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ABSTRACT OF THE DISSERTATION 

RATE KINETICS AND MOLECULAR DYNAMICS OF THE STRUCTURAL 

TRANSITIONS IN AMYLOIDOGENIC PROTEINS 

by 

Timothy M. Steckmann 

Florida International University, 2016 

Miami, Florida 

Professor Bernard S. Gerstman, Co-major Professor 

Professor Prem P. Chapagain, Co-major Professor 

Amyloid fibril aggregation is associated with several horrific diseases such as 

Alzheimer’s, Creutzfeld-Jacob, diabetes, Parkinson’s and others. The process of 

amyloid aggregation involves forming myriad different metastable intermediate 

aggregates. Amyloid fibrils are composed of proteins that originate in an innocuous α-

helix or random-coil structure. The α-helices convert their structure to β-strands that 

aggregate into β-sheets, and then into protofibrils, and ultimately into fully formed 

amyloid fibrils. On the basis of experimental data, I have developed a mathematical 

model for the kinetics of the reaction pathways and determined rate parameters for 

peptide secondary structural conversion and aggregation during the entire 

fibrillogenesis process from random coil to fibrils, including the molecular species that 

accelerate the conversions. The specific steps of the model and the rate constants that 

are determined by fitting to experimental data provide insight on the molecular species 

involved in the fibril formation process. To better understand the molecular basis of the 

protein structural transitions and aggregation, I report on molecular dynamics (MD) 
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computational studies on the formation of amyloid protofibrillar structures in the small 

model protein ccβ, which undergoes many of the structural transitions of the larger, 

naturally occurring amyloid forming proteins. Two different structural transition 

processes involving hydrogen bonds are observed for aggregation into fibrils: the 

breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the 

subsequent formation of interchain hydrogen bonds during aggregation into amyloid 

fibrils. For my MD simulations, I found that the temperature dependence of these two 

different structural transition processes results in the existence of a temperature window 

that the ccβ protein experiences during the process of forming protofibrillar structures. 

Both the mathematical modeling of the kinetics and the MD simulations show that 

molecular structural heterogeneity is a major factor in the process. The MD simulations 

also show that intrachain and interchain hydrogen bonds breaking and forming is 

strongly correlated to the process of amyloid formation. 
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1. INTRODUCTION 

Amyloid fibrils are protein structures that are associated with many debilitating 

human diseases such as Alzheimer’s(AD), Parkinson’s, Creutzfeldt-Jakob and diabetes, 

and in animal diseases such as BSE.  

 Amyloid fibrils are composed of proteins that originate in an innocuous α-helix or 

random coil structure. The proteins convert their structure to β-strands that aggregate 

into β-sheets, and then into protofibrils, and ultimately into fully formed amyloid fibrils 

that are composed of about 600 protein chains. Although humans have evolved 

defenses against aggregation,1 unfortunately amyloid aggregation still occurs in 

humans. Pre-fibrillar β-aggregate structures have been found to be highly neurotoxic, 

and are more neurotoxic than mature amyloid fibrils or amyloid plaques.2,3,4 It remains 

uncertain which of the specific aggregates (protofibrils, protofilaments, or small 

oligomers) is most dangerous.5,6,7,8 A detailed molecular-level understanding of the 

formation process of amyloid fibrils is crucial for determining the molecular species 

that are toxic and for developing methods to slow down or prevent these horrific 

diseases.    

Research on amyloid fibril formation overlaps strongly with prion related 

diseases.9 It also has potential nanoscience and material engineering applications since 

amyloid fibrils are especially strong mechanically.10,11 

 

1.1 What Is Already Known About the Fibrillization Process 

Amyloid fibrillation is a type of protein aggregation. Small β-aggregates form 

protofilaments which are composed of β-sheets parallel to each other. These 
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protofilaments then wrap around each other like strands of rope to make protofibrils. 

Protofibrils grow to form fibrils, which are insoluble. All fibrils have rope-like, twisted 

structures that reflect that they are assembled from filamentous structures. Fibrils can 

grow either by attaching of single monomers or attaching of β-aggregates. Figure 1.1 

shows schematics of a single β-sheet, a protofilament, a protofibril and a fibril. 

 

 

Fig. 1.1 Structure schematics. Schematic of a single β-sheet was done using Pymol. 
Pictures of a protofilament, a protofibril, and a fibril were done using PowerPoint 
following a diagram by David Talaga.12 

 

Experimentalists have created amyloid fibrils in vitro. Solid state NMR 

measurements have shown the general structure of fibrils. However, detailed 

information about the kinetics of the fibrillization process is incomplete.  
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Unfortunately, in vivo experiments are hard to perform and yield only the concentration 

of fibrils, but not the concentration of the precursors. In vitro studies allow 

measurements of the concentrations of some structural stages but the aggregation 

kinetics are unclear since the experimental techniques do not allow a distinction 

between individual intermediate β-structures. Likewise, detailed information about the 

molecular dynamics of various stages is also incomplete. Some information is available 

but details on a molecular level are experimentally difficult to obtain because it is hard 

to crystallize various β precursor structures such as protofibrils.  

Slight variations in experimental preparation procedures such as purification 

and synthesis may significantly change the peptide system’s fibrillogenic properties. An 

additional complication is that a single system of proteins of the same species tends to 

have a heterogeneous combination of aggregates. One common observation is that 

increases in concentration of proteins tend to speed up aggregation.13,14,15 

 Several processes of protein aggregation often happen concomitantly with 

amyloid formation. Some of these processes create amorphous aggregates.16   Although 

amorphous aggregates are associated with misfolding diseases, some amorphous 

aggregates never form into amyloids. Some aggregates are small soluble oligomers, 

which can be swept out by the body.16   

 

1.2 Free Energy 

  The idea for using free energy landscapes to describe different states in the 

fibrillation process came from protein folding.11 The free energy is a complicated 

landscape in amyloid formation since amyloid formation involves both protein folding 
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and several proteins interacting with each other.11 However, useful information can still 

be obtained from free energy landscapes of amyloids and their precursors. An example 

of a free energy landscape to describe the aggregation process is given in Fig. 1.2. It is 

taken from Figure 8.2c of Amyloid Fibrils and Prefibrillar Aggregates.11 Amyloid 

fibrils in Fig. 1.2 clearly correspond to the lowest free energy minima.          

 

 

Fig. 1.2. Free energy landscape example.  
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1.3 Hydrogen Bonds and Aggregation 

Any protein can undergo amyloid aggregation,17 which may be because the 

formation and stabilization of β-sheets involves interchain hydrogen bonds between 

protein backbones17 which are common to all amino acids. Different hydrogen bonding 

patterns between backbones correspond to the different stages in the 

folding/aggregation process.    

Simulation of two short Aβ(16-22) peptides by Santini et al.18 showed multiple 

complex routes to fibrillization involving various networks of hydrogen bonds. 

Conformational properties of amyloids and their precursors can be partially described 

by the number of interchain and intrachain hydrogen bonds. There are many intrachain 

hydrogen bonds when a protein is in an α-helical secondary structure or a hairpin 

conformation, whereas there are many interchain hydrogen bonds among proteins when 

they are in a β-sheet. Interchain hydrogen bonds form cooperatively with other 

interchain hydrogen bonds in the aggregation process.     

 

1.4 Stages in the Fibrillization Process 

 

1.4.1 Nucleation and Secondary Structure 

 According to classical nucleation theory, a nucleus is an aggregate of several 

proteins. It is the smallest aggregate size for which the rate of association is higher than 

the rate of disassociation. Once the nucleus is formed, the aggregation becomes a 

downhill polymerization process. What typically happens is, by chance, a group of 

proteins stick together with a number of proteins large enough that the energy loss is 
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greater than the entropy loss due to another protein joining the aggregate. Although 

classical nucleation theory talks about a nucleus as being made up of several proteins, a 

nucleus can be as small as a single protein (as in the case of transthyretin).19 It could 

even be made up of a few residues of a protein. 

 The typical aggregation process involves some α-helices or proteins that have 

some regions of α-helix in them that eventually convert to β-strands as the aggregates 

undergo reorganization. In an article written by Lomakin et al.2 the proteins come 

together to form micelles, which are loosely-bound disordered aggregates. These 

micelles then break apart into nuclei, as described in my article20 and described later in 

Chapter 3. The initial assembly of proteins is like a micelle. The micelle or micelle-like 

aggregate breaks up into single proteins or small aggregates mostly in the β-strand 

state.20 The process from single proteins to β-sheet is described as a “nucleated 

conformational conversion” by Cheon et al.21       

 

1.4.2 Steric Zipper 

 The steric zipper conformation helps to stabilize amyloid fibrils. A steric zipper is 

a pair of parallel β-sheets. β sheets come together due to the hydrophobic force and 

their side chains interlock. Their van der Waals forces hold them together. The steric 

zipper has no water molecules between the two β-sheets, causing it to be a dry 

interface.22,23,24,11 Two different steric zippers can join through a wet interface.24 A wet 

interface has water and many hydrogen bonds between the side chains. The steric 

zipper is a common configuration of the protofilament.25 Some protofilaments contain 

only one steric zipper whereas some contain several.      
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1.4.3 Hairpin Straightening 

 Hairpins are stabilized by intrachain hydrogen bonds and hydrophobicity. For 

general amyloid proteins, the intermediate aggregates are partly composed of β-strands 

in the hairpin state and/or ones that are extended. The oligomers tend to have a higher 

percentage of β-strands in the hairpin state than the fibrils. The book Molecular 

Modeling at the Atomic Scale by Zhou26 explains that the hairpin tends to serve as the 

growing end of the sheet. However, hairpins at the edges of oligomers tend to impede 

other proteins joining the aggregate. These hairpins needs to straighten out before 

bonding to other proteins. Zhou explains that hairpins can straighten out becaue of 

electrostatic forces.26 Many have suggested that key nucleation steps in the amyloid 

fibril formation process involve β-hairpin conformations.    

 

1.5 Temperature 

 Increases in temperature have the effect of speeding up the aggregation process.27 

Hairpins can also straighten out when exposed to high temperature and not interacting 

with other proteins. High temperature causes the protein not interacting with other 

proteins to be entropy-driven and remain highly flexible in random-coil configurations, 

rather than trying to lower its energy by intrachain hydrogen bonds. If the temperature 

is high enough, the aggregation process may not involve any α-helices and instead just 

β-strands and random coils.    

It has been suggested that most proteins have segments capable of forming 

amyloid fibrils if flexible enough, but most proteins have evolved to effectively conceal 

these segments.1 Although only certain proteins undergo aggregation in vivo, almost 
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any globular protein can be made to form amyloid aggregates by denaturing it with heat 

or chemicals.1 

 

1.6 Heterogeneity 

 It is hard to overstate the heterogeneity of amyloid precursors. Simulation of two 

short Aβ(16-22) peptides by Santini et al.18 showed significant heterogeneity in forming 

a dimer. The heterogeneity of much larger amyloid forming systems is likely to have 

significantly more heterogeneity than the system of Aβ(16-22) peptides by Santini et 

al.18 Amyloid precursors can potentially assume many conformations that are 

structurally distinct.11, 20, 28,29 No structure element common to all oligomers has been 

found. Some aggregates have parallel β-sheets and some have antiparallel β-sheets.30 

Some aggregates have both parallel and antiparallel β-sheets. Oligomers tend to have 

different numbers of proteins.  

 Another cause of heterogeneity is that for an aggregating system, many of the 

proteins may be undergoing secondary structure conversions.11 Although α-helices are 

not a main constituent of the ordered fibril structure, there can be α-helices in the 

intermediate aggregates. There is also a significant amount of heterogeneity in the 

fibrils. For instance, fibrils can be composed of both anti-parallel and parallel β-sheets. 

They also can have different β-sheet registries. 31 
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1.7 Work Performed on Amyloid-Like Fibrillization 

 

1.7.1  Mathematical Modeling of Real Aβ  Proteins to Gain Insight into Various 

Steps 

 An extensively studied, naturally occurring peptide system is the amyloid beta 

precursor Aβ peptide, which is responsible for amyloid deposits in AD.   Naturally 

occurring Aβ peptides have a length in the range of 39–43 amino acids.   Experiments 

have elucidated valuable structural information of variants such as Aβ(10-35), Aβ (1-

40) and Aβ (1-42) peptides. Fibrillar structures are formed when Aβ acquires a β 

secondary structure. Though the molecular mechanisms of fibrillation are still 

uncertain, it is known that Aβ fibril formation is a multi-step nucleated polymerization 

process that involves soluble oligomeric intermediates called protofibrils.30     

Many different theoretical models have been created for the rates of the 

processes of aggregation.32,33,34,35 These models, however, are unable to explicitly deal 

with the fact that amyloid precursors are heterogeneous. 

Kinetic models that include reaction pathways and rate parameters for the 

various stages of the process can be helpful toward understanding the dynamics on a 

molecular level. Rates for peptide structural transformations that nucleate β-structure, 

as well as rates for aggregation/polymerization into fibrils are especially interesting. 

There are experimental data on rate parameters for some of the stages of the fibril 

formation process. The stages that have experimental data can have protein specifics be 

accurately measured. These include the investigations on the elongation and nucleation 
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rate parameters for fibrillogenesis at low pH, rates of nuclei production and association, 

and lag time and rate of aggregation. Experiments have shed light on aspects of the 

process of Aβ aggregation from random coil to fibril. Kirkitadze et al.28 were able to 

measure the temporal changes of concentrations of different types of secondary 

structures: random coil, α-helix, β-strand/sheet, and β-turn for both Aβ(1-40) and 

Aβ(1-42). These measurements were done over a period of 20 days for Aβ(1-40) and 

10 days for Aβ(1-42), allowing enough time for fibrillogenesis to occur. Fezoui and 

Teplow36 measured the concentration of prefibrillar and fibrillar β-structure as a 

function of time in different solvent conditions. Walsh et al. 37 measured the 

concentration of various secondary structures as a function of time during the 

aggregation process.    

On the basis of the experimental data, I have developed a mathematical model 

to determine viable reaction pathways and rate parameters for peptide secondary 

structural conversion and aggregation during the entire fibrillogenesis process from 

random coil to fibrils, including the species that accelerates the conversions. The 

numerical solutions yield graphs of concentrations of different molecular species versus 

time. With the proper choice of transition rate parameters, my model is able to nicely fit 

the time dependence of the concentrations measured experimentally by Kirkitadze et 

al.,28 Walsh et al.,37 and Fezoui and Teplow.36 The model and the rate constants include 

different molecular structural stages in the nucleation and polymerization process and 

provide insight on the molecular species involved in the fibril formation process. 

Determination of rate parameters for the various peptide structural conversion 

steps during fibril formation may be helpful in developing efficacious therapies for AD.  
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1.7.2 Ccβ  Molecular Dynamics Computer Simulations to Uncover Molecular 

Level Details  

Molecular dynamics (MD) computer simulations provide insight into the 

molecular details of various steps, such as the rearrangement of hydrogen 

bonds. I simulated a system with 12 ccβ proteins. 38,39,40,41,42,43 ccβ is a de novo 

protein that is naturally in coiled-coil trimers at low temperatures but transitions 

to amyloid fibrils at high temperatures. I used Replica Exchange Molecular 

Dynamics (REMD) to model the aggregation process of ccβ. REMD makes it so 

that the system being simulated climbs over energy barriers in much shorter 

times than in constant temperature MD. The temperatures I used were in a range 

of 380 - 600K.    

I observed ccβ developing protofilaments with extended β-strands, 

corroborating what was found by Strodel et al.40 From these MD computational 

studies, I was able to investigate changes in the hydrogen bond arrangements 

and calculate thermodynamic properties that characterize the temperature 

dependence of the structural transitions.  
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2. METHODS 

The association of fibrillar Aβ with AD has stimulated interest in the kinetics 

and dynamics of Aβ fibril formation. Fibrillar Aβ is a fibril-like structure composed of 

many Aβ proteins. The Aβ proteins have 39 to 43 amino acids. They are produced by 

cleavage from a larger precursor protein, APP.  

I used two different theoretical and computational approaches for studying 

fibrillization. In order to investigate the kinetics of the different oligomerization stages, 

I developed a system of coupled, non-linear differential equations describing the time 

evolution of the population of the different oligomer species. My model incorporated 

the heterogeneity of the oligomers. To study the molecular dynamics, I used a 

computational approach. It is very difficult to gain from experiments a detailed 

description of small oligomer formation, because of the structural heterogeneity and 

transient nature of the small oligomers. In order to investigate the molecular details of 

the fibrillation process, I used MD computer simulations. 

 

2.1 Mathematical Modeling of Oligomer Population Kinetics 

 The important issues that must be incorporated into a mathematical model of the 

kinetics of the fibrillization process are the many different stages of oligomerization, as 

well as the heterogeneity within some of the stages. Compartmental modeling is an 

important concept for the development of a good model. 
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2.1.1 Introduction to Compartmental Modeling 

 Many people are familiar with compartmental analysis from radioactive decay. 

The R compartment is the number of radioactive atoms that have not yet decayed. The 

D compartment is the number of atoms that have decayed. The system is homogenous, 

with each radioactive atom having an identical rate constant k of decay. Figure 2.1 

shows the radioactive decay scheme. 

 

Fig. 2.1 Radioactive decay schematic. 

 

The rate constant k has the units of 1/time (sec-1) and 1/k≡τ gives the characteristic time 

for decay of R. If the system is homogenous, the D compartment follows a simple 

exponential with time, eq. (2.4). Assuming at time t=0, [R]=[R0] and [D]=0 

! !
!"

= −𝑘 𝑅   (2.1) 

→
𝑑 𝑅′
𝑅′ = −𝑘𝑑𝑡! →

𝑑 𝑅!

𝑅! = −𝑘 𝑑𝑡!
!

!

→

!

!!

𝑙𝑛
𝑅
𝑅!

= −𝑘𝑡 

è 𝑅 = [𝑅!]𝑒!!"  (2.2) 

! !
!"

= 𝑘 𝑅 = 𝑘 𝑅! 𝑒!!"    (2.3) 

→ 𝑑 𝐷!
!

[!!]!!
= 𝑘 𝑅! 𝑒!!!!𝑑𝑡!

!

!!!!
→ 𝐷 = − 𝑅! 𝑒!!" − 1  

è 𝐷 = 𝑅! 1− 𝑒!!"             (2.4) 
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The starting equation (2.1) has a simple form because each radioactive atom had the 

same rate constant of decay, k. This led to a simple exponential function, equation (2.4) 

with respect to time for the growth of compartment D. 

 Now, let us consider a transition process in general, as shown in Figure 2.2. 

 

Fig. 2.2 Generalized schematic for transitions between two species. Species A may have 
heterogeneity gk in the rate constant for transitions to B. 
 

 Using a simple equation like (2.1), ![!]
!"

= −𝑘[𝐴] would give a simple exponential 

for the population of compartment B, similar to equation (2.4) for radioactive decay. 

However, if each entity in A has a different rate constant, equation (2.1) and the 

resulting equation (2.4) for the time-dependence of the population are no longer valid. 

The heterogeneity in k can be expressed as  

     ! !
!"

= − 𝑔!𝑘 𝐴 𝑑𝑘!    (2.5)  

where gk is the fraction of A molecules with a specific value for the rate constant k, and 

the integral is over all possible values of k. If we substitute equation (2.5) for (2.1) 

above, the derivation leading to (2.4) becomes much more complicated than if we had 

used (2.1). Analytical solutions are not possible except for very special probability 

distributions of gk. Especially important for the present work and for most systems, the 

distribution function gk of the molecular components is usually not known, and 

therefore it is not possible to include gk in the analysis. Fortunately, there is a way to 
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create a mathematical model that allows the investigation of the kinetics of the different 

species that are known to transition amongst each other.   

 Mathematical modeling of heterogeneous kinetics can be performed without 

knowledge of gk if we substitute for the heterogeneity gk in the rate constant of one step 

by inserting several fictitious steps using fictitious sub-compartments. The population 

of each fictitious sub-compartment is treated as being homogeneous and therefore each 

transition from one compartment to the next can be described by a single rate constant, 

as shown in Figure 2.3. 

 

 

Fig. 2.3 Fictitious, homogeneous sub-compartment species inserted to mimic 

heterogeneity in species [A].  

 

The entities in [A] are not really transforming into those intermediate 

compartments [I1], [I2], [I3] before arriving in B. However, the ansatz in the 

mathematical modeling that the entities in [A] go through those fictitious intermediate 

compartments leads to sigmoidal time kinetics for [B]. This type of sigmoidal curve for 

[B] mimics the dynamics of the real system that has a significant amount of rate 

constant heterogeneity in species [A].  

 



 16 

 

Fig. 2.4 Schematic of sigmoidal growth of the population of species [B]. 

 

To illustrate why these fictitious intermediate compartments produce a 

sigmoidal shape, I will use a simple case, with only one sub-compartment. Let us 

suppose that at t=0, 100% of the entities are in compartment A, as shown in Fig. 2.5. 

 

Fig. 2.5 Initial, t=0 populations for a system with one fictitious intermediate species.  
 

Entities in A need to go through the intermediate compartment I before the 

process of conversion from [I]à [B] commences. Because there is initially no 

population in [I], the process of conversion to [B] starts off slowly, with a lag time 

before the population of [B] starts to increase. 

Now, look at the situation at some intermediate time, after many 

transformations from [A] to [I] and transformations from [I] to [B] have occurred, in 

Figure 2.6. 
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Fig. 2.6 Populations for a system with one fictitious intermediate species (Fig. 2.4) after 
enough time has elapsed for significant transitions to occur. 

 

Now that there is significant population in [I], the process of transformation to 

[B] is much quicker.  

Next, look at the situation at long times, when most of the entities are in 

compartment [B]: 

 

Fig. 2.7 Populations for a system with one fictitious intermediate species (Fig. 2.4) at 
long times when most of the particles have completed the transitions to B.  
 

At long times, there are not many entities in [I] left to transform to [B].  The 

population of [B] slows in growth rate as the system approaches its asymptotic 

population distribution. The greater number of intermediate compartments between [A] 

and [B], the more sigmoidal and less exponential [B] will be.   

So far, I have described only the behavior of [B] from Fig. 2.2, and how Fig. 2.3 

can be used to get numerical results for [B(t)] when gk in Fig. 2.2 is not known. Since 

experimental measurements may be available for other species, e.g. [A], it is worth 

looking at their time development. In Figures 2.2, 2.3, and 2.5, the reactions occur only 

from left to right. This means that eventually, [A] will disappear and [I] will disappear, 

but with different time profiles. The species [A] experiences a simple first order 
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reaction that depends only on k1, and therefore [A] decays exponentially, Fig. 2.8. In 

Fig. 2.5 with a single intermediate species, fictitous or real, the initial population of [I] 

is zero. It then rises (Fig. 2.9) by gaining population from [A] with a rate constant k1, 

and then falls by converting to [B] with a rate constant k2. The relative values of k1 and 

k2 determine the details of the shape of the time dependence of [I], which is unlikely to 

be symmetric. 

 

Fig. 2.8 Exponential decay of [A] in Fig. 2.5. 

 

 

Fig. 2.9 Rise and fall of [I] in Fig. 2.5. 
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The model that I described above and showed schematically in Fig. 2.3 through 

Fig. 2.9 is overly simple. The direction of transitions is only from left to right. 

Therefore, at long enough times, the only species that remains is the last one. Real 

systems are usually more complicated. Reactions can go in both directions, and there is 

also the possibility for alternate paths that skip steps, such as going directly from A to 

B. Also, there may be back reactions that provide feedback, such as from [B]à[A]. All 

of these possibilities must be taken into account to produce a realistic mathematical 

model of the kinetics that is more complicated than the simple example given above. 

 

2.1.2 Compartmental Model Used In My Work  

The use of differential equations for studying the change in protein 

compartments with time is described in Chapter 4 of Protein Folding Kinetics by 

Nolting.44 Nolting shows coupled differential equations that are simple enough to have 

analytic solutions. The differential equations in Protein Folding Kinetics did not 

explictily take into consideration the heterogeneity in the rate constants.  

I used differential equations to study the changes in population in the following 

secondary structure configurations (species in the examples given above): random 

coil/β-turn, α-helix, β-strand/sheet. Each compartment was the percentage of amino 

acids from all the proteins in the system with a characteristic secondary structure. Many 

of the compartments also had structural characteristics in addition to the secondary 

structure.  

On the basis of experimental data, I developed a mathematical model to 

determine viable reaction pathways and rate parameters for peptide secondary structural 
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conversion and aggregation during the entire fibrillogenesis process from random coil 

to mature fibrils, including the species that accelerates the conversions. The numerical 

solutions yield graphs of concentrations of different molecular species versus time. The 

model and the rate constants include different molecular structural stages in the 

nucleation and polymerization process and provide insight on the molecular species 

involved in the fibril formation process. Determination of rate parameters for the 

various peptide structural conversion steps during fibril formation may be helpful in 

developing efficacious therapies for AD.  

 

2.1.3 Numerically Solving the Equations 

Finding an analytical solution to the complicated set of differential 

equations that I developed (see Chapter 3) would be extremely difficult, if not 

impossible. The number of equations that are coupled with each other is large, 

plus many of them are non-linear. Instead, I solved them numerically.  

There are different numerical algorithms for solving differential 

equations. An overview of some of these techniques is given in the book 

Computational physics by Newman.45 The numerical algorithms involve 

iterations over time steps.  

A simple algorithm is Euler’s Rule. The formula for Euler’s rule with 

one dependent variable is: 

𝑥 𝑡 + ℎ = 𝑥 𝑡 + ℎ ∙ 𝑓 𝑥, 𝑡    (2.6) 
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with 𝑑𝑥 𝑑𝑡 = 𝑓(𝑥, 𝑡) and ∆𝑡 = ℎ the size of the time step. The formula for 

f(x,t) is assumed known, so that its value can be determined at each step. 

Iteratively using this equation yields a solution with an error on the order of h2. 

The second order dependence is good because h is a small quantity. There is 

only one equation to use for Euler’s method and it’s a simple equation that 

comes from a Taylor expansion. However, by making things more complicated, 

we can reduce the algorithmic error to a higher power of h.  

 The second-order Runge Kutta method uses the slope at the midpoint 

between points at t and t+h, 𝑡 + !
!
ℎ. The second-order Runge Kutta method 

requires a knowledge of 𝑥(𝑡 + !
!
ℎ), which can be approximated using Euler’s 

method: 𝑥 𝑡 + !
!
ℎ = 𝑥 𝑡 + !

!
ℎ𝑓(𝑥, 𝑡). The equations used for second-order 

Runga Kutta (rk2) for a single dependent variable are: 

𝑘! = ℎ𝑓 𝑥, 𝑡    (2.7)  

𝑘! = ℎ𝑓 𝑥 + !
!𝑘!, 𝑡 +

!
!ℎ   (2.8) 

𝑥 𝑡 + ℎ = 𝑥 𝑡 + 𝑘!   (2.9) 

The formula for f(x,t) is assumed known, so that its value can be determined at 

each step. You use the first equation to get k1. You then use the second equation 

to calculate k2. Based on knowledge of k2, you get the value of x(t+h). The error 

for rk2 is of the order of h3.  
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 Can we do better than rk2? How about fourth order Runga Kutta (rk4)? By 

adding linear combinations of Taylor expansions around various points, we can 

cancel terms in h3, h4 and so on. The equations for rk4 for a single dependent 

variable are: 

𝑘! = ℎ𝑓 𝑥, 𝑡    (2.10) 

𝑘! = ℎ𝑓(𝑥 + !
!𝑘!, 𝑡 +

!
!ℎ)  (2.11) 

𝑘! = ℎ𝑓 𝑥 + !
!𝑘!, 𝑡 +

!
!ℎ   (2.12) 

𝑘! = ℎ𝑓 𝑥 + 𝑘!, 𝑡 + ℎ   (2.13) 

𝑥 𝑡 + ℎ = 𝑥 𝑡 + !
! 𝑘! + 2𝑘! + 2𝑘! + 𝑘!   (2.14) 

For each iteration, you start with the first equation and do the rest of the 

equations the order in which they are written above. There are two more 

equations in rk4 than in rk2, which requires additional computational time, but 

the benefit is that it has an algorithmic error on the order of h5, which means 

larger values of h≡Δt can be used. With larger values of h, the overall number 

of time steps can be reduced. Many people feel rk4 offers the best balance 

between number of calculations needed for each time-step and algorithm 

accuracy. It is by far the most commonly used method. For a system of coupled 

differential equations with more than one dependent variable, like my system, 

the equations are iteratively integrated for each dependent variable in parallel 

with the other dependent variables.   
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Although in general rk4 is the best method for solving differential 

equations, it depends on the particular situation. Remember that algorithmic 

errors are not the only errors. There are also round-off errors. Round-off errors 

come from the fact that a computer does not use an infinite number of digits 

after the decimal point. Round-off errors may seem trivial, but they can 

accumulate to produce large errors.46 Round-off errors are especially prevalent 

in the above-mentioned techniques because they involve getting slopes 

numerically, which involves subtracting two numbers that are close to each 

other. Subtracting two numbers that are close to each other can produce serious 

round-off errors.46 The idea is to have a good balance between algorithmic 

accuracy and the number of steps in the calculations. This is accomplished 

through the proper selection of the algorithm and the size of the time step. There 

is even the idea of varying the step size while doing the rk4 integration.46 

The differential equations representing the reaction pathway for my 

model were solved numerically using the computer software package 

Mathematica 7.0. Mathematica analyzes the differential equations and then 

determines which algorithm to use. Mathematica sometimes even switches after 

already starting to solve the equations if a better choice is found. 
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2.2 Molecular Dynamics of Amyloid Formation 

 

2.2.1 ccβ Peptide 

In order to perform detailed MD computational investigations, I focused my 

attention on a small, engineered peptide, ccβ (PDB ID code 1S9Z).38,39,40,41,42,43 ccβ, 

which has amino acid sequence SIRELEARIRELELRIG, responds to temperature 

changes by undergoing many of the structural transitions that occur in the amyloid 

formation processes of the larger, naturally occurring amyloid forming proteins and it 

has been demonstrated experimentally that coiled-coil trimers of ccβ can transform 

their structure and form amyloid-like protofibrils.42 Experimental observations42 find 

that at a temperature of 277K, ccβ exists as a stable coiled-coil α-helix trimer, whereas 

at 310K the helical structure converts to β-strands. MD investigations on a single trimer 

by Strodel et al.40 found that a β-sheet composed of three ccβ chains is stable up to a 

temperature of 440K.  

There are two important advantages to using ccβ in investigations of amyloid 

formation: its small size, and the fact that the control parameter for inducing structural 

transitions is temperature. Strodel et al.40 performed MD simulations of a trimer of ccβ. 

In order to speed up the process, they used replica exchange MD (REMD) simulations 

with the EEF1 force field. They found many pathways for the transforming of the 

coiled-coil ccβ trimer into a trimer β-sheet. They also found that only parts of the ccβ 

peptides first convert to β strands, which then further catalyzes the α to β secondary 

structure conversion.40  
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2.2.2 Molecular Dynamics Computer Simulations 

 Molecular dynamics is a computational technique that simulates the dynamics of 

a system of atoms as a function of time. On the most fundamental level, the evolution 

of the system is described by quantum mechanics. However, using quantum mechanics 

would be computationally very expensive. Instead, the dynamics of the atoms are 

handled classically. Although the energy functions that are used are classical, the 

parameters (such as the spring constants representing bonds) come from experiments or 

from results of ab initio quantum mechanics calculations involving electronic orbitals. 

The use of classical dynamics with quantum mechanically determined parameters 

makes it so that the calculations are quick enough to model many-atom systems such as 

proteins, but accurate enough to produce simulations that reasonably agree with 

experiment. Figure 2.10 is a schematic of the basics of the MD algorithm. 

 

Figure 2.10 Schematic of the MD algorithm. 



 26 

 

There are different packages that perform MD, such as NAMD, Amber, and 

CHARMM. I used CHARMM (Chemistry at Harvard Molecular Mechanics) for my 

MD simulations. CHARMM is a versatile MD simulations package.  

 

2.2.3 Details of Molecular Dynamics  

The MD calculations compute the forces and energies based on the 

positions of all the atoms in the system. The interactions among atoms are 

classified into bonded and non-bonded.  

 

2.2.3.1 Bonded Interactions 

Bond Stretching  

A chemical bond is modeled as a spring with a classical form of the 

potential energy (coming from Hooke’s Law), but with the value of the bond 

spring constant kb derived from experiments or ab initio quantum mechanics 

calculations: 

𝑈 𝑟 = !!
!
(𝑟 − 𝑟!)!   (2.15) 

with r0 the equilibrium bond length. 
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Angle Bending 

 The angle bending energy is the energy needed to bend a bond from its 

equilibrium value, 𝜃!: 

𝑈 𝜃 = !!
!
(𝜃 − 𝜃!)!  (2.16) 

in which 𝑘!is the force constant whose value is derived from experiment or ab 

initio quantum calculations. The form of the energy is that of a simple harmonic 

oscillator, which is valid for small 𝜃. 

Torsions 

If four atoms i,j,k,and l form a bonded quartet (i bonded to j, j bonded to 

k, and k bonded to l), a dihedral angle can be defined. The dihedral angle for a 

sequence of atoms i-j-k-l is the angle between the normal to the plane defined 

by the atoms i-j-k and the normal to the plane defined by the atoms j-k-l.47 The 

terms dihedral angle and torsion angle are often used interchangeably.  The 

energy for the torsion angle 𝜑 is: 

𝑈 𝜑 = !!
!
[1+ cos 𝑛𝜑 − 𝛿 ]!

!!!   (2.17) 

In the above equation, 𝑘!is a force constant (derived from ab initio 

quantum calculations or experiments). 𝛿 is the phase factor that puts the  

minimum potential energy at the correct torsion angles. 
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The idea is that n is the periodicity of the dihedral angle, or the number 

of cycles for a full 3600 rotation.48 For instance, N=2 means there is one 

potential energy function which has one minima and another energy function 

which has two minima, each 1800 apart. N is usually only one, although it can 

go up to six.49  

Improper torsions are used, when needed, to enforce the plane structure 

of a molecule. If instead of atoms i,j,k,l bonded in a sequence, you have a star-

like conformation with k bonded to atoms i,j,l you use an improper torsion 

angle. Atom k is called a branching point. Improper torsion energy can be used 

to obtain a particular geometry. The energy of an improper torsion angle is: 

𝑈 𝜔 = !
!!!(!!!!)

!   (2.18)            

with ω being the angle between the normal to the plane i,j,k and the normal to 

the plane j,k,l.                     

       

2.2.3.2 Non-Bonded Interactions 

Most of the non-bonded interactions are the electrostatic and van der 

Waals interactions. Non-bonded interactions are neglected between covalently-

bonded atom pairs and atom pairs that are separated by only two covalent 

bonds49 because the covalent bonds incorporate the non-bonded interactions.  
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Electrostatic Interactions 

 These interactions are the attractive and repulsive forces between charged 

atoms and molecules. The electrostatic energy function comes from Coulomb’s 

law: 

𝑈 𝑟 = !!!!
!!"!!"

!!
!!!

!!
!!!    (2.19) 

In the equation above, NA is the number of point charges in molecule A and NB 

is the number of point charges in molecule B.   

There are also electrostatic interactions within a molecule: 

𝑈 𝑟 = !!!!
!!"!!"

  (2.20) 

 where the sum is over all pairs of atoms in the molecule besides nearest and 

next-nearest pairs. The permanent partial atomic charges that are assigned at the 

beginning of an MD simulation are determined by making an initial guess and 

then performing calculations in an attempt to get the results of quantum 

mechanics calculations or experiments. The assigned partial charges are 

modified based on the discrepancy between the result of the initial guess and 

results from experiments or quantum mechanics calculations. The process is 

repeated until there is good agreement between assigned charges and 

experiments or quantum mechanics calculations.  
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Lennard-Jones Interactions 

 The van der Waals interaction, which is the total energy of interaction 

between two non-bonded atoms, is approximated by the Lennard-Jones (LJ) 

potential50: 

𝑈 𝑟 = 𝐸![(
!!
!
)!" − 2(!!

!
)!]   (2.21) 

E0 is the depth at the minimum in energy and r0 is the separation of the atoms at 

the minimum. The first term gives the repulsion that comes from the Pauli 

Exclusion Principle when the electron clouds overlap. The last term gives the 

attraction that comes from induced dipole moments. The LJ energy makes it so 

that two atoms’ nuclei stay a reasonable distance (but not too far) from each 

other. The reason eq. (2.21) is approximate is that it assumes atoms are 

spherical, since the energy function is independent of direction.  

 

2.2.3.3 Non-Bonded Interaction Cut-Off Distances 

 Calculating every non-bonded interaction would not be feasible 

computationally for protein systems, since the number of non-bonded 

interactions scales as the square of the number of atoms and proteins have 

thousands or more atoms. A common way to reduce the number of calculations 

for the non-bonded interactions is to use a cut-off distance.  
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 A cutoff distance is chosen by the MD user, beyond which no interaction 

is calculated. Care must be used when deciding where to have the non-bonded 

interactions cut-off, since electrostatic energies have infinite range. This cutoff 

creates a discontinuity if the energy abruptly drops to zero, which can lead to 

unreliable results or program termination. A switching function is used to avoid 

any discontinuities in energy.  

 Three parameters are associated with the cutoff distance: ctonnb, ctofnb, 

and ctnb. The switching function affects the non-bonded energies beginning at 

ctonnb, the smallest of the three parameters. The switching function takes the 

interaction smoothly to zero at ctofnb. The distance for generating the non-

bonded pair list is given by the value of ctnb.  The non-bonded pair list is 

updated periodically, and saves computational time by not having to check all of 

the atoms at every step to see if they are within ctofnb. The value of ctnb is 

slightly larger than ctofnb. For my system, cuton was 16Å, ctofnb was 18Å, and 

cutnb was 20Å. 

 

2.2.4 Numerical Time Integration for the Evolution of My System 

 Molecular dynamics makes use of Σ𝑭 = 𝑚𝒂 and 𝑭 = −𝛁𝑈 to calculate 

the acceleration of each atom based on the bonded and non-bonded forces of the 

surrounding atoms for each MD time-step. The acceleration is used to update 

the position and velocity of each atom for the next MD time-step. A time 
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interval of ~1fs is required to capture the highest frequency of motions of 

biomolecular systems, which is the vibrational motion of the chemical bond 

between a heavy atom and hydrogen. However, if the SHAKE command is used 

to constrain the bond length between a hydrogen and heavy atom a time-step of 

~2fs can be employed. SHAKE can be appllied to all the bonds and angles if 

selected. It uses an iterative scheme to exactly fix bond lengths.51 In the case of 

constraining the bond length between hydrogen and heavy atoms, SHAKE is an 

iterative procedure to adjust the hydrogen atoms after each step that the heavy 

atoms are integrated.48 

Some techniques that numerically update the position and velocity of 

each atom given the acceleration are described below. These techniques are 

referred to as finite-difference methods. These numerical integration techniques 

have much in common with the numerical techniques used in the mathematical 

modeling of the kinetics that is described above.  

Taylor Expansion 

 The simple Taylor expansion technique to advance the position and 

velocity with time of atom n uses these two equations48: 

𝑟!!! = 𝑟! + 𝑣!∆𝑡 +
!
!
!!
!
(∆𝑡)!  (2.22) 

𝑣!!! =
!!!!!!!
!∆!

  (2.23) 
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with ∆𝑡 as the time-step and Fn represents the sum of the forces on atom n. This 

formulation is quite simple, but results in large errors. 

Verlet Integrator 

 The Verlet Integrator is an improvement over the simple Taylor 

expansion. It is derived from using a backward Taylor Expansion and a forward 

Taylor expansion.48 The Verlet integrator uses this equation for advancing the 

position with time 

𝑟!!! = 2𝑟! − 𝑟!!! +
!!
!
(∆𝑡)!   (2.24) 

The velocity at each point can be estimated by: 

𝑣! =
!!!!!!!!!

!∆!
  (2.25) 

The Verlet integrator gives high-precision values of position (errors on 

the order of ∆𝑡!) and is independent of velocity propagation.48 However, the 

velocity propagation from the Verlet integrator can have large errors on the 

order48 of ∆𝑡!  and the velocity can only be computed after the position is 

computed. It also requires a value of the position for the n-1 time step. 

Sometimes, a simple Taylor expansion is used to get the position at a fictitious -

1 time step to get the algorithm started from the initial structure. (The starting 

structure is at time step zero.)   
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Leap-Frog Integrator 

 The Leap-Frog integrator (also called Verlet Leap-Frog integrator) is a 

modification to the basic Verlet integrator.48 The Leap-Frog integrator uses 

these two equations for advancing the system with time: 

𝑟!!! = 𝑟! + 𝑣!!! !∆𝑡   (2.26)          

𝑣!!! ! = 𝑣!!!/! +
!!
!
∆𝑡  (2.27) 

As can be seen from equations (2.26) and (2.27), the Leap-Frog Integrator is so 

called because during a time step ∆𝑡 the velocty leaps ½ time step ahead of the 

position as it is calculated. When the position is calculated, it leaps ½ time step 

ahead of the velocity. The current velocity can be calculated using: 

𝑣! = (𝑣!!! !+𝑣!!! !)/2  (2.28) 

or other methods that introduce smaller errors than equation (2.28). The position 

in the Leap-Frog algorithm has an error for position of  ∆𝑡!, the same as Verlet. 

However, the error in the velocity calculated using Leap-Frog at half time steps 

is ∆𝑡!, which improves over the Verlet algorithm of ∆𝑡!.  
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Simply decreasing ∆𝑡 to try to increase the precision would require more 

time steps to be calculated. This not only increases the computer time needed, 

but also increases the total round-off error.46 A rule of thumb for selecting ∆t is: 

∆𝑡 = 𝜏
20                                (2.29) 

in which 𝜏 is the period of the fastest motion.48  

 

2.2.5 Replica Exchange Molecular Dynamics 

A complex system like a protein with many moveable and interacting parts is 

likely to have a complicated energy landscape with many hills and valleys. Exploring 

such a landscape to find preferred, low enegy configurations with MD simulations can 

be difficult. The initial configuration is often chosen for reasons of convenience, but 

because of high barriers, the system may be unable to leave the initial location in 

configuration space if the temperature of the simulation is low. Conversely, if the 

temperature of the simulation is set very high, the system can quickly change its 

configuration from the initial one, but may never settle into any configuration because 

high temperatures cannot distinguish potential energy minima. REMD52,53,54 is used to 

allow the system to move around configuration space but also settle into a region that 

has a potential energy minimum. Because of this, REMD is known as a technique of 

enhanced sampling. 

Replica Exchange Molecular Dynamics is performed by first creating many 

replicas of the initial configuration of the system and assigning each replica a different 
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temperature. Each replica is independently but simultaneously simulated by MD. After 

a fixed number of MD time steps, a Metropolis-type test is applied to the replicas to 

decide whether to swap replicas at adjacent temperatures. The temperature exchange 

probability is given by Pij=min{1,exp(-∆) } with ∆=(Ej-Ei )*[1⁄(kTi)-1⁄(kTj)] and Ej the 

potential energy of replica j. After this test for swapping is performed and the replicas 

that fit the criteria are temperature swapped, another fixed number of MD steps is 

performed on all replicas, followed by another test for swapping adjacent temperatures, 

and so on. During stages when a replica is at high temperatures, it is able to escape 

from configurational kinetic traps (energy minima) and sample large regions of 

structural configuration space, but is unlikely to settle into any specific, low energy 

configurations. However, a replica that finds a low energy configuration is likely to 

swap to a lower temperature and thus increase its probability to remain in a low energy 

configuration.   

 

2.2.6 Implicit Solvation 

 The natural environment for a protein system is water. Explicitly including 

water atoms in addition to protein atoms is computationally expensive. Ninety 

percent or more of the computation time may be spent on water-water 

interactions, which are not directly relevant to the protein dynamics. In a protein 

system, often the water-water dynamics are not of major importance. To speed 

up the calculations, implicit solvents can been used in MD simulations. Chapter 

7 in Computational Biochemistry and Biophysics48 gives general descriptions of 
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different ways to represent the water solvent implicitly, rather than using 

explicit water molecules. 

 One such implicit solvation model is EEF1.55,40,56 It uses an excluded volume 

implicit solvation model and the CHARMM 19 polar hydrogen energy.49  It also 

implicitly models the dielectric screeing of water molecules by a distance-dependent 

dielectric function, ε�=r,57 as well as neutralizing ionic sidechains.57,49 It also uses the 

solvent exclusion effect, which assumes that the solvation free energy of each group is 

equal to a reference solvation free energy of that group minus the solvation it loses due 

to solvent exclusion by other atoms around it.57 

Strodel et al. performed REMD and basin hopping global optimization 

to study the KFFE monomer and dimer energy landscapes, using four implicit 

solvent models.40 They found that of the four models they tested (EEF1 and 

three generalized Born models) EEF1 provided the best description for KFFE 

when comparing to experimental results. 

In order to model solvent friction and Brownian motion of the solvent, 

the Langevin dynamics method is often used with an implicit solvation model. 

The Langevin equation is: 

𝑚!
!!!!
!"!

= −∇!𝑈 𝑟 −𝑚!𝛽𝑣! 𝑡 + 𝑅!(𝑟)  (2.30) 

𝛽 is the reduced friction coefficient. Ri(t) is the random force representing 

stochastic collisions between solvent molecules and solute.   
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2.2.7 Confining Potentials and Periodic Boundary Conditions 

 Periodic Boundary Conditions (PBC) can be used in MD simulations to decrease 

the volume of the system that is included in the simulations and thus allowing the 

simulations to run faster.49 A boundary is created in the shape of a cube. When an atom 

exits on the left side of the boundary, it enters on the right side of the boundary. The 

same thing occurs for the top and bottom edges of the PBC cube, as well as the front 

and back edges of the cube. 

 Another way to confine the system is by using a repulsive spherical 

potential to push the atoms back once they have encountered the confining 

potential.  

 

2.3 My Particular Molecular Dynamics Simulation 

  To speed up the structural conversion process so that I could investigate 

the β formation and aggregation dynamics, I performed an REMD simulation 

using the CHARMM EEF1.1 force field with the MMTSB toolset,58 using 

CHARMM version 35b2. EEF1.1 is the same as EEF1 mentioned above, except 

that EEF1.1 contains some adjustments in the parameters describing partial 

charges. The adjustments are empirical adjustments and are made because some 

of the parameters in the EEF1 force field model simulate the ionizable side 

chains too strongly.    
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I used an MD step of 2fs and I had CHARMM write every 500 steps 

(making each frame 1ps apart). My REMD simulation checked every 500 MD 

steps (every 1ps) for whether to swap temperatures between replicas of adjacent 

temperatures. I used exponential spacing of the temperatures with a range of 

380K-600K.  

In order to make up for the Brownian motion and frictional effects of the 

solvent that are not simulated in the EEF1 implicit solvent, I used Langevin 

Dynamics with a reduced friction coefficient of 1. 

The proteins were confined by a spherical quartic potential that had the 

value zero for r<DROFF and a value of Force*Δ2*(Δ2-P1) for r>DROFF with 

Δ=r-DROFF. I used Force=0.2 and P1=2.25. A DROFF of 600Å was used to 

minimize the effect of the confining potential on the aggregation process.    

 The number of interchain and intrachain hydrogen bonds were calculated using 

Visual Molecular Dynamics. Many of the parameters were calculated using Python 

programs analyzing large PDB files containing the coordinates of each atom during 

each frame.    
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3. MOLECULAR RATE CONSTANTS FOR AMYLOID β FIBRILLOGENESIS 

An extensively studied, naturally occurring peptide system is the amyloid beta 

precursor Aβ peptide, which is responsible for amyloid deposits in AD.59 On the basis 

of experimental data, I have developed a mathematical model for the reaction pathways 

and determined rate parameters for peptide secondary structural conversion and 

aggregation during the entire fibrillogenesis process from random coil to mature fibrils, 

including the molecular species that accelerate the conversions. The model and the rate 

parameters include different molecular structural stages in the nucleation and 

polymerization processes and the numerical solutions yield graphs of concentrations of 

different molecular species versus time that are in close agreement with experimental 

results. My model also allows for the calculation of the time-dependent increase in 

aggregate size.  

In Section 3.1, I give a general description of Aβ Proteins. Section 3.2 describes 

the various structures in my model. In Section 3.3, I describe model details and the 

results of fitting my model to experimental data.  

 

3.1 Description of Aβ Proteins 

A protein that is produced normally in the human body throughout life is Aβ. It is 

not known what function the Aβ protein in humans has, if any. It is cleaved from a 

larger precursor protein, AβPP. Aβ amyloids in the neuropil are associated with AD.  

The primary structure of Aβ is: 

DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA. 
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Naturally occurring Aβ peptides have a length in the range of 39–43 amino acids. 

Experiments have elucidated valuable structural information of variants such as Aβ(10-

35), Aβ(1-40) and Aβ(1-42) peptides.60,61,62 The predominant forms of Aβ produced in 

vivo are Aβ(1-40) and Aβ(1-42).  

 Different segments of Αβ have different properties. For instance, Aβ(1-40) has 

48% hydrophobic residues and 40% hydrophilic residues whereas Aβ(16-22) has 71% 

hydrophobic residues and 29% hydrophilic residues. Different segments within Aβ(1-

40) have different secondary structure propensities.63  

 

3.2 Description of Various Structures in My Model 

After dissolution, Αβ proteins tend to exist as monomers, dimers, and very 

small oligomers of mostly unstructured random coil and β-turn peptides, along with a 

small amount of structured β-strands and β-sheets. They then form micelles, which are 

loosely bound disordered aggregates. These micelles then break apart into nuclei. The 

nuclei are small and reactive to proteins and brain cells. They are β-aggregates and 

grow by forming with other nuclei and having monomers attach to them. When they 

have these monomers attach to them, they tend to catalyze the added proteins to the β-

strand state. These nuclei continue to grow until they are large enough to be called 

protofilaments. 

Protofilaments are composed of β-sheets parallel to each other. Protofilaments 

wrap around each other like strands of rope to make protofibrils. Protofibrils are soluble 

and can grow either by attaching of single monomers or attaching of all kinds of β-
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aggregates. When protofibrils are large enough they become fibrils, also called mature 

fibrils.  

The description above is a simple one. However, in real Αβ proteins, there are 

many different oligomers and pathways toward fibrils.9 Assuming a simple process 

toward aggregation allowed me to be able to define a functional model for Αβ 

fibrillation. 

 

3.3 Results 

The role of fibrillar Αβ in AD has stimulated interest in the kinetics of Αβ fibril 

formation. Determination of rate parameters for the various peptide structural 

conversion steps during fibril formation may be helpful in developing efficacious 

therapies for AD. Various research groups have been successful in performing very 

difficult experiments.  

Kinetic models that include reaction pathways and rate parameters for the 

various stages of the process can be helpful toward understanding the dynamics on a 

molecular level. Rates for peptide structural transformations that nucleate β-structure, 

as well as rates for aggregation/polymerization into mature fibrils are especially 

interesting. There are experimental data on rate parameters for some of the stages of the 

fibril formation process. These include the investigations on the elongation and 

nucleation rate parameters for fibrillogenesis at low pH,2 rates of nuclei production and 

association,64 and lag time and rate of aggregation.65 Kinetic rate equations were used 

by Pallitto and Murphy7 to model folding and aggregation. Kinetic models can further 

benefit from experiments that have shed light on aspects of the process of Αβ 
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aggregation from random coil to mature fibril. Kirkitadze et al.28 were able to measure 

the temporal changes of concentrations of different types of secondary structures: 

random coil, α-helix, β-strand/sheet, and β-turn for both Αβ(1-40) and Αβ(1-42). These 

measurements were done over a period of 20 days for Αβ(1-40) and 10 days for Αβ(1-

42), allowing enough time for fibrillogenesis to occur. Fezoui and Teplow36 measured 

the concentration of prefibrillar and fibrillar β-structure as a function of time in 

different solvent conditions. 

Determination of rate parameters for the various peptide structural conversion 

steps during fibril formation may be helpful in developing efficacious therapies for AD. 

The numerical solutions of my model yield graphs of concentrations of different 

molecular species versus time. With the proper choice of transition rate parameters, my 

model is able to nicely fit the time dependence of the concentrations measured 

experimentally by Kirkitadze et al.,28 Walsh et al.,37 and Fezoui and Teplow.36 My 

model and the rate constants include different molecular structural stages in the 

nucleation and polymerization process and provide insight on the molecular species 

involved in the fibril formation process.  

 

3.3.1 Model of Reaction Pathways and Experimental Data 

On the basis of the experimental and computational results, Bitan et al.66 

hypothesized that hydrophobic residues on different helical peptides might aggregate to 

create a paranucleus, which can then transform to amyloid protofibrils. In addition, it 

has been suggested that the process of structural conversion may be accelerated by the 

presence of prefibrillar β-aggregates of varying sizes.33,67 Experimental data28,2,37 
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suggest that the population of the α-helix species increases rapidly (and non-linearly) as 

the β-structure begins to appear near the end of a lag phase. The lag phase (also called 

lag time) is the time it takes for a significant number of nuclei to form. During the lag 

phase, not much structural conversion takes place, which shows that the appearance of 

β-species plays a role in the structural conversion. Although a detailed molecular 

description of the nucleation mechanism is still not fully understood, Auer et al.68 

suggest that the surface of a growing β-sheet acts as a substrate for the attachment of α-

helical peptides during the aggregation process. Therefore, I assumed that the random 

coil→α-helix transition is affected by the presence of β-strands. Some experiments69,70 

suggest that fibrillogenesis proceeds from random coils directly to β-structure. The 

prefibrillar structures can serve as toxic elements that facilitate the structural conversion 

from random coil to α-helix, and also in the conversion from α-helix to β-structure. 

Using differential equations for studying the change in protein compartments 

with time is described in Chapter 4 of Protein Folding Kinetics by Nolting.44 Nolting 

shows coupled differential equations that are simple enough to have analytic solutions. 

The differential equations in Protein Folding Kinetics do not take into consideration the 

heterogeneity in the rate constants. The set of differential equations for my model is 

more complicated.  

On the basis of experimental observations described in an article by 

Kirkitadze et al.,28 I made the following assumptions in formulating my reaction 

pathway model: (i)The conformational transitions which occur during 

fibrillogenesis proceed as random coil à α-helix à β-strand/sheet à β-

aggregate/protofibril à mature fibril, (ii)the processes of random coil à α-
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helix, and α-helix à β-strand conversion are accelerated by the presence of 

toxic β-strand aggregates, (iii) random coil/β-turn structures incorporated in the 

mature fibril state retain their unstructured properties.  

With these basic assumptions, I developed a kinetic, state-transition 

model (Figure 3.1) in which the amino acid configurations are grouped into 

various stages during the fibril formation process. I used differential equations 

to study the changes in population in these secondary structure configurations: 

random coil/β-turn, α-helix, β-strand/sheet. Each compartment represents the 

percentage of amino acids from all the proteins in the system with a 

characteristic secondary structure. Many of the compartments also had another 

characterstic in addition to the secondary structure, as described below. 

 

 

Figure 3.1 A state transition model of the structural conversion process of the 
Aβ formation process. To simulate the heterogeneity in βN structure, the βN 
phase is treated purely mathematically as a series of n fictitious sub-
compartments. For all sub-compartments, the rate of transition to the next sub-
compartment is given the same value, nk3. The reason for this is given in detail 
below.  
 

The notation for the species and kinetic parameters included in the 

schematic diagram of Figure 3.1 are explained in Table 3.1. 
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RCT0  Initial combined concentration of random coil/β-turn 
 RCT1  Fraction of inital concentration of random coil/β-turn that 

   retain the random coil structure and are either directly       
   incorporated into mature fibrils or remain isolated as   
   monomers/dimers  

α  α-helix concentration 
 βN  Concentration of non-toxic β-strands/sheets/aggregates   
   such as micelles 

βTx  Concentration of β-strand aggregates such as protofibrils 

 βM  Concentration of larger, non-toxic β-aggregates such as mature  
   fibrils 
 k0, k1, k2, k3,  Rate parameters for transitions from one structural state to another 

k4 
ε  Fraction of initial monomers/dimers that are stable and do not  
  participate in fibrillogenesis 
 
Table 3.1 Parameters Used in This Model. 

 

The differential equations used to quantify my model presented in Fig 3.1 are 

equations (3.1)-(3.8).  
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Summing the right side of all the equations (3.1)-(3.8) gives zero because my 

model had no proteins entering or leaving, and the differential equations are consistent 

with the mass action principle. 

Figure 3.1 and equations (3.1)-(3.8) represent a model with the 

following details. An initial combined concentration of random coil/β-turn 

configurations is represented by RCT0. A fraction of the RCT0 molecules remain 

in the random coil configuration and are denoted as RCT1. The RCT1 molecules 

are composed of two types. One component of RCT1 contains molecules that 

undergo rapid and irreversible commitment to stable monomers/dimers, as 

found experimentally in Pallitto and Murphy,7 and represented by the path with 

rate constant koε.  

The other contribution to the population of RCT1 is from RCT0 amino 

acids that are either part of a mature fibril or sequestered in a mature fibril. The 

process of RCT0 amino acids becoming either part of a mature fibril or 

sequestered in a mature fibril requires mature fibrils and its rate depends upon 

[βM]. The experimental results in Fig. 1b of Kirkitadze et al.28 show that the 

combined random coil/β-turn content levels off at long time scales, which 

implies that as the process of structure conversion proceeds and prefibrillar and 
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fibrillar structures start to form, some initial random coil/β-turn components 

retain their structures and may never convert to α-helix. Another study37 found 

significant amounts of random coil/β-turn incorporated into both protofibril and 

fibril structures. Since mature fibrils are stable, the random coil/β-turn 

components in these structures can no longer transform to other structures.63,71,72 

The fraction of RCT0 that does not convert to RCT1 follows the main 

pathway for fibrillogenesis in Fig. 3.1 and transforms into α-helix secondary 

structure configuration with a rate k1, and this process is accelerated by the toxic 

β-aggregate species that are grouped in βTX. The βTX compartment includes toxic 

species of varying sizes, including small aggregates.  

There are two important issues that must be explained by the model: 

determining a molecular mechanism that generates the lag phase observed in the 

experiments, and determining a reaction pathway mechanism to correctly 

reproduce a rapid drop-off at long times in the concentration of α-helix. I first 

address the issue of a molecular explanation of the lag phase.  

 

3.3.2 Modeling of the Lag Phase 

For the specific experiments that are analyzed in my work, there is little 

change in the concentration of any of the different species during the first four 

days of observation. Circular dichroism measurements revealed that the Aβ(1-

40) oligomerization was preceded by an increase in α-helical content from 3% 

to >30%. The α-helix content begins to rise after four days of incubation 
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whereas the fibrils are observed only after six days. Similar results from MD 

simulations were obtained by Bumketner et al.,73 in which a modest α-helical 

content was observed.  

The sub-compartmentalization of the βN phase is introduced to explain 

this lag phase. The series of βN compartments is used as a mathematical method 

to represent a single phase that has heterogeneous structures with a wide range 

of rate constants. If a single βN compartment is used, representing a relatively 

homogeneous population, there is no initial delay in change in concentrations. 

Mathematically, if we ignored the heterogeneity in βN by using only a single βN 

compartment with a single rate constant k3, no lag phase occurs because β-

strand/sheet structures that are included in the initial preparation as βN are 

allowed to convert to toxic protofibrils (βTX) with a single rate constant k3 and 

the resulting βTX accelerates the RCT0→α-helix conversion process. A single 

non-toxic βN compartment is equivalent to the assumption of a homogeneous 

collection of βN structures, all with the same value of k3. However, βN 

aggregates may contain a range of sizes or geometries. This structural 

heterogeneity74 complicates the conversion process and produces a distribution 

in the transition rate from βN→βTX. This structural heterogeneity is the 

molecular basis for explaining the lag phase and is incorporated into my model. 

The effects on the kinetics of a single process due to a heterogeneous 

distribution in reaction rate constants can be mathematically simulated in a 

model by incorporating a series of ‘n’ fictitious steps (Fig. 3.1). The method of 

multiple stages, wherein a single compartment is broken into several identical 
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compartments in series, is widely used in epidemiological models.75,76,77 Each 

sub-compartment ‘i’ acts as a homogeneous collection of molecules. In order 

for the average time for the process to remain as τ=1/k, all sub-compartments 

have the same mean waiting time, τ′i=τ/n=1/nk and the same rate parameter 

k′=nk. The resulting average total time spent in all n sub-compartments is just 

τ=nτ’i=n(1/nk)=1/k, the same average total time as if it was a single 

compartment with rate constant k. Though the average time to transition from 

βN→βTX is the same whether there is a single compartment with a single rate 

parameter k3, or a series of n fictitious compartments (as in the model), each 

with rate parameter nk3, the probability distribution of individual molecular 

reaction times is not the same.  

The probability that a random variable is between two values is the 

definite integral of the probability function between these two values. For the 

simple process of entities transforming from compartment A to compartment B 

with a single rate parameter, the probability density function for molecular 

reaction times is exponential, as shown in Fig 2.8.  

For a series of compartments in my model, the probability density 

distribution is described by a gamma function. The sub-compartmentalization 

method generates the same distribution in reaction times as expected from a 

heterogeneous collection of structures, each performing a single step conversion 

at a different rate. The probability density function for βN→βTX reaction times 

p(t) is given by p(t)=tn−1e−nkt [(nk)n/Γ(n)], where Γ(n) is the gamma function, and 

n is the number of sub-compartments. The variance in reaction rates of this 
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distribution is given by 1/(nk2). The variance of this distribution is manifested 

on a macroscopic experimental level by producing a lag phase in the 

aggregation process. The number of sub-compartments in the model can be 

estimated by fitting the experimentally observed lag phase.  

The gamma distribution of reaction times for the βN structures is more in 

alignment with what is known about the molecular species. The βN species 

undergoes aggregation as it transforms into the toxic βTX species. The dynamics 

of aggregation are complex with many different molecular routes, and therefore 

it is expected that aggregation of β-strands/β-sheets into protofibrils is not a 

homogeneous process. In light of this, we can view the mean reaction time as a 

mean aggregation time. Interestingly, the lack of lag phase with the use of a 

single compartment, homogeneous βN resembles the faster nucleation and 

polymerization processes observed for Aβ(1-42)78,28 which displays a 

significantly shorter lag time as compared to Aβ(1-40). I focus on Aβ(1-40) 

because there are more experimental data points than for Aβ(1-42). 

 

3.3.3 Modeling the Rapid Drop-Off at Long Times in α-Helix 

Concentration 

Another important aspect incorporated into my model is the ability of 

βTX to accelerate the process of α-helix→β-strand conversion in order to have 

the theoretical α-helix curve drop off at long times as quickly as the 

experimental data in the tail after the peak. In order to match the quick drop 

observed experimentally, the degree of this dependence had to be enhanced by 
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introducing the exponent q in the βTX activity so that the rate of conversion from 

α-structure is given by k2[βTX]q. Because of the complex nature of the 

aggregation process, a higher-order concentration dependence (q>1) is not 

unusual. 

 

3.4 Numerical Results Using My Model to Fit the Experimental Data 

I developed my kinetic model to explain the experimental data on the Aβ 

fibrillogenesis process from several studies. In one study, Kirkitadze et al.28 

experimentally followed the time course of the fibril formation process and measured 

the percentages of various structural elements for both Αβ(1-40) and Αβ(1-42) peptides. 

I fit my theoretical curves to the experimental data for Aβ(1-40) fibrillogenesis 

presented in Fig. 1b of Kirkitadze et al.28 The Kirkitadze data are reproduced as the 

points in Fig. 3.2. 

In order to monitor the development of various secondary structural 

motifs during fibrillogenesis, they initialized their Aβ peptide samples by 

subjecting them to a dissolution process. This dissolution process produced a 

starting solution of mostly unstructured random coil and β-turn peptides, along 

with a small amount of structured β-strands and β-sheets. Over a period of three 

weeks, the solution was subjected to circular dichroism (CD) analysis to track 

the time evolution of random coil, β-turn, α-helix, and β-strand concentrations. 

Accurate estimation of the β-turn content was relatively more difficult than 

accurate estimation of α-helix and β-strand concentrations as a result of the β-
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turn’s structural variations. Two different deconvolution algorithms for spectral 

analyses (CDANAL79 and CONTIN/LL80) yielded the same results for the 

concentrations of both α-helix and β-strand but yielded quite different β-turn 

content. However, the sum of the random coil and the β-turn concentrations 

remained the same using either method. Since both methods give the same 

results for the combined concentrations of random coil and β-turn, my model 

treats them together. 

The rate parameters for the aggregation kinetics depend on factors such 

as pH, initial concentrations, temperature,81 and methods of preparation for the 

initial protein sample.28,3,81 Therefore, lag times vary greatly among 

experiments.13,81,82 Lag time is highly dependent on initial concentrations 

among the different species as it is sensitive to various assembly states of the β-

aggregates.83 

 

Figure 3.2 Experimental data (points) from Kirkitadze et al.28 fit with theoretical curves 
derived from the model of Fig. 3.1. 
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Following the experimental conditions, I set the initial contents to be 

RCT0(t=0)=88.1%, βN1(t=0)=11.9%, and zero for all other compartments. The 

concentration of the monomers/dimers is difficult to measure, and quantitative 

information is not available.7 Therefore I set ε=0 in my work. The parameter ε can be 

appropriately adjusted when experimental data are available. The model includes the 

reaction pathway with sub-compartments that generate a time lag that results from 

nucleation and the resulting curves accurately fit the data.  

In Figure 3.2, I display my fit to the experimental data presented in Kirkitadze 

et al.28 The following values of the rate parameters generated the curves: k0=0.590/day, 

k1=0.672/day, k2=0.678/day, k3=0.0392/day, and k4=0.554/day. The number of sub-

compartments is n=4, and the exponent is q=2. From Fig. 3.2, it is clear that my model 

accurately fits the experimental data. It successfully reproduces the lag phase kinetics 

involved in the fibril formation process. My model also reproduces the sharp drop in 

the experimental α-helix curve near the end of the process. 

I further use my model to fit other experimental data. Specifically, I fit the 

experimental data by Walsh et al.37 and by Fezoui and Teplow.36 Walsh et al.37 

performed experiments with the low molecular weight Aβ(1–40) peptide and followed 

the conformational changes during the fibril formation process with CD spectra for 

over 30 days. The data points in Fig. 3.3a show the secondary structure content plotted 

against time as given in Table I of Walsh et al.37 Their data are also consistent with 

similar observations that fibrillogenesis involves formation of intermediate α-helix 

secondary structure during the conformational transition from random coil to β-

aggregates. The curves in Fig. 3.3a show the fit with my model. Following the 
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experiments, I set the initial contents to be RCT0(t=0)=76%, α(t=0)=11%, 

βN1(t=0)=13%, and zero for all other species and compartments. The transition rates and 

other parameters that generated my fitting curves were k0=0.0154/day, k1=0.0318/day, 

k2=0.0282/day, k3=0.0565/day, k4=0.520/day, and the number of sub-compartments 

n=6. I note that different experimental conditions will affect the rates of different steps 

in the process. For example, though the temporal trends are similar, the data from 

Walsh et al.37 display much smaller changes in concentrations than the data from 

Kirkitadze et al.28 because of differences in experimental conditions. Therefore, the 

values for the rate parameters used in the fit in Figure 3.3a are different than those used 

for the curves in Figure 3.2. The exponent q=2 remains the same as used for the curves 

in Fig. 3.2.  
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Figure 3.3 (a) The experimental data points from Walsh et al.37 showing the secondary 
structure content obtained by deconvolution of CD spectra. The curves are the numerical 
results from fits obtained using my model. (b–d) Data points from Fezoui and Teplow36 
showing the temporal changes in the β-structure content for Aβ(1-40) fibrillogenesis at 
different TFE concentrations. 

 

3.4.1 Co-Solvents 

 Experimentalists often use co-solvents with water, which changes the fibril 

formation dynamics as compared to a sytem of proteins in pure water. Urea is 

commonly used to denature proteins.84 Alcohols are often used as co-solvents.84 A good 

review of alcohol co-solvents is given by Buck.85 

Trifluoroethanol (TFE) is a fluorinated alcohol. Proteins in TFE/water solution 

having different secondary structure dynamics than when in a pure water solvent.86 The 

effects of TFE seem to depend on amino acid sequence.85 It is well established that TFE 

promotes formation and stabilzation of α-helices and hairpins.87 A theory as to why 
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TFE favors the formation of intrachain hydrogen bonds is that TFE molecules coat the 

outside of a protein.86 The coating displaces water molecules86 which removes 

hydrogen bonding partners to which backbone atoms could hydrogen bond.86 The 

displacement of water also creates a lower dielectric environment which promotes 

electrostatic interactions.86 Water has one of the largest dielectric constants among 

fluids, 78 at 250C.88 Trifluoroethanol does not does not disrupt severely the 

hydrophobic interactions within a protein86 or may even strengthen them, which is in 

contrast with most other organic solvents.  

However, it is not well established whether TFE promotes or inhibits formation 

of β-sheets. Trifluoroethanol has been known to disrupt and also enhance quaternary 

interactions. The hydrophobic interactions between proteins tend to be weakened by 

TFE. The TFE molecule is approximately nine times larger than the water molecule.  

Circular Dichroism spectropolarimetry was done on T4 LYS (11-36), a peptide 

dervied from a region of the T4 lysozyme molecule, by Anderson et al.89 It was found 

that as the TFE content rose to 20%, the β-sheet content grew from 26 to 38%.89 

However, as the TFE content then rose to 50%, the β-sheet content decreased to 15%.89 

In terms of the energy landscape picture of Fig. 3.4, TFE lowers the energy of 

the α-helix state. In addition, the height of the barriers for the RC→α-helix transition 

and the α-helix→β-structure transition can be affected by TFE, as evidenced by the 

temporal data in Fig. 2a of Fezoui and Teplow.36 

Fezoui and Teplow36 show that the amount of Aβ, the protein whose fibrils 

cause AD, goes down with increasing TFE concentration and is 0 for 30% and higher 

TFE concentration.36 It also shows increasing amounts of α-helix with increasing TFE 
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concentrations.36 However, the fibrils actually form faster when the TFE concentration 

is raised up to about 20%. Experiments have found that the random coil to fibril 

formation process involves significant α-helix intermediates for Aβ and that the 

formation of these α-helix intermediates is “on pathway” for fibril formation.90,28 

Insight into the role of the α-helix intermediate in the fibrillization process is provided 

by experiments36 that use TFE which facilitates and stabilizes helical structure. At TFE 

concentrations below 20%, the fibril formation process is accelerated by increasing the 

concentration of TFE. However, the addition of higher concentrations of TFE can 

potentially slow fibril formation, implying that the α-helix intermediate91 becomes too 

stable and does not allow the progression to the β-structures necessary for fibril 

formation. The dependence of fibril formation on the concentration of TFE can be 

explained thermodynamically with the help of an energy landscape diagram. A 

schematic energy landscape representing these structural stages is shown in Fig. 3.4. 

Increasing the TFE concentration deepens the energy minimum corresponding to the α-

helix structure, which can facilitate the transition from random coil→α-helix, a 

necessary step in fibrillogenesis. At low TFE concentrations, fibrillogenesis continues 

with the transition from α-helix→β-strand. However, at high TFE concentrations, the α-

helix structure becomes stabilized so strongly that the α-helix energy minimum is 

difficult to escape. The α-helix→β-strand conversion is impeded and fibril formation is 

hindered. 
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Fig. 3.4 Schematic energy landscape of Aβ secondary structure conversion as a 
function of arbitrary structural reaction coordinates x and y. TFE stabilization of α-helix 
structure is represented by increasing the depth of the α-helix energy minimum. If the 
α-helix minimum is too deep, the peptide may find it difficult to undergo the 
conversion of α-helix→β-strand. The dotted arrow represents a possible pathway in 
which the random coil converts directly to β-structure, bypassing α-helical structure. 
 
 

Figure 3.3b-d shows the experimental data points from Fezoui and Teplow,36 

which investigated the effects of α-helix stabilization on Aβ fibrillogenesis. In that 

work, Fezoui and Teplow used several different concentrations of helix stabilizing TFE 

solution and followed the rates of fibril formation and fibril elongation. They concluded 

that the helical intermediate structures play a crucial role in peptide oligomerization, 

which is followed by the conformational reorganization into extended β-sheets. Without 

TFE (0% concentration), the time course of β-structure content as shown in Figure 3.3b 

is similar to that displayed in Figure 3.2. 

Since Figure 3.3b-d only contains data for one molecular structural component, 

it may be possible to fit the data using different parameter sets because the fits are not 

constrained as strongly as for the data in Figure 3.2 and Figure 3.3a. Since the 

experimental conditions were significantly different in Figure 3.3b-d, I expect that the 

fit parameters may also be different. For example, the data in Figure 3.3b-d result from 
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different initial concentrations of α-helix. Differences in initial conditions, temperature, 

and TFE concentration lead to important differences in the time required before the β-

structure content starts to dramatically increase and this will have a strong effect on the 

values of some of my model's parameters.  

When the TFE concentration is increased up to 20%, the fibril formation 

process is accelerated and the lag phase is decreased. For the condition of 0% TFE in 

Figure 3.3b, the fit parameter values are k0=3.00/day, k1=0.448/day, k2=0.310/day, 

k3=0.0512/day, k4=0.107/day, q=2, and n=4. The fit parameters for 10% TFE in Fig. 

3.3c are k0=1.23/day, k1=0.463/day, k2=0.350/day, k3=0.100/day, k4=0.733/day, q=2, 

and n=3. For 20% TFE in Fig. 3.3d, they are k0=0.771/day, k1=0.0116/day, 

k2=0.467/day, k3=0.774/day, k4=1.00/day, q=2, and n=1. For Fig. 3.3b-d the initial 

content of RCT0 and α-helix were set to the values given in Table 1 of Fezoui and 

Teplow.36 The initial β content that I used was determined from the data plots in Figure 

2a of Fezoui and Teplow36 and divided as follows for the calculations in this paper: 

Figure 3.3b (0% TFE): βN1(t=0)=18.1%, βN2(t=0)=5.0%; Fig. 3.3c(10% TFE): 

βN1(t=0)=15%, βN2(t=0)=2.0%; Fig. 3.3d (20% TFE): βN1(t=0)=7.0%, βTX(t=0)=1.0%. 

All other species and compartments were assigned initial contents of 0%.  

My model fits the lag phase for various TFE concentrations up to 20% by 

adjusting the number n of sub-compartments. The data for 0% TFE concentration have 

the longest lag phase (∼7 days) and the largest number of sub-compartments (n=4). 

Similarly, 10% TFE requires n=3, and 20% TFE which has the smallest lag phase and 

fastest fibril formation has n=1. Increasing the TFE concentration enhances α-helix 
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stability as seen in Table 1 of Fezoui and Teplow36 and Buck et al.85 Interestingly, the 

change in energy barrier heights causes an increase in the speed of the overall fibril 

formation process up to 20% TFE, but above this TFE concentration the increased 

stability of the α-helical structure acts as a kinetic trap and slows down the overall 

process. In addition to the TFE concentration dependence, the lag phase also depends 

on pH of the solution,65,14,28 and my model can be adapted to these biochemical 

environments as well. 

 

3.5 Discussion of Results 

It is important to note that though my results provide a good fit to a variety of 

experimental data analyzed in this paper, my model may need modification for other 

experimental conditions. Both the α-helix→β-structure sequence of steps as well as the 

possibility of a process involving α-helix→random coil→β-sheet are discussed in the 

literature.92,93 Velez-Vega and Escobedo94 discuss that the α-helix stage may be more 

important for some peptides than for others, while Soto et al.91 and Szabo et al.95 

discuss the possibility that the α-helix secondary structure is not necessary for 

fibrillogenesis. Additional pathways for aggregates are also proposed.96 My model can 

be appropriately modified to reflect different pathways. 

Important correlations can be made between my model and the kinetic model of 

fibril nucleation and elongation developed by Lomakin et al.2 In that work, one 

pathway for the fibrillogenesis mechanism for high protein concentration was described 

as: Monomers ←→ Micelles→Nuclei→Fibrils. The pathway of 

Monomers←→Micelles→Nuclei→Fibrils is dominant when protein concentration 
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exceeds a critical value above which pre-existing “seeds” are not necessary for fibril 

formation. Instead, high local protein concentration leads to formation of micelles that 

later form the domains of fibril nuclei. Experiments performed by Kirkitadze et al.28 

and Lomakin et al.2 exhibit similar lag times even though they were performed at 

different peptide concentrations, 25 µM and >100 µM, respectively. The similarity may 

be due to their peptide concentrations being above their respective critical micellar 

concentrations at which the lag times become independent of the peptide concentration 

as observed.2,97 Other experiments13,14,15 as well as the nucleation theoretical 

treatment98 show a more complicated dependence of aggregation rate and lag time on 

peptide concentrations. The Aβ monomers and the micelles were considered to be in 

rapid equilibrium so that this step was not the rate-limiting step. The two possible rate 

limiting steps in the model of Lomakin et al.2 are a micelle to nuclei formation process 

with a kinetic rate parameter they denoted as kn, and a fibril elongation process with 

rate parameter ke that incorporates free monomers that are present with concentration c. 

Different nuclei sizes have been reported for different conditions. For example, Pellarin 

and Calfisch99 found the sizes of the nuclei to vary between 4 and 18 monomers 

corresponding to different micellar oligomeric conditions. This number can be >30 

under certain conditions, as suggested by Garai et al.74 Here I use the nuclei size to 

have 10 monomers as considered by Lomakin et al.2 

The rate constant kn is the number of nuclei spontaneously formed out of 

micelles.2 By fitting the experimentally observed temporal evolution of the 

hydrodynamic radius of fibrils, Lomakin et al.2 estimated the value of kn to be 

2.4×10−6 s−1 or 0.207 d−1. Having kn be 0.207 d−1 represents one new nucleation every 
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five days per micelle. My rate limiting step in Fig. 3.1, used to generate the curves in 

Fig. 3.2 and Fig. 3.3, involves a similar structural transformation. In order to compare 

with my model, I convert kn in order to represent the number rate at which monomers 

contained in micelles transition to monomers contained in nuclei, rather than the 

number of micelles that transition to nuclei. Since each micelle on average has an 

aggregation number of 25 monomers, whereas there is an average number of 10 

monomers in a nucleus, I make the conversion as follows: kn=(0.207 nuclei 

micelles−1 d−1)×(10 monomers/nucleus)/(25 monomers/micelle)= 

0.207 d−1×(10/25)=0.083 d−1. The comparable step in my model corresponds to amino 

acid residues in βN species transforming into residues in βTX species, and the rate is 

represented by k3. Strikingly, the value of k3=0.039 d−1 (1.8×10−6 s−1) that I determined 

compares nicely (factor of 2) with Lomakin's value for kn. Also, my value for k3 falls 

nicely within the range of kn found experimentally by Wang et al.100 

The agreement between my k3 and the kn is further enhanced when we take into 

account that my value of k3 was determined by fitting to experimental data obtained at 

22 °C, whereas experiments2 for kn were performed at 25 °C. Since these reactions 

would likely occur faster27 at higher temperatures, we would expect my k3 to be larger 

if it was determined by analyzing experiments at higher temperature, if available. This 

would bring my k3 even closer to kn.  

My k3 and the nucleation rate kn refer to similar, but not identical processes. The 

observation that kn≥k3 is consistent with my proposed fibrillogenesis mechanism. The 

parameter kn refers to nucleation, whereas my k3 encompasses both nucleation and 

partial aggregation. Since nuclei must form before the formation of any toxic 
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protofibrils, the rate of nucleation kn can be expected to be faster than k3. Comparing 

my k3 to Lomakin’s kn directly connects Lomakin’s model using macroscopic structures 

such as micelles and nuclei to my model, which deals with kinetics of microscopic 

secondary structural elements. I would also like to compare my rate parameters with the 

rate parameter for elongation of ke.2 However, comparing my rate parameters with the 

rate parameter for elongation of ke is especially complicated and requires additional 

work since fibril formation in my model finishes with the step βTX→βM, but also 

includes a part of the βN→βTX conversion process. 

My model also allows for the calculation of the time-dependent increase in 

aggregate size. I now show that the calculated results agree well with experimental 

results, and allow differences in experimental conditions to be included in the 

calculations. Fig. 2 of Lomakin et al.3 shows the hydrodynamic radius as a function of 

time. Using formulas (1–3) from that reference, I can convert the hydrodynamic radius, 

Rh, for aggregates into the number of monomers n per aggregate: 
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where L is the length of an aggregate and λ is the number of monomers per unit length. 

I set λ equal to 1.6 as used in Lomakin et al.,3 Kusumoto et al.,101 and Tomski and 

Murphy.102 The other parameters are: n is the number of monomers per aggregate, and 

d is the diameter of an aggregate. I assume that all of the aggregates could be treated as 
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cylinders, as in Yong et al.103 which says that micelles have a spherocylindrical shape. I 

set d=8 nm for all the aggregates3,101 independent of L. I used Mathematica to invert 

equation (3.9) and find a value of L for each Rh in Lomakin et al.3 The L was then used 

to calculate n for each value of Rh. 

I calculate a theoretical curve from my model for the time evolution of the 

number of monomers per aggregate and compare with the experimental results of 

Lomakin et al.3 and Kusumoto et al.101 The two experiments were similar, but were 

done at different temperatures and this may have a significant effect on kn but not ke.27 

Though the steps in my model remain the same, differences in experimental conditions 

give different numerical values for the parameters in my model to fit each experiment. 

Differences in experimental conditions giving different numerical values for the 

parameters in my model is consistent with Lee104 in which it is reported that the average 

length of fibrils is sensitive to pressure and temperature. I define [βNT], [βTx], and [βM] 

as the percentages of the total number of monomers in non-toxic aggregates (micelles), 

toxic aggregates (nuclei), and mature aggregates, respectively. Similarly, mNT and mTx 

are the average numbers of monomers in a micelle and nucleus, respectively. Literature 

supports a micelle having 25 monomers on average and a nucleus having an average of 

10 monomers.2,3,99,27,103 I calculated the maximum number of monomers per aggregate, 

defined as parameter m⁎, which varies depending on the experimental conditions. The 

value of m⁎ is determined from the long-time, asymptotic value of the experimental 

data. The parameters aNT, aTx, and aM are the total numbers of non-toxic aggregates, 
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toxic aggregates, and mature aggregates, respectively, and N is the total number of 

monomers in the entire system. 
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Using eq. (3.15) I was able to obtain good fits to both sets of experimental data. 

The fit in Fig. 3.5a for the data from Lomakin et al.3 was done with [βNT] initially set at 

50%, [βTx] initially set at 50%, and [βM]=0. The parameter m⁎ used for this fit was set to 

340. This fit showed significant deviation from the data for small times. I will do 

further work to achieve a better fit. A fit was produced for the Kusumoto data using 

[βNT], [βTx], and [βM] all initially at 33.3% and m⁎ of 600. 
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Fig. 3.5 Theoretical fits (-------) to experimental data (□) for the number of monomers n 
per aggregate for two different experiments. (a) Lomakin et al.,3 (b) Kusumoto et al.101 
 

 One thing that is gained from Figure 3.5 is that for large times a state of 

equilibrium is reached in which the average size of aggregates is stabilized. Another 

thing learned from Figure 3.5 is the approximate number of proteins in a mature Aβ 

fibril. Since aggregates that are smaller than mature fibrils can be detected when it 

comes to getting the radius of hydration and some aggregates may never turn to mature 

fibrils, the average number of proteins in mature fibrils is likely to be larger than the 

asymptotic values in the two graphs in Figure 3.4. A question is why the asymptotic 
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value for the Figure 3.4b, about 600 proteins, is approximately twice the asymptotic 

value of the Figure 3.4a. Both experiments were done at similar experimental 

conditions and by the same group. Slight variations in experimental preparation 

procedures such as purification and synthesis may significantly change the peptide 

system’s fibrillogenic properties. A study showed that Aβ fibrils are composed of five 

or six protofilaments,9 whereas another study showed Aβ mature fibrils consist of two 

or three protofilaments.105 Experiments done by Pellarin showed mature fibrils having 

four protofilaments.106 
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4. RESULTS OF MD COMPUTER SIMULATIONS FOR PROTOFIBRILLAR 

FORMATION OF CCβ  

 In this chapter I provide results of my MD computer simulations that provide 

molecular details of the dynamics of protofibrillar formation by the peptide ccβ. I 

explain the steps that were taken to remove aphysical, computational artifacts so that 

the results would be physically valid. I also show how the MD results reinforce the idea 

that molecular heterogeneity is an important factor in understanding amyloid 

fibrillization.    

 

4.1 Computational Details   

 The initial configuration of the 12 chain system in my REMD simulation 

consisted of four ccβ coiled-coil α-helix trimers arranged at the corners of a square, as 

shown in the first panel of Figure 4.1. Each trimer was created from the coordinates in 

the PDB 1S9Z file. The PDB file contains the atomic coordinates for a single ccβ helix 

along with the translation and rotation coordinates for adding two additional ccβ 

peptides to form a triplet. The four trimers at the corners of a square were separated by 

enough distance to ensure that there would be no van der Waals overlap between atoms 

from different trimers, with at least 24 Å between the center of mass of one trimer and 

the center of mass of another trimer. The EEF1 force field with implicit solvent was 

used for modeling the solvation.   

 I performed the REMD simulation for 300 ns using 20 replicas with exponential 

spacing of the temperatures in a range of 380K-600K: 380.00K, 389.25K, 398.72K, 

408.42K, 418.36K, 428.53K, 438.96K, 449.64K, 460.58K, 471.79K, 483.27K, 
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495.03K, 507.07K, 519.41K, 532.05K, 544.99K, 558.25K, 571.83K, 585.75K, 

600.00K. Each MD step was 2fs and I saved the configuration every 500 steps (making 

each frame 1ps apart). My temperature swap test was performed every 500 MD steps. I 

performed 20 ps of REMD initialization and 20 ps of REMD equilibration. The average 

acceptance rate for temperature swapping was 24%, which is close to the ideal of 

20%.107,108 

 In addition, I performed MD simulations at a constant temperature (CTMD). The 

parameters were the same in the CTMD as in the REMD simulations, except for the 

temperature. Also, in some of the CTMD simulations, there was a DROFF (confining 

potential radius) of 100Å as opposed to 600Å in the REMD simulations.  

 

4.2 Description of β-Sheet (Nucleus) Formation 

 Figure 4.1 shows a sequence of frames taken at various times for a replica that 

formed two β-sheets, an important structural stage for the eventual fibrillization that 

could occur in a much larger system than I investigated. During the 300 ns covered in 

this simulation, this replica changed its temperature many times. 
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Fig. 4.1 Frames from the REMD simulations showing steps in the helix structural 
transition to β-strands and the formation of β-sheets. 
 

 My REMD simulation was performed in a temperature range from 380K to 600K 

in order to investigate β-chain formation and aggregation. These relatively high 

temperatures cause the initial α-helical trimers to rapidly unfold so that the system 

quickly progresses to the random coil/β-hairpin/β-aggregate stages that I am interested 

in investigating. Experimental observations on ccβ found that at 310K, the α-helical 

configuration is unstable.42 Consistent with this, all of my replicas lost their initial α-

helical conformations within 1 ns. I focus attention on one replica, replica 3, which 

created the structure that most resembles a protofilament. The process of fibrillation for 

replica 3 is summarized in Figure 4.1. The last frame in Fig. 4.1 (from replica 3) looks 
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like a protofilament steric zipper. It has similarities to the transthyretin single protein.109 

For amyloids in general, some aggregates have parallel β-sheets, some have antiparallel 

β-sheets,110 and some have both parallel and antiparallel β-sheets.111,112  

 For the replicas that created a β-aggregate, after the proteins get out of the α-helix 

secondary structure, some of the segments of the chain are in random coil and some are 

in β-structure. The proteins associate with each other in a disorganized aggregate, like a 

micelle. They then reorganize to form the β-aggregate.  

 To quantify the organization of the last frame of replica 3 (t-300 ns), which is 

shown in Figure 4.1, I calculated the nematic order parameter S for the larger of the two 

β-sheets, which contains six ccβ chains. The nematic order parameter113 is a measure of 

the alignment of rods in a system. I set S to be the largest eigenvalue of the matrix 
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where j is an index that identifies each rod, α and β represent laboratory Cartesian 

coordinates, and 𝑎! is the unit direction vector for rod j. In my ccβ system, the protein 

chains are not perfectly rigid rods. I chose the direction vector, 𝑎! for each protein to be 

the principal axis of the Cα inertia tensor 𝐼!" = 𝑚! 𝑟!!𝛿!" − 𝑟!"𝑟!"
!!"#$%
!!!  

corresponding to the smallest value of the moment of inertia for that chain. This 

provides a direction that is an average for the Cα atoms in the chain. ri is the distance 

from the center of mass of the protein to each of the middle eleven Cα atoms in the 

protein. I used only the middle eleven of the 17 residues because a β-strand protein, 
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even when attached to other proteins, often has considerable flexibility for the amino 

acids near either end. Figure 4.2 shows for replica 3 the nematic order parameter as a 

function of time for the proteins that make up the largest β-sheet. A nematic order 

parameter of one means that there is perfect alignment of the protein direction vectors 

and zero means total isotropy in the arrangement of the protein direction vectors. 

Characteristic structures for the six chains are also displayed at various times during the 

simulation. Since these results are from an REMD simulation, a single replica such as 

replica 3 changes temperature often. The temperature of replica 3 at any time is shown 

by the color of the curve. The order of colors from high temperature to low temperature 

is: redàyellowàgreenàcyanàblue.   

 

Figure 4.2 The nematic order parameter S for the proteins that make up the largest β-
sheet in replica 3. Characteristic structures for the six chains are displayed at various 
times during the simulation. The temperature of replica 3 at any time is shown by the 
color of the curve. The order of colors from high temperature to low temperature is: 
redàyellowàgreenàcyanàblue.   
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 Figure 4.2 displays large changes in S during the first 40 ns while the six β-

strands undergo major rearrangements relative to each other. By 50 ns, the six chains 

have settled into a low energy, stable steric zipper β-sheet configuration with much 

smaller fluctuations in S. In the β-sheets formed in the simulations, each β-strand has a 

twist. The average twist angle for the larger of the two β-sheets for the last 200 ns is 

10°. This is a similar twist angle to that calculated in Knowles et al.114  

 

4.3 Phase Transition 

 Experimental observations42 find that at a temperature of 277K, ccβ exists as a 

stable coiled-coil α-helix trimer, whereas at 310K the helical structure converts to β-

strands. REMD investigations on a single trimer by Strodel et al.40 found that a β-sheet 

composed of three ccβ chains is stable up to a temperature of 440K. 

In order to investigate the thermodynamics of the process, I calculated various 

parameters from my REMD simulations. Figure 4.3 displays the heat capacity as a 

function of temperature for my system of 12 chains. The heat capacity at each 

temperature was calculated from the fluctuations in the energy using equation (4.2) 
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I found that for all temperatures, the system had settled into its final configuration, 

whether ordered into an aggregate or not, by 100 ns. Therefore, I calculated the 
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equilibrium CV at all temperatures using the final 200 ns of the simulations, which 

covers the period from 100 ns to 300 ns. 

 

Figure 4.3 The heat capacity of my 12 chain system as a function of temperature. 

 

The process in my system fits the thermodynamic characteristics of a phase 

transition, as can be seen by the peak in the heat capacity curve at the temperature point 

507K. In order to obtain more information on the dynamics that produce this heat 

capacity peak, I calculated additional parameters. The criterion to determine if two 

chains are a part of the same aggregate is if the center of mass of any residue of one 

chain is within a certain distance of the center of mass of any residue of the other chain. 

This distance is 1/2(dres1+dres2), in which dres=3.5Å+2*|RCα-RCOM|. RCα and RCOM are 

the positions of the Carbon α atom and the center of mass of the residue respectively. 

The reason for the 3.5Å in the formula for dres is if the Carbon α atom and the center of 
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mass of the residue have the same position. 3.5Å is the distance between two covalently 

bonded Carbon atoms. Figure 4.4 displays the number of chains in the largest aggregate 

as a function of temperature, averaged over the last 200 ns. It is clear from Figure 4.4 

that significant aggregation occurs only for temperatures below 500K. 

 

Figure 4.4 The number of chains in the largest aggregate as a function of temperature, 
averaged over the last 200 ns. 
 

4.4 Validity of Results  

I examined the two β-sheet structure formed in replica 3. This type of structure 

may be important in allowing ccβ to form amyloid-like protofilaments. As can be seen 

in Figure 4.5a, the two β-sheets are held together by a variety of sidechain interactions. 
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The blue (positively charged arginine) and red (negatively charged glutamic acid) 

sidechains are oppositely charged sidechains which provide electrostatic forces between 

the β sheets. Figure 4.5b shows that similar sidechains extend out on both sides of each 

sheet, providing the ability for additional sheets to be added to increase the size of the β 

aggregate. Each sheet also contains white spheres representing hydrophobic sidechains 

(isoleucine and leucine) on each side, both in the middle between the two sheets (Figure 

4.5a) and on the outside (Figure 4.5b). The specific location of these hydrophobic 

regions may provide specificity that directs the proper alignment115 of sheets as they are 

added to the aggregate. 

I found that ccβ formed β-sheets that are held together by electrostatic forces 

between charged sidechains. Charged sidechains are located on both sides of each β-

sheet, providing the opportunity for additional β-sheets to be added in layers to increase 

the size of the aggregate. Regions of hydrophobic sidechains may provide specificity 

that facilitates alignment of charged sidechains as the β-aggregate grows in size 

.  
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Figure 4.5 From replica 3, positively charged (blue) and negatively charged (red) 
sidechains provide strong binding interactions: (a) between two β-sheets to hold the 
sheets together (b) on the outside of the two β-sheets to allow the addition of more β-
sheets to the aggregate. Hydrophobic sidechains (white spheres) may provide 
specificity to facilitate alignment. 
 

 In addition to determining the average number of chains in the largest aggregate, I 

also investigated the amount of order or stability in the size of the largest aggregate. In 

Figure 4.6 I plot the normalized number fluctuations χn for the chains in the largest 

aggregate 
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Figure 4.6 Stability of the largest aggregate based upon a parameter χn that measures 
the fluctuations in the number of chains in the largest aggregate. 
 

Even though there are a much larger number of chains in the largest aggregate 

for temperatures below 500K compared to temperatures above 500K, Fig. 4.6 shows 

that below 500K the structure of the system is much more stable with very small 

fluctuations. The isothermal compressibility can be calculated using the expression35 

𝜅! = 𝜒! 𝑉 𝐾𝑇 . Figure 4.6 for χn shows that the structurally organized aggregate 

below 500K has a significantly smaller κT compared to the disorganized system above 

500K, which makes physical sense. Experimenal determination of κT is a possibilty for 

validating my results.  
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4.5 Temperature Window of β-Sheet Formation 

The figures shown above reflect properties of the multichain system and 

interactions between the chains. I also investigated the behavior and dynamics of 

individual chains within the system.  

Hydrogen bond rearrangement is an important factor accompanying the 

structural transition from α helix to β sheets. At all of the temperatures that I used in the 

simulations, the α helices fall apart too quickly (< 1 ns) for me to monitor them and 

their intra helix hydrogen bonds. However, I was able to monitor the formation of 

interchain hydrogen bonds as β strands form and aggregate into β sheets. Figure 4.7 

shows the time development of interchain hydrogen bonds for different temperatures. 

Since these results are from REMD simulations, the characteristic times are not 

reliable. However, the plots show that below 507K, the number of interchain hydrogen 

bonds increases as the replicas form a β sheet, whereas above 507K the number of 

interchain hydrogen bonds never stabilizes at a high number, implying that a β sheet 

never forms. 
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Fig 4.7 Number of interchain hydrogen bonds versus time. (a) 380K (b) 472K (c) 507K 
(d) 600K. 
 

In order to better understand the role of hydrogen bonds in the structural 

transition, I examined how the number of hydrogen bonds varied depended on 

temperature at the end of my simulations.  Figure 4.8 displays the number of interchain 

hydrogen bonds, as well as the number of intrachain hydrogen bonds, averaged over the 

final 200 ns. It can be seen that the number of interchain hydrogen bonds drops 

suddenly to almost zero above 500K, which matches the temperature dependence 

displayed in Figure 4.4 for the number of chains in the largest aggregate. In contrast, 

the number of intrachain bonds begins to drop at a temperature of 450K, a lower 
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temperature than the dramatic drop that occurs for the interchain hydrogen bonds at 

500K. 

 

Figure 4.8 Average number of hydrogen bonds as a function of temperature. Top: 
interchain hydrogen bonds, Bottom: intrachain hydrogen bonds. 
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Figure 4.9 The average number of chains that are in a hairpin structure as a function of 
temperature. 
 

 The graphs above that reflect the behavior of the multichain system show a clear 

structural transition involving β-structure that occurs around 500K (Figure 4.3). Above 

500K, the system is highly disordered with negligible aggregation (Figure 4.4) and 

large fluctuations (Figure 4.6). Below 500K there is almost complete aggregation of all 

β-chains into stable aggregates with little fluctuation.  

 In my REMD simulation, if the system does not spend significant time above 

450K, the individual chains remain in β-hairpin conformation and form non-amyloid 

structures. However, if the system spends significant time above 450K, Figure 4.9 
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shows that the probability for an individual chain to be in a hairpin structure drops 

significantly. This allows individual chains to straighten-out into β-strands, a process 

that is facilitated by hairpin structures forming hydrogen bonds with other chains. The 

straightened β-strands are in a conformation that allows them to bind into β-sheets and 

form protofibrils. However, Figure 4.8 shows that above 500K, the probability for 

forming the interchain hydrogen bonds necessary to form β-sheets drops dramatically. 

As shown in Figure 4.4, this prevents the formation of aggregates above 500K. 

The CTMD simulations showed that there tends to be hairpins at low 

temperatures and straightened-out chains at high temperatures.  

To better understand the relevance of interchain and intrachain hydrogen bonds 

on the structure of individual protein chains, I determined the average number of chains 

that are in a hairpin structure as a function of temperature. This is plotted in Figure 4.9. 

A chain was counted as being in a hairpin configuration if it contained four or more 

intrachain hydrogen bonds. The drop in Figure 4.9 above 450K closely matches the 

temperature dependence of the number of intrachain bonds displayed in Figure 4.8.  

In general for amyloid proteins, the intermediate aggregates are composed of β-

strands in the hairpin state along with β-strands that are extended. The smaller 

oligomers tend to have a higher percentage of β-strands in the hairpin state than the 

mature fibrils. Hairpins seem more likely to straighten out as an aggregate gets bigger26 

because there are more interactions between chains that can dominate over the 

intrachain hydrophobic interactions that stabilize the hairpin conformation of a chain. 

However, even in large β-sheets, proteins in a hairpin conformation can serve as the 

growing end of the sheet.26,22,116,117 
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 Two different structural transition processes involving hydrogen bonds are 

required for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow 

β-hairpin proteins to straighten, and the subsequent formation of interchain hydrogen 

bonds during β aggregation into amyloid fibrils. For my REMD investigations, I found 

that the temperature dependence of these two different β structural transition processes 

results in the existence of a temperature window that the protein experiences during the 

process of forming protofibrillar structures. Appearance of the temperature window 

allows me to investigate the dynamics on a molecular level. If the protein system in my 

simulations spends all of its time at either lower temperatures or higher temperatures 

relative to this window, fibrillization will not occur.  
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4.6 Free Energy and Heterogeneity 

 

Figure 4.10 Free energy at 380K for all 300ns (minus 20 ps from initialization and 20 
ps from equilibration). The end to end distance(dee) is the distance, averaged over all 12 
proteins, from the Cα at one end to the Cα at the other end of the protein.   
 

The free energy for 380K for the last 300 ns (minus 20 ps from initialization and 

20 ps from equilibration) is shown in Figure 4.10. The reason I included the free energy 

for the entire simulation is to include the structures going from a disordered aggregate 

to an ordered β-aggregate. The free energy was calculated by first creating bins. Each 

bin included a range of nematic order parameter values and a range of dee values. For 

each bin, the number of frames within the S and dee ranges of that bin for a certain 

temperature (for whatever replica at the frame that fits the criteria) was counted. The 
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formula for the free energy, G=-RTln(P), was used, with P the fraction of frames that 

are within a certain bin. 

The graph in Figure 4.10 shows that there is a lot of heterogeneity for the earlier 

structures as well as for the β-aggregates that form later in the simulation. There are 

many places of dark blue, and each dark blue island can have many significantly 

different structures. The structure of the system is not defined totally by dee and S.  

 

Figure 4.11 Free energy at 507K as a function of dee and S for the last 200 ns. 

 

The free energy in Figure 4.11 is at the temperature 507K. (The transition 

temperature 500K was not one of the specific temperatures in my REMD simulation.) 

There is only one free energy well. If this was a first-order transition, there would likely 

be two free energy wells at the transition temperature. According to polymer theory, a 

first-order phase transition happens for a homogenous polymerizing system.118 
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However, a glass-like transition happens for a polymerizing system that is 

heterogenous.118 A glass-like transition is a continuous transition.118 It has similarities 

to a second-order phase transition, but is not strictly a second-order phase transition.118  

The last frame of replica 3 is shown as the last panel of in Figure 4.1. The last 

frame in replica 3 looks more like a steric protofilament than the last frame of any of 

the other replicas. Replicas 14 and 16 also look like steric zipper protofilaments. 

However, you can see large structural differences among replica 3, 14, and 16. Figure 

4.12 shows the last frame of replicas 3, 14, and 16 next to each other. 

 

Figure 4.12 Last frame of replicas 3, 14, and 16 next to each other. 

 

4.7 Protein to Protein Interactions 

The CTMD showed that the fibril formation occurs much quicker with a smaller 

confining potential radius as opposed to a larger confining potential radius. With a 

smaller confining potential radius, there is more protein to protein contact and hence 

more chance for proteins to catalyze each other to change other proteins’ secondary 
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structure. Increasing the concentration in amyloid structures has the effect of speeding 

up the aggregation process. 
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5. CONCLUSIONS 

To investigate the kinetics and thermodynamics of amyloid formation in 

amyloidogenic proteins, I used various mathematical and computational tools. 

Specifically, I developed a mathematical model to investigate the population kinetics of 

structural conversions leading to Aβ fibril formation. I then used molecular dynamics 

(MD) computational simulations to investigate the molecular details of the structural 

transformations and calculate thermodynamic parameters for amyloid formation. I 

employed a special form of molecular dynamics, Replica Exchange Molecular 

Dynamics (REMD), which is described in section 2.2.5, to simulate a system of 12 ccβ 

proteins. I found that the results of both the mathematical modeling of the kinetics and 

the molecular dynamics computational simulations could be explained in terms of two 

important molecular-level aspects. Section 5.1 emphasizes how hydrogen bond 

rearrangements correlate to aggregation phase transitions and population dynamics of 

secondary structure. In section 5.2 I describe how my results show the prevalence of the 

heterogeneity in the systems I studied. Section 5.3 discusses more ideas for MD 

simulations and suggests experimental ideas based on my results. 

 

5.1 Hydrogen Bonds 

The model I developed to fit the population of secondary structure kinetics data 

that was available from experiments is described in Fig. 3.1 and Table 3.1. For my 

fitting of the Kirkitadze data28, Fig. 3.2, I fit changes of secondary structure with time. 

Changes in secondary structure with time correlate with changes in the number of 
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interchain and intrachain hydrogen bonds. α helices have a lot of intrachain hydrogen 

bonds, whereas β-sheets have a lot of interchain hydrogen bonds.  

Two different structural transition processes involving hydrogen bonds are 

required for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow 

hairpin proteins to straighten, and the subsequent formation of interchain hydrogen 

bonds during β aggregation into amyloid fibrils. For my REMD investigations, I found 

that the temperature dependence of these two different β structural transition processes 

results in the existence of a temperature window that my system experiences during the 

process of forming protofibrillar structures. If a replica in my simulation spends all of 

its time at either lower temperatures or higher temperatures relative to the temperature 

window, fibrillization will not occur. 

My MD simulations look at molecular-level details of some of the stages whose 

transition kinetics I mathematically modeled. A summary of the steps from the MD 

simulations of the ccβ replica that created the aggregate that most resembled a steric 

zipper protofilament is shown in Figure 4.1.  

In Figure 4.7, the number of interchain hydrogen bonds versus time for four 

different temperatures is displayed. For the temperatures 380K and 472K, the number 

of interchain bonds increases as time advances. The reason for the increase in the 

number of interchain hydrogen bonds is the formation of β-sheets. For temperature 

507K, the number of interchain hydrogen bonds fluctuates rapidly. The reason for the 

rapid fluctuation is that this is the transition temperature, in which some replicas form 

β-sheets and some don’t. At 600K, there are few interchain hydrogen bonds throughout 

the simulation, since the temperature is too high to allow β-sheets. 
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I found that the hydrogen bond rearrangement is an important factor in the 

structural transition and helps elucidate the temperature dependency. The initial 

configuration of the 12 chains was all α-helix, which means many intrachain hydrogen 

bonds. At all temperatures, the α helices fell apart too quickly (<1 ns) for me to be able 

to monitor the helical intrachain hydrogen bonds. I was able to monitor the increase of 

interchain hydrogen bonds as β sheets form, as shown in Figure 4.7. Since my 

simulations used REMD, the time scales in Fig. 4.7 are not reliable, but the temperature 

dependencies are. I examined the temperature dependencies more carefully. Figure 4.8 

displays the number of interchain hydrogen bonds, as well as the number of intrachain 

hydrogen bonds, averaged over the final 200 ns. It can be seen that the number of 

interchain hydrogen bonds drops suddenly to almost zero above 500K, which matches 

the temperature dependence displayed in Figure 4.4 for the number of chains in the 

largest aggregate. In contrast, the number of intrachain hydrogen bonds begins to drop 

at a temperature of 450K, a lower temperature than the dramatic drop that occurs for 

the interchain hydrogen bonds at 500K.  

At high temperature the system being entropically favored makes it so that 

random coils are the preferred secondary structure. Hydrogen bonds don’t last long in 

proteins in random coil because each protein can sample many different configurations. 

At low temperature the system being enthalpically favored makes the proteins have 

many hydrogen bonds. The proteins having many hydrogen bonds lowers the energy, 

but also makes it a low entropy configuration.   

The graphs that reflect the behavior of the multichain system show a clear 

structural transition involving β-structure that occurs around 500K (Figure 4.3). Above 
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500K, the preferred configuration of the system is highly disordered with negligible 

aggregation (Figure 4.4) and large fluctuations (Figure 4.6). Below 500K there is 

almost complete aggregation of all β-chains into stable aggregates with little 

fluctuation.  

 Interestingly, my REMD simulation displayed dynamics defined by a temperature 

window for the formation of organized β-sheets in the region of 450K to 500K. If the 

system does not spend significant time above 450K, the individual chains remain in 

hairpin conformation and form non-amyloid structures. If the system spends significant 

time above 450K, Figure 4.9 shows that the probability for an individual chain to be in 

a hairpin structure drops significantly. This allows individual chains to straighten-out 

into β-strands, a process that is facilitated by hairpin structures forming hydrogen bonds 

with other chains. The straightened β-strands are in a conformation that allows them to 

form interchain hydrogen bonds and organize into β-sheets that can form protofibrils. 

However, Fig. 4.8 shows that above 500K, the probability for forming the interchain 

hydrogen bonds necessary to form β-sheets drops dramatically. As shown in Fig. 4.4, 

this prevents the formation of any type of aggregate above 500K. 

To better understand the relevance of interchain and intrachain hydrogen bonds 

on the structure of individual protein chains, I investigated more closely the hairpin 

intermediate conformation that prevents chains from organizing into β-sheets. I 

determined the average number of chains that are individually in a hairpin structure as a 

function of temperature. This is plotted in Fig. 4.9. A chain was counted as being in a 

hairpin configuration if it contained four or more intrachain hydrogen bonds. The drop 
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in Fig. 4.9 above 450K closely matches the temperature dependence of the number of 

intrachain bonds displayed in Fig. 4.8.  

 

5.2 Heterogeneity 

The ccβ protein system I simulated had 12 chains, each with 17 amino acid 

residues. Based on simulations performed by other researchers of two short Aβ(16-22) 

peptides that showed significant heterogeneity in forming dimers18 we can expect 

significantly more heterogeneity in my system of ccβ aggregation. The reasons for the 

greater heterogeneity are that my system has more chains and each ccβ chain is longer 

than each Aβ(16-22) peptide. We can expect even more heterogeneity in systems of 

Kirkitadze et al.28 and Walsh et al.37, having a large number of Aβ(1-40) proteins.  

The mathematical model I used to fit population dynamics of secondary 

structure is shown in Figure 3.1. To represent the heterogeneity in the system, in the 

mathemaitcal model I used sub-compartments which are mathematically equivalent to 

heterogeneous distributions.  My fit to the kinetic data in the article by Kirkitadze28, Fig 

3.2, had four sub-compartments which shows a significant amount of heterogeneity. I 

spent a lot of time working to get the parameters just right for the best fit, including the 

number of sub-compartments. The more sub-compartments, the more heterogeneity.77 

The shapes in the population dynamics curves are significantly different with four sub-

compartments than with no sub-compartments, as shown in Figure 3.15 of in the book 

Modeling Infectious Diseases in Humans and Animlas by Keeling.77 My fitting to the 

data from the Walsh article37, Fig 3.3a, had six sub-compartments, displaying even 

more heterogeneity than in the data from the Kirkitadze article.28  
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In addition to the heterogeneity in my modeling of the kinetics, my MD 

simulations also manifested significant heterogeneity. From the MD results, I 

calculated the free energy of various configurations of the 12 chain system. The amount 

of heterogeneity in my ccβ simulations can be seen in the free energy plot for a 

temperature of 380K, Figure 4.10. There are a many different regions on the free 

energy plot that have low free energy. In addition, each region of low free energy on 

that diagram contains different structures.   

  According to polymer theory, a first-order phase transition can occur in a 

homogenous polymerizing system.118 However, a glass-like transition happens for a 

polymerizing system that is heterogenous.118 A glass-like transition is a continuous 

transition.118 It has similarities to a second-order phase transition, but is not strictly a 

second-order phase transition.118 There weren’t enough data points in the heat capacity 

curve, Figure 4.3, to decide whether it was a first-order phase transition. However, I 

deduced from the free energy diagram at the transition temperature, 507K, Figure 4.11 

that my system did not display a first-order phase-transition. There is only one free 

energy well that spans the different large-scale configurations, showing a continuous 

phase transition.  

 The heterogeneity in my REMD simulations was also shown by the different 

replicas. Not all replicas formed β-aggregates. Those replicas that produced β-

aggregates all produced a different β-aggregate or β-aggregates. The last frame of the 

three replicas that most resembled steric zipper protofilaments are shown in Figure 

4.12. They look significantly different from each other.  
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 Figure 4.2 shows the nematic order parameter S for the proteins that make up the 

largest β-sheet for the replica that most resembled a steric zipper protofilament. A value 

of one for S means there is perfect alignment of all the protein direction vectors and 

zero means total isotropy in the protein direction vectors. Figure 4.2 displays large 

changes in S during the first 40 ns while the six β-strands undergo major 

rearrangements relative to each other. This shows a lot of heterogeneity in the early 

micelle-like aggregates. 

 

5.3 Directions for Future Work 

 If I had more time, I would have wanted to do simulated annealing constant 

temperature MD to help verify the temperature window hypothesized from my REMD 

simulation. The procedure for simulated annealing constant temperature MD is as 

follows: (1) perform constant temperature MD with the system of 12 ccβ proteins at 

600K for 15ns; (2) take the last frame of the simulation at 600K and use it for another 

constant temperature simulation at 590K for 15ns; (3) take the last frame of the 

simulation at 590K and use it for the first frame of a simulation at 580K; (4) continue 

this process down to 380K. 

 Other simulations of ccβ would be around 20 different 150 ns constant 

temperature MD simulations of my ccβ system at the same temperature and other 

conditions. As mentioned in Chapter 4, 100 ns is about the time it takes a system to 

equilibrate. Because MD has some random numbers in it, each simulation is likely to 

create unique structures and dynamics for each simulation, even though they all would 
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have the same conditions. Seeing how different each simulation is from the other ones 

will help to understand how heterogenous the aggregation process is.   

 Both KFFEAAAKKFFE and KFFEYNGKKFFE have four amno acids flanked 

on both sides by the de novo peptide KFFE. KFFEAAAKKFFE does a better job of 

forming amyloid fibrils than KFFEYNGKKFFE.119 KFFEYNGKKFFE folds into a 

stable β-hairpin.119 MD simulations on a system of several KFFEYNGKKFFE peptides 

and on a system of several KFFEAAAKKFFE peptides could help investigate why 

KFFEYNGKKFFE has a higher propensity than KFFEAAAKKFFE to form β-hairpins. 

For ccβ, temperature is the control parameter for its structural transitions. One 

idea for experiments on ccβ is to have the experiment start with high temperature and 

slowly lower the temperature. This change in the temperature during the experiment 

can help facilitate the process of fibrillization.  

For the REMD simulations on ccβ, I found hydrogen bonds between backbone 

atoms. This made my results generalizable to any protein because every protein has the 

same backbone. The two different structural transitions involving hydrogen bonds that 

are controlled by temperature in ccβ may also create a window for other amyloid 

forming proteins, but the window-defining control parameter may not be temperature. 

For other amyloid forming proteins in which temperature is not the structural transition 

control parameter, perhaps another control parameter may be used based on the 

knowledge gained from the current work on ccβ for which there is a temperature 

window.  

  Figure 3.4 helps explain the energetics of how Trifluoroethanol (TFE) affects the 

secondary structure. Intermolecular bonds are formed at low TFE concentrations, 
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whereas, at high TFE concentrations, intramolecular hydrogen bonds are preferred.85 

The temperature window found for ccβ can help explain why too much TFE for Aβ 

mentioned in section 3.4.1 impedes fibrillization. A condition is necessary in which 

there can be breaking of intrachain hydrogen bonds, not only for the α helices to break 

once they’ve formed but also for the hairpins to straighten out.  

One idea is to experimentally start out with a high concentration of TFE for Aβ. 

This can stabilize the α helices. Then the experimentalist can lower the concentration of 

TFE after many α helices have been formed. Lowering the concentration of TFE helps 

not only the α helices to break but also helps straighten out the β-strands.     

 An idea for therapies to prevent amyloid diseases is to stabilize the proteins in 

their hairpin state. One idea for a control parameter to be put into medications are 

affibodies.120,121 Affibodies are binding proteins derived from the Z domain of 

staphylococcal protein A.121 Affibodies are able to stabilize the hairpin state of proteins 

by clamping down on them.122 
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