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ABSTRACT OF THE DISSERTATION 

RISK-BASED DECISION MAKING SUPPORT FOR 

CONSTRUCTION CORPORATE RESOURCE MANAGEMENT 

by 

Reza Sheykhi 

Florida International University, 2016 

Miami, Florida 

Professor Wallied Orabi, Co-Major Professor 

Professor Xia Jin, Co-Major Professor 

Competitive bidding typically challenges contractors to stay in business by reducing 

contingency and limiting profit margin, which imposes more prudent resource utilization 

and allocation decisions during both planning and construction phases of projects.  Many 

of these decisions must be made considering uncertainties that affect resource production 

and construction performance through several factors such as weather, managerial 

practices, job-type, and market conditions, etc.  Construction decision makers will 

therefore have varied approaches to deal with these uncertainties based on their risk utility 

or perception.  This research presents the development of a model for investigating the 

impact of risk-based approaches on construction network outcomes.  The current study 

contributes to development of a model that enables corporate managers to understand the 

impact of different resource utilization and sharing policies on the overall outcome of their 
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project and to select among optimum planning solutions that satisfy their profit margin and 

capital limitations. This research also enables corporate decision makers to have more 

realistic estimates for the profitability of their company, and understand consequences of 

their decisions in short and long term. Findings of this research provide decision makers 

with different solutions for profitability of their corporation based on non-dominated 

optimal time-cost tradeoffs, and also broader perspective on how overall time and budget 

limitations, as well as risk perceptions, can affect the decision-making process. The model 

is verified and the results are validated through acquiring data from actual large scale 

construction projects in South Florida. 
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CHAPTER ONE 

INTRODUCTION 

1.1. Introduction 

Project objectives, as the most appropriate criteria for success (De Wit 1988), may be 

achieved as effective as possible through continuous replanning and rescheduling of 

projects (Castro-Lacouture et al. 2009); Therefore, success is, a fortiori, dependent on 

decisions made during both planning and construction phases of projects.  There is a rich 

body of literature that addresses construction decision making for resource planning, yet 

the industry is reported to face a consistent challenge with failure in achieving project 

goals, especially planned time and cost (Shrestha et al. 2013).  Globally, large construction 

projects resulted in an average cost overrun of %28 without reduction in the last 70 years 

(Flyvbjerg et al. 2002; Flyvbjerg et al. 2003).  In the recent years, 10% of infrastructure 

project are shown to end up with over 10% cost overrun (Queensland DMR 2005), and as 

reported, only 5% of large industrial projects meet both their authorized cost and schedule 

within an acceptable margin (Construction Industry Institute (CII) 2012).   

To address this issue, various studies have been conducted in order to improve construction 

planning toward avoiding overruns and maintaining profitability (Elazouni and Abido 
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2014), as well as wining new projects and staying competitive (Han et al. 2005; Aziz 2013).  

Many of these efforts focused on analyzing alternative resource utilization decisions due 

to the significant impact on construction operations (Ozcan-Deniz et al. 2011).  However, 

uncertainties as well as imprecision, still highly affect construction decision-making 

practices, regardless of managers experience and knowledge in planning and execution 

(Castro-Lacouture et al. 2009).  To cope with the impact of uncertainties on planning 

outcomes probabilistic aspects of construction operations has been frequently considered, 

and the use of risk-based approaches in projects is reported to be increasing (Touran 2009).  

In this context, making decision under uncertainty is noted to require contractors to raise 

awareness regarding their own tendency toward risk (i.e. risk utility) (Kim and 

Reinschmidt 2010), since for instance, highly unrealistic expectations in planning decisions 

have been found to affect performance and efficiency of construction (Park et al. 2010). 

As a result, new research in the area of supporting risk-based decision making for planning 

and management of construction projects becomes of paramount importance.  The 

proposed study, therefore, aims to improve construction planning through addressing 

significance of incorporating managerial risk utilities in to decision making for resource 

planning under uncertainty. 

1.2. Problem Statement 

To properly investigate the impact of risk utilities, it is required to first understand how 

uncertainties affect construction performance. Applying uncertainties to resource 

utilization plan has been proved to affect project completion outcomes (e.g. duration and 

cost).  As an example, modeling the efficiency and/or continuousness of resource 
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utilization for weather-sensitive activities has shown to output a wide range of project 

durations, when repeated in presence of stochastic weather conditions (Shahin et al. 2010; 

Lee et al. 2009).  Similarly, many studies suggested major cost variations in construction 

when efficiency and performance are probabilistically modeled (Heravi and Faeghi 2012).  

On the other hand, understanding impact of contingencies on different levels of 

construction seems inevitable in order to accurately investigate the impact of managerial 

risk utilities on planning decisions.   

To this end, existing literature have modeled uncertainties in different resource planning 

levels.  Limited number of researches studied impact of uncertainties on daily-level basis 

(Orabi et al. 2013; Chen et al. 2012), while most of the studies in this area have focused on 

activity/process level.  Among those are various models considering parameters such as 

activity duration (Ökmen and Öztaş 2008; Lee 2005; Hong et al. 2011; Lee and Arditi 

2006), activity cost (Taghaddos et al. 2011) or both (Isidore and Back 2002; Feng et al. 

2000).  Some others modeled uncertainties at project level, where for instance, project cost 

is studied as a probabilistic parameter (Gabriel et al. 2006).  Few researchers have also 

developed models to analyze allocation and sharing of limited resources at the portfolio 

level (Barraza 2010).  To address the importance of portfolio-level planning and analysis, 

it should be noted that more than 80% of firms operate multiple parallel projects (Lova and 

Tormos 2001), and over 90% of all construction projects are accomplished in a multi-

project environment, worldwide (Payne 1995). Therefore, planners need to obtain a broad 

perspective on applicable and potential planning solutions that may lead to higher chance 

of achieving corporate-level objectives.  This would be possible through decision making 



4 

 

toward reducing contingency and limiting profit margin, which imposes more prudent 

resource utilization and allocation decisions.   

In many cases, contractors sacrifice profit in order to ensure staying in the market (Love et 

al. 2010), where, for instance, nearly 40% of industrial EPC projects struggle to even 

generate profit (Construction Industry Institute (CII) 2014).  To support proper decisions, 

many efforts have been made in the area of planning a group of project and decision making 

for maximizing profit (Aziz 2013; Ahn et al. 2012; Liu and Wang 2010; Senouci and El-

Rayes 2009).  In this context, it is required to investigate the impact of risk-based resources 

planning under uncertainty for both ongoing and new projects in a group of concurrent 

projects, and support construction decision makers on corporate-level resource planning 

according to their risk utility.   

Three main research gaps can be identified within the existing literature.  Uncertainties are 

claimed to frequently affect resource on a daily basis.  However, there is lack of research 

studies that accurately model contingencies affecting outcome of the resource utilization 

planning of construction under uncertainties.  In addition, consideration of resource 

planning for a group of projects seems required for an improved and realistic decision 

making regarding properly prioritizing projects for sharing resources under uncertainty.  

Finally, there is a need for new research to investigate impact of risk perceptions on 

decision making for resource management at corporate level.  Accordingly, new research 

studies in the area of risk-based decision making on resource planning are needed, 

especially regarding concurrent construction projects.  The proposed research, therefore, 

presents the development of a new simulation-optimization model to cover the identified 
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research gaps and consequently facilitate the investigation of risk utility on planning 

objectives.  

There are three levels of decision making in construction environment. First, decisions with 

regards to resource utilization planning under uncertainty which are made by project 

managers. Second, decisions with regards to resource sharing priorities throughout the 

network of projects, which are made by corporate managers. Finally, decisions regarding 

general direction of the company and whether or not expanding their network by going for 

new bids, which is made by corporate managers based on provided information from above 

mentioned situations. Making decisions at each level requires supporting decision 

materials specifically prepared for that level.  

At resource utilization planning level, improper perspective of construction managers leads 

to failure in making reasonable decisions regarding execution of work task and activities. 

Improving decision at this level will be through consideration of impact of risk factors and 

uncertainties on performance and efficiency of resources and eventually performance and 

efficiency of executed work.  At resource allocation level, projects managers are supposed 

to make decision about properly sharing their resources among network in order to 

maintain project time and cost within acceptable margin.  This decision is often affected 

by their perspective and awareness about resource limits and stage of projects, types of 

uncertainties that impact their project, and their confidence on performance of project 

resources (crew, equipment, etc.) under uncertainty. At resource sharing (corporate) level, 

decisions are mainly about how to efficiently share resources among portfolio of projects. 

Mentioned resources at this level include crew/equipment as well as financial resources 
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(cash, credit, bonds, etc.). Making proper decisions at this level requires broad perspective 

on outcome of every and each project in the network, as well as reliability of the planned 

outcomes under uncertainties that affect construction. At the following section, objectives 

of this research regarding supporting mentioned decisions at each level are explained. 

1.3. Goals and Hypotheses 

The main goal of this research is to improve decision making process in different 

construction management levels under uncertainties and risk related factors. Eventually all 

these decisions will contribute to a higher performance in execution, better project 

outcomes and finally improved leadership decision making at enterprise level in order to 

bring company to a higher profitability and competitiveness in the industry market. This 

research has three main objectives: 

1.3.1. First Objective and Hypothesis 

Objective 1.  

The first objective of the current research is to understand how to improve decision making 

on resource utilization planning for construction projects in order to maintain project time 

and cost as planned under uncertainty. 

Question 1.  

How do different risk perceptions affect outcome of resource utilization plans under 

uncertainty (time and cost) in project?  
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Hypothesis 1.  

Considering different risk perceptions of construction resource productivity, planning for 

higher number of working hours in a week results in less uncertain time and cost outcome 

for the project. 

Specific Questions:  

Question 1.1. How do performance-related risk factors affect short-term processes in 

construction projects?  

Question 1.2. How does sharing of constrained resources over a project under uncertainty 

affect time and cost.  

to investigate the impact of mentioned uncertainties in construction network? 

Question 1.3. How to incorporate planers’ confidence level towards performance of their 

resources into time and cost analysis. 

1.3.2. Second Objective and Hypothesis  

Objective 2. 

The second objective of the current research is to understand how to improve decision 

making on resource sharing priorities for construction projects in order to maintain project 

time and cost as planned under uncertainty. 
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Question 2.  

How does taking different risk perceptions affect project outcomes in case of change in 

sharing priorities? 

Hypothesis 2. Considering different risk perceptions of construction resource 

productivity, giving the priority of sharing to projects at early stage (in oppose to projects 

which are in their mid-stage) results in higher uncertainty in time and cost outcome for the 

project.  

Specific Questions: 

Question 2.1. What factors mainly affect profit estimation of new and ongoing projects? 

Question 2.2. How identified factors of particular projects affect profit of the entire group 

of projects?  

Question 2.3. How to investigate impact of manager’s risk utility in single or multiple 

projects on profit margin in presence of uncertainties?  

1.3.3. Third Objective and Hypothesis  

Objective 3. 

The third objective of the current research is to understand how to improve decision making 

on resource management for construction companies in order to maintain profitability and 

required cash in hand as planned under uncertainty. 
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Question 3. 

How does taking different risk perceptions on resource productivity affect corporate 

resource management outcomes such as profitability? 

Hypothesis 3. Taking lower risk regarding productivity of resources results in less 

profitability for the company, however, requires higher amount of cash to fund ongoing 

and new projects in short term.  

Specific Questions: 

Question 3.1. How to model a network of construction projects in order to search for 

optimum resource planning solutions that maximize corporate-level profit? 

Question 3.2. How to develop reliability indicator that in order to help decision makers 

decide about selecting optimal planning solutions?  

Question 3.3. How to improve decision making on corporate-level profit maximization by 

consideration of developed indicator. 

1.4. Method and Design 

The proposed research methodology to achieve the abovementioned objectives is classified 

into the following tasks, the details of these tasks are:  

1.4.1. Design for Hypothesis One 

Task 1. Develop a stochastic simulation model that produces construction time and cost 

distributions considering performance-related risks inherent in daily construction work, in 
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order to facilitate investigation of relationship between planners’ risk utility and time-cost 

tradeoff of projects.  

This task will be accomplished by conducting the following subtasks: 

Task 1.1. Identify the impact of uncertainties that affect short-term performance of 

construction and investigate their impact on resource consumption and/or schedule of 

processes.  

Task 1.2. Develop a module that estimates time and cost of different construction 

levels considering identified uncertainties. 

Task 1.3. Develop a stochastic model to simulate the construction network under 

identified uncertainties and produce time and cost distributions. 

Task 1.4. Investigate the developed distributions and understand the impact of 

identified uncertainties on construction processes and consequently time and cost. 

Task 1.5. Investigate the relationship between planners’ risk utilities and time-cost 

tradeoff of construction under uncertainty.  

1.4.2. Design for Hypothesis Two 

Task 2.  Develop a module to estimate profit of a group of new and ongoing projects 

in order to facilitate investigation of relationship between risk utilities and corporate-level 

profit.  

This task will be accomplished by conducting the following subtasks: 
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Task 2.1. Identify factors that mainly affect profit within different construction levels. 

Task 2.2. Develop a module to estimate project-level and corporate-level profit of 

construction. 

Task 2.3. Estimate expected corporate-level profit based on both most likely performance 

of resources and prespecified risk setting of the portfolio (risk scenario based of risk utility 

of managers in particular projects).  

1.4.3. Design for Hypothesis Three 

Task 3.  Develop an optimization model that considers corporate-level resource planning 

policies in order to support decision-making on maximizing profit and improve decision 

making by introducing reliability indicators for different optimal solutions.  

This task will be accomplished by conducting the following subtasks: 

Task 3.1. Develop an optimization model to search for optimal resource utilization 

plans for projects and maximizes corporate-level profit as the objective. 

Task 3.2. Develop reliability indicator for each planning solution based on expected 

deviation between planned and most-likely corporate-level profits.  

Task 3.3. Develop a decision support model in order to help planers maintain 

maximum corporate-level profit considering different resource and schedule scenarios and 

through investigating the reliability of solutions. 
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1.5. Significance 

This research is conducted with the main objective of improving decision making process 

at different construction levels. Results of this research will lead to the following benefits 

for construction researchers and contractors. 

1.5.1. Theoretical Significance 

Benefits to Construction Researchers 

1. Understanding impact of short term risk factors on performance and efficiency of 

construction processes. 

2. Understanding impact of risk utility (i.e. risk tendency) of project managers of 

outcomes and objectives of construction at project and corporate level. 

3. Understanding how to improve risk-based decision making regarding profitability 

estimation at project and corporate level of construction.  

1.5.2. Practical Significance 

Benefits to Construction Contractors 

1. Obtaining more realistic support on decision making with regards to choosing 

resource utilization plans under uncertainty and being enabled to select different 

potential outcomes of performance and efficiency based on limited resource criteria 

as well as personal risk utility. 
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2. Improved decision making regarding allocating resources over each project as well 

as sharing resources among corporate network. This research enables managers to 

be aware of their realistic choices of resource planning, choose among optimum 

solutions that satisfy their time, cost and profit margin, obtain what if scenarios 

regarding their different sets of decisions and finally understand reliability of 

decisions based on their risk attitude.  

3. Making more reliable decisions on whether to expand their network of projects (to 

go or not to go for a bid). This research enables corporate decision makers to make 

more realistic estimates and make more reliable decision for profitability of their 

company, and understand consequences of their decisions in short and long term 

based on what if scenarios.  

1.6. Organization 

This research is conducted in format of three technical chapters, one introduction chapter 

(current chapter) and one conclusion chapter.  

Chapter two contributes to development of a research in context of capturing uncertainties 

in construction processes, developing a model to examine construction performance and 

efficiency under risk factors, and providing decision making support for managers to 

enable choosing proper resource utilization plans via stochastic simulation of project 

execution.    

Chapter three is about development of stochastic simulation-optimization model to provide 

decision makers and project managers with time-cost tradeoff of their projects under 
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uncertainty, and enable them to understand how uncertainties affect construction overall 

outcomes and be aware of the potential optimum resource utilization plans that satisfy their 

time and cost requirement. It also enables project managers to understand reliability of their 

decisions based on most likely out comes of the construction and their personal confidence 

level on performance of available resources throughout the project.  

Chapter four contributes to development of model to use outcomes of the previously 

developed models in second and third chapters in order to create tradeoffs for profitability 

and liquidity (short available cashable assets) under uncertainty. This model enables 

corporate managers to understand impact of different resource utilization and sharing 

policies on overall outcome of their project and to choose among optimum planning 

solutions that satisfy their profit margin and capital limitations. This research enables 

corporate decision makers to make more realistic estimates and make more reliable 

decision for profitability of their company, and understand consequences of their decisions 

in short and long term based on what if scenarios. 

Chapter five is about concluding remarks of this doctorate research, connects findings of 

the developed models and papers, and explains contributions and benefits of this conducted 

research for decision makers at different levels of construction works, as well as academic 

construction researchers.  
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CHAPTER TWO 

LITERATURE REVIEW  

2.1. Overview 

There is a rich body of literature in the area of decision making on resource management 

in construction industry. This chapter presents a review on previous literature that have 

addressed main areas of the current research.  

2.2. Resource Utilization Under Uncertainty 

Several research studies focused on planning and scheduling construction projects under 

uncertainties considering different objectives and using different simulation methods.  

Most of these studies focused on stochastic scheduling of construction projects assuming 

unlimited resources (Hong et al. 2011, Lee 2005, Lee and Arditi 2006, Lee et al. 2009, 

Ökmen and Öztaş 2008); or under resource constraints (Sadeghi et al. 2011, Taghaddos et 

al. 2012, Vaziri et al. 2007, Zhang and Li 2004).  Other research studies focused on 

investigating the tradeoff between time and cost for stochastic planning of construction 

projects (Feng et al. 2000, Isidore and Back 2001, Isidore and Back 2002, Khamooshi and 

Cioffi 2012).  In addition, other research studies on stochastic planning of construction 

projects focused on: allocating a project contingency for time to the different activities 
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(Barraza 2011); overcoming the challenge of extensive data requirements (Ökmen and 

Öztaş 2008); balancing strategic and operational perspectives (Peña-Mora et al. 2008); and 

integrating space constraints and crew options in the planning process (Chen et al. 2012). 

Most of the aforementioned research studies simulated activity and/or project durations, 

using different methods and processes, in order to account for the time-related risk factors 

and their associated uncertainties.  Therefore, despite the original contributions of these 

research studies, no reported research considered the dynamic nature of utilizing 

construction resources on a day-to-day basis and its impact on crew production rate.  In 

addition, no reported research studies considered the impact of time-related risk factors and 

their uncertainties on planning a portfolio of projects competing for a limited pool of 

construction resources.  Accordingly, there is a pressing need for a new model that covers 

these two important research gaps. 

This this paper therefore presents the development of a new Productivity Simulation Model 

(PSM) that is capable of considering the impact of time-related risk factors that can affect 

crew production rate on a day-to-day or shift-to-shift basis.  This is done by simulating 

crew production rate instead of project or activity durations.  In addition, PSM is designed 

to provide resource utilization capabilities at three different levels, namely the activity-, 

project-, and portfolio-levels in order to facilitate sharing a limited pool of resources among 

a portfolio of competing construction projects.  Furthermore, PSM takes into consideration 

the impact of extended working hours and/or additional working shifts on crew production 

rate and therefore on construction time and cost.  The following sections of the paper 

present the development of the new Productivity Simulation Model, an application 
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example designed to illustrate the use of PSM and demonstrate its capabilities, and discuss 

the conclusions of this research and provide recommendations for future research.  

2.3. Multi-Project Resource Planning Under Uncertainty 

Applying uncertainties to resource utilization plan has been proved to affect project 

completion outcomes (e.g. duration and cost).  As an example, modeling the efficiency 

and/or continuousness of resource utilization for weather-sensitive activities has shown to 

output a wide range of project durations, when repeated in presence of stochastic weather 

conditions (Lee et al. 2009; Shahin et al. 2010).  To model resource utilization under 

uncertainty, planners should be aware of parameters that are impacted by stochastic nature 

of uncertainties (e.g. crew production rate, material cost, etc.).  To this end, it is necessary 

to identify the level of construction at which uncertainties are being modeled.  Most of the 

studies in this area have focused on modeling of uncertainties at activity/process level.  It 

means they have planned activity parameters to probabilistically change every time that 

activity or process is scheduled.  These studies considered parameters such as activity 

duration (Puri and Martinez 2012; Ökmen and Öztaş 2008; Sadeghi et al. 2012; Shahin et 

al. 2010; Barraza 2010; Hong et al. 2011; Lee 2005; Lee and Arditi 2006), cost (Taghaddos 

et al. 2011) or both (Heravi and Faeghi 2012; Khamooshi and Cioffi 2012; Isidore and 

Back 2001; Isidore and Back 2002; Feng et al. 2000) in their models.  Some others modeled 

uncertainties at project level, where for instance, project cost is studied as a probabilistic 

parameter (Gabriel et al. 2006).  Limited number of researches, however, studied impact 

of uncertainties on a daily-level basis.  These studies have contributed to development of 

stochastic models in order to estimate either performance of crews each day (Orabi et al. 
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2013) or number of daily assigned crews (Chen et al. 2012).  For effective consideration 

of resource sharing in different construction levels, some researchers have used resource 

constraints (Orabi et al. 2013; Sadeghi et al. 2012; Vaziri et al. 2007) to examine outcomes 

of their stochastic models regarding resource limitations.  Few researchers have also 

developed models to analyze allocation and sharing of limited resources at their project 

level (Khamooshi and Cioffi 2012; Barraza 2010) or portfolio level (Orabi et al. 2013; 

Gabriel et al. 2006) scheduling.  There are also certain studies that attempted to find optimal 

resource allocation solutions (at project level) through various stochastic optimization 

methods (Heravi and Faeghi 2012; Vaziri et al. 2007; Zhang and Li 2004).   

It is shown in the recent studies that results of stochastic simulation can provide decision 

makers with statistical outcomes of projects at certain confidence levels (Orabi et al. 2013).  

Many researchers have used simulation methods to model impact of uncertainties on 

indicated parameters.  Depending on the nature of the construction work and the level of 

uncertainty modeling, different simulation methods have been implemented in existing 

models.  Monte Carlo Simulation (Orabi et al. 2013; Heravi and Faeghi 2012; Ökmen and 

Öztaş 2008) and Discrete-Event Simulation (Puri and Martinez 2012; Taghaddos et al. 

2011; Lee et al. 2010; Zhang and Li 2004) are among the most-used simulation methods.  

Some researchers have employed other methods, such as Chance-Constrained 

Programming (Gabriel et al. 2006), SIMPHONY simulation (Chen et al. 2012), 

CYCLONE simulation (Hong et al. 2011), or combined methodologies (Sadeghi et al. 

2012; Shahin et al. 2010; Peña-Mora et al. 2008).  However, the important issue in this area 

of study is using results of mentioned stochastic models to obtain a more realistic plan for 



19 

 

resource utilization.  Two main research gaps can be identified within the studies on 

resource utilization planning under uncertainty in construction.  First, there is lack of 

research studies that properly model day-to-day change of productivity under uncertainties, 

since uncertainties such as weather condition can frequently affect crew productivity on a 

daily basis (Shahin et al. 2010).  In addition, resource utilization planning of a group of 

projects competing for a limited pool of resources requires planners to examine different 

resource sharing policies to find optimal solutions.  However, no reported research 

considered stochastic optimization of resource sharing at portfolio level.  Accordingly, 

there is a need for a new model that covers these two important research gaps. 

This paper therefore presents the development of a new simulation-optimization model, 

which simulates crew production rate instead of project or activity durations and in fact, 

considers the impact of uncertainties on the daily production rate of the resource.  The 

developed model is capable of utilizing resources at three construction levels: activity, 

project and portfolio.  This provides the model with ability of sharing a limited pool of 

resources among a portfolio of competing projects considering resource utilization, 

allocation and sharing policies.  Furthermore, the multi-objective optimization model 

simultaneously minimizes completion time and cost of the portfolio, while taking into 

consideration the impact of alternative resource utilization scenarios.  The results of the 

model provides decision makers with a comprehensive perspective on construction 

performance of the portfolio under uncertainty.  Figure 1 shows general components and 

overall flow of the proposed model.  In the simulation module, uncertainties and their 

impact on daily resource production rate contribute to estimation of resource consumption 
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and construction performance estimates.  Then, having duration and cost of the portfolio 

(i.e. result of network scheduling simulation for certain number of iterations) aside to pre-

assumed alternative scenarios (i.e. decision variables), the model finds the optimum 

solutions for resource planning through multi-objective optimization process.  The 

following sections of the paper present the development of the proposed model, an 

illustrative application example to demonstrate and discuss its capabilities, and eventually, 

conclusions and recommendations for future research. 

2.4. Corporate Level Resource and Profitability Management  

It is mentioned in the literature that when deciding on resource utilization and allocation 

practices under uncertainty, decision makers need to have a proper perspective of their own 

approaches toward risk (Kim and Reinschmidt 2010).  To better investigate the impact of 

risk utilities, it is required to first understand how uncertainties affect projects.  Applying 

uncertainties to resource utilization plan has been proved to affect project completion 

outcomes (e.g. duration and cost).  As an example, modeling the efficiency and/or 

continuousness of resource utilization for weather-sensitive activities has shown to output 

a wide range of project durations, when repeated in presence of stochastic weather 

conditions (Shahin et al. 2010; Lee et al. 2009).  Similarly, many studies suggested major 

cost variations in construction when efficiency and performance are probabilistically 

modeled (Heravi and Faeghi 2012).  Existing literature have modeled uncertainties in 

different resource planning levels.  Limited number of researches studied impact of 

uncertainties on daily-level basis (Orabi et al. 2013; Chen et al. 2012), while most of the 

studies in this area have focused on activity/process level.  Among those there are various 
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models considering parameters such as activity duration (Ökmen and Öztaş 2008; Lee 

2005; Hong et al. 2011; Lee and Arditi 2006), activity cost (Taghaddos et al. 2011) or both 

(Isidore and Back 2002; Feng et al. 2000). Some others modeled uncertainties at project 

level, where for instance, project cost is studied as a probabilistic parameter (Gabriel et al. 

2006).  Few researchers have also developed models to analyze allocation and sharing of 

limited resources at the portfolio level (Barraza 2010).   

On the other hand, investigating risk utilities requires to note that managers’ level of 

confidence on performance of resources under uncertainty affects the amount of risk they 

are willing to take regarding planning decisions.  It is shown in the recent studies that 

results of stochastic simulation can provide decision makers with statistical outcomes of 

projects at certain confidence levels (Orabi et al. 2013).  Many studies developed stochastic 

simulation models to capture uncertainty in construction (Puri and Martinez 2012; Gabriel 

et al. 2006; Chen et al. 2012; Peña-Mora et al. 2008).   There are also certain studies that 

attempted to find optimal resource allocation solutions (at project level) through various 

stochastic optimization methods (Heravi and Faeghi 2012; Vaziri et al. 2007; Zhang and 

Li 2004). However, three main research gaps can be identified within the existing literature.  

Uncertainties are claimed to frequently affect resource performance on a daily basis.  

However, there is lack of research studies that accurately model contingencies affecting 

daily performance of construction under uncertainties.  In addition, consideration of 

resource planning for a group of projects consuming limited resources seems required for 

an improved and realistic decision making.  However, no reported research considered 

stochastic optimization of resource sharing at portfolio level.  In addition, there is a need 
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for new research to investigate impact of risk utilities on decision making in planning 

phase.   

Finally, decision makers at corporate level need to have a broad perspective on their 

network, resources possibilities and risk utility of their project managers in order to 

improve their decisions with regards to reliability of potential outcomes. This paper 

therefore, presents the development of a new simulation-optimization model to cover the 

identified research gaps and consequently facilitate the investigation of risk utility on 

reliability of corporate level construction outcomes. The developed model consists of 

simulation and optimization modules, as well as decision support material which are 

introduced in next sections of the paper. 
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CHAPTER THREE 

RESOURCE UTILIZATION AND UNCERTAINTY 

3.1. Overview 

Risks are inherent in construction and therefore needs to be incorporated in construction 

project planning.  To this end, existing stochastic planning models use historical activity 

duration data to model time uncertainties and simulate project durations.  This approach 

does not take into consideration the impact of day-to-day changes on time-related risk 

factors (e.g. weather, labor availability, and trade coordination) and their associated 

uncertainties.  Therefore, simulation of crew production rate can provide a more accurate 

representation of these time-related uncertainties.  This paper therefore presents the 

development of a new stochastic planning model that uses historical crew production rate 

data to simulate both activity and project durations.  The model uses Monte Carlo 

simulation with beta distributions to capture day-to-day and shift-to-shift changes in crew 

production rate.  In addition, the model also considers the impact of sharing a limited pool 

of resources on the construction duration of a portfolio of projects rather than single 

projects.  An application example is analyzed to evaluate the performance of the new model 

and demonstrate its capabilities. 
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3.2. Introduction and Background 

Construction planners and schedulers need to consider the impact of several variable 

factors while scheduling construction projects.  These factors include jobsite management 

conditions, weather, resource availability among others.  Each of these factors can have a 

significant impact on production rate and therefore the time needed to complete 

construction activities and processes.  Furthermore, many of these factors can change from 

day-to-day and even from shift-to-shift resulting in unpredictable crew production rate 

rates.  This uncertainty makes estimating activity and project durations a complex and 

challenging task.  In addition, the need to consider limited availability of resources and/or 

sharing a limited pool of resources among a portfolio of construction projects adds to the 

complexity of this problem. 

Several research studies focused on planning and scheduling construction projects under 

uncertainties considering different objectives and using different simulation methods.  

Most of these studies focused on stochastic scheduling of construction projects assuming 

unlimited resources (Hong et al. 2011, Lee 2005, Lee and Arditi 2006, Lee et al. 2009, 

Ökmen and Öztaş 2008); or under resource constraints (Sadeghi et al. 2011, Taghaddos et 

al. 2012, Vaziri et al. 2007, Zhang and Li 2004).  Other research studies focused on 

investigating the tradeoff between time and cost for stochastic planning of construction 

projects (Feng et al. 2000, Isidore and Back 2001, Isidore and Back 2002, Khamooshi and 

Cioffi 2012).  In addition, other research studies on stochastic planning of construction 

projects focused on: allocating a project contingency for time to the different activities 
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(Barraza 2011); overcoming the challenge of extensive data requirements (Ökmen and 

Öztaş 2008); balancing strategic and operational perspectives (Peña-Mora et al. 2008); and 

integrating space constraints and crew options in the planning process (Chen et al. 2012). 

Most of the aforementioned research studies simulated activity and/or project durations, 

using different methods and processes, in order to account for the time-related risk factors 

and their associated uncertainties.  Therefore, despite the original contributions of these 

research studies, no reported research considered the dynamic nature of utilizing 

construction resources on a day-to-day basis and its impact on crew production rate.  In 

addition, no reported research studies considered the impact of time-related risk factors and 

their uncertainties on planning a portfolio of projects competing for a limited pool of 

construction resources.  Accordingly, there is a pressing need for a new model that covers 

these two important research gaps. 

This this paper therefore presents the development of a new Productivity Simulation Model 

(PSM) that is capable of considering the impact of time-related risk factors that can affect 

crew production rate on a day-to-day or shift-to-shift basis.  This is done by simulating 

crew production rate instead of project or activity durations.  In addition, PSM is designed 

to provide resource utilization capabilities at three different levels, namely the activity-, 

project-, and portfolio-levels in order to facilitate sharing a limited pool of resources among 

a portfolio of competing construction projects.  Furthermore, PSM takes into consideration 

the impact of extended working hours and/or additional working shifts on crew production 

rate and therefore on construction time and cost.  The following sections of the paper 

present the development of the new Productivity Simulation Model, an application 
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example designed to illustrate the use of PSM and demonstrate its capabilities, and discuss 

the conclusions of this research and provide recommendations for future research.  

3.3. Methodology: Productivity Simulation Model (PSM) 

The main purpose of the new Productivity Simulation Model (PSM) is to evaluate and 

measure the impact of day-to-day time-related risks and their associated uncertainties on 

construction projects schedule and cost.  To this end, PSM simulates the production rate of 

construction crews on a shift-to-shift basis.  In order to achieve this objective, the model is 

developed in three main phases: input phase, simulation phase, and output phase.  The 

following subsections describe the development of each of these phases.  It should be 

mentioned that the simulation model has been coded in C++ programing language and 

organized in four main modules for input data initialization, Monte Carlo simulation, 

project structure and duration calculation. 

3.3.1. Input Phase 

The main purpose of this phase is to collect and prepare the data needed for simulating 

production rate and scheduling a portfolio of projects competing for a limited pool of 

construction resources.  The model uses five different types of data: resource availability, 

crew production rate, project scheduling, cost, and portfolio scheduling data, as shown in 

Figure 1.  First, the user needs to provide data on the availability of resources in the 

contractor’s pool, including the types of resources used by the contractor, the number of 

available crews of each resource type, the availability dates of each crew, and the 

production rate adjustment factor for crews working overtime or night shifts.  Second, for 

each of the resource types used by this contractor, the user also needs to input crew 
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production rate data that is representative of the historical performance of each resource 

type.  These data include selecting a suitable frequency distribution for crew production 

rate (i.e. beta, triangular, normal … etc.) and providing the statistical data required to 

describe the selected distribution (e.g. most likely, optimistic, and pessimistic production 

rate rates in the case of the beta distribution).  The selected frequency distribution should 

be representative of the time-related risk factors that can significantly change crew 

production rate on shift-to-shift or day-to-day basis.  Third, project schedule data include 

the planned activities for each project of the portfolio, scope of work (i.e. quantity) of each 

activity, resource requirements, and activity precedence information.  Fourth, the user is 

required to provide data on direct and indirect costs.  Direct costs include cost rates of each 

resource type and a lumpsum material cost for each activity.  The indirect cost input data 

include one fixed daily rate for each project of the portfolio to cover site and main office 

overheads.  Finally, the portfolio schedule data include projects prioritization (i.e. order of 

project execution), and working schedule and overtime policy for each project. 
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Figure 3.1. Productivity Simulation Model (PSM) 

3.3.2. Simulation Phase 

The main purpose of this phase of PSM is to simulate the production rate of the contractor's 

crews and analyze its impact on construction duration and cost at both the project and 

portfolio levels.  This phase of PSM has two main procedures: initialization and Monte 

Carlo simulation. 
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Initialization Procedure is executed only once at the onset of running PSM and is aimed at 

loading the resource and project data collected in the previous phase and storing it in 

efficient data structures.  These data structures are designed to provide swift access and 

seamless sharing of data among the different PSM processes in order to reduce the PSM 

computational overhead.  Furthermore, the initialization procedure also includes fitting 

frequency distribution curves for crew production rate based on the crew data collected in 

the previous phase.  This curve fitting process is completed for each crew in the contractor’s 

resource pool based on the distribution curve selected by the user and the descriptive 

statistical production rate data provided in the input phase.  Currently, PSM only considers 

beta distribution; therefore, any simulated instances of a crew’s production rate should be 

generated using a Beta Probability Density Function (PDF).  To this end, PSM generates 

the simulated crew production rate instances using the widely accepted Program Evaluation 

and Review Technique (PERT).  Therefore, the mean and standard deviation of crew 

production rate can be estimated as follows:  

[1].  μn =
(𝑃𝑜𝑝𝑡)𝑛 + 4 × (Pml )𝑛+ (Ppes)𝑛

6
 

[2].  𝜎𝑛 =
(𝑃𝑜𝑝𝑡)𝑛− (Ppes)𝑛

6
 

 

Where, (μn) and (σn) are the mean and standard deviation of crew (𝑛) production rate, 

respectively.  (Popt)n , (Pml )n, and (Ppes)n are the optimistic, most likely, and pessimistic 

productivities of crew (𝑛), respectively; as collected from the user in the input phase.  The 

estimated production rate mean and standard deviation are then used with an inverse beta 
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function to generate the simulated instances of production rate that follows the beta 

probability density function.  This process ensures generating crew productivities that are 

representative of the impact of time-related risk factors and their associated uncertainties. 

 

Figure 3.2. Flowchart for the Monte Carlo simulation procedure 

Monte Carlo Simulation Procedure is the core of PSM and is comprised of several 

processes and methods that are designed to analyze and measure the impact of the 

aforementioned risk factors and their associated uncertainties on construction duration and 

cost at the project and portfolio levels.  This is achieved by analyzing construction resource 

utilization and management practices based on the simulated crew production rate 

instances.  To this end, PSM analyzes resource management at three main levels: resource 

utilization at the activity level; resource allocation at the project level; and resource sharing 

at the portfolio level, as shown in Figure 1.  At the activity level, PSM analyzes the impact 
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of the simulated production rate instances on activity durations and therefore costs, which 

accounts for the risk factors that can result in changing production rate on a day-to-day 

basis.  At the project level, the estimated activity durations are used to allocate the limited 

construction resources available to different activities based on the resource requirements 

of these activities and the project logic.  At the portfolio level, PSM analyzes the impact of 

sharing the limited resources among competing projects on the duration and cost of these 

projects according to the prioritization specified by the user.  This procedure is executed 

for a number of iterations predefined by the user and involves two nested loops, as 

described in the following steps (see Figure 2): 

1. Load project, resources and production rate data and store them in appropriate data 

structures, which allow swift and efficient access in the following steps. 

2. Start the Monte Carlo simulation procedure and repeat it for a predefined number 

of iterations (𝑖) set by the user.  Therefore, the following steps 3 through 8 are 

repeated iteratively for (𝑖) times. 

3. Select the next unscheduled project (𝑝) of the portfolio according to the project 

prioritization identified by the user.  This is at the portfolio level resource 

management (i.e. resource sharing) and is designed to give projects with higher 

priority access to the contractor’s limited resource pool before other projects that 

have lower priority. 

4. Set the start date of the current project (𝑝) based on the availability of resources.  

This data depends on having enough resources available and free to work on this 
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project.  Resources become free once they complete all work required on projects 

of higher priority and are released to the contractor’s pool for use in other projects.  

The start date of the first activity of project (𝑝), and accordingly the project start 

date, is therefore set to the early finish of the last activity using the same resource 

type in the immediately preceding project in terms of priority.  PSM uses a 

resource-tracking database that is updated every time a crew is deployed to or from 

the resource pool to facilitate sharing construction crews at both the project and 

portfolio levels.  This database can provide the number and types of resources 

available at any point in time.  It is noteworthy that PSM allows activities to start 

with fewer crews than its requirements and can adjust the production rate as more 

crews become available. 

5. Calculate the duration of all activities in the current project (𝑝) based on the 

simulated instances of crew production rate.  As mentioned in step 4, an activity 

can start with a fewer number of crews than required and its production rate 

gradually increases as more crews become available according to the resource-

tracking database.  The production rate of construction resources is therefore not 

constant over the duration of activity (𝑎).  Actually, two main factors contribute to 

the variability in production rate of construction resources over an activity’s 

duration: the varying number of crews available; and the individual production rate 

of these crews that can change from one shift to the other due to time-related risk 

factors and the project overtime policy implemented, if any. PSM therefore uses a 

process to calculate project duration that takes into consideration this variable crew 
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production rate.  This process monitors the amount of work that can be completed 

during each shift and estimates how many time units (e.g. days) are needed to 

complete the entire work and hence the activity duration.  This activity duration 

calculation process includes the following equations: 

[3].  𝑞𝑥 = ∑ 𝑝𝑥
𝑠𝑛

𝑠=1  

[4].  𝑄𝑟 = 𝑄𝑡𝑜𝑡𝑎𝑙 − 𝑞𝑥 

Where, (𝑞𝑥) is the quantity of work that can be completed in day (𝑥), (𝑝𝑥
𝑠) is the 

crew production rate in shift (𝑠) of day (𝑥), (𝑛) is the number of working shifts 

according to the implemented overtime policy, (𝑄𝑟) is the remaining quantity of 

work at the end of each day, and (𝑄𝑡𝑜𝑡𝑎𝑙) is the total quantity of work required for 

activity (𝑎 ).  It is noteworthy that (𝑝𝑥
𝑠 ) takes into consideration adjusting the 

production rate for crew working for extended hours or second shifts due to the 

expected fatigue.  Equations (3) and (4) are repeated iteratively until (𝑄𝑟) is equal 

to or less than zero.  The minimum number of days needed to have (𝑄𝑟) equal to or 

less than zero is the duration of activity (𝑎).  As described above, crew production 

rate (𝑝𝑥
𝑠) is simulated to fit the beta probability density function using a random 

number that is generated individually for each single crew of each working shift 

(𝑠). 

6. Estimate the completion time of project ( 𝑝 ) based on the activity durations 

calculated in the previous step and according to the planning project logic using the 

Critical Path Method (CPM).  To this end, the start date of any activity (𝑎) will 
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depend on the completion of the immediately preceding activities and availability 

of resources similar to setting project start date in step 4.  This step is performed 

concurrently with step 5 by setting the start date of activity (𝑎), calculating its 

duration, and setting its finish date before moving on to the following activity until 

all activities are scheduled and the project completion time (PCT) is set to be the 

earliest finish of the last activity. 

7. Calculate the total cost of project (𝑝), which is comprised of two main types of cost: 

direct (DC) and indirect (IC), as shown in Figure 3.  In PSM, the direct cost includes 

the lumpsum cost of material required for completing the planned work, and the 

construction crew cost.  The crew cost is estimated as the product of each activity’s 

duration and the crew cost rate.  Activity crew costs are then added up to calculate 

the total crew cost for the entire project.  The indirect cost is estimated as the 

product of the project duration and the indirect cost rate that represents site and 

main office overheads.  Steps 3 through 7 are repeated iteratively until all the 

projects of the portfolio are scheduled and their duration and total costs are known. 

 

Figure 3.3. Construction cost calculation at different resource utilization levels 

 Portfolio or Resource Sharing (RS) Level

Project or Resource Allocation (RA) Level 

Activity or Resource Utilization (RU) Level
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Calculate the duration and total cost for completing the portfolio based on the duration and 

cost of the individual projects as per steps 3 through 7.  The portfolio duration is estimated 

as the difference between the latest early finish and earliest early start of all projects.  The 

total portfolio cost however is the summation of all project costs.  The estimated portfolio 

duration and cost in this step are associated only with the current iteration (𝑖) and are 

dependent on the simulated crew production rate of the same iteration.  Therefore, in order 

to account for the aforementioned time-related risk factors and their associated 

uncertainties, steps 3 through 8 are repeated for a predefined number of iterations, and 

storing the pairs of portfolio duration and cost of each iteration for further analysis. 

3.3.3. Output Phase 

The main purpose of this phase of PSM is to use the results of the simulation in order to 

help planners identify an estimate for portfolio duration and cost according to their risk 

tolerance.  To this end, the pairs of portfolio duration and cost generated for each iteration 

of the simulation phase is used to develop frequency distribution curves for both portfolio 

duration and cost.  These distribution curves depict the frequency of occurrence of each 

portfolio duration and each portfolio cost according to the simulated crew production rate.  

Similarly, each project can have distribution curves for its duration and cost that can be 

used for decision making at the project-level.  Planners can therefore identify, at any of the 

portfolio or project levels, the duration and cost for a given confidence level, which is 

representative of their risk tolerance.  Furthermore, these distribution curves can be used 

in further analyses, e.g. what-if scenarios, in order to identify an optimal utilization plan of 
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the limited resource pool.  The following section demonstrates an example of how to use 

PSM to plan and schedule construction projects. 

3.4. Application Example 

An application example for planning a portfolio of constructing three identical 

prefabricated metal buildings is analyzed to illustrate the use of PSM and demonstrate its 

capabilities.  The activities in these three projects are similar and are adopted from Ahuja 

et al. (1995).  Each project consists of five activities and requires five different types of 

construction resources.  Table 1 shows the five activities of each project, activity 

precedence information, activity quantity of work, required resources, crew daily 

production rate (i.e. optimistic, most likely, and pessimistic daily production rate rates), 

material and crew cost rates, and the number of crews available of each resource type.  The 

daily indirect costs are $800, $850 and $1000 for projects 1, 2 and 3, respectively.  In 

addition, the projects are numbered based on their priority.  All three projects are assumed 

to work for two shifts per working day. 

Table 3.1. Application example project and resource data 

 

This portfolio of projects was analyzed using the new PSM for a total number of 500 

iterations.  Figure 4 shows the resulting duration and cost distribution curves for each of 
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the three projects and for the entire portfolio.  Since the scope and resource requirements 

for all three projects are similar, their duration distribution curves are almost identical and 

ranges from 155 to 162 days for each project.  The project cost distribution curves however, 

have similar shapes but different mean values due to the different indirect cost rates used 

for each project.  At the portfolio level, the cost distribution curve shows total portfolio 

cost ranging from approximately $4,040,000 to over $4,080,000.  Similarly, the portfolio 

duration distribution curve shows a total portfolio duration ranging between 315 and 323 

days.  Planners and decision makers can use these distribution curves to make informed 

bidding and resource utilization decisions that fit their needs and in accordance with their 

risk tolerance.  

 

Figure 3.4. Duration and cost distribution curves at project and portfolio levels 
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For example, for a contractor bidding on a similar three- project portfolio, the estimator 

can safely assume that the portfolio is expected to complete after 320 days at probability 

of 80%.  For other contractors who are more risk averse, they can use a higher confidence 

level, which will result in a higher duration, and vice versa for risk loving contractors who 

are willing to bear more risks and can choose a lower confidence level.  

3.5. Conclusions and Recommendations for Future Research 

Construction projects are prone to myriad time-related risk factors (e.g. weather, labor 

availability, and trade coordination) that can result in significant changes in crew 

production rate on a day-to-day basis.  This scheduling uncertainty problem makes it 

challenging for planners and decision makers to plan these projects and select optimal 

resource utilization plans.  Existing stochastic planning models are insufficient to solve this 

problem since they depend on simulating activity and/or project duration, which does not 

address the problem of daily changes in crew production rate.  Therefore, this paper 

presented the development of new Productivity Simulation Model (PSM) that estimates 

activity, and hence project, durations based on simulated crew production rate.  In addition, 

PSM is also capable of planning a portfolio of projects competing for a limited pool of 

resources and considers the impact of working for extended hours of multiple working 

shifts.  The model is comprised of three main phases.  First, the input phase collects project 

and resource data that are readily available for users.  Second, the simulation phase uses 

Monte Carlo simulation to capture the variation in crew production rate and its impact on 

construction duration and cost at both the project and portfolio levels.  Finally, the output 

phase provides the user with distribution curves for construction duration and cost, which 
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allows planners to make informed decisions.  PSM also uses three levels of resource 

management to facilitate effective and efficient resource utilization at the activity, project, 

and portfolio levels. 

Further research is needed in order to improve the capabilities of PSM and provide more 

accurate depiction of construction risks and their impacts on different planning objectives.  

For example, the model could be expanded to consider the impact of risk factors on material 

costs and crew cost rates.  In addition, resource utilization decisions can be optimized in 

order to select the project prioritization and overtime policy options that can 

simultaneously minimize portfolio construction duration and cost. 
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CHAPTER THREE 

RISK-BASED RESOURCE PLANNING  

TOWARD MINIMIZING TIME AND COST 

 

4.1. Introduction 

Due to the importance of understanding and capturing risks in construction planning, 

numerous research studies have focused on planning of resource utilization under 

uncertainty as main source of unexpected changes during construction projects.  Applying 

uncertainties to resource utilization plan has been proved to affect project completion 

outcomes (e.g. duration and cost).  As an example, modeling the efficiency and/or 

continuousness of resource utilization for weather-sensitive activities has shown to output 

a wide range of project durations, when repeated in presence of stochastic weather 

conditions (Lee et al. 2009; Shahin et al. 2010).  To model resource utilization under 

uncertainty, planners should be aware of parameters that are impacted by stochastic nature 

of uncertainties (e.g. crew production rate, material cost, etc.).  To this end, it is necessary 

to identify the level of construction at which uncertainties are being modeled.  Most of the 

studies in this area have focused on modeling of uncertainties at activity/process level.  It 

means they have planned activity parameters to probabilistically change every time that 

activity or process is scheduled.  These studies considered parameters such as activity 
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duration (Puri and Martinez 2012; Ökmen and Öztaş 2008; Sadeghi et al. 2012; Shahin et 

al. 2010; Barraza 2010; Hong et al. 2011; Lee 2005; Lee and Arditi 2006), cost (Taghaddos 

et al. 2011) or both (Heravi and Faeghi 2012; Khamooshi and Cioffi 2012; Isidore and 

Back 2001; Isidore and Back 2002; Feng et al. 2000) in their models.  Some others modeled 

uncertainties at project level, where for instance, project cost is studied as a probabilistic 

parameter (Gabriel et al. 2006).  Limited number of researches, however, studied impact 

of uncertainties on a daily-level basis.  These studies have contributed to development of 

stochastic models in order to estimate either performance of crews each day (Orabi et al. 

2013) or number of daily assigned crews (Chen et al. 2012).  For effective consideration 

of resource sharing in different construction levels, some researchers have used resource 

constraints (Orabi et al. 2013; Sadeghi et al. 2012; Vaziri et al. 2007) to examine outcomes 

of their stochastic models regarding resource limitations.  Few researchers have also 

developed models to analyze allocation and sharing of limited resources at their project 

level (Khamooshi and Cioffi 2012; Barraza 2010) or portfolio level (Orabi et al. 2013; 

Gabriel et al. 2006) scheduling.  There are also certain studies that attempted to find optimal 

resource allocation solutions (at project level) through various stochastic optimization 

methods (Heravi and Faeghi 2012; Vaziri et al. 2007; Zhang and Li 2004).   

It is shown in the recent studies that results of stochastic simulation can provide decision 

makers with statistical outcomes of projects at certain confidence levels (Orabi et al. 2013).  

Many researchers have used simulation methods to model impact of uncertainties on 

indicated parameters.  Depending on the nature of the construction work and the level of 

uncertainty modeling, different simulation methods have been implemented in existing 
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models.  Monte Carlo Simulation (Orabi et al. 2013; Heravi and Faeghi 2012; Ökmen and 

Öztaş 2008) and Discrete-Event Simulation (Puri and Martinez 2012; Taghaddos et al. 

2011; Lee et al. 2010; Zhang and Li 2004) are among the most-used simulation methods.  

Some researchers have employed other methods, such as Chance-Constrained 

Programming (Gabriel et al. 2006), SIMPHONY simulation (Chen et al. 2012), 

CYCLONE simulation (Hong et al. 2011), or combined methodologies (Sadeghi et al. 

2012; Shahin et al. 2010; Peña-Mora et al. 2008).  However, the important issue in this area 

of study is using results of mentioned stochastic models to obtain a more realistic plan for 

resource utilization.  Two main research gaps can be identified within the studies on 

resource utilization planning under uncertainty in construction.  First, there is lack of 

research studies that properly model day-to-day change of productivity under uncertainties, 

since uncertainties such as weather condition can frequently affect crew productivity on a 

daily basis (Shahin et al. 2010).  In addition, resource utilization planning of a group of 

projects competing for a limited pool of resources requires planners to examine different 

resource sharing policies to find optimal solutions.  However, no reported research 

considered stochastic optimization of resource sharing at portfolio level.  Accordingly, 

there is a need for a new model that covers these two important research gaps. 

This paper therefore presents the development of a new simulation-optimization model, 

which simulates crew production rate instead of project or activity durations and in fact, 

considers the impact of uncertainties on the daily production rate of the resource.  The 

developed model is capable of utilizing resources at three construction levels: activity, 

project and portfolio.  This provides the model with ability of sharing a limited pool of 
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resources among a portfolio of competing projects considering resource utilization, 

allocation and sharing policies.  Furthermore, the multi-objective optimization model 

simultaneously minimizes completion time and cost of the portfolio, while taking into 

consideration the impact of alternative resource utilization scenarios.  The results of the 

model provides decision makers with a comprehensive perspective on construction 

performance of the portfolio under uncertainty.  Figure 1 shows general components and 

overall flow of the proposed model.  In the simulation module, uncertainties and their 

impact on daily resource production rate contribute to estimation of resource consumption 

and construction performance estimates.  Then, having duration and cost of the portfolio 

(i.e. result of network scheduling simulation for certain number of iterations) aside to pre-

assumed alternative scenarios (i.e. decision variables), the model finds the optimum 

solutions for resource planning through multi-objective optimization process.  The 

following sections of the paper present the development of the proposed model, an 

illustrative application example to demonstrate and discuss its capabilities, and eventually, 

conclusions and recommendations for future research. 

 

 
Figure 4.1. General components and overall flow of the model 
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4.2. Stochastic Simulation of the Portfolio Network 

The main purpose of the simulation module of the proposed model is to measure the impact 

of uncertainties on projects schedule and cost, through performing a day-to-day resource 

management analysis.  To this end, the simulation module eventually produces duration 

and cost frequency distributions of the portfolio through capturing changes in crew 

production rate, on a day-to-day or even shift-to-shift basis.  The model, which has been 

coded in C++ programing language, is also capable of developing duration and cost 

distributions separately for different construction levels.  The simulation module is based 

on Productivity Simulation Model (PSM) developed by Orabi et al. (2013) which simulates 

resource utilization in the following stages; first, utilizing resources at activity level, then 

allocating resources at project level and finally, sharing limited pool of resources among 

different projects at portfolio level.  Before starting the simulation process, required input 

data are collected and prepared to be used in the model.  Mentioned data include project 

and portfolio scheduling data, crew productivity data, resource availability data, project 

cost data, etc.  Model uses collected data to initialize simulation procedure and perform 

analyses during different phases.  Figure 2 shows overall flow and components of the 

simulation module at different analysis levels within each iteration.  At resource usage 

level, the model simulates productivity of crews utilized to each activity and estimates daily 

performance and cost of activities based on resource availability and cost data.  The result 

of activity level analysis is duration and cost of each activity.  At resource allocation level, 

these outputs besides project network scheduling and indirect cost data are used to calculate 

project total duration and cost.  This process is repeated for all projects of the portfolio and 

eventually, at resource sharing level, the model estimates total portfolio duration and cost 
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considering prioritization of projects and portfolio cost data.  The model repeats the 

mentioned procedure for limited number of iterations and in each iteration, uses crew 

productivity distributions to capture daily changes in crew production rates.  To this end, 

Monte Carlo Simulation method has been implemented in the model to extract production 

rates from productivity distributions.  Final outputs of the stochastic simulation process are 

duration and cost frequency distributions of portfolio throughout iterations.  

 

 
Figure 4.2. Analysis levels and general flow of the simulation module 

Two different types of cost have been considered in the model.  Direct costs, including 

crew cost rate (i.e. crew daily wage and burden) and material cost rate of each activity.  
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The indirect cost, however, includes expenses that are not directly related to the amount of 

work performed throughout project.  At project level, indirect cost is a fixed daily rate for 

each project to cover site and main office overheads.  Additionally, in this paper, a 

mobilization cost rate has been considered for each specific equipment in a crew to 

represent cost of moving construction equipment between projects.  The aforementioned 

cost contributes to the total indirect cost of the portfolio.  It should be mentioned that the 

starred items in Figure 2 indicate decision variables of the optimization module, which are 

described in next sections. 

4.2.1. Resource Usage (RU) or Activity Level Procedures 

As shown in Figure 2, at the resource usage level, the model uses input data such as quantity 

of the work, resource requirements, resource availability, crew productivity and overtime 

policy data to estimate completion time and cost of each activity.  This process involves 

two procedures; (1) activity scheduling and (2) duration calculation, which calculate 

activity start time and duration, respectively.   Figure 3 shows a diagram of these 

procedures, their components, and required input data.  Activity scheduling procedure uses 

Critical Path Method (CPM) to schedule activities within projects, and requires activity 

durations in addition to project milestones and time constraints.  The model uses different 

production rates for construction crews in each working shift, to capture the impact of 

short-term change of uncertainties on activity duration and cost.  This productivity change 

affects availability time-table of certain resources.  Therefore, the simulation module 

schedules activities (project level) and calculates their durations (activity level), 

simultaneously.  The model first estimates earliest possible start time of each activity based 
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on completion times of preceding activities and/or project milestones.  In this stage, actual 

activity start time depends on availability of the required resource (crew) in project 

resource pool.  Unless the start time is postponed to a later date due to unavailability of a 

certain crew, the model schedules each activity on the estimated earliest date.   

 
Figure 4.3. Activity level analysis from the simulation module 

To calculate activity duration and cost through the second procedure, the model performs 

the following steps for each activity: 

1. Developing a suitable crew productivity curve based on pre-specified frequency 

distribution type (normal, beta or triangular distributions) and pre-collected 

statistical data regarding productivity for each resource crew.  Mentioned statistical 

data for each crew are most likely, optimistic and pessimistic production rates.  The 

model uses Program Evaluation and Review Technique (PERT) equations to 

estimate mean and standard deviation of production rate distributions, as shown in 

Eq. 1 and 2. 
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μn =
(𝑃𝑜𝑝𝑡)𝑛  +  4 × (Pml )𝑛 +  (Ppes)𝑛

6
 (1)  

𝜎𝑛 =
(𝑃𝑜𝑝𝑡)𝑛 −  (Ppes)𝑛

6
 (2)  

 

Where, ( μn ) and ( σn ) are the mean and standard deviation of productivity 

distribution of crew (𝑛), respectively.  (Popt)n , (Pml )n, and (Ppes)n represent the 

optimistic, most likely, and pessimistic production rates of crew (𝑛).  (μn) and (σn) 

are used to develop productivity frequency and probability distributions for each 

resource crew.  Developed distributions are used to formulate inverse cumulative 

probability function for each crew to be used in step 3.  

2. Assigning number and length of required working shifts per day based on overtime 

policy alternative.  Mentioned alternative, which is one of the decision variables of 

the optimization module, is allotted specifically to each project, as explained in the 

optimization section of this paper.  Each alternative includes productivity and cost 

adjustment factors for crews working in different shifts.   

3. Estimating an instant production rate for each crew working on each work-shift 

using Monte Carlo Simulation Method. To practically consider the effect of short-

term time-related uncertainties in resource productivity change, the model 

generates random probabilities for each crew in each shift, and extracts the 

corresponding production rates from inverse cumulative probability distribution 
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(created in the step 1).  The model is able to fit Triangular, Beta and Normal 

frequency distributions to productivity input data depending on the type and 

specifications of the crew. The model then modifies the estimated production rate 

using adjustment factor obtained in step 2.  

4. Calculating daily performance of the construction crews by repeating previous step 

for all shifts of the day, as formulated in Equation 3. 

𝐷𝑃 = ∑ ∑ (𝑃𝑛𝑚×𝑓𝑝−𝑛)

𝑀

𝑚=1

𝑁

𝑛=1

 (3)  

In the above equation (𝐷𝑃) is daily performance of each activity, (𝑁) is number of 

working shifts per day, (𝑀) is number of crews working concurrently in shift (𝑛), 

(𝑃𝑛𝑚) represents estimated production rate of crew (𝑚) in shift (𝑛), and (𝑓𝑝−𝑛) is 

productivity adjustment factor of the shift (𝑛). The phrase (𝑃𝑛𝑚×𝑓𝑝−𝑛) estimates 

the modified production rate of crew (𝑚) in shift (𝑛), as described in step 3.   

5. Estimating daily crew cost of construction.  Crew cost is one of the two components 

of the direct cost besides material cost. The model calculates modified crew cost 

for each crew working on each shift based on crew hourly wage and burden, and 

also cost adjustment factor described in step 2.  Then estimates the daily crew cost 

similar to daily performance via adding up calculated costs of all crews worked 

entire day, as formulated in Equation 4. Material cost will be later calculated along 

with estimating activity duration. 
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𝐷𝐶𝐶 = ∑ ∑ (𝐶𝐶𝑛𝑚×𝑓𝑐−𝑛)

𝑀

𝑚=1

𝑁

𝑛=1

 
(4)  

6. In the Equation 4 (𝐷𝐶𝐶) is daily crew cost for the current activity, (𝑁) is number 

of working shifts per day, (𝑀) is number of crews working concurrently in shift 

(𝑛), (𝐶𝐶𝑛𝑚) represents cost of crew (𝑚) in shift (𝑛), and (𝑓𝑐−𝑛) is cost adjustment 

factor of the shift (𝑛).  

7. Calculating activity duration. Through repeating steps 3 and 4 in a loop, the model 

adds up daily performance of the crews and counts number of days it takes until 

crews execute entire quantity of the activity.  Using activity durations and start date, 

the model estimates the activity completion time as demonstrated in Figure 3.  

8. Calculating total activity direct cost as formulated in Equation 5. 

𝐴𝐷𝐶 = (∑ 𝐷𝐶𝐶𝑑

𝐷

𝑑=1

) + (𝑀𝐶×𝐴𝑄) 
(5)  

In the above equation, (𝐴𝐷𝐶) is activity direct cost (i.e. activity completion cost), 

(𝐷) is activity duration as estimated in step 6, (𝐷𝐶𝐶𝑑) is daily cost of the day (𝑑) 

as calculated in step 5, (𝑀𝐶) is material cost rate (if any), and (𝐴𝑄) is quantity of 

material needed to complete the activity (e.g. amount of poured concrete).  

Eventually as shown in Figure 3, the model estimates the activity completion time and cost, 

to be used in project-level scheduling simulation and cost calculation, respectively. 

4.2.2. Project and Portfolio Level Procedures 
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As shown in Figure 2 at the project level, the model schedules activities using CPM based 

on project network data.  Project duration then is calculated having start date of the first 

activity and completion date of the last activity.  For the project completion cost, the model 

first calculates project direct cost by adding up completion cost of activities, then estimates 

project indirect cost via multiplying project duration by project daily indirect cost rate.  

Finally, total project cost is the summation of project direct and indirect costs, as 

formulated in Equation 6.   

At portfolio level, the model shares limited pool of resources between competitive projects, 

which are scheduled based on pre-defined priorities. It means that projects with higher 

priority are allocated and utilized with resources sooner than others.  Therefore, 

prioritization of the projects affects the amount of remaining available resources for low-

priority projects and eventually, affects activity, project and portfolio durations.  Another 

factor that affects duration and cost of portfolio is equipment mobilization and 

demobilization.  To capture the impact of moving equipment between projects during the 

construction, cost and delay of moving is considered in the proposed model.  Moving of 

equipment affects the total portfolio indirect cost by adding a fixed amount per movement 

of each equipment.  It also delays availability of resources that are released from a project 

for a fixed amount of time until they can be used in other projects.  Mentioned delay would 

potentially affect the duration estimation in all analysis levels due to availability of enough 

resources to start activities.  Portfolio duration is calculated based on start date of the first 

project and completion date of the last project.  The model eventually estimates the total 

portfolio cost using Equation 6 
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𝑇𝑃𝐶 = (∑ (∑(𝐴𝐷𝐶𝑎)

𝐴𝑝

𝑎=1

+ (𝐷𝑝×𝐼𝐶𝑝))

𝑃

𝑝=1

) + 𝑇𝑀𝐶 
(6)  

In the above equation, (𝑇𝑃𝐶) is total portfolio cost, (𝑃) is number of projects in the 

portfolio, (𝐴𝑝) is number of activities in the project (𝑝), (𝐴𝐷𝐶𝑎) is activity direct cost of 

the activity (𝑎) as estimated in step 7, (𝐷𝑝) is duration of project (𝑝), (𝐼𝐶𝑝) is the daily 

indirect cost rate of the project (𝑝), and finally, (𝑇𝑀𝐶) represents the total moving cost of 

equipment and crews inside the portfolio, as described in the previous section.  The final 

output of each simulation iteration, which is a pair of portfolio duration and cost, is used 

by the model to develop duration and cost frequency distribution curves as the result of 

simulation module.  Output curves demonstrate the occurrence frequency of possible 

portfolio durations or costs.  These distribution curves are used in the optimization module, 

in order to extract portfolio duration and cost based on risk attitude of the decision makers. 

4.3. Multi-Objective Optimization  

4.3.1. Objectives and Constraints 

The main objective of the optimization module is to find optimum solutions for resource 

utilization planning problem that minimize time and cost of the portfolio, simultaneously.  

The optimization module develops planning scenarios based on decision variables and 

obtains duration and cost distributions in correspondence to each scenario (via simulation 

module).  The result of the optimization module is a time-cost trade-off consisting of 

various optimum pairs of portfolio duration and cost under different risk attitudes.  Figure 

4 shows components and general flow of the multi-objective optimization module.  This 
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study considers four major modeling constraints in order to practically approach the 

mentioned optimization problem.  The first two are time-related constraints including (1) 

each projects should start on a pre-specified date (i.e. mandatory start milestone), and (2) 

each project should be continuously executed until completion without any pause.  The rest 

are resource-related constraint: (3) the resource pool which is shared between projects 

within the portfolio is limited (in case of total available amount of crews and material per 

day), and (4) maximum number of crews that can simultaneously work on an activity is 

limited to avoid jobsite conflicts and meet safety requirements.  This limitation may vary 

for different activities and projects.  

 
Figure 4.4. Optimization module general flow and components 

4.3.2. Decision Variables 

Considering mentioned constraints, the model examines the impact of two main decision 

variables on optimization objectives, as shown in Figure 4: (1) prioritizing projects of the 

portfolio for scheduling and resource consumption purposes, and (2) applying different 

overtime working policies to projects (e.g. multiple working shifts, different shift lengths, 
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etc.)  These decision variables widely affect both resource availability and productivity, 

and consequently duration and cost.  

The first decision variable examines how prioritization of the projects affects optimization 

objectives.  Due to the time-related constraints, each project should have access to at least 

a minimum number of crews required for execution, from the first day throughout its 

construction period (lower resource limit).  On the other hand, resource-related constraints 

impose a limit for maximum number of crews available and/or allowed to be assigned to a 

project each day (upper resource limit).  In terms of availability, projects with higher 

priority are assumed to be provided with their maximum number of crews during 

execution, while (1) maintaining number of resources between lower and upper limit, and 

(2) leaving enough resources for projects with lower priority to start and continue.  In terms 

of productivity, projects with higher priority have the chance to be utilized with more 

productive crews, if available.  Therefore, this approach leaves the low-priority projects 

with underutilized performance capacity and relatively low productivity resources.  As the 

second variable, use of different overtime policy alternatives affects the resource 

availability limits by changing the number of working shifts per day. It also has an impact 

on production rate through applying productivity adjustment rates. In addition, OTP 

alternatives can directly modify direct cost of the project via cost adjustment factors.  Thus, 

using the combination of mentioned decision variables, the model is capable of developing 

a wide spectrum of resource utilization scenarios in order to obtain considerable potential 

solutions.  
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4.3.3. Model Implementation 

The optimization engine of the proposed model is Non-Dominated Sorting Genetic 

Algorithm (Deb et al. 2000).  Multi-objective nature of the problem and effectiveness of 

NSGA-II in generating near optimal solutions are the reasons to select this algorithm for 

the proposed model.  The model starts by generating a random population of solutions and 

produces next generations via operations such as selection, crossover, and mutation 

throughout the population.  It continues producing generations and eventually extracts non-

dominated optimal or near optimal sets of solutions from the final population.  In each 

generation of the NSGA-II, the model (1) creates potential solutions (chromosomes) based 

on decision scenarios, (2) performs Monte Carlo stochastic simulation for all of the 

solutions (entire population), and (3) produces portfolio duration and cost distribution 

curves in order to examine optimization objectives and pick optimal solutions.  As shown 

in Figure 4, the model picks one pair of duration and cost from the distributions based on 

different risk attitudes (or confidence levels) of decision makers.  To this end, similar to 

the procedure described in step 3 of activity-level simulation the model first develops 

inverse cumulative probability function of each distribution (See Figure 5).  Then, extracts 

portfolio duration and cost corresponding to the risk-attitude of the decision makers from 

the curves.  To this end, the model uses Table 1, which lists 4 different risk attitudes used 

in this study and their corresponding assumed probabilities.  Eventually, the model returns 

a unique Pareto Front for each probability, which demonstrates a non-dominated time-cost 

tradeoff at certain risk attitude.  The result helps managers have a more realistic decision 

making process due to consideration of their risk attitude toward selecting optimal 

solutions.   
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Table 4.1. Risk attitudes and corresponding probabilities 

Risk Attitude 

Confidence Level 

(on resource productivity) Probability 

Highly Risk-Averse Very Low 90% 

Risk-Averse Low 75% 

Risk-Seeking High 60% 

Highly Risk-Seeking Very High 45% 

 

Table 1 suggests that lower confidence on performance of the resources under uncertainty 

leads to more risk-averse attitudes regarding selection of solutions, and should be indicated 

by higher cumulative probabilities when deciding about extracting time and cost.  For 

instance, when the risk attitude is considered to be risk-averse (probability is 75%), 

decision makers select their desired resource utilization plan from the non-dominated 

solutions depicted on the 75%-Tradeoff.  Due to the uncertainties, solutions in this tradeoff 

are likely to exceed their suggested optimum time and cost in 25% of time.  Thus, any 

decision made based on this attitude is obviously more risk-averse than choosing, for 

example, 45%-Tradeoff.  The latter, similarly, exposes managers to around 55% likelihood 

of time and cost overrun.  It can also be interpreted in another way: managers can find out 

how much they may save as for taking different risks.   
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Figure 4.5. Extracting portfolio duration and cost from stochastic simulation 

outputs (distributions) based on pre-defined confidence levels 

4.4. Application Example and Results 

To illustrate usage and capabilities of the developed model, an application example is 

analyzed and the results are represented and discussed.  The application example is based 

on previous study on recovery of infrastructure systems (Orabi et al. 2010) and represents 

reconstruction of a transportation network in Sioux Falls, SD.  As mentioned in previous 

sections, different types of input data are required for the model to complete the analysis. 

These input data include (1) network scheduling, resource requirements and indirect cost 

data (Table 2), (2) crew productivity, availability and moving impact data (Table 3), and 

(3) overtime policy alternatives along with corresponding productivity and cost adjustment 

factors (Table 4).  Regarding resource-related constraints, it should be mentioned that in 

this example only one crew can work in each shift of a specific activity.  It is also assumed 

that the resource pool is capable of supporting all projects to have their minimum required 

resource to start and continue. 
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Figure 6 shows the time-cost tradeoff for all non-dominated solutions generated by the 

model.  In the figure, results of the stochastic optimization are demonstrated along with 

optimal deterministic results.  Deterministic results prove the significant impact of 

considering short-term risk factors on time and cost estimate.  As expected, assuming 

optimistic crew productivity leads to lower duration and cost, while pessimistic 

presumption causes overestimation.  Wide range of solutions indicates that the portfolio 

completion time and cost are highly sensitive to different resource planning alternatives 

(i.e. decision variables).   

Table 4.2. Crew productivity distributions, cost and availability data 

ID Dist. Unit 
Cost 

($/Shift) 

Productivity Rates 

(Unit/Shift)  

Moving Impacts 

(Per Move) 

Pes. ML Opt. 

 Cost 

($) 
Delay 
(Days) 

B-08 Beta CY 4,363 10,200 11,700 14,000  65 1 

B-10M Beta CY 1,362 2,000 2,220 3,000  70 1 

B-12F Beta CY 993 55 70 80  210 2 

B-19A Beta LF 3,542 140 160 195  230 2 

B-26 Tri. SY 4,313 1,530 1,760 1,820  460 3 

B-43 Normal Ea. 3,265 4 6 8  110 1 

B-78 Tri. LF 1,646 3,200 3,660 4,350  240 2 

C-02A Tri. LF 1,477 100 110 121  50 1 

C-14A Normal CY 7,700 15 20 26  330 2 

C-14B Normal CY 7,415 16 20 27  450 3 

C-14C Normal CY 3,297 28 40 49  210 1 
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Table 4.3. Project scheduling, resource requirements and indirect cost data 

Project Activity Prec. Succ. Unit Quantity 

Crew 

ID 

Cost 
Material 
($/unit) 

Indirect 
($/day) 

A 1 - 2,3 CY 1,300 C-14A 630 1000 
 2 1 3 CY 580 C-14A 630 
 3 1,2 4,5 CY 1,540 C-14B 630 
 4 3 5 SY 3,360 B-26 550 
 5 3,4 6 LF 260 B-78 140 
 6 5 - LF 260 C-2A 100 

B 1 - 2,3 CY 1,950 C-14A 630 1000 
 2 1 4 CY 850 C-14A 630 
 3 1 4 CY 2,040 C-14B 630 
 4 2,3 5 SY 4,450 B-26 550 
 5 4 6 LF 350 B-78 140 
 6 5 - LF 350 C-2A 100 

C 1 - 2,4 CY 6,600 B-8 300 1200 
 2 1 3,6 CY 18,150 B-10M 250 
 3 2 7 LF 1,140 B-19A 320 
 4 1 5 CY 15,700 B-12F 820 
 5 4 7,8 Ea. 33 B-43 430 
 6 2 8 CY 9,400 C-14C 630 
 7 3,5 9 CY 1,620 C-14A 630 
 8 5,6 10 CY 720 C-14A 630 
 9 7 11 CY 1,920 C-14B 630 
 10 8 11 SY 4,200 B-26 550 
 11 9,10 12 LF 330 B-78 140 
 12 11 - LF 330 C-2A 100 

D 1 - 2,4 CY 4,060 B-8 300 1200 
 2 1 3,6 CY 11,150 B-10M 250 
 3 2 7 LF 700 B-19A 320 
 4 1 5 CY 9,640 B-12F 820 
 5 4 7,8 Ea. 20 B-43 430 
 6 2 8 CY 5,770 C-14C 630 
 7 3,5 9 CY 1,000 C-14A 630 
 8 5,6 10 CY 440 C-14A 630 
 9 7 11 CY 1,180 C-14B 630 
 10 8 11 SY 2,580 B-26 550 
 11 9,10 12 LF 200 B-78 140 
 12 11 - LF 200 C-2A 100 

E 1 - 2 CY 620 C-14A 630 1000 
 2 1 3 CY 1,650 C-14B 630 
 3 2 4 SY 3,610 B-26 550 
 4 3 5 LF 280 B-78 140 
 5 4 - LF 280 C-2A 100 
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Table 4.4. Overtime policy alternatives 

OTP 

Alt. 
Week 
Days 

Shifts 

Per Day 
Hours 

Per Shift 

Adjustment Factor (%) 
Cycle Time 

Coef. 
Daily Cost 

Coef. Productivity Cost 

1 5 1 8 100 100 1.00 1.00 

2 5 1 12 76.25 133.3 0.87 1.75 

3 5 2 12 68.75 153.3 0.48 2.23 

4 7 1 8 88.75 128.6 1.13 1.45 

5 7 1 12 68.75 152.4 0.97 2.22 

6 7 2 12 62 175.25 0.54 2.83 

 

In case of stochastic optimization, alternative plans would result in $3.5M potential cost 

difference and about a year of variation in portfolio duration.  However, not all the solutions 

are desirable in most cases due to the time and budget limitations. Therefore, decision 

makers need to find certain resource utilization plans that meet their time and cost 

restrictions.  Based on time-cost similarities, 9 groups of solutions (called resource 

utilization planning clusters) have been identified throughout the stochastic tradeoff.  

Results show that solutions in each cluster mainly share a similar combination of overtime 

policy alternatives (Table 4) for projects.  Each combination is represented with an OTP 

index that indicates which overtime policy alternatives have been applied to each of the 

five projects of the portfolio.   
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Figure 4.6. Portfolio Time-Cost tradeoff 

Figure 7 shows resource utilization planning clusters, their related OTP Index, and also 

their associated duration and cost trends (considering risk-averse attitude).  For instance, 

in cluster #4, OTP alternatives 1, 2, 3, 3, and 1 are suggested for projects A to E, 

respectively (i.e. OTP index of the cluster 4 is 1-2-3-3-1).  Solutions of each cluster fall 

into limited ranges of portfolio time and cost.  As shown in the figure, adding extra working 

days, shifts and hours to construction work calendar (i.e. using alternatives such as 3 or 6) 

reduces portfolio duration while increasing the total cost.  On the other hand, longest 

duration and minimum cost are obtained when all projects used regular working timetable 

(i.e. cluster 9 which suggests alternative 1 for the entire portfolio).  For each overtime 

policy alternative, cycle time coefficient indicates the time required for the crew to 

complete a regular 8-hours job in proportion with alternative 1 (i.e. regular work policy).  

Similarly, daily cost coefficient modifies cost of finishing the mentioned cycle time 

compared to alternative 1.  According to Figure 7, alternatives 4 and 5 have not been used 

in none of non-dominated OTP indexes.  Since these alternatives have both higher cycle 
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time and daily cost coefficients than alternatives 1 and 2, respectively, solutions utilized 

with these alternatives are more likely to have higher time and cost, and consequently 

become dominated by other solutions.  Alternative 6 has the same relation with alternative 

3, however, crews produce significantly higher when utilized with alternative 3 and 6 

comparing to other alternatives.  Therefore, as reflected in Figure 7, alternative 6 has been 

suggested by the model in the first three clusters before getting dominated by other 

alternatives. 

 
Figure 4.7. Optimal resource planning clusters with sample solutions from risk-

averse attitude 

Figure 8 shows optimal resource utilization solutions for three sample clusters (1, 5 and 8).  

Solutions in each cluster show a cost variation of about $80K on average, which indicates 

the significant impact of decisions both about resource planning and risk attitude on 

portfolio outcomes.  Table 5 shows all solutions inside the mentioned three sample clusters 

in addition to the deterministic portfolio outcomes (assuming most likely productivity 

(ML)) for each cluster.  Figure 8 also demonstrates duration and cost differences of each 

solution compared to cluster’s ML solution on right and top axes, respectively.  As shown, 
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solutions within each cluster are mostly scattered around ML solution duration-wise, but 

all of them resulted in lower relative cost.  It means that under uncertainty, crews work 

relatively more cost efficient than if assumed to work deterministically with their most 

likely production rate.  After choosing desired cluster based on time and budget limitations, 

planners will need to decide about resource planning solutions considering their risk 

attitude.  Each cluster contains non-dominated optimal time-cost tradeoff for different risk 

attitudes.  As expected, more risk seeking attitude toward productivity of the resources 

under uncertainty results in lower overall time and cost.    

By selecting certain tradeoffs, managers demonstrate how far they desire to put themselves 

under risk of time and cost overrun and consequently, examine how much optimal 

outcomes vary regarding their decision.   As an example, each “highly risk-averse” tradeoff 

represents optimal solutions with 10% likelihood of time and cost overrun under 

uncertainty.  Instead, considering the “risk-seeking” tradeoff (i.e. 40% probability of 

overrun) would relatively result in saving of up to $60K in case of cluster 5, as shown in 

Figure 8.  Similarly, switching between tradeoffs results in a potential delay or advance in 

project completion, which eventually affects total cost through incentives or liquidated 

damages. 
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Table 4.5. Resource planning sample clusters and solutions 

Cluster P 

Non-dominated Stochastic 
Solutions 

Non-dominated Deterministic 
Solutions (Most Likely) 

Order 
Time 
(Day) 

Cost 

($) 
Time 
(Day) 

Cost 

($) 

1 45 A-E-B-D-C 224 76,281,176 224 76,575,200 

 60 B-A-D-E-C 224 76,290,232   
 60 E-A-B-D-C 225 76,286,064   
 75 B-A-D-C-E 225 76,283,248   
 90 B-A-E-C-D 225 76,295,992   
 90 B-D-C-A-E 226 76,286,344   
5 45 E-A-D-B-C 280 74,445,728 286 74,585,048 

 45 A-E-B-D-C 281 74,348,488   

 60 D-B-C-E-A 281 74,357,264   

 60 D-C-B-E-A 282 74,345,392   
 75 B-D-E-A-C 282 74,376,592   
 75 D-B-E-C-A 283 74,363,312   
 75 B-E-D-A-C 284 74,353,984   
 90 D-B-C-E-A 283 74,404,680   
 90 D-A-B-C-E 284 74,369,168   

 90 E-B-D-A-C 285 74,363,432   

 90 D-B-A-C-E 288 74,344,080   
8 45 B-C-A-E-D 498 73,225,248 500 73,370,160 

 45 D-A-E-B-C 499 73,194,224   

 45 A-B-C-D-E 500 73,186,856   

 60 B-A-E-C-D 500 73,185,192   

 60 B-D-C-E-A 501 73,181,560   

 75 B-A-C-D-E 500 73,257,096   
 75 C-D-A-B-E 501 73,183,888   

 75 A-E-D-B-C 502 73,173,688   

 90 B-A-D-C-E 502 73,198,520   

 90 B-A-E-C-D 503 73,161,176   



65 

 

 

 
Figure 4.8. Portfolio time-cost tradeoff in sample clusters  

As the final step for decision making process, solutions suggested for each risk attitude are 

used to investigate the impact of different prioritization scenarios on portfolio outcomes.  

The figure demonstrates that variation in project prioritization results in different optimal 

pairs of time and cost, although, no evidence regarding presence of a significant correlation 

between them was found in this application example.  In this study, utilizing an activity 

with multiple crews at the same time is not allowed.  However, if allowed, it is expected to 

observe more significant impact of prioritization on the outcomes since it results in unequal 

sharing of resources among projects.  Statistical analysis of prioritization for all 5 projects 

is represented in Figure 9.  The figure shows how frequent each project is placed in 

different priorities within all non-dominated optimal solutions.  For instance, project (A) 

has been mostly placed in the second order, while it is suggested that project (C) has more 

impact when placed in last preferences.  It is also shown that the optimal solutions indicate 

no preference for placing projects in 4th order, and suggest that order of project (E) would 

not significantly impact optimal solutions.  
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Figure 4.9. Portfolio time-cost tradeoff in sample clusters  

 

4.5. Summary and Conclusions 

This research represents the development of a stochastic simulation-optimization model to 

provide planners with optimal resource utilization solutions under uncertainty.  The main 

contribution of the model is to fill two important research gaps identified in previous 

studies within the area of construction resource utilization under uncertainty.  First, 

modeling of day-to-day change of productivity under uncertainties in construction, since 

many uncertainties can frequently affect resource production rates on a daily basis. Second, 

planning of resource utilization in a portfolio of projects considering limited pool of 

resources and different resource sharing policies.  To this end, Monte Carlo Simulation 

Method is employed to simulate stochastic nature of time-related risk factors on crew 

production rate instead of project or activity duration.  In addition, the simulation module 

shares a limited pool of resources at activity, project and portfolio levels, and estimates 
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completion time and cost of the portfolio regarding desired risk attitude of planners.  The 

NSGA-II multi-objective optimization method has been also employed to simultaneously 

minimize portfolio completion time and cost, and help decision makers find optimal 

resource utilization and sharing scenarios for their construction portfolio. 

Results of the developed model provides construction decision makers with a broader and 

more realistic perspective on resource utilization planning of their projects.  The model 

develops non-dominated optimal time-cost tradeoffs and allows managers to narrow-down 

their solutions regarding their overall time and budget limitations, and also risk attitude.  

At a certain risk attitude, the model provides decision support material in order to answer 

how resource utilization and sharing policies affect portfolio outcomes (through examining 

various overtime policy alternatives and project preferences).  Following limitations of the 

proposed model can be addressed in the future studies: (1) instead of solely random-based 

generation, daily change in productivity can follow a more realistic pattern (such as 

learning and forgetting patterns), (2) more than one crew can be allowed to concurrently 

work in a shift, (3) and profit analysis with regards to risk attitude would be added to the 

model to enhance bidding estimates.  
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CHAPTER FIVE 

RISK-BASED DECISION MAKING  

ON CORPORATE RESOURCE PLANNING 

5.1. Overview 

This chapter presents the development of a model for investigating the impact of risk-based 

approach toward network outcomes on corporate level decision making in construction 

industry. This study contributes to development of model to use outcomes of the previously 

developed models in second and third chapters in order to create tradeoffs for profitability 

and liquidity (short available cashable assets) under uncertainty. This model enables 

corporate managers to understand impact of different resource utilization and sharing 

policies on overall outcome of their project and to choose among optimum planning 

solutions that satisfy their profit margin and capital limitations. This research enables 

corporate decision makers to make more realistic estimates and make more reliable 

decision for profitability of their company, and understand consequences of their decisions 

in short and long term based on what if scenarios. The proposed simulation-optimization 

model provides decision makers with different solutions for profitability and liquidity of 

their corporate based on non-dominated optimal time-cost tradeoffs and demonstrates how 

overall time and budget limitations, as well as risk utility, can affect the decision-making 

process.  
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5.2. Introduction 

Competitive bidding typically challenges contractors to stay in business by reducing 

contingency and limiting profit margin, which impose more prudent resource utilization 

and allocation decisions during both planning and construction phases of projects.  Many 

of these decisions are affected by uncertainty in resource production and construction 

performance due to several factors such as weather, managerial practices, job-type, and 

market conditions, among others. Construction decision makers will therefore have varied 

approaches to dealing with these uncertainties based on each individual’s risk utility or 

behavior. Therefore, when deciding on resource utilization and allocation practices under 

uncertainty, decision makers need to have a proper perspective of their own approaches 

toward risk (Kim and Reinschmidt 2010).  To better investigate the impact of risk utilities, 

it is required to first understand how uncertainties affect projects.  Applying uncertainties 

to resource utilization plan has been proved to affect project completion outcomes (e.g. 

duration and cost).  As an example, modeling the efficiency and/or continuousness of 

resource utilization for weather-sensitive activities has shown to output a wide range of 

project durations, when repeated in presence of stochastic weather conditions (Shahin et 

al. 2010; Lee et al. 2009).  Similarly, many studies suggested major cost variations in 

construction when efficiency and performance are probabilistically modeled (Heravi and 

Faeghi 2012).  Existing literature have modeled uncertainties in different resource planning 

levels.  Limited number of researches studied impact of uncertainties on daily-level basis 

(Orabi et al. 2013; Chen et al. 2012), while most of the studies in this area have focused on 

activity/process level.  Among those there are various models considering parameters such 

as activity duration (Ökmen and Öztaş 2008; Lee 2005; Hong et al. 2011; Lee and Arditi 
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2006), activity cost (Taghaddos et al. 2011) or both (Isidore and Back 2002; Feng et al. 

2000). Some others modeled uncertainties at project level, where for instance, project cost 

is studied as a probabilistic parameter (Gabriel et al. 2006).  Few researchers have also 

developed models to analyze allocation and sharing of limited resources at the portfolio 

level (Barraza 2010).   

On the other hand, investigating risk utilities requires to note that managers’ level of 

confidence on performance of resources under uncertainty affects the amount of risk they 

are willing to take regarding planning decisions.  It is shown in the recent studies that 

results of stochastic simulation can provide decision makers with statistical outcomes of 

projects at certain confidence levels (Orabi et al. 2013).  Many studies developed stochastic 

simulation models to capture uncertainty in construction (Puri and Martinez 2012; Gabriel 

et al. 2006; Chen et al. 2012; Peña-Mora et al. 2008).   There are also certain studies that 

attempted to find optimal resource allocation solutions (at project level) through various 

stochastic optimization methods (Heravi and Faeghi 2012; Vaziri et al. 2007; Zhang and 

Li 2004). However, three main research gaps can be identified within the existing literature.  

Uncertainties are claimed to frequently affect resource performance on a daily basis.  

However, there is lack of research studies that accurately model contingencies affecting 

daily performance of construction under uncertainties.  In addition, consideration of 

resource planning for a group of projects consuming limited resources seems required for 

an improved and realistic decision making.  However, no reported research considered 

stochastic optimization of resource sharing at portfolio level.  In addition, there is a need 
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for new research to investigate impact of risk utilities on decision making in planning 

phase.   

Finally, decision makers at corporate level need to have a broad perspective on their 

network, resources possibilities and risk utility of their project managers in order to 

improve their decisions with regards to reliability of potential outcomes. This paper 

therefore, presents the development of a new simulation-optimization model to cover the 

identified research gaps and consequently facilitate the investigation of risk utility on 

reliability of corporate level construction outcomes. The developed model consists of 

simulation and optimization modules, as well as decision support material which are 

introduced in next sections of the paper. 

5.3. Stochastic Simulation Module 

The main purpose of the simulation module is to measure the impact of uncertainties on 

projects schedule and cost, through performing a day-to-day resource management 

analysis.  To this end, the simulation module eventually produces duration and cost 

frequency distributions of the portfolio through capturing changes in construction 

performance.  The simulation module is based on Productivity Simulation Model (PSM) 

developed by Orabi et al. (2013) which simulates resource utilization in three levels: 

activity, project and portfolio levels.  To develop mentioned frequency distributions the 

simulation module performs the following steps (See Figure 1): 

1. Develop crew productivity curves based on statistical data regarding productivity 

for each resource crew (i.e. most likely, optimistic and pessimistic production 
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rates).  The model uses Program Evaluation and Review Technique (PERT) to 

estimate mean and standard deviation of production rate distributions. Developed 

distributions are used to formulate inverse cumulative probability function for each 

crew to be used in step 3.  

2. Assign overtime policy (OTP) to each project via specifying number and length of 

required working shifts per day.  OTP alternatives, as one of the decision variables 

of the optimization module, is allotted specifically to each project, as explained in 

the optimization module.  As shown in Table 1, each alternative includes 

productivity and cost adjustment factors for crews working in different shifts. 

3. Estimate an instant production rate for each crew working on each work-shift using 

Monte Carlo Simulation Method. The module generates random probabilities for 

each crew in each shift, and extracts the corresponding production rates from 

inverse cumulative probability distribution (explained in the step 1).  The module 

then modifies the estimated productivity using adjustment factor from step 2.  

4. Calculate daily performance of the construction crews by repeating previous step 

for all shifts of the day. 
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Table 5.1. Overtime policy alternatives 

OTP 

Alt. 

Week 

Days 

Shifts 

Per Day 

Hours Per 

Shift 

Adjustment Factor (%) 

Productivity Cost 

1 5 1 8 100 100 

2 5 1 12 76.25 133.3 

3 5 2 12 68.75 153.3 

4 7 1 8 88.75 128.6 

5 7 1 12 68.75 152.4 

6 7 2 12 62 175.25 

 

5. Estimating daily crew cost of construction, as one of the two components of the 

direct cost besides material cost. The module calculates modified crew cost for each 

crew working on each shift based on crew hourly wage and burden, and also cost 

adjustment factor described in step 2.  Then, estimates the daily crew cost similar 

to daily performance via adding up calculated costs of all crews worked entire day. 

Material cost will be later calculated along with estimating activity duration. 
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Figure 5.1. Flowchart of the simulation module 

6. Calculate activity duration. Through repeating steps 3 and 4 in a loop, the module 

adds up daily performance of the crews and counts number of days it takes until 

crews execute entire quantity of the activity.   
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Calculating total activity direct cost. Eventually the model estimates the activity 

completion time and cost, to be used in project-level scheduling simulation and cost 

calculation, respectively. 

7. Calculate project duration and cost. At the project level, the module schedules 

activities using CPM and estimates total duration of the project.  As for cost, total 

direct cost is calculated via adding up activity direct costs. The module calculates 

project indirect cost considering daily site maintenance and overhead costs.  

8. Calculate portfolio duration and cost.  At portfolio level, the module shares limited 

pool of resources between competitive projects, which are scheduled based on pre-

defined priorities (see optimization module). It means that projects with higher 

priority are utilized with resources sooner than others.  Therefore, prioritization of 

the projects affects the amount of remaining available resources for low-priority 

projects and eventually, affects activity, project and portfolio durations.  Portfolio 

duration is calculated based on start date of the first project and completion date of 

the last project.  The model eventually estimates the total portfolio cost using by 

adding up all projects’ direct costs and indirect costs. 

9. Develop time and cost frequency distributions. The final output of each simulation 

iteration, which is a pair of portfolio duration and cost, is used by the module to 

develop duration and cost frequency distribution curves.  Output curves 

demonstrate the frequency of possible portfolio durations or costs.  These 

distribution curves are used in the optimization module, in order to extract portfolio 

duration and cost based on risk utility of the decision makers. 
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5.4. Cost and Profit Calculation  

The main objective of the optimization module is to find optimum solutions for resource 

utilization planning problem that minimize time and cost of the portfolio.  The optimization 

module develops planning scenarios based on decision variables and obtains duration and 

cost distributions in correspondence to each scenario.  To this end, Non-Dominated Sorting 

Genetic Algorithm (Deb et al. 2000) has been used as optimization engine. Multi-objective 

nature of the problem and effectiveness of NSGA-II in generating near optimal solutions 

are the reasons to select this algorithm for the proposed model.  Figure 2 shows components 

and general flow of the multi-objective optimization module.  The proposed model 

examines the impact of two main decision variables on optimization objectives: (1) 

prioritizing projects of the portfolio for scheduling and resource consumption purposes 

(sharing priorities), and (2) applying different overtime working policies to projects (e.g. 

multiple working shifts, different shift lengths, etc.)  These decision variables widely affect 

both resource availability and performance, and consequently duration and cost.  The 

former examines how prioritization of the projects affects optimization objectives through 

ordering projects for resource allocation.  The latter, tests the outcomes through providing 

different performance capacities during execution.  The result of the optimization module 

is a time-cost trade-off consisting of various optimum pairs of portfolio duration and cost 

at certain risk utility. 
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Figure 5.2. Multi-Objective optimization module 

This study considers four major modeling constraints in order to practically approach the 

mentioned optimization problem.  The first two are time-related constraints including (1) 

each projects should start on a pre-specified date (i.e. mandatory start milestone), and (2) 

each project should be continuously executed until completion without any pause.  The rest 

are resource-related constraint: (3) the resource pool which is shared between projects 

within the portfolio is limited (in case of total available amount of crews and material per 

day), and (4) maximum number of crews that can simultaneously work on an activity is 

limited to avoid jobsite conflicts and meet safety requirements.  This limitation may vary 

for different activities and projects.  

The model starts by generating a random population of solutions and produces next 

generations via operations such as selection, crossover, and mutation throughout the 
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population.  It continues producing generations and eventually extracts non-dominated 

optimal or near optimal sets of solutions from the final population.  In each generation of 

the NSGA-II, the model (1) creates potential solutions (chromosomes) based on decision 

scenarios, (2) utilizes the simulation module to develop time and cost distributions for each 

solution, (3) selects a pair of time-cost from distributions (based on pre-identified risk 

utility) as the fitness of each solution, and eventually (4) finds optimum solutions and 

envelops stochastic time-cost trade-off.  In order to select time-cost pairs for each solution, 

the model extracts duration and cost corresponding to the risk utility of the decision makers 

from the inverse cumulative probability function of each distribution.  Table 2 lists four 

hypothetical probability percentages to represent different risk utilities.  It is suggested that 

lower confidence on performance of the resources under uncertainty leads to lower risk-

seeking approach regarding project estimations.  For instance, in case of highly risk-averse 

approach, the module selects the maximum cost with which the portfolio would finish in 

90% of the times (i.e. simulation iterations).  

 
Table 5.2. Risk utilities and corresponding probabilities 

Risk utility 
Confidence Level 

(on performance) 
Probability 

Highly Risk-Averse Very Low 90% 

Risk-Averse Low 75% 

Risk-Seeking High 60% 

Highly Risk-Seeking Very High 45% 
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Figure 5.3. Explanation of risk utility 

Having time and cost of projects would along with contract time and value the model 

estimates profitability of at the corporate level. Then using cash flow analysis, the model 

develops profitability-liquidity tradeoffs regarding different resource planning scenarios. 

Developed tradeoffs enable decision makers to choose what to do with their network of 

projects as well as how reliable their decision would be based on most likely values and 

the risk utility of project managers.  

5.5. Model Application  

The proposed model is examined using an application example based on previous study on 

recovery of infrastructure systems (Orabi et al. 2010) consisting of a portfolio of 5 projects.  

Figure 3 shows the resulting time-cost trade-off of non-dominated optimal solutions after 

analysis of the example by the model modules.  In the figure, results of the stochastic 

optimization are demonstrated along with optimal deterministic results.  Deterministic 
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results prove the significant impact of considering uncertainties on performance, and 

consequently time and cost estimate.  As expected, assuming optimistic crew productivity 

leads to lower duration and cost, while pessimistic presumption causes overestimation.  

Wide range of solutions indicates that the portfolio completion time and cost are highly 

sensitive to different resource planning alternatives (i.e. decision variables).  However, not 

all the solutions are desirable in most cases, due to the time and budget limitations.  

Therefore, decision makers need to find certain resource utilization plans that meet their 

time and cost restrictions.   

Based on time-cost similarities, optimal solutions can be divided in different groups 

throughout the stochastic tradeoff.  Results show that each group mainly share a similar 

combination of overtime policy alternatives (Table 1) for projects.  Putting together the 

outputs of the model for different risk utilities, each group of solutions consists of multiple 

tradeoffs.  Therefore, decision makers would be able to decide about resource planning 

solutions considering their risk utility.  Figure shows optimal resource utilization solutions 

for three sample groups considering highly risk-averse and highly risk-seeking risk 

approaches.  As expected, more risk seeking approach toward performance under 

uncertainty results in lower overall time and cost.  Switching between tradeoffs, managers 

can demonstrate how far they desire to put themselves under risk of time and cost overrun 

and consequently, examine how much optimal outcomes vary regarding their decision.  
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Figure 5.4. Application example results 

In addition a case study of 3 construction projects from South Florida (two high-rise 

concrete buildings and one horizontal bridge/rail system) from a contractor company has 

been considered to understand the application of model, and also to validate the process. 

Results are shown in the following graphs: 

 

Figure 5.5. Time-Cost under different resource utilization plans 
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Figure 5 shows time and cost outcome of the project considering different risk perceptions 

on resource productivity and also various resource utilization planning alternative. The 

results show planning for more work during week, including planning for night shifts 

results in less uncertainty range for outcomes, however, leads to higher cost for of 

construction projects. 

 

Figure 5.6. Time-Cost under different resource utilization plans and risk 
perceptions 

Figure 6 shows overall time and cost outcome of the project considering different risk 

perceptions on resource productivity and also various resource utilization planning 

alternative. The results show the range of outcomes regarding specific risk perceptions on 

resource productivity, for instance, how taking low risks leads to higher cost and time 

outcome for the project.  
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Figure 5.7. Time-Cost under different resource sharing priorities and risk 
perceptions considering regular working hours 

Figure 7 shows overall time and cost outcome of the project considering different risk 

perceptions on resource productivity and also various resource sharing priorities. These 

outcomes are based on utilizing resources in order to have regular working hours in week. 

The results show that giving higher priority to projects which are in their early stages (left) 

results in higher uncertainty range for outcomes in oppose to giving priority to projects 

which are in their mid-stages (right).  

 

Figure 5.8. Time-Cost under different resource sharing priorities and risk 
perceptions considering extra working hours 
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Figure 8 shows overall time and cost outcome of the project considering different risk 

perceptions on resource productivity and also various resource sharing priorities. These 

outcomes are based on utilizing resources in order to have more working hours in each 

shift. The results show that giving higher priority to projects which are in their early stages 

(left) results in higher uncertainty range for outcomes in oppose to giving priority to 

projects which are in their mid-stages (right).  

 

 

Figure 5.9. Time-Cost under different resource sharing priorities and risk 
perceptions considering added night shifts 

Figure 9 shows overall time and cost outcome of the project considering different risk 

perceptions on resource productivity and also various resource sharing priorities. These 

outcomes are based on utilizing resources in order to have more working hours in each 

shift and also working in night shifts. The results show that giving higher priority to 

projects which are in their early stages (left) results in higher uncertainty range for 

outcomes in oppose to giving priority to projects which are in their mid-stages (right).  
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Figure 5.10. Resource management solutions and their profit-cash tradeoff 

Figure 10 shows overall Profit and required cash for the corporation considering different 

risk perceptions on resource productivity and also various resource utilization planning 

alternative. The results show the range of outcomes regarding specific risk perceptions on 

resource productivity, for instance, how taking low risks (right of the graph) leads to higher 

profit and relatively lower required cash to continue the construction.  

 

Figure 5.11. Resource management solutions and their profit-cash tradeoff for 6, 
12 and 18 month periods 
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Figure 11 shows overall Profit and required cash for the corporation considering different 

risk perceptions on resource productivity and also various resource utilization planning 

alternative. The results show the range of outcomes regarding specific risk perceptions on 

resource productivity and for three planning periods of 6 months (top), 12 months (middle) 

and 18 months (bottom). For instance, using the same planning scenarios, company needs 

to inserts less amount of cash for operations after 18 months than a year. 

 

Figure 5.12. Resource management solutions and their profit-cash tradeoff for 
various resource sharing priorities 

Figure 12 shows overall Profit and required cash for the corporation considering different 

risk perceptions on resource productivity and also various resource utilization planning 

alternative. The results show the range of outcomes regarding specific risk perceptions on 

resource productivity and for three different resource sharing priority policies. Results 

show that giving the priority to projects which are in their early stages (orange points) leads 

to lower profitability and also lower required cash. On the other hand, if corporate 

managers decide to give higher priority to mid-stage projects (black points), the company 

will be facing higher profitability yet with less uncertain range of outcomes. 
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Figure 5.13. Resource management solutions and their profit-cash tradeoff in case 
of expanding network with a new project (red) 

Figure 13 shows planning outcomes for profitability of the company and also amount of 

required cash to continue construction in case of remaining with current projects (yellow) 

or adding forth project to the network (red) (i.e. going for a bid). Graph shows overall Profit 

and required cash for the corporation considering different risk perceptions on resource 

productivity and also various resource utilization planning alternative. The results show 

that based on network arrangement, adding a new project to network raise corporate profit 

yet requires decision makers to provide and insert more cash to the network to achieve 

planned profit.   

5.6. Conclusions 

This research represents the development of a stochastic simulation-optimization model to 

provide planners with optimal resource utilization solutions under uncertainty.  The main 

contribution of the model is to fill four important research gaps identified in previous 

studies within the area of construction planning under uncertainty: Need for (1) more 

realistic and accurate planning considering contingencies affecting daily construction 
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performance, (2) decision making based on resource planning for a group of projects 

consuming limited resources, (3) investigating impact of risk utilities on decision making 

in planning phase, and (4) decision making for corporate level construction management 

based on corporate profit and liquidity (short term cashable assets).  

To this end, PSM from the literature is employed to simulate stochastic nature of risk 

factors on performance of construction networks.  The NSGA-II multi-objective 

optimization method has been also employed to minimize portfolio time and cost. Then, 

model calculates profit and liquidity at the corporate level and provides managers with 

resource planning options, their respective outcomes and also their reliability.  Results of 

the developed model provides construction decision makers with a broader and more 

realistic perspective on resource utilization planning of their projects.  The model develops 

non-dominated optimal time-cost tradeoffs and allows managers to narrow-down their 

solutions regarding overall time and budget limitations, and also their risk utility.  
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CHAPTER SIX 

CONCLUSIONS AND FUTURE RESEARCH 

6.1. Summary 

The main goal of this research is to address reported failure in achieving goals and 

objectives in construction industry. Among the main problems to be solved in order to 

address the mentioned failure, the focus of this research is on the following areas:  

1. Addressing unrealistic expectations that affect construction performance and 

efficiency due to lack of proper capturing of uncertainties in resource utilization 

planning. 

2. Addressing lack of accuracy in time and cost estimation of projects due to failure 

in properly understanding impact of resource sharing priorities on time and cost of 

each individual project. 

3. Addressing problems in making decisions with regards to selecting projects to bid 

in competitive market and also failure in achieving planned profitability and 

amount of required cash due to lack of proper understanding on corporate resource 

management outcomes under uncertainty. 
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Therefore, this research has been conducted to develop a risk-based decision support at 

different levels of construction. The developed model captures uncertainties that affect 

project processes and considers managers risk utility toward performance of their projects 

to develop solutions for abovementioned problems. The model considers uncertainties for 

more realistic expectations toward planning for performance and efficiency of resources 

and construction tasks. Then develops optimal resource utilization planning solutions in 

order to improve time-cost estimation in project under uncertainties. Developed solutions 

provide decision makers with minimized overall cost and duration of their projects 

considering their own risk utility (i.e. risk tendency).  

Eventually at corporate level, this research provides managers with a broad perspective of 

the profitability of their network of project and the potential consequences of their 

decisions regarding (1) expanding their network and entering new bids, (2) replanning and 

rescheduling of their projects in case of adding new project or any other change in network, 

and (3) improving performance and efficiency of construction processes and also accuracy 

of their expectations via providing reliability of solutions under uncertainty comparing to 

most likely outcomes of the processes.  

6.2. Grand Achievements 

This research contributes to three evolutionary developments in the area of decision 

making for construction. 

1. Enhancing decisions at corporate management level through development of risk-

based trade-offs between profitability and liquidity (short available cashable assets) 

and providing resource planning solutions considering risk utility of managers. This 
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enables decision makers to consider how reliable their choice of solution would be 

under uncertainty knowing most likely outcomes of their network of construction 

project.  The finding of this research with regard to this area is that taking lower 

risks result in lower profit, and also adds higher uncertainty to amount of required 

cash.  

Main decision objectives at this level is making proper choices regarding adding 

project to the network, acquiring required credits and loans to maintain cash-flow 

of the network, and sharing resources or cash over portfolio of projects. To this end, 

the decision criteria are (1) limitations in amount capital as well as resource caps, 

(2) fixed contracts values and stakeholder expectations, and (3) risk utility of 

project managers. Developed model support decision makers in case of questions 

such as to go or not to go with a bid, what are the consequences of this decision and 

what are the required changes and provisions in the network of projects in case of 

any decision. This research then provides decision makers with different future 

financial consequences of the decision as well as how reliable choose consequences 

would be, and enables them to select a solution that satisfies companies profit 

margin considering realistic and reliable what if scenarios. 

Enhancing decisions at project management level considering impact of risk 

perceptions on outcome of projects under different sharing priorities, which is 

possible through development of risk-based trade-offs between time and cost of 

project, and providing resource planning solutions considering manager’s 

confidence toward performance of their resources under uncertainty.  This enables 
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decision makers to consider how reliable their choice of solution would be under 

uncertainty knowing most likely outcomes of their network of construction project 

and making realistic choices with regards to allocation of resources in their projects. 

Findings of this research show that giving the resource usage priority to projects in 

early stage would result in higher uncertainty in both time and cost outcomes. 

Main decision objectives at this level is making proper choices regarding estimation 

of time and cost of project under uncertainty and use of optimum resource 

utilization scenarios to obtain desired pair of time and cost.  To this end, the 

decision criteria are (1) fixed contract value and duration, (2) limitations in project 

resources and construction site capacities, and (3) decision made in upper level 

(corporate management) as described in previous level. Developed model supports 

decision makers in case of questions such as what resource allocation planning to 

choose for current and/or new projects as well as what are the required changes 

type and limit of resources in case of any decision. This research then provides 

decision makers with different optimum solutions for resource utilization along 

with their corresponding minimum time and cost and enables them to select a 

solution that satisfies contract values and profit margins considering realistic and 

reliable what if scenarios. 

2. Enhancing decisions at project and corporate management level through 

development of performance and efficiency frequency outcome distributions based 

on stochastic simulation of the construction processes under uncertainty, and 

investigating the impact of risk perceptions on project outcomes with regards to 
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different resource utilization plans. This enables decision makers to fully 

understand impact of risk factors on the performance and efficiency of their 

resources and make proper choices regarding short-term planning of their processes 

in order to make more realistic and reliable estimates of their time and cost. 

Findings of this research show that planning to put more working hours on a project 

would result in higher uncertainty of cost outcomes with regards to different risk 

utilities.  

Main decision objectives at this level is accurate estimation of performance and 

efficiency of activities under everyday risk factors that affect construction 

execution. To this end, the decision criteria are (1) limitations in amount of 

available resources (daily cap, maximum total number of concurrent working 

crews, etc.) and (2) fixed time milestones within the project time span. Developed 

model support decision makers in case of questions such as what are impacts of 

uncertainties on daily performance, as well as how to investigate impact of different 

type of uncertainties on efficiency of construction processes. This research then 

provides decision makers with different performance and efficiency graphs, as well 

as process/task duration and cost distributions under uncertainties. 

6.3. Contributions 

6.3.1. Contribution to Body of Knowledge 

This research makes evolutionary contributions to both body of knowledge and 

practice, as following: 
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1. impact of risk factors on performance and efficiency of construction processes. 

2. Better understanding on impact of Risk Utilities on Project Outcomes Under 

Different Utilization Plans 

3. Better understanding on impact of Risk Utilities on Project Outcomes Under 

Different Priority Plans 

4. Better understanding on impact of Risk Utilities on DM regarding Corporate 

Objectives Under Different Resource Management Approaches 

6.3.2. Contribution to Body of Practice 

1. Obtaining more realistic support on decision making with regards to choosing 

resource utilization plans under uncertainty and being enabled to select different 

potential outcomes of performance and efficiency based on limited resource criteria 

as well as personal risk utility. 

2. Improved decision making regarding allocating resources over each project as well 

as sharing resources among corporate network. This research enables managers to 

be aware of their realistic choices of resource planning, choose among optimum 

solutions that satisfy their time, cost and profit margin, obtain what if scenarios 

regarding their different sets of decisions and finally understand reliability of 

decisions based on their risk attitude.  

3. Making more reliable decisions on whether to expand their network of projects (to 

go or not to go for a bid). This research enables corporate decision makers to make 
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more realistic estimates and make more reliable decision for profitability of their 

company, and understand consequences of their decisions in short and long term 

based on what if scenarios.  

6.4. Recommendation for Future Research 

The following contributions are recommended for future research based on limitations of 

the current study: 

1. Obtaining more accurate data regarding risk utility of project managers in order to 

improve reliability of decisions. Using risk utility of managers to model the 

construction network required accurate surveying and sensitivity analysis since it 

is a subjective area for decision making. Future research would benefit from 

comprehensive observation of decision behavior project managers to study 

reliability of their choices with regards to their confidence toward resource 

performance, their expertise and their experience, as well as work type and job 

situation.  

2. Considering more complete criteria for making models and results: the current 

research considers limited types of uncertainties, limited types of resources and 

their caps, and also limited resource utilization planning scenarios in order to 

develop models and tradeoffs. Future research would benefit from using more 

extensive resource usage scenarios as well as detailed uncertainty categorization to 

create more useful and accurate decision support material. 
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3. Considering more criteria for making decisions regarding expansion of corporate 

network (going for bid and adding new projects) other than just profitability and 

amount of short term cashable assets (liquidity). This includes, but not limits to, 

market competitiveness analysis, job type categorization, creditability of the 

contractor in market, job location and situation, etc.  

4. Considering different types of contractors: the current research only considers 

Deign-Bid-Build contractors in order to provide decision making support material. 

Future research would benefit from consideration of different types of contractors, 

such as Design-Builders, to enable all type of contractors make reliable and more 

improved decisions regarding their corporate outcomes. This would especially 

benefit construction industry of South Florida since number of heavy infrastructure 

projects is going up rapidly. 

5. Ideally future research would highly benefit from development of models that 

integrate perspective of contractors and owners on decision making in order to 

provide the industry with more realistic and useful decision support material. This 

would definitely benefit (1) owners with lots of cost saving and a better perspective 

on contractors and their abilities, (2) contractors with more reliable profit and also 

better perspective on the market, and (3) public with less public cost and more saved 

time.  

6. In this research, uncertainties are modeled in construction processes as random 

based changes in production rate of resources and crews. Future research would 

highly benefit from adopting more realistic productivity change patterns under 
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uncertainties, such as using learning and forgetting patterns. This would result in 

higher reliability on outcomes since it is proved that construction crew follow 

certain patterns when they work on a project for a long time as well as when they 

start working on new projects.  

7. As a continue to this study, future research would adopt advanced procedures to 

model risk utility of decision makers in order be able to suggest specific project 

managers for new acquired projects. It means that by knowing confidence level and 

risk tendencies of their available project managers and based on work type and 

situation of newly added jobs, enterprise leaders may assign PMs to job that bring 

more value and higher reliability to the network.  
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