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ABSTRACT OF THE DISSERTATION 

EVALUATION OF REDUNDANCY OF TWIN STEEL BOX-GIRDER BRIDGES 

by 

Huy Van Pham 

Florida International University, 2016 

Miami, Florida 

Professor Atorod Azizinamini, Major Professor 

Based on the definition given in the AASHTO LRFD Bridge Design Specifications, 

twin steel box-girder bridges are classified as bridges with fracture critical members 

(FCMs), in which a failure of a tension member is expected to lead to a collapse of the 

bridge. However, a number of such bridges with either a partial or full-depth crack in one 

girder have been reported and are still providing service without collapsing. The main 

objective of this research project is to understand the behavior of twin steel box-girder 

bridges and to develop methods for evaluating their redundancy level in the event of the 

fracture of one tension member.  

The research project included an experimental investigation on a small-scale steel 

twin box-girder bridge, field testing of a full-scale twin box-girder, analysis of existing 

research and design data, and an extensive amount of numerical analyses carried out on 

calibrated 3-D nonlinear finite element models.  

The results from this study provide in-depth understanding of twin steel box-girder 

bridge behavior before and after a fracture in the tension member occurs. In addition to the 

experimentally verified finite element method, the report also proposes simplified methods 

for evaluating the load-carrying capacity of twin steel box-girder bridges under 
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concentrated loads and provides a list of important factors that could control the reserve 

capacity of the damaged bridge.  

The main conclusion of this research is that the redundancy exists in twin steel box-

girder bridges in an event that a fracture of a tension member(s) takes place. This research 

project also provides a comprehensive roadmap for assessing the redundancy of twin steel 

box-girder bridges in which the elements of the roadmap are identified, and solutions for 

several of the steps are provided.  The development of solutions for remaining steps of the 

roadmap is proposed for a future research. 
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Chapter 1 Introduction 

1.1 Problem Statement 

Sudden collapse of bridges such as the Silver Bridge (West Virginia DOT, 2016) 

and the I-35W Mississippi River Bridge (National Transportation Safety Board, 2008) 

show that fracture of a single member can cause the collapse of an entire bridge. In bridge 

engineering parlance, these members are known as fracture critical members (FCMs), 

although the precise definition may vary. In 2010 the American Association of State 

Highways and Transportation Officials (AASHTO) defined an FCM as a “component in 

tension whose failure is expected to result in the collapse of the bridge or the inability of 

the bridge to perform its function.” Although design and construction of bridges with 

FCMs is not currently prohibited, these bridges must be designed and fabricated to special 

requirements, and since 1988 the National Bridge Inspection Standards have required a 

hands-on, full inspection, typically every two years. These requirements burden bridge 

owners and transportation agencies with huge initial and annual expenses.  

Currently, all two-girder bridges, regardless of their configurations, are classified 

as bridges with fracture critical elements. However, a number of two-girder bridges with 

cracks in one girder, even full-depth, have been reported and were still in service without 

collapse. One example is the Lafayette Bridge, part of US-52 Hwy over the Mississippi 

River near Savanna, IL. The Lafayette Bridge is composed of two side-by-side units, each 

containing two plate girders.  Cross-frames exist between the girders within each unit; 

however, the units themselves are unconnected. In 1975, after eight years of service, the 

Lafayette Bridge experienced a full-depth fracture of one of the main girders, and the 
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bridge deck sagged 7 in., but the structure did not collapse (Fisher et al., 1977).  In 1977, 

the I-79 Neville Island Bridge in Pittsburgh, PA, was found to have a full-depth fracture of 

one of its two girders and remained in service and displayed only a slight deflection, until 

a boater noticed the fracture (Schwendeman and Hedgren, 1978). These examples suggest 

that the stability of the bridge is not always linked strictly to the performance of fracture 

critical members, and a redundancy load path might exist in bridges with FCMs even 

though it is not acknowledged based on the current definition of fracture critical structures. 

There has been increased interest in the fracture critical classification of twin box-

girder bridges due to several recent cases of bridges with FCMs performing well and 

supporting highway live loads after a fracture of one of the main-supporting girders. One 

of the first research studies on the redundancy evaluation of twin steel box-girder bridges 

was performed by HNTB Corporation and Milwaukee Transportation Partners (2005). In 

addition, full-scale testing of a simple span twin box-girder superstructure at the University 

of Texas, Austin, has shown that under uniform loading, twin box-girder superstructures 

have significant levels of redundancy and can remain stable after a complete fracture of the 

bottom flange and webs of one of the girders (Barnard et al., 2010). If twin steel box-girder 

bridges are proved to be redundant structures, the requirements of hands-on inspection 

every two years might not be necessary and significant savings will be realized. 

1.2 Background 

National Cooperative Highway Research Program (NCHRP) Report 406 (Ghosn 

and Moses, 1998) is one of the first of several research projects on fracture critical bridges 

that have been conducted by bridge researchers for different sponsoring agencies in recent 
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years. In that report, an attempt was made to quantify the redundancy of different bridge 

structures. To that end, four load factors and three reserve ratios based on the load factors 

are defined. Limiting values for each reserve ratio are intended to ensure redundancy. The 

results of other studies are also available for researchers in this field, among them Ghosn 

et al. (2010), Connor et al. (2005), Frangopol et al. (1991 and 2007) and Pham et al. (2014).  

In June 2012, the Federal Highway Administration (FHWA) issued a memo 

intended to clarify the agency’s policy regarding the design, fabrication, and inspection of 

fracture critical bridges. In addition, two major research projects on redundancy of twin 

box-girder bridges were conducted by HNTB/MTP for the Wisconsin Department of 

Transportation (DOT) and by the University of Texas-Austin for the Texas DOT. 

Additional information on these three resources is provided below. 

FHWA Memo 

In June 2012, FHWA issued a memorandum on clarification of requirements for 

fracture critical members. The memo stated: 

“The purpose of this memo is to provide clarification of the FHWA policy for the 

classification of Fracture Critical Members. For design and fabrication, only Load Path 

Redundancy may be considered. For in-service inspection protocol, Structural Redundancy 

demonstrated by refined analysis is now formally recognized and may also be considered. 

Internal member redundancy is currently not recognized in the classification of Fracture 

Critical Members for either design and fabrication or in-service inspection. Finally, this 

memo introduces a new member classification, a System Redundant Member (SRM), 
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which is a non-load-path-redundant member that gains its redundancy by system 

behavior.” 

The memo clarifies the FHWA policy on specification of proper material and 

testing for design and fabrication and also proper in-service inspection protocol. It also 

mentions that the analysis requirements of AASHTO LRFD section 6.6.2 is supported, 

which requires bridge owner and bridge engineer agreement on the level of complexity of 

the bridge analysis.  

HNTB/MTP Research Project (2005) 

In 2005, Milwaukee Transportation Partners (MTP), in collaboration with HNTB 

Corp., published a report on “Redundancy of Box Girder Steel Bridges” based on a study 

on the Marquette Interchange HPS twin box-girder bridges. The intent of that project was 

to either demonstrate that the selected twin box-girder bridges are redundant in their as-

designed condition or to make recommendations to render them redundant.  

Marquette Interchange includes eight directional ramps to be constructed using a 

twin box-girder system. It was decided that these bridges be designed and fabricated in 

accordance to fracture critical requirements and the major target was to eliminate the two-

year inspection requirement. Therefore, two of the ramp bridges were modeled using 

elaborate nonlinear finite element models, while the other six bridges of the interchange 

were modeled using simplified grillage models. In these grillage models, all main girders, 

slab strips, and diaphragms were modeled using beam elements in a 2-D planar grid. The 

2-D models were calibrated against the results of the two 3-D models to make them more 

reliable. The considered damage for each bridge was a total steel section fracture of one of 
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the two box girders at 0.4 times of the end span. A stepwise pushover analysis was used to 

monitor the responses of all of the bridge elements through the incremental loading 

process.  

The results of both 2-D and 3-D analyses show that these bridges were able to carry 

the live loads greater than the minimum required loads. In addition, the dynamic effects 

due to sudden failure of one of the box girders on global stability of the bridge were 

evaluated, which was beyond the requirements of NCHRP Report 406. A simplified 

approach was selected to attack this problem. Although, the analyses showed that this 

dynamic effect controls the failure, the two girder bridges proved to have enough capacity 

to accommodate such sudden failures.  

This project demonstrated that twin box-girder bridges in their as-designed 

condition have sufficient reserved capacity to be classified as non-fracture critical and no 

additional requirement should be added to the current design methods. The redundancy of 

this type of bridge comes from the alternate load path embedded in these structures, such 

as continuity of girders, concrete deck 3-D action, and participation of cross-frames and 

diaphragms to carry the loads of damaged girder. 

Texas DOT Research Project 9-5498 (2006-2010) 

Texas DOT and Federal Highway Administration (FHWA) co-sponsored a full-

scale experimental study at the Ferguson Structural Engineering Laboratory (FSEL) in the 

University of Texas-Austin. In this research project, Karl Frank et al. conducted a valuable 

full-scale experiment and presented analytical and finite element solutions to evaluate the 

load carrying capacity of a composite twin steel box-girder bridge. The outcome of the 
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research was analytical and numerical solutions to find the “redundant capacity” of twin 

box-girder bridges. Major experimental and computational resources for this FSEL project 

were continued for four years (2006-2010). Different aspects of this project included 

analytical structural analysis presented through hand calculations, numerical structural 

analyses conducted through finite element modeling, laboratory experiments to evaluate 

the capacity of specific bridge elements, and a full-scale test on a reconstructed twin box-

girder bridge.  

In the analytical part of this study, the capacity of the bridge was estimated using 

the yield line method. In this method, a failure pattern (Yield Line) is assumed for the 

bridge and then by equating the internal work done by the internal forces and the external 

work done by the external forces, the maximum capacity of the structure is found. This 

method was successfully applied to the tested bridge and a lower bound solution was 

resulted for the load capacity of the bridge. 

The laboratory tests focused on the pullout capacity of the shear connectors of the 

bridge girders, which connect the girders to the concrete deck. One of the conclusions of 

the Texas research is that the shear connectors play a key role in the redundancy of 

damaged two steel box-girder bridges. As a result, tests were conducted to comprehend the 

behavior of shear studs in static and dynamic states. 

The full-scale bridge test of this research project revealed the intrinsic redundant 

behavior of twin box-girder bridges, despite the fact that the test was conducted in the 

worst-case scenario from the point of view of redundancy. The tested bridge was a simple-

span bridge and therefore it had no redundancy due to continuity of its superstructure. All 

external diaphragms of this bridge were removed. The railings of the bridge were 
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constructed with expansion joints that limit the contribution of the railing to the load-

carrying capacity of the bridge. The bridge had a horizontal curvature and the fractured 

girder was the outside girder that has the maximum internal forces. Therefore, it is observed 

that the situation of a real-life bridge cannot be worse than this bridge from redundancy 

standpoint. Figure 1-1 shows a picture of this test bridge before conducting the tests. 

 

Figure 1-1 FSEL twin box-girder bridge (Source: FHWA Report No FHWA/TX-10/9-5498-1). 

Three different tests were conducted on this bridge. In the first test, the bottom 

flange of the exterior girder was suddenly failed using an explosive to simulate a sudden 

fracture while an equivalent HS-20 load was positioned above the fractured girder and in 

the worst possible location. Figure 1-2 illustrates the bridge during the explosion and 

Figure 1-3 shows the bottom flange cut after the explosion. The response of the bridge 

during and after this test was satisfactory and its maximum deflection was less than 1 in.  
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Figure 1-2 FSEL first bridge fracture test (Source: FHWA Report No FHWA/TX-10/9-5498-1). 

 

 

Figure 1-3 Bottom flange cut after the explosion (Source: FHWA Report No FHWA/TX-10/9-

5498-1). 

In the second test, the bridge and equivalent HS-20 truck loading were supported 

by means of a scissor jack while about 83% of the webs of the cracked girder were 

manually cut. The scissor jack was then removed suddenly using an explosive charge 

attached on the jack. This simulated the sudden nature of the crack. Figure 1-4 shows the 

supporting scissor jack before, during, and after the explosion. Again, the bridge safely 

sustained the load with a maximum deflection of 7 in. 
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Figure 1-4 FSEL second bridge fracture test (Source: FHWA Report No FHWA/TX-10/9-5498-

1). 

The third test was a static test to measure the load capacity of the damaged bridge. 

In this test, the load on the bridge was increased incrementally until the bridge was not able 

to carry more loads. In this test, the bridge carried 363 kips of load which, considering the 

extent of the damage, was a remarkable capacity. Figure 1-5 shows the incremental loading 

of the bridge and also the bridge in its collapsed mode.  

  

Figure 1-5 FSEL third bridge fracture test (Source: FHWA Report No FHWA/TX-10/9-5498-1). 

The capacity of the tested bridge is also evaluated by means of a numerical 

simulation. In this approach, a sophisticated finite element model of the bridge is developed 

using Abaqus/Standard finite element program. In the simulation, the nonlinear material 
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properties of steel and concrete, contact properties of railing joint, and the stud connection 

failure were taken into account. The results of the numerical simulation showed a good 

agreement with the collected data. In addition, the finite element models were able to 

capture the observed failures during the second and third tests. 

Based on the performed experiment and computer simulations, major failures in 

this type of bridges include: 

 Pull-out failure of shear studs (which is tension failure of the concrete surrounding 

the studs) resulting in haunch separation, and 

 Crushing of railing concrete in compression. 

A number of theses and reports were published by Barnard (2006), Hovell (2007), 

Neuman (2009), and others based on the results of this experimental work, each of them 

investigating different aspects of the tested bridge’s behavior.  

These studies provide valuable information about the redundancy of twin box-

girder bridges; however, they do not completely explain the behavior and failure modes of 

these bridges under different loading conditions.  

1.3 Current Approaches 

Following are brief description of two available methods for assessing the 

redundancy of two steel box-girder bridges, together with their limitations. 

1.3.1 Direct Analysis Approach with Redundancy Criteria - NCHRP Report 406 

NCHRP Report 406 was one of the first studies undertaken to study the redundancy 

of bridges at system level and develop a step-by-step-procedure, called direct analysis 
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approach, to evaluate the redundancy of highway bridges (Ghosn and Moses, 1998). This 

procedure introduces four critical limit states that need to be checked and the minimum 

load levels (or load factors) that bridges can carry before these limit states are reached. 

These limit states and their corresponding load factors are described as follows: 

 Member failure limit state is a check of individual member safety using elastic 

analysis or the capacity of the structure to resist its first member failure. 

𝐿𝐹1 =
𝑅 − 𝐷

𝐿
   ←   𝐿𝑖𝑛𝑒𝑎𝑟 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

EQ 1.1 

Where: 

𝑅 = Resistance 

D = Dead load effects 

L = Live load effects 

 Ultimate limit state is defined as the ultimate capacity of the undamaged bridge 

system or the load required for the formation of a collapse mechanism in the bridge 

system divided by the weight of two HS-20 trucks. In mathematical format, this 

definition yields in: 

𝐿𝐹𝑢

=
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝐿𝑜𝑎𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑈𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝐵𝑟𝑖𝑑𝑔𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝐹𝐸𝐴

2 × 72 𝑘𝑖𝑝𝑠
 

EQ 

1.2 

Where: 

72 𝑘𝑖𝑝𝑠 = Weight of one HS-20 Trucks 

 Damaged condition limit state is defined as the ultimate capacity of the bridge 

system after removal or cracking of one load-carrying component from the structure 

model.  
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𝐿𝐹𝑑 =
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝐿𝑜𝑎𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝐷𝑎𝑚𝑎𝑔𝑒𝑑 𝐵𝑟𝑖𝑑𝑔𝑒

2 × 72 𝑘𝑖𝑝𝑠
 

EQ 1.3 

 Functionality limit state is defined as the capacity of the structure to resist a live 

load displacement in a main longitudinal member equal to the span length/100. The 

functionality limit state load factor is obtained from dividing this capacity by the 

weight of two HS-20 trucks. 

𝐿𝐹𝑓 =
𝐿𝑜𝑎𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜

𝐿
100  𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

2 × 72 𝑘𝑖𝑝𝑠
 

EQ 1.4 

In this study, redundancy of a bridge is defined as the capability of the bridge 

structure to continue to carry loads after the failure of one main member, hereby ratios of 

LFu, LFf, LFd to LF1 are measures of the redundancy level of bridges in the ultimate, 

functional and damaged limit states, respectively. These ratios are also called as system 

reserve factors. A bridge will be considered as redundant if all system reserve factors 

satisfy the following criteria: 

𝐹𝑜𝑟 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑙𝑖𝑚𝑖𝑡 𝑠𝑡𝑎𝑡𝑒: 𝑅𝑢 =
𝐿𝐹𝑢

𝐿𝐹1
≥ 1.30 

𝐹𝑜𝑟 𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 𝑠𝑡𝑎𝑡𝑒: 𝑅𝑑 =
𝐿𝐹𝑑

𝐿𝐹1
≥ 0.5 

𝐹𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑖𝑚𝑖𝑡 𝑠𝑡𝑎𝑡𝑒: 𝑅𝑓 =
𝐿𝐹𝑓

𝐿𝐹1
≥ 1.10 

These three minimum redundancy criteria, 1.30, 0.5, and 1.10, came from target 

reliability indices, which were collected from reliability analysis of a large number of 

common-type four-girder bridges. It was assumed that four-girder bridges are always 

redundant while two-girder bridges are non-redundant. The target reliability indices for 

ultimate limit state, functional limit state and damaged limit states were found to be 4.35, 

3.75 and 0.8 respectively.  
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In addition to the direct analysis procedures as described above, the research also 

developed tables of system reserve factors for typical bridge configurations so that practice 

bridge engineers and owners can use without performing any nonlinear finite element 

analysis (FEA). 

In order to evaluate the redundancy of a bridge using this approach, it is necessary 

to carry out nonlinear finite element analysis of the bridge systems. 

1.3.2 Simplified Analytical Modeling Methods for Redundancy Assessment of 

Twin Box-Girder Bridges 

The simplified analytical methods are developed to evaluate the redundancy of twin 

steel box-girder bridges (Barnard et al. 2010). These simplified methods were developed 

based on the results of experimental tests on full-scale twin steel box-girder bridge carried 

out in Texas DOT Research Project 9-5498 which was summarized previously.  

First, Barnard et al. (2010) proposed initial strength checks such that if the bridge under 

investigation satisfied these checks, it could be considered a redundant structure. The main 

philosophy of these checks was to ensure that 1) the intact girder can support the weight of 

the bridge and of a HS-20 truck, 2) the deck has sufficient strength to transmit the load 

carried by the fractured girder to the intact girder, and 3) the shear studs have sufficient 

tension capacity. These initial checks were considered as a first-level screening. Barnard 

et al. also demonstrated that if the first two conditions were satisfied, the twin steel box-

girder bridge can still sustain the load without collapsing. Under this scenario, a yield line 

analysis can be employed to evaluate “the ability of the deck to transmit load to the intact 

girder without the shear studs connecting the deck to the fractured girder.” The simplified 

procedure, developed by Barnard et al. (2010), requires carrying out a refined analysis 
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(nonlinear finite element analysis), if the capacity predicted from the yield line analysis 

proves to be inadequate.  In all the redundancy assessment approaches suggested by the 

Texas investigation, an arbitrary load equal to two times the weight of an HS-20 truck is 

utilized.  

In the yield line analysis approach, once the yield line pattern is chosen, the analysis 

is performed using a virtual work principle. The principle of virtual work requires that the 

external virtual work done by the external forces be equal to the internal virtual work done 

by the internal forces of each element. The yield line pattern, chosen for the bridge tested 

in Texas, is illustrated in Figure 1-6. In this yield line analysis approach, three parameters 

are required to define the yield line pattern. These parameters are angle φ, length a, and 

angle θ. The angle θ can be calculated based on the curvature of the bridge and it is zero 

for a straight bridge.  The angle φ, is suggested to be constant at 55 degrees according to 

the results of a parametric study. The length a, is determined by finding the value that 

produces minimum truck load. It is important to note that length a, and magnitude of truck 

load are mutually dependent; therefore, one needs to be fixed to find the other. The 

minimum truck load is the last one that gave a physically admissible solution for the length 

a. 
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Figure 1-6 Yield line model proposed by Barnard et al. (2010). 

The internal work of each line with length l can be calculated as: 

 𝑑𝐼𝑊 =  𝑚𝑏 ∗ 𝑙 ∗ 𝜃𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛  

where 𝑚𝑏 is bending moment of each deck strip along each yield line and 𝜃𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 is angle 

of rotation of each plate. Then the external work is calculated by summing each point load 

multiplied by the virtual deflection of each location. Finally, by setting internal work equal 

to external work and solving the equation, either length a, or the magnitude of truck load 

will be determined depending upon which variable is fixed at the beginning. If the 

magnitude of truck load is fixed, then both the internal work and external work can be 

expressed as a function of length a, and vice versa.  

The detailed information on how to calculate 𝑚𝑏, 𝑙, 𝜃𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 and external work can 

be found in the report “Modeling the Response of Fracture Critical Steel Box-Girder 

Bridges” (Barnard et al., 2010).  
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1.3.3 Limitations and Shortcomings 

Direct Analysis Approach (NCHRP Report 406)  

Although the framework developed in NCHRP Report 406 is comprehensive and 

has been used in several research projects such as HNTB/MTP project on Marquette 

Interchange HPS twin box-girder bridges, it contains limitations and drawbacks that need 

to improve as following: 

1. Although this study provides a tabulated system of factors for several common 

types of bridge configurations, it doesn’t include any steel box-girder bridges. It 

means nonlinear finite element analysis for every single steel box-girder bridge is 

required for each redundancy assessment. Performing nonlinear FEAs and 

repeating the procedure for all steel box-girder bridges in the fracture critical list 

can be very costly and time-consuming.  

2. The redundancy criteria proposed in this research were determined based on 

calibration of reliability indices of a large number of multi-girder common-type 

bridges. This might be not fully applicable to bridges with fracture critical 

members, particularly twin steel box-girder bridges that are investigated in this 

research. 

3. Since the deck was modeled as several parallel beams, it might not capture well the 

true nonlinear behavior of concrete. In addition, the failure of slab due to crushing 

of the concrete under transverse bending or shear failure was not considered during 

the finite element analysis. 
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4. Private discussion with the principal investigator of NCHRP 406 indicates that 

assessing the redundancy of two steel box-girder bridges after damage was not the 

objective of this particular investigation. Therefore, the application of 

recommendations made by NCHRP 406 to assess the redundancy of damaged two 

steel box-girder bridges is questionable.  

Simplified Methods Proposed by Barnard et al. (Texas DOT Research Project 9-5498) 

 It is important to note that the methods of predicting the capacity of twin steel box-

girder bridges, proposed in Texas DOT Research Project 9-5498, focused on a single 

loading condition of a fully distributed load. The loading configurations used in the 

research could have created different responses than what could happen in a more realistic 

loading state. Furthermore, the yield line analysis that was proposed in case the shear studs 

didn’t have sufficient strength included several limitations, including: 

1. The failure mode observed in the test was based on uniform loading. Therefore, the 

statement that the same failure mode would be obtained under an HS-20 truck load 

is questionable and needs justification and verification. 

2. This method requires an assumed failure mode/pattern; however, under different 

loading configurations, a different failure mode/pattern can be obtained. This would 

imply that the suggested method can’t be generalized.  

3. This analysis might not be applicable to abrupt failure modes like shear and 

punching shear of the deck. 

4. As an upper bound method, this yield line analysis will predict a collapse load that 

may be greater than the true collapse load. 

5. Arbitrary use of load factor of 2 against HS-20 trucks needs justification. 
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1.4 Research Objectives 

The main objective of this research is to assess the redundancy of two steel box-

girder bridges and ultimately lead to the development of practical tools to assess their 

redundancy and remove them from fracture critical list, where feasible.  

1.5 Dissertation Organization 

This dissertation involved conducting a significant amount of analytical, numerical 

and experimental work. This dissertation study was funded by FDOT and the majority of 

this dissertation is included in the final report submitted to FDOT for the research project 

BDV29-977-17. The outline of the dissertation is presented below.  

Chapter 1 presents the introduction and an overview of available information. 

Chapter 2 provides an overall philosophy for assessing the redundancy of two steel 

box-girder bridges. This chapter provides the roadmap that ultimately could lead to 

development of tools that will assist departments of transportation and bridge owners 

assessing the redundancy of the two steel box-girder bridges and removing them from the 

fracture critical list, where feasible. The development of complete tools needed is beyond 

the scope of this project. Therefore, this chapter provides a list of technical challenges that 

were addressed within this project together with a list of remaining technical questions that 

will be the subject of a proposed pooled fund project under development. This chapter also 

provides justification for different activities undertaken within this project. 

Chapter 3 provides design, details and instrumentation plans for the small-scale 

laboratory test specimen constructed and tested in the FDOT structural laboratory.  

Chapter 4 presents the results obtained from the tests on small-scale test specimen. 
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Chapter 5 presents the finite element modeling techniques used for development of 

nonlinear model. 

Chapter 6 presents the calibration process for nonlinear finite element model 

utilizing results of small-scale test specimen tested in the structural laboratory. 

Chapter 7 presents the results of field tests conducted on a multi-span two steel box-

girder bridge in service. 

Chapter 8 provides application of recommended procedures by NCHRP 406 to 

assess redundancy of two steel box-girder bridges after damage. 

Chapter 9 provides summary of parametric studies conducted using calibrated 

nonlinear finite element model developed and described in Chapter 6. 

Chapter 10 provides a simple method of predicting the punching shear of bridge 

deck slabs and taking into consideration both compressive membrane action direct load 

transfer effects. 

Chapter 11 provides a summary and conclusions. 
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Chapter 2 Research Methodology  

There is ample evidence indicating that two steel box-girder bridges are redundant, 

even if tension flanges of one steel box-girder are completely fractured, including the 

behavior of bridges that have continued to carry traffic load after damage and with little 

noticeable change to their global behavior, as well as the full-scale tests on test specimens 

loaded to failure. However, as is the case with any engineering process, it is still necessary 

to develop a sound and scientific approach to prove that two steel box-girder bridges are 

redundant and safe after damage. The need for the development of this comprehensive 

assessment procedure is grounded in the creation of the fracture critical concept within the 

bridge community in the United States. It is interesting to note that the need to prove that 

two steel box-girder bridges are redundant after damage, is not as a result of collapse of 

these bridge types after damage. 

The guidelines provided by AASHTO LRFD Bridge Design Specifications and 

FHWA and summarized in Chapter 1, allow the assessment of the safety and redundancy 

of two steel box-girder bridges using detailed numerical work. 

Commentary section 6.6.2 of the AASHTO LRFD Bridge Design Specifications 

provides general guidelines that can be used to evaluate the performance of bridges with 

fracture critical members and states: “… The criteria for a refined analysis used to 

demonstrate that part of a structure is not fracture-critical have not yet been codified. 

Therefore, the loading cases to be studied, location of potential cracks, degree to which the 

dynamic effects associated with a fracture are in the analysis, and fineness of the models 

and choice of element type should all be agreed upon by the owner and the engineer. The 
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ability of a particular software product to adequately capture the complexity of the problem 

should also be considered and the choice of software should be mutually agreed upon by 

the owner and the engineer. Relief from the full factored loads associated with the strength 

I load combination of Table 3.4.1-1 should be considered, as should the number of loaded 

design lanes versus the number of striped traffic lanes”. 

AASHTO LRFD Bridge Design Specifications and FHWA requirements for 

assessing the redundancy of damaged two steel box-girder bridges are feasible through 

detailed nonlinear three dimensional finite element analyses, using calibrated model. 

However, even with such an approach there is still one important missing piece of 

information to complete the process: the load level that the damaged bridge must sustain 

with respect to strength and deflection and other applicable serviceability criteria. The 

research study conducted in Texas arbitrarily uses two times HS-20 truck load and doesn’t 

address the loading combination that must be used during analysis.   

It is also important to note that the work sponsored by the National Steel Bridge 

Alliance and carried out at Purdue University is limited to the development of the nonlinear 

finite element model of damaged bridges, which has been accomplished in a number of 

studies and does not address any other technical issues involved. The main advantage of 

the Purdue work is the development of the mesh generation procedure for specific software. 

The proposed pooled fund project will take advantage of this valuable addition to the body 

of knowledge, as described later in this chapter.  
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2.1 Main Characteristics of Comprehensive Methodology for Assessment 

The requirements stated above necessitate that the methodology to assess the 

redundancy of two steel box-girder bridges after damage should have the following 

characteristics: 

1. Methodology must develop the load level that the damaged bridge must resist using 

a rational process.  

2. The suggested approach for assessment of redundancy of the damaged bridge is in 

the form of conducting detailed nonlinear finite element analyses. 

Based on the results of this current research study, discussions with various sectors 

of the steel bridge industry, and practical considerations, the following paths are suggested 

to assess the redundancy of two steel box-girder bridges. 

Modified Simple Texas Approach 

The first step in the suggested methodology is the use of simple hand calculation in 

the form of a modified simple approach suggested by Texas DOT Research Project 9-5498. 

Additional work needs to be carried out to further develop the suggested simple evaluation 

approach by Texas DOT, and this could be achieved by reducing the level of conservatism 

inherent in the Texas suggested approach, using the results of this research project. In its 

present form the results from the Texas simplified approach are highly conservative as 

compared to the test results. For instance, the full-scale bridge tested in Texas demonstrated 

363 kips of load capacity, while the current version of simplified Texas method prediction 

is 107 kips.  



  

  23 

Once developed, the modified Texas simple approach could be used as the first step 

in the process of evaluating the redundancy of damaged two steel box-girder bridges 

without any need for conducting detailed finite element analysis. The entire process could 

be carried out using hand calculations and will involve considering each bridge, one at a 

time. Still-missing information in this process are the strength criteria such as the minimum 

load level that the damaged bridge should resist and other applicable serviceability criteria, 

such as deflection of the bridge after damage and before retrofitting the bridge. The 

suggested approach to develop such criteria is explained in the next section in the proposed 

notional approach. 

In the event that a modified Texas simple approach does not result in removing the 

two steel box-girder bridges from the fracture critical list, the notional approach, which is 

described in the next section, could then be used.  

Proposed Notional Approach to Assess the Redundancy of Damaged Two Steel Box-

Girder Bridges 

Conducting detailed nonlinear finite element analysis remains the only viable 

approach for assessing the redundancy of damaged two steel box-girder bridges. However, 

as mentioned previously, the level of effort involved in addressing the redundancy of all 

two steel box-girder bridges within inventory of a given state requires significant amounts 

of financial, labor and computer resources. The notional approach to reduce the level of 

effort involved, consists of grouping the two steel box-girder bridges within a state 

inventory into several groups and developing a notional simple-span two steel box-girder 

bridge that would represent each group and carries out the detailed nonlinear finite element 

analysis on the notional bridge. This approach reduces the level of efforts involved at two 
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different levels. First, conducting a detailed nonlinear analysis on a simple-span bridge is 

much easier than conducting similar analysis on a multi-span bridge. Second, only one 

analysis will need to be carried out for each group. In this approach, proving the 

redundancy of a notional bridge will be equivalent to proving that all bridges within the 

group of simple- and multi-span two steel box-girder bridges in the group, under 

consideration, are redundant. 

The notional approach demands comprehension of the following issues: 

1. Development of a calibrated nonlinear finite element model that accurately depicts 

the modes of failure under types of loading specified by AASHTO LRFD Bridge 

Design Specifications. It should be noted that this current research project 

demonstrates that punching shear is a possible failure mode in damaged two steel 

box-girder bridges , and that the capacity of the damaged bridge is influenced by 

presence of damage in fractured girder. The Texas research study was not able to 

identify this mode of failure because of the type of loading used in their research.  

2. Development of criteria to group two steel box-girder bridges within the inventory 

of a given state DOT and developing notional simple-span two steel box-girder 

bridge representing the group. 

3. Establishment of the load level that damaged two steel box-girder bridges must 

resist as, well as establishment of other serviceability limit states that must be 

checked to ensure public safety. 

4. Development of a Guide for application of the notional approach for assessing 

redundancy of damaged two steel box-girder bridges with examples and other 

documentations, such as video tapes that would assist state DOTs. 
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Following is a brief discussion of information that has been developed as a result 

of this current study. Chapters 3 through 7 of this report provide documentation of efforts 

that were undertaken to develop a test-verified calibrated three dimensional finite element 

model that could be used to assess the redundancy of the damaged two steel box-girder 

bridges. Chapter 8 provides a summary of assessment of the redundancy of a full-scale 

bridge using the direct analysis approach, proposed in NCHRP Report 406. Chapter 9 

provides a summary of the efforts and start of the process for establishing the notional 

simple-span two steel box-girder bridges and grouping criteria. 

Following is brief discussion of procedures that could be used to develop the load 

level that damaged two steel box-girder bridges must sustain before retrofit or complete 

replacement. The development of load level that two damaged two steel box-girder bridges 

must resist will demand carrying out reliability-based analysis with a safety level agreed 

upon by bridge owners. This effort could consist of the following steps. 

1. Establish a probability density function (PDF) for load-carrying capacity of the 

damaged bridges, considering realistic modes of failure. This step will demand a 

large number of simulations. For the purpose of research, there will be a need to 

develop an approximate method for estimating the remaining capacity of damaged 

bridges. This current research study demonstrates that punching shear is most likely 

mode of failure, which in turn could significantly simplify the efforts involved in 

this step. 

2. Establish the required load level. As damage to a bridge increases, the PDF for 

resistance, as shown in Figure 2-1, shifts to the left and the overlapping area 

between PDFs of load and resistance increases. The increase in overlapping area 
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increases the probability of failure and lowers the safety level. This is true if PDF 

of load remains unchanged.  

The determination of the load level that damaged two steel box-girder 

bridges must resist could be established by first establishing the level of safety (beta 

index) for damaged bridges that is agreeable by owners. This safety level could be 

established by consensus or through analysis of bridges that are agreed to be 

redundant (Ghosn and Moses, 1998). Once the safety level is established, the PDF 

of load could be shifted to the left or right until the overlapping area under the two 

PDFs results in a desired safety level. This process will establish the position of 

PDF for load, which in turn will establish the load level that damaged two steel 

box-girder bridges must resist. 

 
Figure 2-1 Probability density functions of load and resistance of damaged and undamaged 

bridges. 

Another important practical consideration is the ability of a damaged bridge to carry 

the traffic until the damage is detected and repaired without jeopardizing public safety. 
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This consideration could demand checking the deflection of the damaged bridge and 

ensuring the serviceability of the bridge during the time period that damage will go on 

without detection. This aspect of the problem could be checked approximately while 

conducting analysis on the notional bridge. 
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Chapter 3 Laboratory Testing on Small-Scale Specimen 

In order to investigate the behavior of twin steel box-girder bridges in nonlinear 

range and  modes of failure, and to calibrate nonlinear 3-D finite element model, laboratory 

testing of a small-scale twin steel box-girder bridge specimen was incorporated into this 

project. Detailed information on design and construction of the small-scale specimen, the 

instrumentation and testing plan is discussed in the following sections.  

3.1 Specimen Design 

This small-scale bridge was designed based on AASHTO LRFD Bridge Design 

Specifications (2010). Even though the specimen was a small-scale version, it was designed 

to replicate the proportions of a typical cross-section of a twin steel box-girder bridge. The 

span to depth ratio of the specimen is proportioned to satisfy the traditional deflection 

criteria of the AASHTO LRFD Bridge Design Specifications. The test specimen was 

proportioned to flange and web slenderness ratios based on AASHTO criteria. The 

slenderness of the webs and bottom flange was limited so that longitudinal stiffeners were 

required only at the bottom flange near the interior support. The final cross-section details 

of the box-girder were designed as follows and are also illustrated in Figure 3-1.  

𝐷 = 20.6875 𝑖𝑛. (𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑤𝑒𝑏) 

𝑡𝑤 =
3

8
𝑖𝑛. (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑤𝑒𝑏) 

𝑏𝑡𝑓 = 6 𝑖𝑛. (𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡𝑜𝑝 𝑓𝑙𝑎𝑛𝑔𝑒) 

𝑡𝑡𝑓 =
1

2
𝑖𝑛. (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡𝑜𝑝 𝑓𝑙𝑎𝑛𝑔𝑒) 
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𝑏𝑏𝑓 = 18 𝑖𝑛. (𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑏𝑜𝑡𝑡𝑜𝑚 𝑓𝑙𝑎𝑛𝑔𝑒) 

𝑡𝑏𝑓 =
1

2
𝑖𝑛. (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑏𝑜𝑡𝑡𝑜𝑚 𝑓𝑙𝑎𝑛𝑔𝑒) 

𝑑 = 𝐷 + 𝑡𝑏𝑓 + 𝑡𝑡𝑓 = 21.6875 𝑖𝑛. ( 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑔𝑖𝑟𝑑𝑒𝑟) 

𝐷𝑡 = 𝑑 + 𝑠𝑙𝑎𝑏 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 21.6875 + 5

= 26.6875 𝑖𝑛. (𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑝𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛) 

 

Figure 3-1 Dimension of one steel box girder. 

Although AASHTO 6.11.6.2.2 requires all curved steel box girders to be designed 

as non-compact sections, straight steel box girders can be designed as a compact section. 

The depth to thickness ratio of the web was designed to be 56 and less than the limit of 150 

for webs without longitudinal stiffeners. The width of bottom flange was 18 in., which is 

less maximum of one fifth of the span length. The web was designed to be entirely in 

tension, meaning Dcp = 0 (see plastic moment calculation for verification). All of the 

compactness checks below verify that the section is compact.  

Cross-section proportion limit checks: 

𝐷

𝑡𝑤
= 56 < 150 (𝑂𝐾) 
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𝑏𝑡𝑓

2 ∗ 𝑡𝑡𝑓
= 6 < 12 (𝑂𝐾) 

𝑏𝑡𝑓 = 6 ≥
𝐷

6
 (𝑂𝐾) 

𝑎 = 29.688 𝑖𝑛.    

𝑤 = 24.875 𝑖𝑛.             

0.8 ∗ 𝑤 ≤ 𝑎 ≤ 1.2 ∗ 𝑤    (𝑂𝐾) 𝑠𝑒𝑒 Figure 3-2.  

𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑤𝑒𝑏 =
1

4.2
≤

1

4
 (𝑂𝐾) 

 

Figure 3-2 Center-to-center flange distance (Adopted from AASHTO LRFD Bridge Design 

Specifications). 

The width of the specimen was 109 in. and the distance between two box-girders, 

from center to center, was 54.5 in. Since the deck thickness couldn’t be scaled directly as 

the box-girder, the deck thickness was chosen to allow enough space for four mats of 

conventional reinforcement bars. For these reasons, the specimen deck was set at 5-in. 

depth. The deck was reinforced by #4 bars at every 6 in. in longitudinal direction for both 

top and bottom reinforcement mat. The transverse bars were also #4 and installed every 6 

in. as well. The railing system was a removable system including several railing segments, 

and each sent has a dimension of 5 in. x 8 in. x 10 ft. The rail was sized to increase elastic 

stiffness of the entire structure by 10%, which is comparable to the rail contribution for a 
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full size structure. Each rail segment was reinforced by four longitudinal bars with stir-ups 

spaced at every 10 in. The rail was connected to the deck by bolt connections (1.5” diameter 

B7 rods) at the ends of each railing segment. The final detail of the specimen cross-section 

is illustrated in Figure 3-3.  

 

Figure 3-3 Cross-section of the tested specimen. 

Each box-girder was designed to have two internal diaphragms at the supports and 

two internal cross-frames at every one-third length of the main span and one internal cross-

frame 2 ft away from the cantilever end. The internal cross-frames are denoted as X-bracing 

in Figure 3-4.  
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Figure 3-4 Internal bracing locations in each box girder. 

At every location where the internal diaphragms and internal cross-frames are 

present, one external cross-frame was installed connecting two box-girders. Five sets of 

top lateral bracings were constructed and welded to the top flanges in each box-girder. All 

locations of cross-frame, diaphragm and top lateral bracing are plotted schematically in 

Figure 3-5. All the internal and external cross-frames are connected to the box girders by 

bolt connections through stiffener plates.  

 

Figure 3-5 The top plan view of the testing specimen. 

 

3.1.1 Analysis of Composite Section 

For material properties, all steel plates are grade 50 steel and were assumed to have 

yield strength of 50 ksi (1 ksi = 1,000 lbf per square inch), and compressive strength of 

concrete was assumed to be 4.5 ksi for design purposes. The reinforcements are grade 60 
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steel and were assumed to have yield strength of 60 ksi. (The actual concrete properties 

that were determined at the time the deck was poured and when tests were performed are 

reported in Chapter 5.) The effective width of the concrete deck for the composite section 

of each girder was found to be 54.5 in., which is one-half of the width of the entire deck. 

Assuming the concrete deck and rebar to be in compression and steel girder in tension, the 

force in each element is calculated as follows: 

𝐶𝑐 = 0.85 × 𝑓𝑐′ × 𝑏𝑒𝑓𝑓 × 𝛽1 × 𝑡𝑠 =  1,042 𝑘𝑖𝑝𝑠 

𝐶𝑟𝑒𝑏𝑎𝑟_𝑡𝑜𝑝 = 𝐴𝑟𝑒𝑏𝑎𝑟_𝑡𝑜𝑝 × 𝐹𝑦𝑟𝑒𝑏𝑎𝑟
= 1.78 𝑖𝑛2 × 60 𝑘𝑠𝑖 =  107 𝑘𝑖𝑝𝑠 

𝐶𝑟𝑒𝑏𝑎𝑟_𝑏𝑜𝑡 = 𝐴𝑟𝑒𝑏𝑎𝑟_𝑏𝑜𝑡 × 𝐹𝑦𝑟𝑒𝑏𝑎𝑟
= 1.78 𝑖𝑛2 × 60 𝑘𝑠𝑖 =  107 𝑘𝑖𝑝𝑠 

𝑇𝑔𝑖𝑟𝑑𝑒𝑟 = 𝐴𝑔𝑖𝑟𝑑𝑒𝑟 × 𝐹𝑦 = 30.937 𝑖𝑛2 × 50 𝑘𝑠𝑖 =  1,547 𝑘𝑖𝑝𝑠 

Since Tgirder > Cc + Crebar_top + Crebar_bot, the plastic neutral axis (PNA) is in the steel 

girder. Now, assuming the PNA is in the top flanges, the location of PNA measured from 

the top fiber of the top flanges can be determined as following: 

𝑃𝑁𝐴 =
1

2
× (

𝑇𝑔𝑖𝑟𝑑𝑒𝑟 − 𝐶𝑐 − 𝐶𝑟𝑒𝑏𝑎𝑟𝑡𝑜𝑝
− 𝐶𝑟𝑒𝑏𝑎𝑟𝑏𝑜𝑡

 

2 × 𝐹𝑦 × 𝑏𝑡𝑓 × 𝑡𝑡𝑓
) = 0.243 𝑖𝑛. 

The nominal plastic moment capacity can be calculated by taking moments of the 

forces from the steel girder, rebar and deck about PNA. Since PNA is in the top flanges, 

this suggests that a portion of top flange above the PNA is in compression and the portion 

below the PNA is in tension. Location of neutral axis of bottom flange, webs and top 

flanges, reinforcements, and deck measured from the location of PNA are as follows: 

𝑦𝑐 = 𝑃𝑁𝐴 +
𝑡𝑠

2
= 2.743 𝑖𝑛.   

𝑦𝑟𝑒𝑏𝑎𝑟_𝑡𝑜𝑝 = 4.0 𝑖𝑛. 
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𝑦𝑟𝑒𝑏𝑎𝑟_𝑏𝑜𝑡 = 1.5 𝑖𝑛.  

𝑦𝑡𝑓_𝑐 = 0.122 𝑖𝑛.  

𝑦𝑡𝑓_𝑡 = 0.129 𝑖𝑛.   

𝑦𝑤 = 10.6 𝑖𝑛.  

𝑦𝑏𝑓 = 21.2 𝑖𝑛.   

𝑀𝑐 = 𝐶𝑐 × 𝑦𝑐 =  2858 𝑘𝑖𝑝𝑠 − 𝑖𝑛 

𝑀𝑟𝑒𝑏𝑎𝑟_𝑡𝑜𝑝 = 𝐶𝑟𝑒𝑏𝑎𝑟_𝑡𝑜𝑝 × 𝑦𝑟𝑒𝑏𝑎𝑟𝑡𝑜𝑝
=  428 𝑘𝑖𝑝𝑠 − 𝑖𝑛 

𝑀𝑟𝑒𝑏𝑎𝑟_𝑏𝑜𝑡 = 𝐶𝑟𝑒𝑏𝑎𝑟_𝑏𝑜𝑡 × 𝑦𝑟𝑒𝑏𝑎𝑟𝑏𝑜𝑡
=  160 𝑘𝑖𝑝𝑠 − 𝑖𝑛 

𝑀𝑡𝑓_𝑐 = 𝐶𝑡𝑓_𝑐 × 𝑦𝑡𝑓𝑐
=  𝑃𝑁𝐴 × 𝑏𝑡𝑓 × 2 × 𝐹𝑦 × 𝑦𝑡𝑓_𝑐 = 18 𝑘𝑖𝑝𝑠 − 𝑖𝑛  

𝑀𝑡𝑓_𝑡 = 𝐶𝑡𝑓_𝑡 × 𝑦𝑡𝑓𝑡
= (𝑡𝑡𝑓 − 𝑃𝑁𝐴) × 𝑏𝑡𝑓 × 2 × 𝐹𝑦 × 𝑦𝑡𝑓_𝑡 = 20 𝑘𝑖𝑝𝑠 − 𝑖𝑛  

𝑀𝑤 = 𝐶𝑤 × 𝑦𝑤 = 𝐴𝑤 × 𝐹𝑦 × 𝑦𝑤 = 2 × 7.97 𝑖𝑛2 × 50 𝑘𝑠𝑖 × 10.6 𝑖𝑛 = 8,448 𝑘𝑖𝑝𝑠 − 𝑖𝑛  

𝑀𝑏𝑓 = 𝐶𝑏𝑓 × 𝑦𝑏𝑓 = 𝐴𝑏𝑓 × 𝐹𝑦 × 𝑦𝑏𝑓 = 9 𝑖𝑛2 × 50 𝑘𝑠𝑖 ×  21.2 𝑖𝑛 = 9,540 𝑘𝑖𝑝𝑠 − 𝑖𝑛 

𝑀𝑝 = 𝑀𝑐 + 𝑀𝑟𝑒𝑏𝑎𝑟𝑡𝑜𝑝
+ 𝑀𝑟𝑒𝑏𝑎𝑟𝑡𝑜𝑝

+ 𝑀𝑡𝑓𝑐
+ 𝑀𝑡𝑓𝑡

+ 𝑀𝑤 + 𝑀𝑏𝑓 = 21,472 𝑘𝑖𝑝𝑠 − 𝑖𝑛 = 

1,789 𝑘𝑖𝑝𝑠 − 𝑓𝑡 

In addition, the yielding moment calculation yields My equal 1364 kips-ft.  The 

nominal capacity of the section is calculated as following: 

𝑀𝑛 = 𝑀𝑝 × (1.07 − 0.7 ×
𝐷𝑝

𝐷𝑡
) = 1789 × (1.07 − 0.7 ×

𝑡𝑠 + 𝑃𝑁𝐴

26.6875
) = 1,668 𝑘𝑖𝑝𝑠 − 𝑓𝑡 

𝑀𝑛 ≤ 1.3 ∗ 𝑀𝑦 = 1,773 𝑘𝑖𝑝𝑠 − 𝑓𝑡 (𝑂𝐾) 
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Figure 3-6 Location of plastic neutral axis. 

 

3.2 Specimen Construction 

After completing the design phase, the shop drawings for steel girders, stiffeners, 

diaphragms and cross-frames were prepared. All steel components were fabricated at 

Tampa Steel Erecting Company. The steel material used for fabrication is ASTM A709 

Grade 50. Bolts are A325 Type 1 material with 0.625 in. in diameter. The diameter for 

holes is slightly larger than that of the bolts with 0.6875-in. diameter.  All steel was blast-

cleaned to near-white condition and the steel surfaces were coated with self-curing 

inorganic zinc primer. The welding was performed in accordance with the bridge welding 

code D1.5 Specifications. All of the fillet welds were terminated within either 

0.5 ± 0.25 in. or 0.25 ± 0.125 in. from the edge of a plate, depending on the length of 

welded leg, as illustrated in Figure 3-7. 
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Figure 3-7 Welding details. 

After the fabrication was completed, two steel girders and five external cross-

frames were assembled at the shop to check for any fit-up issue. Then, they were 

disassembled and shipped to FDOT Structures Laboratory to complete the remaining 

construction works. At FDOT Structures Laboratory, the girder and cross-frames were 

reassembled and then the formworks and the reinforcements were installed as shown in 

Figure 3-8. The instrumentations were also installed. Details on the instrumentation plan 

are discussed in the next section. 

The bridge deck was casted using class II concrete mix with 28-day strength of 

4,500 psi, 3 in. slum and 0.75 in. maximum aggregate size. This is also the type of concrete 

that is used by FDOT in other construction projects. The casting process is shown in Figure 

3-9. After the concrete got hardened, the entire specimen was relocated to a final position 

and ready for testing as illustrated in Figure 3-22. 
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Figure 3-8 Complete specimen ready for casting. 

 

 

Figure 3-9 Casting the concrete deck. 

 

3.3 Instrumentation Plan 

In order to obtain useful data with the most economical setup, the strain gauges and 

potentiometers were installed differently for each section. Strains were monitored in the 



  

  38 

steel girders, the cross-frames, and the deck in order to capture responses of each 

component as well as load-transferring mechanisms.  

Sections where potentiometers and strain gauges were installed are illustrated in 

Figure 3-10. In the original plan, strains were monitored at eight sections, labeled by 

Section 1 to 8 in green. However, a decision was made to remove gauges at Sections 1 and 

7 due to the limitation of the channels in the data acquisition system and the sections were 

not renumbered. The details of instrumentation for each section are illustrated 

schematically from Figure 3-11 to Figure 3-18. Section 2, located at mid-span of the main 

span is the most critical section and was therefore treated very carefully. In Section 5, 

strains in cross-frames were also monitored. This setting of strain gauges allows the data 

to be collected in almost all of the important sections. 

The deflections were monitored at five locations, labeled in red as “North,” 

“Location 2,” “Location 5,” “South,” and “End.” At each of these sections, there were four 

potentiometers attached to the top flanges of both box-girders. The typical potentiometer 

locations are shown in Figure 3-17. However, in Section 2 at mid-span, an additional 

potentiometer was installed to measure the deflection at the center of the deck as illustrated 

in Figure 3-18. 

 
Figure 3-10 Locations of strain gauges and potentiometers along the length of the specimen. 
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Figure 3-11 Strain gauges in the Section 2. 

 

 
Figure 3-12 Strain gauges in the Section 3. 
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Figure 3-13 Strain gauges in the Section 4. 

 

 
Figure 3-14 Strain gauges in the Section 5. 
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Figure 3-15 Strain gauges in the Section 6. 

 

 
Figure 3-16 Strain gauges in the Section 8. 
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Figure 3-17 Potentiometers in Section 5. 

 

 
Figure 3-18 Potentiometers in Section 2. 

 

3.4 Test Setup  

Since this research was intended to investigate and gather information on the 

behavior of the twin steel box-girder bridges under both simple span and continuous span 
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conditions, a unique specimen configuration was devised so that both cases can be studied. 

The total length of the specimen is 41 ft comprising a 31-ft main span and a 10-ft second 

span as shown in Figure 3-19. The support, which is closer to the second span, is labeled 

as the south support. The one further away from the second span is labeled as the north 

support. The second span was configured so that it may act as a free cantilever in the non-

loaded or non-anchored state. But when it is restrained to move vertically at its free end, 

the bridge will become a continuous structure with two spans. The restraining system at 

the cantilever end is composed of a transverse stiff I-beam anchored to the strong floor 

through two steel rods as shown in Figure 3-20. Two load cells were placed between the 

deck and the I-beam. As the load cells are in contact with the I-beam, the anchoring forces 

that will prevent the cantilever end from moving upwards are recorded. The I-beam can be 

raised out of the way to remove the restraint.  

 

Figure 3-19 Longitudinal view of test specimen. 
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Figure 3-20 Setup for continuity effect. 

 

Loading system used for this experiment included a FDOT loading frame of 130-

in. width, two actuators, a loading beam (stiff I-beam) and steel reinforced elastomeric 

bearing pads as shown in Figure 3-21. One actuator has an 800-kip capacity and the other 

one has a 450-kip capacity. With this loading setup either one-point loading or two-point 

loading scenarios can be carried out. Figure 3-22 shows the complete specimen that was 

ready to be tested. 
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Figure 3-21 Schematic drawing of loading system. 

 

 

 

Figure 3-22 Specimen with complete loading setup. 
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3.5 Testing Plan 

In order to comprehend the behavior of two steel box-girder bridges in both linear 

and nonlinear range and to examine the modes of failures, a number of tests including 

elastic tests, cyclic fatigue test, and ultimate load tests were carried out on the laboratory 

small-scale specimens. The testing plan for each test is discussed in the following sections. 

3.5.1 Elastic Tests 

The goals of the elastic tests were to investigate the effects of rail, continuity, and 

loading configuration on elastic behaviors of laboratory specimen before and after damage 

was simulated in one girder, and to establish a baseline for the finite element model 

calibration.  

The specimen was tested in a total of 18 elastic tests, under three different damage 

conditions. The first set of tests was carried out on the undamaged specimen. The second 

set of tests was carried out after the bottom flange in one of the girders was fractured. The 

last set of tests was carried out with bottom flange and webs completely fractured in one 

of the girders. Each set consisted of six tests with different combinations of rail, continuity, 

and loading configuration. The testing plan for all elastic tests is summarized in Table 3-1. 

In this table, the letter “Y” stands for “Yes” and the letter “N” stands for “No”. The letter 

“S” stands for symmetrical loading configuration indicating the loads are applied to both 

girders, while the letter “U” stands for unsymmetrical loading configuration. It should be 

noted that throughout the elastic tests, the west girder (WG) remained intact.  The east 

girder (EG) was the only girder that was cut to simulate fracture and also the one to which 

the load was applied in unsymmetrical loading scenarios. 
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In all of the elastic tests, the load was applied to the specimen through 2”x9”x36” 

loading pad(s), with three slow dynamic loading ramps. Figure 3-23 shows one example 

of one loading history of one elastic test. Based on the finite element analysis and hand 

calculation results, the applied loads were selected to be 50 kips for unsymmetrical loading 

or 100 kips for symmetrical loading with 50 kips over each girder, in order to ensure the 

responses of the specimen to be in a linear range under both undamaged and damaged 

conditions.  
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Figure 3-23 Typical three-ramp loading history for the elastic tests. 

Table 3-1 Plan for Elastic and Cyclic Tests 

Test Name 
Number of 

Loaded Girder 
Rail Continuity 

Loading 

Type 
Max Load (kips) 

Undamaged Condition 

1 

Static 

2 N N S 50 each 

2 1 N N U 50 

3 1 N Y U 50 

4 2 Y N S 50 each 

5 1 Y Y U 50 

6 1 Y N U 50 

Bottom Flange Fractured Condition 

7 

Static 

2 Y N S 50 each 

8 1 Y Y U 50 

9 1 Y N U 50 

10 2 N N S 50 each 

11 1 N N U 50 

12 1 N Y U 50 

13 Cyclic 1 Y N U 

60 kips and 

almost million 

cycles 

Webs and Bottom Flange Fractured Condition 

14 

Static 

2 Y N S 50 each 

15 1 Y Y U 50 

16 1 Y N U 50 

17 2 N N S 50 each 

18 1 N N U 50 

19 1 N Y U 50 

Notation: Y is Yes; N is No; S is Symmetric; U is unsymmetrical. 

 



  

  49 

3.5.2 Cyclic Test 

As indicated in Table 3-1, the cyclic test was carried out under the damage 

condition in which EG had its entire bottom flange fractured. The purpose of this cyclic 

test was to see what would happen to the bridge under the traffic load assuming a 

fracture/damage occurred in the bottom flange without being noticed. The cyclic load 

magnitude was determined based on the AASHTO LRFD Bridge Design Specifications 

(2010). First, the fatigue category for the bridge specimen was selected based on its 

structural characteristics such as cross-frame and stiffener design details. The cyclic load 

is then defined as the load required such that the maximum stress produced on the specimen 

would be equal to the threshold stress of the selected fatigue category according to the 

AASHTO LRFD Bridge Design Specifications. The determination of the cyclic load 

required several iterative finite element analyses of the bridge.  

It should be noted that this procedure assumes the structure is designed for infinite 

life and is most efficient when it just meets this requirement (threshold stress). Therefore, 

if a fracture would occur without being noticed, the same (design) load causing the 

threshold stress would continue to be applied. This same load was then applied to the 

damaged bridge at the traffic rate equivalent to infinite life for a period of two years.  

This laboratory specimen satisfies the requirements for type C fatigue category. 

The threshold stress for type C category is 10 ksi. The load on the undamaged structure 

required to cause a maximum stress of 10 ksi is 60 kips, which was determined from finite 

element analysis. The average daily traffic truck passing the bridge equivalent to infinite 

life is 1286 trucks per day (AASHTO, 2010). For every two years, the total trucks that 

would pass the bridge will be 938667 trucks or cycles. The truck load is applied to the 
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specimen at a rate of 1 Hz, so the total estimated time to perform the cyclic test was 10.9 

days. 

3.5.3 Ultimate Load Tests 

A total of five ultimate load tests were carried out. In these ultimate load tests, the 

laboratory specimens were loaded to failure with one girder completely fractured at mid-

span. The purposes of the ultimate load tests were to investigate the inelastic behavior, 

maximum load-carrying capacities and modes of failure of a twin steel box-girder bridge 

when the bottom flange and the webs were completely fractured in one girder. All of the 

ultimate load tests are summarized in Table 3-2.  

In Tests A and D, the specimen was loaded incrementally to failure over the fracture 

location at mid-span. These test setups were to generate the worst-case loading scenarios. 

The results from these tests will provide the remaining capacities of the system and explain 

how the bridge system remains stable after a full-depth fracture of one of the girders. In 

test A, the load was applied through a 9 in. x 36 in. elastomeric pad covering the entire 

width of the damaged girder, while in Test D, the load was applied through a 10 in. square 

elastomeric pad placed at the center of the damaged girder. The difference, between Test 

A and D, will explain how much the capacity of the damaged structure will be affected by 

the distance between the loading point and top flanges. 

In Test B and C, the specimen was loaded incrementally at mid-span over the intact 

girder. Similar to Test A, the load was applied through 9 in. x 36 in. elastomeric pad 

covering the entire width of the intact girder in Test B. In Test C, the specimen was loaded 

through 10 in. x 10 in. loading pad placed at the center of the intact girder. The results from 
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Test B and C, in combination with the results of Test A and D, can be used to evaluate how 

much the intact girder and damaged girder, as components, contribute to the total load-

carrying capacity of the whole system. 

 Test E was set up with four-point loading to simulate truck footprints. Each truck 

footprint was simulated by a 10-in. square elastomeric pad. The main purpose of this test 

was to see how much load the damaged bridge system can carry and, more importantly, to 

investigate how the specimen will fail ultimately and to investigate how the failure modes 

vary as it changes from a single point load to a truck load configuration. 



  

  52 

Table 3-2 Plan for Ultimate Load Tests 

Ultimate 

Test  
Loading Configuration Type of Load 

A 

 

Load was applied 

incrementally until failure 

occurred. 

B 

 

Load was applied until the 

plateau in load-deflection 

curve was observed. Test 

was discontinued before the 

failure. 

C 

 

Load was applied until the 

failure occurred by 

punching through the slab 

D 

 

Load was applied until the 

failure occurred by 

punching through the slab 

E 

 

Load was applied until 

failure occurred. 
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Chapter 4 Laboratory Testing Results 

4.1 Elastic Tests 

Results of 18 elastic tests are split into three sections corresponding to the three 

damage levels of the specimen. Experimental results for the undamaged specimen, and the 

damaged specimen with bottom flange fractured and full-web fractured in one girder are 

presented respectively in Section 4.1.1, Section 4.1.2 and Section 4.1.3. The results 

provided in this section will focus on only the steel box-girder responses. It is important to 

note that the maximum displacements, reported here, are the average of top flange vertical 

displacements of each girder at mid-span while the maximum strains are the average of 

longitudinal strains measured in the bottom flange of each girder at mid-span. The shear 

forces in the cross-frame reported in the following sections are measured at the cross-

frame, located at Section 5, 5 ft away from the mid-span. Again, note that WG was the 

intact girder and EG was the only girder to be damaged. 

4.1.1 On Undamaged Specimen 

Six tests were carried out to examine linear elastic responses of the undamaged 

bridge specimen with different combinations of rail, continuity and loading configuration. 

Results for each elastic test are summarized in Table 4-1. 
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Table 4-1 Summary of Elastic Tests on Undamaged Specimen 

Test Characteristics 

Max 

Disp. in 

WG (in) 

Max 

Disp. in 

EG (in) 

Max Strain in 

WG 

(in/in*106) 

Max Strain 

in EG 

(in/in*106) 

Shear Force 

in Cross-

Frame (kip) 

1 NNS 0.317 0.324 460 464 0.5 

2 NNU 0.110 0.203 168 286 1.6 

3 NYU 0.094 0.179 140 257 1.6 

4 YNS 0.285 0.303 418 410 0.3 

5 YYU 0.086 0.174 137 238 1.6 

6 YNU 0.100 0.194 162 263 1.5 

As expected, for symmetrical loading scenarios as in Tests 1 and 4, both girders 

experienced almost identical behaviors as indicated by the maximum displacement and 

strain in two girders. These symmetrical loading tests can be treated as tests of only one 

half of specimen. The results from Test 1 indicated that 50 kips of load would produce 

approximately 460 με (1 με = in/in*106) longitudinal strain in the bottom flange of one 

girder. The maximum longitudinal strain in WG in Test 2 was 168 με and this suggests that 

the WG resisted 36.5% of the total applied load. For unsymmetrical loading tests, the 

maximum displacement of EG was 72.8% higher than that of WG, on average.  

Between Tests 2 and 3, the presence of continuity decreased the maximum 

displacement and strain in EG approximately by 11.8% and 10.1%, respectively. The 

railing system decreased the maximum displacement by 4.4% and the maximum strain by 

8.0% for EG as shown in Tests 2 and 6.  

Altogether, the effects of railing systems and continuity reduced the maximum 

displacement and strain in EG by 14.3% and 16.8%, respectively as illustrated in Tests 2 

and 5. These numbers were 1% and 21.8% for WG.  

Under symmetrical loading configuration, the role of cross-frames was 

insignificant. However, under unsymmetrical loading configuration, the effect of cross-

frames became clearer as the forces in the cross-frame increased triple from 0.4 kips to 1.6 
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kips, on average. The total shear forces transferred through two cross-frames were 

approximately 3.2 kips which was equivalent to 6% of the applied load (assuming two 

cross-frames at Sections 1 and 5 transferred the same amount of forces). 

4.1.2 On Damaged Specimen with Bottom Flange Fractured in One Girder 

In this series of tests, the bottom flange in the EG was fractured at mid-span as 

illustrated in Figure 4-1. Due to that fracture in bottom flange, the maximum longitudinal 

strain in EG was now measured from its webs, while maximum longitudinal strain in WG 

was still measured from its bottom flange. The same six tests that had been carried out for 

the undamaged bridge were repeated. Again, the effects of each parameter, including rail, 

continuity, and loading configuration, were investigated based on the responses of the steel 

box-girders.  

  
Figure 4-1 Saw cutting of bottom flange in east girder. 

 

The overall maximum responses in the steel box-girders are summarized in Table 

4-2. 
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Table 4-2 Summary of Elastic Tests on Bottom Flange Fractured Specimen 

Test Characteristics 

Max 

Disp. in 

WG (in) 

Max 

Disp. in 

EG (in) 

Max Strain in 

WG 

(in/in*106) 

Max Strain 

in EG 

(in/in*106) 

Shear Force 

in Cross-

Frame (kip) 

7 YNS 0.293 0.337 459 851 0.3 

8 YYU 0.089 0.180 146 506 1.7 

9 YNU 0.107 0.206 176 578 1.7 

10 NNS 0.308 0.337 449 1260 0.2 

11 NNU 0.114 0.218 180 610 1.7 

12 NYU 0.094 0.188 148 539 1.7 

 

As illustrated in Test 7 and Test 10 with symmetrical loading, EG experienced 

clearly higher displacements than WG.  For instance, for the test NNS, the difference in 

the displacement between WG and EG increased from 2.2% for the undamaged specimen 

to 9.4% for this bottom flange fractured damage condition. It was because stiffness of EG 

decreased after its bottom flange was fractured.  

Between Tests 11 and 12, the presence of continuity decreased the maximum 

displacement and strain in EG by approximately 13.8% and 11.6%, respectively. Tests 9 

and 11 indicated that the railing system decreased the displacement by 5.5% and strain by 

5.2% in EG. Comparing the results from Tests 8 and 11, the effects of railing systems and 

continuity together reduced the displacement and strain in EG by 17.4% and 17%, 

respectively. Compared with the undamaged specimen, the effects of railing system and 

continuity were comparable with respect to reduction in the maximum displacement and 

strain in EG (17.4% and 17% for the bottom flange fractured specimen vs 14.3% and 16.8% 

for the undamaged specimen).  

Similarly, the data in the WG and cross-frames were found comparable to those 

before the bottom flange fracture occurred. The maximum displacement in EG increased 

6.5% on average as the bottom flange was fractured. Only strains in EG increased 



  

  57 

significantly. It was because of high local stress intensity at the junction of the web and 

bottom flange that was produced when bottom flange fractured. Considering the worst-

loading scenario which is NNU, the effect of fracture of bottom flange in EG increased the 

maximum strain in WG by 7%. This suggested the load transferred to WG now increased 

from 36.5% to 39.1%. 

Overall, the elastic responses of bottom flange fractured and undamaged specimen 

were comparable.  

4.1.3 On Damaged Specimen with Bottom Flange and Webs Fractured in One 

Girder 

In this testing series, the damage intensity was extended by fracturing the entire 

webs of EG in addition to the existing fracture in the bottom flange as illustrated in Figure 

4-2. It is also important to note that since the web was now fully fractured, the longitudinal 

strain data in EG at mid-span were lost and not reported here.  
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Figure 4-2 East girder with bottom flange and web fractured in one girder. 

The maximum responses in the steel box-girders under the full-web fracture 

condition are presented in Table 4-3.  

Table 4-3 Summary of Elastic Tests on Full-Web Fractured Specimen 

Test Characteristics 

Max 

Disp. in 

WG (in) 

Max 

Disp. in 

EG (in) 

Max Strain in 

WG 

(in/in*106) 

Max Strain 

in EG 

(in/in*106) 

Shear Force 

in Cross-

Frame (kip) 

14 YNS 0.449 0.675 867 N/A 3.6 

15 YYU 0.197 0.446 390 N/A 5.3 

16 YNU 0.268 0.542 479 N/A 5.1 

17 NNS 0.511 0.757 891 N/A 4.0 

18 NNU 0.297 0.593 503 N/A 4.8 

19 NYU 0.212 0.472 398 N/A 5.5 

 

The results from tests with symmetrical loading indicated that the maximum 

displacements in EG were now significantly higher than that of WG. For instance, in Test 

17 (NNS), EG experienced 48.1% higher displacement than WG did while it was only 

2.2% and 9.4% for the undamaged state and the bottom flange fractured damage state, 
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respectively. Also, the displacements in both girders increased dramatically compared to 

previous damage states. The maximum displacement in WG, averaged from six elastic 

tests, increased 88% and 91% for the undamaged state and bottom flange fractured damage 

state, respectively. For EG, these numbers were 152% and 140%. 

Between Tests 18 and 19, the presence of continuity decreased the maximum 

displacement by 20.4% for EG and 28.6% for WG. Tests 18 and 16 indicated that presence 

of the railing system reduced the maximum displacement by 8.6% for EG and 9.7% for 

WG. The effects of continuity and rail together reduced the maximum displacement by 

24.8% for EG and 33.7% for WG. The effects of continuity and rail increased more 

significantly than that of two previous damage states. This suggests that as the damage 

intensity increases, the continuity and rail effects will increase. 

The maximum longitudinal strain in WG increased significantly, compared to two 

previous cases. The maximum longitudinal strain in WG was 891 με for Test 17 (NNS) 

and 503 με for Test 18 (NNU). For the undamaged specimen, these numbers were 460 με 

and 168 με for Test 1 (NNS) and Test 2 (NNU), respectively. This comparison suggested 

that the majority of the applied load was transferred to the intact girder by assuming the 50 

kips of load would produce an amount of 460 με in the bottom flange of one girder. In 

other words, the contribution of the damaged girder, after its entire webs and flange were 

fractured, was negligible. This conclusion was later verified by means of finite element 

analysis in which the stress in the damaged girder was found to be negligible.  

The forces in cross-frames also increased as compared to previous damage cases. 

The cross-frame forces increased from 1.21 kips on average on bottom flange fractured 

tests to 4.72 kips on average when the whole web and bottom flange were fractured. 
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Assuming two cross-frames in the main span carried the same amount of forces, the total 

load carried by the cross-frames would be 9.44 kips (4.72 kips x 2). It was equivalent to 

19% of the applied load.  

Overall, the specimen with complete fracture in the bottom flange and webs in EG, 

had its stiffness reduced significantly as the EG almost lost all of its flexural stiffness. As 

a result, the maximum displacement and strain increased significantly in the intact girder, 

WG. However, the beneficial effects of both continuity and rail system and cross-frames 

increased clearly.  

4.1.4 Summary of Elastic Tests 

Overall, all elastic tests were performed successfully. The test data showed that the 

bridge had completely linear-elastic responses in all three damage conditions as shown 

from Figure 4-3 to Figure 4-5. Several important observations for all elastic tests are 

summarized as follows: 

 The rail and continuity helped to increase the load-carrying capacity of the 

specimen. As the damage intensity increases, their beneficial effects also increase. 

For instance, the rail and continuity effects together reduced the displacement of 

the damaged girder by 14.3%, 17.4% and 24.8%, for the undamaged, bottom flange 

fractured and full-web fractured damage states, respectively. 

 In additional to the deck, cross-frames were found to play an important role in 

transferring the load from the damaged girder to intact girder.  Similar to the effects 

of the rail and continuity, the more damage the bridge experienced, the more 

important the cross-frames were. The estimated contribution of cross-frames were 
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5%, 5% and 19% for the undamaged, bottom flange fractured and full-web-

fractured damage states, respectively. However, it should be mentioned that the 

relatively large contribution of cross-frames found in these experiments could be 

related to the scale of the test specimen used.  

 In general, the elastic responses of the specimen, under the undamaged and bottom 

flange fractured damage states, were comparable. For instance, the maximum 

displacement of EG increased by an average of 6.5% when the bottom flange was 

fractured.  

 With the bottom flange and webs completely fractured, the flexural stiffness of the 

damaged girder was negligible. Under the same loading configuration, more load 

was transferred to the intact girder, or the strain in the intact girder increased as the 

damage intensity increases. For instance, the average maximum strain in all six 

elastic tests in the intact girder increased 5% when the bottom flange of EG was 

fractured and 138% when the entire webs of EG were fractured. This indicates that 

as the damage takes place, the load resisted by the damaged girder is transferred to 

the intact girder.  
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Figure 4-3 Results of elastic tests on undamaged specimen. 

 

 
Figure 4-4 Results of elastic tests on specimen with bottom flange fractured in east girder. 
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Figure 4-5 Results of elastic tests on specimen with full-depth fracture in east girder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results of all elastic tests are summarized in Table 4-4. 
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Table 4-4 Summary of all Elastic Tests 

Test Characteristics 

Max 

Disp. in 

WG (in) 

Max 

Disp. in 

EG (in) 

Max Strain 

in WG 

(in/in*106) 

Max Strain 

in EG 

(in/in*106) 

Force in 

Cross- Frame 

(kip) 

Undamaged (Tests 1-6) 

1 NNS 0.317 0.324 460 464 0.5 

2 NNU 0.110 0.203 168 286 1.6 

3 NYU 0.091 0.179 140 257 1.6 

4 YNS 0.285 0.303 418 410 0.3 

5 YYU 0.109 0.174 137 238 1.6 

6 YNU 0.124 0.194 162 263 1.5 

Fractured bottom flange (Tests 7-13) 

7 YNS 0.293 0.337 459 851 0.3 

8 YYU 0.089 0.180 146 506 1.7 

9 YNU 0.107 0.206 176 578 1.7 

10 NNS 0.308 0.337 449 1260 0.2 

11 NNU 0.114 0.218 180 610 1.7 

12 NYU 0.094 0.188 148 539 1.7 

13 
Cyclic Loading 

(YNU) 
----1 ----1 ----1 ----1 ----1 

Fractured web in addition to the bottom flange (Tests 14-19) 

14 YNS 0.449 0.675 867 N/A 3.6 

15 YYU 0.197 0.446 390 N/A 5.3 

16 YNU 0.268 0.542 479 N/A 5.1 

17 NNS 0.511 0.757 891 N/A 4.0 

18 NNU 0.297 0.593 503 N/A 4.8 

19 NYU 0.212 0.472 398 N/A 5.5 
1  See Section 4.2  

4.2 Cyclic Test 

It is important to note that the bridge specimen was tested under cyclic load when 

the bottom flange in the east girder was fractured. The specimen was tested with rail, no 

continuity and under unsymmetrical loading, as illustrated in Figure 4-6. The magnitude of 

cyclic load was 60 kips as explained in Section 2.4.1. The loading rate was 1 Hz. (one 

second for each loading cycle) and the estimated number of loading cycle was 938,667. 

However, after 213,101 cycles, the test was stopped. It was because the initial bottom 

flange fracture started propagating through the entire webs and reached top flanges as 

shown in Figure 4-8. Some minor cracks were observed on the deck surface at the center 
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of the bridge as illustrated in Figure 4-7.  One reason for stopping the test was to prevent 

the crack from growing and damaging the deck, which then might collapse the bridge, 

while the ultimate goal of this project was to determine the maximum load-carrying 

capacity of the bridge under static loading. The results from the ultimate load test were 

necessary to calibrate the nonlinear finite element model. The duration of this cyclic test at 

the time of stop was equivalent to 5.5 months of daily traffic. This suggests a complete 

cyclic loading test might be needed in the future research to determine if the bridge will 

collapse under the fatigue test. 

 

Figure 4-6 Schematic description of the cyclic loading test. 
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Figure 4-7 Cracks on the deck surface during cyclic test. 
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(a) (b) 

Figure 4-8 Crack in the damaged girder: (a) before and (b) after the cyclic test. 

One of the responses observed visibly was the crack propagation from the bottom 

flange to the web of the damaged girder. Figure 4-9 shows growth of the crack length in 

the damaged girder during the cyclic test. The crack length data between the 1st and 50,000th 

cycle was missing because the crack propagation began overnight and was not observed 

until the next morning. The crack length was linearly proportional to the number of cycles 

until around the 160,000 cycles when the crack began to reach the top flanges, at which 

point the rate of growth slowed. The crack grew nearly evenly in both sides of the web of 

east girder until loading cycles of 80,000th. After that, the crack grew with a slower rate in 

the inside web than the outside web due to contributions of the cross-frames and the intact 

Before After 

Only bottom flange was damaged 

Crack 
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girder to the inside web of the damaged girder. This was consistent with experimental data 

from elastic tests and FEA results, which showed the outside face of the damaged girder 

always had higher displacement and stress than the inside face.  

 

Figure 4-9 Crack growth in the damaged girder. 

As the cracks grew into the webs, the stiffness of the specimen changed. For this 

reason, all of the monitored data including the crack opening at the base, displacement, 

displacement range, and shear force show similar patterns to that of the growth of crack 

length when they are plotted versus the number of cycles.  

The setup to measure the crack base opening, or the separation between two halves 

of the fractured girder in longitudinal direction, is illustrated in Figure 4-10. The crack base 

opening was measured at both the inside and outside faces of the bottom flange of the 

fractured girder and is illustrated in Figure 4-11. During the first 25,000 cycles, the 
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difference between maximum and minimum crack opening was nearly constant and 

suggests the bottom flange fracture had not yet begun to propagate into web. Between 

50,000 and 10,000 cycles, the crack opening increased rapidly. At the last cycle, the 

maximum crack opening was around 0.19 in. for the outside web and 0.175 in. for the 

inside one.  

At the same time, the stiffness of the bridge measured at the fractured location was 

found to have decreased approximately 54% from 260 kips/in to 120 kips/in.  

 

Figure 4-10 Crack opening measuring gauge on the exterior face. 

 

Gauge measuring 
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Figure 4-11 Crack base opening vs. number of loading cycles. 

The maximum displacement and minimum displacement of the girders were 

collected for each loading cycle. Figure 4-12 shows how the maximum and minimum 

displacement of the fractured girder changed over time. The maximum displacement 

increased from 0.25 in. to 0.7 in. while the minimum displacement also increased from 

0.03 in. to 0.24 in. during the test. Figure 4-13 plots the displacement range for both girders 

(which is equal to maximum displacement minus minimum displacement in each girder) 

that shows the vertical deflection of each girder in a cycle. Both plots show similar behavior 

and trends to that of the crack length growth plot.  
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Figure 4-12 Mid-span displacement vs. number of loading cycles in the fractured girder. 

 

 

Figure 4-13 Displacement range (max – min) vs. number of loading cycles. 
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The stiffness of each girder over time is plotted in Figure 4-14. The stiffness of each 

girder is calculated by dividing the applied load by the displacement range in each cycle. 

Since the applied load for each cycle was constant at 60 kips, the stiffness curve was shown 

inversely proportional to displacement range curve. The damaged girder had a stiffness of 

260 kips/in at the beginning of the cyclic test when bottom flange fractured. The stiffness 

reduced 60%, to 105 kips/in, at the end of the test when the web was completely fractured. 

Similarly, the stiffness reduction, for the undamaged girder, was around 235 kips/in, which 

was equivalent to 52% of its initial stiffness. 

 

Figure 4-14 Stiffness of each girder during the cyclic test. 

The locations of strain gauges in each cross-frame brace are denoted as e1, e2, and 

e3 as shown in Figure 4-15a. The strain profile was assumed linear in each brace leg as 

illustrated in Figure 4-15b. The average axial strain in the angle cross-section can be 

calculated using the following equation: 
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𝑒𝑎𝑣𝑔 =  
𝑒1

4
+

𝑒2

2
+

𝑒3

4
 

With that average axial strain, the axial force in a cross-frame brace can be 

calculated by multiplying the average axial strain by the cross-section area of the brace and 

steel Young’s modulus. Then, the shear transfer force, or the vertical component of the 

axial force, can be calculated based on the cross-frame geometry. 

Figure 4-16 shows the maximum shear transfer in one cross-frame with respect to 

the number of loading cycles. The maximum shear transfer in the cross-frame was found 

to have increased from 2.5 kips at the beginning to almost 6.5 kips when the web was 

completely fractured.   

 

(a) 

 

(b) 

Figure 4-15 (a) Strain locations and (b) Strain profile in each cross-frame brace. 
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Figure 4-16 Maximum shear transfer in one cross-frame. 

In general, as the crack length grew into the webs, the stiffness of the specimen 

decreased. It led to an increase in the crack opening at the base, the girder displacements, 

the displacement range as well as the cross-frame transfer force. It is important to note that 

all of these behaviors, when plotted versus the number of loading cycles, showed a similar 

pattern to that of the growth of crack length.   

4.3 Ultimate Test A 

In the ultimate load test A, the bridge specimen was tested under a full-web fracture 

damage condition, without rail system and continuity. The load was applied through a 

displacement-controlled hydraulic ram, over the damaged girder through a 2 in. x 9 in. x 

36 in. loading pad placed at the mid-span location as illustrated in Figure 4-17.  
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Figure 4-17 Schematic description of Test A. 

4.3.1 Global Behavior 

The overall responses during Test A are illustrated in Figure 4-18. Up to 60 kips of 

loading the bridge specimen showed a linearly elastic response with an initial stiffness of 

approximately 90 kips/in. As the load increased from 80 kips to 140 kips, some cracks in 

the deck were noticed and at the same time, the stiffness of the specimen was decreasing 

visibly. Twisting of the girders was observed as well. At the load of 140 kips, the capacity 

of the bridge slightly decreased by 1 kip because one bolt in the bottom connection of the 

cross-frame near mid-span was sheared. The intact girder started showing uplift at the 

cantilever support. The specimen reached its maximum capacity at 156 kips with 2.5 in. of 

displacement.  

After reaching the maximum capacity of 156 kips, the concrete deck was crushed 

by the loading pad and the load dropped to 133 kips. The test continued and the specimen 

was still able to sustain some additional load with many ups and downs until it failed at 5.5 

in. of displacement. These ups and downs in this loading period corresponded to several 

damages observed, including: 1) the visible cracking and crushing in concrete propagating 

toward the ends of specimen, 2) the bottom of the concrete deck between the two girders 

near mid-span spalling off, 3) the uplifting at the support and 4) the tear up of the deck at 
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both ends of intact girder. As seen in Figure 4-18, during this loading period, the load 

fluctuated and reached a local maximum load of 144 kips at 4-in. displacement. It, then, 

slowly dropped down to 123 kips at 5.5-in. displacement before the test was halted. This 

sequence of failure suggests that the bridge was trying to transfer the load to the intact 

girder through an alternative load path after the primary load path had failed.  This load-

transfer mechanism is discussed further in the following section. 

 
Figure 4-18 Load vs. deflection curve of the specimen during ultimate load Test A. 

A 1 ft by 1 ft grid was marked on the concrete surface to map the damage area more 

accurately as illustrated in Figure 4-19. In general, the major damage was observed in the 

deck over an area of 5 ft long by 3 ft wide at where the load was applied. Cracking started 

along the inside top flange of the damaged girder, then it propagated toward the intact 

girder. The cracking pattern was approximated by the black lines in Figure 4-19. This 

cracking pattern indicates that the deck failed predominantly in one-way shear failure 

mode. The deck damage showed that the damage propagated toward the north support more 

First Crack 

CF Failed 

Deck Crushed 

Uplift 

CFs Failed 

Crush & Crack Propagation 
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than the south support. It could be due to the presence of the cantilever portion in the south 

end. This cantilever made the south portion of the specimen measured from the loading 

point was stiffer than the north portion of the specimen. Eventually, the deck was punched 

by the loading pad along the inside top flange of the damaged girder when the specimen 

reached its maximum capacity. The spalling of concrete in the bottom of the deck is 

illustrated in Figure 4-20. 

 
Figure 4-19 Punching in the top of the concrete surface looking to South. 
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Figure 4-20 Punching in the bottom of the deck. 

The concrete deck was also damaged at both ends of the specimen. The mechanism 

for the observed failure can be explained by considering the hypothetical situation in which 

the deck is cut longitudinally between the girders leaving two separate and independent 

structures.  The east structure is then damaged and the load point is displaced downward 

the same magnitude as produced in the actual test.  Obviously, the magnitude of load 

causing this displacement will be much less than what observed in test.  Due to the low 

flexural capacity at the damage location, the displaced shape will essentially be a 

mechanism with hinge rotation about the load point and linear segments to the supports.  It 

is important to note how the ends of the girder will now project above the supports and that 

the undamaged girder has no load applied and is therefore straight and level.  Finally, 

keeping the load point of the damaged girder at the fixed level of displacement, consider 

the forces required to re-join the two separate structures and fuse the deck back together.  

At the ends of the girder, the (hypothetical) damaged girder will be above the undamaged 

one and need to be pulled downward, which then imparts an equal and opposite upward 

force on the undamaged girder.  The effects of this transverse shear can be clearly seen in 
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Figure 4-21 where the deck above the undamaged girder appears to have been pulled 

upwards and seemingly ripped off at the ends. 

This same hypothetical situation can be used to examine the failure mechanism near 

the load point.  In this region, the (hypothetical) damaged girder will be below the 

undamaged.  Since the displacement level is being held by the loading beam, the 

undamaged girder will be pulled downward when the two separate structures are 

hypothetically re-joined. The effect of the resulting shear force can be seen in Figure 4-20. 

 
Figure 4-21 Damage at North end (left) and South end (right). 

Another important behavior observed was the uplift at supports of the intact girder. 

Displacements near the supports were monitored at location 1 (14 in. from the bearing line 

of the South support) and location 2 (17 in. from the north end of steel box girders) as 

depicted in Figure 4-22.  Figure 4-23 and Figure 4-24 plot the vertical displacements at 

these two locations. These plots show that the intact girder (or the West Girder) began to 

uplift at the south support shortly at 100 kips before the specimen reached its maximum 

capacity of 156 kips while the north support was uplifted just right after the maximum 
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capacity was reached. The final uplifts were measured as 0.48 in. near the south support 

and 0.11 in. near the north support. 

 

 
Figure 4-22 Location of potentiometers at supports. 

 

 
Figure 4-23 Displacement of the both girders near the south support. 
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Figure 4-24 Displacement of the both girders near the north support. 

 

 
(a) North support 

 
(b) South support 

Figure 4-25 Uplift at (a) north support and (b) south support. 
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4.3.2 Local Behavior 

It is important to note that responses of the reinforcements and the deck were only 

monitored at the mid-span section. All of the strain gauges at the mid-span section are 

provided again in Figure 4-26. Some of these strain gauges were damaged after the 

maximum load capacity was reached; therefore, their data will be omitted. Following are 

assumptions regarding the direction of the strain gauges and material properties of steel 

plates. 

 Sign Convention: 

Positive longitudinal strain: the member is in tension. 

Negative longitudinal strain: the member is in compression. 

Positive transverse strain: the member is in tension. 

Negative transverse strain: the member is in compression. 

* Note that the directions of measured strains that are mentioned in this report are 

with respect to the global coordinate system. 

 Material Properties: 

Yield stress for the reinforcement bars: 60 ksi. 

Yield strain for the reinforcement bars: 60 ksi / 29,000 ksi *106= 2,070 με.  

Yield stress for the steel: 50 ksi. 

Yield strain for the steel: 50 ksi / 29,000 ksi *10^6 = 172 με. 

 It is noted that gauges 2TTD1, 2TTD2 and 2TTD3 were shifted away from the mid-

span by 1 ft toward the south support to avoid contact with loading pads. 
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Figure 4-26 Strain gauges at the mid-span section. 

Figure 4-27 shows longitudinal strains in the intact girders at the mid-span. The 

intact girder (WG) had the top flanges in compression and the bottom flange in tension. 

That all of the longitudinal strains were linear and the maximum strain was approximately 

1300 με indicated that the intact girder was still in the elastic range. The longitudinal strains 

in the bottom flange of the intact girder within 5 ft distance from the mid-pan is plotted in 

Figure 4-28. The similarity in the bottom flange longitudinal strains indicated that the load 

was distributed uniformly within 5 ft distance from the mid-span. The comparison of the 

intact girder and damaged girder at Section 5 (5 ft away from the mid-span), as illustrated 

in Figure 4-29, showed that the damaged girder had its top flange in tension and its bottom 

flange in compression while the intact girder had its top flange in compression and its 

bottom flange in tension. This indicated that intact girder had concave-up deflection while 

the damaged girder had concave-down deflection.  
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Figure 4-27 Longitudinal strain at the top and bottom flanges of the intact girder at mid-span. 

 

 
Figure 4-28 Longitudinal strain at the bottom flange of the intact girder. 
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Figure 4-29 Comparison of longitudinal strains in the intact and damaged girders at Section 5. 

Responses in transverse rebars at mid-span were measured from six strain gauges 

2TTB1, 2TBB1, 2TTB2, 2TBB2, 2TTB3 and 2TBB3 (see Figure 4-26 for their locations.) 

All of the strains in the transverse rebars were positive or in tension except at gauge 2TBB3, 

located near the damaged girder as illustrated in Figure 4-30. However, gauge 2TTB2, 

which was located at the center of the cross-section, had its strain fluctuating around zero. 

This suggests that the gauge 2TTB2 was an inflection point in the deflected shape of the 

cross-section. The plot also suggests that the strains at gauges 2TTB1 and 2TTB3 were 

much higher than that of other gauges. Gauge 2TTB1 had a strain of 2600 με suggesting 

the transverse re-bar yielded at this location, which is the inside top flange of the intact 

girder. 
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Figure 4-30 Strains of the transverse rebar at mid-span. 

Responses in longitudinal top rebars from six strain gauges 2LTB1, 2LTB2, 

2LTB3, 2LTB4, 2LTB5, 2LTB6 (see Figure 4-26 for their locations) are plotted in Figure 

4-31. The strain gauge 2LTB3 data was exactly zero throughout the test suggesting this 

gauge was either broken or lost its connection. Two gauges, 2LTB1 and 2LTB2, located 

over the top of the intact girder, and gauge 2LTB4, located between two girders, had 

negative transverse strain while the other two 2LTB5 and 2LTB6 located over the top of 

the damaged girder had positive strains. This suggests the deck changed its deflected shape 

from concave up to concave down at a location somewhere between gauges 2LTB4 and 

2LTB5. 
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Figure 4-31 Longitudinal strain of rebars in longitudinal direction at mid-span. 

Figure 4-32 showed the deck experienced positive transverse strains at location of 

2TTD1, 2TTD2, and 2TBD1; and negative strain at location 2TTD3. This suggests that the 

top of deck was in compression at location 2TTD3, right on the top of the inside top flange 

of the damaged girder, while the other gauges showed the deck was in tension, which 

further suggests the inflection point of the deflected curve of the deck cross-section was 

somewhere close to the top flange of the damaged girder. This observation was consistent 

with data obtained from transverse and longitudinal reinforcement bars.  



  

  88 

 
Figure 4-32 Transverse strain at the top and bottom of deck at mid-span. 

 

4.3.3 Load-Transferring Mechanism 

Based on the collected data, a major portion of the applied load was transferred 

directly, in transverse direction, to the intact girder mainly through the deck before the 

maximum capacity of the specimen was reached. After that, the concrete deck was punched 

by the loading pad, and the applied load was redistributed through a secondary load path. 

In this second load path, the cross-frames were found to be involved more actively than 

they had before. As illustrated in Figure 4-33b, the shear transfer capacity of one cross-

frame increased and also at a faster rate. This explains why most cross-frame connections 

failed during this loading period, after the deck was punched by the loading pad. At the 

end of the test, every single external cross-frame was found to have at least one bolt 

connection broken. The locations of all broken cross-frame connections are illustrated in 

Figure 4-33a. 
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Since the deck and external cross-frames were found to be two major components 

that transferred the load from damaged girder to undamaged girder, it is interesting to 

quantify how much load was transferred through these components. It is important to note 

that there were only two external cross-frames in the main span of the specimen. Each of 

them is located 5 ft away from the mid-span. Figure 4-33b shows the amount of shear force 

transferred (vertical direction) in one external cross-frame. The shear transferred through 

this cross-frame only plotted until the maximum capacity of the specimen was obtained. 

The first shear drop was approximately 3 kips at 2.1-in. displacement with 140 kips of 

applied load, and it was due to the failure of bottom connection of the tension brace. It 

should be noted that even though the capacity of the cross-frame dropped 3 kips, the 

capacity of the specimen decreased only 1 kip as seen in Figure 4-18. The difference could 

be due to the fact that the calculated shear drop of 3 kips was based on the assumption that 

the strain profile was linear along each brace as shown in Figure 4-15b. It should be noted 

that after one connection failed, this cross-frame should had lost its load-resisting capability 

completely. However, the welded connection between two L-angle braces as shown by the 

red dot in Figure 4-33a enabled this tension brace to continue carrying more forces until 

another failure in the bottom connection of the compression brace. Therefore, after the 

failure of the first connection in the tension brace, the data in cross-frames were no more 

unreliable. 
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(a) 

 
(b) 

Figure 4-33 Shear transferred through one cross-frame in Test A. 

 

4.4 Reconstruction of Bridge Specimen 

As illustrated in Test A, recorded strains in the steel box girders indicated that these 

girders were still in a good condition. Therefore, these girders were retained so that a new 

specimen can be reconstructed by casting a new deck for additional ultimate load tests. For 

that reason, only the deck was demolished and reinforcements were removed. After 

detaching the steel box girders from the deck, a thorough inspection showed only the top 

flanges of fractured girder at fracture location experienced severe damage which had been 
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already expected, and this damage almost cut the damaged girder into halves as illustrated 

in Figure 4-34. 

 

(a) 

 

(b) 

Figure 4-34 Damage in (a) the inner top flange, (b) the outer top flange of the damaged girder. 

 

Eventually, it was decided that this damaged girder should be into two halves to 

make the reconstruction of the specimen easier. The results of FEAs showed that the effect 

of having the damaged girder cut completely into two separate pieces is negligible. 

However, misalignment of two fractured segments, as shown in Figure 4-35a, brought up 

some difficulties during the reconstruction process. In order to fix it, the bolts connecting 

the external cross-frames were loosened, and then the slop in the bolt holes were used to 

shift the girder segments into better alignment. Then the cross-frame bolts were tightened 

up again. Finally, scab plates were used to bring these two segments closer as much as 

possible. Figure 4-35b illustrates the damaged girder with the welded scab plates. Please 

note that once the deck was cast, these scab plates were removed. After aligning the 

fractured segments, the new specimen was reconstructed as it had been previously. Figure 

4-36 shows the complete specimen after the reconstruction.  
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(a) Before aligned 

 

(b) After aligned 

Figure 4-35 Alignment of two fractured segments. 

 

  

Figure 4-36 The reconstructed specimen before (left) and after casting (right). 
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4.5 Ultimate Test B 

In this test, the specimen was tested with the same loaded area as it was in Test A, 

except the loading was now moved over the intact girder as illustrated in Figure 4-37. In 

this test, the specimen was loaded until the plateau in load-deflection curve was observed 

without any failure. The purpose of this test to examine the behavior and verify the capacity 

and behavior of the intact girder. 

 
Figure 4-37 Schematic description of Test B. 

 

4.5.1 Global Behavior 

The specimen was loaded up to approximately 270 kips in which the nonlinear 

plateau of load-deflection curve was observed. This load-deflection curve, which is 

illustrated in Figure 4-38a,  shows the specimen responded linearly up to 150 kips of load 

with 0.82 in. of displacement before the system stiffness started decreasing. The initial 

stiffness of the specimen was approximately 200 kips/in. There was no significantly visible 

damage observed during this test. However, the deck showed some minor cracks around 

loading pads. The longitudinal strains measured at mid-span indicated that the intact girder 

has yielded and permanent deformation was observed after unloading. 
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Figure 4-38 shows that the specimen displaced uniformly across its cross-section 

as well as along the length of the specimen. The average displacements were 2.25 in. at 

mid-span, 1.63 in. at Section 5, and 1.71 in. at cantilever end. Both girders experienced 

downward displacements at near supports as illustrated in Figure 4-39 and this was 

consistent with the observation which no up-lift occurred during the test. Shear force in 

one cross-frame is plotted in Figure 4-40. This indicates the shear transferred from the 

undamaged girder to the damaged girder was less than 1 kip. That negligible shear force in 

cross-frame, plus the nearly identical displacement across the cross-section indicates that 

the contribution of damaged girder the load-resisting capacity of the specimen under this 

loading configuration wasn’t significant. This suggests that the capacity, obtained in this 

test, should be similar to the plastic capacity of the composite section of the undamaged 

bridge. As shown in Section 3.1.1, the plastic moment capacity of cross-section is found to 

be 1789 kips-ft. This indicates the maximum capacity of the section under a concentrated 

load at mid-span is 239 kips using the formula, P=Mn x 4/L. A similar prediction was 

achieved by FEA of single undamaged girder bridge with 245 kips of load. This hand 

calculation and finite element predictions were in good agreement with the capacity of the 

specimen obtained from this test which was 270 kips. The small difference could be 

attributed to the fact that the compressive strength of concrete was assumed to be 4.5 ksi 

for design purposes while the actual value was found to be 7.2 ksi. Another reason was 

because the load was assumed to be concentrated at one single point in the hand calculation 

while it was not in the actual test. 
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(a) 

 
(b) 

 
(c) 

Figure 4-38 Test B: Load vs. displacement curves at (a) mid-span, (b) Section 5 and (c) cantilever end. 
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(a) 

 
(b) 

Figure 4-39 Displacements at (a) north support and (b) south support. 
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Figure 4-40 Shear transferred through a cross-frame in Test B. 

 

4.5.2 Local Behavior 

The summary of longitudinal strains at the bottom flange and top flanges of the 

undamaged girder (WG) along the length of the bridge are summarized in Figure 4-41 and 

Figure 4-42. The bottom flange strain was computed by taking average of strains at gauges 

2WBF1, 2WBF2 and 2WBF3 while the average strain in top flanges was computed by 

taking an average of the strains measured at gauges 2WTF1 and 2WTF2. As expected, the 

bottom flange strain was highest at Section 2 with 7700 με and lowest at Section 5 with 

1880 με. The strain in top flanges was small at mid-span, indicating the location of the 

plastic neutral axis was somewhere in the top flanges. This location is in a good agreement 

with hand calculation of the plastic neutral axis as computed earlier in Section 3.1.1. 

A comparison of longitudinal strains of both girders at Section 5 is plotted in Figure 

4-43. Top flanges experienced -112 με and -57 με on average in the intact girder and 
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damaged girder, respectively. The average strain at the bottom flange of the intact girder 

was 1880 με, and it was 135 με for the damaged girder. This suggests that some of the 

applied load was transferred to the damaged girder, but not that significant. Because the 

cross-frame force was found to be less 1 kip of load as shown previously in Figure 4-40, if 

some load was transferred to the damaged girder, it was mainly transferred through the 

deck. 

The longitudinal strains measured at the top reinforcements at mid-span are shown 

in Figure 4-44. These gauges are located approximately 1.5 in. below the top of the deck. 

Gauges 2LTB1, 2LTB2, 2LTB3, and 2LTB4 are negative while gauges 2LTB5 and 2LTB6 

are positive. This indicates the deck would change its deflection from concave up to 

concave down somewhere between gauge 2LTB4 and 2LTB5, close to the inside top flange 

of the damaged girder. 

Figure 4-45 shows responses of top and bottom transverse reinforcements at mid-

span. Gauges 2TTB1 and 2TBB1, located over the interior top flange of undamaged girder, 

had strains of 252 με and 1590 με, respectively. Gauges 2TTB2 and 2TBB2, located at 

center of the deck, between two girders, had maximum strain at 24 με and 40 με, 

respectively. Lastly, gauges 2TTB3 and 2TBB3 are located over the interior top flange of 

damaged girder showed strain values of 16 με and -142 με. The strain data in the bottom 

transverse reinforcement changing from 1590 με to 40 με to -142 με indicates that the deck 

had changed its transverse deflection shape from concave up to concave down. This was 

consistent with the conclusion obtained from the strain data of the longitudinal 

reinforcements. A schematic drawing showing how the specimen deflected at mid-span is 

illustrated in Figure 4-46. 
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Cracking of the deck was recorded with three crack gauges at the top of the deck 

and one at the bottom face. Figure 4-47 shows that the gauge 2TTD1 experienced 

significantly higher strain than the others, which indicates that the cracking is largest at this 

location. Only gauge 2TBD1 at center bottom of the deck experienced negative value 

which mean the deck is in compression. 

Overall, the data suggest that the specimen in this test would be likely to fail in a 

flexural mode. The load-carrying capacity found in this test was in a good agreement with 

the maximum capacity of the intact girder that was computed by hand calculation and FEA. 

Again the results also indicate that the contribution of the damaged girder to global 

behavior of the system was negligible. Lastly, if the deck was assumed to crack at ε = 160 

με (fR = 600 psi with E=3,800 ksi), strain data from longitudinal and transverse 

reinforcements indicated that the deck might have been cracked at several locations at mid-

span. These minor cracks in the deck were also observed after the test. 
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Figure 4-41 Average longitudinal strains at top flanges of the intact girder. 

 

 
Figure 4-42 Longitudinal strains at the bottom flange of the intact girder. 
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Figure 4-43 Comparison of longitudinal strains in the intact and damaged girders at Section 5. 

 

 
Figure 4-44 Longitudinal strain in rebars at mid-span. 
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Figure 4-45 Transverse strain in rebars at mid-span. 

 

 
Figure 4-46 Schematic deflection shape of the deck. 
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Figure 4-47 Transverse strain of the deck near mid-span. 

 

4.6 Ultimate Test C 

In ultimate Test C, the load was applied through a 10-in.-square loading pad, over 

the intact girder at mid-span location. The purpose of this test was to see the effect of 

concentrated loading configuration on the failure mode of the bridge. The schematic 

illustration of the test is shown in Figure 4-48. For this test, the load was applied until the 

specimen failed completely. It is important to note that because this test was continued 

after Test B without any repair, the results presented, herein, will include any permanent 

deformation inherited from the previous test.  
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Figure 4-48 Schematic description of Test C. 

 

4.6.1 Global Behavior 

In this test, the specimen carried up to 180 kips of load before the deck was 

suddenly punched through by the loading pad. Load versus displacement curves of the 

damaged girder along its length are plotted in Figure 4-51. The specimen showed 

approximately 0.7 in. of permanent deformations at mid-span. The stiffness of the 

specimen was approximately 196 kips/in. It was similar to the data observed in Test B 

which was showing a stiffness of 200 kips/in. Similar to Test B, both damaged and 

undamaged girders experienced similar displacements along the length. The average 

displacements at mid span, Section 5 and cantilever end were approximately 1 in., 0.78 in. 

and 0.75 in., respectively. During the test, the specimen responded nearly linearly then 

failed abruptly without any warning. The deck was punched through by the loading pad as 

illustrated in Figure 4-49. Unlike ultimate Test A, no girder uplift was observed during the 

test and it is also illustrated in Figure 4-52 where both girders experienced downward 

displacements at the supports. The shear transferred through one of the external cross-

frames is plotted in Figure 4-50. The shear force in the monitored cross-frame under this 
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loading configuration was very small, with less than 2 kips before the deck was punched 

through. 

 
Figure 4-49 Punching damage in test C. 

 

 
Figure 4-50 Shear transferred through a cross-frame in test C. 
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(a) 

 
(b) 

 
(c) 

Figure 4-51 Test C: Load vs. displacement curves at (a) mid-span, (b) Section 5 and (c) cantilever 

end. 
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(a) 

 
(b) 

Figure 4-52 Displacements at (a) north support and (b) south support. 

 

4.6.2 Local Behavior 

It is important to note that all strains, plotted in this test and following tests, will be 

offset by its initial value so that the data will begin from zero. This means that any 

permanent deformation inherited from previous test will not be discussed here. This will 
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allow a better comparison between experimental data and finite element analysis results, 

at a later time.  

The comparison of strains in bottom flange and top flanges of the intact girder along 

the length is illustrated in Figure 4-53 and Figure 4-54, respectively. That the intact girder 

experienced maximum strain of 1740 με indicated the bottom flange of intact girder just 

yielded. The strains in the top flanges were small and negative (compression), indicating 

that the neutral axis should be somewhere at the top flange. Figure 4-54 suggests that the 

only location that experienced a tension yielding was the bottom flange of the intact girder 

at the mid-span. This suggests that the moment produced in this test at mid-span should be 

close to the yielding capacity of the intact girder. The moment produced, in the intact girder 

by 180 kips of load, can be approximated by the using formula Mn=P x L/4, assuming the 

participation of the damaged girder was negligible. This formula yields an estimated 

moment of 1350 kips-ft while the yield moment capacity computed by design calculation 

is 1366 kips-ft.  

At Section 5, the bottom flanges were in tension while the top flanges were in 

compression for both girders. The intact girder had longitudinal strain in the bottom flange 

significantly higher than that of the damaged girder, as illustrated in Figure 4-55. These 

data are consistent with earlier findings which stated the contribution of the damaged girder 

to the system’s capacity was very minimal.  

Figure 4-56 plots strains in longitudinal rebars at mid-span. The maximum positive 

strain occurred at gauge 2LTB6 with 560 με while the maximum negative one was -840 

με. All the longitudinal rebar gauges were in compression, except gauges 2LTB5 and 

2LTB6. These observations were similar to what was observed in Test B.  
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Figure 4-57 plots strain recorded at both top and bottom transverse rebars. 

Changing in the strain from positive at gauge 2TBB1 to negative at gauge 2TBB2 

suggested that the moment, in longitudinal direction, had changed from positive to 

negative. This indicates that the deck changes its transverse deflection shape from concave 

up to concave down. Therefore, the location of inflection point at mid-span should be 

located somewhere between 2TBB1 and 2TBB2. Comparing with the data obtained from 

Test B, this suggests that the point of inflection at mid-span section was shifted more 

toward to the intact girder when the loading area was decreased.  

Figure 4-58 illustrates transverse strain on the deck surface. The location, closest 

to the loading point, has experienced the largest crack, as expected. The strains at locations 

2TTD2 and 2TTD3 are very small. The fact that gauge 2TBD1 attached to the bottom of 

the deck surface showed a negative value suggests the deck was in compression at this 

location. 

Overall, the recorded data were very similar to those obtained in Test B up to 180 

kips of load. The data indicated that the load was mainly resisted by the intact girder. No 

girder uplift was observed, and cross-frame forces were negligible. However, this test had 

punching shear as a failure mode while Test B was likely to fail in flexural mode. The 

reason that this test failed much faster could be attributed to the smaller size of the loading 

area. In this test, the specimen was loaded in a more concentrated manner than it was in 

Test B. 
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Figure 4-53 Average longitudinal strains at top flanges of the intact girder. 

 

 
Figure 4-54 Longitudinal strains at the bottom flange of the intact girder. 
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Figure 4-55 Comparison of longitudinal strains in the intact and damaged girders at Section 5. 

 

 
Figure 4-56 Longitudinal strain in rebars at mid-span. 
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Figure 4-57 Transverse strain in rebars at mid-span. 

 

 
Figure 4-58 Transverse strain on the deck near mid-span. 

 

4.7 Ultimate Test D 

In this ultimate Test D, the load was applied through a 10-in.-square loading pad 

which was the same as in Test C, but over center of damaged girder at mid-span location. 
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The results of this test, in additional to that of previous ultimate tests, will provide a 

comprehensive comparison that could explain the effects of damaged girder and loading 

configurations on the behaviors of the specimen. The schematic drawing of loading 

configuration in Test D is shown in Figure 4-59. The specimen was loaded until failure. 

Since this test was continued on the same specimen without any repair, the results presented 

in this section will include any permanent deformation inherited from both Tests B and C.  

 

 

Figure 4-59 Schematic description of Test D. 

 

4.7.1 Global Behavior 

In this test, the specimen carried up to 83 kips of load before the deck was punched 

through by the loading pad. The applied load versus the displacement curves of the 

damaged girder along its length are plotted in Figure 4-60. The specimen showed linearly 

elastic response up to 60 kips. Approximately 0.7 in. of permanent deformations at mid-

span was observed as a results of previous tests. The initial stiffness of bridge under this 

loading condition was 87 kips/in and was similar to the initial stiffness obtained in Test A. 

However, comparing with Test B and C, the initial stiffness of the specimen was reduced 

an average of 55%. There was a 2-kip drop in capacity after reaching 72 kips of load due 

to cracks in the concrete deck. After that the specimen continued to carry up to 83 kips 
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before it failed abruptly by punching shear. Figure 4-61 illustrates that the punching 

damage was confined exactly to the area of the loading pad and it was similar to the failure 

mode obtained in Test C. 

In contrast to Test B and C but similar to Test A, Figure 4-60b shows that the 

damaged girder experienced a significantly higher displacement than the intact girder. The 

displacement data at different sections suggests that the further away from mid-span, the 

smaller displacement difference two girders experienced as illustrated in Figure 4-60b and 

c. At the supports and the cantilever end, both girders experienced very similar 

displacements. Figure 4-62 shows that both girders displaced downward during the entire 

test. This suggests that no uplift occurred at the supports. 

The shear transferred through one external cross-frame was less than 2 kips and is 

illustrated in Figure 4-63. Assuming the shear force in the other cross-frame was the same, 

the total shear force carried by all of the external cross-frames, in the main span, would be 

less than 4 kips. This indicates that applied load was mainly resisted and transferred to the 

intact girder through the deck. 
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(a) 

 
(b) 

 
(c) 

Figure 4-60 Test D: Load vs. displacement curves at (a) mid-span, (b) Section 5 and (c) cantilever 

end. 
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Figure 4-61 Punching damage in Test D. 

 



  

  117 

 
(a) 

 
(b) 

Figure 4-62 Displacements at (a) north support and (b) south support. 
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Figure 4-63 Shear transferred through a cross-frame in Test D. 

 

4.7.2 Local Behavior 

Due to the fact that the deck failed much earlier in this test than it did in other tests, 

the maximum strain, obtained was also smaller in a similar proportion. The average 

longitudinal strain in the top flanges of the intact girder is shown in Figure 4-64. The data 

for the bottom flange of the intact girder along the length of the bridge are illustrated in 

Figure 4-65. The longitudinal strains, in the bottom flange, were comparable from Section 

2 to Section 5. This suggests the load that was transferred to the intact girder was distributed 

quite uniformly between these sections (Note that Section 2 is mid-span section and Section 

5 is 5 ft away from mid-span).   

Similar to Test A, the strains, obtained at Section 5, indicated that the damaged 

girder had the bottom flange in compression and the top flange in tension. A comparison 

between the intact and damaged girders is illustrated in Figure 4-66. For the intact girder, 

average strain was -25 με and 760 με for the top flange and the bottom flange, respectively. 
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For the damaged girder, it was 70 με and -280 με for the top flange and the bottom flange, 

respectively. 

Among six gauges installed to measure strain in the top longitudinal 

reinforcements, two gauges were damaged which were 2LTB1 and 2LTB2. Only gauges 

2LTB5 and 2LTB6 were in tension while others were in compression. This indicates the 

deck would change its deflection from concave up to concave down somewhere between 

gauge 2LTB4 and 2LTB5. The maximum strain was 1300 με obtained at gauge 2LTB6 

over the outside top flange of the damaged girder. This indicates the top layer of 

longitudinal rebar have not yielded yet. Strains in top and bottom transverse rebars are 

plotted in Figure 4-68, indicating some of the transverse rebars yielded.  

Figure 4-69 shows the transverse strains recorded on the deck surface. Gauges 

2TBD1 and 2TTD3 experienced negative strains while gauges 2TTD1 and 2TTD2 had 

positive strains which mean the deck were in tension at these locations. Since gauges 

2TTD2 and 2TTD3 are next to each other and had opposite sign of change in strain, this 

suggests that the point of inflection was somewhere between these two gauges. Combining 

this finding and the findings based on the longitudinal rebars, the point of inflection was 

approximately near the inside top flange of the damaged girder.  

In general, the specimen showed similar behavior to what observed, in Test A, up 

to 83 kips of load. However, two different failure modes were observed. In this test, the 

load area was reduced and the specimen failed predominantly in punching shear (or two-

way shear failure) without any warning while the failure was likely a combination of both 

one-way and two-way shear failure in Test A. The applied load was found to be transferred 

mainly through the deck. The fact that the deck was punched through faster in this test (83 
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kips) than it was in Test C (180 kips) could be attributed to the effect of the girders on 

supporting the deck, especially where the load was applied. 

 
Figure 4-64 Average longitudinal strains at top flanges of the intact girder. 

 

 
Figure 4-65 Longitudinal strains in bottom flange of the intact girder at Sections 2, 3, 4, and 5. 
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Figure 4-66 Comparison of longitudinal strains in the intact and damaged girders at Section 5. 

 

 
Figure 4-67 Longitudinal strain in rebars at mid-span. 
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Figure 4-68 Transverse strain in rebars at mid-span. 

 

 
Figure 4-69 Transverse strain on the deck near mid-span. 
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4.8 Damage Repair 

After completing Tests C and D, a decision was made to repair damage due to 

punching in the deck before carrying out one last ultimate test in which the specimen was 

loaded under a truck footprint. In order to repair these damages, first of all, spalling 

concrete fragments were removed around punched square holes. Then tapcons were drilled 

into the concrete to act as shear studs. After that, an attempt was made to get a saturated 

surface dry (SSD) condition in the holes. The main material used for the repair was 

MasterEmaco T302, a two-component polymer-modified cement-based repair mortar with 

an integral corrosion inhibitor. The expected compressive strength for this composition is 

6,000 psi. Once the mortar mix was thoroughly mixed, the moistened concrete fragments 

were added in, since no pea gravel was available on hand at that time. Then, the mortar 

mix was poured into the holes and then vibrated in order to get the best possible penetration. 

Once the repair patch was troweled, moist cure bags were placed over the repair areas. 

Some pictures taken during the repair are shown in Figure 4-70. 
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Figure 4-70 Repair of punching shear damage from Tests C and D. 

 

4.9 Ultimate Test E 

In this test, the load was applied through four loading pads in order to simulate the 

truck footprints. The loading pads were the same as in previous tests with a dimension of 

10 in. x 10 in. The distance between north wheels and south wheels was 72 in., while the 

distance between west wheels and east wheels was 27 in. from center to center. The west 

wheels were placed at the center of cross-section while the east wheels were at the center 

of damaged girder. The schematic description of Test E loading set up is shown in Figure 
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4-71. The purpose of this test was to investigate whether the same failure mode of punching 

shear will be obtained, under truck-load configuration. 

 

(a) 

 

(b) 

Figure 4-71 (a) Test setup for Test E and (b) schematic locations of loading foot prints. 
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4.9.1 Global Behavior 

In this test, the specimen carried up to 235 kips of load before it failed abruptly as 

shown in Figure 4-73a. It should be noted that this is the total load distributed to all four 

loading points and the deflection is measured from the mid-span location, not under the 

loading points. The initial stiffness of bridge under this loading condition was 

approximately 103 kips/in which was similar to its initial stiffness under Tests A and D 

where the load was applied toward to the damaged girder. The intact girder responded 

almost linearly in the entire test. The damaged girder responded linearly up to 150 kips 

when the first cracks were noticed especially along the west loading points. As the load 

continued to increase, the initial cracks formed around the south-west loading point and 

north-west loading point propagated toward each other in the longitudinal direction as well 

as toward the intact girder in the transverse direction as shown in Figure 4-72a-c. As the 

load increased, these longitudinal cracks finally met each other and penetrated further into 

the deck creating a heavy crushing line on the deck at its centerline where the west wheels 

were placed. Figure 4-72d also shows there was a significant damage occurred along the 

inside top flange of the intact girder. It was due to the fact that the applied load was 

distributed to the intact girder and created a significant amount of shear force at the section 

along the inside top flange of the intact girder. Figure 4-74 illustrated that the concrete deck 

at the ends was also cracked and almost ripped off, similar to what was observed in Test 

A. The reasons this happened was explained previously in Test A. By assuming the 

participation of the damaged girder in resisting the applied load is negligible, this test will 

resemble to the case where the slab is linearly supported by the undamaged box girder and 

subjected to multiple concentrated loads over the overhang region of the slab. Overall, the 
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crack and damage pattern suggested that the specimen failed predominantly in one-way 

shear failure.  

The displacements at Section 5 and at cantilever end are plotted in Figure 4-73b-c. 

The displacements measured at the cantilever end were about the same for both girders up 

to 150 kips of load. This suggests that the shear cracks, illustrated in Figure 4-74, might 

begin at this point of time causing the differential displacement between two girders. The 

displacements monitored near the supports increased during the entire test as illustrated in 

Figure 4-75. This indicates no uplift occurred in this test. Shear force captured in the cross-

frame at Section 5 was only 7 kips as shown in Figure 4-76. This indicates that the 

contribution of cross-frame under this loading configuration was also small and the applied 

load was transferred to the intact girder mainly through the deck. The reason that the 

specimen experienced a different failure mode in this test than in previous tests and the 

load was transferred to the intact girder mainly through deck is attributed to the loading 

configuration that was used in the test. In this test, the specimen was loaded with four 

points, instead of one, and the loads were placed much closer to the intact girder so that it 

facilitated transferring the load to the intact girder in both longitudinal and transverse 

directions. 
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(a) 
 

(b) 

 
(c) 

 
(d)  

Figure 4-72 Damage in Test E. 
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(a) 

 
(b) 

 
(c) 

Figure 4-73 Test E: Load vs displacement curves at (a) mid-span, (b) Section 5 and (c) cantilever 

end. 
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(a) 

 

 
(b) 

Figure 4-74 Shear damage at ends in Test E. 
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(a) 

 
(b) 

Figure 4-75 Displacements at (a) north support and (b) south support. 
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Figure 4-76 Shear transferred through a cross-frame in Test E. 

 

4.9.2 Local Behavior 

The top flange longitudinal strains of the intact girder are plotted in Figure 4-77. 

These were average strains of both top flanges. The average longitudinal strains in the top 

flanges were -240 με, -270 με, -250 με and -107 με respectively for Sections 2, 3, 4, 5. 

Longitudinal strains, obtained in the bottom flange were also averaged and are illustrated 

in Figure 4-78. They were 1717 με, 1740 με, 1683 με and 1846 με for Sections 2, 3, 4, and 

5, respectively. These longitudinal strains in the top flanges and bottom flange at Sections 

2, 3, 4 and 5 indicated the load was distributed more uniformly than it was in other tests 

with single concentrated load. These strains also indicate the bottom flange just yielded at 

these sections. At Section 5, the bottom flange experienced slightly larger strain than other 

sections. It could be due to the fact that, the loading pads were positioned closer to that 

section. The data from the intact girder and damaged girder is compared in Figure 4-79. 
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The bottom flange of the damaged girder was in compression while it was in tension for 

the intact girder. 

The longitudinal strains in the rebars are shown in Figure 4-80. Three gauges were 

damaged as results of previous tests. All gauges in the transverse rebars were damaged; 

therefore, not reported here. The crack gauges on the top and bottom of the deck also had 

similar trends as they was observed in Tests A and D. Gauge 2TTD1 had significantly high 

tensile strain, indicating the major crack occurred over the inside top flange of the intact 

girder. Gauges 2TTD2 and 2TBD1 were very small. This indicates the point of inflection 

was at center of the bridge cross-section. While the center of gravity of the load was right 

at the center of the damaged girder in Test A and D, in this test with truck-load 

configuration, the center of gravity of the load was shifted closer to the intact girder. This 

was the reason why the point of inflection was also shifted toward to the intact girder. 

 
Figure 4-77 Average longitudinal strains at top flanges of the intact girder. 
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Figure 4-78 Longitudinal strains at the bottom flange of the intact girder. 

 

 
Figure 4-79 Comparison of longitudinal strains in the intact and damaged girders at Section 5. 
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Figure 4-80 Longitudinal strain of rebars at mid-span. 

 

 
Figure 4-81 Transverse strain on the deck near mid-span. 
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Chapter 5 Finite Element Modeling — Procedures and Verification 

ANSYS, a finite element modeling software package, was utilized in this research 

to predict and capture the behavior of the bridge specimen that couldn’t be captured in the 

laboratory testing. Material nonlinearities were taken into account when modeling both 

steel and concrete behavior. The steel materials were assumed to have multi-linear isotropic 

hardening responses. The concrete was also modeled as a multi-linear isotropic hardening 

material but with cracking and crushing capabilities enabled. The cracking and crushing 

characteristics of concrete are usually neglected or simplified in other research because 

they generally increase the analysis time significantly and cause convergence issues. The 

contact areas between the steel girder or the deck and pads were also taken into 

consideration in modeling. The contacts between girder bottom flange and supporting 

bearing pads were modeled to capture any uplift incident while the contact between loading 

pads and concrete deck was also modeled to simulate any slippage occurrence. The details 

of the numerical model are described in the following sections. 

5.1 FEM of Bridge Specimen 

The steel box-girder bridge was modeled to represent the test specimen as 

realistically as possible. The steel plate girder was modeled using 4-node shell element, 

SHELL181 with six degrees of freedom at each node. This shell element is well suited for 

linear, larger rotation and large strain nonlinear application and will therefore reduce non-

convergence issue. For the same reasons, the stiffeners and the interior diaphragms were 

also modeled by SHELL181 elements. However, the interior and exterior cross-frames and 

lateral bracings were modeled by using 2-node beam elements, BEAM188 with six degrees 
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of freedom at each node. BEAM188 element is based on Timoshenko beam theory with 

shear deformation effects included. This element is suitable for analyzing slender structures 

such as cross-frames and bracings. The concrete deck and rail were modeled using 8-node 

solid elements, SOLID65 with three translational degrees of freedom at each node. This 

element is typically used for three-dimensional modeling of solids with or without 

reinforcing bars. Specially, this particular element has additional cracking and crushing 

capabilities making it a perfect element for concrete modeling. Figure 5-1 illustrates the 

complete model of the bridge in ANSYS. 

 

Figure 5-1 Finite element bridge model. 

 

5.2 Fracture Damage and Connection Modeling 

Basically, there are two approaches to simulate fracture/crack condition in the girder. 

The first and the simplest approach is removing or deleting the selected elements at 

fractured location. The second approach is separating the coincident nodes in the bottom 
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flange and webs, at fracture location before merging all other coincident nodes. Although 

both approaches provided similar results in general, the later one was eventually chosen 

because it was the best representation of how the fracture was induced in the experiment.  

The process to simulate the fractured condition is described as illustrated in Figure 

5-2a-d. Note that two nodes plotted next to each other are coincident nodes with the same 

location. First, node at fractured location is selected as shown by red dot in Figure 5-2a. 

The selected node is then separated from its companion node by shifting to the right a small 

distance as illustrated in Figure 5-2b. Once separated, all other coincident nodes are merged 

together as shown in Figure 5-2c. In the last step, the separated node is brought back to the 

original location as shown in Figure 5-2d. The final simulation of full-web fracture 

condition is illustrated in Figure 5-3. It should be noted that two fractured segments still 

are connected together by sharing the same nodes at the top flanges.  

 

Figure 5-2 Process to simulate a fracture condition. 
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Figure 5-3 Finite element model with full-web fracture condition. 

 

Since the subject of this study only focused on the inelastic behavior of the twin 

steel box-girder bridge under the worst-damage condition, which is full-web fracture 

condition, the need to simulate the crack propagation was eliminated.  

5.3 Steel Behavior Modeling 

The inelastic behaviors of steel plates, steel brace members, and steel reinforcement 

were modeled as a multi-linear inelastic model with isotropic hardening (Dassault 

Systemes, 2007).  Von Mises plasticity was incorporated, which means the material was 

assumed to yield when the equivalent stress exceeded the von Mises yield criterion, and 

the perfectly plastic behavior was assumed when the stress exceeded yield stress. This 
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research used available data rather than testing to verify the steel material properties and 

behavior. The steel plates and bracing members used to construct this small-scaled 

specimen were A709 Grade 50 steel while the steel reinforcement bars were A706 Grade 

60 reinforcement. The stress-strain curves of the steel plates and rebars shown in Figure 

5-4 are approximations of typical stress-strain curves of A709 Grade 50 steel and A706 

Grade 60 steel reinforcements under uniaxial tension load.  

 
Figure 5-4 Stress-strain behavior of steel girder and rebars. 

All the bolts that were used for connections in external and internal cross-frames 

are A325 Type 1 steel with 5/8-in. diameter. These bolts are supposed to have a minimum 

yield strength of 92 ksi and a minimum tensile strength of 120 ksi according to ASTM 

A325-14. To simplify the model, these bolt connections were modeled assuming full 

connections. This assumption was reasonable as the failure modes observed in the 

laboratory tests indicated that the failure of cross-frame connections did not significantly 

affect the capacity of the specimen. 
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5.4 Concrete Material Properties 

FDOT uses Class II concrete mix with 28-day strength of 4,500 psi, 3-in. slump 

and ¾-in. maximum aggregate size. This is also the concrete that was used for the deck of 

bridge in this project. The concrete cylinder strengths were tested for the first specimen as 

well as the reconstructed specimen. The results of concrete compressive strengths for the 

first specimen are summarized in Table 5-1. The average of all concrete cylinder tests was 

7,829 psi, and this is the final value used in respective simulated finite element models. 

Table 5-1 Concrete Cylinder Strengths for First Specimen 

The reconstructed specimen used the same concrete mix as mentioned above. The 

concrete cylinder strengths at test day are summarized below in Table 5-2. Please note that 

in the first four cylinder tests, the average diameter and length of the cylinders were 

assumed to be 6” and 12” respectively, because the measurements were not taken that day. 

Specimen 

ID 

Date 

Poured 

Specimen 

Age 

(days) 

Avg. 

Diameter 

(in) 

Avg. 

Length 

(in) 

Weight 

(lb) 

Ultimate 

Load 

(lb) 

Strength 

(psi) 

C1-1 7/29/13 120 515/16 117/8 27.44 218560 7893 

C1-2 7/29/13 120 515/16 117/8 27.50 203850 7361 

C1-3 7/29/13 120 515/16 117/8 27.32 216480 7818 

C1-4 7/29/13 120 515/16 1113/16 27.32 221220 7989 

C1-5 7/29/13 150 515/16 115/8 26.74 226110 7997 

C1-6 7/29/13 150 515/16 1111/16 26.96 217050 7677 

C1-7 7/29/13 150 515/16 119/16 26.92 228090 8067 

Average 7829 
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The average concrete compressive strength for the reconstructed specimen was 

approximately 7,135 psi.  

Table 5-2 Concrete Cylinder Strengths for Reconstructed Specimen 

Specimen 

ID 

Date 

Poured 

Specimen 

Age 

(days) 

Avg. 

Diameter 

(in) 

Avg. 

Length 

(in) 

Weight 

(lb) 

Ultimate 

Load 

(lb) 

Strength 

(psi) 

C2-1 12/22/14 49 6 12 28.56 207530 7340 

C2-2 12/22/14 49 6 12 28.54 199120 7043 

C2-3 12/22/14 49 6 12 28.58 201270 7118 

C2-4 12/22/14 49 6 12 28.54 199220 7046 

C2-5 12/22/14 52 515/16 115/8 27.04 197780 7143 

C2-6 12/22/14 52 57/8 1111/16 27.26 193030 7121 

Average 7135 

A tensile splitting test were also performed on two concrete cylinders. The cylinders 

were loaded at a rate of 106 psi/min and the results are shown below in Table 5-3. The 

average tensile strength of concrete was found to be 545 psi. Although this tensile strength 

might be slightly different for the first specimen, this value was used for all finite element 

models. 
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Table 5-3 Concrete Tensile Strengths for Reconstructed Specimen 

Specimen 

ID 

Date 

Poured 

Specimen 

Age 

(days) 

Avg. 

Diameter 

(in) 

Avg. 

Length 

(in) 

Weight 

(lb) 

Ultimate 

Load 

(lb) 

Strength 

(psi) 

T2-1 12/22/14 49 515/16 1115/16 27.04 58885 529 

T2-2 12/22/14 49 515/16 1115/16 27.08 62340 560 

Average 545 

In this study, concrete was modeled using a multi-linear isotropic hardening 

material. Concrete compressive behavior was constructed using EQ 5-1 as suggested by 

Hognestad (1951). With the ultimate strain (𝜀0=0.003) and concrete compressive strength 

that was found earlier from concrete cylinder tests, the stress-strain curve of concrete under 

uniaxial compressive force is graphically illustrated in Figure 5-5.  On the tension side of 

the stress-strain curve, the concrete is assumed to have the same initial stiffness as it has 

initially for the compression strength under uniaxial force as mentioned in finite element 

software package such as ANSYS or ABAQUS.  

𝑓𝑐 = 𝑓𝑐
′ ∗ (2 ∗

𝜀

𝜀0
− (

𝜀

𝜀0
)2) 

 

EQ 5-1 

where  𝑓𝑐 = concrete compressive stress at given strain (ksi) 

  𝑓𝑐
′ = concrete compressive strength (ksi) 

  𝜀0 = ultimate strain (in/in) 

  𝜀 = strain (in/in)   
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Figure 5-5 Modeling of stress-strain curve of concrete in compression. 

 

5.5 Concrete and Reinforcement Behavior Modeling 

Concrete was modeled in ANSYS by SOLID65, a three dimensional eight-node 

isotropic solid element as shown in Figure 5-6. The SOLID65 element is capable of plastic 

deformation, creep, cracking in three orthogonal directions, and crushing. SOLID65 has 

one solid element and up to three rebar materials. Rebar specifications are input as real 

constants, including material properties, volume ratio with respect to the solid element 

volume, and the orientations as denoted by θ and Ф in Figure 5-6. The material properties 

of the steel reinforcement bars are discussed in the section above. The steel bars are capable 

of tension, compression but no shear. The reinforcement bars are modeled to be “smeared” 

throughout the elements. Figure 5-7 shows the smeared steel reinforcement inside the 

SOLID65 elements. In this specimen, the concrete is reinforced in both longitudinal and 

transverse directions. 
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Figure 5-6 SOLID65 concrete element in ANSYS. 

 

 
Figure 5-7 Smeared reinforcement bars. 

Concrete material data are input through nine constants, which are summarized in 

Table 5-4, for SOLID65 elements. The first two constants are shear transfer coefficients 

for open and closed cracks. These shear transfer coefficients can vary from zero to one. 
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Zero represents a smooth crack with no shear transfer and one represents a rough crack 

with full shear transfer. Previous studies have shown that if the shear transfer coefficient 

for an open crack is below 0.2 (Kachlakev et al., 2001), the model might face convergence 

issues. In this study, only the first four constants are input while the last five constants are 

left at their default values. In this study, the shear transfer coefficients are assumed to be 

0.35 for an open crack and 1.0 for a closed crack. The uniaxial tensile cracking stress limit, 

which corresponds to the constant number 3, is assumed to be 0.55 ksi based on the results 

of cylinder splitting tests. The uniaxial crushing stress limit is assumed to be the same with 

the average concrete cylinder compressive strength that were found from concrete cylinder 

tests. 

The Willam and Warnke (1975) yield criterion was used to define a failure surface 

of concrete material. The biaxial and triaxial failure surfaces of concrete material are 

illustrated in Figure 5-8. In this model, the concrete element is defined as cracked when a 

principal stress exceeds the ultimate tensile strength. The cracking plane is perpendicular 

to the direction of principal stress which tensile stress exceeded. The crack can occur in all 

three principal directions. If the material at an integration point fails in uniaxial, biaxial, or 

tri-axial compression, the material is assumed to crush at that point. This means the 

concrete is assumed to be crushed when one or all principal stresses lie outside the failure 

surface. When crushing occurs, strength of concrete is assumed to degrade to an extent 

such that the contribution to the stiffness of an element at the integration point in question 

can be ignored. 
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Table 5-4 Input Parameters for Properties of Concrete Materials 

Constant  Meaning  

1  Shear transfer coefficients for an open crack.  

2  Shear transfer coefficients for a closed crack.  

3  Uniaxial tensile cracking stress.  

4  Uniaxial crushing stress (positive).  

5  Biaxial crushing stress (positive).  

6  Ambient hydrostatic stress state for use with constants 7 and 8.  

7  Biaxial crushing stress (positive) under the ambient hydrostatic stress state 

(constant 6).  

8  Uniaxial crushing stress (positive) under the ambient hydrostatic stress 

state (constant 6).  

9  Stiffness multiplier for cracked tensile condition, used if KEYOPT(7) = 1 

(defaults to 0.6).  
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(a) 

 
 

(b) 

Figure 5-8 Failure surfaces of concrete under (a) biaxial and (b) triaxial loading states (Willam 

and Warnke, 1975). 

This concrete model is known to be sensitive to mesh density, especially at contact 

surfaces (Dassault Systemes, 2007).  Material properties and the element size through 

thickness of the deck were also found to affect the convergence of the simulated models.  

5.6 Bearing Pad and Contact Surface Modeling 

The bearing pads that were used in this experiment were steel reinforced 

elastomeric pads with a durometer hardness range of 50. The dimension of the bearing pads 

is 1 in. x 24 in. x 2 in. Based on the provided durometer hardness, the shear modulus of the 

pads, at room temperate, ranges from 85 psi to 110 psi, according to FDOT Structure 

Specifications for Road and Bridge Construction, or 95 psi to 130 psi according to 

AASHTO LRFD Bridge Design Specification. In this study, the shear modulus was 

assumed to be 100 psi. According to Lee (1994), the bulk modulus for 50 Shore hardness 

elastomeric bearings is assumed to be 2,060 MPa, which is equivalent to 290 ksi. The 

typical Young’s modulus for 50 Shore hardness is approximately 320 psi. Young’s 

modulus of elastomeric bearings for different Shore hardness was provided by Podolny 
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and Muller (1982). The typical stress-strain curve for steel reinforced bearing pads based 

on the hardness and the shape factor is shown in Figure 5-9.  

 
Figure 5-9 Typical stress-strain curve for steel-reinforced bearings (AASHTO-C14.7.6.3.3-1). 

These bearing pads were simulated using SOLID185 elements. The material 

nonlinearity of the pads was modeled using three-parameter Mooney-Rivlin hyper-elastic 

material model. The input data for Mooney-Rivlin model requires three parameters, which 

are C10, C01 and C11. These three parameters are material constants characterizing the 

deviatoric deformation of the material. These constants are usually determined by curve-

fitting the experimental data. It was suggested to use 0.044, 0.011 for the first two 

parameters for 50 shore hardness bearings (Altidis and Adams, 2005). The third parameter 

C11 was determined to be 100 based on parametric studies. This parameter will take into 

account the fact that the effective shear modulus also increases as compression increases.  
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In addition to the bearing pad models, the contact surfaces between the bearing pads 

and bottom flange of the girders were also modeled to capture the uplift incident that 

occurred during the test. The contact surface was modeled using a combination of 

TARGE170 element and CONTA173 element as shown in Figure 5-10. TARGE170 

element is used to model a 3-D target surface where the contact occurs while CONTA173 

is surface-to-surface contact element without mid-side node which is used to model contact 

and sliding between target surface and a deformable body. If the beneath solid or shell 

element surface do have mid-size node, CONTA174 will be used. The target surface is 

paired with its associated contact surface via a shared real constant set. As illustrated in the 

figure, the target area could be larger than the contact area. 

 

Figure 5-10 Contact surface between the bearing pad and bottom flange of girder. 

 

In ANSYS, the behavior of CONTA173 element can be controlled or characterized 

through a set of KEYOPTs and real constants. The default KEYOPTs and used KEYOPTs 
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are summarized in Table 5-5. Depending on which KEYOPT option is used, the properties 

of the contact element then will be determined by a set of real constants such as contact 

stiffness, limit of initial penetration, friction coefficient damping factor and so on. The 

default values of these real constants are provided by ANSYS unless they are manually 

specified by the users. In some cases, the default values of a real constant will vary 

depending on the option selected for KEYOPTs. The parameters for the contact elements 

for both default KEYOPTs and used KEYOPTs are summarized in Table 5-6.  

There were 3 KEYOPTs that were manually input (not by default) for the nonlinear 

finite element analyses performed in this study including KEYOPTs 2, 4 and 12. The 

default option for KEYOPT 2 is to use the augmented Lagrangian method as a contact 

algorithm. This method requires an iteration in which the contact tractions (pressure and 

frictional stresses) are augmented during the equilibrium iteration so that the final 

penetration is smaller than the allowable tolerance. This option is less sensitive to the 

magnitude of the contact stiffness; however, it requires additional iterations especially for 

nonlinear analyses with large deformation and high level of element distortion which is 

also the case for this study. Therefore, the pure Lagrange multiplier method was used 

instead in this study. This method does not require normal, tangent penalty stiffness factors 

and allowable elastic slip (FKN, FKT and SLTO respectively). But instead, it requires 

penetration tolerance factor (FTOLN) which was set as 0.1 (10% of the element thickness) 

and maximum allowable tensile contact pressure (TNOP) which was automatically 

determined by the program by dividing the force convergence tolerance by the contact area. 

The force convergence tolerance was set as 2.5% in these analyses.  
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KEYOPT 4 by default uses Gauss integration points which are located inside the 

element surface as contact detection points. However, several analyses with different 

options were performed and the results indicated that the nodal detection which uses the 

nodes themselves as the integration points was more suitable for this model because the 

need of having very fine mesh at contact area to capture uplift accurately (which is not the 

objective of this study) could be eliminated which in turn reduced computational time. 

However, one of the disadvantage of using nodes as contact detection points can cause 

some convergence issues such as “node slippage” where the node slips off the edge of the 

target surface. In order to prevent such issues, ANSYS uses real constant TOLS, which is 

determined as a percent of the target edge length, to add a small tolerance that will 

internally extend the edge of the target surface.  

KEYOPT 12 by default uses standard unilateral contact model in which the normal 

pressure equals zero if separation between two nodes occurs.  However, after performing 

several trial analyses, the results indicated that using perfectly rough frictional contact 

where no sliding was allowed (only vertical separation is allowed) was adequate and 

required much less computational time. All of KEYOPTs that were used in all nonlinear 

analyses in this study is illustrated in Error! Reference source not found.. 

In general, most of the parameters characterizing the behavior and properties of 

contact element CONTA173 were used by the default values. Most of parameters are 

interpreted by ANSYS as a scaling factor without units except maximum friction stress 

(TAUMAX) and contact cohesion (COHE). Beside normal, tangent penalty stiffness and 

allowable elastic slip factors (FKN, FKT and SLTO respectively), the coefficient of 
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restitution (COR) for impact between rigid bodies is also not required. It is only required 

when the impact constraints is activated by KEYOPT 7 with a transient dynamic analysis.  

Table 5-5 Summary of KEYOPTs Defaults in ANSYS. 

KEYOPT Description ANSYS Default Selected Options 

1 Selects DOF UX/UY/UZ UX/UY/UZ 

2 Contact Algorithm Augmented Lagrange 
Pure Larange 

Multiplier 

3 
Stress state when super 

element is present 
No super element No super element 

4 
Location of contact 

detection point 

Gauss Integration 

Points 

Nodal Points – 

Normal from 

Contact Surface 

5 CNOF/ICONT adjustment No adjust No adjust 

6 Contact stiffness variation Use default range Use default range 

7 
Element level time 

increment control 
No control No control 

8 
Asymmetric contact 

selection 
No action No action 

9 
Effect of initial 

penetration or gap 
Include all Include all 

10 Contact stiffness update Between load steps Between load steps 

11 
Beam/shell thickness 

effect 
Exclude Exclude 

12 
Behavior of contact 

surface 
Standard Rough 

14 
Behavior of fluid 

penetration load 
Iteration-based Iteration-based 

15 
Effect of stabilization 

damping 

Active only in first 

load step 

Active only in first 

load step 

16 Squeal damping controls 
Damping scaling 

factor 

Damping scaling 

factor 
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Table 5-6 Summary of Default and Input Real Constants. 

Real Constant 

Name 
Description ANSYS Default Used Value 

FKN Normal penalty stiffness factor 1  N/A 

FTOLN Penetration tolerance factor 0.1% 0.1% 

ICONT Initial contact closure 0 0 

PINB Pinball region 2  2 

PMAX Upper limit of initial penetration 0 0 

PMIN Lower limit of initial penetration 0 0 

TAUMAX Maximum friction stress 
1.00E+20 

(Pressure) 

1.00E+20 

(ksi) 

CNOF Contact surface offset 0 0 

FKOP Contact opening stiffness factor 1 1 

FKT Tangent penalty stiffness factor 1 N/A 

COHE Contact cohesion 0 (Pressure) 0 (ksi) 

FACT Static/dynamic ratio 1 1 

DC Exponential decay coefficient 0 0 

SLTO Allowable elastic slip 1% N/A 

TNOP 
Maximum allowable tensile 

contact pressure 

Force 

Convergence 

Tolerance / 

Contact Area 

2.5% / 

Contact 

Area 

TOLS Target edge extension factor 2% 2% 

PPCN Pressure-penetration criterion 0 0 

FPAT Fluid penetration acting time 0.01 0.01 

COR Coefficient of restitution 1 N/A 

FDMN 
Normal stabilization damping 

factor 
1  1 

FDMT 
Tangential stabilization damping 

factor 
0.001 0.001 

FDMD 
Destabilizing squeal damping 

factor 
1 1 

FDMS Stabilizing squeal damping factor 0 0 

 

The comparison between the mid-span displacements, before and after the bearing 

pads and contact elements were modeled, and one of the test results is illustrated in Figure 

5-11. This indicated that modeling the bearing pad and contact surface helped the model to 

have a better agreement with the test results. It should be noted that modeling contact 
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surface might make these FE models more prone to non-convergence issues. The results 

from this study suggest that refining mesh density and reducing time step are possible 

solutions for this problem. In general, the computational time for each nonlinear analysis 

varied from 6 to 12 hours depending on the tests.  

 
Figure 5-11 Mid-span displacement before and after modeling the bearing pads. 
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Chapter 6 Validating FE Models with Experimental Data 

For verification purposes, the finite element analysis results are compared to the 

experimental data on selected tests. The verifications will be made in both elastic and 

inelastic ranges. Due to a high number of elastic tests carried out, only a few tests are 

selected for the comparison purposes for each damage condition. The experiment data used 

for the comparison purposes in Section 6.1, 6.2 and 6.3 was extracted from the third ramp 

in the loading history. Although data from third loading cycle is expected to present the 

most accurate behavior of the specimen, the specimen might not be completely unloaded 

at the beginning of the third loading cycle as illustrated in Figure 3-23. That is the reason, 

the experimental data might not start from zero in some comparison plots. 

6.1 Undamaged Bridge Specimen 

For the undamaged specimen, the comparison between experimental data and finite 

element analysis results were made for Test 1, 2, and 3 and presented in the following 

sections. The comparison includes the longitudinal strain and displacement, at the mid-

span section.  

6.1.1 Test 1 - No Rail, No Continuity, Symmetric Loading (NNS) 

The first test had NNS characteristics. Figure 6-1 provides a schematic description 

of the test.  
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Figure 6-1 Schematic description of Test 1. 

The vertical displacements at the center of the bottom flange of both girders at the 

mid-span section are compared with those obtained from FEM in Figure 6-2. The 

longitudinal strains in the bottom flange and top flange at the mid-span section are 

compared in Figure 6-3 and Figure 6-4, respectively. In Figure 6-4, only the exterior top 

flange of EG and the interior top flange of WG were compared, and the same comparison 

was made in subsequent tests. 

 
Figure 6-2 Comparison of vertical displacement at the bottom flange of each girder in Test 1. 
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Figure 6-3 Comparison of longitudinal strain at the bottom flange of each girder in Test 1. 

 

 
Figure 6-4 Comparison of longitudinal strain at the top flange of each girder in Test 1. 
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6.1.2 Test 2 - No Rail, No Continuity, Unsymmetrical Loading (NNU) 

Test 2 NNU was carried out without railing and continuity installed. Schematic 

drawing of the test is shown in Figure 6-5. 

 
Figure 6-5 Schematic description of Test 2. 

Figure 6-6 compares the vertical displacement measured at the center of bottom 

flange of each girder at mid-span to the one obtained from results of FEA. Figure 6-7 

provides a comparison of measured and calculated longitudinal strains at the center of the 

bottom flange at the mid-span section, while Figure 6-8 compares measured and calculated 

longitudinal strains in the top flanges. 
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Figure 6-6 Comparison of vertical displacement at the bottom flange of each girder in Test 2. 

 

 
Figure 6-7 Comparison of longitudinal strain at the bottom flange of each girder in Test 2. 
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Figure 6-8 Comparison of longitudinal strain at the top flange of each girder in Test 2. 
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Figure 6-9 Schematic description of Test 3. 

 

 
Figure 6-10 Comparison of vertical displacement at the bottom flange of each girder in Test 3. 
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Figure 6-11 Comparison of longitudinal strain at the bottom flange of each girder in Test 3. 

 

 
Figure 6-12 Comparison of longitudinal strain at the top flange of each girder in Test 3. 

 

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

50

Micro Strain (in/in*106)

L
o
a
d
 (

k
ip

)

Mid-Span Strain at the Center of Bottom Flange

 

 

FEM-West

FEM-East

EXP-West

EXP-East

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50

Micro Strain (in/in*106)

L
o
a
d
 (

k
ip

)

Mid-Span Strain at the Top Flange

 

 

FEM-West

FEM-East

EXP-West

EXP-East



  

  164 

In general, the FEA results showed reasonable agreement with the experimental 

data for the tests on undamaged specimen, especially in the bottom flanges. In Test 3, the 

top flange strains showed some discrepancy between FEA and experiment. 

6.2 Bridge Specimen with Bottom Flange Fractured in One Girder 

FEA results and experimental data for Test 9 and Test 10 are compared to verify 

the FE modeling techniques for the series of tests with the bottom flange fractured in one 

girder.  

6.2.1 Test 9 - with Rail, No Continuity, Unsymmetrical Loading (YNU) 

Test 9 was YNU with bottom flange fractured in EG as illustrated in Figure 6-13. 

The mid-span vertical displacements at the center of bottom flange of both girders from 

the experiment and FEA are compared in Figure 6-14. The longitudinal strains in bottom 

flange and top flange at mid-span section are compared in Figure 6-15 and Figure 6-16, 

respectively. 

 
Figure 6-13  Schematic description of Test 9. 

 



  

  165 

 
Figure 6-14 Comparison of vertical displacement at the bottom flange of each girder in Test 9. 

 

 
Figure 6-15 Comparison of longitudinal strain at the bottom flange of each girder in Test 9. 
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Figure 6-16 Comparison of longitudinal strain at the top flange of each girder in Test 9. 
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applied and is illustrated in Figure 6-17.  

The vertical displacements of the center of bottom flange at mid-span from the 

experimental data and FEA are compared in Figure 6-18. Similarly, the longitudinal strains 

in the bottom flange and top flanges at the mid-span section are compared in Figure 6-19 

and Figure 6-20, respectively. 

0 5 10 15 20 25
0

10

20

30

40

50

60

Micro Strain (in/in*106)

L
o
a
d
 (

k
ip

)

Mid-Span Strain at the Top Flange (Test9-YNU)

 

 

FEM-West

FEM-East

EXP-West

EXP-East



  

  167 

 
Figure 6-17 Schematic description of Test 10. 

 

 
Figure 6-18 Comparison of vertical displacement at the bottom flange of each girder in Test 10. 
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Figure 6-19 Comparison of longitudinal strain at the bottom flange of each girder in Test 10. 

 
Figure 6-20 Comparison of longitudinal strain at the top flange of each girder in Test 10. 
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Overall, the FEM results showed reasonable agreement with the experimental data 

in both local and global responses for bottom flange fractured specimen. 

6.3 Bridge Specimen with Full-Web Fractured in One Girder 

With the web and bottom flange completely fractured in one girder, the FEA results 

from Test 16 and Test 17 are compared to the experimental data. Test 16 and Test 17 have 

characteristics similar to Test 9 and Test 10 except the web in EG was now fractured in 

addition to the bottom flange. 

6.3.1 Test 16 - with Rail, No Continuity, Unsymmetrical Loading (YNU) 

The specimen was tested with the railings but no continuity, and 50 kips of load 

was applied to the damaged girder. A schematic of Test 16 is shown in Figure 6-21. 

 
Figure 6-21 Schematic description of Test 16. 

The vertical displacements of center of bottom flange at the mid-span from the 

experimental data and FEA are compared in Figure 6-22. Similarly, the longitudinal strain 

comparison in bottom flange at mid-span section is plotted in Figure 6-23. Both sets of data 

showed similar slopes. However, the experimental data showed bottom flange had some 

initial strains because the specimen wasn’t completely unloaded in the third loading cycle.  
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Figure 6-22 Comparison of vertical displacement at the bottom flange of each girder in Test 16. 

 

 
Figure 6-23 Comparison of longitudinal strain at the bottom flange of undamaged girder in Test 

16. 
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6.3.2 Test 17 - No Rail, No Continuity, Symmetric Loading (NNS) 

In Test 17, the bridge was tested without rail and continuity and under symmetrical 

loading. A schematic of Test 17 is shown in Figure 6-24. 

The vertical displacements of the center of the bottom flange at the mid-span 

obtained from the experimental data and FEM analysis are compared in Figure 6-25. 

Similarly, the longitudinal strain in the bottom flange at the mid-span section is compared 

in Figure 6-26. 

 
Figure 6-24 Schematic description of Test 17. 
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Figure 6-25 Comparison of vertical displacement at the bottom flange of each girder in Test 17. 

 

 
Figure 6-26 Comparison of longitudinal strain at the bottom flange of undamaged girder in Test 

17. 
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In general, the finite element model is capable of reasonably predicting the linear 

responses of the specimen under the full-web fracture damage condition.  

6.4 Verification of FEMs with Ultimate Test A 

Both load-control and displacement control approaches were utilized to predict the 

ultimate load capacity of the specimen. The ultimate capacity of the specimen was 

predicted to be between 143 kips and 153 kips from FEA using the displacement-control 

method, for 7.8 ksi and 8.0 ksi concrete compressive strength, respectively, as a lower 

bound and upper bound. This method allows us to capture the capacity drop in the bridge 

after crushing of the concrete, as shown in Figure 6-27. The ultimate load, predicted from 

FEA using the load-control method, was 148 kips with concrete compressive strength of 

7.8 ksi and was 163 kips with concrete compressive strength of 8.0 ksi. In FEA with load 

control method, after the ultimate capacity was reached, that load value then held nearly 

constant with increasing displacement for a short increment until the analysis was 

automatically terminated by the program, which can be seen in Figure 6-28. Since the 

ultimate capacity of the specimen in ultimate Test A was 156 kips, this suggests that the 

FE models provided good estimations of the ultimate capacity of tested specimen in either 

approach. Moreover, the FE models showed good agreements with experimental data on 

predicting when the ultimate capacity of the specimen will be reached.   
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Figure 6-27 Comparison of load vs. vertical deflection curves using displacement-control 

analysis. 

 

 
Figure 6-28 Comparison of load vs. vertical deflection curve using load-control analysis. 

The capability of the FE model in capturing the behavior of the concrete deck and 

steel girders is also verified below. 
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Figure 6-29 Vertical displacements at the bottom flange of each girder and at center of the deck 

at mid-span. 

 

The FE models predicted very well the displacement of the laboratory specimen at 

mid-span, the most critical section, as shown in Figure 6-29. The difference between FEM 

and experimental data for mid-span displacement was less than 5%. In addition, the FE 

models well predict the uplift of the bridge that occurred in experiment.  Figure 6-30a-b 

indicate that the WG was the only one that experienced uplifting in the experiment. This 

uplift occurred at the south support location when the applied load was around 80 kips (the 

blue dot in Figure 6-31a represents where and when the uplift occurred). The curve also 

shows that the uplift of the undamaged girder at the south support location might not have 

lifted completely until after the ultimate capacity was reached.  

By using contact elements to model the interface between the supports and the 

bottom flanges, the FEM was also able to capture correctly the support location that will 

have uplift as shown in Figure 6-31. With negative reaction, the south-west support 
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location was predicted as the location, which will experience uplifting. It is important to 

note that tolerance in the contact algorithm and deviation of contact normal at large 

deflections allow us to capture the apparent small negative reaction force. 

 

 
Figure 6-30 Reactions vs. EG vertical displacement. 

 

 
Figure 6-31 Prediction of uplift in finite element analysis. 

Local behaviors of both the steel girders and deck were validated. Comparisons of 

longitudinal strain of top flanges and bottom flange of the undamaged WG, between FEA 

results and experimental data, are illustrated in Figure 6-32  and Figure 6-33, respectively. 

The transverse strains in the deck are verified in Figure 6-34.  
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Figure 6-32 Comparison of longitudinal strains at the top flange of WG at mid-span. 

 

 
Figure 6-33 Comparison of longitudinal strain at bottom flange at mid-span. 
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Figure 6-34 Comparison of transverse strain on the top of deck. 

The FEM models provided a good prediction of the location where concrete 

crushing would occur. Figure 6-35 compares the location of concrete crushing in the 

analytical model and experiment. Figure 6-36 compared experimental results to finite 

element analysis results regarding cracks at the ends of specimen. Finite element analysis 

results in Figure 6-36 predicted the shear cracks and tensile cracks would occur at the ends 

of the bridge. 
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Figure 6-35 Location of concrete crushing in FEA and in experiment. 

 

 
Figure 6-36 Shear cracking in south (left) and north (right) supports. 

Figure 6-37 shows that the maximum von Mises stress in the steel girder was 

  

  

Figure Error! No text of specified style in document.-1 Shear cracking in south (left) and north 

(right) supports. 
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around 48 ksi, which was less than 50 ksi, the assumed yielded stress of the material. In 

other words, the steel girder had not yet yielded when the ultimate capacity of the model 

was reached and this matches with what was observed from the experimental data. The 

FEA results also showed a similarity with experimental tests in the stress distribution along 

the length of both intact and damaged girders.   

 
Figure 6-37 Stress contour at mid-span in the steel girders. 

 Overall, the FE model was able to capture behavior of concrete, steel girder, and 

major damages that were observed during the test such as shear failures of concrete deck 

at the loading point and at both ends as well as the uplift of the intact girder.  

6.5 Verification of FEMs with Ultimate Test B 

Since both girders experienced similar displacements as illustrated in Section 4.5, 

the average vertical displacements are used to present the displacement of both girders. 

The average vertical displacements of both girders along the length of the specimen were 

compared in Figure 6-38.  In this figure, the agreements were observed not only in the 
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vertical displacements of the girders along the length but also in the capacity of the 

specimen. The capacity obtained from the test was 275 kips while the capacity obtained 

from FEA as 260 kips.  
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(a) 

 
(b) 

 
(c) 

Figure 6-38 Load vs average vertical displacements at (a) mid-span, (b) Section 5, and (c) 

cantilever end. 

 

In addition, Figure 6-39 and Figure 6-40 compare test data and FEA results on 

longitudinal strains of the intact girder and on the transverse strain of the deck at mid-span. 
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The comparison indicates that the FEMs were to predict and capture the behavior of both 

deck and steel girder.  However, the comparison on steel girders had better agreement than 

it was on the deck. This could be due to several assumptions that was made when modeling 

the concrete, such as stress-strain material model, crushing stress, cracking stress and shear 

transfer coefficients. 

 
Figure 6-39 Transverse strain on the deck at mid-span. 
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(a) 

 
(b) 

 
(c) 

Figure 6-40 Comparison of longitudinal strains at the bottom flange of the intact girder at (a) 

mid-span, (b) Section 3, and (c) Section 5.  
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Overall, the capacity and displacements produced by the FEM were in good 

agreement with those observed in the test. The FEM was also able to predict the responses 

in both steel girders and the concrete deck. 

6.6 Summary 

Overall, the predictions from finite element analyses were in good agreement with 

experimental data in both elastic and inelastic ranges. The maximum vertical displacements 

in each elastic test obtained from experimental data and FEM analysis results are listed in 

Table 6-1. Percentage difference in the last column of the table is calculated by dividing 

the difference of experimental and FEM deflection with the experimental deflection and 

multiplying by 100. The percentage differences between FEM analysis results and test data 

was 5.1% on average ranging from 0.03% for Test 2 (NNU) on undamaged system to 

19.8% for Test 16 (YNU) on damaged system.  

It should be noted that the high percentage of difference resulted primarily from the 

tests that have the rail system. This could be because the connection between the rail and 

the deck was assumed to be a full connection in the finite element models and the contact 

area between rail segments weren’t modeled. This suggested that the rail were modeled 

stiffer than they actually were in the tests; therefore, the deflections for these tests with 

rails obtained from FEA were smaller than those obtained in the tests. Since in all ultimate 

tests, the specimen was tested without the rail, these assumptions were made to simplify 

the finite element modeling, and it was expected that they would not affect findings of this 

study. 
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From ultimate Tests A and B, it can be concluded that the finite element models 

were able to capture the inelastic responses of the specimen. For example, the finite element 

models were able to predict the modes of failure, the maximum capacity as well as damages 

observed in the experiment such as uplift of the intact girder, deck cracks at both ends and 

shear damage on the deck in ultimate Test A.  

A good agreement between finite element analyses and experimental data in both 

elastic and inelastic ranges for several experiments indicates that the finite element models 

used in this study have been fully calibrated.  

Table 6-1 Comparison of Displacement between FEA Results and all Elastic Tests. 

Test # Characteristics 
Experimental 

Deflection (in) 

FEM Deflection 

(in) 
% Difference 

1 NNS 0.333 0.324 2.7 

2 NNU 0.203 0.203 0.03 

3 NYU 0.179 0.189 5.8 

4 YNS 0.303 0.285 6.0 

5 YYU 0.174 0.171 1.6 

6 YNU 0.194 0.182 6.2 

7 YNS 0.337 0.300 11.1 

8 YYU 0.180 0.180 0.2 

9 YNU 0.206 0.192 6.7 

10 NNS 0.337 0.342 1.6 

11 NNU 0.218 0.215 1.3 

12 NYU 0.188 0.200 6.1 

14 YNS 0.573 0.575 0.3 

15 YYU 0.378 0.330 12.8 

16 YNU 0.460 0.369 19.8 

17 NNS 0.741 0.730 1.6 

18 NNU 0.503 0.465 7.6 

19 NYU 0.401 0.403 0.7 

   Avg Difference 

= 

5.1 
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Chapter 7 Field Testing of Ft. Lauderdale Twin Box-Girder Bridge 860600 

Florida International University (FIU) contracted Bridge Diagnostics, Inc. (BDI) to 

conduct a field test on Ramp Bridge 860600 located in Ft. Lauderdale, Florida. This 

structure is a multiple- span bridge and the test was performed on the north module, which 

is a three-span continuous bridge. The bridge has two separate superstructures. Each 

superstructure consists of two steel box-girders composite with a concrete deck. In this 

project, only the west superstructure that provides the access ramp from SW 1st street to I-

95 South was tested. Figure 7-1 and Figure 7-2 show the pictures of the first two spans of 

the bridge. 

Tasks began on May 22, 2012, when FIU staff began preliminary work on the 

bridge including marking the exact spot for each instrument and preparing the surface of 

the steel box-girders for installation of instruments. That task was completed on May 23, 

2012, and then BDI started its job on the bridge site on May 30, 2012. The BDI services 

included providing testing equipment and instruments, installation, data collection and 

preliminary data processing. Loading trucks were provided by FDOT District 4 and were 

weighed at a nearby certified scale. The loading started around 9:00 p.m. on May 30, 2012. 

Eight different moving load scenarios were applied and testing finished at 11:30 p.m. that 

night. After that, removing the instruments, wiring and equipment, and restoring the 

instrumentation spots on the steel girders to their initial state, including cleaning, sanding, 

zinc coating and painting was done until 3:00 am on May 31, 2012 when the field job was 

accomplished.  
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The acquired data was first reviewed and analyzed by BDI, which showed the 

structure was behaving in a linear elastic manner. A slight thermal drift was detected during 

the test, which is typical for long-duration tests. The drift was corrected with a linear offset. 

BDI reported the overall data to be of good quality.  

FIU analyzed the data provided by BDI using finite element analysis of the bridge 

under different loading scenarios. In general, the deflection results match with the test data 

with good precision. The collected strain data are also in good agreement with the finite 

element analysis results. A partial fixity in the abutment of the bridge is observed from the 

strain data compared to ideal finite element model, which is in agreement to observations 

of past researchers. This partial fixity causes slightly greater stresses in the superstructure 

close to the abutment and reduces the magnitude of stresses in the mid-span region to some 

extent. 

This chapter provides details regarding the instrumentation, load test procedures 

and response plots. The processed data from each path has been formatted as a function of 

longitudinal truck position. In general, the good match of the analysis results and test data 

verifies the accuracy of the finite element models that FIU researchers have constructed to 

study the behavior of twin box-girder bridges.  

It should be noted that the test results presented in this chapter correspond to the 

properties of the structure at the time of testing.  Any further structural aging, degradation, 

damage, or retrofits must be taken into account for future analysis or rating purposes. 
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Figure 7-1 First two spans of the ramp bridge - underneath view. 

 

 
Figure 7-2 First span of the ramp bridge 860600 - elevation view from west. 
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7.1 Objective 

The main goal of this field testing was to calibrate the finite element models and 

verify the accuracy of the modeling techniques that are used in the redundancy analysis of 

twin box-girder bridges in elastic range. Another target was to observe the behavior of an 

existing two girder bridge under actual truck loading. 

7.2 Bridge Configuration 

The Ft. Lauderdale Ramp Bridge 860600 has a twin box-girder superstructure that 

is continuous over three spans. The lengths of the spans are 144, 163 and 148 ft and the 

bridge total length is 455 ft. Figure 7-3 shows the elevation view of the bridge. 

 
Figure 7-3 Elevation view of the bridge. 

The box-girders of the superstructure are composite with a concrete deck of 8-in 

thickness. The depth of the box-girders is 6 ft - 4 in. The width of the roadway is 28ft and 

there are two railings with a width of 1 ft - 6.5 in. at each side of the roadway. Figure 7-4 

shows the bridge superstructure cross-section.  
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Figure 7-4  Cross-section of the Ft. Lauderdale bridge 860600. 

The width of the bottom flange of each box-girder is 5 ft and 1 in. and the center-

to-center distance of the top flanges is 8 ft and 1 in. The thickness of girder webs is equal 

to 0.6875 in. and they are inclined with a slope of 4:1. The width of the top flange and the 

thickness of the top and bottom flanges of the girders are changing throughout the length 

of the girders and are tabulated in Table 7-1. 
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Table 7-1 Thickness of Top and Bottom Flanges of the Bridge Girders 

 Plate Length Top Flange Bottom Flange 

Plate # (ft) Width (in.) Thickness (in.) Width (in.) Thickness (in.) 

1 128.5 12 1 61 5/8 

2 25 16 15/8 61 9/8 

3 40 16 1 61 7/8 

4 72 12 1 61 5/8 

5 22.5 12 5/4 61 7/8 

6 45 24 2 61 13/8 

7 31 16 1.5 61 7/8 

8 72.5 16 1.5 61 5/8 

9 17.5 12 5/4 61 5/8 

 

The internal bracing of the box-girders are made of an L5x5x3/8 angle for the top 

chord and an inverted V bracing with L3.5x3.5x1/2 sections for each leg. These elements 

are connected to the box-girder by means of web transverse stiffeners with 5-in. width and 

0.5-in. thickness. There are 11, 13 and 12 of such internal braces in the first, second and 

third spans, respectively. These braces are approximately equally spaced in each span. 

Figure 7-5 depicts the internal braces that are used in the box-girders. 
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Figure 7-5 Internal bracing of superstructure girders. 

 

Table 7-2 presents some general information about the bridge and the testing procedure. 
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Table 7-2  General Structure and Testing Specifications 

ITEM DESCRIPTION 

STRUCTURE NAME Park and Ride Outbound Ramp to Southbound I-95 

CITY/STATE Ft. Lauderdale, FL 

TESTING DATE May 22 to 31, 2012 

CLIENT’S STRUCTURE ID # Ramp Bridge 860600 

STRUCTURE TYPE Steel Twin Box-girder 

TOTAL NUMBER OF SPANS 

TESTED 

2 

SPAN LENGTH(S) Span 1: 144’-0” , Span 2: 163’-0”  

ROADWAY WIDTH 28’-0” 

SKEW 0 

WEARING SURFACE Concrete 

SPANS TESTED 2 

TEST REFERENCE LOCATION 

(X=0,Y=0) - BOW 

CL of North Abutment at the inside face of the East 

Parapet 
NUMBER/TYPE OF SENSORS Strain Transducers – 28, Displacement Sensors – 8 

SAMPLE RATE 40 Hz – Semi-Static and Normal Speed 

NUMBER OF TEST VEHICLES 2 

 STRUCTURE ACCESS TYPE Bucket Truck 

 STRUCTURE ACCESS PROVIDED 

BY 

FDOT 

 
TRAFFIC CONTROL PROVIDED 

BY 

FDOT 

 
TOTAL FIELD TESTING TIME 4 Days 

 
 

7.3 Instrumentation 

The instrumentation of the bridge was performed using the BDI wireless structural 

testing system. In this system, the transducers are connected to a wireless data acquisition 
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device which collects the structure response data at a predefined frequency. In this project, 

the bridge is instrumented in two locations to gather the displacement data and in three 

sections for strain data. The following two subsections describe the details of the 

instrumentation at each section. 

7.3.1 Potentiometers (Displacement Sensors) 

To measure the deflections of the bridge under live load, eight potentiometers are 

installed below the superstructure of the bridge at two locations, named locations 1 and 2. 

A side view of the bridge showing these two locations is illustrated in Figure 7-6. 

 
Figure 7-6  Locations of potentiometers in the first two spans. 

Location 1 is in the first span at a distance of 85 ft from the first pier. At this 

location, there are four potentiometers, two of them below the edges of the bottom flange 

of the west box-girder, one in middle of the concrete deck between the steel girders and 

the other one below the west edge of the EG. Figure 7-7 displays the arrangement of the 

potentiometers in the first span. The gauge and channel ID’s (in parentheses) of these 

displacement sensors are shown in Figure 7-8. A typical photo of the assembly of these 

displacement sensors is in Figure 7-9. As stated earlier to measure the displacement of the 

concrete deck between the girders, a sensor is attached to it. As the structural insulated 

panel (SIP) is used for the concrete, the transducer should be attached to the SIP form 
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instead of the concrete face. Figure 7-10 shows the transducer attached to formwork below 

the concrete slab. 

 

Figure 7-7 Arrangement of potentiometers at Location 1 in the first span. 

 

 
Figure 7-8  Gauge and channel ID of first span displacement sensors. 
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Figure 7-9 Displacement sensor beneath bottom flange of box-girder (typical). 
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Figure 7-10  Displacement sensor on SIP form below concrete deck. 

In the second span, four potentiometers are installed in the middle of the span which 

has a distance of 81’-6” from the adjacent piers. At this location, one potentiometer is 

attached to each edge of the bottom flange of each box-girder. Figure 7-11 shows the 

configuration of the potentiometers at middle of the second span. The gauge and channel 

ID’s (in parentheses) of these potentiometers are indicated in Figure 7-12. 
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Figure 7-11 Arrangement of the potentiometers at Location 2 in the second span. 

 

 
Figure 7-12  Gauge and channel ID of displacement sensors at Location 2. 
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7.3.2 Strain Gauges 

In order to measure longitudinal strains in the steel girders of the bridge 

superstructure under live load, 28 strain gauges are installed in the first span of the bridge 

at three sections, named sections 1, 2, and 3. The distances of these sections from the end 

of the superstructure are 6, 58 and 138 ft, respectively. Figure 7-13 shows the location of 

these sections in an elevation view of the bridge. The strain gauges are attached to the outer 

surface of the steel box-girders at different places of each section. Figure 7-14 shows two 

pictures of typical strain transducers attached for the steel girders in this project. 

 
Figure 7-13 Locations of strain gauges in the first span. 
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Figure 7-14 Strain transducers on box-girders (typical). 

In section 1, nine strain gauges are installed on the girders. The WG has one strain 

gauge attached to the lower surfaces of its east top flange. That strain gauge is placed in 

the middle of the outstanding length of the top flange. This girder has one strain gauge 

installed on its west web, 15 in. above the bottom flange. The bottom flange has two strain 

gauges, 2 in. from the flange edges. The WG has a total of four strain gauges. 

At this section, the EG has five strain gauges, two of them on the lower surface of 

its top flanges, similar to that of the WG. The west web of the EG has one strain gauge 

attached to its outer surface, 10 in. below the top of flange. The bottom flange of this girder 

has two strain gauges located 2 in. away from the edges. Figure 7-15 shows the 

arrangement of the strain gauges at this section of the bridge. 
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Figure 7-15 Gauge and channel ID’s of strain gauges at Section 1. 

Section 2, which is located 58 ft from the abutment, has nine strain gauges, five of 

them installed on the WG and four of them on the EG. In this section, both girders have 

one strain gauge under the lower surface of the top flanges, and two strain gauges at the 

edges of the bottom flange. The WG has one strain gauge on the east web, 10 in. above the 

bottom flange. Figure 7-16 displays the arrangement of the strain gauges at Section 2. 

 
Figure 7-16 Gauge and channel ID’s of strain gauges at Section 2. 

Section 3, which is located 6 ft from the center line of the first pier (or 138 ft from 

the abutment) has ten strain gauges, five of them installed on the WG and the other five on 

the EG. In this section, both of the girders have a strain gauge under each of their top 

flanges. In addition, both have two strain gauges at the edges of their bottom flanges. The 

east web of the WG and the west web of EG have one strain gauge, 12 in. above the bottom 

flange. Figure 7-17 displays the arrangement of the strain gauges at section 3. 
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Figure 7-17 Gauge and channel ID’s of strain gauges at Section 3. 

 

7.4 Loading  

Loading of the bridge was done by two trucks which were provided by District 4 

of the Florida DOT. Those 10-wheel trucks, named Truck-1 and Truck-2, were weighed in 

a certified weigh station close to the bridge site about an hour before the testing. The 

weights of Truck-1 and Truck-2 were 62560 and 59940 pounds, respectively. Other 

specifications of the test trucks are tabulated in Table 7-3 and Table 7-4. In addition, the 

spacing of the axles of these trucks is illustrated in Figure 7-18 and Figure 7-19. 
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Table 7-3  Test Truck-1 Specifications 

VEHICLE TYPE TANDEM REAR AXLE DUMP TRUCK 

GROSS VEHICLE WEIGHT (GVW) 62,560 lbs 

WEIGHT/WIDTH - AXLE 1 13,320 lbs 7’-2” 

WEIGHT/WIDTH – AXLE 2 – REAR TANDEM 

PAIR 

49,240 lbs 7’-2” 

SPACING: AXLE 1 - AXLE 2 13’-3” 

SPACING: AXLE 2 – AXLE 3 4’-8” 

WEIGHTS PROVIDED BY Certified Weight Station 
  

AUTOCLICKER POSITION Driver – 3rd axle 

WHEEL ROLLOUT 5 REVS  53’-0” 

WHEEL CIRCUMFERENCE  10.6’ 

# SEMI-STATIC PASSES 10 

# NORMAL SPEED PASSES 1 

VEHICLE PROVIDED BY FDOT 

Table 7-4  Test Truck-2 Specifications 

VEHICLE TYPE TANDEM REAR AXLE DUMP TRUCK 

GROSS VEHICLE WEIGHT (GVW) 59,940 lbs 

WEIGHT/WIDTH - AXLE 1 11,380 lbs 7’-2” 

WEIGHT/WIDTH – AXLE 2 – REAR TANDEM 

PAIR 

48,560 lbs 7’-2” 

SPACING: AXLE 1 - AXLE 2 12’-8” 

SPACING: AXLE 2 – AXLE 3 4’-6” 

WEIGHTS PROVIDED BY Certified Weight Station 
  

AUTOCLICKER POSITION Driver – 3rd axle 

WHEEL ROLLOUT 5 REVS  52’-7” 

WHEEL CIRCUMFERENCE  10.52’ 

# SEMI-STATIC PASSES 4 

# NORMAL SPEED PASSES 0 

VEHICLE PROVIDED BY FDOT 
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Figure 7-18 Test Truck-1 axle spacing. 

 

 
Figure 7-19 Test Truck-2 axle spacing. 

Trucks were moved along three paths over the bridge. Each path is defined based 

on the distance of the driver side wheels from the inner face of the east railing of the bridge. 

This distance was equal to 2 ft, 10 ft - 5 in. and 18 ft -10 in. for the three paths. These 

loading paths are defined in Figure 7-20 and  



  

  206 

Table 7-5. 

 

Figure 7-20 Test truck path locations. 

 

Table 7-5  Loading Path Definitions 

TEST VEHICLE DIRECTION 
From North to South 

TEST BEGINNING POINT 
Front axle at X = ~21’-3”(±1’) 

LATERAL LOAD POSITIONS 

(PERPENDICULAR TO 

ROADWAY) 

Y1 (D) = 2’-0” 

Y2 (D) = 10’-5” 

Y3 (D) = 18’-10” 

 

The loading was done in eight different scenarios. In scenarios 1, 2, and 3, Truck-

1 was run over path-1, path-2 and path-3, respectively with a slow (crawling) speed. In 

scenario-4, Truck-2 moved along path-1. In scenario-5, Truck-1 and Truck-2 traveled side 

by side on path-3 and path-1, respectively.  In scenario-6, Truck-1 ran on path-2 with a 

speed of 30 MPH. In scenarios 7 and 8, Truck-1 followed by Truck-2 moved along path-1 
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and path-2, respectively. Therefore, the only high speed loading was at scenario-6 while 

all other loading scenarios conducted in a very low speed. 

Table 7-6 Loading Scenario Definitions 

TEST SCENARIO LOADING CONFIGURATION LATERAL POSITION 

1 

Truck-1 

Y1 

Y1 

2 
Y2 

Y2 

3 
Y3 

Y3 

4 Truck-2 Y1 

5 Truck-2 (Y1), Truck-1 (Y3) Y1 & Y3 

6 
Truck-1 (Y2) Roadway Speed 

Test 
Y2 

7 Truck-1 followed by Truck-2 Y1 

8 
Truck-1 followed by Truck-2 Y2 

Truck-1 followed by Truck-2 Y2 

ADDITIONAL COMMENTS Weather: High 70’s, humid 

 

7.5 Finite Element Modeling 

The main objective of this field testing was to calibrate the finite element models. 

These calibrated finite element models are required for further understanding of the 

behavior of twin box-girder bridges. Therefore, the finite element model of the Bridge 

860600 is used to evaluate the responses of the bridge under the defined loading scenarios. 

The ABAQUS FEA software package is used for this purpose. The results of the analyses 

are compared with the field testing data. 
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An attempt was made to include all possible details in the finite element model. 

Therefore, the top flange, web, and bottom flange of the box-girders, web transverse 

stiffeners, internal and external diaphragms, concrete deck, and railings of the bridge are 

modeled using shell elements. The only elements that are modeled using beam elements 

are the internal bracings of the girders. Then, the footprints of the trucks in each loading 

scenario are applied to the concrete deck of the bridge. This is done using surface pressure 

feature in Abaqus FEA. Figure 7-21 shows the model with and without the concrete deck, 

so that the modeling details can be more visible. The meshed model shows meshing of the 

cracked zone of a damaged girder.  

 

 
Figure 7-21 Finite element model of the first span of Ft. Lauderdale bridge 860600. 
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7.6 Qualitative Review of Test Data 

Field data was examined graphically first by BDI and then by FIU to determine its 

quality and usefulness for analytical comparisons.  Some of the typical indicators of data 

quality include reproducibility between identical truck crossings, elastic behavior (strains 

returning to zero after truck crossing), and observation of any unusual responses that might 

indicate possible gauge malfunctions.   

Responses as a Function of Load Position:  

Data recorded from the wireless truck position indicator (BDI Autoclicker) was 

processed so that all of the corresponding response data could be presented as a function 

of vehicle position. This was done so that during analytical modeling, important 

measurement responses could be directly related to a specific load location rather than an 

arbitrary point in time.   

Reproducibility and Linearity:  

Responses from identical truck passes were very reproducible, as shown in Figure 

7-22 and Figure 7-23.  In addition, all response data was linear with respect to load 

magnitude and truck position.  Note that the majority of responses returned to zero (barring 

thermal drift for strains – see next item), indicating elastic behavior.  All of the response 

histories had a similar degree of reproducibility and linearity, indicating that the data 

collected was of good quality. 
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Figure 7-22 Reproducibility of strain response histories (typical). 

 

 
Figure 7-23 Reproducibility of displacement response histories (typical). 
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Thermal Drift:   

During the initial data investigation, it was observed that the majority of the strain 

response data tended to drift throughout the load tests, as shown in Figure 7-24.  This is a 

common occurrence with strain transducers since they have very little mass and react to 

temperature changes very rapidly compared to the structure to which they are attached to.  

Generally, temperature drift is not a concern for short duration load tests because the 

magnitude of the drift is very small compared to the live-load responses. However, due to 

the extended duration of the tests (greater than 4 minutes) some of the strain measurements 

were able to drift by as much as 6 με. To account for the drift, a linear offset was assumed 

for the duration of each load test and subtracted from each sensors’ output.  This is 

illustrated in Figure 7-25, where the raw response and corrected response for Truck-1 load 

along path-1 are shown on the same plot.   

 
Figure 7-24 Example of variable thermal drift observed during testing. 
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Figure 7-25  Comparison of raw and thermally corrected strain data. 

 

Dynamic Component of Response:  

Tests at both crawl speed (~3 mph) and roadway speed (~30 mph) were performed 

along path-2 using test Truck-1.  When comparing strain responses from the two different 

tests, a fairly significant dynamic effect was observed in the roadway speed test as 

compared to the crawl speed test, seen in Figure 7-26. In this figure the blue response is 

from the crawl speed test while the green response is from the roadway speed test.  

Comparing with the crawl speed test, the roadway speed test saw a dynamic effect of 

approximately 12%. It is important to note that this impact factor is less than the impact 

factor of 33% specified in AASHTO LRFD Bridge Design Specifications due to dynamic 

loading. This difference is because the dynamic impact factor specified in AASHTO LRFD 

Bridge Design Specifications is defined as the ratio of peak response to static response, 
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while the dynamic effect found here are calculated based on the peak responses between 

two dynamic loading tests.   

 
Figure 7-26 Strain history comparison – crawl speed vs. roadway speed at Section 2. 

 

7.7 Comparison of Field Test Data and FEA Results 

In general, the results of field testing were in good agreement with the results of 

finite element analysis. In this section, some of the results of finite element analysis of the 

bridge under loading scenarios are compared to the field test data. The selected loading 

scenarios include scenario-3 which has Truck-1 on path-3, scenario-5 which has Truck-2 

on path-1 and Truck-1 on path-3 and loading scenario-7 which has Truck-1 followed by 

Truck-2 on path-1. Figure 7-27 through Figure 7-32 compare the deflection of the girders 

in first and second spans due to application of selected loading scenarios. 
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Figure 7-27 Vertical deflection of west edge of WG: 59 ft from north abutment, Truck-1 on path-

3. 

 

 
Figure 7-28 Vertical deflection of west edge of WG: 225.5 ft from north abutment, Truck-1 on 

path-3. 
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Figure 7-29 Vertical deflection of west edge of EG: 59 ft from north abutment, Truck-1 on path-

3 and Truck-2 on path-1. 

 

 
Figure 7-30 Vertical deflection of west edge of WG: 225.5 ft from north abutment, Truck-1 on 

path-3 and Truck-2 on path-1. 
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Figure 7-31 Vertical deflection of west edge of EG: 59 ft from north abutment, Truck-1 followed 

by Truck-2 on path-1. 

 

 
Figure 7-32 Vertical deflection of east edge of EG: 225.5 ft from north abutment, Truck-1 

followed by Truck-2 on path-1. 
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It is observed that the field test deflections are in agreement with computer model 

deflections. Figure 7-33 through Figure 7-38 illustrate the longitudinal stresses of the 

bottom flange of the box-girders due to application of loading scenario-3 to the bridge. 

 
Figure 7-33 Longitudinal stress at 6 ft from north abutment in the west edge of bottom flange of 

WG: Truck-1 on Path-3. 
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Figure 7-34 Longitudinal stress at 6 ft from North Abutment in the west edge of bottom flange 

of EG: Truck-1 on path-3. 

 

 
Figure 7-35 Longitudinal stress at 58 ft from north abutment in the west edge of bottom flange 

of WG: Truck-1 on path-3. 
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Figure 7-36 Longitudinal stress at 58 ft from north abutment in the east edge of bottom flange 

of WG: Truck-1 on path-3. 

 

 
Figure 7-37 Longitudinal stress at 138 ft from north abutment in the west edge of bottom flange 

of WG: Truck-1 on path-3. 
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Figure 7-38 Longitudinal stress at 138 ft from north abutment in the east edge of bottom flange 

of WG: Truck-1 on path-3. 

Figure 7-39 through Figure 7-44 compare the longitudinal stresses of the bottom flange of 

the box-girders due to application of loading scenario-5 to the bridge. 

 
Figure 7-39 Longitudinal stress at 6 ft from north abutment in the west edge of bottom flange of 

WG: loading scenario-5. 

 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 100 200 300 400 500 600

St
re

ss
 (

ks
i)

Distance from A1 (in.)

Analysis

Test

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600

St
re

ss
 (

ks
i)

Distance from A1 (in.)

Analysis

Test



  

  221 

 
Figure 7-40 Longitudinal stress at 6 ft from north abutment in the west edge of bottom flange of 

EG: loading scenario-5. 

 

 
Figure 7-41 Longitudinal stress at 58 ft from north abutment in the west edge of bottom flange 

of WG: loading scenario-5. 
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Figure 7-42 Longitudinal stress at 58 ft from north abutment in the east edge of bottom flange 

of WG: loading scenario-5. 

 

 
Figure 7-43 Longitudinal stress at 138 ft from north abutment in the west edge of bottom flange 

of WG: loading scenario-5. 
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Figure 7-44 Longitudinal stress at 138 ft from north abutment in the east edge of bottom flange 

of WG: loading scenario-5. 

In Figure 7-45 to Figure 7-50, the longitudinal stress of the bottom flange of the 

box-girders that resulted from finite element analysis of loading scenario-7 are compared 

to the test data. 
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Figure 7-45 Longitudinal stress at 6 ft from north abutment in the west edge of bottom flange of 

EG - Truck-1 followed by Truck-2 on path-1. 

 

 
Figure 7-46  Longitudinal stress at 6 ft from north abutment in the east edge of bottom flange of 

EG: Truck-1 followed by Truck-2 on path-1. 
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Figure 7-47 Longitudinal stress at 58 ft from north abutment in the west edge of bottom flange 

of EG: Truck-1 followed by Truck-2 on path-1. 

 

 
Figure 7-48 Longitudinal stress at 58 ft from north abutment in the east edge of bottom flange 

of EG: Truck-1 followed by Truck-2 on path-1. 
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Figure 7-49 Longitudinal stress at 138 ft from north abutment in the west edge of bottom flange 

of WG: Truck-1 followed by Truck-2 on path-1. 

 

 
Figure 7-50 Longitudinal stress at 138 ft from north abutment in the east edge of bottom flange 

of EG: Truck-1 followed by Truck-2 on path-1. 
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It is observed from the stress results that the analytic and observed stresses match 

each other in most of the points of the curve. The maximum tensile stresses from finite 

element analysis in the section close to north abutment (Section-1) are greater than the field 

test maximum stresses. This can be attributed to the partial fixity over the abutment in the 

real life structure compared to that of the computer model which assumes a perfect pin in 

the abutments. That is why the finite element stresses at the section 58ft from the north 

abutment are smaller than those of field test.  
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Chapter 8 Redundancy Analysis of Ft. Lauderdale Twin Box-Girder Bridge  

860600 

In this chapter, the redundancy of Ft. Lauderdale Bridge, which was discussed 

earlier in Chapter 7, will be assessed using direct analysis approach that was proposed by 

Ghosn and Moses in NCHRP Report 406. Please refer to Section 1.3.1 for the overview 

description of this approach and to Chapter 7 for the detailed information on the bridge 

geometry and configuration.  

8.1 Bridge Girder Flexural Capacity 

The first needed parameter for redundancy analysis of the bridge is the flexural 

capacity of the composite box-girder section. A summary of the dimensions of the 

composite section at the middle of the span is shown in Figure 8-1. 

 
Figure 8-1 Box-girder composite section, Ft Lauderdale bridge. 
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8.1.1 Effective Width of Concrete Deck 

Based on the provisions of AASHTO LRFD Specifications, the effective width of 

concrete deck for the composite action of each girder of a two-girder bridge can be 

calculated as follows: 

beff = beff
int−Web + beff

ext−Web  

Where: 

beff
int−Web  = Effective concrete deck width for an interior web 

beff
ext−Web  = Effective concrete deck width for an exterior web 

And the effective width of concrete deck for the interior web of the girder is 

calculated as the minimum of the following three values: 

12ts +
1

2
bTF = 12 × 8 +

1

2
× 12 = 102 in 

 

Span Length

4
=

1716

4
= 429 in 

 

Avg. Girder Spacing = 97 in 
 

Therefore, the effective width of concrete deck for the interior web of the girder is 

equal to 97 in. For the exterior web of the girder, the effective width of concrete deck will 

be equal to half of the effective width for the interior web plus the minimum of the 

following three values: 

6ts +
1

4
bTF = 6 × 8 +

1

4
× 12 = 51 in 

 

Span Length

8
=

1716

8
= 214.5 in 
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Overhang length = 41 in. 
 

Hence 

beff
ext−Web =

97

2
+ 41 = 89.5 in 

 

And 

beff
Box = beff

int−Web + beff
ext−Web = 97" + 89.5 = 186.5 in 

 

Therefore, it is concluded that the effective width for each girder is one-half of the 

total width of the concrete deck. 

8.1.2 Section Compactness 

Based on AASHTO LRFD Bridge Design Specifications, the following criteria 

should be met so that the girder section can be considered a compact section. 

1. Web and flanges yield stress:  

𝐹𝑦𝑓 = 𝐹𝑦𝑤 = 50 𝑘𝑠𝑖 < 70 𝑘𝑠𝑖 

2. For webs without longitudinal stiffener (AASHTO LRFD 6.11.2.1.2): 

𝐷

𝑡𝑤
=

77

11
16

= 112 < 150 

3. Top flange width limit (AASHTO LRFD 6.11.1.1): 

𝑏𝑓 = 12 in. <
𝑆𝑝𝑎𝑛 𝐿𝑒𝑛𝑔𝑡ℎ

5
=

143 ft

5
= 343.2 in 

4. Limit for depth of web in compression at plastic moment: 

2𝐷𝑐𝑝

𝑡𝑤
≤ 3.76√

E

Fy
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8.1.3 Nominal Moment Capacity 

The nominal moment capacity of the composite section is obtained as follows: 

Mn = Mp (1.07 − 0.7
D

Dt
) ≤ 1.3My 

 EQ 8.1 

Where: 

Mp = Plastic moment capacity 

My = Yield moment 

D   = Distance from top fiber of the composite section to the plastic 

moment neutral axis  

                          Dt = Total depth of the composite section 

8.1.3.1 Plastic Moment 

To calculate the plastic moment capacity, first the location of the neutral axis when the 

section bears the plastic moment should be determined. Based on the cross-section shown 

in Figure 8-1 and the details shown in Figure 8-2, the forces of each element of the section 

under plastic moment are calculated as follows: 



  

  232 

 
Figure 8-2 Rebar layout in concrete slab. 

f′c = 4.5 ksi 

Fy = 60 ksi 

Arebar =
186

6
×

π

4
× (

4

8
)

2

= 6.09 in2 

Prt = 60 × 6.09 = 365.4 kips (Top layer of rebar) 
 

P𝑐 = 0.85 × 4.5 × 186.5 × 8 = 5,707 kips  (Concrete) 
 

Prb = 60 × 6.09 = 365.4 kips  (Bottom layer of rebar) 
 

Pb = 2 × 12 × 1 × 50 ksi = 1,200 kips (Bottom flange of girder) 
 

Pw = 2 ×
78×11

16
× 50 ksi = 5,363 kips (Webs of girder) 

 

Pt =
61×5

8
× 50 ksi = 1,906 kips (Top flanges of girder) 

 

And 

Pt + Pw + Ps = 8,469 kips > Prb + Pc + Prt = 6,438 kips 
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Therefore, the neutral axis under plastic moment is located in the top flange of the 

steel girder and its distance to the top fiber of the steel girder is calculated using the 

following equation 

Y̅ =
tc

2
× (

Pt + Pw − Pc − Prt − Prb

Ps
+ 1) = 0.846 in 

 

It can also be concluded that total web depth would be in tension at plastic moment 

and so the depth of web in compression would be equal to zero: 

Dcp = 0 
 

2Dcp

tw
= 0 < 3.76√

E

Fy
 

 

So the section under consideration is compact and the nominal moment capacity is 

calculated using the EQ 8.1 and the plastic moment is calculated as follows: 

MP =
Pc

2tc
× [Y̅2 + (tc − Y̅)2] + ∑ Pidi 

EQ 8.2 

The value of the plastic moment from the previous equation will be equal to: 

MP = 381,524 kips ⋅ in 
 

8.1.3.2 Yield Moment 

To calculate the yield moment, My, the composite section, shown in Figure 8-1 is 

analyzed to find the location of the neutral axis for the elastic flexural member, and 

therefore to find the yielding moment. For the elastic analysis, the concrete material is 

transformed to its steel equivalent. The modular ratio is found as follows: 

n =
Es

Ec
=

29,000

1822√4.5
= 7.5 
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And so the equivalent width of the concrete slab and also the rebars for each girder 

will be: 

beff,conc =
186.5

7.5
= 24.87 in 

 

beff,rebar =
186.5

6
× (

π

4
× 0.52) ×

6.5

7.5
= 10.66 in 

 

The result of this elastic analysis indicates that the neutral axis and moment of 

inertia of the section will be equal to: 

Y̅top = 24.62 in 
 

Ix = 340,968 in4 
 

The steel material yield stress is equal to 50 ksi and the maximum stress capacity 

of concrete material is 4.5 ksi. Setting the values of stresses in the top fiber of the concrete 

equal to the maximum stress and in the top and bottom flanges of steel box-girder equal to 

yield stress gives three values for the moment which the minimum of those three moments 

is the yielding moment of the section. This analysis results in a yielding moment equal to 

280,217 k-in. 

My = 279,421 kips − in 
 

Based on the calculated plastic and yield moment capacities for the composite 

section, the nominal flexural capacity will be equal to  

Mn = 381,524 (1.07 − 0.7
8.846"

85.46"
) = 380,587 kips − in > 1.3My

= 1.3 × 280,217 = 364,282 kips − in 

 

Hence, 



  

  235 

Mn = 364,282 kips − in  

8.2 Linear Elastic Analysis of the Bridge 

In this redundancy analysis study, two different cases for the Ft. Lauderdale bridge 

are considered. In one case, just the first span of the bridge is studied and in the other case, 

the continuous three-span bridge is investigated. For this purpose, in addition to the 

moment capacity of the composite girder obtained in the previous section, the maximum 

moment in the girders due to dead load and HS-20 truck load using a linear elastic analysis 

is needed. 

First, the single span bridge is modeled and analyzed using SAP2000 structural 

analysis software. For live load analysis, two HS-20 trucks are placed so that the moments 

in one of the girders are maximized. In order to generate the maximum moment in one 

girder, both trucks should be placed as close to that girder as possible. The most severe 

loading condition to create the maximum moment in one of the girders is shown in Figure 

8-3. 
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Figure 8-3 Worst case scenario for HS-20 loading of the bridge. 

The results of a linear elastic analysis in SAP2000 show that the maximum flexural 

moment in the girders of the single-span bridge is equal to 34,637 kips-in. To verify the 

results of SAP2000 analysis, the maximum bending moment in the composite girders of 

the bridge is approximated by hand calculations. For this purpose, two trucks with unit 

weight are applied to a 2D model of the bridge cross-section to find the transverse 

distribution of loads between the girders. Figure 8-4 shows the point loads representing the 

truck wheels applied to the bridge deck.  
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Figure 8-4 Worst case scenario of loading for two trucks with unit weight. 

Assuming the webs of the girders act like a pin support for the concrete deck, the 

reactions of the supports are found through 2D analysis of the continuous deck.  Figure 8-5 

shows the reaction forces that are developed in the girder webs. 

 
Figure 8-5 Web reactions due to application of two trucks with unit weight. 

 

Therefore, the maximum reaction force which is developed in the right girder will 

be equal to: 
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RR = R1R + R2R = 1.252 

And it can be concluded that due to positioning of two HS-20 trucks on the bridge 

in the most severe location, 1.252 times of the weight of one of the trucks is carried by one 

of the girders. At this point, the girder should be analyzed in the longitudinal direction, so 

that the maximum moment in the girder is obtained. If the distance of the front axle of the 

truck and the support is set equal to the unknown parameter, x, maximizing the girder 

moment, which would be a function of x, shows that the value of x equal to 55 ft results in 

the maximum moment in the girder. The position of the truck, which creates the maximum 

moment is illustrated in Figure 8-6. This maximum moment is equal to 27,564 kips-in. due 

to one HS-20 truck. Based on the transverse analysis results that showed one of the girders 

may carry up to 1.252 times the truck weight, it is concluded that the maximum moment 

in the composite girders due to weight of two HS-20 trucks will be equal to 34,510 kips-

in. This maximum moment is in agreement with the maximum moment obtained from 

SAP2000 linear elastic analysis which was equal to 34,637 kips-in. Therefore, the 

maximum moment in the girders due to application of two HS-20 trucks is chosen to be 

equal to 34,637 kips-in. 

 
Figure 8-6 Position of the HS-20 truck for maximum moment in girders. 

 

The other parameter needed for the redundancy analysis of the bridge is the moment 

due to dead weight of the bridge in single span and continuous bridge and also live load 
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moment in the continuous structure. The results of SAP2000 analysis show that the dead 

load moments are equal to 83,676 and 49,780 kips-in. in single span and continuous 

bridges, respectively. The moment due to HS-20 loading in the continuous bridge is equal 

to 27,765 kips-in. With the moments produced by dead and live loads and the nominal 

moment capacity of the bridge, the only remaining part of the analysis is the nonlinear 

finite element analysis of the bridge in different limit states. 

8.3 Nonlinear Finite Element Analysis 

For redundancy analysis of the bridge, the live load capacity of the structure in three 

different limit states is required: the ultimate capacity of the undamaged bridge, the 

capacity of the damaged structure, and the capacity of the bridge corresponding to a live 

load deflection equal to the span length/100. To find these load carrying capacities, the 

single span and continuous bridges are modeled. Figure 8-7 and Figure 8-8 show the state 

of the von Mises stresses in the single-span bridge under maximum bending moment in 

undamaged and full-web cracked conditions, respectively. Figure 8-9 shows the load-

deflection curves of the single-span and three-span bridges under different conditions. 
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Figure 8-7  Von Mises stresses in single-span bridge under maximum moment, undamaged 

condition. 

 

 
Figure 8-8  Von Mises stresses in single-span bridge under maximum moment, full-web cracked 

condition. 
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Figure 8-9  Load vs. vertical deflection of single- and three-span bridges with different 

conditions. 

The live load capacities from nonlinear finite element analysis of the undamaged 

and cracked bridges in different limit states are tabulated in Table 8-1. As seen in Figure 

8-9, the Ft. Lauderdale bridge is predicted to fail in flexural mode in all the cases under the 

HS-20 loading configuration. However, it is important to note that the finite element model 

that was used to analyze the Ft. Lauderdale bridge was only calibrated in the linear range, 

plus the crushing capabilities of concrete wasn’t activated. 

Table 8-1  Live Load Capacity of the Bridge as a Multiplier of HS-20 Trucks 

 Undamaged 
Full-Web 

Cracked 

Corresponding to 

d=L/100 

Single Span Bridge 22.68 9.90 9.55 

Continuous 3-Span 

Bridge 
33.54 18.60 18.39 

 

The other factor that is studied in the finite element analyses is the effect of the 

railing. Both single- and three-span bridges in undamaged and damaged conditions are 

analyzed under live loads with and without railing. The results show that the existence of 



  

  242 

a concrete railing, integrally connected to the superstructure deck, will not change the 

capacity of the structure drastically. From the load deflection curves, it is observed that the 

ductility of the bridge is reduced due to existence of such railings. However, it should not 

be a major concern because after brittle failure of the railing at mid-span under 

compression, the bridge behavior tends to be similar to a bridge without railing. 

8.4 Redundancy Analysis 

Using the results of the linear elastic analysis for dead and live loads, the nonlinear 

finite element analysis of live load and the calculated flexural capacity of the bridge 

composite girders, the system redundancy factors of the bridge are obtained using the direct 

analysis approach. For that purpose, first the load factors recommended by NCHRP Report 

406 are evaluated as follows. 

8.4.1 Member Failure (LF1) 

Member failure limit state is a check of individual member safety using elastic 

analysis or the capacity of the structure to resist its first member failure. 

𝐿𝐹1 =
𝑅 − 𝐷

𝐿
   ←   𝐿𝑖𝑛𝑒𝑎𝑟 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

EQ 8.3 

Where: 

𝑅 = Resistance 

𝐷 = Dead load effects 

𝐿 = Live load effects 

If moment values are implemented in EQ 8.3, it will convert to: 

𝐿𝐹1 =
𝑀𝑛 − 𝑀𝐷𝐿

𝑀𝐿𝐿,2𝐻𝑆−20
   ←   𝐿𝑖𝑛𝑒𝑎𝑟 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 
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Where: 

𝑀𝑛 = Nominal moment capacity based on AASHTO LRFD 

𝑀𝐷𝐿 = Dead load moment 

𝑀𝐿𝐿,2𝐻𝑆−20 = Live load moments due to two HS-20 trucks 

For single span bridge, the 𝐿𝐹1 will be equal to: 

𝐿𝐹1,𝑠𝑖𝑛𝑔𝑙𝑒−𝑠𝑝𝑎𝑛 =
364,282 − 83,676

34,637
= 8.10    

And for the continuous three-span bridge the load factor will be equal to: 

𝐿𝐹1,𝑡ℎ𝑟𝑒𝑒−𝑠𝑝𝑎𝑛 =
364,282 − 49,780

27,780
= 11.32    

8.4.2 Ultimate Limit State (LFu) 

Ultimate limit state factor is defined as the ultimate capacity of the undamaged 

bridge system or the load required for the formation of a collapse mechanism in the bridge 

system divided by the weight of two HS-20 trucks. In mathematical format, this definition 

yields in: 

𝐿𝐹𝑢 =
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝐿𝑜𝑎𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑈𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 𝐵𝑟𝑖𝑑𝑔𝑒 𝑓𝑟𝑜𝑚 𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝐹𝐸𝐴

2 × 72 𝑘𝑖𝑝𝑠
 

EQ 8.4 

Where: 

72 𝑘𝑖𝑝𝑠 = Weight of one HS-20 Trucks 

Based on the results of the conducted finite element analysis, the capacities of the 

undamaged single-span and three-span bridges are equal to 22.68 and 33.54 time HS-20, 

respectively. Therefore, the ultimate limit state load factors for single span bridge will be 

equal to: 

𝐿𝐹𝑢,𝑠𝑖𝑛𝑔𝑙𝑒−𝑠𝑝𝑎𝑛 =
22.68 × 72 𝑘𝑖𝑝𝑠

2 × 72 𝑘𝑖𝑝𝑠
= 11.34 
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And this load factor for the three-span bridge will be: 

𝐿𝐹𝑢,𝑡ℎ𝑟𝑒𝑒−𝑠𝑝𝑎𝑛 =
33.54 × 72 𝑘𝑖𝑝𝑠

2 × 72 𝑘𝑖𝑝𝑠
= 16.77 

The redundancy reserve ratio for the undamaged condition is defined as the ratio of 

the ultimate limit state load factor and the member failure factor. This factor for the single 

span bridge will be as follows: 

𝑅𝑢,𝑠𝑖𝑛𝑔𝑙𝑒−𝑠𝑝𝑎𝑛 =
𝐿𝐹𝑢

𝐿𝐹1
=

11.34

8.10
= 1.40 > 1.30 

So, the capacity of the single span bridge in its ultimate limit state is satisfactory. 

For the three span bridge, the redundancy reserve ratio will be evaluated as follows: 

𝑅𝑢,𝑡ℎ𝑟𝑒𝑒−𝑠𝑝𝑎𝑛 =
𝐿𝐹𝑢

𝐿𝐹1
=

16.77

11.32
= 1.48 > 1.30 

Therefore, the three-span bridge is also passing the redundancy criterion in the 

undamaged condition. 

8.4.3 Damage Condition Limit State (LFd) 

Damage condition limit state is defined as the ultimate capacity of the bridge system 

after removal or cracking of one load carrying component from the structure model.  

𝐿𝐹𝑑 =
𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝐿𝑜𝑎𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝐷𝑎𝑚𝑎𝑔𝑒𝑑 𝐵𝑟𝑖𝑑𝑔𝑒

2 × 72 𝑘𝑖𝑝𝑠
 

EQ 8.5 

The limiting value for the redundancy reserve ratio in this limit state is defined as 

follows: 

𝑅𝑑 =
𝐿𝐹𝑑

𝐿𝐹1
≥ 0.50 

 

This factor and the relevant criterion for single- and three-span bridges are 

evaluated as follows: 
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𝐿𝐹𝑑,𝑠𝑖𝑛𝑔𝑙𝑒−𝑠𝑝𝑎𝑛 =
9.9 × 72 𝑘𝑖𝑝𝑠

2 × 72 𝑘𝑖𝑝𝑠
= 4.95 

𝑅𝑑,𝑠𝑖𝑛𝑔𝑙𝑒−𝑠𝑝𝑎𝑛 =
𝐿𝐹𝑑

𝐿𝐹1
=

4.95

8.10
= 0.61 > 0.50                     

𝐿𝐹𝑑,𝑡ℎ𝑟𝑒𝑒−𝑠𝑝𝑎𝑛 =
18.60 × 72 𝑘𝑖𝑝𝑠

2 × 72 𝑘𝑖𝑝𝑠
= 9.30 

𝑅𝑑,𝑡ℎ𝑟𝑒𝑒−𝑠𝑝𝑎𝑛 =
𝐿𝐹𝑑

𝐿𝐹1
=

9.30

11.32
= 0.82 > 0.50 

It is observed that both single- and three-span bridges meet the redundancy criterion 

in their damaged conditions. 

8.4.4 Functionality Limit State (LFf) 

Functionality limit state is defined as the capacity of the structure to resist a live 

load displacement in a main longitudinal member equal to the span length/100. The 

functionality limit state load factor is obtained from dividing this capacity by the weight of 

two HS-20 trucks. 

𝐿𝐹𝑓 =
𝐿𝑜𝑎𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜

𝐿
100

 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

2 × 72 𝑘𝑖𝑝𝑠
 

EQ 8.6 

And the reserve ratio criterion for this limit state is: 

𝑅𝑓 =
𝐿𝐹𝑓

𝐿𝐹1
≥ 1.10 

This factor and the relevant criterion for single- and three-span bridges are 

evaluated as follows: 

𝐿𝐹𝑓,𝑠𝑖𝑛𝑔𝑙𝑒−𝑠𝑝𝑎𝑛 =
9.55 × 72 𝑘𝑖𝑝𝑠

2 × 72 𝑘𝑖𝑝𝑠
= 4.78 

𝑅𝑓,𝑠𝑖𝑛𝑔𝑙𝑒−𝑠𝑝𝑎𝑛 =
𝐿𝐹𝑓

𝐿𝐹1
=

4.78

8.10
= 0.59 < 1.10 
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𝐿𝐹𝑓,𝑡ℎ𝑟𝑒𝑒−𝑠𝑝𝑎𝑛 =
18.39 × 72 𝑘𝑖𝑝𝑠

2 × 72 𝑘𝑖𝑝𝑠
= 9.20 

𝑅𝑓,𝑡ℎ𝑟𝑒𝑒−𝑠𝑝𝑎𝑛 =
𝐿𝐹𝑓

𝐿𝐹1
=

9.20

11.32
= 0.81 < 1.10 

      It is observed that neither single-span bridge nor three-span one meets the 

functionality redundancy criterion in their damaged condition. 

8.5 Summary 

The redundancy analysis results for the Ft Lauderdale twin steel box-girder bridge 

is summarized in Table 8-2. The results indicate that both the single-span and three-span 

bridge satisfy the redundancy criteria for the ultimate limit state and damaged limit state, 

but not for the functionality limit state. This suggests that the bridge has enough ultimate 

capacity to be classified as redundant; however, the intensive deformation that the bridge 

will experience makes the bridge unsafe to use even at loads lower than the ultimate 

capacity. The continuity was observed to improve the redundancy of the bridge 

significantly. 

Table 8-2 Summary of Redundancy Analysis Results on the Ft. Lauderdale Bridge 

Models 𝑅𝑢 =
𝐿𝐹𝑢

𝐿𝐹1
 (1.30) 𝑅𝑑 =

𝐿𝐹𝑑

𝐿𝐹1
 (0.5) 𝑅𝑓 =

𝐿𝐹𝑓

𝐿𝐹1
 (1.10) 

Simple Span 1.40  (OK) 0.61 (OK) 0.59 (NG) 

3-Span 1.48 (OK) 0.82 (OK) 0.81 (NG) 
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Chapter 9 Simplified Methods of Predicting Remaining Capacity of Damaged 

Twin Steel Box-Girder Bridges under Concentrated Loads 

As mentioned earlier in Chapter 2, FHWA and AASHTO LRFD Bridge Design 

Specifications require the redundancy of twin steel box-girder bridges to be assessed by 

means of refined finite element analysis. However, performing finite elements analysis for 

every single twin steel box-girder bridge in the inventory can be costly and time-

consuming. One of the goals of this research was to develop simplified methods that could 

provide a reasonable estimation of the remaining capacity of a damaged twin steel box-

girder bridges under concentrated loads. The simplified methods could serve as a first-level 

check in the redundancy evaluation assessment procedure that this research is aiming to 

develop eventually. 

Observations from the performed experiments from Tests A to E, except Test B, 

showed that twin steel box girder bridges subjected to concentrated loads would fail in 

either one-way or two-way shear failure mode, or a combination of both. Under four-point 

loading configuration, a damaged twin steel box-girder bridge tends to fail in one-way 

shear failure mode while under single concentrated load it tends to fail in two-way 

(punching) shear failure mode. 

Comparison of the ultimate capacities obtained from the experiment indicated that 

the punching shear failure would be the controlling mode of failure. In this chapter, both 

one-way and punching shear practice codes will be reviewed and used to predict the test 

results. Where the codes are not applicable, different methods will be proposed and 

discussed.   
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9.1 One-Way Shear Provision for Bridge Slabs 

In general, shear in reinforced concrete slabs that failed in one-way shear manner 

can be checked by two approaches. The first approach is to calculate the beam shear 

capacity over a certain effective width of the support. The second approach is to calculate 

the punching shear capacity of the slabs over the critical perimeter around the load.  

For the first approach, two beam shear provisions including BS 8110 and ACI 318-

08, will be utilized in this study to predict the shear resistance of a damaged twin steel box-

girder bridge that predominantly in one-way shear failure mode as in Test E. It should be 

noted that these shear resistance expressions are derived based on results from beam tests. 

For beams, the effective width is considered as the entire width of the beam. For the slabs, 

however, the shear resistance should not be calculated over its entire width, but over a 

certain effective width beff. Determination of the effective width beff of one-way slab under 

a concentrated load can be either a fixed width or a horizontal load spreading methods 

depending local practice. Few common load spreading methods to determine the effective 

width of slabs under single concentrated load are illustrated Figure 9-1 including (a) Dutch 

practice and (b) French practice. 

ACI 318-08 

𝑉𝐴𝐶𝐼 318−08 = 2√𝑓′
𝑐𝑏𝑒𝑓𝑓𝑑 (US units: psi and in) 

𝑉𝐴𝐶𝐼 318−08 = 0.167√𝑓′
𝑐𝑏𝑒𝑓𝑓𝑑 (SI units: MPa and mm) 

 

BS 8110 

𝑃𝐵𝑆 8110 = 7.45√100𝜌𝑓𝑐𝑢
3 √

15.75

𝑑

4
𝑏𝑒𝑓𝑓𝑑 (US units: psi and in) 

𝑃𝐵𝑆 8110 = 0.27√100𝜌𝑓𝑐𝑢
3 √

400

𝑑

4
𝑏𝑒𝑓𝑓𝑑 (SI units: MPa and mm) 
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(a) 

 
(b) 

Figure 9-1 Determination of effective width (a) assuming 45o horizontal spreading from the center of the 

load in Dutch practice, (b) assuming 45o horizontal spreading from the far corner of the load in French 

practice (Adopted from Lantsoght, 2015).  

 

When the slabs are subjected to multiple concentrated loads the effective width can 

be considered for each wheel load separately or by each axle as shown in Figure 9-2. If the 

effective width of each wheel load overlaps, it is conservative to use the effective width of 

the entire axle.  

 
(a) 

 
(b) 

Figure 9-2 The method to determine effective width (a) per load print and (b) per axle. 
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9.2 Two-Way (Punching) Shear Provision for Bridge Slabs 

Punching shear provisions from ACI 318-08 and BS 8110 will also be used to 

predict the test results in which the specimen failed in punching shear. The formulas for 

punching shear resistance of slabs for each provisions are given:  

ACI 318-08 

𝑃𝐴𝐶𝐼 = 4√𝑓′
𝑐𝑏𝑜𝑑 (US units: psi and in) 

𝑃𝐴𝐶𝐼 = 0.33√𝑓′
𝑐𝑏𝑜𝑑 (SI units: MPa and mm) 

 

BS 8110 

𝑃𝐵𝑆8110 = 7.45√100𝜌𝑓𝑐𝑢
3 √

15.75

𝑑

4
𝑏𝑜𝑑 (US units: psi and in) 

𝑃𝐵𝑆8110 = 0.27√100𝜌𝑓𝑐𝑢
3 √

400

𝑑

4
𝑏𝑜𝑑 (SI units: MPa and mm) 

 

These equations are developed for two-way slabs and derived from test results on 

slab-column connections. In ACI 318-08 provision, the punching shear stress is determined 

to be twice greater than the one-way beam shear stress. The punching shear resistance of 

the slabs, according to ACI 318-08, is calculated over a critical perimeter located at a 

distance d/2 away from the loading area. In BS 8110, the design punching shear stress is 

assumed to be the same as one-way shear stress. However, the punching shear resistance 

of the slabs is calculated over a larger critical perimeter which is located at a distance 1.5d 

from the loading area.  

However, it is important to note that the punching shear resistance of the bridge 

slabs are also dependent on the supporting condition and loading configuration. For 

instance, the ultimate punching shear capacity of the bridge specimen in ultimate Test C, 

where the load was applied over the intact girder, was significantly greater than the one 

obtained in ultimate Test D, where the load was applied over the damaged girder. Unlike 

this observation in the test results, both ACI 318-08 and BS 8110 punching shear provisions 
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resulted in similar predictions for both tests as shown in Figure 9-3. This significant 

difference between these two tests, even though they had a similar loading configuration, 

is attributed to the effects of compressive membrane action and direct load transfer which 

are currently not considered in these codes. For these reasons, both compressive membrane 

action and direct load transfer effects on the shear resistance of bridge slabs will be 

reviewed as subsequent sections. Finally, a simplified method will be proposed to take both 

effects into consideration when predicting the punching shear resistance of a damaged twin 

steel box-girder bridges. 

 
Figure 9-3 Comparison between results from Tests C and D and predictions from design 

provisions. 

 

9.3 Literature Review on Compressive Membrane Action 

Compressive membrane action (CMA) in reinforced concrete slabs occurs as a 

result of the great difference between the tensile and compressive strength of concrete. 

Once the concrete cracks, the neutral axis will migrate upward and concrete tends to move 
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outward at the edges. If this tendency of expanding outward of the slabs is restrained, CMA 

will develop as shown by thrust in Figure 9-4. As a result it will enhance the capacity of 

the slabs. The typical load versus deflection curve for a laterally restrained reinforced 

concrete slab is shown in Figure 9-5. 

 
Figure 9-4 Compressive membrane action in laterally restrained reinforced concrete slabs 

(adopted from Kirkpatrick et al. 1984). 
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Figure 9-5 Typical load vs. deflection for restrained reinforced concrete slab (adopted from 

Rankin et al. 1991). 

 

CMA effect was first recognized by Westergaard and Slater (1921) in reinforced 

concrete floors. However, this finding was not appreciated until when Ockleston (1955 and 

1958) observed this CMA effect on uniformly loaded panel of full-scale reinforced 

concrete slabs and floor beams. In these tests, ultimate load-carrying capacities were found 

to be significantly greater (two to four times) than those predicted by Johansen’s yield-line 

theory. After that extensive experimental and analytical studies on CMA effect in 

uniformly loaded reinforced concrete slabs have been carried out such as Park (1964), 

Liebenberg (1966), Gamble (1969), Christiansen (1963), Brotchie et al. (1971), Rankin et 

al. (1991) and others. Moreover, in order to investigate the effect of edge restraint on 

ultimate capacity of the slabs, several experimental and analytical studies on both rigidly 
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and elastically restrained reinforced concrete slabs under concentrated loads also have been 

carried out including Taylor and Hayes (1965), Aoki and Seki (1971), Tong and Bachelor 

(1971), Kuang and Morley (1992), Kuang and Morley (1993), Azad et al. (1994), Mufti 

and Newhook (1998), Kirkpatrick et al. (1984), Rankin and Long (1997), Taylor et al. 

(2001), Salim and Sebastian (2003, Hon et al. (2005), Zheng et al. (2010) and others. These 

studies have not only shown that the ultimate load-carrying capacity of bridge slabs under 

both uniform loading and concentrated loading increased significantly due to the CMA 

effect but also indicated that effect of CMA is dependent on the degree of lateral restraint 

of the slabs. Several of them have proposed different approaches to predict the enhanced 

punching strength of laterally restrained reinforced concrete slabs with reasonable 

accuracy. However, the elastic-plastic method developed by researchers at the Queen’s 

University at Belfast is best suited for this study because it allows for the different degree 

of lateral restraint in bridge slabs to be taken into account and is simple to use and has been 

validated with a wide range of test results. A review of major research carried out by 

Queen’s University related to effects of CMA on the shear strength of laterally restrained 

bridge deck slabs are summarized below: 

Kirkpatrick, Rankin and Long (1984) 

Kirkpatrick, Rankin and Long (1984) proposed a semi-empirical formula for 

predicting the ultimate capacity of M-beam bridge decks assuming the bridge decks were 

rigidly-restrained laterally. The maximum arching moment of resistance 𝑀𝑎𝑟 was 

expressed in term of concrete compressive strength, depth of slab and arching moment 

resistance Mr by the following equation. 
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𝑀𝑎𝑟 = 0.85𝑓′
𝑐

(
ℎ

2
)

2

×
𝑀𝑟

4
= 𝑘𝑓′𝑐ℎ2    𝑤ℎ𝑒𝑟𝑒 𝑘 =

0.21𝑀𝑟

4
 

The arching moment ratio Mr was first derived by McDowell et al. (1956) based on 

the geometry of deformation of a rigidly restrained unreinforced masonry wall constrained 

between rigid supports. The idealized geometry of deformation for rigidly restrained 

unreinforced strip and idealized stress-strain relationship for concrete is shown in Figure 

9-6. Figure 9-7 illustrates the arching moment ratio curves in term of two non-dimensional 

parameters, R and u. These two parameters are used to express the stress distribution at the 

contact areas under different span-to-depth ratio and material plastic strains and defined 

below: 

𝑅 =
𝜀𝑐𝐿𝑟

4𝑑1
2   and      𝑢 =

𝑤

2𝑑1
2  

 
(a) 

 
(b) 

Figure 9-6 (a) Idealized geometry of deformation of half span of laterally rigidly-restrained strip 

and (b) idealized stress-strain relationship of concrete. 

 



  

  256 

 
Figure 9-7 (a) Idealized geometry of deformation of half span of laterally rigidly-restrained strip 

and (b) variation of arching moment ratio with mid-span deflection. 

This McDowell et al.’s expression for Mr was taken a step further so that the need 

for prediction of the critical deflection was eliminated (Rankin (1982) and Kirkpatrick 

(1984)). In order to do that, the Mr was first differentiated with respect to parameter u and 

then solved numerically for u at a range of R less than 0.26, which is usual for bridge slabs. 

The value of u is then substituted back into the original expression of Mr. The resulting 

equation provides the maximum value of the arching moment ratio for any value of R and 

is also graphically illustrated by the red dash curve superimposed on the original arching 

moment resistance ratio curves in Figure 9-6(b). The mathematical expression for the 

maximum arching moment ratio for any value R is given: 

For R > 0.26  𝑀𝑟 =
0.3615

𝑅
 

For 0 < R < 0.26 𝑀𝑟 = 4.3 − 16.1√(3.3 × 10−4 + 0.1243𝑅) 
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Kirkpatrick et al. (1984) also proposed a design chart in Figure 9-8 in which the 

arching moment coefficient, k, was plotted in term of concrete compressive strength and 

the span to depth ratio. 

 
Figure 9-8 Curves of arching moment coefficient (k).  

Once the maximum arching moment is calculated, it is converted to an equivalent 

area of flexural reinforcement by using the following equation: 

𝜌𝑒 =
𝑘𝑓′𝑐ℎ2

240𝑑2
 

It should be noted that in the equation above, the yield strength of this equivalent 

steel reinforcement is taken as 320 N/mm2 based on a study of Long (1975), the lever arm 

of arching action is assumed to be 75% of the effective depth of the section, and the existing 

flexural reinforcement of the slabs is neglected. 

This equivalent area of reinforcement is then substituted into the following 

punching shear equation (general form) which was developed by Long (1975).  

𝑃𝑝 =
0.47

𝑟𝑓
√𝑓′

𝑐
× (𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)𝑑 × (100𝜌𝑒)0.25 
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𝑃𝑝 =
0.43

𝑟𝑓
√𝑓𝑐𝑢 × (𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟) × (100𝜌𝑒)0.25 

Where rf, a shape factor = 1.0 (circular load) or 1.15 (rectangular load). The critical 

perimeter is taken at 0.5d from the face of loaded area. 

Rankin and Long (1997) 

Rankin and Long (1997) represented their approach for the strength of laterally 

restrained slab strips. The method separates the bending and arching components of 

punching shear strength of slabs. The maximum arching moment of resistance was 

somewhat similar to one proposed by Kirkpatrick et al. (1984). However, instead of 

assuming the depth of arching section (2d1) to be the full depth of the slab, the depth of 

arching section was calculated by Christiansen’s (1963) equation by assuming the 

maximum arching moment develops after yielding of the reinforcement and the bending 

deformation necessary to cause yield can be neglected. It means some of the compression 

zone is required to balance the tensile force in the reinforcement; therefore, the depth of 

section available for arching action should be smaller than the full depth of the slab. The 

depth of section available for arching and the maximum arching moment resistance are 

given by: 

𝑑1 = ℎ − (𝜌 + �̅�)
𝑓𝑦𝑑

0.85𝑓′𝑐
 

𝑀𝑎 =  
𝑀𝑟 × 0.85𝑓′𝑐𝑑1

2

4
 

The ultimate bending moment resistance is calculated by the following equation 

which was given by Mattock et al (1961). 
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𝑀𝑏 =  𝜌𝑓𝑦𝑑2(1 −
0.59𝜌𝑓𝑦

𝑓′
𝑐

) 

 In this study, Rankin and Long (1997) also proposed a three-hinged arch approach 

so that the CMA effect can be evaluated on elastically restrained (less than rigid restrained) 

slab strips. This approach converts a shorter elastically restrained slab strip to a longer 

equivalent rigidly restrained slab strip as shown in Figure 9-9. The relationship between 

the span length of elastically-restrained slab strip and that of the equivalent rigidly-

restrained one is given by the following equation:  

𝐿𝑟 = 𝐿𝑒 × (
𝐸𝑐𝐴

𝐾𝐿𝑒
+ 1)

1/3

 

 
Figure 9-9 Analogy of three-hinged arch.  

 

Taylor, Rankin and Cleland (2002) 

In 2002, Taylor, Rankin and Cleland put all the works done related to CMA effects 

on bridge slabs together for a “Guide to Compressive Membrane Action”. In this guide, 

the ultimate shear capacity of the slabs will be determined as the lesser value between the 

flexural shear capacity and punching shear capacity. The flexural shear capacity is 
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calculated using Ranking and Long (1997) method while the punching shear capacity is 

calculated using Kirkpatrick et al.’s (1984) method. In this guide, Taylor et al. (2002) made 

few modifications to the previous methods. 

The first modification is a new stress-strain relationship that could be used for both 

normal and high strength concrete. This stress-strain relationship was first proposed by 

Taylor, Rankin, and Cleland (2001a). It is suggested that the ultimate compressive strain 

of concrete 𝜀𝑢 could be related to the cube compressive strength of concrete fcu (or 1.25 

f’c) using the following equation: 

𝜀𝑢 = 0.0043 − ((𝑓𝑐𝑢 − 60) × 2.5 × 10−6) 

The depth of the stress block is also given by: 

𝛽 = 1 − 0.003𝑓𝑐𝑢 

Moreover, Taylor (200) also proposed a restraint model where the bridge slabs’ 

lateral stiffness provided by supporting beams/girders, end diaphragms and unloaded 

portion of slab was estimated. In this restraint model, the lateral stiffness of bridge slabs is 

calculated based on the idea of effective width. It was assumed that the influence of the 

arching force was negligible after a distance equal to the effective span plus the depth of 

the slab (𝐿𝑒 + ℎ) from the face of the loaded area as shown in Figure 9-10. The effective 

width that shows the portion of a bridge deck slab being influenced by arching forces is 

illustrated in Figure 9-11. 
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Figure 9-10 Restraint model proposed by Taylor (2000). 

 

 
Figure 9-11 Effective width for slabs subjected CMA. 

Based on the definition of effective width, Taylor (2000) suggested that the edge 

beam or supporting beam is equal to a spring with equivalent stiffness that has an axial area 

described by: 

𝐴𝑏 =
𝜁𝐿𝑒𝐼𝑦𝑏

𝑏𝑒𝑓𝑓
3  
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𝜁  is a constant for support conditions of edge beam (range from 115 for simple support 

condition to 985 for fixed support condition) and it is 550 for most bridges. The average 

axial stiffness of the edge beam over the effective width was described by: 

𝐾𝑏 =
𝐴𝑏𝐸

𝐿𝑒
 

The slab outside the effective width and end diaphragms act together to resist the 

outward arching thrust. Then, the axial stiffness of these two components is cumulative 

and is calculated as follows: 

𝐾𝑑 =  
𝐴𝑠𝑙𝑎𝑏𝐸𝑠𝑙𝑎𝑏

𝐿𝑒
+

𝐴𝑑𝑖𝑎𝑝ℎ𝑟𝑎𝑔𝑚𝐸𝑑𝑖𝑎𝑝ℎ𝑟𝑎𝑔𝑚

𝐿𝑒
 

The combined flexibility of the system is found by adding each component’s 

flexibility as follows: 

1

𝐾𝑟
=  

1

𝐾𝑏
+

1

𝐾𝑑
 

With the calculated lateral restraint stiffness of the system 𝐾𝑟 assumed to be the 

same for the entire effective width, the Rankin and Long‘s (1997) method now can be 

applied directly. Using this method, the bridge slab can be converted to an equivalent 

rigidly-restrained slab strip and the flexural punching capacity of the bridge slab can be 

calculated as suggested in the procedure.  

Lastly, Taylor suggests the effect of existing flexural reinforcement that was 

neglected in Kirkpatrick et al.’s (1984) method should be included. The equivalent area of 

reinforcement due to both bending and arching actions is estimated using the following 

equation: 
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𝜌𝑒 = (𝜌𝑎 + 𝜌) × (
𝑓𝑦

320
) = (

𝑀𝑎 + 𝑀𝑏

𝑀𝑏
) × (

𝑓𝑦

320
) × 𝜌 

Once the equivalent area of steel reinforcement is determined, the punching shear 

capacity of the bridge slab can be calculated using the same equation that was previously 

reported by Long (1975). 

Complete Queen’s University Method for Predicting Punching Shear Capacity of 

Bridge Slabs under CMA effect 

The complete procedure to calculate the flexural and shear punching strengths of 

laterally restrained slabs is summarized in the following flow chart and the equations (in 

SI units: MPa and m) needed for each step are presented as follows: 

1. Effective width of loaded slab: 

𝐿𝑒 =
𝐿

2
−

𝑐𝑥

2
  

𝑏𝑒𝑓𝑓 = 𝑐𝑦 + 2𝐿𝑒 + 2ℎ  

2. Stiffness parameters: 

𝐸𝑐 = 4.23𝑓𝑐𝑢
0.5  

𝐾𝑠 =
𝐸𝑐𝐴𝑠𝑙

𝐿𝑒
 where 𝐴𝑠𝑙 = ℎ × 𝑏𝑒𝑓𝑓 

𝐼𝑦𝑏 =
𝐵𝐷3

12
 or transformed I-beam 

𝐴𝑏 =
𝜁𝐿𝑒𝐼𝑦𝑏

𝑏𝑒𝑓𝑓
3   

𝐾𝑏 =
𝐴𝑏𝐸𝑐

𝐿𝑒
 (axial stiffness of supporting beam) 

𝐴𝑑 = area of diaphragms + area of slab outside the effective width 

𝐾𝑑 =  ∑
𝐴𝑑𝐸𝑑

𝐿𝑒
 (axial stiffness of unloaded deck portion and end diaphragms) 

𝐾𝑟 =
1

1

𝐾𝑏
+

1

𝐾𝑑

 (total lateral stiffness of the system) 

3. Bending capacity: 

Depth of stress block, 𝛽 = 1 − 0.003𝑓𝑐𝑢 but < 0.9 

Depth of neutral axis, 𝑥 =
𝑓𝑦𝐴𝑠

0.67𝑓𝑐𝑢𝛽𝑏𝑒𝑓𝑓
 

Lever arm, 𝑧 = 𝑑 − 0.5𝛽𝑥 

𝑀𝑏 = 𝑓𝑦𝐴𝑠𝑧  

𝑃𝑏 = 𝑘𝑏𝑀𝑏  
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4. Arching section: 

𝑑1 =
(ℎ−2𝛽𝑥)

2
   where 𝑑1 is half of depth of arching section. 

 Assume 𝛼 = 1 for the first iteration, where 𝛼 is a proportion of half depth of arching 

action in contact with the lateral restraint. 

5. Affine Strip: 

𝐴 =  𝛼𝑏𝑒𝑓𝑓𝑑1  

𝐿𝑟 =  𝐿𝑒 √(
𝐸𝑐𝐴

𝐾𝑟𝐿𝑒
+ 1)

3
  

6. Arching parameters: 

𝜀𝑢 = 0.0043 − ((𝑓𝑐𝑢 − 60) × 2.5 × 10−5) but < 0.0043 

𝜀𝑐 = 2𝜀𝑢(1 − 𝛽)  

𝑅 =
𝜀𝑐𝐿𝑟

2

4𝑑1
2   

7. Deformation: 

𝑅 > 0.26 ∶ 𝑢 = 0.31 (Constant) 

0 < 𝑅 < 0.26 ∶ 𝑢 = −0.15 + 0.36√0.18 + 5.6𝑅  

8. Contact depth: 

𝛼 = 1 −
𝑢

2
  

Use 𝛼𝑑1 for refined arching section above until value remains constant 

9. Arching capacity: 

𝑅 > 0.26 ∶  𝑀𝑟 =
0.3615

𝑅
  

 0 < 𝑅 < 0.26 ∶ 𝑀𝑟 = 4.3 − 16.1√3.3 × 10−4 + 0.1243𝑅  

𝑀𝑎 = 0.168𝑏𝑒𝑓𝑓𝑓𝑐𝑢𝑑1
2𝑀𝑟 (

𝐿𝑒

𝐿𝑟
)  

𝑃𝑎 =  𝑘𝑎𝑀𝑎  

10. Flexural punching capacity: 

𝑃𝑝𝑓 = 𝑃𝑎 + 𝑃𝑏  

11. Shear punching capacity: 

𝜌𝑒 = (𝜌𝑎 + 𝜌) (
𝑓𝑦

320
) = (

𝑀𝑎+𝑀𝑏

𝑀𝑏
) (

𝑓𝑦

320
) 𝜌  

𝑃𝑝𝑣 =
0.43

𝑟𝑓
√𝑓𝑐𝑢(𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)𝑑(100𝜌𝑒)0.25  

12. Ultimate Capacity: 

𝑃𝑝_𝐶𝑀𝐴 = min(𝑃𝑝𝑓 , 𝑃𝑝𝑣)  
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9.4 Literature Review on Direct Load Transfer 

This effect was first recognized from beam shear tests (Kani, 1964) when the shear 

resistance of the beam will increase significantly when the load is applied close to the 

support as the shear span-to-depth ratio (a/d) less than 2.5. This effect is due to the 

formation of a direct compression strut between the load and the support. As the strut 

becomes steeper, the load-carrying capacity of the compression strut will increase, hence 
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will increase the shear resistance of the beam. For slabs, this is called direct transfer effect. 

While for beams, only one straight strut develops over the distance, a, as shown in Figure 

9-12, in slabs, a fan of strut can develop as illustrated in Figure 9-14 (b). It means that 

under the same distance, a, from the center of load to the center of support, the average 

shear span-to-depth ratio (a/d) , in slabs, is larger than what it has in beams. Therefore, a/d 

will have smaller influence on the shear resistance of the slab than it has on the beam.  

 
Figure 9-12 Formation of direct compression strut in beam. 

Back to the experiments performed in this study, in addition to the CMA effect, the 

direct load transfer effect was also believed to be responsible for the enhancement in the 

punching shear capacity of the tested specimen. Particularly for Tests C and D, the load 

was applied so close to the top flanges and the webs of the box-girder with a/d of 1.75. 

Therefore, a certain amount of the applied load might be transferred directly the girder top 

flanges; hence, increased the punching shear resistance of the specimen. 

Although most of empirical methods that were developed to predict the shear 

resistance of slabs subjected concentrated loads close to supports were based on studies on 

Top View 
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one-way slabs, the method that was proposed by Regan (1982) could be extended easily 

for two-way slabs. Regan’s method also has been found to give very close predictions to 

the experimental data for one-way slabs (Lantsoght, 2013). This approach also been 

implemented in many practice codes such as such as British punching shear provision and 

EN 1992-1-:2000. For instance, BS 8110 shear provision allows the enhancement of shear 

resistance of beam section, when subjected to concentrated loads with shear span-to-depth 

ratio (a/d) less than 2.5, to be taken into account by multiplying the design shear stress, 𝑣𝑐, 

of the beam by 2d/av. For a slab, BS 8110 also allows the shear stress to increase by a factor 

of 1.5d/av when it is desired to check perimeters closer to the loaded area than 1.5d.   The 

review of Regan’s method is provided in below. 

Regan’s Method to Account for Direct Load Transfer Effect (1982) 

Regan (1982) developed a method to predict punching shear resistance of 

reinforced concrete one-way slabs under concentrated load near the supports. This method 

is based on the critical perimeter around the concentrated load and takes into account the 

clear span distance (𝑎𝑣) between the face of the support to the face of the load.  This method 

is summarized as follows:  

1) A critical perimeter around the concentrated load is selected at a distance of 

1.5d from the periphery of the load as shown in Figure 1. 

2) For any part of the critical perimeter which is parallel to the support and has 

clear span distance, av, less than 1.5d as illustrated by the part u2 of the perimeter 

in Figure 2. Its shear resistance is multiplied by a shear span factor of 
2𝑑

𝑎𝑣
 as 

follows: 
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𝑃𝑅2 = (
2𝑑

𝑎𝑣
)𝜉𝑠𝑣𝑐𝑢2𝑑 <

√𝑓𝑐𝑢 

𝛾𝑚
𝑢2𝑑 

Where                 𝜉𝑠 =  √
500

𝑑

4
 

            𝑣𝑐 =
0.27

𝛾𝑚
√100𝜌𝑓𝑐𝑢 3

 

It is important to note that the shear resistance For the remainder ∑ 𝑢 =u1 of the 

perimeter, the punching shear resistance is calculated as follows: 𝑃𝑅1 = ∑ 𝜉𝑠𝑣𝑐𝑢1𝑑 

For each part of the calculation, the local values of the effective depth d (dt for 

transverse reinforcement and dl for and the ratio of flexural reinforcement 𝜌 (𝜌𝑡 for the 

transverse reinforcement and 𝜌𝑙 for the flexural reinforcement). The total punching shear 

resistance is given by: 𝑃𝑅 =  𝑃𝑅1 +  𝑃𝑅2 

 
 

 
Figure 9-13 Subdivision of perimeter and slab properties to be used for parts of perimeter: (a) 

for 2d1> av > 1.5d1; (b) for av < 1.5d1 (Adopted from Lantsoght (2013) based on Regan (1982)). 
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9.5 Methods for Predicting Punching Shear Capacity of Damaged Twin Steel Box-

Girder under Single Concentrated Load 

The experimental results have shown that under single concentrated load, the 

punching shear is likely to be the governing failure mode for twin steel box-girder bridges. 

However, current punching shear provisions seems to be inadequate in predicting the 

punching shear resistance of the bridge specimens in this study. It was because the effects 

of CMA and direct load transfer are not considered in these punching shear provisions. 

Although several methods have been proposed to capture these effects on the shear 

resistance of bridge slabs separately (Sections 9.3 and 0), there is a need to develop a simple 

and versatile approach that could take these effects into consideration. Moreover, this study 

will also propose a new shear span factor that can adequately capture the direct load transfer 

effect in two-way slabs. 

9.5.1 Proposed New Shear Span Factor for Two-Way Slabs Subjected to 

Concentrated Load 

Due to the presence of diaphragms, external cross-frames connecting two box-

girders and internal cross-frames connecting the webs of the box-girder together, the bridge 

slabs should be considered as a two-way slabs. Since two-way slabs are restrained in both 

longitudinal and transverse directions, the fan of compression struts should form with a 

larger angle than it does in one-way slab as illustrated in Figure 9-14. This results in a 

larger average a/d and therefore, the influence of a/d will be smaller in two-way slabs than 

in one-way slabs. However, in two-way slabs, the influence of a/d on the shear resistance 

of a two-way slab should exist in a larger range of a/d. For these reasons, the shear span 

factor which was proposed for one-way slabs by Regan (1982) and is being adopted in BS 
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8110 shear provision should be modified. In general the effect of direct load transfer is 

expressed in term of clear shear span to effective depth ratio, av/d as in Regan’s method 

(1982) and BS 8110 or EN 1992-1-1:2005 shear provisions. 

 
(a) 

 
(b) 

Figure 9-14: Schematic drawings of strut formation in (a) one-way and (b) two-way slabs. 

 

In order to investigate the direct load transfer effect occurred in Tests C and D, two 

series of nonlinear finite element analyses was performed using the experimentally 

validated and calibrated 3D finite element model. The load was applied through a 10x10-

in. loading pad as in the experiments. In the first series of FE analysis, the effect of direct 

load transfer effect on the shear resistance of bridge slabs over the intact girder will be 



  

  271 

investigated by varying the clear shear span, av, as shown in Figure 9-15 (a) until no further 

increase in the slabs’ capacity is observed. Similarly, in the second series of the analysis 

the effect of direct load transfer on the shear resistance of bridge slabs over the damaged 

girder will be investigated by varying the clear shear span, av, as shown in Figure 9-15 (b) 

until no further increase in the slabs’ capacity is observed. The analysis results from these 

two series of analysis are expected to not only show the relationship between the influence 

of av/d and the punching shear capacity of the slab but also reveal how the fracture damage 

affects the influence of av/d and the punching shear capacity of the slab. It should be noted 

that the clear shear span is determined as a distance from face of the load area to the interior 

face of the closest top flange and the effective depth, d, of the slab of the tested specimens 

was 4 in. Then in each finite element analysis, the ultimate load-carrying capacity and load 

distribution at the critical perimeter determined at 0.5d distance from the face of loaded 

area will be investigated.  



  

  272 

 
(a) 

 
(b) 

Figure 9-15 Approaches of investigating the direct load transfer effects for bridge slabs subjected 

to concentrated load over (a) the intact girder and (b) the damaged girder. 

 

Shear Span Factor for Bridge Slab Portion over the Intact Girder of Twin Steel Box-

Girder Bridge 

In this first series of analysis, the load was applied through a 10-in.-square loading 

pad placed at the center of the intact girder with a clear shear span distance, 𝑎𝑣 increasing 

from 1.125d to 6.25d. The influence of clear shear span distance, 𝑎𝑣, on shear resistance 

of bridge slab portion over the intact girder is summarized in Table 9-1.  The results clearly 

show that as the distance between the load and the top flange increases, the ultimate 

punching shear capacity of the specimen decreases.  

Especially, when 𝑎𝑣 distance increases from 1.125d to 4d, the capacity of the slab 

decreases significantly from 172 kips to 124 kips. As seen in the fourth column in Table 
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9-1, the decrease in the ultimate capacity of the specimen was due to the decrease of shear 

resistance of slabs along the parts of the critical perimeter that are parallel and close to the 

top flanges of the girder. As the 𝑎𝑣 distance increases from 1.125d to 6.25d, the shear 

resistance of the slab along these parts decreases from 52 kips to 30 kips. In contrast, the 

shear resistance of the slab along the parts of the critical perimeter that are perpendicular 

with the top flanges decreases slightly from 36 kips to 30 kips. Since that the distance 

between the face of the load and the internal cross-frame of the box-girder, remains 

constant and very large in these analysis and in the tests, the direct load transfer effect in 

longitudinal direction should be zero. It suggests that this decrease from 36 kips to 30 kips 

could be due to the influence of the clear shear span distance onto the shear resistance of 

the parts of the critical perimeter that are perpendicular to the top flanges. In a graphical 

explanation, the fan of struts, which is developed due to the load is applied close to the top 

flange, crosses with the parts of the critical perimeter that are perpendicular to the top 

flanges. A further study might be necessary to investigate how the clear shear span distance 

influences the shear resistance of the slabs along parts of the critical perimeter that are 

perpendicular to the supports. Different parameters such as reinforcement ratio, concrete 

strength, the ratio of clear shear span distance in one direction to clear shear span distance 

in other direction might be considered. In this study, it is conservative to consider only the 

influence of av/d on the shear resistance of the parts of the critical perimeters that are 

parallel and close to the top flanges.  

When the 𝑎𝑣 distance increases from 4d to 6.25d the punching shear capacity of the 

slab decreases only 2 kips. The shear resistance of the slabs are along the critical perimeter 
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are observed to be quite similar and uniform along the critical perimeter for these analysis. 

It is important to note that punching shear is still the mode of failure in all of analyses. 

Based on the analysis results, a relationship between the shear resistance along parts 

of the critical perimeter that are parallel and close to the top flanges and the clear shear 

span distance 𝑎𝑣 is proposed through a shear span factor defined as 𝜔. By selecting 𝑎𝑣 =

6.25𝑑 as a base-line model where the shear resistance of slabs are not influenced by the 

distance 𝑎𝑣, the shear span factor 𝜔 for each distance 𝑎𝑣 can be calculated by taking 

average load carried by parts of the critical perimeter that are parallel and close to the top 

flanges divided by the shear resistance of the slab that are parallel and close to the top 

flanges obtained from the base-line mode. The shear span factor for each value of 𝑎𝑣 is 

reported in the last column in Table 9-1. With the calculated shear span factor for each 

value of 𝑎𝑣, the suggested relationship between the shear span factor, 𝜔, and 𝑎𝑣 is 

illustrated in Figure 9-16. In fact, in Figure 9-16 the shear span factor is plotted in term of 

𝑎𝑣/4𝑑 because the punching shear capacity of the slab is observed to be almost the same 

when 𝑎𝑣 greater than 4d as discussed above. By fitting these data, equations for predicting 

shear span factors for two-way slabs are given below. These equation limits the maximum 

shear span factor to be 2. 

For 𝑎𝑣 ≤ 4𝑑   𝜓 = 2 −
𝑎𝑣

4𝑑
      

For 𝑎𝑣 > 4𝑑   𝜓 = 1 
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Table 9-1 Influence of av/d on Shear Resistance of Bridge Slab Portion over Intact Girder 

𝑎𝑣 (in.) 
𝑎𝑣

𝑑
 𝑃𝑢 (kips) Load Distribution at Critical Perimeter Shear Span Factor, Ψ 

4.5 1.125 172 

 

1.69 

8 2 169 

 

1.59 

9.5 2.375 161 

 

1.48 

12 3 155 

 

1.36 

 

14.5 3.625 136 

 

1.11 

16 4 124 

 

1.03 

25 6.25 122 

 

1.0 
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Figure 9-16 Shear span factor for slab portion over the intact girder. 

 

Shear Span Factor for Bridge Slab Portion over the Damaged Girder of Twin Steel 

Box-Girder Bridge 

In the second series of finite element analysis, the influence of clear shear span 

distance, 𝑎𝑣, on shear resistance of bridge slab portion over the damaged girder will be 

investigated. Similar to the first series of analysis, the clear shear span distance, 𝑎𝑣 will be 

varying from 1.125d to 6.25d with the load is applied at the center of the damaged girder 

through 10x10-in. loading pad. The analysis results are summarized in Table 9-2. As 𝑎𝑣 

decreases from 4.5 in. to 8 in., the ultimate load-carrying capacity of the slabs decreases 

15 kips. However, for further increase in 𝑎𝑣 the decrease in the ultimate punching shear 

capacity of the bridge slab is very small. The results also show that the load is distributed 

quite uniformly around the critical perimeter for this range of 𝑎𝑣 considered in the analysis. 

Overall, the influence of  
𝑎𝑣

𝑑
 or direct load transfer effect on shear resistant of the slabs over 

the damaged girder along the critical perimeter is negligible. It could be due to the fact that 
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the flexural stiffness of the damage girder at this particular location is insignificant which 

eventually prevents compression struts to be developed. Therefore, the punching shear 

resistance of the bridge slabs over the damaged girder at the fracture location could be 

conservatively assumed to be constant for all range of 𝑎𝑣. The suggested relationship 

between shear span factor ψ and 
𝑎𝑣

4𝑑
 is shown in Figure 9-17. As explained, this relationship 

shows that the shear span factor 𝜔 can be assumed to be 1 when the load is applied over 

the damaged girder regardless how close the load is applied to the top flanges. It should be 

noted that this proposed shear span factor is only applicable when the load is applied over 

the fractured location. When the load is applied over the damaged girder but far away from 

the fracture location, the direct compression struts can develop and the shear resistance of 

the slabs can be increased significantly even to the extent that is observed in the intact 

girder. 
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Table 9-2 Influence of av/d on Shear Resistance of Bridge Slab Portion over Damaged Girder 

𝑎𝑣 (in.) 
𝑎𝑣

𝑑
 𝑃𝑢 (kips) Load Distribution at Critical Perimeter Shear Span Factor, Ψ 

4.5 1.125 104 

 

1.27 

8 2 88 

 

0.98 

9.5 2.375 89 

 

1.09 

12 3 88 

 

1.07 

14.5 3.625 86 

 

0.95 

16 4 86 

 

1.0 

25 6.25 85 

 

1.0 
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Figure 9-17 Shear span factor for slab portion over the damaged girder. 

 

9.5.2 Proposed Method for Predicting Punching Shear Resistance of Bridge Slabs 

under CMA and Direct Load Transfer Effects 

Even though the shear span factor is now developed, there is still a need to develop 

a simple and versatile method that could take both CMA and direct load transfer effects 

into consideration when predicting punching shear resistance of bridge slabs. For this 

reason, the proposed shear span factor will be incorporated into Queen’s University method 

which is summarized previously in Section 9.3. Combining this Queen’s University 

method with the proposed shear span factor, both effects of CMA and direct load transfer 

can be both captured. The incorporating process can be done as following: 1) Assuming 

the punching capacity of the slabs calculated from Step 12 in Queen’s University approach 

is distributed uniformly along the critical perimeter, 2) Calculate the load carried by each 

part of the critical perimeter, 3) For any part of the critical perimeter that is close and 

parallel to the support, the load will be multiplied by the proposed shear span factor 𝜓, 4) 
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Finally, the final ultimate punching capacity of the slab is the summation of the load carried 

by all parts of the critical perimeter. The modifications to the method developed by Queen’s 

University is expressed below. 

Step 12: Ultimate Capacity 

𝑃𝑝_𝐶𝑀𝐴 = min(𝑃𝑝𝑓 , 𝑃𝑝𝑣)  

Assuming the punching capacity of the slabs considering only CMA effects is 

uniformly distributed along the critical perimeter. 

For any part of the critical perimeter that parallel and close to the supporting 

girder’s top flange. 

𝑃𝑢2 = 𝑢2 ×
𝑃𝑝_𝐶𝑀𝐴

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
× 𝜔    

Where 𝜓 = 2 −
𝑎𝑣

4𝑑
  For 𝑎𝑣 ≤ 4𝑑 

             𝜓 = 1  For 𝑎𝑣 > 4𝑑  

𝑢2 is the length of the part of critical perimeter that parallel and close to the top flanges 

For the remaining parts of the critical perimeter 

𝑃𝑢1 = 𝑢1 ×
𝑃𝑝_𝐶𝑀𝐴

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
    

𝑢1 is the length of the part of critical perimeter that parallel and close to the top flanges 

The final ultimate punching capacity is given by: 

𝑃𝑝 =  𝑃𝑢1 +  𝑃𝑢2    

If the supporting girder is fully fractured, the effects of CMA and direct load 

transfer can be neglected at the fracture location as explained previously. The arching 

moment resistance of the slabs can be assume to be zero and then the calculations from 

Steps 4 to 9 can be skipped and the shear span factor can be taken as 1 for all range of 𝑎𝑣. 
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9.6 Methods for Predicting Shear Capacity of Damaged Twin Steel Box-Girder 

under Four Concentrated Loads 

As illustrated by the Test E results, under four concentrated loads that were used to 

represent a truck load, the damaged twin steel box-girder bridge specimen had its slab 

failed predominantly in one-way failure mode. As discussed previously, the shear 

resistance of the bridge slabs failing in one-way shear in general could be predicted by 

checking beam shear capacity of the slab over a certain effective width of the support and 

calculating the punching shear capacity of the slab over the critical perimeter around the 

load. In this section, procedure for using each approach will be discussed and the test results 

will be compared with the prediction values from both approaches in Section 9.7.2. 

In the first approach, the beam shear provisions ACI 318-08 and BS 8110 will be 

utilized in combination with shear span factor and effective widths. The shear span factors 

that was proposed by Regan and is proposed in this study will be incorporated into these 

provisions to account for the enhancement of shear resistance of the slabs with loads close 

to the supports. The effective widths will be determined from two horizontal load spreading 

methods. The first method (Dutch practice) determines the effective width, beff1, assuming 

45o horizontal load spreading from the center of the load as shown in Figure 9-1 (a). The 

effective width, beff2, determined in the second method (French practice) is assumed to 

have 45o horizontal load spreading from the far side of the load. An example showing how 

to determine the effective width for each concentrated load with French method of 

horizontal load spreading is shown in Figure 9-18. As mentioned earlier, if the effective 
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width of each load overlaps, the effective width of the entire axle will be used to be 

conservative. 

 
Figure 9-18 Determination of effective width using French horizontal load spreading. 

 

In the second approach, the method proposed earlier for predicting the punching 

the shear resistance of the slab under single concentrated load will be used to check the 

punching shear capacity of the slabs at the critical perimeter around the load. However, the 

critical perimeter will not be taken as a full rectangular but instead only half of the 

perimeter will be used. As shown in Figure 9-19, it shows that unlike other tests with single 
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concentrated load, the load is not distributed uniformly under each loading pad when four 

concentrated loads are applied in the configuration that was used in Test E. In fact, the load 

is distributed over only one half of the loading pad toward to the supports. The other half 

of the loading pad that is closer to the fractured location showed uplift with negative 

reaction. It is because concave-down deflection profile of the damaged girder and this 

causes the deflection at one side of the loading pad is greater than the deflection at the other 

side of the pad. In addition, the loading beams on the top of the loading pads are so stiff so 

that they remained nearly straight during the test; therefore, the load was mainly applied to 

the further edge of the loading pad as illustrated by the blue line in Figure 9-20. For these 

reasons, the critical perimeter will be also taken as one-half of the original critical 

perimeter. 

 
(a) 

 
(b) 

Figure 9-19 Load distribution (a) under 4-point loading and (b) single concentrated loading 

configuration. 
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(a) 

Figure 9-20 Deflection of the specimen under 4-point loading configuration. 

 

9.7 Comparisons between Predictions and Experimental Results for Damaged 

Twin Steel Box-Girder under Single Concentrated Load 

In this section, comparisons between the experimental results and the predicting 

values from different methods will be provided and discussed. It should be noted that only 

the results from Tests A, C, D and E will considered. Test B in this experimental program 

basically was a flexural test and the capacity of the specimen in this test could be predicted 

by simply calculating the plastic moment of the composite section of a half of bridge 

specimen as explained previously. All of the comparisons are made based on the measured 
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mean material properties and all safety factors are assumed to be 1. Where the properties 

are not measured, the data provided from manufactures will be used. 

9.7.1 Under Single Concentrated Load – Tests A, C, and D 

Although in ultimate Test A the specimen had a complex failure/damage sequence, 

the punching shear damage in the concrete deck around the loading pad was the major 

cause for the largest drop in the load-deflection curve when the specimen reached its 

maximum load-carrying capacity at 156 kips. It should be noted that the specimen was 

loaded over the entire width of the damaged girder. Therefore, the compression struts didn’t 

develop, and therefore the effect of direct load transfer was neglected. As a result, the shear 

span factor is taken as 1 in the comparison. Moreover, the damaged girder was observed to 

response as two cantilevers joining by a hinge and experienced a concave down deflection 

shape which suggested the majority of the top of bridge slab portion over the damaged 

girder was in tension. Therefore the effect of CMA can be neglected as well. As both effects 

are neglected, the proposed method will turn into the simple punching shear equation that 

was developed by Long (1975). The predicted values from ACI 318, BS 8110 punching 

shear provisions and the proposed method were 150, 120 and 164 kips respectively while 

the test result was 156 kips. The ratios between the predicted values to the experimental 

results are shown in Table 9-3. Among all the methods, BS 8110 was the most conservative 

one. Both ACI 318-08 and the proposed method resulted in good agreements with the 

experimental result with less than 5% of difference. 

For ultimate Test C, the punching shear capacities of the specimen predicted from 

the codes are highly conservative. The experimental result is more than two times greater 



  

  286 

than the predictions obtained from the codes. However, ACI 318-08 is the most 

conservative one because it doesn’t include both effects of CMA and direct load transfer 

in consideration and predicts only inclined cracking load instead of an ultimate load in 

shear. As mentioned earlier, ACI 318-08 recommends to use nonlinear strut-and-tie model 

for slabs with loads applied close to the supports. The BS 8110 provision with direct load 

transfer effect taken into consideration provides better prediction than the ACI 318-08 

provision but still highly conservative. It is because the CMA effect is not taken into 

account and the shear span factor that is recommended in BS 8110 for slabs is the lower 

bound value compared to those recommended by Regan (1982). The proposed method with 

both effects taken into consideration provides the closest estimate. The ratio between the 

predicted value from the proposed method and the test value was 0.86.  

For Test D, ACI 318-08 and BS 8110 punching shear provisions and the proposed 

method provides good estimates of the experimental result. The ratios between the 

predicted values and the experimental result is 0.92, 0.90 and 1.07 respectively for ACI 

318-08, BS 8110 and the proposed method. Both code provisions result in slightly smaller 

values than the proposed method. It is because Long’s equation in the proposed method 

allows slightly greater shear stress to be developed around the critical perimeter. However, 

it should be noted that Test D was conducted after Test C on the same specimen without 

any repair, any damage and residual deformation inherited from Test C could have an 

influence on the results of Test D. Therefore the punching shear capacity of the slab in Test 

D predicted from finite element analysis could be used as another reference data. 

Comparing between Test A and Test D, ACI 318-08 provision seems to have a better 

accuracy than BS 8110 provision.   
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Table 9-3  Comparison between Test Results and Predicting Methods. 

 

Loading 

Area    

(in. x in.) 

Loading 

Location 
𝜌 (%) 

𝑓′
𝑐 

(ksi) 

PExp 

(kip) 
PACI/PExp PBS 8110/PExp  PP/PExp  

Test A 9x36  DG 0.9 7.8 156 0.96 0.77 1.05 

Test C 10x10 IG 0.9 7.2 180 0.43 0.49 0.86 

Test D 10x10 DG 0.9 7.2 83 0.92 0.90 1.07 

 

Another comparison between predictions from the proposed method and data 

obtained from punching shear tests on steel girder bridge performed by Kathol et al. (1995) 

is shown in Table 9-4. The proposed method results in good agreement with the test data. 

The ratio between the predicted values and the test values is 0.95 on average with 0.09 

standard deviation.  

Table 9-4 Comparison of between Punching Shear Test Results (Kathol et al., 1995) and the 

Proposed Method’s Predictions. 

Tests 
Loading 

Area 
av (in.) av/4d 

𝑃𝐴𝑧𝑖𝑧𝑖𝑛𝑎𝑚𝑖𝑛𝑖  
(kip) 

𝑃𝑝 

(kip) 
𝑃𝑝/𝑃𝐴𝑧𝑖𝑧𝑖𝑛𝑎𝑚𝑖𝑛𝑖 

UT 20x8 21.5 0.83 129 137 1.06 

PS1 10x4 26.5 1.02 156 128 0.82 

PS2 10x4 26.5 1.02 122 128 1.04 

PS3 10x4 26.5 1.02 147 128 0.87 

PS4 10x4 26.5 1.02 132 128 0.97 

    Average 0.95 

    Standard Deviation 0.09 

 

9.7.2 Under Four Concentrated Loads – Test E 

The comparisons between predicted values utilizing beam shear capacity approach 

over an effective width and the test results are provided in Table 9-5. It should be noted 

that the effective width beff1 is determined assuming 45o load spreading from the center of 

the loading pad (Dutch method) while the effective width beff2 is determined assuming 45o 

load spreading from the far side of the loading pad (French method). Since the Dutch 
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method results to smaller effective widths than the French method does as shown in Figure 

9-21; the predictions using beff1 are more conservative than those using beff2. In fact, the 

total effective width determined by assuming 45o horizontal load spreading from the center 

of the load is 88 in. This is approximately 52% smaller than the effective width determined 

by French method of horizontal load spreading (168 in.). The comparison between Figure 

9-21 and Figure 9-22 indicates that the effective width determined by the French method 

of horizontal spreading is in a good agreement with the finite element results.  

 
(a) 

 
(b) 

Figure 9-21 Effective width determined (a) assuming 45o horizontal spreading from the center 

of the load, (b) assuming 45o horizontal spreading from the far corner of the load. 
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Figure 9-22 Shear stress in the slab along the main span of the bridge specimen. 

 

Similar to punching shear provisions, the ACI 318-08 beam shear provision seems 

to lead to more conservative predictions than the BS 8110 provision. It was because the 

ACI 318-08 has lower design beam shear stress than BS 8110 does. As discussed 

previously the one-way shear expression in ACI 318-08 provision was developed based on 

the inclined cracking load of concrete. Both shear provisions when is used in combination 

with beff2 results in less conservative predictions than using beff1. A combination of BS 8110 

shear provision with beff2 and the proposed shear span factor (𝜔proposed) results in a closest 

prediction with 3% less than the test result. The most conservative prediction is the 

combination of ACI 318-08 shear provision with beff1 and Regan’s shear span factor 

(𝜔Regan) with 65% smaller than the test value.  

Although both shear span factors, when incorporated, improved the predicted 

capacity, 𝜔proposed results in better correlation with the test and finite element analysis 

results. While the factor, 𝜔Regan, increases the shear resistance of the slab along the top 
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flange of the intact girder and the damaged girder by 15% and 78%, respectively, these 

numbers are 56% and 72% when using 𝜔proposed. Comparison between the shear stress 

distributions along the intact girder and damaged girder and the design beam shear stresses 

suggested ACI 318-08 and BS 8110, the factor proposed by Regan for one-way slab seems 

to underestimate the enhancement of the shear resistance of the slab along the top flange 

of the intact girder as compared with the shear span factor proposed in this study (Figure 

9-22). The main difference between these shear span factors was already explained 

previously in Figure 9-14. It should be noted that the comparison results reported in Table 

9-5 were calculated by magnifying the design code beam shear stress by the shear span 

factors throughout the entire effective width. In general, the predictions using the proposed 

shear span factor are 14% greater than the predictions using the Regan’s factor; therefore 

are less conservative and closer to the test values.  

Table 9-5 Comparison of between Test E and Predictions Using Beam Shear 

Approach. 

 

Predictions using one-way shear approach with effective width 

(kips) 

Vexp 

(kips) 

VFEA 

(kips) 

beff1, 

ACI, 

𝜔Regan 

beff1, 

BS, 

𝜔Regan 

beff1, 

ACI, 

𝜔proposed 

beff1, 

BS,  

𝜔proposed 

beff2, 

ACI, 

𝜔Regan 

beff2, 

BS, 

𝜔Regan 

beff2, 

ACI, 

𝜔proposed 

beff2, 

BS,  

𝜔proposed 

235 262 82 103 95 118 163 202 184 229 

 

As mentioned earlier, another way to predict the shear resistance of a slab failing 

in one-way shear manner is calculating the punching shear capacity over the critical 

perimeter around load. By using the modified critical perimeter which is only one half of 

the original critical perimeter, the proposed method with the new shear span factor 
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incorporated along the critical perimeter, in Section 9.5, results in a predicted value of 234 

kips. The predictions when using ACI 318-08 and BS 8110 punching shear provisions with 

the modified critical perimeter and without the shear span factor is 152 kips and 149 kips, 

respectively. These predictions indicate that these current shear provisions are highly 

conservative when the enhancement of shear resistance of the slabs due to the direct load 

transfer effect is not taken into account. When these provisions are used in combination 

with the shear span factor 𝜔proposed, they results in better predictions with the ratios between 

the code predictions and the test value increasing from 65% to 85% for ACI 318-08 and 

63% to 84% for BS 8110. 

Table 9-6 Comparison of between Test E and Predictions Using Punching Shear 

Approach. 

VTest 

(kips) 

VACI 

(kips) 

VBS 

(kips) 

VACI, 𝜔proposed 

(kips) 

VBS, 𝜔proposed 

(kips) 

Vproposed 

(kips) 

235 152 149 200 197 234 

 

It is important to note that unlike predictions for punching shear capacity of slab 

over the fracture location, in this test the shear resistance of the slab along the top flanges 

of the damaged girder was assumed to have a full enhancement due to direct load transfer 

effect because the load was applied far away from the fracture location. The effect of CMA 

is also neglected in this comparison because of the concave-down deflection shape of the 

specimen which was observed in the test and finite element analysis. 

9.8 Investigation of Punching Shear Resistance of Slabs across the Bridge in 

Transverse Direction 

Another important parameter that influences the load-carrying capacity of a 

damaged twin steel box-girder bridge is the location where the load is applied. Although 
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the responses of a damaged twin steel box-girder bridge under a concentrate load applied 

over the center of the intact girder and damaged girder, have been investigated 

experimentally in Tests C and D, respectively, there is a need to investigate how the 

responses of the damaged twin steel box-girder bridges vary as the load is moved cross the 

bridge in transverse direction. For this reason, two additional finite element analyses with 

the load applied over the center of the deck and over the overhang were performed. 

Summary of all loading locations considered are shown in Figure 9-23. The loading area 

is 10 in. x 10 in. in all cases and the load is applied at mid-span section where the fracture 

occurs. The results presented here are all from finite element analyses.  

 
Figure 9-23 Locations across the bridge investigated for the punching shear capacity. 

 

The comparison of the ultimate load-carrying capacities obtained from each load 

case is illustrated in Figure 9-24. As the loading location moves further toward the damaged 

side of the specimen the capacity of the specimen decreases significantly. At location L1, 

the punching shear capacity was 172 kips obtained at 1-inch displacement. This predicted 

capacity is approximately 4.4% smaller than the actual capacity of the specimen, which 

was 180 kips, obtained in Test C. When the load was moved to the center of the deck at 

location L2, the specimen reached its ultimate capacity at 160 kips at 1.3-in. displacement. 
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With load applied at location L3 which is the center of the damaged girder, the specimen’s 

ultimate capacity reduced to 104 kips at 1.4-in. displacement.  This value is greater than 

what obtained experimentally from Test D which was 80 kips. This difference could be 

attributed to the initial deck cracks and the girder residual deformation that the specimen 

experienced as a result of Tests B and C. When the load is moved over the overhang of the 

damaged girder, the ultimate capacity decreased significantly to 68 kips with a 

displacement of 1.4 in. 

 
Figure 9-24 Comparison of the bridge specimen’s load-carrying capacities with concentrated 

loads applied at different locations. 

 

 The stress distributions for each analysis is illustrated in Figure 9-25. In the first 

three load cases L1, L2 and L3, the punching shear was the dominant mode of failure. For 

the load case L4 with the load applied over the overhang, the mode of failure was 

combination of both punching shear and on-way shear.  

The load distributed around the critical perimeter for each load case is shown in 

Table 9-7. For the load applied at L1 location, the load distribution at the critical perimeter 
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was found to be affected by the compressive membrane action and direct load transfer 

effects and has been discussed previously. When the load was applied at the center of the 

deck which is the location L2, the load distribution at the critical perimeter was similar to 

that occurred at location L1, except the portion that was parallel and close to the top flange 

of the damaged girder.  This portion was found to carry less load than the other portion that 

was parallel and close to the top flange of the intact girder (42 kips vs 53 kips). This could 

be explained by considering the middle portion of the deck (between two girders) is 

supported by two fictitious beams. One beam has a flexural stiffness equivalent to that of 

the intact composite section comprising of the intact girder and the deck portion over it 

while the other beam has a stiffness equivalent to that of the damaged composite section 

comprising of the damaged girder and the deck portion on top of it. With a clear span 

distance of 6.8 in. and less than 2d and the flexural stiffness provided by one side is smaller 

than other side, the effect of direct load transfer will also be smaller in one side than the 

other. That is why the shear resistance of the deck along the critical perimeter that is parallel 

and close to the weaker supporting beam was 42 kips while it was 53 kips on the other side. 

With the properties of the composite section, the lateral stiffness of the slab in this case can 

be calculated following the procedure that has been described in the proposed method. It 

should be note that both intact composite section and damaged composite section have 

similar lateral stiffness. The predicted punching shear capacity for this particular loading 

by using the proposed method was 137 kips. This calculation only considers the CMA and 

direct load transfer effects on the portion of the critical perimeter that is parallel and close 

to the intact girder.  
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When the load is applied at the overhang of the damaged girder, the critical 

perimeter has only three sides because the load was applied near the edge of the slab. Since 

the load was applied at the edge of the slab, the CMA effect was not developed. Moreover, 

the flexural stiffness of the damaged girder and the deck at this fracture location was 

negligible, the effect of direct load transfer also can be neglected as explained previously. 

Similar to the case where the load is applied at the center of the damaged girder, the 

punching shear resistance of the slabs now could predicted using either the proposed 

method or practice codes. The predicted values are in good agreement with the FE results 

with 52 kips for ACI code, 64 kips for BS 8110 code and 60 kips for the proposed method. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9-25 Stress distributions under concentrated load at (a) L1, (b) L2, (c) L3 and (d) L4. 
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Table 9-7 Comparison of Punching Shear Resistance of Slabs at Locations L1, L2, L3 

and L4 and the predicted values. 

Loading 

Location 

Loading Distribution at Critical 

Perimeter 

PFEA 

(kips) 

Pproposed 

(kips) 

PACI 318 

(kips) 

PBS 8110 

(kips) 

L1 

 

172 155 77 88 

L2 

 

160 137 77 75 

L3 

 

104 89 77 75 

L4 

 

69 60 52 64 
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9.9 Summary 

The proposed shear span factor is able to capture the influence of 
𝑎𝑣

𝑑
 (or direct load 

transfer effect) on the shear resistance of two-way slabs under concentrated loads close to 

the top flanges of the supporting girders. Both effects of CMA and direct load transfer are 

predicted adequately by the proposed method. The results predicted from the proposed 

method are in good agreement with both experimental and FEA results. Practice codes such 

as BS 8110 and ACI 318-08 are very conservative in predicting the punching shear 

capacities of slabs when the CMA and direct load transfer effects involve. However, when 

the slab-supporting girder is completely fractured, the ACI 318-08 or BS 8110 codes are 

shown to be adequate to predict the punching shear capacity of bridge slab over the damage 

location as the influence of these effects on shear resistance of slabs are negligible. 

When the bridge slab fails in one-way shear manner, using the effective width 

determined by 45o horizontal load spreading from the far side of the load with the proposed 

shear span factor results in the best predictions. The current beam shear provisions without 

shear span factors are likely to result in very conservative values when the load is applied 

closed to the supports or to the top flanges of the supporting girder. The shear span factor 

proposed in this study can be used to predict the shear capacity of the bridge slabs failing 

in either one-way or two-way shear failure modes. The proposed shear span factor shows 

a better correlation with the test and finite element analysis results than the shear span 

factor proposed by Regan (1982). All of the comparisons indicated the proposed shear span 

factor can be used in compliance with either ACI-318 08 or BS 8110 shear provisions.  

In additional to verified and calibrated nonlinear finite element models, the 

simplified method presented in this study can serve a tool to predict the capacity of a 
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damaged twin steel box-girder bridge subjected to concentrated loads. With this simplified 

method, the process to develop the probability density function for the load-carrying 

capacity of the twin steel box-girder bridges which requires carrying out a large number of 

simulations, as discussed in Chapter 2, can be simplified significantly. The simplified 

methods could serve as a first check in the redundancy evaluation assessment procedure 

that this research is aiming to develop eventually. 
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Chapter 10 Proposed Notional Approach for Evaluating Redundancy of Twin Steel 

Box-Girder Bridges 

Although simplified methods proposed in Chapter 9 can serve a first-level check in 

the redundancy assessment procedure which this research is aiming to develop ultimately, 

detailed nonlinear finite element analysis still serves as the final-check and the most 

reliable method. However, addressing the redundancy of all two steel box-girder bridges 

within inventory of a given state requires significant amounts of financial, labor and 

computer resources. The notional approach proposed in this chapter is to reduce the level 

of effort involved by grouping the two steel box-girder bridges within a state inventory into 

several groups and developing a notional simple-span two steel box-girder bridge that 

would represent each group and then carries out the detailed nonlinear finite element 

analysis on the notional bridge. By proving the notional bridge redundant, all bridges 

within the group under consideration, are also redundant. 

10.1 Key Components of the Notional Approach 

The notional approach will include the following major components: 

1. Development of a calibrated nonlinear finite element model:  

As provided in Chapter 5 & 6, this research has developed a nonlinear finite 

element model that is able to capture the failure modes of damaged twin steel 

box-girder bridges under concentrated loads. The comparisons between the test 

results and the FEA results also indicate that the model is well calibrated and 

verified.  
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2. Development of a notional simple span bridge model that represents multi-span bridge 

within in the inventory requires carrying the following tasks: 

a. Develop grouping criteria: The grouping criteria is determined based on the 

geometrical characteristics of in the inventory such as type of bridges, designed 

lane-load number, the length of each span, number of spans, radius curvature 

and cross-section. Based on these criteria, bridges of interest can be categorized 

into several groups. 

b. Develop the notional simple span bridge: Once select bridges are categorized 

into groups, a notional simple span bridge model that can represent all the 

bridges within each group needs to be developed. The notional simple span 

bridge model is suggested to have the following characteristics: 

i. Has the shortest radius of curvature 

ii. Has the longest span length 

iii. Has the smallest cross-section 

   By defining the notional simple-span bridge model this way, it can serve as a 

conservative model for the entire group. As a result, if the notional simple-span bridge 

model satisfies all the redundancy criteria and is classified as redundant, all the bridges 

within the group will also do.  

 An example of using the notional approach is shown in Table 10-1. The notional 

simple span bridge model is actually the small-scale bridge specimen that was tested in this 

study. Two-span and three-span bridge models considered here are modified from this 

notional simple span model with different spans and span lengths; however, the bridge 

cross-section and material properties are kept the same. All the models are analyzed with 
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a full-depth fracture in one of the girder at the middle of one span. The load is applied right 

over the fracture location to simulate the worst-case scenario. The (*) indicates in which 

span the fracture occurs and the load is applied. In this table, the ultimate load-carrying 

capacity of different multi-span twin steel box-girder bridges and its notional simple span 

bridge model are compared. The results indicate that the notional simple span is able to 

represent conservatively two-span and three-span twin steel box-girder bridges in the 

inventory.  

Table 10-1 Validation of the Notional Approach. 

9x36 Over Damaged 

Girder 

Span Length 

(ft) 

Capacity 

(kip) 

Capacity 

Ratio 
Avg. Ratio 

Notional Model 30* 164 1.00 1.00 

Two-Span Bridges 

30*-10 195 1.19 

1.31 30*-20 226 1.38 

30*-30 224 1.37 

Three-Span Bridges 

30*-20-20 199 1.21 

1.38 
30*-20-30 221 1.35 

20-30*-20 246 1.50 

30-30*-30 244 1.49 

*: the span where the fracture takes place and the load is applied. 

3. Once the notional simple-span bridge model is developed, it will be analyzed and 

assessed by using the calibrated finite element models that was developed in this study. 

The analysis results such as the ultimate load-carrying capacity and maximum 

deflection will be reported to check against redundancy criteria which will be fully 

developed in future research. The approach to develop these redundancy criteria has 

been discussed in Chapter 2 and will be elaborated more in next section (Section 10.2). 
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4. The last step in the notional approach will be the decision-making process. If the 

notional simple span model satisfies all of the redundancy criteria, the entire group, 

which the notional model represents for, will automatically satisfy as well and will be 

considered as redundant, and therefore can be removed from the “fracture critical” list. 

If the criteria are not satisfied, divide bridges again into smaller groups and repeat the 

process from Steps 1 to 4. In case that only one bridge is left within the group, that 

bridge will be modeled and analyzed as a full model. If that particular bridge still 

doesn’t meet the criteria, it will remain in the “fracture-critical” list. 

The overall procedure for this notional approach is summarized in the following flow-

chart: 

 
Figure 10-1 Summary of notional approach. 

 



  

  303 

10.2 Suggestions for Developing Redundancy Criteria 

As briefly discussed in Chapter 2, the development of redundancy criteria such as the load 

and deflection limits that damaged two steel box-girder bridges must resist will demand 

carrying out reliability-based analysis with a safety level agreed upon by bridge owners. 

This effort to develop such criteria could consist of the following steps: 

1. Establish a probability density function (PDF) of load-carrying capacity of the 

damaged bridges: This requires a large amount of data of the ultimate capacity 

of the damaged two steel box girder bridges. As indicated in this research, the 

shear failures are likely the governing failure modes for a damaged twin steel 

box-girder bridges as subjected to concentrated load. Therefore, the process to 

develop such PDF curve could be facilitated by using the simplified method that 

has been proposed in this dissertation assuming a fictitious full-depth fracture in 

one girder. Yield-line analysis, proposed in TxDOT Research Project 9-5498, 

might be used as an alternative solution for checking and comparison purposes. 

Once the enough data is collected, the PDF of resistance of the damaged bridges 

can be developed using any available distribution-fitting tool. 

2. Establish a safety level and PDF of load level for damaged twin steel box-girder 

bridges that is acceptable by agencies. This safety level could be established by 

consensus or through reliability analysis of bridges that are agreed to be 

redundant and can be expressed in term of probability of failure or reliability 

index. According to NCHRP Report 406, a damaged bridge could be considered 

redundant if its reliability index is greater than 0.8. This redundancy criterion 



  

  304 

was developed based on reliability analysis of a large number of common four-

girder bridges, assuming all four-girder bridges are redundant. 

Using similar approach, the probability of failure or reliability index that is 

specific for two steel box girder bridges can be developed by performing 

reliability analysis on a substantial number of three steel box-girder bridges 

assuming three steel box-girder bridges are redundant. This process will also 

establish the position of PDF for load, which in turn will provide the load level 

that damaged two steel box-girder bridges must resist. 

3. With PDFs of load (in Step 1) and resistance of damaged bridge (in Step 2) are 

available, the next step is to calculate probability of failure (PF) or reliability 

index for damaged bridges under consideration.  

Figure 10-2 illustrates an example showing the probability of failure for a full-

depth fractured two steel box girder bridges computed using Monte-Carlo 

simulation. This example assumes the PDF of required strength (load) following 

lognormal distribution with median of 800 kips and coefficient of variation 

(COV) of 0.1 and the PDF of resistance of damaged bridges is also lognormal 

distribution with median 840 kips and COV of 0.1. Figure 10-3 illustrates how 

the probability of failure changes as the capacity of the damaged bridge varies 

from 700 kips to 1000 kips. Assuming the safety level required in term of 

reliability index is 0.8 as Ghosn and Moses (1998) suggested, this requires a 

damaged twin steel box-girder bridge, or a notional simple-span bridge must 

have a capacity greater than 810 kips. 
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Figure 10-2 Lognormal PDFs for Required Strength (median = 800, COV = 0.1) and resistance 

of Damaged Bridge (median = 840, COV =0.1) 

 

 

Figure 10-3 Cumulative Density Function of Damaged Bridges. 

 

Another important issue, as related to load capacity of the damaged bridges, is that 

the damaged bridges should be able to sustain permit loads that are issued automatically, 
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without bridge office involvement. This permit will be determined by participating 

agencies and bridge officers. 

Moreover, the ability of a damaged bridge to carry the traffic until the damage is 

detected and repaired without jeopardizing public safety also needs to be considered. This 

consideration requires establishment of the allowable deflection so that the bridge can 

maintain its functionality during the time period that damage will go on without detection. 

This aspect of the problem could be checked approximately while conducting finite 

element analysis on the notional bridges. 
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Chapter 11 Parameters Affecting Load-Carrying Capacity of Bridge 

In order to investigate the sensitivity of the research findings to variations in some 

of the key parameters, several finite element simulations and analyses were performed. 

Parameters investigated in this study include span length, railings, and degree of structural 

indeterminacy and presence of cross-frames.  

The parametric study was carried out under the same loading configuration that was 

used in Test D, assuming this was the worst loading scenario. The purpose of this 

parametric study was to investigate whether variations of these parameters would affect 

the failure mode and capacity of the specimen under concentrated loading configuration. 

In this parametric study, only post-fracture behavior was considered. The load was 

incrementally applied until collapse was detected.  

11.1 Cross-frames 

As demonstrated in Test D, the contribution of cross-frame to the load-carrying 

capacity wasn’t significant. It is interesting to check how much the capacity of the 

specimen will change if all external cross-frames connecting two girders are removed. As 

illustrated in Figure 11-1, removing the external cross-frames reduces the specimen’s load-

carrying capacity only slightly from 104 kips to 94 kips. Once the cross-frames were 

removed, the intact girder retained almost the same stiffness and displacement as before, 

while the deflection of the fractured girder increased significantly. This indicates that the 

external cross-frames play important roles in controlling the relative deflection between 

the girders in the damaged bridge. However, both models had punching shear failure in the 

concrete deck as the failure mode.  



  

  308 

It is also important to note that under different loading configurations, the effect of 

external cross-frames will vary. For example, in Test A, the contribution of external cross-

frames was observed to be larger than it was in Test D. This was because in Test A, the 

load was applied directly over the top flanges of the damaged girder, and hence more load 

was distributed to the damaged girder than it was in Test D, where the load is applied only 

over a small portion of the deck at the center of the damaged girder. Note that the load 

resisted by the damaged girder should be transferred to the intact girder by means of the 

external cross-frames and the deck; therefore, as more load is applied to the damaged 

girder, the external cross-frames is become more effective in transferring load. 

 
Figure 11-1 Effects of cross-frames. 
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11.2 Railing 

The deflection and capacity of the specimen with and without presence of the 

railing system is shown in Figure 11-2. Since the railing system was poured using the same 

concrete mix used to cast the deck, it was modeled to have the same nonlinear properties 

as the deck. The reinforcement was modeled using smeared-reinforcement approach as the 

concrete deck and the geometry of the railing can be referred in Figure 3-3.  However, the 

expansion joints between the railing segments were neglected in the model for 

simplification. Moreover, the model assumed the full connection between the rail and 

concrete deck.  

As expected, the model with the railing system deflected less than the model 

without the railing in both girders. The additional railing also increased the capacity of the 

specimen because when engaged it acted as deep beam on the edge of the deck and 

increased bending stiffness of the deck. The capacity of specimen was increased from 104 

kips to 134 kips with the presence of the railing. Furthermore, that fact that concrete deck 

under the loading pad was crushed in both cases indicates that the specimen failed in 

punching shear whether with or without the presence of the railing.  
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Figure 11-2 Effects of railing system. 

 

11.3 Structural Indeterminacy and Cantilever End 

Similarly to the railing system, bridges with continuous spans possess higher 

stiffness than the simply-supported bridge as demonstrated in elastic tests. The structural 

indeterminacy and continuity was found to provide additional sources of redundancy for 

the bridge system. In the event that one girder is fully fractured, the load applied to the 

fractured girder can be redistributed to the intact girder as well as neighboring spans; 

therefore, chance of collapse can be reduced significantly in multi-span bridges.  

The continuity was modeled by simply introducing two vertical restraints at the center of 

each girder, additional to the original model. This approach is similar to the way it was 

setup in the elastic tests, which are shown in Figure 3-20. The comparison of both models 

is illustrated in Figure 11-3. The specimen with two spans had better performance than the 
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simply-supported model in both displacement and capacity aspects.  Similar to other cases 

above, the simulation was terminated due to the excessive crushing of concrete deck near 

the loading area. This suggests that shear failure was still a potential mode of failure of the 

specimen under this concentrated loading configuration.  

 
Figure 11-3 Effects of continuity. 

 

11.4 Bridge Span Length 

This small-scale model with different span lengths was analyzed to investigate the 

potential effects of span length on the behavior of bridges. In order to isolate and study 

only the effect of span length, the external cross-frames and the cantilever end were 

removed in these analyses. Table 11-1 compares capacity and girder displacements for 

different specimens with different length. In this case, span lengths will be used because 
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all models had the same girder dimension. In case that the girder dimensions are different, 

the ratio of span length to girder depth will be a better criteria to use. 

Table 11-1 Effects of Span Length on the Bridge Performance. 

Length (ft) Capacity (kip) 
Intact Girder 

Displacement (in) 

Damaged Girder 

Displacement (in) 

30  80 0.33 1.67 

22 70 0.1 1.19 

18 75 0.05 1.10 

12 74 0.008 0.65 

 

As illustrated, the variation of span length did not significantly influence either the 

capacity of the specimen or the failure modes. However, as the length of span (or ratio of 

span length to girder depth) got smaller, the bending stiffness of the bridge increased. 

Therefore, it reduced the displacement of both girders significantly. The models again 

failed due to the crushing of concrete deck underneath of loading area. 

11.5 Summary 

The effects of the external cross-frames, railing, structural indeterminacy, and span 

length on the capacity of the bridge specimen were investigated, under a concentrated 

loading. Overall, the presence of cross-frames and railings and additional continuity were 

found to increase the stiffness of structure and improve the capacity of the bridge. The 

capacity improvement can be seen clearly when adding the railing or continuity. It is also 

found that varying the span length of the specimen does not affect much the capacity of the 

bridge. In all of the cases, the specimen was failed under the same failure mode which was 

punching shear. 
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It is also important to note that these effects may vary under different loading 

configurations. For instance, if the load is applied in a more distributed manner, the effects 

of external cross-frames, railings and structural indeterminacy might increase and varying 

the length of specimen might also affect the capacity of the bridge. 
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Chapter 12 Summary and Future Considerations 

12.1 Research Summary 

According to AASHTO LRFD Bridge Design Specifications, twin steel box-girder 

bridges are currently classified as bridges with fracture critical members (FCMs), in which 

a failure of a tension member leads to a collapse of the bridge. However, there are several 

evidences indicating that twin steel box-girder bridges are redundant and still able to carry 

a significant amount of traffic load with little noticeable change to their global behavior. 

The main objectives of this current FDOT-sponsored research study, presented in this 

dissertation, are to provide an understanding of the behavior of twin steel box-girder 

bridges and to develop complete methodology and associated tools that can be used to 

evaluate performance of these bridges after damage and remove them from the fracture 

critical list, where possible.  

The suggested methodology is a two-step process. The first step will consist of 

simple hand calculation that is based on the research study conducted at the University of 

Texas-Austin. Further investigation on this method will be needed in future research. 

The second approach is referred to as the notional approach. The notional approach 

considers finite element analysis as the main method to assess performance of damaged 

twin steel box-girder bridges. However, performing a detailed nonlinear finite element 

analysis on every single twin steel box-girder bridge within inventory of a given state 

requires a significant amount of labor and financial resources. To address this challenge, 

the notional approach suggests grouping twin steel box-girder bridges in the inventory into 

groups and developing a notional simple span twin steel box-girder that represents all of 
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the bridges within a given group. The detailed nonlinear finite element analysis is then 

carried out on the notional simple-span bridge only. By doing so, a significant amount of 

the effort and resources required will be reduced. 

The details of the notional approach are provided in Chapter 2 of this dissertation. 

The majority of the information needed to evaluate the redundancy of the twin steel box-

girder bridges using the notional approach has been addressed within this dissertation. The 

remaining works are left to be completed under future research. 

Following are elements of the notional approach of evaluating the redundancy of 

twin steel box-girder bridges. 

Task 1:  Access to calibrated nonlinear finite element model that accurately depicts 

the modes of failure under types of loading specified by AASHTO LRFD 

Bridge Design Specifications. This research study has developed a test verified 

nonlinear FEM model. 

Task 2:  Criteria to group twin steel box-girder bridges within the inventory of a 

given state DOT and develop notional simple-span twin steel box-girder bridge 

representing the group. This dissertation provides preliminary approaches for 

grouping the state inventory of twin steel box-girder bridges. However, 

additional work is recommended, to be carried out in future study. 

Task 3:  Establishment of the load level that damaged twin steel box-girder bridges 

must resist, as well as establishment of other serviceability limit states that must 

be checked to ensure public safety. The procedure for establishing a load level 

that damaged twin steel box-girder bridges must carry is outlined in this report. 

The use of arbitrary load level is questioned by many bridge owners and has 
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remained one of the obstacles for resolving the question of redundancy of twin 

steel box-girder bridges. As discussed in Chapter 2, development of probability 

density function (PDF) for load-carrying capacity of the damaged bridges, 

considering realistic modes of failure is a critical step in establishing the load 

safety level. This dissertation has provided a simplified method to predict the 

punching shear strength of slab under concentrated wheel load. This simplified 

method will facilitate the process of developing the PDF of the capacity of the 

damaged bridge since it requires a large number of simulations. 

Task 4:  Development of a Guide for application of the notional approach for 

assessing redundancy of damaged twin steel box-girder bridges with examples 

and other documentations, such as video tapes that would assist state DOTs. It 

is recommended that this task be completed after completing the proposed 

pooled fund study. 

Discussions on approaches to develop the load level as well as other serviceability 

criteria in Task 4 for a damaged twin steel box-girder bridge have been presented in 

Chapter 2 of this report. The efforts to develop calibrated and verified detailed nonlinear 

finite element models are documented from Chapter 3 through Chapter 8. Chapter 9 

provides a summary of the results of a parametric study on twin steel box-girder bridges 

and the start of the process for establishing the notional simple-span bridge model and 

grouping criteria. Chapter 10 proposes a simplified method of predicting the ultimate 

punching shear capacity of the damaged bridges under concentrated load, assuming the 

punching shear failure mode governs as observed in the experiment.  
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The remaining portion of this summary and conclusion provides highlights of the 

results obtained in this project. Complete discussions of each of the following sections can 

be found in the appropriate chapters within this dissertation. 

Summaries of the important observations obtained from the different activities 

carried out within this research study are provided in the following sections. The summary 

is provided in the context of experimental work; however, within each section, associated 

numerical works that have been carried out are included. 

12.2 Field Tests of In-Service Bridge 

Elastic field tests on a twin steel box-girder Ft. Lauderdale bridge were conducted 

and its performance was observed. Following are conclusions obtained from the results of 

the field testing and associated finite element analysis: 

 In general, the test-observed deflections were in good agreement with results 

obtained from FEM analysis, within 5%. 

 Comparison of the collected testing strains (and corresponding computed stresses) 

in the structure and the resulted stresses from finite element analysis of the bridge 

shows a partial fixity at the abutment in contrast to the ideal pin assumed in the 

finite element models. This observation agrees with the conclusions of previous 

field tests conducted by other bridge researchers. 

 For the type of truck and load used, the field test result indicated a dynamic 

amplification factor of approximately 12%. It is important to note that this finding 

is based on the experimental results of two dynamic tests. One test was carried out 
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with the truck moving at crawling speed (~3mph) while in the other test, the truck 

was moving at roadway speed (~30mph) 

 The strain response histories showed evidence of slight thermal drift, which is 

typical for load tests that occur over several hours. In an attempt to reduce the 

impact of the thermal drift, a thermal correction based on a linear drift was applied 

to all of the selected processed data in order to reduce this effect.  

12.3 Laboratory Tests on Small-Scale Specimen 

To comprehend the behavior of twin steel box-girder bridges in nonlinear range, 

examine the modes of failure, and calibrate three dimensional 3-D finite element models, 

a small-scale test specimen was constructed and numerous tests were carried out including 

elastic tests, a cyclic fatigue test, and ultimate load tests. The following sections provide a 

brief discussion of the results obtained. For a more detailed discussion refer to various 

chapters within this report. 

The laboratory test specimen was subjected to a number of tests before and after 

simulating damage in the test specimen. The first series of tests were elastic tests, in which 

the test specimen was subjected to a single concentrated load over the EG, or two 

concentrated loads with one load over each girder. The purposes of these elastic tests were 

to examine linear elastic responses of the laboratory bridge specimen, the effects of railing 

system and continuity as well as the effects of different loading configuration on the 

specimen before and after the damage was simulated. 
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The second test was a cyclic fatigue test. The purpose of this cyclic test was to see 

what would happen to the bridge specimen under the traffic load assuming a fracture or 

damage occurred in the bottom flange without being noticed. 

Ultimate load tests were the last series of tests, in which the laboratory specimen 

was loaded to failure. All the ultimate load tests were carried out under the damage 

condition in which one girder was completely fractured. The purposes of the ultimate load 

tests were to investigate the behavior, the maximum load-carrying capacity, and failure 

mode of twin steel box-girder bridges when the web and bottom flange of one of the girders 

was completely fractured. 

12.3.1 Conclusions from Elastic Tests Conducted on Laboratory Test Specimen 

In general, a total of 18 elastic tests were carried out. The effects of both rail and 

continuity on linear-elastic behavior of the bridge specimen were investigated under either 

unsymmetrical loading or symmetrical loading configuration. The responses of bridge 

corresponded to different damage levels were interpreted and are summarized as follows:  

 The rail and continuity was found to increase the stiffness of the structure; therefore 

enhancing the load-carrying capacity of the specimen.  

 In addition to the deck, the cross-frames played an important role in transferring 

the applied load from the damaged girder to the intact girder. It should be noted, 

however, that depending on the loading configuration, the contribution of cross-

frames might vary. 



  

  320 

 In general, the elastic responses of the undamaged specimen and of the specimen 

with bottom flange fractured in one girder were comparable. The maximum 

displacement increased by an average of 6.5 % as the bottom flange was fractured. 

 As a result, the strain in the intact girder was found to increase significantly, as the 

damage intensity increased. This indicates that as the damage takes place, the load 

resisted by the damaged girder is transferred to the intact girder.  

 When the bottom flange and webs were completely fractured, the flexural stiffness 

of that damaged girder was negligible. 

12.3.2 Conclusions from Cyclic Tests Conducted on Laboratory Test Specimen 

In this cyclic load test, the laboratory bridge specimen was loaded unsymmetrically 

at mid-span on the damaged girder with the rail on but no continuity. Assumption was 

made that the governing fatigue category is type C. Further it was assumed that the details 

were designed for infinite life with a corresponding threshold stress value of 10 ksi. This 

in turn demanded that the specimen be subjected to a single concentrated load of about 60 

kips, directly over the damaged girder. Before the start of the cyclic test, the bottom flange 

of one of the girders was completely cut to simulate complete fracture of bottom tension 

flange. The objective of this particular cyclic test was to observe the time that it would take 

for crack to propagate from the bottom flange to the bottom of deck and to observe the 

behavior of the small-scale test specimen in the process.  After applying about 213,000 

loading cycles, the crack propagated from the bottom tension flange, through the web and 

to bottom of concrete deck. With an assumed ADTT of 1286 trucks, this would translate 

to approximately 5.5 months for the crack to grow from bottom flange, all the way to 
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bottom of concrete deck. When the crack reached the bottom of concrete deck, the 

deflection increased approximately 0.3 in. for the damaged girder and 0.13 in. for the intact 

girder. The changes to global deflection and deck performance during entire cyclic test 

were relatively small.  

12.3.3 Conclusions from Ultimate Load Tests Conducted on Laboratory Test 

Specimen 

A total of five ultimate load tests were carried out under the full-web fracture 

damage condition, in which one girder had its web and bottom flange completely fractured. 

The first ultimate test (ultimate Test A) was carried out after the elastic and cyclic tests. 

The steel box-girders after conclusions of Test A were in a good condition, except for the 

complete fracture of bottom tension flange and web in one of the girders. Therefore, a 

decision was made to reconstruct the specimen using the same girders. By doing so, only 

the new deck is needed and savings can be made. The other four ultimate load tests were 

carried out on the reconstructed test specimen. The following sections provide a brief 

summary of each ultimate load test carried out.  

In ultimate Test A, the load was applied through the 9 in. x 36 in. loading pad 

covering the entire width of the damaged girder. The bridge showed a maximum capacity 

of 156 kips which was two times more than the weight of one HS-20 truck. After reaching 

the maximum capacity, the specimen capacity dropped to 133 kips at a displacement of 2.5 

in. due to crushing of concrete deck, under the applied concentrated load. The bridge 

specimen was still able to hold this load level before the test was halted due to a significant 

drop in load-carrying capacity at 5.5-in. displacement. During this extended loading period, 
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the collected data indicated that the stiffness of the deck played a major role in 

redistributing the applied load to intact girder. The cross-frames also helped to transfer the 

load from the damaged girder to the intact girder. The cross-frame forces were found 

increasing after the peak capacity obtained which was associated with crushing of the deck. 

The intact girder did not yield during the entire test.  

In ultimate Test B, the same loading configuration as in Test A was used, but with 

loading moved over the intact girder. The test was stopped when the loading plateau 

occurred at 270 kips. The testing was stopped to limit the damage to the test specimen and 

allow conduct of additional tests. No major damage occurred, just minor cracking on the 

top surface of the deck. The intact girder showed significant yielding at the bottom flange 

with more than 8,000 με while the strain in the damaged girder was negligible. Strain data 

in both longitudinal and transverse reinforcements, located over the damaged girder and 

center of the deck, were small compared to those located over the intact girder. This strain 

distribution pattern, in addition to the observation that both girders experienced similar 

displacements along the length, indicated that the applied load was mainly resisted by the 

intact girder. The calculated plastic moment capacity of the intact girder was 239 kips. As 

mentioned earlier, the test was stopped before complete failure of intact girder. Therefore, 

the ultimate load-carrying capacity of intact girder or its experimental plastic moment 

capacity was not obtained experimentally.  

In ultimate Test C, the load was applied through a 10 in. square loading pad placed 

over the center of the intact girder. The specimen carried up to 180 kips before the loading 

pad suddenly punched through the deck. In general, the specimen showed similar behaviors 

to those observed in Test B, such that both girders experienced similar displacements and 



  

  323 

the applied load was mainly resisted by the intact girder. The recorded strains indicated 

that the girders did not yield at the time of failure. The fact that neither of the girders yielded 

and the participation of the damaged girder was negligible indicates the capacity of the 

specimen, for the type of the loading used, is primarily dependent on the capacity of the 

deck and its interaction with the intact girder.  

In ultimate Test D, the load was applied through a 10 in. square loading pad again, 

but over the center of the damaged girder. The specimen carried up to 83 kips of load before 

the loading pad suddenly punched through the deck. This failure mode was similar to that 

observed in Test C. No yielding was observed in the steel girders at the time of failure. The 

strain data at the bottom flange suggested the load was transferred to the intact girder 

uniformly within 5-ft distance measured from the mid-span. The load transferred through 

the cross-frames was found to be less than 2 kips. This suggested that most of the applied 

load was transferred to the intact girder through the deck. Although this test and Test C 

showed identical failure modes, the specimen failed much sooner than it in Test C. This 

suggests that the punching shear capacity of deck is influenced by the existence of damage 

in the girder. 

In ultimate Test E with a four-point loading configuration, the specimen carried up 

to 230 kips. The area of each loading point was 10 in. x 10 in., the same as it was in Tests 

C and D. This improvement in the load-carrying capacity of the specimen was due to the 

spreading of the applied load into four-point loading. The deck was cracked and damaged 

significantly along the center line of the bridge, especially where the wheel loads were 

applied. The intact girder was just right at yielding point. Data from both girders and cross-

frames suggested that the load was transferred to the intact girder mainly through the deck.  
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Overall, the concrete deck was found to fail dominantly in shear in all the tests, 

except Test B in which loading was stopped before the specimen reached its load carrying 

capacity. Under single concentrated loading configuration, the specimen deck failed 

predominantly in two-way shear failure modes, commonly referred to as punching shear 

failure. When the specimen loaded over the entire width of the girder or with more than 

one loading point, one-way shear failure mode prevailed. Practice codes such as BS 8110 

and ACI 318-08 were found to be very conservative when predicting the punching shear 

capacities of slabs with short shear spans. It is because compressive membrane action and 

direct load transfer effects are not considered in these practice codes. However, the 

punching shear strength of bridge slabs can be estimated by the simplified method 

described in Chapter 10.  This simplified method has shown to give good predictions to 

both numerical and experimental results. And when the supporting girder is fully damaged 

or fractured, the CMA and direct load transfer effects are negligible. Therefore, the 

punching shear capacity of slab portion over the damaged girder can be estimated by BS 

8110 or ACI 318-08 practice codes. 

In general, a good match between experimental data and finite element analysis 

results was observed. The percentage differences between FEM analysis results and elastic 

test data in term of maximum displacement obtained was 5.1% on average. The finite 

element models were also able to capture the overall behaviors, the modes of failure, and 

the maximum load-carrying capacity as well as damages that were observed in the ultimate 

load tests. This verified the accuracy of the finite element modeling techniques that have 

been employed to study the behavior of steel twin box-girder systems in this project.  
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It should be noted that no previous research studies dealing with redundancy of 

twin steel box-girder bridges address shear failure of deck. This is an extremely important 

point when developing methodology to assess the redundancy of twin steel box-girder 

bridges after experiencing fracture of tension elements.  

12.4 Summary of Proposed Approaches 

In additional to verified and calibrated nonlinear finite element models, the 

simplified approach including simplified methods proposed in this study was found to be 

a reliable tool to predict the capacity of a damaged twin steel box-girder bridge when 

subjected to concentrated loads. The proposed methods have shown that both effects of 

CMA and direct load transfer in bridge slabs can be captured adequately. With this 

proposed method the effort to develop the probability density function for the load-carrying 

capacity of the twin steel box-girder bridges which is required in the notional approach can 

be simplified significantly. Moreover, the simplified method could also serve as a first 

check in the redundancy evaluation assessment procedure that this research is aiming to 

develop eventually. 

In additional to the simplified approach, the study also proposes a notional approach 

that utilizing the experimentally verified and calibrated nonlinear finite element models. 

The notional approach provides grouping criteria so that the two steel box-girder bridges 

within a state inventory can be categorized into several groups and propose a notional 

simple-span two steel box-girder bridge that would represent each group so that the detailed 

nonlinear finite element analysis will be carried out on only the notional bridge. By proving 

the notional bridge redundant, all bridges within the group under consideration, are also 
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redundant. By using this notional approach the effort required to perform redundancy 

assessment on every single twin steel box-girder bridge can be reduced significantly. The 

components of this notional approach have been discussed in detail in Chapters 10 and 2 

including what have been done and what will be done in future research. 

12.5 Suggestions for Future Study 

In general, this dissertation provides an in-depth understanding of the performance 

of twin steel box-girder bridges and develops calibrated three dimensional nonlinear finite 

element models that can be used in future research. This dissertation also provides a 

roadmap for development of a complete procedure for assessing redundancy of twin steel 

box-girder bridges and possibly removing them from fracture critical list. Discussions in 

Chapter 2 and in this summary chapter identify the remaining tasks that are required to 

completely develop the comprehensive methodology that allows DOTs to assess the 

performance of damaged twin steel box-girder bridges and determine whether or not these 

bridges are redundant. These remaining tasks and approaches to complete these tasks will 

be proposed for future research. In future research, other possible loading conditions will 

be also considered before a full recommendation that shear failure in the deck is the 

governing failure mode of twin steel box-girder bridges. The effects of CMA and direct 

load transfer effects could also be considered in future testing since the data related to these 

effects are very scared for two-way bridge slabs, especially for twin steel-box-girder 

bridges in its intact and damage conditions. These data could be used to address the 

question such as what limit of the effective length should be used when incorporating the 

shear span factors for bridge slabs fail in one-way shear. 
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