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ABSTRACT OF THE DISSERTATION 

USING A REPEATED MEASURES ANOVA DESIGN TO ANALYZE THE EFFECT 

WRITING IN MATHEMATICS HAS ON THE MATHEMATICS ACHIEVEMENT OF 

THIRD GRADE ENGLISH LANGUAGE LEARNERS AND ENGLISH SPEAKERS 

by  

Zoe Ansorena Morales 

Florida International University, 2016 

Miami, Florida 

Professor Maria L. Fernandez, Major Professor 

The gap that exists between English language learners and English speaking 

students’ achievement in mathematics continues to grow. Moreover, students are now 

required to show evidence of their mathematics knowledge through writing in 

standardized assessments and class assignments. 

The purpose of this study was to analyze students’ writing in mathematics and the 

metacognitive behaviors they portrayed through their writing as they solved mathematics 

problems. The instruments included a pretest, two biweekly tests, and a posttest. The 

writing instruction encompassed students learning to solve problems by using Polya’s 

four phases of problem solving which was completed in 12 sessions over a period of 6 

weeks. Garofalo and Lester’s framework which renamed Polya’s phases into orientation, 

organization, execution, and verification, was used to look at the metacognitive behaviors 

students used. The participants included 67 students enrolled in four third grade classes, 

who were English language learners and English speakers.  
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This research followed a quasi-experimental design, with a treatment group and a 

control group. A one-way repeated ANOVA was used to analyze the data. The findings 

showed no significant difference between the mathematics achievement scores of 

treatment and control. However, growth trends in achievement scores revealed that the 

treatment group scores were increasing faster than the control group scores across the 

four tests during the 6-week study. Moreover, significant differences were found 

between the treatment and the control groups when the problem solving with 

metacognitive behaviors scores were analyzed. Descriptive statistics showed the 

frequency of occurrence of each of the problem solving phases increased steadily across 

the four tests for the students in the treatment group. During the posttest, 100% of 

treatment group students wrote about metacognitive behaviors they used during the 

orientation and organization phases, 91.4% wrote about their metacognition for 

executing the solution, and 80% wrote about the verification process they followed.  

These findings are useful to education professionals who are interested in creating 

programs for teaching mathematics at the elementary level that include effective problem 

solving practices. This evidence-based method may be adopted in school districts with 

large populations of ELLs in order to assist these students when solving problems in 

mathematics. 
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CHAPTER I 

INTRODUCTION 

Mathematics education has undertaken numerous changes in the last century in 

response to student needs and to educational, social, and economic issues. The latest 

reform in mathematics education, the Common Core State Standards for Mathematics 

(CCSS, 2010), builds on the National Council of Teachers of Mathematics’ Principles 

and Standards (NCTM, 2000) and Curriculum Focal Points to prepare students for 

college and career success (CCSS, 2010; Dacey & Polly, 2012).  The CCSS include eight 

mathematics practices that engage students in higher order thinking as students (a) make 

sense and persevere in solving problems, (b) reason abstractly and quantitatively, (c) 

construct viable arguments and critique the reasoning of others, (d) model with 

mathematics, (e) use appropriate tools strategically, (f) attend to precision, (g) look for 

and make use of structure, and (h) look for and express regularity in repeated reasoning 

(CCSS, 2010). These mathematics practices call for students to problem solve, 

communicate, and reason.  

With an emphasis on problem solving, expectations for student learning are high 

so it is important for students to have meaningful learning experiences in their 

mathematics classes. George Polya’s (1957) problem solving phases state that when 

students solve problems in mathematics they should (a) understand the problem, (b) 

devise a plan to solve it, (c) carry out the plan, and (d) examine the solution. These 

phases are regularly found in mathematics textbooks and used as a framework when 

teaching students how to problem solve in mathematics classrooms. By using Polya’s 
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framework in the classroom, researchers have found that students are able to successfully 

solve mathematics problems (Garofalo & Lester, 1985; Pugalee, 2001, 2004). 

Additionally, the CCSS for Mathematics (2010) expect students to use evidence 

to support their thinking. Through the use of writing in mathematics, students can 

construct knowledge, reflect on their work, and clarify their thoughts (NCTM, 2000). 

They can also use writing as a tool to explain and show the expected evidence by 

describing how they came to understand what the problem was asking, to decide on the 

most appropriate strategies, to work to find a sound answer, and to verify their work. The 

CCSS for Mathematics demand more rigorous thinking than previously (White & 

Dauksas, 2012). Students’ thinking and understanding can be evidenced through 

drawings, and through using and explaining concrete models, place-value strategies, 

inverse relationships, and properties of operations (Dacey & Polly, 2012).  

National Council of Teachers of Mathematics (2000) emphasizes instruction that 

supports all students by providing them with the experiences to learn mathematics in a 

comprehensible way. This includes supporting the mathematical development of English 

Language Learners (ELLs) to help them meet the high expectations of recent reforms 

(e.g., CCSS for Mathematics). English language learners are students who are being 

served in appropriate programs of language assistance (NCES, 2013). They are part of 

the largest growing minority group in U.S. classrooms, reaching 10% or an estimated 4.4 

million K-12 students during the 2010-2011 school year (NCES, 2013). In the same year, 

2010-11, states located in the west had the highest percentages of ELLs in their public 

schools. California was in the lead with 29% ELL enrollment; followed by Oregon, 

Hawaii, Alaska, Colorado, Texas, New Mexico, and Nevada with 10% ELL enrollment. 
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In addition, Florida, the District of Columbia, Oklahoma, Arkansas, Massachusetts, 

Nebraska, North Carolina, Virginia, Arizona, Utah, New York, Kansas, Illinois, and 

Washington had ELL school enrollment percentages between 6% and 9.9%. The K-12 

ELL population is continually growing, especially in the District of Columbia and the 

aforementioned 21 states, thus looking at the experiences ELLs are having in 

mathematics and their performance in comparison to other students is important.  

According to the NCES (2013), ELLs’ performance in the mathematics section of 

the 2013 National Assessment of Educational Progress (NAEP) assessment was below 

that of non-ELLs. The NAEP assessment uses three achievement levels: basic, proficient, 

and advanced. When the scores are reported, the achievement-level cut scores result in 

four ranges: below basic, basic, proficient, and advanced. The NCES reported that while 

55% of non-ELLs are below the proficient level, 86% of ELLs performed at below basic 

or basic levels on the fourth grade 2013 NAEP mathematics assessment. Additionally, 

only 1% of ELLs performed at the advanced or superior performance level on the same 

test (NCES, 2013). The advanced level indicates that students are able to apply 

procedural and conceptual knowledge to complex and real-world problem solving in the 

five NAEP mathematics content areas: (a) number properties and operations, (b) 

measurement, (c) geometry, (d) data analysis, statistics and probability, and (e) algebra 

(NCES, 2013).  

Additionally, the new Common Core State Standards (CCSS, 2010) and the new 

assessments linked to these standards expect students to show evidence of their thinking 

and of their conceptual and procedural understanding of mathematics. The new 

standardized assessment used in the state of Florida is the Florida Standards Assessment 
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(FSA). Students are expected to write in the mathematics section of this standardized test 

to explain their answers (Dixon, Leiva, Larson & Adams, 2013; FSA, 2014). It has been 

suggested in the literature that writing in mathematics can help students develop into 

analytical thinkers as writing requires students to clarify their ideas and to reflect on what 

they are learning (Berkenkotter, 1982; Cooper, 2012; Nelson, 2012; Parker & Breyfogle, 

2011). English language learners are also being required to show evidence of their 

mathematical understanding in the same way their English speaking classmates do, 

through writing. Research studies that look at the way ELLs perform in mathematics 

when writing is used as an instructional practice is lacking. However, the literature has 

suggested that writing can help students develop their mathematical thinking and problem 

solving. On the basis of these premises, research on instruction that includes writing in 

mathematics to assist students, especially ELLs, in becoming better problem solvers as 

they achieve higher in mathematics is important.  

Theoretical Framework 

Mathematics education has been filled with an overwhelming number of theories. 

One of the most frequently applied theories in mathematics education is constructivism. 

Constructivism follows the ideas of John Dewey and Jean Piaget, and it is founded on the 

belief that students construct their own understanding of mathematical concepts. John 

Dewey believed that students need to engage in real-world experiences and practical 

activities that provide social interactions and creativity that in turn lead to meaningful 

learning (Dworkin, 1959). Furthermore, Jean Piaget believed that children need to be 

actively involved in their learning, use their prior knowledge to build on new knowledge, 

and move through stages of cognitive development (Piaget & Inhelder, 1969). 
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Piaget believed that children’s knowledge is first constructed by using concrete 

models that can be translated into symbolic representations and later into abstract ideas 

(Piaget & Inhelder, 1969). Piaget and Inhelder argued that concepts are learned from the 

actions or operations of our experiences. The concrete operations stage, as explained by 

Piaget and Inhelder (1969), provides a transition between schemes and general logical 

structures. Children at this stage relate operations (e.g., adding or union, subtracting or 

separating) directly to objects. With time, they are able to interpret a given concept more 

abstractly which together with their automaticity of procedures may lead to conceptual 

competence (Hiebert & Lefevre, 1986).  

An example of how Piaget’s ideas were used with young children learning 

mathematics can be seen in Carpenter and colleagues’ work (1999). Carpenter, Fennema, 

Franke, Levi, and Empson (1999) used Piaget’s ideas concerning how children solve 

problems in the concrete operations stage to study how children develop conceptual and 

procedural understanding of mathematical concepts. Cognitively Guided Instruction 

(CGI) was developed as the researchers showed how young children think and solve 

mathematics problems at different levels of cognition (Carpenter et al., 1999). 

Cognitively Guided Instruction is derived from the belief that in order to solve problems, 

children first model the actions in the problem, thus using concrete objects. These 

“concrete” or physical strategies become more effective counting strategies. Once they 

understand number relations children rely on more complex strategies (number facts) 

which in turn, become more abstract ways of solving mathematics problems (Carpenter et 

al., 1999).  Carpenter and colleagues research shows how children develop conceptual 
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and procedural understanding of concepts as they move from using concrete 

manipulatives to doing mental mathematics.  

Furthermore, Hiebert and Wearne (1986) explained that “poor performance in 

school mathematics can be traced to a separation between students’ conceptual and 

procedural knowledge of mathematics” (p.199). Conceptual learning leads to knowledge 

permanence, understanding, and the ability to apply what is learned to new problems. For 

instance, Thompson and Saldanha’s (2007) study showed that in order to have conceptual 

understanding of fractions students need to analyze different schemes. These schemes 

were separated into division schemes, including sharing or partitioning of equal parts; 

multiplication schemes or systems for creating units of units; measurement schemes or 

segmented quantities; and fraction schemes which can be a collection with some shaded 

parts (Thompson & Saldanha, 2007). The authors found that providing opportunities for 

students to work with these different schemes, students were able to conceptually 

understand fractions before learning a set of rules or procedures to solve computation 

problems (Thompson & Saldanha, 2007). Furthermore, Kling (2011) explained that when 

students have conceptual understanding of addition facts, including the ability to 

decompose and recompose numbers, they became fluent in adding basic facts. It can be 

concluded that when children learn conceptually in mathematics they can make important 

connections between procedures and concepts (Stylianides & Stylianides, 2007).  

Moreover, Hiebert and Wearne (1986) found that there were several points in the 

problem solving process where links between concepts and procedures are specifically 

critical. However, they explained that the way in which these links are established cannot 

yet be specified or assessed. On the basis of the fact that ordinary instruction programs 
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rely mainly on procedural skills, the authors argued that students’ mathematical behavior 

often shows students looking at surface features of problems and recalling and applying 

symbolic rules which produce mathematically unreasonable answers (Hiebert & Wearne, 

1986). The authors also found that students need to make three important connections 

between concepts and procedures during the problem solving process. The first is at the 

beginning of the problem solving process when the problem is being interpreted or 

understood (correlated to Polya’s [1957] first phase) and the students make connections 

between mathematical symbols (e.g., numerical or operational) and their conceptual 

referents. For instance, the division sign in  
7

8
 ÷

1

4
  can be interpreted as connecting the 

symbol with the algorithm invert and multiply, or as connecting the symbol with the 

conceptual notion of how many fourths are in seven eighths (Hiebert & Wearne, 1986). 

The second connection is made when the students are solving the problem (correlated to 

Polya’s second and third phases) in which procedures are selected and applied, 

sometimes without linking these rules to their conceptual rationales. The third point looks 

at the connections between the procedures used and the conceptual knowledge of the 

symbols to evaluate if the answer is reasonable (correlated to Polya’s fourth phase).  

The Principles and Standards for School Mathematics’ process standards (NCTM, 

2000) argue for the importance of making connections between conceptual and 

procedural understanding and calling for students to problem solve, communicate, 

represent, reason and make connections as they learn mathematics. Additionally, in the 

CCSS (2010), the first mathematical practice outlined is focused on problem solving and 

establishes that children can use concrete manipulatives to help in conceptualizing and 

solving problems, checking their answers to problems using different methods, and 
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understanding others’ methods in solving problems (CCSS, 2010). These closely relate to 

Piaget’s belief of how children first use concrete operations to understand concepts. The 

mathematical practice also has its basis in Polya’s (1957) phases of problem solving as it 

encourages children to use different strategies and to look back and verify their answers. 

As students construct mathematical knowledge, tools such as diagnostic interviews 

(Ashlock, 2006), collaborative conversations (Gibson & Hasbrouck, 2009), and writing 

activities (Pugalee, 2001, 2004) can be used to assess their thinking process and 

mathematical knowledge. In particular, writing activities have been used with secondary 

school students to assess the levels students reach when they problem solve (Pugalee, 

2001, 2004). Pugalee (2001, 2004), and Garofalo and Lester (1985) studied the 

metacognitive behaviors students demonstrate when they problem solve by using writing 

activities. Pugalee’s (2001) research shows how writing in mathematics supports students 

in developing problem solving, communication, and reasoning skills as they use specific 

metacognitive behaviors that mirror Polya’s phases to explain their thinking. Students in 

Pugalee’s study (2001) wrote to describe how they solved mathematics problems during 

and after the process. Then, their descriptions were categorized into behaviors that 

showed how the students used the four phases to solve the mathematics problems. These 

studies used Polya’s (1957) four phases as well as constructivist views as their theoretical 

lens.  

Constructivists’ views in education include students developing structures that are 

more complex, abstract, and powerful than the ones they already have (Clements, 1997). 

They also focus on analyzing students’ thinking in order to identify their mathematical 

understanding (Clements, 1997). The NCTM process standards state that students need to 
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be encouraged “to use the new mathematics they are learning to develop a broad range of 

problem-solving strategies, to formulate challenging problems and to learn to monitor 

and reflect on their own ideas in solving problems” (NCTM, 2000, p. 116). Pugalee 

(2001) studied students’ written reflections during the problem solving process. He found 

that students in a high school Algebra 1 class showed specific metacognitive behaviors. 

Pugalee’s study was based on Garofalo and Lester’s (1985) metacognitive framework 

that described four metacognitive behaviors: Orientation, Organization, Execution, and 

Verification. These behaviors follow George Polya’s (1957) four phases of problem 

solving, and can be related to those as follows: orientation as understanding the problem, 

organization as devising a plan, execution as carrying out the plan, and verification as 

examining the solution or looking back. Garofalo and Lester (1985) explained that 

students’ metacognitive behaviors while solving mathematics problems may include 

selecting strategies to help understand the problem, planning a course of action and the 

strategies to solve it, monitoring execution activities while implementing strategies, and 

revising if the plan used was effective. Pugalee (2001) found that the high school 

students’ written responses could be connected to Garofalo and Lester’s metacognitive 

framework.  

Basis for the Current Study 

In spite of the national, state, and school districts’ efforts in developing and 

updating standards to improve academic achievement in mathematics across grade levels 

for all students, ELLs still fall far behind their English speaking counterparts. In fact, the 

results from the National Center for Education Statistics (2013) reported that in 1996 

ELLs’ average score on the National Assessment of Educational Progress (NAEP) in 
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mathematics was 201 as opposed to 225 for English speakers, a difference of 24 points; 

while in 2013, ELLs’ average score in the mathematics NAEP was 219 while non-ELLs’ 

average was 244, showing a difference of 25 points (NCES, 2013). There is no statistical 

significance reported for the difference in average scores between the groups. Even 

though the NCES reports that the changes within the ELLs’ scores from 1996 to 2013 are 

statistically significant at p< .05, the achievement gap revealed by this test shows it is 

increasing when comparing the ELLs to the English speaking students. In addition, the 

2011 Trends in Mathematics and Science Study (TIMSS) found that U.S. fourth graders 

scored above the international average on knowing facts and procedures but below the 

international average on applying procedural and conceptual knowledge in problem 

solving and on reasoning in problem solving. The 2011 TIMSS measured students’ 

cognitive domains defined as: (a) knowing or the knowledge of mathematics facts, 

concepts, tools, and procedures; (b) applying or the ability to apply knowledge and 

conceptual understanding in a problem situation; and (c) reasoning or going beyond the 

solution of routine problems that encompass unfamiliar situations, complex contexts, and 

multi-step problems (Mullis, Martin, Foy, and Arora, 2012). Results showed that the U.S. 

fourth grade students scored the highest in the domain of knowing with an average scale 

score of 556, 15 points higher than the international mathematics average of 541. This 

showed that in the domain of knowing, the score for the United States was significantly 

higher than the overall mathematics score (Mullis et al., 2012). However, the fourth 

graders scored at an average of 539 in the applying cognitive domain, two points lower 

than the international average. They scored the lowest in the reasoning domain with an 

average scale score of 525, 16 points below the international mathematics average score. 
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The scores for both the applying cognitive domain and the reasoning cognitive domain 

were significantly lower than the overall mathematics score (Mullis, et al., 2012). 

Problem solving is particularly connected to the second and third cognitive domains 

discussed by Mullis et al. (2012): applying and reasoning. During problem solving, 

students are expected to think about what the problem is asking, apply their knowledge, 

and reason about ways to solve it. As observed in the 2011 TIMSS report, the United 

States’ students scored below the country’s average score of 541 in both these cognitive 

domains. Furthermore, English language learners, being part of 10% of the student 

population in the U.S. classrooms, score much lower in assessments (e.g., NAEP) that 

require mastery of these types of domains (NCES, 2013); thus perpetuating the 

achievement gap between ELLs and English speakers. In addition, researchers have 

found that ELLs are not likely to choose science, technology, engineering, and 

mathematics (STEM) careers and so are underrepresented in these fields (Brown, Cady, 

& Taylor, 2009). Careers in STEM require professionals to have knowledge of 

mathematics facts, concepts, tools and procedures, but more importantly be able to apply 

these concepts and use reasoning to go beyond routine problem solving.  

Another recent change in curriculum has made significant changes to the way 

mathematics should be taught and learned. The Common Core State Standards has 

refocused mathematics into a more rigorous and problem solving subject. Students are 

required to be persistent, create and use diverse strategies, and show evidence of their 

thinking (CCSS, 2010). Additionally, students are required to use writing to show 

evidence of their understanding in both classroom assignments and assessments. Most of 

the literature describing writing in mathematics has been conducted from middle school 
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to college level (Barlow & Drake, 2008; Bicer, Capraro, & Capraro, 2013; Brown, Cady 

& Taylor, 2009; Pugalee, 2001, 2004; Taylor & McDonald, 2007). Writing in 

mathematics has been used as instructional and assessment practices. The current study 

investigated the effect writing in mathematics had on students’ mathematics achievement 

and on students’ problem solving assessments. Writing activities included students’ (a) 

explanations to their answers to problems, and (b) explanations of the processes they 

followed in solving the problems. Given that writing is now a needed form of 

communication in the mathematics classroom for both construction of knowledge and for 

assessment starting at the elementary level, research on how writing in mathematics 

affects the mathematics achievement of elementary ELLs is important. 

Statement of the Problem 

The gap that exists between ELLs and English speaking students’ achievement in 

mathematics continues to grow (NCES, 2013). Students are now required to show 

evidence of their mathematics knowledge through writing in standardized assessments 

(FSA, 2014). Elementary age students struggle when writing in mathematics as this is a 

practice that is not typically included in daily instruction. However, students at very early 

grades are being asked to support their answers to mathematics problems during 

classroom assignments, weekly assessments, and standardized tests. Thus far, writing in 

mathematics is not a common practice at the elementary level even though research 

studies at higher levels (e.g., middle school, high school, and college) have found it is an 

effective tool for students to develop and show their mathematical knowledge (Baxter, 

Woodward, & Olson, 2005; Bicer, Capraro, & Capraro, 2013; Cooper, 2012; Porter & 

Masingila, 2000; Pugalee 2001, 2004; Seto & Meel, 2006; Taylor & McDonald, 2007; 
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Williams, 2003). There is a lack of studies that show the connection between student 

mathematics achievement and using writing to promote conceptual understanding and 

problem solving at the elementary school level.  

Purpose of the Study 

The purpose of this study was to investigate third grade ELLs’ and English 

speakers’ writing during mathematics and the relationship between this writing and the 

students’ achievement in mathematics. The students wrote to explain answers to 

mathematical problems during whole group instruction, and received instruction on the 

four problem solving phases developed by George Polya during a six week period. A 

one-way repeated ANOVA was used to analyze students’ achievement scores in four 

different assessments. 

Research Questions 

The research questions that guided this study are as follows:  

1. Are the mathematics achievement scores of English language learners and English 

speakers using writing in mathematics significantly higher than the achievement 

scores of students not using writing in mathematics? 

a. Are the mathematics achievement scores of the English language learners 

using writing in mathematics significantly higher than the achievement 

scores of the English language learners not using writing? 

b. Are the mathematics achievement scores of the English speakers using 

writing in mathematics significantly higher than the achievement scores of 

the English speakers not using writing? 
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2. Are the problem solving with metacognitive behaviors’ scores of English 

language learners and English speakers using writing in mathematics significantly 

higher than the problem solving with metacognitive behaviors’ scores of students 

not using writing in mathematics?  

3. Which of the four metacognitive behaviors (orientation, organization, execution, 

verification) do third grade English language learners and English speakers most 

often demonstrate when they write during problem solving on the achievement 

tests? 

Significance of the Study 

 This study included third grade students in a predominantly Hispanic school in the 

southwest area of Miami Dade County Public Schools (MDCPS). The current study 

focused on third grade students given that they are being required to use writing to 

explain their answers to mathematics problems in high stakes testing as well as in weekly 

assessments and classroom assignments under the new Mathematics Florida Standards 

(MAFS, 2015). The current study examined the effects of writing during problem solving 

on the mathematics achievement of third grade ELLs and English speakers to determine 

if the use of writing helps students to achieve higher in the subject. It also analyzed the 

metacognitive behaviors the students used on the biweekly tests and on the posttest.  

 The fourth grade 2013 NAEP mathematics assessment showed a large percentage 

of English language learners (86%) performing at below basic and basic levels in 

mathematics academic achievement. The 2013 NAEP study showed that the ELLs’ 

average score in mathematics was higher in 2013 than in 1996. However, the 2013 NAEP 

results also show that there is a wider gap between the ELLs and the English speakers in 



     

 

15 

the 2013 test than in the 1996 NAEP mathematics test, showing that although the two 

groups are scoring higher, the English speakers are advancing at a faster rate than the 

ELLs. Additionally, the 2011 TIMSS results showed that on the whole, the U.S. fourth 

grade students scored the highest in the domain of knowing, scored at an average level in 

the applying cognitive domain, and scored the lowest in reasoning when compared to 

international mathematics average scores (Mullis, et al., 2012).  

Given these results, this study might assist Miami-Dade County Public Schools 

third grade teachers and other similar school districts third grade teachers in deciding if 

using writing in mathematics can increase the mathematics achievement of students by 

restructuring instructional practices to include more writing in their mathematics lessons. 

This study can assist in developing instructional practices and strategies that can be used 

to improve the delivery of the elementary mathematics curriculum.  

Delimitations 

The study’s delimitation are as follows: only students enrolled in third grade 

classes at the school selected were invited to participate in this research study; two 

teachers participated in the study and one of the teachers was the researcher. Only 

students in the treatment group had access to writing instruction during mathematics. The 

students in the control group did not have access to writing instruction in mathematics 

during the length of the study. The ELLs could choose to write in their native language to 

explain their answers. 

Operational Definitions  

Adaptive reasoning.  It is referred to the capacity for logical thought, reflection, 

explanation, and justification (NRC, 2001). 
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Conceptual understanding. It refers to comprehension of mathematical concepts, 

operations, and relations (NRC, 2001). 

 Mathematical proficiency. It is described as having five components or strands: 

conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, 

and productive disposition (NRC, 2001). 

Metacognition. Someone’s ability for knowing their own thinking, sometimes 

used for monitoring their understanding of a given topic. 

Procedural fluency. It is the skill in carrying out procedures flexibly, accurately, 

efficiently, and appropriately (NRC, 2001). 

Productive disposition. It is the habitual inclination to see mathematics as 

sensible, useful, and worthwhile, coupled with a belief in diligence and one’s own 

efficacy (NRC, 2001). 

Strategic competence. It is the ability to formulate, represent, and solve 

mathematical problems (NRC, 2001).  

Writing in math. It refers to the written explanations to mathematics word 

problems or open-ended questions. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Engaging students in meaningful learning in mathematics is important. The use of 

manipulatives, literature connections, “math talks,” and writing actively are ways of 

engaging students in learning new mathematical concepts. All these strategies can be 

used to promote problem solving which is described by the NCTM (2000) as “engaging 

in a task for which the solution method is not known in advance… [in which] students 

draw on their knowledge and through this process…develop new mathematical 

understandings” (p. 52). In an effort to improve student learning in mathematics, the 

NCTM (2000) and CCSS (2010) require students to build new knowledge through 

solving problems, applying their knowledge to new situations, and monitoring and 

reflecting about their solutions. During the problem solving process, students should 

acquire conceptual understanding and develop procedural fluency of mathematical 

concepts. Connecting problem solving with writing in mathematics engages students in 

learning and results in higher academic achievement in the mathematics classroom 

(Berkenkotter, 1982; Burton & Mims, 2012; Parker & Breyfogle, 2011). However, 

studies that look at these connections have only been conducted with students at the 

secondary or college level. Literature about the effect of writing in mathematics at the 

elementary or primary grades is non-existent even when it is becoming a requirement in 

both instructional practices and high stakes tests (FSA, 2014).  

Chapter II is divided into four major sections. The first section describes the 

connection between mathematical problem solving, and conceptual learning and 

procedural fluency. The second section discusses instructional practices and assessment. 
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Section three addressed how students develop strategies to solve problems in math. 

Lastly, section four includes a review of the research on the problem solving phases and 

metacognitive behaviors related to each phase.  

Conceptual Understanding and Procedural Fluency during Problem Solving  

Problem solving should be part of daily tasks in the mathematics classroom, as it 

has been recommended by NCTM (2000) and by the CCSS (2010). The first CCSS 

mathematical practice states that students will “make sense and persevere in solving 

problems” (CCSS, 2010). The CCSS include grade-level specific standards, but do not 

define specific interventions or instructional approaches for students who are ELLs. It 

does, however, assume that “all students must have the opportunity to learn and meet the 

same high standards if they are to access the knowledge and skills necessary in their post-

school lives” (CCSS, 2010, p. 4). Keeping this in mind, teachers need to use appropriate 

instructional approaches to engage all their students, including ELLs, in mathematical 

problem solving for them to be college and career ready. NCTM (2000) stated that 

students should be given opportunities to investigate problems, evaluate results, organize 

information, and communicate their findings. They should also be able to recognize, 

apply, and interpret what to do in each problem; and create a system of effective methods 

to solve mathematics problems (NCTM, 2000). These requirements can be fulfilled by 

using George Polya’s problem solving phases which include understanding the problem, 

devising a plan, carrying out the plan, and examining or verifying that the answer makes 

sense (Polya, 1957).  

A variety of instructional practices help students develop valuable strategies in 

mathematics. Commonly, textbooks, manipulatives, hands-on experiences, writing, and 
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literature connections are used to teach the mathematics standards and to help students 

acquire mathematical proficiency. NRC (2001) argued that for students to have 

mathematical proficiency they need to have conceptual understanding, procedural 

fluency, adaptive reasoning, strategic competence, and productive disposition. For the 

purpose of this study, adaptive reasoning is the capacity for logical thought, reflection, 

explanation, and justification; conceptual understanding is comprehension of 

mathematical concepts, operations, and relations; procedural fluency is the skill in 

carrying out procedures flexibly, accurately, efficiently, and appropriately. Productive 

disposition refers to the habitual inclination to see mathematics as sensible, useful, and 

worthwhile, coupled with a belief in diligence and one’s own efficacy, and strategic 

competence is the ability to formulate, represent, and solve mathematical problems 

(NRC, 2001). The NRC (2001) argues that when students have a deep understanding of 

mathematics topics they connect pieces of knowledge and making these connections is 

what helps them solve problems effectively. Additionally, when students develop the 

ability for knowing their own thinking and for monitoring their mathematical 

understanding and their problem solving strategies, they are able to achieve strategic 

competence and adaptive reasoning.  

Instructional and Assessment Practices 

The NCTM (2000) and the CCSS (2010) have stressed the importance of having 

students develop conceptual learning as well as procedural fluency in mathematics. The 

Principles and Standards for School Mathematics (NCTM, 2000) state that all student 

learning needs to be supported by instructional practices that make mathematics 

comprehensible; thus, it is important to use appropriate strategies to teach ELLs 
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mathematics including visual cues, graphic organizers, realia, concrete and visual 

manipulatives, teaching of vocabulary with multiple meanings, and working in supportive 

groups (Kersaint, Thompson & Petkova, 2009; Robertson, 2009). When researching 

about the use of writing in mathematics, it can be found that most studies have been done 

with students at higher levels: middle school, high school, and college (Pugalee, 2001, 

2004; Taylor & McDonald, 2007; Williams, 2003). These students bring content 

knowledge from instruction received in their native language (Brown, Cady, & Taylor, 

2009) which may help in understanding and building on the new concepts they are 

learning. Contrarily, elementary school students, especially in the early grades, do not 

have the background knowledge to build on from, and learn both English language skills 

and mathematical content simultaneously. Thus, it is essential for teachers to use the tools 

that support ELLs in learning language and mathematics concurrently at this level 

(Brown, Cady, & Taylor, 2009; Robertson, 2009). Borgioli’s (2008) anecdotal piece 

about mathematics strategies used in her classroom shows that choosing the appropriate 

tasks, tools, and classroom norms can lead ELLs to be successful in the mathematics 

classroom. Some of these effective strategies include using literature and writing in 

mathematics (Columba, 2013; Gerretson & Cruz, 2011; Kersaint, Thompson, & Petkova, 

2009; Nelson, 2012), using manipulatives and hands-on activities (Brown, Cady, & 

Taylor 2009; Reimer & Moyer, 2005; Robertson, 2009); extending on children-invented 

strategies (Empson, 2001), and using problems that engage learners with their connection 

and relevance to students’ lives (Meyer, 2012; Ramirez & Celedon-Pattichis, 2012).  
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Current Instructional Practices 

At the elementary level, students use a variety of materials and strategies to 

understand and apply mathematics concepts in order to construct conceptualizations that 

will serve as the foundation for more advanced mathematics. Studies have found the 

mathematics textbook is the most commonly used instructional tool in mathematics 

classes (Charles, 2009; Hodges, Landry & Cady, 2009). However, when analyzing 

textbooks, Charles (2009) argued that most of them communicate only mathematical 

skills knowledge or procedural fluency rather than conceptual understanding. 

Additionally, Hodges, Landry, and Cady (2009) claimed that conventional mathematics 

textbooks usually provide an overabundance of resources for teachers but are deficient on 

pedagogical approaches to promote students’ conceptual learning.  

The states that have made or will make the transition to CCSS need to address 

these issues as the new standards call for conceptual understanding and procedural 

fluency and have adopted new textbooks to reflect these changes. The use of 

conventional textbooks as the primary curriculum and instructional resource in 

mathematics classrooms tends to focus instruction on the mastery of skills rather than in 

conceptual understanding. In the case of Florida, the mathematics textbooks used at the 

elementary level in some districts, GO Math, attempt to address the CCSS (2010) by 

starting each lesson with an investigation-type question in which students are given real-

life scenarios with questions that introduce the topic for the day. However, districts that 

focus on the gradual release model of instruction may undermine attempts to address the 

CCSS within the textbooks. Within the gradual release of responsibility model (Fisher & 

Frey, 2008); first, the teacher models how to solve the question and some subsequent 
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questions by giving the students a variety of strategies they can use to solve similar 

problems. Next, the students are expected to work in pairs or small groups; and lastly, 

they work independently to solve some questions that mainly assess procedural 

knowledge. At the end of each lesson, there are one to four questions that require students 

to show evidence of their understanding of the day’s concept through writing. These last 

questions might ask students to explain what strategy is most appropriate to solve a 

problem; to write a question for a given data set, picture, or graph; or to write to explain 

if a given situation makes sense or not. The gradual release model used in the textbook 

setup is meant to help students acquire conceptual understanding and procedural fluency 

as they develop strategic competence. However, Meyer (2012) states that textbook 

questions should be modified to “induce in the student a perplexed, curious state, a 

question in her/his head that mathematics can help answer,” in order to have students 

develop their own strategies to solving problems or be able to build upon the strategies 

previously learned to facilitate retention and conceptual understanding. This process help 

students in developing in-depth conceptual understanding as they become efficient in 

choosing procedures and strategies to solve the problems (Meyer, 2012). However, the 

way in which the mathematics textbooks at the elementary level are being used, do not 

provide students with enough experiences to develop different strategies to problem 

solve. Rather the strategies are directly taught throughout each lesson. 

In addition to textbooks, teachers also use student journal entries, admit-exit slips 

(Altieri, 2009), small group responses, observations, and activity sheets to teach and 

evaluate students. Celedon-Pattichis and Turner (2012) explained that ELLs from 

different cultural and linguistic backgrounds can solve challenging mathematics tasks 
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similar to those presented to English speakers by Carpenter et al. in the CGI model given 

that certain instructional practices are used. Some of these practices include making the 

content relevant to the ELLs’ lives, and giving the students opportunities to speak, write, 

read and listen in the mathematics classroom. These results are from a study of 45 Latino 

and Latina low-income students in Kindergarten (Turner & Celedon-Pattichis, 2011). 

Furthermore, Kinzer and Rincon (2012) argued in their narratives that when teachers of 

ELLs use meaningful problems with relevant content, students can achieve as high as 

their monolingual English speaking counterparts in solving mathematics problems. These 

instructional practices enhance the concepts that students need to understand in order to 

be college and career ready.  

Similarly, Hodges, Landry, and Cadi (2009), and McLeman and Cavell (2009) 

agreed that vocabulary that is developed through the collaboration among students and 

teachers help students in using the terms over time giving students ownership of the 

mathematical terminology. Approaches such as having a word wall for mathematics 

vocabulary, playing word games, making connections to literature, and keeping a 

mathematics journal are practices that develop language and content knowledge. 

Mathematics word walls that include multiple meaning words are essential to minimize 

misconceptions. For example, words such as foot, reflection, square, and second, may be 

used incorrectly in mathematics because of the multiple meanings these words have in 

everyday English (Ashlock, 2006). Thus, word walls also present ELLs with visual aids 

that can be used to write about mathematics.  

Another effective practice that promotes higher achievement in mathematics is the 

use of literature. Authors of children books such as Marilyn Burns, Greg Tang, 
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Mitsumasa Anno, Jon Scieszka, and Shel Silverstein have captured the essence of 

mathematics concepts in their literature. When mathematics concepts are introduced or 

reviewed with a story most students are receptive and involved in learning (Bintz & 

Moore, 2012; Christy, Lambe, Payson, & Carnevale, 2011; Columba, 2013; Gerretson & 

Cruz, 2011; Nelson, 2012). Altieri (2009) explained that by integrating literacy and 

writing into mathematics instruction her students improve both their language and 

mathematics skills. Christy and colleagues (2011) also reported that when children are 

presented with innovative ideas based on a story (in this case, The Wizard of Oz) they are 

engaged and excited while learning mathematics topics. The use of literature connections 

in mathematics also provides the opportunity for students to use writing to reflect on their 

thinking and for teachers to reflect on what the students know and understand thoroughly. 

By analyzing students’ written entries, teachers’ instruction can be improved to provide 

both conceptual and procedural learning experiences to students through engaging 

problem solving tasks (Bintz & More, 2012; Burton & Mims, 2012). Ramirez & 

Celedon-Pattichis (2012) added that using stories that students can relate to as part of 

their mathematics instruction benefits ELLs as the vocabulary is related to their 

experiences and they can solve challenging mathematics problems as well as English 

speakers. 

Altieri (2009) described another instructional practice, word association in which 

ELLs can use written (word, definition, and sentence) and visual (picture) clues to help 

them remember the meaning of mathematical terms. She also uses multi-meaning word 

cards in which students write words that have multiple definitions and draw pictures to 

remind them of the different meanings. For example, the students may write the word 

http://www.goodreads.com/author/show/72077.Mitsumasa_Anno
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volume and draw a picture of a container and write “amount” and on the side draw 

someone shouting and write “how loud someone is” (Altieri, 2009). These are 

instructional practices that help ELLs express their conceptual and procedural 

understanding and develop writing skills to write effectively in mathematics. 

Taylor and McDonald (2007) found that when first-year college students wrote to 

explain the process they followed to solve problems in mathematics their conceptual 

understanding increased as they were able to better understand the different strategies 

they used. The results of this study indicated that formal writing activities in mathematics 

assisted students in reflecting in ways that correlated to Polya’s phases and was 

conducive to solving problems effectively. This research study aimed to find if similar 

results happen when writing in mathematics is used with elementary students.    

Writing in Mathematics 

Pugalee (2004) and Williams (2003) found that high school students who wrote 

about their problem solving processes score significantly higher in problem solving 

assignments than students who did not use writing. Pugalee’s (2004) study compared 

students’ written and oral (think-aloud) explanations when they solved mathematics 

problems. A test for differences between proportions of how students answered the 

problems (using either written or oral descriptions) showed than when students used 

written descriptions they had significantly lower errors than when they used oral 

descriptions (Pugalee, 2004). Pugalee’s (2004) study also analyzed the students’ 

responses based on the four metacognitive behaviors described by Garofalo and Lester 

(1985) and found the number of orientation and execution behaviors were significantly 

higher for students providing written explanations. These two metacognitive behaviors 
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were positively correlated to success with problem solving tasks. In turn, Williams (2003) 

used a pretest–posttest design with a control and treatment group. The participants in his 

study included 42 beginning algebra high school students. Williams (2003) studied the 

students’ written responses to how they solved five weekly non-routine mathematics 

word problems. Williams (2003) found that there was a positive significant difference in 

the posttest scores of the students who used writing during problem solving, and 

concluded that writing about the executive process resulted in gains in the problem 

solving performances of beginning algebra high school students.  

In addition to the research that supports using writing to help middle school, high 

school, and college students be successful problem solvers, new textbooks as well as new 

standardized assessments are requiring students to show evidence of their understanding 

through written explanations across grade levels (FSA, 2014). Furthermore, new 

curricula focus on increasing students’ conceptual understanding of mathematical topics. 

A portion of each lesson of the mandated elementary textbook  in some districts in 

Florida requires students to write their thinking process to solve problems (Dixon et al., 

2013) and new standardized assessments (FSA, 2014) also require students to explain 

their answers through written responses in order to show their conceptual understanding 

and procedural fluency. Writing is a practice that has shown improvement of student 

achievement in content areas such as mathematics at the middle school, high school, and 

college levels. Taking into account the need to help ELLs progress to higher standards of 

mathematical knowledge and application, it is important to study the effect that writing 

can have in promoting conceptual learning and procedural fluency while ELLs problem 

solve in mathematics at the elementary school level.  
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Writing, which is usually implemented during Reading and Language Arts, is a 

valuable tool to also use in mathematics to encourage ELLs to write about what they are 

learning. Bresser, Melanese, and Sphar (2008) recommend the use of sentence frames, 

prompting questions that model the structure of a well-crafted answer, and open-ended 

questions to help ELLs to feel confident when using writing in mathematics. Writing in 

mathematics can assist ELLs in understanding mathematical topics that are new to them 

or that are used in different ways in the U.S. mathematics curriculum (Access Center, 

2008; Berkenkotter, 1982; Williams & Casa, 2012). Most ELLs have difficulty with 

problem solving due to culturally-linked content and to vocabulary found in mathematics 

word problems (Brown, Cady, & Taylor, 2009; Robertson, 2009). There is a general 

belief that ELLs can learn mathematics without much difficulty because “mathematics is 

universal” (Robertson, 2009). However, ELLs struggle daily with mathematics problems 

that address situations that are unfamiliar to them or that have vocabulary that is new or 

ambiguous (Ramirez & Celedon-Pattichis, 2012). Explicit teaching of mathematical 

language and vocabulary is critical for ELLs to understanding concepts and thus for 

understanding problems in word form. Ashlock (2006) suggested that when introducing a 

concept to young or elementary-age children the appropriate terms should be used even if 

it is informally.  

Assessment 

The need to align high-stakes assessments to the mathematics curriculum has also 

had an impact on mathematics textbooks, instruction, and in how teachers help students 

develop conceptual understanding. The NCTM’s (2012) position statement on assessment 

discusses the importance of formative and summative assessments that evaluate students’ 
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mathematical knowledge versus the use of high-stakes testing as the sole source of 

information about students’ mathematical knowledge. Traditional classrooms commonly 

use summative assessments which are given at the end of a lesson, chapter, or unit in 

order to assess students’ understanding of mathematics concepts and mainly look at 

students’ procedural knowledge. However, assessment should be a tool of final 

evaluation of student knowledge as well as an ongoing measurement (formative 

assessment) of students’ progress. By using open-ended questions as a formative 

assessment tool, teachers can assess students’ conceptual development and procedural 

fluency (Borgioli, 2008).  

Furthermore, tasks given to ELLs need to be meaningful to facilitate the 

connections students need to make that can lead to conceptual understanding (Borgioli, 

2008; Celedon-Pattichis & Turner, 2012; Kinzer & Rincon, 2012). For instance, Borgioli 

explains how a project called Children’s Math Worlds funded by the National Science 

Foundation uses stories from the children’s lives to create mathematics problems that the 

students have to solve. In this way students can learn mathematical concepts by using 

texts, word problems or examples involving scenarios with which they are familiar. 

Celedon-Pattichis and Turner (2012) also explain the impact of using information from 

students’ lives in developing mathematics problems and the positive effect this has on 

conceptual understanding and in problem solving.  

Developing Strategies to Solve Problems in Mathematics 

Cognitively Guided Instruction (CGI) developed by Carpenter, Fennema, Franke, 

Levi and Empson (1999) showed how young children think and solve mathematics 

problems at different levels of cognition. It is based on the belief that first children model 



     

 

29 

the actions in a mathematical problem and during this process they develop strategies to 

solve it. The research conducted by Carpenter et al. (1999) demonstrated that children 

used strategies depending on the type of mathematics problem they were solving, and the 

strategies became more effective as they had more experience solving problems. For 

example, to solve an addition problem students started by using direct modeling 

strategies, which included using fingers or objects to represent each addend; eventually, 

they used counting strategies which included counting on from one of the addends 

(Carpenter, et al., 1999). The counting strategies were more efficient and abstract than the 

direct modeling strategies as the students started noticing the relationship between 

numbers and used the physical object as a way to keep track of the counting sequences. 

Additionally, the children used number facts which included recalling doubles facts (e.g., 

7+7, 2+2) or using derived facts (e.g., 4+5 is one more than 4+4) (Carpenter et al., 1999). 

To solve multiplication and division problems students also started out by using direct 

modeling by making sets with the specified number of objects in each, and then slowly 

moved to using counting strategies which included skip counting; lastly, they used 

derived facts (Carpenter et al., 1999).  

Similar to the findings by Carpenter and colleagues with White non-Hispanic 

students, Ramirez and Celedon-Pattichis (2012) discussed that Kindergarten ELLs can 

respond to challenging mathematics problems with questions and comments. NCTM 

(2013) also stated on a position statement regarding Teaching Mathematics to ELLs that 

“expanded learning opportunities and instructional accommodations should be available 

to English language learners (ELLs) who need them to develop mathematical 

understanding and proficiency” (p.1).  
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Specific topics in mathematics might be challenging for some ELLs. An example 

is fractions, as students may come from places where decimals are emphasized over 

fractions, or whose cultures do not have conceptual representations of fractions (Kersaint, 

Thompson, & Petkova, 2009). Another cultural-mathematical difference is numerals as 

there are countries where notations such as commas and periods are used in opposite 

ways than in the United States. For instance, South American and European countries use 

commas in numbers where U.S. uses periods, and use periods where commas are used in 

the U.S. (e.g., 5.231 will be read as five thousand two hundred thirty one, rather than as a 

decimal notation). Students may also have difficulty with money as the U.S. coin values 

cannot be derived from the size of the coin (e.g., a dime is smaller in size than the nickel 

but larger in value) and also because the coin value is not written on the coins (e.g., the 

dime has “one dime” written on it, instead of the numerical representation of “10₵”). 

Another difficult topic for ELLs is measurement as students may only understand the 

metric system (Kersaint, Thompson, & Petkova, 2009) rather than the U.S. customary 

system of measurement. These culturally different conceptions in mathematics create 

many challenges for the English language learners.  

Consequently, writing in mathematics can inform the teacher about 

misconceptions, error patterns, or the topics that need to be reviewed or re-taught (Parker 

& Breyfogle, 2011; Williams & Casa, 2011). It can help students describe their 

mathematical thinking, show the process they go through to solve problems, and show 

competence in using problem solving strategies (Fernandez, Hadaway, & Wilson, 1994; 

Pugalee, 2004). Writing can also provide students with a medium to switch between 

verbal and visual modes of thought as students can express their thinking in the form of 



     

 

31 

diagrams, flow charts, and drawings (Berkenkotter, 1982). Thus, writing is especially 

beneficial to ELLs as they develop language skills and become mathematics problem 

solvers. 

Students become better problem solvers by writing about problem solving 

(Berkenkotter, 1982; Burton & Mims, 2012; Parker & Breyfogle, 2011, Pugalee, 2004). 

Teachers can promote the use of the eight mathematical practices by challenging students 

to look for clues to understand the problem or as George Polya wrote, asking questions 

that help students develop a set of strategies to solve problems independently (Polya, 

1957). Students who are learning to problem solve need to listen to others’ ideas and 

compare these with their own, justify their thinking, write about the process they go 

through to solve problems, and struggle with such in order to find a variety of solutions 

(NCTM, 2000). By using writing in mathematics students are able to share the strategies 

they use to solve mathematics problems with others in the class and by writing about the 

process these strategies become familiar to them. Students start creating a repertoire of 

strategies they can use during problem solving inside and outside the mathematics 

classroom (Burton & Mims, 2012; Columba, 2013; Gerretson & Cruz, 2011; NCTM, 

2000; Nelson, 2012; Parker & Breyfogle, 2011;Williams & Casa, 2012). Writing in 

mathematics can also be used to help ELLs share their experiences, develop their writing 

skills in English using mathematics terminology, verbalize their learning, and explain 

their solutions (Kersaint, Thompson, & Petkova, 2009).  

Students can write to explain their thinking process (Berkenkotter, 1982;  Bicer, 

Capraro, & Capraro, 2013; Fernandez, Hadaway, & Wilson, 1994; Pugalee, 2001, 2004; 

Taylor & McDonald, 2007; Williams, 2003),  write about their feelings towards 
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mathematics (Baxter, Woodward, & Olson, 2005) or write to show their understanding 

about a given concept (Altieri, 2009; Barlow & Drake, 2008; Bintz & Moore, 2012; 

Brown, Cady, & Taylor, 2009; Cooper, 2012; Fernandez, Hadaway, & Wilson, 1994; 

Rosli, Goldsby, & Capraro, 2013; Seto & Meel, 2006; Wiest, 2008; Williams & Casa, 

2012). For the purpose of this study “writing in mathematics” included writing activities 

with entries in which the students explained their thinking process when solving 

mathematics problems.  

Problem Solving Phases and Metacognitive Behaviors 

The methodologies, strategies, and activities used in a classroom to introduce a 

concept lay the foundation for students’ understanding and application of the concept. 

George Polya (1957) was a visionary when it came to teaching his students to solve 

problems. He devised a model in which students followed four phases in order to solve 

problems: understanding the problem, making a plan by seeing how the various items are 

connected in the problem, carrying out the plan in which students use different strategies, 

and looking back to review and discuss the solution (Polya, 1957). Polya’s phases of 

problem solving can be utilized with students at all grade levels, and ELLs can benefit 

greatly from his model as it presents them with a clear guide to solve problems. For 

instance, during the first phase: understanding the problem, ELLs can work on key 

vocabulary and cultural elements to facilitate understanding. In phase two, devising a 

plan, the ELLs can make a plan by using strategies to find the right pathway to solve the 

problem. During phases three and four, carrying out the plan and looking back, ELLs can 

solve the problem and can go back to the strategy they used to solve the problem by 

writing to explain about the process they followed. Using the problem solving phases 
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helps students acquire mathematical specific terminology and problem solving strategies 

that can be used in real-life scenarios. Additionally, they will be able to “make sense and 

persevere in solving problems” as cited in the first CCSS mathematical practice (CCSS, 

2010) and be closer to meet the high standards required to succeed in their future college 

and career paths. 

According to researchers such as Garofalo and Lester (1985), Pugalee (2001), and 

Yimer and Ellerton (2006) it is important to analyze what students are thinking while 

they solve problems in mathematics to inform the instructor what the student knows 

about a certain topic. The analysis can lead to a deep understanding of what students do 

to solve the problem from their initial engagement to a final verification of strategies used 

and steps taken. Garofalo and Lester (1985) showed that there are four main categories of 

metacognitive behaviors students show when solving problems in mathematics: (a) 

Orientation, (b) Organization, (c) Execution, and (d) Verification. This framework is 

based on George Polya’s problem solving model. In the orientation phase, the students 

show strategic behaviors to assess and understand a problem such as using 

comprehension strategies, analysis of information and conditions, and assessment of 

familiarity with the task (Garofalo & Lester, 1985). During the organization stage, the 

students plan what to do and choose their actions; so they identify the main goal or what 

the problem is asking to solve as well as the sub-goals or smaller goals they need to reach 

before finding the main answer to the problem. This is similar to “devising a plan” under 

George Polya’s phases. The execution stage is where the students carry out their plan, use 

the strategies they had planned on using, monitor their progress, and/or discard their plan 

if it does not work. The last stage, verification, is where students reflect and look back at 
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what they have done: what has worked and what has not (Garofalo & Lester, 1985). The 

verification stage can be done throughout the problem solving process, as students might 

verify their work as they advance in solving the problem, not necessarily only at the end. 

This process, however, is not a linear model, but rather a process in which students 

follow a more cyclical model and go back and forth from understanding the problem to 

verifying their answer (Garofalo & Lester, 1985; Polya, 1957; Wilson, Fernandez, & 

Hadaway, 1993). The process they follow to solve problems in mathematics includes 

thinking about what they do and why they do it. This metacognition leads them to be 

successful problem solvers (Fernandez, Hadaway, & Wilson, 1994). By analyzing what 

students had written as they solve mathematical problems, researchers can observe if 

some behaviors are related to students’ mathematics achievement. Given this, it is 

important to analyze students’ writing when solving problems and their metacognitive 

behaviors to see if this leads to higher achievement in mathematics. 
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CHAPTER III  

METHODOLOGY 

Chapter III describes the methodology used to test the hypotheses presented 

below. It includes the research questions, hypotheses, setting and participants, 

instrumentation, research design and procedures, data analysis procedures, and 

limitations. 

Research Questions 

The research questions that guided this study were as follows:  

1. Are the mathematics achievement scores of English language learners and English 

speakers using writing in mathematics significantly higher than the achievement 

scores of students not using writing in mathematics? 

a. Are the mathematics achievement scores of the English language learners 

using writing in mathematics significantly higher than the achievement 

scores of the English language learners not using writing? 

b. Are the mathematics achievement scores of the English speakers using 

writing in mathematics significantly higher than the achievement scores of 

the English speakers not using writing? 

2. Are the problem solving with metacognitive behaviors’ scores of English 

language learners and English speakers using writing in mathematics significantly 

higher than the problem solving with metacognitive behaviors’ scores of students 

not using writing in mathematics?  

3. Which of the four metacognitive behaviors (orientation, organization, execution, 

verification) do third grade English language learners and English speakers most 
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often demonstrate when they write during problem solving on the achievement 

tests? 

Hypotheses 

The hypotheses that guided this study were as follows:  

1. The students who use writing to solve problems in mathematics will score 

significantly higher on the mathematics posttest than those students who do not 

use writing during problem solving. 

a. The achievement scores of the ELLs using writing in mathematics will be 

significantly higher than the achievement scores of the ELLs not using 

writing. 

b. The achievement scores of the English speakers using writing in 

mathematics will be significantly higher than the achievement scores of 

the English speakers not using writing. 

2. The students who use writing to solve problems in mathematics will score 

significantly higher on the problem solving with metacognitive behaviors 

questions than those students who do not use writing during problem solving over 

time. 

3. Elementary English language learners and English speakers demonstrate 

orientation, organization, and execution metacognitive behaviors more often than 

verification metacognitive behaviors when writing during problem solving on the 

achievement tests.  
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Setting and Participants 

 The study took place during the spring of 2016 at an elementary public school 

located in a suburban area in South Florida. The participants included 67 students 

enrolled in four third-grade classes. The classes were taught by two different teachers, 

one being the researcher. The researcher trained the third grade teacher whose students 

also participated in the study so both could follow the same model to teach the students in 

the treatment group. The participants in this study were students at three different English 

language proficiency levels. The first group included English language learners (ELLs) 

ranging from English for Students of Other Languages (ESOL) level 1 to level 4. The 

second group consisted of students who exited the ESOL program in the past one to two 

years (ESOL level 5). The third group (English speakers) consisted of students who were 

fluent English speakers. The ESOL 5 students were part of the ELLs group given that 

they still were being monitored by the ESOL teacher to assure continued progress in the 

academic areas. Also based on the CALLA Handbook (Chamot & O’Malley, 1994) an 

ELL student develops academic language skills after five to seven years of learning the 

language and the participants in the group who are ESOL 5 students have been learning 

English in an academic setting for less than five years. All the ELLs participating in this 

study were of Hispanic background. The students’ ages ranged from 8-10 year olds. 

Results were reported in aggregated ways so that the names of the participants are non-

identifiable.  

The researcher obtained approval from the university’s Institutional Review 

Board (IRB) department and from the school district research committee prior to starting 

the data collection. Since the participants were under 18 years of age, the parents signed 
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and returned a parental consent form for their child to participate in this research study. 

The students were invited to participate and they also signed a student assent form before 

the beginning of the study.  

Instrumentation 

 The current research study analyzed students’ mathematics achievement and 

writing in mathematics as they solved mathematics problems and the metacognitive 

behaviors that they portrayed through their writing. The instruments included a pretest, 

two biweekly tests, and a posttest.  

The pretest, the biweekly tests, and the posttest had the same number of questions 

and the same format. Additionally, the pretest, biweekly tests, and posttest represented 

equivalent forms of the same test. Each test consisted of 10 questions divided into four 

multiple choice questions, five short response questions, and one problem solving 

question. The multiple choice questions were scored as correct or incorrect and had a 

value of one point. The short response questions had a value of two points and were 

scored as follows: two points if the student showed the correct answer and appropriate 

explanation, one point if the answer was partially correct and/or a partial explanation was 

given, or zero points if the answer was incorrect. Each question had its own criteria 

depending on the content and on the possible written responses (Appendix C shows the 

scoring criteria for the posttest). The problem solving question from each test was scored 

using a rubric from zero to four depending on the content and complexity level of the 

responses. If the student scored a one to four, the rubric from Table 1 was used to further 

score the written responses of the participants and to analyze the metacognitive behaviors 

they showed in their writing. The total number of points for each test was 18 points. An 
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additional maximum of 16 points was given to the written responses of the problem 

solving question and these were the scores used to test hypothesis #2. However, the 

overall score of 18 points was the one taken into account to analyze the effect of writing 

in achievement over time, and to test hypotheses #1, #1a, and #1b. Hypothesis #3 will 

encompass the behaviors the students write about in the problem solving question in each 

of the achievement tests. All students in the treatment group received instruction on the 

four phases of problem solving, strategies, and behaviors to be used in each phase. The 

writing instruction was only received by the participants in the treatment group.  
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Table 1      

Rubric for Assessing Students' Levels of Mathematics Problem Solving 

Description of 

Metacognitive Behaviors in 

each Problem Solving 

Category  

1 

Beginning 

(Well below 

grade level)  

 

2 

Developing 

(Working towards 

grade level 

standards) 

3  

Accomplished 

(On grade level) 

4 

Exemplary 

(Above grade level) 

Orientation (Assessing 

problem, Understanding 

problem situation): 

 Read/reread problem 

 Make initial 
representation 

 Analyze information 
conditions 

Student defines 

the problem 

incorrectly, does 

not show any 

understanding of 

the problem.  

Student shows some 

understanding of the 

problem and misses 

some key 

information. 

Student clearly 

defines the problem 

and outlines problem 

conditions in an 

effective manner. 

Student clearly defines the 

problem and outlines problem 

conditions in an effective 

manner. Understanding 

includes extending the problem 

in some way. 

Organization (Making a 

plan of action): 

 Identify goals 

 Make a plan on how to 
solve problem 

Student cannot 

identify goals or 

make a plan to 

solve the problem. 

Student shows 

evidence of some 

goals but does not 

have a plan of 

action. 

Student shows 

evidence of goals and 

makes a plan to solve 

the problem. 

Student shows evidence of 

goals, makes a plan to solve the 

problem, and goes beyond 

expectations by planning to 

solve it in more than one way. 

 



     

 

41 

Note. Adapted from Lester and Garofalo’s metacognitive behaviors framework (1985), which is based on Polya’s four phases of 

problem solving (1957).  

 

 

 

 

Execution (Performance of 

goals, Performing 

calculations): 

 Carry out details of the 
plan 

 Solve equations 

 Manipulate numeric 
information 

Student does not 

show any 

procedures or 

strategies to solve 

the problem, and 

has no solution. 

Student shows 

minimal use of 

procedures and 

strategies but not 

enough to solve the 

problem, uses some 

mathematics 

language and 

symbols, and has an 

incorrect solution. 

Student shows clear 

procedures, good use 

of mathematics 

language and 

symbols, uses a 

variety of strategies, 

may have minimal 

mistakes in solution 

but uses correct 

arithmetic. 

Student shows organized, clear 

procedures, excellent use of 

mathematics language and 

symbols, uses a variety of 

strategies, has a correct solution 

with use of correct arithmetic. 

Correct solution to extension to 

the problem is also given. 

 

Verification (Evaluation of 
plan of action and 

results/Can occur 

throughout the process not 

only at the end) 

 Check reasonableness of 

work 

 Checks for accuracy of 
work 

 

Given there is no 
solution 

verification does 

not apply. 

Student does not 
check for 

reasonableness or 

accuracy of work. 

Student evaluates if 
chosen strategies 

have worked, makes 

adjustments to 

procedures or 

strategies if 

necessary. 

Student evaluates if chosen 
strategies have worked, makes 

adjustments to procedures or 

strategies if necessary, checks 

for accuracy of work 

throughout the process and at 

the end. 
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Additionally, all tests were tested for validity and reliability to confirm that they 

would serve the purpose for which they were designed, and that they had consistency of 

what was being measured. In order to determine if the pretest, biweekly tests, and posttest 

questions had content validity, the researcher aligned each test item to the Florida 

Mathematics Standards (MAFS) to find if each test question reflected the expectations of 

the standard being measured (Carbaugh, 2014). Furthermore, another third grade 

mathematics teacher reviewed the questions and followed the same process to align the 

items to the content standards in the MAFS. Each teacher used a list with all the third 

grade mathematics standards under MAFS, and matched each question to the standard it 

measured. Each teacher’s alignment was revised to make sure each question was valid 

and measured the same standard. The Mathematics Florida Standards (MAFS) that were 

used in the multiple choice questions included questions that assessed Operations and 

Algebraic Thinking (3.OA) and Measurement and Data (3.MD) and included standards 

MAFS.3.OA.1.1, MAFS.3.OA.1.2, MAFS.3.OA.1.3, and MAFS.3.MD.2.3. More 

specifically, the standards assessed the students’ knowledge in interpreting products of 

whole numbers (MAFS.3.OA.1.1), interpreting whole-number quotients of whole 

numbers (MAFS.3.OA.1.2), using multiplication and division within 100 to solve word 

problems in situations involving equal groups, arrays, and measurement quantities 

(MAFS.3.OA.1.3). The questions also evaluated if the students were able to solve one- 

and two-step “how many more” and “how many less” problems using information 

presented in scaled bar graphs (MAFS.3.MD.2.3).  

The standards used in the short response questions included questions that 

assessed the following three domains: Operations and Algebraic Thinking (OA), Number 
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Base Ten (NBT), and Measurement and Data (MD). The specific standards included in 

the short response questions assessed the students’ ability to identify arithmetic patterns 

including patterns in the addition table or multiplication table, and to explain these 

patterns using properties of operations (MAFS.3.OA.4.9), use place value understanding 

to round whole numbers to the nearest 10 or 100 (MAFS.3.NBT.1.1), and fluently add 

and subtract within 1000 using strategies and algorithms based on place value, properties 

of operations, and/or the relationship between addition and subtraction 

(MAFS.3.NBT.1.2).  

The standard used in the problem solving question for all four tests was 

MAFS.3.OA.4.8: students are able to solve two-step word problems using the four 

operations, represent these problems using equations with a letter standing for the 

unknown quantity, and assess the reasonableness of answers using mental computation 

and estimation strategies including rounding. Each of the teachers assessing the 

instruments for validity purposes checked each question and linked it to the standard. 

This was the strategy used in order to achieve strong content validity in each of the tests 

used.  

In addition, a mathematics education professor, an ESOL (English for Students of 

Other Languages) professor, and two third grade mathematics teachers gave feedback on 

the test questions. The feedback included suggestions about changing vocabulary and 

sentence length to make the problems equally accessible to the ELLs and the English 

speakers. The questions were revised and edited to show the changes that were suggested. 

The problem solving questions were also analyzed for complexity and frequency of 

language or how many times certain words appeared in the test by using LexTutor (Cobb, 
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2015; Heatley, Nation, & Coxhead, 2002) in order to simplify the language and make it 

more accessible for all students. The vocabulary that was new or was subject-related was 

explicitly taught to all students. All students in both treatment and control group took the 

same tests (pretest, biweekly test 1, biweekly test 2, and posttest).  

The original problem solving questions for the weekly assignment and for the four 

tests were chosen from a variety of sources including Florida Mathematics Standards 

bank of problems, the NCTM Navigation Series in Grade 3-5 (Anderson, Gavin, Dailey, 

Stone, & Vuolo, 2005; Chapin, Koziol, MacPherson, & Rezba, 2002; Cuevas & Yeatts, 

2001; Duncan, Geer, Huinker, Leutzinger, Rathmell, & Thompson, 2007; Gavin, Belkin, 

Spinelli, & Marie, 2001), questions found in Teaching Children Mathematics (an NCTM 

journal) and other NCTM publications, questions found in Carpenter, Franke, and Levi’s 

(1999) Thinking Mathematically, questions found in Carpenter, Fennema, Franke, Levi, 

and Empson’s (2003) Children’s Mathematics, or questions found in the National 

Research Council’s (2001) Adding it up: Helping Children Learn Mathematics. After the 

content validity was ascertained, the final questions were tested for reliability with a 

demographically similar sample of fourth graders at the beginning of the school year 

(Fall of 2015) in order to assess the questions’ consistency with what was being 

measured. Ambiguous questions were either deleted or changed. The reason fourth 

graders were used at the beginning of the school year is due to the similarity in content 

knowledge the third graders who participated in the study would have at the end of the 

academic year. 

After the content analysis, the final problem solving questions used for the pretest, 

biweekly tests, posttest and weekly assignments were a combination of problems from 
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the Florida Mathematics Standards bank of problems, the NCTM Navigation Through 

Algebra Series in Grade 3-5 (Cuevas & Yeatts, 2001), questions found in Teaching 

Children Mathematics (an NCTM journal) and other NCTM publications, questions 

found in Carpenter, Franke, and Levi’s (1999) Thinking Mathematically, questions found 

in Carpenter, Fennema, Franke, Levi, and Empson’s (2003) Children’s Mathematics, or 

questions found in the National Research Council’s (2001) Adding it up: Helping 

Children Learn Mathematics . Some of the problems were adapted for wording as 

appropriate for accessibility by all students.  

The feedback received from the third grade teacher and the college professors was 

used to change the wording in the problems. Additionally, by using LexTutor, the words 

in each of the problem solving questions were categorized into four categories: (a) the 

most frequent 1000 word families, (b) the second 1000 more frequently used words,  (c) 

the Academic Word List, which included words that students learn in academic settings 

across subjects, and (d) words that do not appear on any of the previous three categories 

or those words more specific to mathematics topics (Cobb, 2015; Heatley, Nation, & 

Coxhead, 2002). Modifications included changing some of the vocabulary found in the 

questions and reducing the length of some sentences. The language in the problems were 

simplified, however the mathematics content and complexity was not. The academic 

specific vocabulary was taught to the students prior to them answering the problem 

solving questions.  

A rubric was used to analyze the students’ written responses to the problem 

solving questions and to determine students’ levels of mathematics problem solving. 

Table 1 shows the rubric that helped delineate the students’ levels of mathematics 
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problem solving and the metacognitive behaviors that they demonstrated when they 

wrote about the problem solving process they used. For the purposes of this study, the 

rows show the four categories of problem solving phases described by Lester and 

Garofalo (1985): orientation, organization, execution, and verification. Under the title for 

each phase, there are metacognitive behaviors that can be used during problem solving. 

The columns show the levels of mathematics problem solving of the students in relation 

to each of the problem solving categories. Each of the students’ written problem solving 

solutions on the pretest, biweekly tests, and posttest were scored using this rubric. 

The answers to all test items and the written responses to all the problem solving 

questions were checked by the study’s researcher and a veteran third grade teacher in 

order to establish inter-rater agreement on scores after students completed each one of the 

tests. Both teachers were fluent in Spanish and they were able to understand the writing 

of students who wrote their explanations in Spanish on the free response and problem 

solving questions.  

 The teacher who scored the third graders’ test answers was trained on the scoring 

guidelines using the Scoring Criteria sheet (sample found in Appendix C) for the 

achievement scores and the Rubric found in Table 1 for the problem solving with 

metacognitive behaviors questions for each achievement test. The training consisted of a 

total of four meetings in which the researcher instructed the teacher about test questions, 

possible student answers, and scoring procedures. The teacher and the researcher used the 

same item criteria for scoring the multiple choice and the short response questions. The 

test answers from the sample of fourth graders drawn on to trial test items were used 

during the training in order to practice scoring the different types of test items. At this 
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time, scoring discrepancies were addressed in order to have both scorers utilizing the 

scoring criteria sheet and the rubric in the same manner. These training sessions took 

place before the beginning of the treatment. 

 In order to calculate the inter-rater agreement on the actual test scores the 

Intraclass Correlation Coefficient (ICC) was calculated. The ICC is used to tell how 

much variance is accounted for by agreement, in which higher levels indicate more 

agreement between the raters (Griffin & Gonzalez, 1995; Landers, 2015; Shrout & Fleiss, 

1979). The ICC was the most appropriate reliability test for this study given that the two 

raters’ responses were measured on a scale level of measurement, the categories were 

mutually exclusive, and each response had the same number of categories. Additionally, 

the two raters were independent and they were the same raters for all subjects. The ICC 

analysis showed the level of agreement or inter-rater reliability between the teacher and 

the researcher for each of the third graders’ achievement test answers and for the problem 

solving student answers. 

The rubric in Table 1 was used by the teacher and the researcher scoring the tests 

to assess the students’ problem solving written answers. It was revised and edited after 

receiving feedback from a third grade mathematics teacher, an English Language Arts 

college professor, and a Mathematics Education professor. During the weekly 

instructional sessions, the students used a child-friendly rubric (Appendix B) to learn the 

four phases and the behaviors that can be associated to each. As the students learned to 

use the four phases of problems solving and to write about them, they worked in pairs or 

small groups and used their rubric to critique their own answers. This child-friendly 

rubric was developed based on the same information from the rubric on Table 1. The 
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vocabulary and format differs from the original rubric in Table 1 given that it needed to 

have information that was understandable and easy to use independently by the children.  

Research Design and Procedures  

The research followed a quasi-experimental design. One of the goals in this 

multipurpose study was to analyze the effect of using writing in mathematics in the 

achievement scores of ELLs and English speakers in a convenience sample of students, 

which indicates that participants were not randomly assigned. Under this circumstances, 

the researcher was not in the capacity to manipulate the independent variable (the use of 

writing in mathematics) neither the dependent variable (the achievement in mathematics 

measured in each test). The study also assessed the influence of the treatment in the 

achievement of students who were exposed to it as well as the metacognitive behaviors 

that all the students showed through their written problem solving solutions. 

Consequently, the phenomenon under investigation, the effect of writing in mathematics 

achievement, was studied as it manifested. According to Gall, Gall, and Borg (2007) lack 

of manipulation of variables and randomization of samples are common characteristics 

of quasi-experimental research designs.  

In the present study each teacher had a control group and a treatment group for 

whom writing in mathematics was used as a whole unit of instructional strategy. This 

step served as a way to decrease teacher effect on the final statistical analysis. 

Additionally, it would have been impossible to isolate the control group of students when 

the writing instruction was given during treatment sessions if both treatment and control 

students were in the same classroom. Given that the students were already assigned to the 

four classes by the school administration, the student demographics were used to choose 
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which classes will receive the treatment and which will serve as control. The four classes 

were similar on most demographics; however, the two classes from each teacher who 

received the treatment had the majority of ELLs who were ESOL levels 1, 2, or 3. 

Both treatment and control groups received the same time for mathematics 

instruction, an hour daily in each class. All groups used the same instructional resources 

that included the mathematics textbook, literature connections (e.g., children’s stories 

which included the study of mathematics topics), manipulatives, hands-on activities, and 

technology during mathematics instruction. In addition, during the 6 weeks of the study, 

all participants followed their regular class schedules and practices including 

assignments, home learning, and assessments. 

All participants were given the pretest at the beginning of the study. The students 

in the treatment group were taught to use writing to explain their thinking processes when 

solving mathematics problems in whole group instruction. The writing instruction 

focused on having students learn to solve problems by using Polya’s four phases: 

understanding the problem, devising a plan, carrying out the plan, and looking back while 

writing about their process. The writing instruction was done twice a week for 6 weeks 

during the mathematics instructional time. Each session lasted 30 to 45 minutes.  

During the first week, the teacher instructed the students about the problem 

solving phases, and the strategies that could be used to effectively solve word problems. 

Each week had two sessions that were organized as follows. During the first session the 

students worked together with the teacher to solve a word problem so that vocabulary 

was explicitly taught, students could receive feedback on strategies and skills learned, 

and ESOL strategies such as sentence frames, sentence structure, mathematical 
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vocabulary, and new content vocabulary was explained to students. During the second 

session of each week, the students worked in pairs or groups of three to discuss possible 

solutions and strategies to solve the problem with each other. Researchers have found that 

it is more beneficial for students to work in groups or pairs to solve math problems than 

to do so independently (Fernandez, Hadaway, & Wilson, 1994).  By working in pairs or 

small groups, they helped each other to write about the process he or she followed in 

solving the problems. The ELLs were able to write in their first language if they were not 

able to explain their answers in English. Additionally, they were allowed to verbally say 

their answers in Spanish and the teacher or another group member helped them translate 

those answers. There was a lesson plan for each of the 12 sessions (two sessions a week 

for 6 weeks) that demonstrated how students were guided to use the target writing 

strategies and the problem solving question to be used for each lesson. During this 6 

weeks of treatment, the students in the control group solved different mathematics 

problems from their textbook. These problems included computation and application 

questions in the format of multiple choice or open-ended questions.  

In addition, every two weeks the students in both treatment and control groups 

completed a biweekly test independently. At the end of the 6 weeks, the treatment and 

control groups also completed a posttest. All tests were completed during the students’ 

mathematics time but not during the writing in mathematics instructional sessions. 

Data Analysis Procedures 

A repeated measures ANOVA was the statistical method used to analyze the data 

from this study given that in this type of analysis a variable is measured several times to 

determine the effect of a treatment or intervention. That was precisely the main goal of 
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this study: to examine the effect of writing in mathematics on the academic progression 

of third graders in mathematics over time. Therefore, a repeated-measures ANOVA was 

the appropriate statistical method to be used in this study.  

Variables 

The independent variable used in research question one was writing in 

mathematics, and the dependent variable was the achievement in mathematics measured 

by each test. The achievement in mathematics scores was a result of taking the sum of the 

points received in all of the questions (1 point for multiple choice questions, 2 points for 

short response and 4 points for the problem solving question). The independent variable 

used in research question two was writing in mathematics, and the dependent variable 

was the problem solving with metacognitive behaviors’ scores measured within each test. 

The problem solving scores were measured using the scores of only the problem solving 

question of each test. Each of these questions was scored using the rubric found in table 

1. Each student had a score for each phase of problem solving based on their writing. The 

final score for each problem solving question showed the sum of the points received on 

each of the four phases. The scores from the problem solving question was also used to 

determine the frequency of the metacognitive behaviors and to conduct the analysis for 

research question three.  

Statistical Procedures 

This research study adopted a quantitative analysis to respond to each research 

question. A repeated measures ANOVA design was used to detect differences of 

achievement across students’ level of English language proficiency and treatment-control 

groups. The repeated measures ANOVA used the scores from the pretest, each of the 
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biweekly tests, and the posttest to determine mathematics achievement over time. The 

data were analyzed using the Statistical Package for Social Sciences (SPSS) version 22.0. 

An alpha value (α) of .05 (level of significance) was used for each statistical analysis. 

Limitations 

A limitation of this study is the generalizability of the results. This study used a 

small sample of a population. This small population may be very different from 

populations in other parts of the country as well as other parts of the world. In addition, 

having two teachers also brings diversity to the lessons given that teachers have their own 

teaching style, and use different methods and instructional approaches. However, to 

address this limitation, the second teacher was trained on how to use writing in 

mathematics, and both teachers used the same problems for instruction and followed the 

same format for each of the lessons in order to decrease the teacher effect on the 

statistical analysis. 

Summary 

This chapter described the methodology that was used in this study. It included 

the research questions, hypotheses, setting and participants, instrumentation, research 

design and procedures, data analysis procedures, and limitations. The following chapter 

reports the results and the analysis of the data collected to determine if the use of writing 

in mathematics helped students improve their academic achievement in mathematics as 

well as the metacognitive behaviors the students demonstrated in their written 

mathematics problem solving work.  
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 CHAPTER IV   

RESEARCH FINDINGS  

 Chapter IV describes the findings of the study, including the demographic 

information about the participants and the results of the data analysis.  

Demographic Information 

The setting for this study was an elementary school in a suburban area in South 

Florida. There were a total of 81 students invited to participate in the study who were 

enrolled in third grade at the selected school. Only 68 students received parental consent 

to participate in the research study and one student transferred to a new school after two 

weeks of treatment; resulting in a total of 67 students participating during the six-week 

period. A total of 35 students were part of the treatment group and 32 students were part 

of the control group. There were 16 English speakers and 19 ELLs in the treatment group 

and 15 English speakers and 17 ELLs in the control group. Students’ ages ranged from 8 

to 10 years old. The majority of the participants, 65 students (97.1%) were of Hispanic 

heritage, one student was African American and one student was White. Table 2 shows 

the race/ethnicity of the students for each of the treatment and the control groups. 

Additionally, English Language Learners (ELLs) or students who are being served in 

appropriate programs of language assistance made up 52.2% of the students in the 

treatment group and 53.1% of the students in the control group. Table 2 also presents the 

number and percentages of students considered either ELL or English Speakers for the 

treatment and control groups.  
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Table 2 

Frequencies and Percentages of Demographics of Students Participating in Study  

 

 

Frequency Percentage 

 

Treatment 

N=35 

Control  

N=32 

Treatment 

N=35 

Control 

N=32 

Race/Ethnicity 

         Hispanic 35 30 100.0 93.8 

     Black 0 1 0.0 3.1 

     White  0 1 0.0 3.1 

English Lang. Proficiency 

        ELLs 19 17 54.3 53.1 

     English Speakers 16 15 45.7 46.9 

SES 

         High  5 7 14.3 21.9 

     Medium 4 2 11.4 6.3 

     Low  26 23 74.3 71.9 

Gender 

  

  

     Female 17 17 48.6 53.1 

     Male 18 15 51.4 46.9 

Age 

  

  

     8 years old 10 9 28.6 28.1 

     9 years old 24 23 68.6 71.9 

     10 years old 1 0 2.9 0.0 

Siblings 

  

  

     No siblings 6 7 17.1 21.9 

     Younger siblings 10 4 28.6 12.5 

     Older siblings 12 15 34.3 46.9 

     Younger and older  7 6 20.0 18.8 

Family Structure  

  

  

     Married parents 27 22 77.1 68.8 

     Divorced parents 2 7 5.7 21.9 

     Single parents 6 3 17.1 9.4 

Parental Education 

  

  

     Both graduated college 12 6 34.3 18.8 

     1 parent graduated college 13 16 37.1 50.0 

     None graduated college 10 10 28.6 31.2 
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Tests of Hypotheses 

Descriptive Statistics  

Table 3 presents the descriptive data for the achievement scores of students in the 

experimental and control groups. Each of the four achievement tests had the same format: 

four multiple choice questions worth one point each, five short response questions worth 

two points each, and one problem solving question worth four points. Therefore, the 

maximum number of points a student could earn was 18 points. 

 

Table 3 

Descriptive Data for the Achievement Scores of Students in the Experimental and Control 

Groups  

 TREAT_CONTR ELL_NON Mean Std. 

Deviation 

N 

PRETEST Treatment English Speaker 9.81 2.316 16 

ELL 10.11 3.478 19 

Total 9.97 2.965 35 

Control English Speaker 12.33 1.234 15 

ELL 12.06 2.926 17 

Total 12.19 2.264 32 

Total English Speaker 11.03 2.243 31 

ELL 11.03 3.334 36 

Total 11.03 2.860 67 

BIWEEKLY_1 Treatment English Speaker 12.06 3.660 16 

ELL 12.37 2.477 19 

Total 12.23 3.030 35 

Control English Speaker 13.73 2.344 15 

ELL 14.06 2.817 17 

Total 13.91 2.570 32 

Total English Speaker 12.87 3.160 31 

ELL 

Total  

13.17 

13.03 

2.741 

2.923 

36 

67 
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Table 3 (Continued) 

Descriptive Data for the Achievement Scores of Students in the Experimental and Control 

Groups  

 

 

 

Statistical Analysis for Hypothesis 1 

Hypothesis #1: The students who use writing to solve problems in mathematics will score 

significantly higher on the mathematics posttest than those students who do not use 

writing during problem solving. 

A One-Way Repeated Measures Analysis of Variance was used to analyze the 

difference writing in mathematics had on the achievement scores of the students in the 

 TREAT_CONTR ELL_NON Mean Std. 

Deviation 

N 

BIWEEKLY_2 Treatment English Speaker 13.00 2.944 16 

ELL 12.68 2.473 19 

Total 12.83 2.662 35 

Control English Speaker 13.80 3.075 15 

ELL 14.53 2.831 17 

Total 14.19 2.923 32 

Total English Speaker 13.39 2.985 31 

ELL 13.56 2.772 36 

Total 13.48 2.852 67 

POSTTEST Treatment English Speaker 15.56 2.804 16 

ELL 16.21 1.512 19 

Total 15.91 2.188 35 

Control English Speaker 13.40 1.549 15 

ELL 14.53 1.419 17 

Total 14.00 1.566 32 

Total English Speaker 14.52 2.502 31 

ELL 15.42 1.680 36 

Total 15.00 2.132 67 
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treatment and control groups. The between-subject variable was treatment/control while 

the within-subject variables were the scores of the pretest, the two biweekly tests, and the 

posttest. The analysis showed that there was no significant difference between the 

mathematics achievement scores of the students in the treatment group and the control 

group (F(1,65) = 3.411, p=.069) across time. Table 4 shows the results of the repeated 

measures ANOVA conducted for question 1. Figure 1 shows a line graph with the growth 

trends for the achievement scores for the treatment and control groups, displaying the 

achievement scores means for each of the pretest, biweekly 1 test, biweekly 2 test, and 

posttest. 

 

Table 4 

Repeated Measures Analysis of Variance on Achievement Scores 

Effect Mean Square df F Sig. 
Partial Eta 

Squared 

Intercept 46271.516 1 3388.561 <.001 .981 

TREAT_CONTR 46.576 1 3.411 .069 .050 

Error 13.655 65    
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Figure 1. Line graph presenting the growth trends for the achievement scores for the 

treatment and control groups on each of the four tests: Pretest, Biweekly Test 1, Biweekly 

Test 2, and Posttest. 

 

Statistical Analysis for Hypothesis 1a 

Hypothesis #1a: The achievement scores of the ELLs using writing in mathematics will 

be significantly higher than the achievement scores of the ELLs not using writing. 

A One-Way Repeated Measures ANOVA was also used to test the differences 

between the ELL students in the treatment group, hence using writing, to the ELLs in the 

control group, who were not using writing. When reviewing the distribution of the data in 

order to meet the assumption of normality, it was found that the value of skewness on the 

pretest score (-1.054) and the value of kurtosis on the posttest (-1.153) were a bit off the 

standard range of -1 to 1. However, by taking a close examination at the distribution of 
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scores of the biweekly 1 test, the biweekly 2 test, and the posttest, it can be corroborated 

that these scores resemble the behavior of a normal distribution.  

Using the same variable setting as for question 1, the repeated measures ANOVA 

determined that the achievement scores means of the ELLs were not statistically 

significantly different between time points (F(1,34) = 2.632, p=.114). Table 5 shows the 

results of the repeated measures ANOVA conducted for question 1a. Figure 2 shows the 

growth trends for the achievement scores of the ELLs in each the treatment and control 

groups, displaying the achievement scores means for each of the pretest, biweekly 1 test, 

biweekly 2 test, and posttest. 

 

Table 5 

Repeated Measures Analysis of Variance on Achievement Scores for ELLs in Treatment 

Group and ELLs in Control Group  

Effect Mean Square df F Sig. 
Partial Eta 

Squared 

Intercept 25462.749 1 2060.177 <.001 .984 

TREAT_CONTR 

(ELLs only) 
32.527 1 2.632 .114 .072 

Error 12.359 34    
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Figure 2. Line graph presenting the growth trends for the achievement scores for the ELL 

students in the treatment and control groups on each of the four tests: Pretest, Biweekly 

Test 1, Biweekly Test 2, and Posttest. 

 

Statistical Analysis for Hypothesis 1b 

Hypothesis #1b: The achievement scores of the English speakers using writing in 

mathematics will be significantly higher than the achievement scores of the English 

speakers not using writing. 

A One-Way Repeated Measures ANOVA was also used to test the differences 

between the English speakers in the treatment group, who were using writing, to the 

English speakers in the control group, not using writing. Similar to the distribution of 

ELLs, the English speakers’ distribution of the data also meets the assumption of 

normality. It was found that the value of skewness and kurtosis on all of the tests were 

within the standard range of -1 to 1. Using the same variable setting as for questions 1 

and 1a, the repeated measures ANOVA determined that the achievement scores means of 
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the English speakers were not statistically significantly different between time points 

(F(1,29) = .980, p=.330). Table 6 shows the results of the repeated measures ANOVA 

conducted for question 1a. Figure 3 shows the growth trends for the achievement scores 

of the English speakers in each of the treatment and control groups, by displaying the 

achievement scores means for each of the pretest, biweekly 1 test, biweekly 2 test, and 

posttest. 

 

Table 6 

Repeated Measures Analysis of Variance on Achievement Scores for English Speakers in 

Treatment Group and English Speakers in Control Group  

Effect Mean Square df F Sig. 
Partial Eta 

Squared 

Intercept 20815.266 1 1.317E3 <.001 .978 

TREAT_CONTR 

(English Speakers 

only) 

15.492 1 .980 .330 .033 

Error 15.801 29    
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Figure 3. Line graph presenting the growth trends for the achievement scores for the 

English speakers in the treatment and control groups on each of the four tests: Pretest, 

Biweekly Test 1, Biweekly Test 2, and Posttest. 

 

Statistical Analysis for Hypothesis 2 

Hypothesis #2: The students who use writing to solve problems in mathematics will score 

significantly higher on the problem solving with metacognitive behaviors questions than 

those students who do not use writing during problem solving over time. 

A One-Way Repeated Measures ANOVA was also used to test the differences 

between the scores on the problem solving with metacognitive behaviors questions of the 

students using writing in the treatment group to the students in the control group. The 

between-subject variable was treatment/control while the within-subject variables were 

the scores of the problem solving with metacognitive behaviors questions on the pretest, 

the two biweekly tests, and the posttest.  Statistically significant differences were found 
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between the students receiving the treatment and the students not receiving the treatment 

at the α = .05 level of significance (F(1,65) = 75.971, p < .001) as summarized in Table 7. 

Post Hoc tests using the Bonferroni correction were conducted to analyze the differences 

among each set of tests. Table 8 summarizes these results of the Post Hoc tests. 

 

 

 

Table 7 

Repeated Measures ANOVA on Problem Solving with Metacognitive Behaviors Scores  

Effect Mean Square df F Sig. 
Partial Eta 

Squared 

Intercept 9638.331 1 732.920 <.001 .919 

TREAT_CONTR 999.062 1 75.971 <.001 .539 

Error 13.151 65    
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Table 8 

Post Hoc Tests with Bonferroni Adjustment on Problem Solving with Metacognitive 

Behaviors Scores  

(I) time (J) time 

Mean 

Difference    

(I-J) 

Std. 

Error 
Sig. 

95% Confidence 

Interval for Difference 

Lower 

Bound 

Upper 

Bound 

Pretest Biweekly 1 -5.823
*
 .363 <.001 -6.811 -4.834 

Biweekly 2 -8.648
*
 .398 <.001 -9.731 -7.565 

Posttest -8.674
*
 .393 <.001 -9.743 -7.605 

Biweekly 1 Pretest 5.823
*
 .363 <.001 4.834 6.811 

Biweekly 2 -2.825
*
 .477 <.001 -4.123 -1.527 

Posttest -2.851
*
 .416 <.001 -3.983 -1.719 

Biweekly 2 Pretest 8.648
*
 .398 <.001 7.565 9.731 

Biweekly 1 2.825
*
 .477 <.001 1.527 4.123 

Posttest -.026 .441 1.000 -1.225 1.173 

Posttest Pretest 8.674
*
 .393 <.001 7.605 9.743 

Biweekly 1 2.851
*
 .416 <.001 1.719 3.983 

Biweekly 2 .026 .441 1.000 -1.173 1.225 

*. The mean difference is significant at the .05 level.   

 

Additionally, Figure 4 shows the growth trends for the problem solving with 

metacognitive behaviors questions of the students in the treatment group and the students 

in the control group.  



 

 

65 

 
 

Figure 4. Line graph presenting the growth trends for the problem solving with 

metacognitive behaviors scores for the students in the treatment group and for students in 

the control group on each of the four tests: Pretest, Biweekly Test 1, Biweekly Test 2, 

and Posttest. 

 

Descriptive Analysis for Hypothesis 3 

Hypothesis #3: Elementary English language learners and English speakers demonstrate 

orientation, organization, and execution metacognitive behaviors more often than 

verification metacognitive behaviors when writing during problem solving on the 

achievement tests.  

 Descriptive statistics were used to find the frequency of occurrence of each of the 

problem solving phases (orientation, organization, execution, and verification) on each of 

the tests (pretest, biweekly 1, biweekly 2, and posttest). Table 9 shows the frequencies 

and percentages of each problem solving phases on each test.  
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Table 9 

Frequency and Percentages of Problem Solving Phases Used in Each Test for Students in 

the Treatment Group  

  Frequency Percentage 

  Treatment 

N=35  

Control 

N=32 

Treatment 

N=35 

Control 

N=32 

Pretest Orientation 2 2 5.7 6.2 

Organization 2 0 5.7 0 

Execution  1 0 2.9 0 

Verification 0 0 0 0 

Biweekly 1 Orientation 5 5 14.3 15.6 

Organization 5 4 14.3 12.5 

Execution  3 3 8.6 9.4 

Verification 1 2 2.9 6.2 

Biweekly 2 Orientation 29 10 82.9 31.2 

Organization 26 10 74.3 31.2 

Execution  19 7 54.3 21.9 

Verification 12 3 34.3 9.4 

Posttest Orientation 35 2 100 6.2 

Organization 35 2 100 6.2 

Execution  32 3 91.4 9.4 

Verification 28 1 80 3.1 
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Figure 5 shows a bar graph displaying the percentages of students who wrote 

about the metacognitive behaviors they used to problem solve in each of the four tests.  

 

 

Figure 5.  Bar graph presenting the percentages of problem solving phases used in each 

test.  

 

Tests of Reliability 

Reliability measures the consistency of outcomes of an assessment. This study 

used inter-rater reliability, which refers to the level of agreement between different 

examiners when assessing students’ work in order to establish if such measurements are 
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indeed reliable. According to Jones and Inglis (2015), the lower the inter-rater reliability, 

the more dependent the students’ outcomes are on the idiosyncrasies of the examiner, and 

so the less fair the assessment. Inter-rater reliability is usually investigated by recruiting 

different examiners to mark the same students’ work and comparing the outcomes, 

typically using the Pearson product-moment correlation coefficient. For the purposes of 

study, however, the Intraclass Correlation Coefficient (ICC) was calculated. The ICC is 

used to tell how much variance is accounted for by agreement, in which higher levels 

indicate more agreement between the raters or examiners (Griffin & Gonzalez, 1995; 

Landers, 2015; Shrout & Fleiss, 1979). The ICC was the most appropriate reliability test 

for this study given that the two raters’ responses were measured on a scale level of 

measurement, the categories were mutually exclusive, and each response had the same 

number of categories. Additionally, the two raters were independent and they were the 

same raters for all subjects. The ICC analysis showed the level of agreement or inter-rater 

reliability between the teacher and the researcher for each of the third graders’ test 

answers.  

Table 10 shows the results of the ICC calculation in SPSS for each mathematics 

achievement test, and Table 11 shows the ICC calculation for each problem solving with 

metacognitive behaviors question. The ICC results show that all four achievement tests 

were reliable with an intraclass correlation of 1.00 for the pretest, .992 for the biweekly 1 

test, .990 for the biweekly 2 test, and .979 for the posttest as shown in table 10. Similarly, 

table 11 shows the problem solving questions with metacognitive behaviors questions 

were also highly reliable with a coefficient of .998 for the pretest, .990 for the biweekly 

1, .957 for the biweekly 2 test, and .999 for the posttest. The unusual high scores for the 
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ICC calculations for both achievement tests and problem solving with metacognitive 

behaviors questions can be attributed to the detailed explanations in the scoring criteria 

and the rubric used to score each test, as well as the scoring training sessions. The scoring 

criteria used to score the posttest can be found in Appendix C. Most of the time during 

the training sessions (to train the second teacher prior to starting the intervention) was 

spent practicing scoring the 4
th

 grade sample pilot tests. Both scorers had discussed 

possible student answers based on the student answers from the pilot tests that helped in 

clarifying specific scoring for each test item in the study. Additionally, for the purpose of 

this study the average measures Intraclass Correlation was used and according to 

McGraw and Wong (1996), and Shrout an Fleiss (1979) this ICC is always higher that the 

Single measures ICC.   

 

 

Table 10 

Results of the ICC Calculation for Achievement Tests 

  
95% Confidence 

Interval 
F Test with True Value 0 

 
Intraclass 

Correlation 

Lower 

Bound 

Upper 

Bound 
Value df1 df2 Sig 

Pretest        

Average Measures 1.000 1.000 1.000 . 66 . . 

Biweekly 1 Test        

Average Measures .992 .988 .995 130.750 66 67 <.001 

Biweekly 2 Test        

Average Measures .990 .984 .994 104.274 66 67 <.001 

Posttest        

Average Measures .979 .966 .987 47.528 66 67 <.001 

One-way random effects model 
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Table 11 

Results of the ICC Calculation for the Problem Solving with Metacognitive Behaviors 

Question 

  
95% Confidence 

Interval 
F Test with True Value 0 

 
Intraclass 

Correlation 

Lower 

Bound 

Upper 

Bound 
Value df1 df2 Sig 

Pretest        

Average Measures .998 .997 .999 607.364 66 67 <.001 

Biweekly 1 Test        

Average Measures .990 .983 .994 96.242 66 67 <.001 

Biweekly 2 Test        

Average Measures .957 .930 .974 23.252 66 67 <.001 

Posttest        

Average Measures .999 .999 1.000 1.304E3 66 67 <.001 

One-way random effects model 

 

Summary 

 This chapter discussed the research questions, the research hypotheses, the 

demographics of the participants in this study, the data analysis, and the reliability tests 

used. It also included the repeated measures ANOVA analysis of the study to examine 

the effect writing in mathematics has on the students’ achievement tests, as well as the 

repeated measures ANOVA analysis to examine the effect writing has on the problem 

solving with metacognitive behaviors questions. It also displayed the descriptive analysis 

of the metacognitive behaviors students portrayed in their writing for the problem solving 

question of each achievement test. The following chapter will discuss the results of the 

study in detail and offer suggestions for future studies. 
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CHAPTER V  

DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS 

This chapter presents a discussion of the findings, conclusions, and delimitations 

of the study. It also presents implications and recommendations for future research 

studies. 

Discussion of the Results 

The main purpose of this study was to determine if the use of writing during 

mathematics had any effect on the results of students’ achievement tests in mathematics.  

Demographic Factors Analysis 

At the beginning of the study, demographic data were collected about the students 

in order to test for homogeneity in the groups. Eight factors were evaluated by looking at 

the frequency and percentage in each group. The factors included students’ race/ethnicity, 

English language proficiency, socioeconomic status, gender, age, student’s siblings (e.g., 

student has older siblings, younger siblings, both younger and older, or no siblings), 

family structure (e.g., married parents, divorced parents, or single parents), and parental 

education background (e.g., both parents graduated from college, one parent graduated 

from college, or none of the parents graduated from college). These data are summarized 

in table 2 which shows the frequencies and percentages for these demographic factors for 

each treatment and control groups. 

Hypothesis 1 

The data analysis showed mixed findings. The study showed that there was no 

significant difference between the mathematics achievement scores of the students in the 

treatment group and the control group (F(1,65) = 3.411, p=.069) over time. This finding 
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may be a result of a couple of factors. First, it is important to take into account the 

students’ writing abilities. Students in third grade are still developing writing skills and 

on the way to mastering beginning writing strategies. Also the students in the study had 

never been exposed to writing extensively in the content areas. Another factor that may 

have influenced the results of the study was the participants’ exposure to high stakes 

testing during the intervention period. The students took the Florida Standards 

Assessment also during the spring of 2016. Students have been found to have test 

anxiety, and feelings of uneasiness and apprehension before, during, and after high stakes 

testing which can result in lower academic achievement in core subjects (Segool, 2009). 

Lastly, as Figure 1 shows, the scores for the treatment group are increasing more quickly 

than those for the control group to the point that at the last measure (posttest) the 

treatment group surpassed the control group, although initially, the control group had 

higher scores. One of the reasons the control group scored higher in the pretest might be 

due to the fact that the majority of the lower ESOL level ELLs were in the treatment 

group. This is important when looking at the posttest average scores given that these 

same ELLs at ESOL levels 1, 2, and 3 together with other ELLs and English speakers in 

the treatment group surpassed the higher ESOL level ELLs and English speakers in the 

control group. These results suggest that if the treatment would have been done for a 

longer period of time it might have produced a significant difference between the groups. 

It may be beneficial to include additional writing in mathematics intervention sessions in 

which the children can further practice their writing during mathematics problem solving 

in future studies. 
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Similar results were found in a study conducted by English (1998) also with third 

grade students who received instruction on writing during problem solving during two 

months. The students in that study had to pose their own problems about addition and 

subtraction and solve them while explaining their creations and strategies through 

writing. Even though significant differences were found in the complexity of the written 

problems from pretest to posttest (Z(n1 = 54, n2 = 52) = –3.14, p < .001), no significant 

differences were found between the intervention and control groups in regards to posttest 

achievement scores.  

English’s study (1998) found that the children had difficulties in recognizing the 

formal symbolism as representations of problem situations and these were evident during 

the intervention program and in the posttest results. The author also stated that the 

activities of the current program being used were insufficient to broaden the children’s 

interpretations of problems and that although the intervention improved their abilities to 

generate problems, it would be beneficial to include several more program sessions in 

which children could both solve and pose problems that extended beyond the basic 

approach they had used (English, 1998).   

Hypothesis 1a 

Additionally, when comparing the English Language Learners from the treatment 

group to the ELLs in the control group, the repeated measures ANOVA analysis showed 

that the achievement scores means of the ELLs were not statistically significantly 

different between time points (F(1,34) = 2.632, p=.114). This finding can be explained in 

part by the fact that the ELLs who participated in the study were still developing 

language and writing skills and on the way to mastering beginning writing strategies not 
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only in English but also in their native language. Additionally, these ELLs were taking 

the Florida Standards Assessment also during the spring of 2016, and as stated 

previously, students tend to have feelings of anxiety, uneasiness, and apprehension 

before, during, and after high stakes testing that can lead to lower academic achievement 

in core subjects (Segool, 2009).  

The length of time of the intervention is another factor that may have caused these 

non-significant results such as English (1998) suggested in his study. However, figure 2 

shows the growth trends for the ELLs participating in the study. It can be observed that 

the ELLs in the treatment group had an achievement mean score higher than the control 

group in the posttest. This indicates that if the writing in mathematics intervention would 

have lasted longer than 6 weeks, a statistically significant difference may have been seen 

between the pretest and the posttest scores of the ELLs in each group. It is important to 

highlight that the use of ESOL strategies was essential for the ELLs to produce the 

writing they did in the biweekly tests and on the posttest. The lessons included teaching 

new and subject-related vocabulary explicitly, using sentence frames, and teaching 

grammar mini-lessons in order to assist the ELLs when writing to explain their thinking.  

 

Hypothesis 1b 

The same variable setting used for question 1 and for question 1a, was used for 

question 1b. The repeated measures ANOVA determined that the achievement scores 

means of the English speakers were not statistically significantly different between time 

points (F(1,29) = .980, p=.330). These results can also be attributed to the developing 

writing skills of this group of students, the test anxiety factor, and the length of the 
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intervention. The line graph in Figure 3 shows the growth trends for the achievement 

scores of the English speakers in each of the treatment and control groups. It 

demonstrates that the English speakers in the treatment group had higher scores at the 

posttest than the English speakers in the control group, which indicates that if the 

intervention was extended additional time, the results may have shown a statistically 

significant difference between the groups.  

Additionally, a one-way repeated measures ANOVA was used to analyze the 

differences between ELLs and English speakers in the treatment group (F(1,33) =.105, 

p= .747). Even though this analysis was not conducted in support of a research question, 

it was completed to see if there was a difference between the scores of the students based 

on the English proficiency level factor. The results showed no statistical difference 

between the ELLs and the English speakers who scored similarly on average over time. 

However, the growth trends data showed growth in achievement scores from the pretest 

to the posttest scores resulting in a positive relationship between their writing and their 

achievement scores.  

Moreover, a one-way repeated measures ANOVA was used to look at the ELLs in 

the treatment to the English speakers in the control in order to find if there was a 

significant different between the achievement scores. The results also showed there was 

no significant difference (F(1,32) =.654, p = .425). This analysis was conducted in order 

to observe if the language proficiency factor together with the writing instruction had any 

effect on the achievement scores of the ELLs in treatment when compared to the English 

speakers in the control.  
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Hypothesis 2 

The analysis of the One-Way Repeated Measures ANOVA for the second 

hypothesis showed that the effect of writing in mathematics on the students’ 

demonstration of metacognitive behaviors while solving mathematics problems was 

statistically significant, F(1,65) = 75.971, p < .001.  

It can be concluded that writing in mathematics had a positive effect on the scores 

for the problem solving questions of the students in the treatment versus the control 

group. Additionally, Post Hoc tests using the Bonferroni correction revealed that the 

treatment elicited an increase in students’ problem solving scores from the pretest 

administration to the first biweekly test with a mean difference of 5.823 resulting in a 

statistically significant difference (p<.001). There was also a significant difference 

between the mean scores of pretest and biweekly 2 (mean difference = 8.648, p<.001), 

between the pretest and the posttest (mean difference = 8.674, p<.001), between the 

biweekly 1 and biweekly 2 (mean difference = 2.825, p<.001), and between biweekly 1 

and posttest (mean difference of 2.851, p<.001). Table 8 summarizes the results of the 

Post Hoc Tests. It can be concluded that writing during problem solving in mathematics 

increases students’ scores on problem solving with metacognitive behaviors questions 

over time. 

Moreover, by looking at figure 4 and the growth trends for the students in 

treatment and control, it can be observed how the students in the treatment group showed 

continuous growth from pretest to posttest. It was also interesting to see a drop in the 

problem solving with metacognitive behaviors scores in the control group at the end in 

the posttest. The students completed the posttest after they had taken the Florida 
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Standards Assessment (FSA) in mathematics. They had stopped receiving test taking 

skills instruction which included leaning to explain their answers with a brief 

explanation. The children in the control group might have thought the need to explain 

through writing was no longer required or necessary given the FSA was over. 

The results for the second research question are important because they show that 

the use of writing in mathematics helped to improve both ELLs and English speakers 

problem solving scores. Similar results were found in a study conducted by Rudnitsky, 

Etheredge, Freeman, and Gilbert (1995) that used two treatments: writing and solving to 

help students improve mathematics problem solving. The writing treatment consisted of 

lessons designed to engage students in creating mathematical problems, while the solving 

treatment included lessons about problem-solving procedures referred to as problem-

solving steps, tips, rules, procedures, or guidelines. The treatment lasted 10 weeks and 

used a pretest-posttest design to assess student problem solving abilities. There was a 

statistically significant difference between the posttest results of the students in the 

treatment groups, which used either writing or solving, to the posttest results of the 

control group. Although both treatment groups outperformed the control group, the 

results showed that the writing treatment was superior to the solving treatment.  

In the same way, the present study revealed significant differences in the problem 

solving with metacognitive behaviors questions scores of the treatment group versus the 

control group. These findings also support the theories of Garofalo and Lester (1985), 

and Fernandez, Hadaway, and Wilson (1994) about the significance of having students 

think about the processes they follow when they problem solve.  
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Hypothesis 3 

Finally, the third hypothesis looked at the frequency of occurrence of each 

problem solving phase in each achievement test. By testing the students every two weeks, 

the frequency in which the students used the phases of problem solving was analyzed, 

and by using writing to describe their thinking processes the metacognitive behaviors 

demonstrated in each test was examined. This information can be used by teachers to 

scaffold the students’ learning and help them in the problem solving process. 

Additionally, it could be observed that as time passed most treatment group students were 

using all the phases of problem solving, a step in becoming effective mathematics 

problem solvers. 

Figure 5 shows the percentages of students who wrote about the metacognitive 

behaviors they used to problem solve in each of the four tests. The rubric in table 1 was 

used to score the students’ responses for the problem solving questions which included 

the students writing about their metacognition. The students had to score 3 or 4 points in 

order to be coded as using the problem solving phase adequately. When analyzing the 

frequency of metacognitive behaviors during the pretest, it can be observed that the 

majority of students in both treatment and control did not write about metacognitive 

behaviors for any of the phases of problem solving. During the biweekly 1 test, which 

was given two weeks after the beginning of the treatment, both treatment and control 

show similar results in regards to writing about the metacognitive behaviors used during 

problem solving. It was interesting to see that the control group was writing also even 

when they were not being taught using the treatment. This may be due to the fact that 

students were being prepared for the FSA mathematics test which includes questions in 
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which students have to explain their answers with an equation or a brief explanation 

(FSA, 2014). The data for the biweekly 2 test, given four weeks after the beginning of the 

intervention, start to show a much greater difference in the use of metacognitive 

behaviors by the students in the treatment group. The students in the treatment group use 

orientation (82.9%), organization (74.3%), and execution (54.3%) metacognitive 

behaviors much more frequently during the biweekly 2 test administration than during the 

previous two tests. This finding shows that after only four weeks of learning and using 

writing during problem solving there was a change in the way students were solving 

mathematics problems and thinking about the process. The students in the treatment 

group seem to be using metacognitive behaviors in all four phases of problem solving 

during the posttest, the last assessment conducted at the end of the 6 weeks of 

intervention. The data show the highest percentage of treatment students using the 

orientation and organization phases, with 100% of the treatment students describing the 

metacognitive behaviors they used to solve the problems in each of these two phases. 

Also during the posttest, 91.4% of treatment students wrote about their metacognition for 

executing the solution and 80% of them wrote about the verification process they 

followed.  

The rubric in table 1 was used to score the students’ responses for the problem 

solving questions which included the students’ writing about their metacognition. The 

students had to score 3 or 4 points in order to be coded as using the problem solving 

phase (orientation, organization, execution, and verification) adequately. Figure 6 shows 

an example of an ELL student’s answer with a score of 4 on the posttest’s problem 

solving question, and Figure 7 shows an example of an ELL student’s answer with a 
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score of 3 on the posttest’s problem solving question. In addition, Figure 8 presents an 

English speaker student work sample in which the student scored 4 points in the posttest 

problem solving question, and Figure 9 shows an English speaker student work sample in 

which the student scored 3 points in the posttest problem solving question.  
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Figure 6.  Sample work from an ELL student who scored 4 points on the posttest 

problem solving question. Transcription of student’s written response: “I first list some 

number that will give me 18 then I multiply the number like 10x2=20 and 8x3=24 then I 

add them 20+24=44 that how I got the answer.”  
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Figure 7. Sample work from an ELL student who scored 3 points on the posttest problem 

solving question. Transcription of student’s written response: “First: I counted the same 

[amount] of wheels but it did not work so I took some tricycle wheels and I added it to 

the bicycle. [Then] I got 13 bicycles and 6 tricycle[s].” The student forgot to add the 

bicycles and tricycles in the final answer to satisfy the problem condition that there were 

a total of 18 bikes and tricycles all together. 
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Figure 8. Sample work from an English speaker student who scored 4 points on the 

posttest problem solving question. Transcription of student’ written response:  

“(1)             [The student represents the tricycles by writing a “3”  

          rather than by writing a “T” like the student wrote in  

          step 3.]  

 

 

 (2) Add all the Bs (bicycles) you have 20.  

 (3) Add all the Ts you have 24. 4. Add your bikes and tricycles and that’s your ansewr 

[answer] 

Answer:10 bikes, 8 tricycles.”  

  2 B            2 B 

+3 3            2  3 

  5               4 

8 1 
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Figure 9. Sample work from an English speaker student who scored 3 points on the 

posttest problem solving question. Transcription of student’ written response: “First, I 

multiplied 3x12 and it gave me 36. Then, I subtracted 36 from 44 and it gave me 8. Last, 

I divided 8÷2 and it gave me 4. 

Answer: 12 tricycles and 4 bicycles.” 
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Delimitations 

There are some delimitations to this study that need to be discussed. First, the 

study was conducted with a small sample size (less than 100). This limits the 

generalizability of the results.  This population may be very different from populations in 

other parts of the United States as well as other parts of the world. In addition, having 

two teachers also brings diversity to the lessons. Even though teachers have their own 

teaching style and use different instructional methods, in this study the second teacher 

was extensively trained by the researcher and first teacher on how to use writing in 

mathematics, and both used the same problems for instruction and followed the same 

format for each of the lessons. 

Implications 

The findings from this study are useful to teachers, mathematics curriculum 

specialists, professional development coordinators, principals, and district 

superintendents who are interested in creating programs for teaching mathematics at the 

elementary level that include engaging students in problem solving and increasing 

students’ problem solving ability. Given that the writing in mathematics instruction 

improved the problem solving scores of those students who wrote about their 

metacognitive behaviors, other school organizations may also benefit from using this 

evidence-based method for teaching mathematics at the elementary school level.  

Particularly, in school districts such as Miami-Dade County in which the ELL population 

is high, it may be beneficial to include writing in mathematics in order to assist all 

students but especially the ELLs when solving problems in mathematics. 
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Recommendations for Future Research 

There are a number of changes that can be made in future studies that might want 

to build on or expand on the findings of this study. Although mathematics achievement 

scores were not significantly different for treatment and control groups, trends in the 

mean scores of the repeated measures reveal that the scores for the treatment group are 

growing faster than those for the control group over the six-week period of the study. 

These trends suggest extending the extent of time for the study. The incorporation of 

problem solving and writing in the teaching of mathematics is supported by the CCSS 

(2010) and MAFS (2015). This practice is appropriate to be used in mathematics classes, 

and thus the intervention used in this study is something that can be incorporated in 

teaching mathematics throughout an entire semester or during an entire academic year. 

Given that problem solving is an on-going learning process, a longer period of time may 

also be beneficial in order to capture how and what metacognitive behaviors students 

develop as they become efficient problem solvers. 

Additionally, future studies can concentrate on finding a larger group of students 

to participate in a similar context. A larger sample size may bring potentially more 

widely generalizable results in terms of the significant differences in using writing and 

the problem solving with metacognitive behaviors scores. Future studies should also 

investigate how students can be supported as they develop these metacognitive behaviors. 

A qualitative study including case studies of students in the treatment group who can be 

interviewed about the processes they used when solving problems, might be beneficial in 

finding out how students acquire metacognitive behaviors that may not be present in their 

writing.  
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Given that this study was conducted during the spring semester at the time in 

which students were also taking a high stakes assessment, it might be important to 

conduct a similar study during the fall semester given that test anxiety and/or test 

preparation would not interfere with the study results. Since the students would not be 

receiving test practice including writing during the fall semester, then writing in 

mathematics for test practice will not interfere with the results of the scores especially for 

those in the control group. 

 Summary 

This chapter discussed the One-Way Repeated Measures Analysis of Variance 

results of this study, the delimitations, implications for the professionals in the field, and 

the recommendations for future research studies. Although the study did not produce 

significant mathematics achievement results over a 12 session, 6-week treatment that 

taught ELL and English Speaker third graders to use writing in mathematics, the 

intervention revealed faster growth trends overtime between the mean achievement 

scores for the treatment group over the control group. Additionally, the study produced 

statistically significant results between writing in mathematics and problem solving, an 

important finding for education professionals interested in implementing problem solving 

in mathematics programs at the elementary level.   
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Appendix A  

Pretest  

Name: _________________________________     Date:__________________ 

Teacher: ________________________________ 

Answer the following questions by choosing the best answer: 

1. Tomas planted 7 rows of flowers. He planted 3 flowers in each row. How many 

flowers did he plant in all?    

  a. 10      

b. 21     

c. 5     

d. 7 

2. Jose has 30 photographs in a photo album. He placed 5 photographs on each page. 

How many pages did Jose fill?   

   a. 6   

b. 25     

c. 35   

d. 5 

3. Ana asked her classmates about the amount of books they read during the summer and 

completed the following line plot.  

 

 

 

 

 

 

How many children read 4 books? 

a. 8 children 

b. 3 children 

c. 5 children  

d. 6 children 

 

Summer Reading  

Amount of Books 
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4. Mary made a shape with 5 toothpicks. If she wants to make 8 shapes in all, how many 

toothpicks does she need? 

 

a. 5 

b. 8 

c. 13 

d. 40 

 

Answer the following questions in the space provided. Show all your work. 

 

5. Look at the following table. Describe the pattern and write the missing numbers 

 

Flashlight 3 4 5 6 7 8 

Batteries  12 16 20 24   

 

Show your work: 

 

 

 

6. Sam sees 15 red balloons, 18 blue balloons, and 12 yellow balloons. How many 

balloons does he see in all? 

 

Show your work: 

 

 

 

Answer:    
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7. Katy had 213 cards in her collection and Juan had 117 cards. How many more cards 

did Katy have than Juan? 

Show your work: 

 

 

 

Answer:    

 

8. Dan rounds number 234 to the nearest ten, and he writes 240. Does his answer make 

sense? Explain. 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

 

9. The picture graph shows the birthdays of some children in Alina’s class. 

 

 

 

 

 

 

How many more birthdays are there in November than in September? 

 

 

 

 

Answer:    

Birthdays 

September           

October       

November             

Key: Each  = 2 children 
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Answer the following question in the space provided. Show all your work.  

 

10. A farmer has both pigs and chickens on his farm. There are 78 feet and 27 heads. 

How many pigs and how many chickens are there?  

 

                                            

                                 Pig                                     Chicken 

Show your work: 

 

 

 

 

 

 

List all the steps you took to answer this question:  

 

 

 

 

 

 

 

Answer:  
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Appendix B 

Child-Friendly Rubric 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ORIENTATION 

ORGANIZATION 

EXECUTION 
VERIFICATION 

 Read 

 Re-read 

 Looked at clues or key 
words 

 Looked at pictures 

 Looked at numbers 

 Made initial chart or 

picture 

 Looked up words I don’t 

understand 

 Made a plan 

 Thought about using 

different strategies 

like:  

o ___________ 

o ___________ 

o ___________  

 Solved the problem using the 

following: 

o ______________ 

o ______________ 

 Checked my answer by 
____________________ 

 Does it make sense? 
o Yes 

o No 

 

 

Name: 
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Appendix C 

Scoring Criteria for Posttest 

 

Posttest Question Type of Question 

Total 

Amount 

of 

Possible 

Points 

Scoring complexity 

1. Daniela recorded her classmates’ favorite ice 

cream flavors in the following picture graph. 

How many more children like strawberry ice 

cream than cookies & cream ice cream?                

a. 6     b. 9    c. 4    d. 5 

multiple choice 1 0 points = wrong answer is chosen 

1 point = correct answer is chosen 

 

2. Karla has 42 crayons. She wants to give 7 

crayons to each of her friends. How many 

friends can she give crayons to?  a. 6     b. 49      

c. 8    d. 2 

multiple choice 1 0 points = wrong answer is chosen 

1 point = correct answer is chosen 

 

3. Elias buys 5 bags of cookies for his class. 

Each bag has 7 cookies. How many cookies does 

Elias have in all?                a. 12         b. 2         c. 

35         d. 7 

multiple choice 1 0 points = wrong answer is chosen 

1 point = correct answer is chosen 

 4. Sammy reads 3 books each week. How many 

books does he read after 9 weeks?    a. 6     b. 27    

c. 3     d. 12 

multiple choice 1 0 points = wrong answer is chosen 

1 point = correct answer is chosen                                
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5. A bakery sells 24 cupcakes, 26 guava pastries, 

and 52 Cuban breads. How many things does the 

bakery sell in all? Show your work: 

short response 2 0 points = does not add 

1 point = adds but makes computation 

mistake 

2 points = adds and gets correct answer 

(sum=102) 

6. Look at the following table. Write the missing 

numbers and describe the pattern:        

short response 2 0 points = wrong answers for both 

missing numbers 

1 point = one missing number is right 

and written description is right OR  

both missing numbers are right but 

there is no description or incomplete 

description given 

2 points = both missing numbers are 

right (6, 7) and description is complete 

and correct 

7. The baseball team has 41 baseball balls, 76 

gloves, and 33 bats. How many items do they 

have in all? A. 

short response 2 0 points - does not add all 3 numbers 

1 point = adds all 3 numbers but makes 

computation mistake 

2 points = adds and gets correct answer 

(sum=150) 

8. Carl rounds number 652 to the nearest ten, and 
he writes 650. Does his answer make sense?  

short response 2 0 points = answers NO  
1 point = answers YES, and gives 

incomplete explanation or part of 

explanation is wrong 

2 points = answers YES and has a 

complete explanation                                                                                                                              
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9. The bar graph shows the activities students do 

after school. How many more children are in 

chess than in basketball? 

short response 2 0 points = does not subtract numbers  

1 point = subtracts but makes 

computation mistake   

2 points = subtracts and gets correct 

answer OR shows correct answer (even 

when subtraction work is not shown)                                        

10. A store has a total of 18 bicycles and 
tricycles in stock. There are 44 wheels in all. 

How many bikes and how many tricycles are 

there? 

problem solving 
question 

4 0 points = does not show any work OR 
beginning work does not show 

understanding of the problem and there is 

no writing that shows understanding 

1 point =  starts to show steps to solve the 

problem by showing no or limited 

understanding of the problem,  AND 

writing does not show much 

understanding of the problem     

2 points = starts to solve for bicycles and 

tricycles by using the total number of 

wheels as a start to show initial 

understanding of problem, writes about 

some steps       

3 points = starts using one or more 

strategies to find amount for each the 

bikes and tricycles, has some computation 

mistakes but was on the right path to solve 

the problem AND writes some steps about 

process he/she is following   

4 points = solves correctly for the amount 

of bikes (10) and tricycles (8) AND writes 

about most steps used                  
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