (j)(f3Ri) is defined as follows.

l ip R i  =  *(o  1 Qi) then <t>(PRi) = *(Qa)

If PRi =  *(Q a) then ¿(PRi) = *{Qi)

If PRi =  J <?2) then f f lR i )  = Q' - » *(<&)

If PRi =  Q'~>*(Q2) then m )  = Q' -> *(<?*)
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Consider the program R' which is an arbitrary derivative of R. From the defi­

nition of (¡>i it should be clear that Enab(^\(R!)) C Enab(Rf). If all processes of R 

which contain a are back at the top level choice, then Enab^R1) has the action a in 

addition to the actions in Enab^i^R')), In all other cases Enab(<f>i(R')) =  Enab(R').

Now (¡)\(R') is identical to some derivative of the program Q since <j>i maps 

derivatives of R  to those of Q. Since Q is deadlock free by assumption, there ex­

ists some action b such that QJ" (see page 27), i.e. Enab(Qi) ^  0. Therefore 

Enab(^i(R'))  ^  0. Therefore Enab(R') ^  0 (since E n a b ^ ^ R '))  C Enab(Rf)). Thus 

R', an arbitrary derivative of R, has a non-empty enabled set. Therefore there exists 

some action b which R1 can execute. Therefore R  is deadlock free (see page 27). □

4.6 Transformation 3

We will extend the last transformation into a more general one. In the following 

paragraphs we explain some terms which are essential to our discussion.

D efin ition  28 ( Covering Actions)

A covering action o f a ‘program, P  is any action which it can fire when at the state P  

(i.e. all the processes o f P  are at their initial local states). The covering action set 

Cp o f a program P  is defined as follows :

CP =  { c | P A } .

D efin ition  29 (Process Cover Set)

The set PAp(a)  o f participant processes o f action a is called a process cover set iff a 

is a covering action.
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To distinguish, process cover sets from the participant sets of actions that are 

not covering actions, we introduce the notation for PAp(a)  when a is a covering 

action. If P  is understood from context, we omit it and write Sa.

D efin ition  30 ( Complete Cover Set)

The union o f the process cover sets o f a program P  is called the Complete Cover Set, 

C C p .

CCp — Ua PAp(a)  where a ranges over all the covering actions o f P ,

D efin ition  31 (An iteration)

An iteration is an action sequence which can take a program P  from the state P  back 

to the state P  without going through P .

D efin ition  32 (Active Processes)

The Active processes for  an iteration o f program P  are defined to be those processes 

which participate in any o f the actions of the iteration.

D efin ition  33 (End Synchrony)

End Synchrony is a property which a covering action (say a) may have with respect 

to a program (say P ). Satisfaction o f this property is determined by two criteria :

1. For all computations w of program P  which start with the covering action a, 

there exists a prefix p of tt such that for every process Pi o f the program P , p 

projected onto Pi is exactly one iteration of Pi if the result o f the projection is 

non-empty. In other words if a process has participated in any o f the actions o f  

p, it must have completed an iteration. However, it has the option o f not par­

ticipating in any action at all. This is sofnewhat similar to the single iteration 

constraint we have discussed before.
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2. For any particular path o f execution, only one specific action is executed by all 

Active processes at the end of an iteration. This action must not appear any­

where else. Different paths of execution may have different actions appearing at 

the end o f the iteration. The crucial point is that all processes which participate 

in the iteration execute the same action at the end o f the iteration. We visualize 

these actions as marking the end of an iteration and refer to them in future as 

end markers.

An example should make this clearer.

Consider the following program S :

s  =
Pi :: *(c —¥ a) ¡1
P i - *(c —» a) ll
P3 :: *(c | (d —> /  e)) II
P4 :: *(d —> e) II
P5 :: *a

The covering action set is {c, d}. The corresponding process cover sets are 

{ 1 , 2 , 3 }  (for c) and {3 ,4 }  (for d). It is to be noted that a is not a covering action 

since it can never be executed by the program from state S. The complete cover set 

is {1 ,2 ,3 ,4 } . The action d has the property of end synchrony with respect to the 

program S. The action e serves to end-synchronize all the processes which participate 

in an iteration starting with the action d. Clearly the action c does not have the 

property of end synchrony, since Pi, P2 execute a at the end, but P3 executes c.

D efin ition  34 ( Transformation 3)

The program R is the result o f applying transformation 3 to the programs P  and Q.
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Conditions satisfied by P  and Q.

1. Let C p  =  { % , . . . , at}  and C q =  { 61, . . .  ,b¡} be the sets o f covering actions 

fo r  the programs P  and Q respectively. Let Sai •.. Sak and 5&1 . . .  Sbt be the 

process cover sets corresponding to the covering actions in CP and C q .

(a) Cp f] olQ =  (j) and C q fl olP =  (j).

(b) For any 1 <  % <  k and 1 <  j  <  I, Sai fl ^  7̂  é-

2. All the actions o f Cp have the property o f end synchrony with respect to the 

program P . Similarly all the actions of Cq have the property o f end synchrony 

with respect to the program Q .

8. For any action a such that a G a P  fl aQ,

a G aPi iff a G otQi.

4. The programs P  and Q are deadlock free,

4.6.1 Discussion

The conditions 1 (b) and 2 ensure that if any of the covering actions of P  or Q get 

executed by R } no action from the other program body can execute until the program



is back to the initial state R. For example as soon as one of the covering actions of 

any of the program P  executes, all the covering actions of Q are blocked off by the 

process bodies of P. Due to the end synchrony property, this blocking off persists 

till the program is back to the top level choice i.e., the initial state R. This enforces 

what we call a layered execution of P  and Q. The execution history of R  looks like 

an interleaving of complete iterations of the programs P  and Q. This decreases the 

number of possible interleavings of actions from P  and Q in the execution of R; while 

this restricts the power of our merged program, it enhances our ability to analyze the 

program and restrict its behavior.

The third condition is required to avoid deadlock. This has been explained 

before (see page 53). The condition 1 (a) ensures that the covering actions of the 

programs being merged are mutually exclusive and that no cross interactions between 

the programs which would make an analysis difficult, are allowed.

4*6*2 P roof o f Correctness

We now give a proof for deadlock freedom using the idea of enabled sets (see page 6 8 ). 

Let us start with some observations about the programs involved in the merge.

T h e o re m  6  The program R, the result o f the above described merge o f the deadlock 

free programs P  and Q , is deadlock free.

P ro o f ; When R  is in the initial state R, an examination of the syntactic structure 

of R  lets us conclude that Enab(R) =  Enab(P){J Enab(Q). Since the program P  is 

known to be deadlock free, Enab(P) =  CP ^  (¡> and Enab(Q) =  CQ ^  <¡>. Obviously 

Enab(R)  ^  (j). Therefore R  can execute some action. This action could belong to 

either Cp or Cq . Let us assume that an action ac from the set Cp is executed. Since
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we have Cp H a Q — $ as one of our constraints, the portions of the process bodies 

which came from the program P  participate in this action. Process bodies derived 

from Q cannot participate in this action. Thus the processes of R  which participate 

in the covering action attain the following syntactic form :

n  - m  i Qk)

where P*. P¿.

Let Sac be the process cover set (see page 69) corresponding to the action ac. 

Let s Qi. . . s Qm be the process cover sets corresponding to the covering actions in C q . 

From the constraint 1 (b) we have for all j ,  1 <  j  <  m, Sac fl Sq . /  <f>. We also 

know that after execution of ac, each of the processes in the cover set Sac has the 

syntactic form P¿ —» *(P¿ | Qk), as explained before. Since the cover set Sac has an 

intersection with each of the cover sets of Q, all covering actions of Q are blocked. 

From the syntactic structure of the processes and our operational semantics, we infer 

that none of the covering actions of the program Q can execute till some of the 

fragments execute to completion and thus enable some covering action of Q.

Constraint 2 ensures that all actions in the Cover Set Cp have the property 

of end synchrony with respect to the program P. Obviously ac being a member of 

Cp, has the property of end synchrony with respect to the program P. Therefore 

in accordance with the end synchrony property (see page 70 ) the program P  would 

return to the initial state P  with all pocesses which executed any action at all having 

completed one complete iteration. All the Active processes participate in an end- 

marker action which comes at the end of the iteration. For the execution of the 

program R  this implies that the program fragments of P  block any further unfolding 

of the processes of the program R  till the end-marker action has been executed.

74



Keeping our previous observations in view, let us set up a mapping (j) from 

the process bodies of R (and its derivatives) to the process bodies of P (and its 

derivatives). We will see how this mapping clarifies our analysis of W s behavior as it 

does an iteration which is initiated by a covering action o f the program P.

Let Rm be a process of the program R.

<t>(Rm) =  ¿(aRmjPRm) =  (ctPm, ¿(fiRm)) where ¿(flRm) is defined as follows:

L If P R "  =  *(PTO I Qm) then <KfiRm) =  *Pm

2. l ípRm  =  P4 -  *(Pm ] Qm) then =  P^ -> *(Pm)

We extend (j) to map derivatives of R to those of P . Let R' be an arbitrary 

derivative of R.

# <  r \, . . . , * • > )  =  <  m i ) ,  ■■■, <t>(K) >

From our operational semantics and the syntactic nature of the mapping we 

note that Enab(<fr(R)) C Enab(R).

Let R' be an arbitrary derivative of the program R. Then $(R!)
is identical to some derivative Pderv of the program P. (*)

Proof of (*) We present an inductive proof.

Since the program P is deadlock free, Enab(P) ^  (f>. Therefore Enab(R) ^  (f> 

(Enab(P) C Enab(R)). Therefore there exists some action which R can execute. 

Let us consider the execution of the first action, a. We consider an action from the 

alphabet of program P  since we are currently interested in an iteration where R 

simulates program P.
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Let R  A  R\

The action a is executed as a result of the following process transition;

Vi E P A P(a)

< ñ l Q i )  A  J * * ( j > .  || g .)

Corresponding to this transition, P  has the following transition ::

Vi E PAp(a)

*{Pi) a  p ;~ > * (P i )

We have P  A  P 1.

From the definition of $ we observe that <j>(R}) =  P 1. This establishes the 

base case of our inductive reasoning.

Consider an action a executed by P ', an arbitrary derivative of R. By our 

In du ction  hypothesis  (* ) there exists some derivative P % of the program P  which 

satisfies <f>(Rl) =  P*.

In this iteration the process bodies of Q do not get to execute, as explained in

our previous discussions. Thus the possible syntactic forms of processes of R' are :

1 . pR ) =  *{Pi i 0 0

2 . p J2J =  P{ *(Pi 1 0 0

The action a could be executed as a result of any of the following transitions:

1. Vi E P A r (o ) ,  *(Pi J Qi) A  P/ —> *(Pi J Qi)

2 . Vi E P A R(a), P¡ -  *(Pi 1 Qi) A  P?  -> *(P* | Qt)
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Corresponding to each of the above cases we have an action a executed by

m s) =  p 1-

i- i Qi)) = *(P0

*(P.) A  P ' ^ ^ P i )

2. 4,( P¡ -  *(i>- 1 Qt.) ) =  PI -  *(P¿)

P ' ^ * ( P i )  ^  P ? - + * ( P i )

The alphabet restriction on the programs which are being merged (constraint

3) ensures that for all a , a an action in R, the processes participating in a are exactly 

the same in terms of indices for P  and R. Thus we have :

1. if a £ a P  fl aQ  then PAp(a) =  PAq(ü)  =  P A r (ü ).

2. if a 0  a P  D aQ  and a E a P  then PAp(a)  =  P A r ( o ) .

3. if a £  a P  fl aQ  and a £ aQ  then PAg(a)  =  P A r (c l) .

The alphabet restriction ensures that all the processes which are participants in 

the action a are enabled. We do not have the situation where we have different sets of 

participants in an action for P  and R. This avoids the deadlock situation described 

in page 53. We can now assert that the program P  can execute the action a. Let 

p i  A  Jpi+l'

We have R! A  Ri+1 and P l A  P t+1 where <f>(R') =  P\  It is easy to 

observe from the syntactic forms of the programs produced and the definition of the 

mapping that <j>(Rt+1) =  P*+1.
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This establishes our induction step and since the base case has been established 

before, we may now claim that any arbitrary derivative <f>(R') of program R  is identical 

to some derivative Pderv of the program P.

(en d  p r o o f  o f  ( * ) )

In our previous discussions we noted that Enab(<j>i(R')) C Enab(R'). We have 

also demonstrated that <f)i(R') is identical to some derivative of program P.  Let us 

call this derivative P J. We have Enab((f>i(R’ )) =  Enab(P^). Since the program P  

is deadlock free, all derivatives of it must have non-empty enabled sets. Therefore 

Enab(Pi)  ^  (j). Therefore Enab($(R'))  ^  <f>. Therefore Enab(R') , which is a superset 

of Enab(<t>(R')) is also non-empty. Therefore R', an arbitrary derivative of program 

R, can execute some action.

If the iteration was initiated by a covering action of the program Q, using 

symmettric (w.r.t. P  and Q) analysis we can show that an arbitrary derivative of the 

program R  can execute some action.

Since the program R  can be initiated by only the covering actions of the pro­

grams P  or Q, these two are the only cases possible. Thus in all cases we find 

that arbitrary derivatives of the program R  can execute some action. Therefore the 

program R  is deadlock free. D

4*7 Transformation 3*1

We present an example of application of the last merge transformation.

D efin ition  35 (Transformation 3.1)

Consider the two programs P  and Q of the following forms and which satisfy the 

conditions below:
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Conditions :

1. For any action a such that a £ aP  fl aQ,

a £ aPi iff a £ aQ ¿.

2. P , Q are deadlock free.

3. a aQ and b $  aP .

4. The action a has the property o f end-synchrony with respect to program P .

5. The action b has the property o f end-synchrony with respect to program Q .

The following program R is formed by applying transformation 3.1 to the pro­

grams P  and Q.



*((a —» Ck c) I (b —* Dk —» d) ||

4.7.1 Discussion

Let us see if the last transformation technique (transformation 3) can be used to prove 

deadlock freedom of the program R  under the given criteria.

From the syntactic structures of P and Q, we observe that their covering action 

sets Cp, Cq are { a}  and {&} respectively. If n processes are being merged, the process 

cover sets are { 1 , 2 , . . .  , n }  and { 1 , 2 , . . .  ,n} .

We observe that Cp fl olQ =  <¡> and C q  fl olP =  (f>. Also the intersection of the 

process cover sets is non-empty. Thus the first constraint for the merge is satisfied.

From the fourth condition we infer that all actions of C p  have the property of 

end-synchrony with respect to program P. Similarly, from the fifth condition we infer 

that all actions of C q  have the property of end-synchrony with respect to program

a .

The third and fourth requirements are satisfied by the first two conditions sat­

isfied by the programs P and Q.

We have shown that all four required conditions for transformation 3 are satisfied 

by the programs P  and Q, Therefore the program R which is the result of merging 

P  and Q is deadlock free. a

4.8 Transformation 1.1

Using the ideas of covering actions and end synchrony we shall extend transforma­

tion 1 .
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D efin ition  36 ( Transformation 1.1)

Consider two programs P  and Q of the following forms and satisfying the following 

conditions.

p  = Q =

Pi :: *(cov —» Si —» covsynch) || Qi » *Mi II
P2 :: *(cov —>■ S2 —> covsynch) || Q2 •• *m 2 11

Pn :i *(cov - »  Sn —■» covsynch) On::

Conditions:

1. P  and Q are deadlock free.

2. a P  fl aQ  =  <j>.

8. The single iteration constraint (see page 59) holds for program P .

4- The single iteration constraint (see page 59) holds for program Q.

The following is the program R which results from applying transformation 1.1 

to the programs P  and Q.

R =
Ri ;; *( (cov —* Si —*• covsynch) —> Mi ) ||
R2 :: *( (cov —* S2 —► cov synch) —► M2 ) ||

Rn :: *( (cov Sn cov synch) —> Mn )

4*8.1 Discussion

The constraints are similar to the ones required for transformation 1. The syntactic 

structure of the program P  ensures that all the processes of P  participate in the 

covering action cov. The action cov synch along with the single iteration constraint 

ensures the end synchrony property of the action cov with respect to the program P.

81



The second condition eliminates the possibility of common actions which would 

destroy the well-defined layering of functionality that we are attempting to develop. 

The third condition is devised to eliminate pathological cases similar to the one de­

scribed in page 60.

4.8*2 P roof o f Correctness

We now present a formal proof of correctness for the above transformation. The proof 

is very similar to that of transformation 1 .

T h eorem  7 The program R, the result o f the above described merge of the deadlock 

free programs P  and Q, is deadlock fret.

P ro o f; Consider the prefix programs (see page 62) of R  and P. As explained be­

fore, for any program M , P r e f ( M )  simulates the execution of M , As in the proof 

of transformation 1, we prove the deadlock freedom of R  by demonstrating that an 

arbitrary derivative R' of program R  can execute some action.

P r e f ( R )  =

(.cov —* Si —» covsynch) —> M% ||
(cm) —■» S2 —* covsynch) —> M2 ||

(cov —> Sn —> covsynch) —> Mn (1.1)

P r e f ( P )  =

cov —> Si —» covsynch  ||
cov —> S2 covsynch  ||

cov —» 5n —» covsynch  (1-2)

Let R' denote derivatives of the program R. Since P  is deadlock free there exists 

an action which P r e f ( P )  can execute. This implies that P r e f (R ) ,  and therefore R
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can execute some action. Due to the single iteration constraint on program P , the 

deadlock freedom of P  and the end synchrony property of the covering action cov, 

for every path of computation of R, there will exist some derivative R' for which 

Pref(Rl) has the syntactic form (1.3) below. We again observe from their respective 

syntactic forms that the execution of Pref(R) is an exact simulation of the execution 

of P till it reaches the form (1.3).

Mt ||
m 2 y

Mn (1.3)

The above program is identical to Pref(Q). Therefore P r e f ( R ') and P r e f ( Q ) 

are able to execute the same set of actions. Since we know Q to be deadlock free, there 

exists at least one action a which Q can execute. Therefore there exists an action a 

which Pref(Q)  can execute. Therefore there exists an action a which P r e f ( R l) can 

execute from which it follows that R' can execute some action a.

From the deadlock freedom and single iteration constraints on Q we observe that 

Pref(Q)  and therefore Pref(R'), executes to completion. The covering action cov 

cannot be enabled until all the processes have finished executing the action expressions 

from the process bodies of program Q. This marks the end of an iteration. Thus the 

action cov serves to separate complete iterations of the program R.

A new unwinding of the program R can now take place. This takes the prefix 

program of R back to the form (1.1) and the cycle repeats. When the prefix program 

is between the forms (1.1) and (1.3), the deadlock freedom of P ensures that there 

is always some action which it can execute. When it is between the forms (1.3) and 

(1.1), the deadlock freedom of Q ensures that there is always some action which it
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can execute. Thus the prefix program of R  is deadlock free. Since P r e f (R )  simulates 

R, R  is deadlock free. □

4.9 Transformation 1.2

We present another extension of transformation 1.

D efin ition  37 ( Transformation 1.2)

Let us consider the programs P, Q where P  is made up o f processes all o f the form  

*(a). The processes constituting Q are denoted as *Qi, * Q T h e  number of 

processes in P  and Q need not be equal. The merged program looks as follows:

R  =

*Qi II
*(a —> Q 2) II
* ($ 3 ) II

*(&  ̂ Qn)

An alternate way to look at program R is to regard it as the result o f introducing 

action a before some o f the processes o f Q.

The criteria to be satisfied are as follows:

1. a §£ aQ  =  (f>

2. The action a is introduced in front o f all the processes which have a covering 

action.

3. Each o f the covering actions o f the program Q have the property o f end syn­

chrony with respect to the program Q .
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4. The program Q is deadlock free (It is easy to observe that P  is deadlock free, 

and hence this does not need to be assumed).

4,9*1 Discussion

The first condition is devised to ensure functional layering in composition. The rest 

of the conditions together ensure that the only change to the action sequences is that 

the action a is added at the beginning of each of the iterations involving the covering 

action (actions). Since every iteration begins with a covering action this implies that 

a is added to the beginning of every pre-existing iteration and this is the only change 

to the computation paths. Action a thus becomes the sole covering action for the 

merged program R.

The deadlock freedom proof is analogous to that for the transformations 1 and

1.1.

4*9*2 P roof o f Correctness

T h e o re m  8 The program R, the result o f the above described merge o f the deadlock 

free programs P  and Q, is deadlock free.

P ro o f : Consider the prefix programs (see page 62) of R. As before, we prove the 

deadlock freedom of R  by demonstrating that an arbitrary derivative R' of program R  

can execute some action. Since P r e f (R )  simulates the execution of R, it is sufficient 

to show that the prefix program can always execute some action.

P r e f ( R )  =



(1.1)

All processes of R  which participate in the action a have the action a enabled 

in P r e f (R ) .  Therefore P r e f (R )  can execute action a. After execution of the action 

a The prefix program attains the form (1.2).

P r e f ( R f) =

Qi II 
Q2II
03 ||

Qn (1.2)

This program is identical to Pre f (Q ) .  Therefore P re f (R ' )  and P r e f (Q )  are 

able to execute the same set of actions. From the deadlock freedom and cover action 

end synchrony constraints on program Q we infer that P re f (R ' )  executes to com­

pletion. The action a cannot be enabled until all action expression residues of the 

previous iteration have executed to completion. Condition 2 ensures that the action 

a is the sole covering action for the program R. Thus the prefix program is forced to 

return to the configuration (1.1).

Execution of the action a demarcates the start of a new iteration. At every step 

we are ensured that the prefix program is capable of executing some action. Since 

the prefix program simulates the original program, this implies that the derivatives 

of R  at each step are capable of executing some action. Therefore the program R  is 

deadlock free. n

4.10 Transformation 4

We end our transformation set with a simple transformation which enables us to add 

a new process with a single action to a program.
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D efin ition  38 ( Transformation 4)

Consider a process pr =  *a and a program P  of the following form f and satisfying 

the condition set (a) below.

P =

*Pi || 
*P 2 ||
♦ ft ||

*Pn

Conditions:

t. The program P  is deadlock free. (a)

P  is any arbitrary deadlock free program whose alphabet does not contain the 

action a. The merged program R is constructed by making pr a process o f P .

R  =
* a  ||

*Pi II
*P 2 ||
*Í3 II

*Pn

4.10.1 Discussion

This is a very simple but also very useful transformation since it allows us to introduce 

new processes which can then be built up using the other transformations.

4.10.2 P roof o f Correctness

T h e o re m  9 The program R, the result o f the above described merge o f  the deadlock 

free program P  and the process pr, is deadlock free.
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P ro o f: We assume the convention that in the program R  the first process is the 

one which was introduced. Let us set up a mapping from derivatives (R') of R  to 

derivatives of P.

4>{aR,R) =  ( a P ^ ( R %

m i  is the program which results from removing the first process of R. Since 

a a P , the first process is not a participant in any of the actions of 

olR — a =  aP . Let us now consider the enabled sets (see page 6 8 ) of R' and <t>(R')- 

Now the process *a is always ready to execute a, and therefore its introduction has no 

effect on the enablement of a or of any other action. Therefore Enab(^(R')) U {a}  =  

Enab(R').

Therefore Enab(R’) ^  0. Thus R’ , an arbitrary derivative of the program R, has 

a non-empty enabled set. Therefore there exists some action which R! can execute. 

Therefore R  is deadlock free (see page 27). n
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Chapter 5

Extended Example: The Mobile 
Telephone System

5.1 Introduction

In this section we illustrate the application of the transformations to the development 

of a restricted version of a mobile telephone system. The problem description is 

taken from the EIA interim standard, “Cellular Radiotelecommunication Intersystem 

Operations: Intersystem HandofP ( [EIA87]).

The system consists of a fixed number of mobile telephones and message switch­

ing centers. Each mobile has a radio link with one of the message switching centers 

(msc) which is called the mobile’s manager. All calls to the mobile are routed by 

trank lines to this msc and then radioed to the mobile. The movement of the mobile 

may take it away from the manager so that eventually the signal quality between 

the mobile and the manager deteriorates to an unacceptable level. This problem is 

handled by transferring the management of the mobile to another msc if it has a 

better signal. The transfer operation is called a handoff. The msc in control before 

the handoff is called the server (or, manager) msc. The msc to which control is trans­

ferred is called the target msc. Our example is a simplified version of this system,
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consisting of a single mobile ('mb) and two message switching centers (m cl and m c2 ).

The manager (serving) msc repeatedly performs a signal-level check on the 

mobile telephone. If the level check indicates that the signal quality has deteriorated 

to an unacceptable level, the following events happen in sequence:

1. The manager msc synchronizes with the other msc.

2. Both mscs perform a signal level check with the mobile.

3. The msc with higher signal level is determined.

4. If the other msc has a higher signal level, then management of the mobile is

assigned to it (handoif); otherwise there is no reassignment of mobile manage­

ment.

The voice facilities consist of dedicated voice circuits between the two mscs for 

the purpose of continuing speech transmission after a handoff. These circuits may be 

digital, analog, or mixed (digital and analog), as agreed upon by the administrations 

of the networks.

A permanent dedicated data link is established between the mscs. All voice 

circuit control signalling (i.e., circuit seizure, release, etc.), will be performed by 

signalling on the data link. We will refer to the data link connections as trank lines.

A number of timers are associated with the server and the target mscs. They

enable time-out decisions to be made in case of failed connections, data corruption

etc. The timers HOT (Handoif Order Timer) and MHOT (Mobile Handoif Order 

Timer) are associated with the current server msc. The target msc uses the timers 

HAT (Handoff Accepted Timer) and MAT (Mobile Arrival Timer).
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5.2 Modelling the System

Each iteration of our programs corresponds to a signal level test followed (if signal level 

is below threshold) by an attempt to handoff. This attempt can have the following 

outcomes :

1. The handoff is successful and the control of the mobile is transferred from the 

server msc to the target msc.

2. The current server msc has the stronger signal and therefore retains control of 

the mobile.

3. The handoff attempt is aborted due to unavailability of trunk lines.

4. The handoff attempt is aborted due to an error condition in the target msc.

5. The handoff attempt is aborted due to expiry of the Handoff Order Timer 

(HOT).

6 . The handoff attempt is aborted due to expiry of the Mobile Handoff Order 

Timer (MHOT).

7. The handoff attempt is aborted due to expiry of the Handoff Accepted Timer 

(HAT).

8 . The handoff attempt is aborted due to expiry of the Mobile Arrival Timer 

(M AT).

We now introduce some actions to model the events in our system. Since similar 

events may be executed by either msc we use subscripts on the names to distinguish
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between the cases where one or the other of the mscs execute the action. The letters

i,j are used for these subscripts.

1 . alloctranidy : This action allocates an identification number to a handoff 

transaction. The indices i and j  are used to distinguish between the different 

situations where such allocations may be necessary. In all cases these are local 

actions, i.e. only a single process participates in the allocation.

2. above—thresh; : This action occurs if the level of the signal found by the signal 

level check is acceptable. In that case handoff is not necessary. The subscript 

i is used to distinguish a signal level check between mb and racl from a signal 

level check between mb and mc2.

3. canceltranidy : This actions destroys the id entry for a transaction. It is used 

when a transaction has failed and the recovery sequence needs to be invoked. 

The subscripts I and j  are used to distinguish between the different cases which 

arise. The subscript i has the value 1, 2 when the msc involved is mcl,mc2 

(respectively). The second subscript j  distinguishes between different uses of 

the action within the same process.

4 . complpathy : This models invocation of the procedures which complete the 

path of communication. From the server msc the call path is connected to the 

Inter-msc trunk lines. At the target msc the path between the voice channel 

which has been allocated and the Inter-msc trank is completed. The subscripts 

are used to distinguish between the different cases.
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5. CSSrecvdj : This models the event when the mobile is “sensed” on the allo­

cated voice channel. The subscript i has the value 1 , 2  when the msc involved 

is m c l,m c 2 (respectively).

6 . e lection  : This action performs the election of a new msc on the basis of the 

signal level check which has been previously performed.

7. exity : This exits the current task. It may be required when a transaction fails. 

The subscripts i and j  are used to distinguish between the different cases which 

arise. The subscript i has the value 1 , 2  when the msc involved is m cl,m c2 

(respectively). The second subscript j  distinguishes between different uses of 

the action within the same process.

8 . error—to —pro cy : This is used to communicate an error situation between the 

message switching centers. The subscripts i and j  are used to distinguish be­

tween the different cases which arise. The subscript i has the value 1 , 2  when the 

msc involved is mcl,mc2 (respectively). The second subscript j  distinguishes 

between different uses of the action within the same process.

9. enter—Invokei : This action models the synchronization between the mscs 

before entering the final handoff sequence where the communication paths will 

be completed via the inter-msc trank lines. The subscript i has the value 1, 2 

when the server msc is mc2, racl (respectively).

10. h an d off—syechi : This action synchronizes the message switching centers prior 

to actions related to a handoff. The subscript i is used to distinguish between 

the different cases which arise.
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11. handoffy : This corresponds to the completion of a single iteration (see discus­

sion at the beginning of this section, page 91) between the mscs. The subscripts 

I and j  are used to indicate the participants in the handoff (i.e., the transfer of 

mobile control from the msc i to the msc j) . If i and j  are the same, it is implied 

that there has been no handoff (some book-keeping operations may have been 

performed).

12. i f—no—trunki : This models the event when no inter-msc trank is available for 

communication between the mscs. The subscript i has the value 1 , 2  when the 

server msc is m cl,m c2 (respectively).

13. i f—trunkf : This models the event when an inter-msc trunk is available for 

communication between the mscs. The subscript i has the value 1 , 2  when the 

server msc is m cl,m c 2 (respectively).

14. i f—h ot—exp; : This models the event when the Handoff Order Timer (HOT) 

in the server msc expires. The subscript i has the value 1 , 2  when the msc 

involved is m cl,m c2 (respectively).

15. i f—m h ot—expi : This models the event when the Mobile Handoff Order Timer 

(M H OT) in the server msc expires. The subscript i has the value 1 , 2 when 

the msc involved is m cl,m c2 (respectively).

16. i f—hat—expi : This models the event when the Handoff Accepted Timer (HAT) 

in the target msc expires. The subscript i has the value 1 , 2 when the msc 

involved is m cl, m c2 (respectively).
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17. i f  m at expi : This models the event when the Mobile Arrival Timer (MAT) 

in the target msc expires. The subscript i has the value 1, 2 when the msc 

involved is ttic1,toc2 (respectively).

18. below—threshj : This action is executed when the signal quality has deterio­

rated to an unacceptable level. This indicates that a handoff may be necessary. 

The subscript i has the value 1, 2 when the msc checking the signal level is 

racl, mc2 (respectively).

19. mob—inv—chjj : This action models the sending of a MobileOnChannel message 

from msc j  to msc i. It indicates that all activity related to the handoff has 

been completed by the target msc (msc j).

20. msc—synchj : This synchronizes all the mscs before the election of a new msc 

can begin. The subscript i has the value 1, 2 when the server msc is m cl,m c2  

(respectively).

21. poll—sig—chk : This does a signal level check with the competing mscs to 

produce the information which will be used in the election.

22. recovy : This models invocation of a recovery procedure, usually necessary 

after a failed transaction. The subscript i has the value 1, 2 when the msc in­

volved is m cl,m c2  (respectively). The subscript j  is used to distinguish between 

the different recovery procedures within the same process.

23. r e lr e s y  : This action models procedures which release resources acquired during 

a transaction. The subscript l has the value 1} 2 when the msc involved is
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m cl, mc2 (respectively). The subscript j  is used to distinguish between the 

different procedures for release of resources within the same process.

24. ret—err—typey : This action is used to send an error type from the target to 

the serving msc. It would subsequently cause the exit or error recovery routines 

to be called. The subscripts i and j  are used to denote the target and the server 

mscs respectively.

25. ret—ok—typey : This action models the communication between the mscs when 

a voice channel is available at the target msc and therefore a successful handoff 

can be initiated. The subscripts 1 and j  are used to denote the target and the 

server mscs respectively.

26. signal—chkj : This is the signal level check. The managing msc interacts with 

a mobile to determine the strength of the signal between them. The subscript

i has the value 1 , 2  when the msc involved is m cl,m c 2 (respectively).

27. sethati : This action sets the Handoff Accepted Timer(HAT). The timer is set 

by the target msc after it receives an invoke (action invokexy) from the server 

msc. The subscript i has the value 1, 2 when the msc involved is m cl,m c2  

(respectively).

28. set—tim er—hoti : This action sets the Handoff Order Timer (HOT) in the 

serving msc. The subscript i has the value 1, 2 when the msc involved is 

m cl,m c2 (respectively).

29. setm atf : This sets the Mobile Arrival Timer (M AT) in the target msc. The 

subscript i has the value 1 , 2  when the msc involved is m cl,m c 2 (respectively).
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30. setm hotj : This ación sets the Mobile Handoff Order Timer (MHOT) in the 

serving msc. This timer is set before the msc starts the wait phase before the 

invoke response is received from the target msc. The subscript i has the value

1 , 2  when the msc involved is mcl,mc2 (respectively).

31. sty : This corresponds to the setting up of trank lines between the mscs i and 

j. In our example this action is used to encapsulate any procedures that may be 

executed in case the election algorithm results in the current server msc being 

chosen as the one to service the mobile.

32. stphaty : This action stops the Handoff Accepted Timer (HAT) in the target 

msc. The subscripts i and j  are used to distinguish between the different cases 

which arise.

33. stphoty : This action stops the Handoff Order Timer (HOT) in the serving 

msc. The subscripts i and j  are used to distinguish between the different cases 

which arise.

34. stpmati : This action stops the Mobile Arrival Timer (M AT) in the target 

msc. The subscript i has the value 1 , 2  when the msc involved is mcl,mc2 

(respectively).

3 5 . stpmhotj : This action stops the Mobile Handoff Order Timer (M HOT) in 

the serving msc. The subscript i has the value 1, 2  when the msc involved is 

m c l,m c 2  (respectively).
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5.3 Construction of the Solution using Transfor­
mations

We attempt to construct a solution to the problem which will be of the form mb || 

m cl || mc2. The programs which are produced at each stage are guaranteed to be 

deadlock free by our transformations,

We start by constructing a program which models the handoff interaction be­

tween the parties involved when m cl is the server of the mobile. We do not explicitly 

construct the program for the situation where mc2  is the server of the mobile since 

it is constructed in the same way and can be obtained by the program we construct 

from symmetry considerations.

Consider the following program which models the invocation sequence between 

the processes of the msc’s. The enter—invoke2 action is used to transmit a request 

from the serving msc m cl to the target msc mc2 .

P  =

Pi :: *(enter—jinvoke2 —»mob—inv—chi2 —> handoff 1 2 )

P2 :: *(enter-Jinvoke2 —> mob—inv—chi2 —> handoff^)

It is trivial to verify that this program is deadlock free.

Next consider the program RO which models the situation where the handoff 

timers MAT and MHOT expire in the target and server msc respectively. This would 

cause exit and recovery sequences to be called. For now we do not deal with the exit 

and recovery sequences. They will be introduced later.

N o te : We name the processes of 120 m cl and mc2 instead of the usual R0t and RO2 

to make the relation of the program to the example we are developing more clear.
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m cl and m c2 will be dveloped into the processes of the two message switching centers.

m  =

mcl:: *(if—mhot-expi~-  ̂handoff12)

m c2 :: *(if—mat—exp2—» handoff12)

It is trivial to verify that this program is deadlock free.

We now merge the programs P and RO using Transformation 3 (see page 69) to 

produce the program R1 below. The conditions required for this transformation are 

satisfied, as explained below :

1. The covering action sets Cp and Cr0 for the programs P and RO are 

{enter—invoke2} and {if—mhot—expi,if—mat—exp2} respectively. We note 

that Cp f) &R0 =  <f> and Crq f| <*P =  The process cover set for enter—invoke2
is {1 ,2 } . The process cover sets for i f —mhot—expi and i f —mat—exp2 are {1 }  

and {2 }  respectively. Clearly the first condition is satisfied.

Note : The processes Pi and P2 are mapped to the numbers 1 and 2 respec­

tively. Similarly the processes m cl and m c2 are mapped to the numbers 1 and

2 respectively.

2 . We observe that en ter-invoke2 has the property of end synchrony with respect 

to the program P. The actions i f-m h o t-ex p i  and if-mat—exp2 have the 

property of end synchrony with respect to program RO.

3 . aP fi aRO =  {handoff12}. handoffu  G aPi iff handoffu £ aR0{ is satisfied 

for ¿ =  1, 2.

4. The programs P  and RO are deadlock free.
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RI =

m et :: *(enter—invoke2~*mob~inv—ch\2—> handoff12
I
if—mhot—expi —» handoff12)

11mc2 :: *(enter—invoke2 —> mob—inv—ch\2 —> handoff12

I
if—mat—expi —* handoffi2)

From theorem 6 , we have that RI is deadlock free.

Next let us consider the program P I which models the interaction between the

mscs in the case that they proceed with the handoff. The action ok—to—proc2i enables

the participating mscs to agree to go ahead.

P I =

Pli  :: *(ok—to—proc2i —* ret—ok—type2i)
II
P I 2 :: *(ok—to—proc2i —» ret—ok—type2i)

It is trivial to verify that this program is deadlock free.

We merge the program P I with RI, the result of the last merge, using Trans­

formation 1.1 (see page 80) to produce the program R2. The conditions required for 

this transformation are satisfied, as explained below :

1. P I  and 121 are deadlock free.

2. aPl n aRl = f
3 . The single iteration constraint (see page 59) holds for program P l.

4 . The single iteration constraint holds for program RI.
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5. The actions ok to~proc21 (— cov) and ret—ok—typ&2\ (=  covsynch) occur only 

in the appropriate positions and so P I has the correct form,

R2 =

m cl :: *(ok—to~proc21 -*  r e t-o k -ty p e2i —>
( ( enter—invoke2~* mob—inv—chi2—» handoff 12

J
i f —mhot—expi —* handoff12)))

m c2 :: *(ok—to—proc2i —► ret—ok—type21—>
( ( enter—invoke2—*mob—inv—ch\2—* handoff 12

I
i f —mat—expi —* handoff 12)))

From theorem 7, we have that J22 is deadlock free.

Consider the program P 2 which models the situation when proceeding with the 

handoff may cause an error situation and recovery routines may need to be called. 

As before we concern ourselves with the program skeleton for now, and we introduce 

the necessary refinement details later.

P2 =

P2i :: *(error-to-proc2i —> rei—err—type21 —> handoff 12)

P 22 :: *(error—to—proc2i —»ret—err—type21 —» handoff 12)

It is trivial to verify that this program is deadlock free.

We merge the program P2 with R2, the result of the last merge, using Trans­

formation 3 (see page 69) to produce the program R3. The conditions required for 

this transformation are satisfied, as explained below :

1 . The covering action sets Cp2 and C r2 for the programs P 2 and R2 are

{error—to—proc2i }  and {o k -to -p ro c21}  respectively. We note that CP2 fl ®lR2 =  

<j> and CR2 fl olP2 =  </>. The process cover set for error -to -p roc21 is { 1 , 2 } . The
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process cover set for ok—io—proc2i is {1 ,2 }  . Clearly the first condition is sat­

isfied.

2. We observe that error—to—proc2i has the property of end synchrony with respect 

to the program P 2. The action ok—to—procji has the property of end synchrony 

with respect to program R2.

3. a P 2 f laR2 =  {handoffu }- handoffi2 € aP2{ iff handoffu £ amci is satisfied, 

for ¿ =  1, 2.

4. The programs P 2 and R2 are deadlock free.

R3 =

m cl :: *( (error—to—proc2i —> ret—err—type2\ —> handoffu)
I (ok—to—p r o c 2 i  — »  ret—ok—type2i  — »

( (enter—invoke2 —> mob-Anv—ch u —> handoff 12)
J

( i f —mhot—expi —» handoffu ))))
11
m c2  :: *( (error—to—proc21 —» ret—err—type21 —> handoffu)

I (ok—to—proc2i —»ret—ok—type2\ —>
( (enter—invoke2 —» mob—inv—chu  —» handoffu)

i
( i f —mat—expi —> handoffu ))))

From theorem 6 , we have that J23 is deadlock free.

Consider the program P3 which models the situation when either of the timers 

H O T  or H A T  time out in the serving and target mscs respectively. We will introduce 

the necessary recovery and exit sequences later.

P3 =
P3i :: * ( i f—hot—expi —> handoffu)

P 3 2 :: * ( i f—hat—exp2—> handoffu)
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It is trivial to verify that this program is deadlock free.

We merge the program P3 with J23, the result of the last merge, using Trans­

formation 3 (see page 69) to produce the program 124. The conditions required for 

this transformation are satisfied, as explained below :

1. The covering action sets Cps and Cpa for the programs P3 and R3 are 

{ i f —hot—e x p i ,i f—hat—exp2}  and {error—to—proc2i ,o k —to—proc2i } .  We note 

that CpsOaRZ  =  <f> and Cmf\otPZ =  (j). The process cover sets for the actions 

i f —hot—expi and i f —hat—exp2 are { 1 }  and {2 }  respectively. The process cover 

sets for the actions error—to—proc2% and ok—to—proc2i are { 1 , 2 }  and { 1 , 2 }  

respectively. Clearly the first constraint is satisfied.

2. The covering actions i f —hoi—expt, i f —hat—exp2, error—to—proc2i and 

ok—to—proc2i have the end synchrony property.

3. aP 3  fi aR3 =  handoffu- The requirement handoffu  E aP3¿ iff handoffu  € 

am ci is satisfied for i =  1,2.

4 . The programs P3 and P3 are deadlock free.

JM =
m c l : :  *( ( i f —hot—expi —* handoffu)

I (error—to—proc2i —> ret—err—type21 —> handoffu)
I (ok—to—proc2i —► ret—ok—type2\ —»

( (enter—invoke2 —> mob—'inv—chu handoffu)
1

( if -m h o t—expi —> handoffu)))

II
mc2 :: *( (if—hat—exp2 —»handoffu)

I (error—to—proc2i -> r e t-e r r -ty p e 21 -*  handoffu  
j (ok—to—proc2\ —> ret—ok—type2i —*■

( (enter—invoke2 —* mob—inv—chu handoffu)



(■i f —mat—expi —► handoffu)))

From theorem 6 , we have that RA is deadlock free.

Consider the program P4 which models the interaction between the mscs for 

setting up of the communication trank lines (assuming the lines are available; we will 

deal with the case where no lines are available in the next step).

P4 =

P  4i :: *(i f —trunki —» set—tim er—hot i —» invoke12)
II
P  4:2 ”  * ( i f—trunki —>■ invoke^)

It is trivial to verify that this program is deadlock free.

We merge the program P4 with J24, the result of the last merge, using Trans­

formation 1.1 (see page 80) to produce the program R5. The conditions required for

this transformation are satisfied, as explained below :

1. P4 and R4= are deadlock free.

2. <xF4 fl aR4: =  (j).

3. The single iteration constraint (see page 59) holds for program P4.

4. The single iteration constraint holds for program i?4.

5. The actions i f - t r u n h  (=  cov) and invoke12 (=  covsynch) occur only in the

appropriate positions, and so P4 has the correct form.

R5 =

m cl :: *( i f —trunki —> set—tim er—hot 1 —> invoke i2 —*
( (i f —hot—expi —» handoff 12)
I (erro r—to—proc2i —* r e t—err—ty p e 21 ► h a n d o ff  12)

I (ok—to—proc2i —*■ ret—ok—type2i —>
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( (enter—invoke2 —» mob—inv—ch u -* handoffu)
i

 ̂ (if—mhot~expi handoffu)))))

mc2 :: * ( i f —trunk\ —> invokeu
( ( i f—hat—exp2 —*■ handoffu)
[ (error—to—proc2i ret~err-type21-> handoffu)
1 (ok—to—proc2i —> ret—ok—type2i

( (entei—invoke2 —> mob—inv—chu handoffu) 
i

(if—mat—expi —* handoffu)))))

From  theorem 7, we have that P5  is deadlock free.

Consider the program P 5  which models the interaction between the mscs when 

the trun k lines are not available. Here we have the program skeleton which w ill be 

refined la te r.

P 5  =

Ph\ :: * (if—no—trunki —> cancel—tranidia —> exitia~~* handoffu)
ll
jP52 :: * (if—no—trunki —» handoffu)

It  is tr iv ia l to verify  that th is program is deadlock free.

We merge the program P 5  w ith P 5 , the the result of the last merge, using 

Transform ation 3 (see page 69) to produce the program RQ. The conditions required 

for th is transform ation are satisfied, as explained below :

1. Th e  covering action sets Cp5 and Cm  for the programs P 5  and R5 are 

{if -n o -tr u n k i}  and {if-tru n k i}  respectively. We note that Cpsf)aR5  = 4> 

and Gmf\aPh =  (j). The process cover set for if-n o -tru n k ! is { 1 ,2 } .  The 

process cover set for if -tr u n h  is { 1 ,2 } .  C learly  the first condition is satisfied.

2. We observe that i f -n o - t r u n h  has the property of end synchrony w ith  respect
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to the program P 5. The action i f —irunki has the property of end synchrony 

with respect to the program R5.

3. a P 5 fi aR5 =  {handoff12}.

handoff u  £ aPbi iff handoffu £ amci is satisfied for ¿ = 1 ,2 .

4. The programs PB and R5 are deadlock free.

J26 =

m cl :: *( (if-n o-tru n ki cancel-tranidia-> exitla-+ handoff12)
1 (* /“  trunki —♦ set—tim er—hoti —> invokeu  —►

( (i f —hot—expi —> handoff u )
I (error—to—proc2i —*ret—err—type21 —> handoffu)
I (ok—to —proc21 —»ret—ok—type2i —>

( (enter—invoke2 —> mob—inv—chu handoffu) 
¡ (¿f —mhot—expi hando/ / 12))))))

m c2 :: *( ( i f -n o —trunki handoffu)
I ( i f  — trunki —*invokeu—*

( ( i f—hat—exp2 —► handoffu)
j êrror—to—proc2i —* ret—err—type21 —* handoffu)
I (ok—to —proc2i —►ret—ok—type2i —»

( (enter—invoke 2 —> mob-inv—chu —► handoffu)
J (if -m a t-e x p i  —> handoffu ) )))))

Prom theorem 6 , we have that 126 is deadlock free.

Consider the program P 6 which models the synchronization between the mes­

sage switching centers prior to the actions related to a handoff. The action 

handoff—synch2 provides synchronization. "We have also introduced the actions

which allocate an id to the current transaction and attempt to allocate a trunk line 

for communication.

P6 =
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P 6 i :: ^(hando f f —synch2—̂ alloc—tranidia—> alloc—trunkio)
II
P 62 :: * ( handoff—synch2)

It is trivial to verify that this program is deadlock free.

We merge the program P 6 with J26, the result of the last merge, using the

generalized version of Transformation 1 (see page 65) to produce the program R7.

The conditions required for this transformation are satisfied, as explained below :

1. The programs P 6 and R6 are deadlock free.

2. a P 6 fl aR 6 =  (f>.

3. The single iteration constraint holds for program P 6 .

4. The single iteration constraint holds for program R6.

5. The actions if-^no-trunkt and i f —trunki appear only in the appropriate posi­

tions, as explained in condition 5 of the conditions for transformation 1.

R7 =

m c l  :: *(handoff -syn ch 2-► alloc-tranidla- > alloc-trunk12->
( ( i f—no—trunki —* cancel—tranidia —>

exitia—» handoffu)
I ( ¿ / — trunki —* set—timer—hoti —* invoke^  —*

( (if—hot—expi —»■ handoffi2)
I (error—to —proc2i —>

ret—err—type2i —> handoff\2)
I (ok—to —proc21 —>ret—ok—type2i —►

( (enter— invoke2—>
mob—inv—chi2 —■> handoff 12)

I (if-m h ot—expi —* handoff 12)))))))

mc2 :: * (handoff-synch2 - >
( ( i f —no—trunk 1 —» handoff12)
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1 (if~ trunki —> invoke12 —>
( ( i f —hat—exp2 han doff12 )
I (e r r o r —to —proc2i —>

re t—e r r —type21 —> h a n d o ffu )
I (o k—to —proc2\ —* re t—ok—type2\ —*

( ( enter —invoke2~*
m ob-inv—chu  —» handoffu) 

I ( i f —mat—expi —» h andoffu ))))))

From theorem 4, we have that 127 is deadlock free.

Using transformation 4 (see page 8 6 ) we now add a process mb =  * (h a n d o ffu )  

to the program RI. This process represents the mobile. The necessary conditions are 

satisfied as explained below :

1. The program R7 is deadlock free.

The merged program RB is as follows :

RS =

mb :: * (handoffu )

m cl :: *(handoff —synch2-> alloc—tranidla-+ alloc—trunku  —>
( ( i f —no—trunki —* cancel—tranidia —»

exitia—> handoffu)
I (if~~ tfunki —> set—timer—hoti —> invokeu  —>

( ( i f —hot—expi —> handoffu)
I (error—to —proc2i —*

ret—err—type21 —> handoffu)
I (ok—to —proc2i —> ret—ok—type21 —>

( (enter—invoke 2 —»
mob—inv—ch u ~ 4 handoffu) 

I ( if -m h o t—expi —> h a n d offu )))))))

m c2 :: * (handoff—synch2 —»
( ( i f —no—trunki —> handoffu)
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I (if  — trunki invoke12 —>
( (if—hat—exp2 —» handoffu)
I (error—to ~~proc21 —►

ret—err—type21 —> handoffu)
I (ok—to —proc2i —► ret—ok—type2i —>

( (enter—invoke 2—>
mob—inv—chu —> handoffu) 

I (if—mai-expt ->  handoffu) ) ) ) ) )

From theorem 9, we have that 128 is deadlock free.

N ote : The addition of a new process alters the mapping of processes to numbers. 

We now map the processes mb, m cl and mc2 to the numbers 1, 2 and 3 respectively.

We are now in a position to use a series of Right-sequence introduction trans­

formations (see page 13) to introduce all the local actions that we need to fill in the 

details in our design. The first set of introductions are those which are made in the 

process m cl. The subset in which the introductions take place is {2 }  (process m cl). 

We list the Right-sequence introduction transformations that are to be applied :

1 . [ i f —h o t—e x p i / i f —h o t—e x p i  —»r e l r e s i a]

2. [ r e l r e s i a / r e l r e s i a  —» c a n c t ra n id u , }

3. [canctranidib/canctranidib—* recova]

4. [recovia/recovia—*exitib]

5 . [ r e t —e r r —t y p e 2 i / r e t —e r r —ty p e 2 i  —> stphotia]

6. [ s t p h o t i a / s t p h o t i a  —» c a n c ír a n iá ic ]

7. [canctranidic/canctranidic —> r e c o v iJ

8 . [reccwib/reccwib—> eajitic]
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10.

11.

12.

13.

14.

15.

16.

9. ret—ok—type2i/ret~ok—type2i —> stphotlb) 

stphotii/ stphotib setmhoti]

mob—%nv—chi2 /  mob—xnv-~ch\ 2 —> sípm4o¿i] 

stpmhoti /  stpmhoti —» complpathia] 

i f —mhot—expi / if—mhot—expi—* relresib]

relresib/relresib—*• canc¿ramc?id] 

c a n c tra n id id j  c a n c t r a n id u —>recouij 

recovic /recovic—* exitid]

The second set of Right sequence introduction transformations to be applied 

affect only process mc2. The subset in which the introductions take place is {3 }  

(process mc2):

1 .

2 .

3.

4.

6.

7.

in vok e^ /in vok e^seth at2) 

i f —hat—exp2 /  i f —hat—exp2 —> reire52ij 

relres2b/relres2b—̂ exit2i\

error—to—proc2i /  error—to—proc2\ —> <sip/&aÍ2a] 

ret—err—type2i / ret—err—type2\ —> exit2a\

ok—to—proc21 /  ok—to—proc2i —»stphai2b] 

stphat2b/ stphatib —> alloctranid2b]
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8. [ret-ok-type2i/ret-ok-type2i -> setmat2]

9. [en ter-invoke2¡ en ter-invoke2 —> CSSrecvd2]

1 0 . [CSSrecvd2/CSSrecvd2—+ stpmat2\

11. [stpmat2/stpmat2 —> complpath2b]

12. [ i f—m at—expi/ if—mat—expi —> reire52c]

13. [re íres^ /re íres^ —» ca7ictramd2c]

14. [canctranid2c/canctranid2c —» ex¿¿2c]

Note that all the actions introduced correspond to local actions and do not have any 

impact on inter-process interaction.
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After application of the above transformations, the program looks as follows::

R9 =

m b :: * (h a n d o ffu )

mcl :: * ( handoff—synch2 ~> alloc—tranidia—+ alloc—trunku—*
( (if—no—trunki —* cancel—tranidia —> exiiia —» handoffu) 
I (if—trunki set—timer—hoti —> invoke12 —>

( ( i f —hot—expi —»
relresia  —> canctranidu, —> recot?ia —> 

exitib—» handoff 12)
I (e rro r—to—proc2i —*

ret—e rr—type2i —> stphotia —» 
ca n cira n id ic—* recovib—*

e x itic—> h a n d o ffu )
I (ok—to—proc2i  —>

ret—ok—type21 —> stphotn  —> setm hoti —»
( (enter—in voke  2—>

mob—in v —ch u  stpm hoti —> 
complpathia —> h a n d o ffu )

I (if—mhot—expi—trelresib—► 
canctranidid—> recouic—>

exitid-> h a n d o ffu ) ) ) ) ) ) )

m c2 :: * (h a n d o ff—synch2 —>
( (if—no—trunki—* handoffu)

( i f —tru n k i —> invokeu sethat2 —>
( ( i f —hat—exp2 —>relres2b —> exit2b-* h a n d offu )
I (error—to—proc2i —> stphat2a—*

ret—err—type2i —* exit2a~* h a n d offu )
I (ok -to -p roc2i —> stphat2b -*

alloctranid2a ret—ok—type 21 —> setmaÍ2 - 
( (enter—invoke2~* C  S S recvd 2—> 

stpmaÍ2 —► complpath2b
mob—in v —c h u * h a n d offu )
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I ( i f —mat—expi —* relres2c —»
eanctranid,2a exit2c—* h an doffu )))))))

From theorem 1 , we have that R 9  is deadlock free.

We are now ready to start developing the other functionalities related to a 

handoif. We also need to consider the case where m cl has the stronger signal and 

therefore no handoif occurs. The program for switching center synchronization when 

the election results in the same manager (switching center m cl) being chosen is trivial 

since no handoff is attempted. We name this program P9.

P9 =
P9i :: *(handoffn)

P %2 • *(handoff—synchi —> stu  —» handoffu )

P 93 :: * (handoff—synchi —> stu  handoffu)

From the problem description we know that the overall functionality we aim to 

model requires a program which can be composed by combining the processes of the 

above two programs P9 and R9 with the choice operator. This provides us with the 

motivation to merge the programs. We do our merge using the transformation 3 (see 

page 69). The subprograms satisfy the necessary conditions as explained below :

1 . The covering action sets Cm  and Cpq for the programs R9 and P 9 are 

{h a n d o ff-syn ch 2}  and {h a n d off-syn ch i}. We note that CP9f\aR9 =  «¡6 and 

Cm  n  « P 9 =  <t>. The respective process cover sets are { 2 ,3 }  and { 2 ,3 }. Clearly 

the first condition is satisfied.

2. The actions {handoff~-synch2}  and {h a n d o ff-s y n ch }  have the property of 

end synchrony.
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3. aP9 fl aR9 =  <f>.

4. The programs 129 and P9 are deadlock free.

The merged program, which we name 1210, looks as follows:

1210 =

mb :: * (handoffu  
I handoff 12)

m cl :: *( handoff—syncht —> sin  handoffu  
i

(  h andoff—synch i — » alloc—tra n id \a — > alloc—t r u n k s  — >

(  ( i f —no—ir u n k i — > cancel—tra n id \a — » exit\a — > handoff1 2 )

1 ( i f —tru n k i  — » set—tim er—hot 1 — > in vokei2 — >

( ( i f —hot—expi —»
relresia—* canctranidib—* recovia—> 

exitu ,—> handoff 12)
I (error—to—proc2i —»

ret—err—type2i —> stphot\a —■»
canctranidic —» recouu, —>

exitic—> handoff 12)
I (ok—to—proc2i —>

ret—ok—type 21 —* stphot\b—> setmhoti —>
( (ente?—invoke2

mob—inv—chi2 —> stpmhoti —> 
complpathia —» handoff12)

I (if-mhot—expi —•» relresib —> 
canctranidid—» recov  ic—> 

e x i t u - *  h a n d o ffu )) ) ) ) ) )
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m c2 :: *( h a n d o ff-sy n ch  -*  stn  -> handoffu

( handoff—synch2 —>
( (if -n o -tru n k i  —» handoffu)

I
(■i f —trunki —> invokeu —* sethat2 —►

( ( i f —hat—exp2 —> relres2b —> exit2b—> handoffu)
J (error—to—proc2i —> stphat2a —>

ret—err—type2i —> exit2a-+ handoffu)
I (ok—to—proc2i —■y stphat2b —*

aUoctranid2a- J>ret—ok—type2i setm at2—>
( (enter—invoke2—+ CSSrecvd2-+ 

stpmat2 —> complpath2b —►
mob—inv—chu handoffu)

I ( i f —mat—expi relres2c —>
canctranid2a —> exit2c—̂ h an doffu )))))))

From theorem 6 , we have that 1210 is deadlock free.

We next construct a small program jPIO which does some of the sequence of 

actions described on page 90 when the signal quality is discovered to be too low. The 

program for performing the handoif has already been built (it is 1210), We therefore 

stop after the election. As before, we observe that this simple program is easy to check 

manually (in fact, its only computation is below—threshi,m sc—synchi, poll—sig—chk, 

election , below—th resh i . . . ) .

P10 =

PlOi :: *(below—threshi —» poll—sig—chk)

II . , . ,P102 :: *(below—threshi —» msc—synchi poll—sig—chk —» election)

PIO3 :: *(m sc—synchi —» poll—sig—chk —•> election)

Next we shall apply the generalized version of transformation 1 (see page 65) 

to the programs P10 and 1210. The conditions required for this transformation are 

satisfied as explained below:
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1. PIO and R 10 are deadlock free.

2. aPIO n aRlO =  4 .

3. The single iteration constraint holds for P10 and RIO.

4. The actions handoff—synchi, handoff—synch2, handoffu and handoffu ap­

pear in the appropriate positions in Ü1 0 , as described in condition 5 of the 

conditions for transformation 1 .

The program R ll which is produced by the merge follows:

J211 =

mb :: *(below—threshi —> poll—sig—chk
(.handoffu 
J handoffu)

)

mcl :: * {below—threshi —> msc—synchi —> poll—sig—chk —> election —*
( handoff—synchi —> sin —» handoffu

I
( handoff—synch2 —> alloc—tranidia —»alloc—trunku

( ( i f —no—trunki —* cancel—tranidia —» exitia—> handoffu) 
1 (if—trunki —> set—tim er—hot 1 —» invokeu  

( ( i f —hot—expi
relresia —> canctranidib —*■ r eccwia —> 

exitib—* handoffu)
I (error—to—proc2i —*

ret—err—type2i —»stphotia —>
canctranidic—>* recovi&—*

exitic—* handoffu)
I (ok—to—proc2i —►

ret—ok—type 21 —»stphotib —> setmhoti —»
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( (enter—invoke 2—*
mob—inv—chu -*  stpmhoti 

complpathla —> handoff12) 
I (i f —mhot—expi ~> relresib —> 

canctranidid—* recoup—* 
exitid-* handoff 1 2 )))))))

)

m c2  :: * (m sc—synchi —> poll—sig—chk —► election - 
( handoff—synchi —► stu —* handoffu

1
( handoff—synch2 —»

( (i f —no—trunki —> handoffu)

)

(if—trunki —> invokeu —»sethat2 —>
( (if—hat—exp2 —»relres2b —> exit2b —■► handoffu)
I (error—to—proc2i —* siphaÍ2a —»

ret-err—type21 —> exit2a—̂ handoffu)
I (ok—to—proc2i —> stphat2b —*

alloctranid2a-*ret—ok—type2i —> setmat2~*
( (enter-4 nvoke2 —* CSSrecvd2—> 

stpmat2 —> complpath2b —*
mob—inv—chu —> handoffu) 

I ( i f —mat—expi —» relres2c —*
canctranid2a—► exit2c~~* handoffu)))))))

From theorem 4, we have that 1211 is deadlock free.

1211 models the complete set of actions when the signal is below the threshold 

level. In case the level of the signal is above threshold, we do not need to perform 

any of these actions. This is modeled by the following program P l l .

JP11 =
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P H 2 "  *(above—threshi)

We merge this small program with 1211 using transformation 2 (see page 67). 

The necessary conditions are satisfied as explained below:

1. 1211 is deadlock free.

2, above—threshi aRll,

The merging gives us the following program, which we name 1212.

1212 =

mb :: *( above—threshi
«

(below—threshi —> poll—sig—chk —»
(handoffu  
I handoffu )

)
)

P i l i  :: *(above—threshi)

m cl :: *( above—threshi

(below—threshi —> msc-synchi —> poll-sig-chk —> election  —>
( handoff—syncht —> stn  —» handoffu )

1
( handoff—synch2 —* alloc—tranidia —> alloc—trunk 12 —>

( ( i f —no—trunki —> cancel—tranidia —» exitia—> handoff12)
j ( i f —trunki —> set—timer—hot 1 invoke12 —>

( (if—hot—expi —»
relresia-* canctranidu—> reccwia —> 

exitu,—* handoff 1 2 )
J (error—to—proc2i —>

ret—err—type2i —> stphotia —»
canctranidic —> recoup, —»

exitic—> handoff 1 2 )
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(ok—to—proc21 —>
Tei—ok—type2i —* stphotn, —> setmhoti —*

( (ent er—inv oke 2 —>
mob-^inv—chi2 stpmhoti —»

complpathia —* handoffu) 
I (i f —mhot—expi —* relresib —>

ca n ctra n id id recou p  —»
ex itu -*  handoffu )))))))

m c2 :: *(msc—synchi —> poll—sig—chk —» election - 
( handoff—synchi —* sin  —» handoffu)

(handoff—synch2 —>■
( (if—no—trunki —► handoffu)

( i f —trunki invokeu sethat2 —>
( ( i f —hat—exp2 —> re lres^ —* exit2¡,~* handoffu)
J (error—to—proc2i -> stphat2a

ret—err—type2i —> exit2 a handoffu)
I (ok—ta—proc2i —> stphat^ —>

alloctranid2a^yret—ok—type2i —> setm at2—>
( (enter—invoke2—̂ C SSrecvd2- J> 

stpmat2 —» complpath2b —►
mob—inv—chu —> handoffu) 

J ( i f -m a t—expi —*■ relres2c —*■
canciranid2a- ■* exit2c-~» han d offu )))))))

From theorem 5, we have that J212 is deadlock free.

The signal level check action signal—chh precedes the actions taken in this pro­

gram. It makes the managing msc interact with a mobile to determine the strength 

of the signal between them. The level check between the serving switching center



(m cl) and the mobile is modeled by the following program P12:

P 1 2  =

P 1 2 i :: ^(signal—chkA
II
P122 :: ^(signal—chki)

We will merge this program with 1212 using transformation 1.2 (see page 84) 

to obtain the program 1213. The necessary conditions are satisfied as explained below :

1. signal—chki f)aR 12 =  (j)

2. The covering actions for the program 1212 are {above—thresh  ̂below—threshi}. 

The corresponding process cover sets are {1 ,2 }  and {1 ,2 }. We introduce 

signal—chki in front of both the processes mb and m cl.

3. Both above—threshi and below—threshi have the property of end synchrony. 

The processes in the cover set of the program 1212 make exactly one iteration 

each for every path of computation from initial state 1212 back to state 1212 

The process which does not have a covering action, mc2, either does a complete 

iteration or does not participate in any action of the path (this happens when 

above—threshi is executed).

4. The program R12 is deadlock free.

The resulting program is 1213:

1213 =

mb :: * (signal—chki
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mcl :

m c2 :

( above—threshi
D

(below—threshi —> poll-sig-chk
(handoffu  
I handoff12)

* (signal—chki —»
( above—threshi 

1
(below—threshi —* msc—synchi —> poll—sig—chk —> election  —>

( handoff—synchi —* sin  —* handoffu  

1( handoff—synch2 —> alloc—tranidia > alloc—trunku  —»
( ( i f —no—trunki —> cancel—tranidia —» exit\a —> handoffu) 
I ( i f —trunki —» set—tim er—hoti —> invokeu  

( ( i f —hot—expi —>
relresia —> canctranidu, —> recovia —» 

exitu,—* handoffu)
I (error—to—proc2i —»

ret—err—type 21 —> stphotia —■»
canctranidic—> reccwii»—>

exitic-> handoffu)
J (ok -to -p roc2i —>

ret—ok—type2i —» s t p h o t u ► setm hoti—►
( (enter—invoke 2 —>

mob—inv—chu stpmhoti —> 
complpaihia —> handoffu)

I (if^m hot—expi —> relresib —> 
canctranidid—> recoup —> 

exitid—* h a n d offu )))))))

* (msc—synchi —> poll—sig—chk —> election —>
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( handoff—synchi -► stn  -> handoffu
I

(handoff—synch2 —>
( (if—no—irunki —> handoffu)

J
( i f —trunki —* invoke12 —> sethat 2 —>

( ( i f —hat—exp2—>relres2b—> exit2b~  ̂handoffu)
I (error—to—proc2i —> stphat2a —►

ret—err—type21—* exit2a-*  handoffu)
I (ok—to—proc2i —> stphat2b —>

alloctranid2a—*ret—ok—type2\ —> setmat 2—*
( (enter-4nvoke2—> C SSrecvd2—> 

stpmat2 —» complpath2b —►
mob—inv—ch\ 2 —> handoffu)

I ( i f —mat—expi —»relres2c —>
canctranid2a~> exit2c—> handoffu) )) )) ) )  )

From theorem 8 , we have that 1213 is deadlock free.

Proceeding in a symmettrical manner, we can build the deadlock free program

1214 which models the situation where mc2 is the manager of the mobile and the 

signal check interaction is done between it and the mobile.

1214 =

mb : *(signal—chk2
( above—thresh2

i
(below—thresh2 —>poll—sig—chk

(handoff21 
I handoff22)

)

m cl : * (m sc—synch2 —* poll—sig—chk —> election 
( handoff—synchi —* st22 —> handoff22
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II

mc2 :

(handoff—synchi —*
( ( i f —no—irunk2 ~* handoff21)

¡
( i f —trunk 2 —> invoke2i —* sethati

( ( i f —hat—expi relresiy —> exitiy —» handoff21)
¡ (error—to—procu —* stphatix —»

ret—err—typew—* exitix—> handoff21)
I (ok—to—proci2 —* stphatiy —»

alloctranidix —► ret—ok—type 12 —> setmati —»
( (enter-invokei —> CSSrecvdi —> 

stpmati —> complpathiy —»
mob—inv—ch2i —» handoff21) 

I ( i f —mat—exp2 —* relresiz —>
canctranidix—> exitiz-+ handoff21) ))))))

* (signal—chk2 —>
( above—thresh2 

1
(below—thresĥ  —> msc—synch2 —> poll—sig—chk —> election —>

( handoff—synch2 —» «s¿22 handoff22)
1

( handoff—synchi —> alloc—tranid2X —* alloc—trunk2i —>
( (^/—7io—trunk2  ̂cancel tran%d2x  ̂exit^x  ̂handoff21)
1 (if—trunk2 —> set—timei—hot2 —* invoke2i —>

( ( i f —hot—exp2 —*
relres2x canctranid2y —> recov2X 

exit2y—> handoff21)
I (error—to—proci2 —>■

ret—err—type 12 —> stphot2x
canctranid2z —» recov 2y —>

exit2Z—* handoff21)
I (ok -to -p roci2 —■►

ret—ok—type 12 ■—» stphot2y —> setmhot2 —>
( (enter—invoke 1—»

mob—inv—ch2i stpmhot2 —>
complpaihtx hando//21)

¡ (if -m h o t—exp2 —* relres2y —> 
canctranid2w —* rec£w2z —*■
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exit2w-> handoff21)))))))

)
)

)

We are one step away to giving a final shape to our program. We still require 

to merge the programs 1213 and 1214 since we may have either of m cl or m c2 as the 

manager of the mobile. This suggests use of transformation 3 (see page 69). Let us 

see if 1213 and 1214 satisfy the necessary conditions.

L The covering action sets of 1213 and 1214 are {s ig n a l—c h k i}  and {s ig n a l—chk2}  

respectively. The corresponding process cover sets are {1 ,2 }  (for s ig n a l—ch k i)  

and {1 ,3 }  (for s ig n a l—chk2). Clearly their intersection is nonempty. Also 

s ig n a l—chki $  «1213 and s igna l—chk2 0 «1214, Thus conditions 1 (a) and 1(b) 

are satisfied.

2. The action s ig n a l—chki has the property of end synchrony with respect to the 

program 1213 (the last action of an iteration starting with s ig n a l—chki could 

be any of {above—th re s h i ,  h a n d o f fu ,  h a n d o f fu } ) .  Similarly s ig n a l -c h k 2 has 

the property of end synchrony with respect to the program 1214.

3. We observe from inspection that for all actions a such that a E aRIZ fl «1214, 

if a  is in the alphabet of a process of 1213, then it is also in the alphabet of the 

process with the same index in 1214 with which it will be merged.

(0:1213 n a R U  =  { h a n d o f f u , h a n d o f f u ,p o l l - s ig - c h k ,  e lection ,

handoff-synchi,handoff-synch2})
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4. The programs M 3  and 1214 are deadlock free.

Since all the necessary conditions are satisfied, we can merge the programs 1213 

and 1214 using transformation 3 to obtain the final form of our program (1215):
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RIB =
mb :: * (signal—chki —> (above—threshi

1
(below—threshi —> poll—sig—chk —» (handoffu

I handoff12)
))

)

(signal—chk2 —► ( above—thresh

(below—thresh2 —» poll—sig—chk —> (handoff21

J handoff2 2 )
))

mcl :: * (signal—chk\ —*
( above—threshi

(below—threshi —* msc—synchi poll—sig—chk —» election —»
( handoff—synchi —*■ stu —> handoffu

i
( handoff—synch2 —» alloc—tranidia —> alloc—trunku —»

( (i f—no—trunki —> cancel—tranidia —» exitia—> handoffu)
1 (i f—trunki —>set—timer—hot 1 —» invokeu 

( (if—hot—expi —»
r eir esia —> canctranidu, —» recovia —> 

exitu—* handoffu)
I (error—to—proc2i —>

ret—err—type21 —> stphotia —>
canctranidic—* recoup—*

exitic—* handoffu)
I (ok—to—proc2i —>

ret—ok—type 2\ —> stphotib —► setmhoti —>
( (enter-invoke2 —>

mob—inv—chu stpmhoti —» 
complpathia—> handoffu)

J (if—mhot—expi —> relresib—> 
canctranidid —* r eccwic —» 

exitu-* handoffu)))))))
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II

m c2

))

(msc—synch,2 —> poll—sig—chk —> election  —>
( handoff—synch,2 —* s 2̂2 —y h a n d o ff22

I
(handoff—synchi —>

( ( i f —no—trunk2—* handoff21)
I

(i f —trunk2 —»in v o k e  21 —* sethati —»
( (i f—hai—expi —> relresiy—> exit\y —» handoff2 1 )
I (error—to-proci2 —»stphatix —»

ret—err—typei2—> exitix—> handoff21)
I (ok—to—procu —> stphatiy —»

alloctranid\x —> ret—ok—type u —> setmati —>
( (enter—invokei—* CSSrecvdi—* 

stpmati —> com plpathiy—*
mob—in v —ch2i —> h a n d o ff21) 

I ( i f —m a t—exp2 —■> r e lr e s \z —>
canctranid\x—> exitiz—* handoff21)))))))

:: * (m sc—s y n c h i —> p oll—s ig —chk —> election  —>
( h a n d o ff—sy n ch i —> s in  —> h a n d o ffu

I
(h a n d o ff—synch2 —»

( ( i f —no—t ru n k  1 —> h a n d o ffu )

1
( i f —t ru n k i —»in v o k e u  sethat2 —*

( ( i f —hat—exp2 —> relres2b exit2b —* h a n d o ffu )
I (error—to—proc2i —» stphat2a

re t—e r r —type2i —* exit2a—* h a n d o ffu )
I (o k -to -p ro c 2 i —> stphat2b-^

alloctranid2a—* ret—ok—type2i —> setm at2 —>
( (e n te r—in v o k e 2 —* C S S re c v d 2 —+ 

stpmat2 —* complpath2b
mob—in v —c h u h a n d o f f u )  

I ( i f —m at—expi —»re lre s2 C —*
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canctranid,2aexit2C—> handoffu))))))) )

(signal—chk2 —>
( above—t hr esh2 

l
(below—t hr es h2 —> msc—synch2 —> poll—sig—chk —> election —*

( handoff—synch2 —» sí22 handoff2 2 )
i

( handoff—synchi —> alloc—tranid2x —> alloc—trunk2i —>
( (if—no—trunk2 —» cancel—tranid2x —> exit2x —> handoff2 1 ) 
I (if—trunk2 —> set—timer—hot2 —> invoke2\ —>

( (if—hot—exp2 —>
reír652® —» canctranid2y —* recov2x —> 

exit2y—> handoff2 1 )
I (error—to—proc\ 2 —»

reí—en—typeí 2  —> stphot2x —>
canctranid2z —» recov 2y —>

(ok—to—proci2 —>
ret—ok—type\ 2 —> stphot2y —> setmhot2 —>

( (ení er—inv oke 1 —»
mob—inv—ch2\ —* stpmhot2 —» 

complpath2x—> handoff2 1 )
I ( i f - jmhot—exp2 —> relres2y —> 

canctranid2w —» recov2Z
2w'

From theorem 6 , we have that 1215 is deadlock free.
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Chapter 6 

Conclusions

In this work we have described syntactic transformations for program refinement 

as well as merging. Thus we have support for both top-down (refinement) as well 

as bottom-up (merging) program development. We proved formally that our trans­

formations preserve deadlock-freedom. The example we presented illustrates how a 

combination of the refinement and merging methodologies may be used to develop 

programs.

The essence of the ideas presented is to identify sets of conditions the enforce­

ment of which enables property preserving process/program merging or refinement to 

be done. It needs to he emphasized that every time we check a program to ensure that 

it satisfies a particular condition, we need not start from scratch. Since the programs 

participating in the transformations are presumably built the same way we know a lot 

about their structure, and this knowledge can be effectively used to reduce the effort 

spent on checking whether the prescribed conditions hold for the given program.

Attempting a verification oriented approach would require extremely laborious 

proofs. A proof technique proposed in the paper [NF89] uses an extension of co­

operating proofs to handle the verification of distributed programs with multiparty
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interactions. Cooperating proofs are a two level proof system. In the first stage local 

proofs for the distinct processes are designed using certain assumptions about the en­

vironment’s (i.e., the other processes) behavior. In the second stage the local proofs 

are checked for mutual consistency of all the assumptions made.

In this proof system global properties such as deadlock freedom of a program 

would be verified by constructing a global invariant to be preserved by the program. 

Establishing preservation of the invariant involves use of the global interaction axiom 

[NF89] and formation rules discussed in the paper [KNW80]. As is evident from the 

examples presented in this latter paper, this involves a very complicated and laborious 

process. It is necessary to compose the local proofs of processes (sets of pre and post 

conditions) with the invariant. Each action in the program requires a formulation of a 

set of pre and post conditions. In the worst case the number of criteria to be validated 

at the second level of the proof (i.e., when the local proofs are being composed with 

the global invariant) may be on the order of the product of the length of the processes 

being verified for a global property.

The number of applications of transformations in our methodology is linear in 

the length of the program. In the worst case we have sequences of refinement trans­

formations, each of which add a single new action to the program. However, for the 

most part we expect to have introductions which apply simultaneously at more than 

one point. Merge transformations enable us to tackle complicated constructs and add 

the choice or the sequence operators to the program. Also our methodology is easier 

to automate and avoids the pitfalls of post-development verification of programs.

Admittedly the transformations are restricted in scope. At present only the 

deadlock freedom property is guaranteed to be preserved. The next goal is to verify
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that the same transformations preserve other correctness properties, such as general 

safety and liveness. The underlying language also needs to be enhanced with con­

structs such as variables, expressions, and guards. Our transformations should also 

be shown to preserve the single iteration condition in order to reduce the effort spent 

in using them.

Correctness-preserving transformations for distributed systems are, in principle, 

a foundation for the eventual goal of compiling abstract specifications into architec­

turally adequate code. Those who find that objective too distant should, nevertheless, 

be interested in the medium-term goal of automating certain laborious and error- 

prone parts of the development process. An interactive compiler that handles much 

of the labor —  and is guaranteed not to introduce the deadlocks and other errors 

that plague concurrent systems —  would be valuable, even if it still depends heavily 

on human design creativity. This research is designed to support both the medium- 

and the long-term goals.
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