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ABSTRACT OF THE DISSERTATION 

HIGH TEMPERATURE OXIDATION STUDY ON THE TANTALUM CARBIDE-

HAFNIUM CARBIDE SOLID SOLUTIONS SYNTHESIZED BY SPARK PLASMA 

SINTEIRNG 

by 

Cheng Zhang 

Florida International University, 2016 

Miami, Florida 

Professor Benjamin Boesl, Co-Major Professor 

Professor Arvind Agarwal, Co-Major Professor 

Tantalum carbide (TaC) and hafnium carbide (HfC) possess extremely high melting 

points, around 3900 oC, which are the highest among the known materials. TaC and HfC 

exhibit superior oxidation resistance under oxygen deficient and rich environments, 

respectively. A versatile material can be expected by forming solid solutions of TaC and 

HfC. However, the synthesis of fully dense solid solution carbide is a challenge due to their 

intrinsic covalent bonding which makes sintering challenging.   

The aim of the present work is to synthesize full dense TaC-HfC solid solutions by 

spark plasma sintering with five compositions: pure HfC, HfC-20 vol.% TaC (T20H80), 

HfC- 50 vol.% TaC (T50H50), HfC- 80 vol.% TaC (T80H20), and pure TaC.  To evaluate 

the oxidation behavior of the solid solutions carbides in an environment that simulates the 

various applications, an oxygen rich, plasma assisted flow experiment was developed. 

While exposed to the plasma flow, samples were exposed to a temperature of 

approximately 2800 oC with a gas flow speed greater than 300 m/s. Density measurements 
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confirm near full density was achieved for all compositions, with the highest density 

measured in the HfC-contained samples, all consolidated without sintering aids. 

Confirmation of solid solution was completed using x-ray diffraction, which had an 

excellent match with the theoretical values computed using Vegard’s Law, which 

confirmed the formation of the solid solutions. The solid solution samples showed much 

improved oxidation resistance compared to the pure carbide samples, and the T50H50 

samples exhibited the best oxidation resistance of all samples. The thickness of the oxide 

scales in T50H50 was reduced more than 90% compared to the pure TaC samples, and 

more than 85% compared to the pure HfC samples after 5 min oxidation tests. A new 

Ta2Hf6O17 phase was found to be responsible for the improved oxidation performance. 

Additionally, the structure of HfO2 scaffold filled with molten Ta2O5 was also beneficial 

to the oxidation resistance by limiting the availability of oxygen.  

 



  

viii 
 

TABLE OF CONTENTS 

CHAPTER                       PAGE 

Chapter I: Introduction ........................................................................................................ 1 
1.1 UHTCs: Definition, Application, and Limitation ..................................................... 1 
1.2 Why Tantalum Carbide and Hafnium Carbide ......................................................... 3 
1.3 Oxidation Resistance Evaluation Methods ............................................................... 5 
1.3 Objective of the Current Research ............................................................................ 8 

1.3.1 Synthesize Fully-Densified TaC-HfC Samples Without Sintering Aids............ 8 
1.3.2 Understand the Oxidation Behavior of Sintered Samples Under the Simulated 
Environment. ............................................................................................................... 9 
1.3.3 Predict the Optimum Composition of the TaC-HfC Mixed Carbides Samples 
for the High Temperature Applications ....................................................................... 9 

Chapter II Literature Review ............................................................................................ 11 
2.1 Studies on the Oxidation of UHTCs ....................................................................... 11 

2.1.1 Oxidation Studies on the Si-Based Materials ................................................... 11 
2.1.2 Oxidation Studies on Metal Diborides ............................................................. 12 
2.1.3 Oxidation Mechanisms of Metal Diborides and Si Contained Materials ......... 14 
2.2.1 Isothermal Furnace Studies on the Oxidation Behavior of TaC ....................... 16 
2.2.2 Simulated Studies on the Oxidation Behavior of TaC ..................................... 20 

2.2.3 Ablation Evaluation of TaC ................................................................................. 23 
2.2.4 TaC Oxidation Performance in the Rocket Engine Application ...................... 24 

2.3 Oxidation Behavior of Hafnium Carbide ................................................................ 25 
2.3.1 Kinetics Studies on the HfC Oxidation Process and Counter-Current Gaseous 
Diffusion Model ........................................................................................................ 25 
2.3.2 The Discovery of the Hafnium Oxycarbides Layer .......................................... 29 
2.3.3 Other Isothermal Oxidation Studies of Hafnium Carbide ................................ 32 
2.3.4 Simulated Oxidation Studies on the Hafnium Carbide .................................... 33 
2.3.5 Oxidation Studies of HfC as Protective Coatings ............................................ 34 

2.4 Oxidation of TaC-HfC Mixed Carbides .................................................................. 34 
2.5 Summary ................................................................................................................. 37 

Chapter III Materials and Methods ................................................................................... 46 
3.1 Materials .................................................................................................................. 46 

3.1.1 Tantalum Carbide Powder ................................................................................ 46 
3.1.2 Hafnium Carbide Powder ................................................................................. 47 

3.2 Experimental Procedure .......................................................................................... 48 
3.2.1 Powder Preparation Methods............................................................................ 48 
3.2.2 Consolidation by Spark Plasma Sintering ........................................................ 50 

3.3 Microstructural Characterization ............................................................................. 51 
3.4 Mechanical Properties Characterization .................................................................. 52 
3.5 Oxidation Study ....................................................................................................... 53 

Chapter IV: Results and Discussion ................................................................................. 55 



  

ix 
 

4.1 Powder Treatment ................................................................................................... 55 
4.2 Spark Plasma Sintering of TaC-HfC Solid Solution ............................................... 60 

4.2.1 Sintering Mechanism ........................................................................................ 60 
4. 2. 2 Phase Evaluation of Sintered Pellets .............................................................. 69 
4.2.3 Mechanical Properties of Sintered Pellets ........................................................ 73 

4.3 Evaluation of Oxidation Performance ..................................................................... 75 
4.3.1 Determination of Oxidation Conditions ........................................................... 75 
4.3.2 Morphologies of Post-Oxidation Samples ........................................................ 76 
4.3.3 Oxidation Scale Phase Evaluation .................................................................... 94 
4.3.4 Back-Side Temperature Measurement During the Oxidation ........................ 100 
4.3.5 Oxidation Mechanisms and Models ............................................................... 104 
4.3.6 Effect of the Formation of the Solid Solution on the Oxidation Behavior ..... 113 
4.3.7 The Evaluation on the Reusability of the Post-Oxidation Samples................ 114 

Chapter V Summary ....................................................................................................... 118 

Chapter VI Future Work and Recommendation ............................................................. 121 
6.1 Powder Treatment and Sintering Parameters ........................................................ 121 
6.2 Study on the Different Solid Solution Compositions and Possible Additives. ..... 121 
6.3 Lower Temperature Oxidation Study .................................................................... 122 
6.4 Mechanical and Reusability Evaluation after Oxidation ....................................... 122 

REFERENCE .................................................................................................................. 125 

APPENDICES ................................................................................................................ 133 

VITA ............................................................................................................................... 136 
 

 

 

 

 

 

 

 

 

 



  

x 
 

LIST OF TABLES 

TABLE                                                                                                                        PAGE 

Table 1.1: Salient Thermophysical properties of Tantalum Carbide (TaC) and Hafnium 
Carbide (HfC) ................................................................................................... 3 

Table 2.1: Literature review summary of the oxidation studies of TaC, HfC, and TaC-
HfC .................................................................................................................. 38 

Table 4.1: Density, grain size and mechanical properties of sintered TaC-HfC .............. 61 

Table 4.2: Densification stages and enthalpy of mixing of TaC-HfC samples of five 
compositions ................................................................................................... 68 

Table 4.3: Oxide layer thickness ....................................................................................... 77 

Table 4.4: Average nano-indentation displacement on the top surface of the oxide layer
....................................................................................................................... 117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

xi 
 

LIST OF FIGURES 

FIGURE                                                                                                                       PAGE 

Figure 1.1: Materials with high melting points [1] ............................................................. 2 

Figure 1.2: Phase diagram of TaC and HfC [7] .................................................................. 4 

Figure 2.1: Distribution of publications on the UHTCs materials till 2013. [65] ............ 14 

Figure 2.2: Non-isothermal oxidation curves for TaC and Ta2C. [14] ............................. 17 

Figure 2.3: Temperature vs. weight change curves for TaC, TaC-TaB2, and TaB2. [15]
 ....................................................................................................................... 19 

Figure 2.4: XRD results for different regions in the sample after oxidation tests. (a) In 
direct path, (b) Away from the direct path, (c) From the back side of the 
sample. (Open square: TaC, filled circle: β-Ta2O5, asterisk: α-Ta2O5.) [19]
 ....................................................................................................................... 21 

Figure 2.5: Gas flows, reactions, and partial pressures of O2, CO, and CO2 across 
hafnia scale during the oxidation of HfC at 1400 oC. [22] ............................ 28 

Figure 2.6: Schematic of the moving-boundary model. The subscript “0, 1, 2” 
represented oxide layer, interlay oxycarbide, and residual carbide layer, 
respectively. “t” indicated the reaction time. Superscript “+ and -” 
suggested the growth or recession in layer thickness. [109] ......................... 30 

Figure 3.1: SEM image of the as-received TaC powder .................................................. 47 

Figure 3.2: SEM image of the as-received HfC powder .................................................. 48 

Figure 3.3: Plasma torch oxidation setup ......................................................................... 54 

Figure 4.1: Agglomeration in as-received powders: (a) TaC, (b) HfC ............................. 57 

Figure 4.2: TaC powder after tip sonication: (a) Low magnification picture of tip 
sonicated powder, (b) High magnification picture of partially fused 
agglomeration ................................................................................................ 58 

Figure 4.3: Powder morphology after ball milling: (a) TaC, (b) HfC .............................. 59 

Figure 4.4: Powder XRD patterns of five powders after ball milling treatment .............. 60 

Figure 4.5: Fracture surface of Pure TaC. (a): low magnification, (b): High 
magnification, arrows pointed at liquid phase. (Tiny lumps on TaC grain 
were over-coated gold) .................................................................................. 62 



  

xii 
 

Figure 4.6: Fracture surfaces of HfC contained samples. (a): T80H20, circled areas 
were amorphous due to oxygen contamination, (b): T50H50, (c): T20H80, 
(d): pure HfC ................................................................................................. 65 

Figure 4.7: Relative densities verse time plot during spark plasma sintering .................. 69 

Figure 4.8: XRD results of sintered TaC-HfC composites. (a): pure TaC powder vs. 
pellet and pure HfC powder vs. pellet, (b) XRD of 5 sintered pellets, 
caption showed peaks from 33o to 37o .......................................................... 71 

Figure 4.9: Lattice parameter comparison between theoretical value and calculated 
values from XRD ............................................................................................72 

Figure 4.10: HR-TEM image of T80H20. The “a” area had the lattice parameter close 
to the one of the HfC, the one in the “b” area closed to the one of the TaC, 
and “c” area was completed “T80H20.” ...................................................... 73 

Figure 4.11: Accuraspray screenshot the temperature measurement ............................... 76 

Figure 4.12: Oxide layer thickness bar chart plot ............................................................. 77 

Figure 4.13: Top surface of the pure HfC after oxidation tests. Low magnification (a) 
1 min, (b) 3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, 
and (f) 5 min................................................................................................. 80 

Figure 4.14: Cross-section of the pure HfC after oxidation tests. Low magnification 
(a) 1 min, (b) 3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 
min, and (f) 5 min ........................................................................................ 81 

Figure 4.15: Top surface of the T20H80 after oxidation tests. Low magnification (a) 
1 min, (b) 3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, 
and (f) 5 min................................................................................................. 83 

Figure 4.16: Cross-section of the T20H80 after oxidation tests. Low magnification (a) 
1 min, (b) 3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, 
and (f) 5 min................................................................................................. 84 

Figure 4.17: Top surface of the T50H50 after oxidation tests. Low magnification (a) 
1 min, (b) 3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, 
and (f) 5 min................................................................................................. 86 

Figure 4.18: Cross-section of the T50H50 after oxidation tests. Low magnification (a) 
1 min, (b) 3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, 
and (f) 5 min................................................................................................. 87 

Figure 4.19: Top surface of the T80H20 after oxidation tests. Low magnification (a) 
1 min, (b) 3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, 
and (f) 5 min................................................................................................. 89 



  

xiii 
 

Figure 4.20: Cross-section of the T80H20 after oxidation tests. Low magnification (a) 
1 min, (b) 3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, 
and (f) 5 min................................................................................................. 90 

Figure 4.21: Top surface of the pure TaC after oxidation tests. Low magnification (a) 
1 min, (b) 3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, 
and (f) 5 min................................................................................................. 92 

Figure 4.22: Cross-section of the pure TaC after oxidation tests. Low magnification 
(a) 1 min, (b) 3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 
min, and (f) 5 min ........................................................................................ 93 

Figure 4.23: XRD patterns of HfC oxidized samples ....................................................... 95 

Figure 4.24: XRD patterns of T20H80 oxidized samples ................................................ 96 

Figure 4.25: XRD patterns of T50H50 oxidized samples ................................................ 97 

Figure 4.26: XRD patterns of T80H20 oxidized samples ................................................ 98 

Figure 4.27: XRD patterns of pure TaC oxidized samples. (a) 1 and 3 min samples, 
and (b) 5 min sample.................................................................................. 100 

Figure 4.28: Back side temperature plots: (a) 1 min, (b) 3 min, and (c) 5 min .............. 103 

Figure 4.29: Liquid phase attacking on the underlying carbides .................................... 110 

Figure 4.30: Oxidation schematic for (a) Pure HfC, and (b) solid solution samples ..... 112 

Figure 4.31: Representative loading segments of post-oxidation samples: (a) pure HfC, 
(b) T20H80, (c) T50H50, (d) T20H80, and (e) pure TaC.......................... 117 

Figure 6.1: High load in-situ indention setup ................................................................. 124 

 

 

 

 

 

 



  

1 
 

Chapter I: Introduction 

 The objectives of this work are to synthesize fully dense TaC-HfC solid solutions, 

and evaluate their oxidation behavior using high temperature plasma flow which simulates 

rocket propulsion like conditions. This work is inspired by the study on the oxidation of 

Ta-Hf alloys, in which Ta melted during the oxidation and infiltrated the porous HfO2 layer 

resulting in a dense, crack-free oxidation protective layer. The main oxidation product of 

TaC is Ta2O5, and it has a melting point around 1850 oC that is well below the application 

temperature. A similar liquid (Ta2O5) + solid scaffold (HfO2) structure is expected which 

would provide exceptional oxidation resistance. This work presents an in-depth discussion 

on the formation of solid solutions as well as the analysis of the oxidation behaviors of the 

formed solid solutions under simulated environments.  

 

1.1 UHTCs: Definition, Application, and Limitation 

The materials for the next generation space transportation vehicles necessitate 

withstanding extreme conditions, such as high temperature, chemical reactivity, 

mechanical wear and stress, and radiation. Rapid heating/cooling rate, aggressive 

chemical/oxidizing environment or the combination of these conditions eliminates most of 

the current engineering materials for these purposes. Materials with improved mechanical 

properties, higher thermal shock resistance, and improved oxidation resistance are required 

to have satisfactory reliability and safety. Ultrahigh temperature ceramics (UHTCs) attract 

much interest for being potential candidate materials for the leading edges of the 

hypersonic reentry vehicles and lining materials of rocket thruster system. UHTCs is a 
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group of ceramics consisting of carbides, nitrides, and borides of the early transition metals. 

The meaning of the term “Ultrahigh temperature” is twofold.  First of all, the ceramic itself 

should have a high melting point. As shown in the Figure 1.1, only a few materials have a 

melting point greater than 3000 oC. Secondly, the candidates should be able to withstand 

the chemical attack in the case of rocket thrust propellants; more importantly, the 

candidate’s materials should have decent oxidation resistance at high temperature. The 

definition of high temperature is still vague, but empirically, temperature should be 2000 

oC and above.[1-4]  

 

Figure 1.1: Materials with high melting points [1] 
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1.2 Why Tantalum Carbide and Hafnium Carbide  

Tantalum carbide (TaC) has the NaCl-type structure (B1, Fm 3 m). The carbon atoms are 

located at the octahedral interstitial sites. TaC has strong covalent bonding which results 

in an extremely high melting point of 3880 oC, high hardness, and high modulus. TaC can 

be used for the cutting tools, wear-resistance parts and rocket propulsion systems, but also 

has great potential in applications like leading edges of hypersonic vehicles. Some basic 

properties of TaC have been summarized in Table 1.1.[5, 6] 

Table 1.1: Salient Thermophysical properties of Tantalum Carbide (TaC) and Hafnium Carbide 
(HfC) 

 Tantalum carbide (TaC) Hafnium carbide (HfC) 

Melting point 3880 oC 3890  oC 

Density  14.65 g/cm3 12.8 g/cm3 

Crystal structure  FCC FCC 

Lattice parameters 4.44 Ȧ 4.64 Ȧ 

Young’s Modulus 486-560 GPa 423-500 GPa 

Hardness  14.5-18 GPa 19 GPa 

Fracture toughness  3.5-4.7 MPa.m-0.5 2.5 MPa.m-0.5 

 

Hafnium carbide (HfC) has the same crystal structure as tantalum carbide with slightly 

larger lattice parameter as shown in Table 1.1 [5]. The properties of HfC are also 

comparable to those of TaC. Due to their similar crystal structure and size, TaC and HfC 

can form unlimited solid solution above 887 oC as observed in the TaC-HfC phase diagram 

shown in Figure 1.2.[7-11]  



  

4 
 

 

Figure 1.2: Phase diagram of TaC and HfC [7] 

 

In the present study, we propose to combine TaC and HfC in order to achieve a new 

UHTC that has improved oxidation resistance as compared to pure TaC and pure HfC. The 

inspiration of this work is threefold. First of all, TaC and HfC have the highest melting 

points among the UHTCs as shown in Figure 1.1. The solid solution, TaC0.8HfC0.2, is 

arguably the highest melting point among known materials[12]. The strong hybridization 

of the Hf(Ta) 5d- and C 2p-like states might be the reason for this high melting point[13]. 

The high melting point enables the mixed carbides sample’s survival under extreme 

conditions. Oxidation is another key factor for designing UHTC for ultrahigh temperature 
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applications. TaC has a relatively poor oxidation behavior[14-20]; it begins to oxidize at 

around 400 oC. The melting point of its oxide: Ta2O5 is ~1872 oC and will liquefy in oxygen 

rich environments[14]. However, when TaC is used in an oxygen deficient environment, 

such as an aluminized propellant solid rocket motor, TaC has been identified as the best 

performing ceramic lining material[21]. On the other hand, HfC has outstanding high-

temperature oxidation resistance in oxygen rich environments. Hafnium dioxide (HfO2) is 

stable, and it can form an oxycarbide interlayer during the oxidation process, which serves 

as an oxygen diffusion barrier and protects the un-oxidized carbide[22, 23]. By combining 

TaC and HfC, we expect to form a versatile ceramic solid solution that can serve in both 

oxygen concentration conditions. An early study on the high temperature oxidation 

behavior of Hf-Ta alloys suggested that the addition of Ta can enhance the oxidation 

resistance of Hf. The addition of molten Ta stabilized the HfO2 oxide layer[24]. The 

resultant oxide layer then became dense and crack-free, and further oxidation was 

significantly restricted. Since Ta metal does not meet the requirement of UHTCs, TaC can 

be an excellent Ta source to achieve a dense oxide layer in the present study.  

 

1.3 Oxidation Resistance Evaluation Methods 

Different testing methods have been carried out to understand the UHTCs oxidation 

behavior under high temperature environments. Thermogravimetric analysis (TGA) and 

differential scanning calorimetry (DSC) are the two most common tests to understand the 

UHTCs thermal properties. Furnace oxidation tests have often been seen in the evaluation 

of the oxidation performance of UHTCs. Such tests are readily available and inexpensive. 

With controlled experimental conditions, such as static air flow and controlled gas 
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compositions, it is sufficient to recognize the fundamental knowledge of the oxidation 

mechanisms and provide crucial information on the initial screen of UHTCs. Since the real 

world application involves not only high temperature but also high velocity, the 

information obtained from furnace oxidation tests cannot fully predict the material 

oxidation behavior. Other approaches have been proposed to evaluate the oxidation 

performance under hypersonic flight conditions. The arc-jet test, laser test, and 

oxyacetylene torch test are the most popular testing methods.[1, 16, 17, 20, 25-27] Arc jet 

testing was developed and is widely used by NASA. Ionized atoms of oxygen and nitrogen 

accelerate to and recombine at the samples surface and release heat. It is designed to 

simulate the reentry conditions, especially the dissociation of air that occurs behind the 

bow shock at hypersonic speed for the space vehicles. Most of the arc-jet tests are 

performed on a flat surface or large-radius conical samples. Testing on shape leading edge 

geometries has started. However, due to the lack of understanding of the heat flux 

distribution, the tests have not been successful. The cost of these tests also prohibits it from 

being used in most studies.  

The laser is an alternative heat source with a reasonable cost compared to the arc-

jet testing. Laser tests use a prescribed heat flux exposed on a flat surface of the sample for 

a predetermined time. The test is usually accompanied by an external subsonic tangential 

gas flow to simulate the reentry dynamic conditions. The laser testing has a high testing 

efficiency; multiple samples can be tested in a short period. The temperature during the test 

can be accurately measured by optical pyrometry without the effect of a bright flame from 

other testing methods. The disadvantage of the laser testing is the difficulty in determining 

the actual heat flux absorbed by the samples. It varies with the compositions, wavelength 
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of the laser, and the temperature of the sample. To precisely interpret the results, the laser 

absorbance and emittance of each sample must be measured as a function of temperature. 

The literature which reports these properties is limited and the sample conditions can also 

affect the emissivity. The heat flux provided by the laser is constant which also deviates 

from the real world conditions. 

Oxyacetylene torch testing has the lowest cost of the testing above methods. In this 

test, the sample is exposed to hot combustion gasses of an oxyacetylene flame. Only the 

temperature of the hottest section of the exposed sample is reported. The heat flux is not 

measured. The product of combustion, water, is present during the test, which adds the 

complexity of interpreting the results.  

Aside from these common oxidation testing methods, our group started exploring 

the new testing methods using a plasma gun from plasma spraying system. Some success 

in the study of the tantalum carbide (TaC) oxidation behavior has been achieved[27]. In 

the plasma testing, a plasmas gun has been utilized as a heating source, and the setup is 

similar to the oxyacetylene torch testing. So the cost is still low. Unlike the oxyacetylene 

torch testing, no combustion reaction occurs during the plasma testing. Hence water is 

eliminated from the testing system. Similar to the arc-jet testing and combustion testing, 

the accurate measurement of the front side sample temperature will be challenging. 

However, since the plasma testing is initially designed for plasma powder spray, the 

temperature can be deduced from the temperature measurement of the in-flight particles, 

which has a well-developed measuring system. The correlation of the power input to the 

plasma spraying system and the resultant temperature has also been thoroughly studied. 

(The detailed front side temperature determining procedure will be described in the latter 
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chapter.) The temperature range of the plasma testing methods can go up to 5000K, which 

creates the opportunity to observe materials oxidation behavior under extreme conditions. 

The present work proves the feasibility of using the plasma gun as testing methods to 

evaluate the sample oxidation resistance.  

 

1.3 Objective of the Current Research  

1.3.1 Synthesize Fully-Densified TaC-HfC Samples Without Sintering Aids 

Owing to the high covalent bonding and low self-diffusivity of TaC and HfC, 

sintering full, dense TaC and HfC is challenging[5, 28]. Consolidation methods like hot 

pressing, pressureless sintering, high-frequency induction heating, and spark plasma 

sintering are employed to sinter TaC and HfC. With the temperature over 2200 oC and 

several hundred mega Pascal pressure, sintering aids are still necessary. Sintering aids like 

carbon allotropes, disilicides, and carbides are used in TaC or HfC synthesis [10, 29-33]. 

Sintering aids additions can improve the overall densification that leads to better 

mechanical properties, and also introduces new secondary phases. Although secondary 

phases may not necessarily jeopardize the material properties, they increase the complexity 

of the system, limiting the actual understanding of the intrinsic properties. Based on this 

scenario, to fully understand the oxidation behavior of TaC and HfC mixed carbides 

samples, eliminating the sintering aids is necessary. Thanks to the previous experience in 

sintering tantalum carbide using spark plasma sintering (SPS), SPS will be chosen as the 

consolidation method. The parameters and starting powder treatment will be adjusted to 

synthesize the full, dense samples without sintering aids.  
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1.3.2 Understand the Oxidation Behavior of Sintered Samples Under the Simulated 

Environment.  

As mentioned in the previous text, a plasma gun from plasma spraying system will 

be employed as the main heat source for oxidation tests. The temperature of the test is set 

to be above 2500 oC. This is one of the highest temperature tests among the oxidation 

testing in the literature. The different predetermined length of time is to reveal the evolution 

of oxide layers. Five compositions: pure TaC (PT), 80 vol. % TaC- 20 vol. % HfC 

(T80H20), 50 vol. % TaC- 50 vol. % HfC (T50H50), 20 vol. % TaC- 80 vol. % HfC 

(T20H80) and pure HfC (PH) are selected to cover the whole composition spectrum. 

Oxidation behavior is interpreted from the weight changes, oxide layer thickness growth, 

oxide layers phase information, the morphology of the oxide layers, and mechanical 

properties of the oxide layers. In this study, not only the best oxidation performing 

composition out of the five starting compositions will be identified, but also the oxidation 

mechanisms will be proposed.  

 

1.3.3 Predict the Optimum Composition of the TaC-HfC Mixed Carbides Samples for the 

High Temperature Applications 

Based on the oxidation mechanisms we proposed in the work, we can predict the 

optimum composition for the high temperature application. The optimization criteria will 

be the amount of oxide layer growth, the integrity of the oxide layer, and the mechanical 

properties of the oxide layer. The optimum composition should have the least oxide layer 

growth. Slow growth rate indicates good stability under high temperature environment. 
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The resultant oxide layer should be dense and well attached to the un-oxidized carbide so 

that the oxide layer could serve as a protective layer from oxidation. Mechanical properties 

assess the reusability of the materials. For reentry vehicles, the high temperature is not the 

only concern. With a hypersonic speed, any impact from debris would lead to catastrophic 

structural failure. A strong oxide layer is necessary for the space vehicle. Impact resistance 

can be evaluated by an in-situ indentation method and Nanoindentation technique. Both 

methods will be elaborate in the latter chapter.  

Chapter 2 details the historic researches on the UHTCs oxidation performance, 

especially focuses on the hafnium carbide, tantalum carbide, and hafnium-tantalum 

carbides oxidation behaviors. Chapter 3 contains the materials and methods used in the 

present study. Results and detailed analysis of the present work can be found in chapter 4. 

Chapter 5 summarizes the major finding and contribution of the current work, and the 

future suggestions and work plan are included in chapter 6.  

 



  

11 
 

Chapter II Literature Review 

2.1 Studies on the Oxidation of UHTCs  

Although the term “Ultrahigh Temperature Ceramics” is relatively new, the 

research on UHTCs carbides and borides started in the late 1800s. In the end of the 1950s 

and early 1960s, the National Advisory Committee for Aeronautics (NACA) and its follow-

on agency the National Aeronautics and Space Administration (NASA) recognized the 

need for new materials that could be used in rocket nozzles, atmospheric reentry vehicles, 

and thermal protection systems[1]. NASA began exploring possible materials that were 

suitable for the extreme conditions. The operating temperature for these applications was 

predicted to be between 2000-2400 oC, in some cases, such as rocket motors, the 

temperature was discovered to go up to 3500 oC. Oxidation resistance and the oxidized 

products are key factors when considering materials because hypersonic vehicles and 

rocket motors are exposed to an oxidizing environment with high temperature and pressure. 

2.1.1 Oxidation Studies on the Si-Based Materials 

The oxidation study on UHTCs began with SiC and Si3N4 in the late 1960s.[1, 34-

55] Si contained materials have been employed as either thermal protection coatings on C-

C composites or as additives modifying the oxidation resistance of C-C composites. The 

Si-based compounds possess exceptional oxidation resistance up to 1700 oC. This is due to 

the formation of a layer of SiO2 glass that can be served as a protective passive layer. The 

oxygen diffusion through this layer is limited, so the parent materials will be well protected 

from high temperature environments. However, when the environment temperature rises 

above 1700 oC, the passive oxidation will convert to active oxidation and the main 
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oxidation product will become SiO (g). Furthermore, the decomposition of the SiO2 and 

the reaction between SiO2 and SiC at the interface at the higher temperature degrades the 

oxidation resistance and increase the ablation rate of Si contained materials.  

2.1.2 Oxidation Studies on Metal Diborides 

The investigation on the oxidation resistance of early transition metal diborides has 

been conducted. Oxidation tests were conducted with a temperature up to 2200 oC. HfB2 is 

identified as the material with most oxidation resistance followed by ZrB2[6, 56-64]. A 

small research and development company called Manlabs, Inc. played a major role in 

carrying out the oxidation studies on UHTCs, especially on HfB2 and ZrB2. The projects 

began in the early 1960s and continued into the 1970s. The project was divided into 3 

stages. The first stage was the initial material screening. Numerous metal diborides were 

selected and studied. The metals included Ti, Zr, Hf, Nb and Ta, and their diborides were 

considered as potential candidate materials for ultrahigh temperature applications. The 

thermodynamics, chemical, and physical properties were investigated and published. 

Among these diborides, HfB2 and ZrB2 were taken into further study due to their excellent 

oxidation rate. This was also the main perspective of the second stage. The relationship 

between oxidation behavior and boron-to-metal (B/Me) ratio, thermal conductivity, 

emissivity, and electrical resistivity was thoroughly deliberated. In the second stage, SiC 

was found to have beneficial effects improving diborides oxidation resistance. Carbon, on 

the other hand, was proven to have a positive effect on the material’s thermal shock 

resistance. Further studies have identified the 20 volume percent of SiC as the optimal 

composition based on the mechanical properties and oxidation behavior. The addition of 
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SiC could also be beneficial to the materials densification by hindering the grain growth 

during the sintering process. Currently, it can be seen from Figure 2.1, the HfB2-SiC system 

is still one of the most popular topics in UHTCs researches. The final stage of the study 

was focused on the material’s response to the extreme environment, such as the flight 

conditions and reentry conditions of hypersonic vehicles. The goal of these studies was to 

correlate the laboratory test results from the previous studies with the simulated 

environments. In their tests, the laboratory testing was referred as the material-centric 

testing and the simulated testing was called the environment-centric testing. The materials 

that were considered in this stage of the study were pure diborides, diboride-SiC 

composites, C-C composites, graphite-based materials, and refractory metal-based 

materials. In all tests, the Hf contained samples that displayed slightly better oxidation 

performance than Zr compound. This might be due to the higher refractoriness of the HfO2 

compared to ZrO2. The most promising results in both recession rate and reusability were 

achieved in Hf compounds with SiC additions. 
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Figure 2.1: Distribution of publications on the UHTCs materials till 2013. [65] 

 

2.1.3 Oxidation Mechanisms of Metal Diborides and Si Contained Materials 

Detailed discussions on the oxidation mechanisms have been carried out by 

different researchers all over the world, and they have also established the guidelines for 

the future studies. Si contained materials have been extensively studied, and SiC is the 

most popular refractory carbide which can be seen in Figure 2.1. This is not only because 

SiC itself has superior oxidation resistance, but also because SiC can be used as an additive 

to other UHTCs to enhanced the oxidation performance [30, 66-77]. As just mentioned 
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before, HfB2- 20 vol. % SiC has been confirmed the best oxidation performing sample to 

the date. The oxidation mechanism for this composites has been studied both 

thermodynamically and kinetically. [25, 60, 61, 70, 78-105] 

When exposed to the high temperature, HfB2 reacts with oxygen and forms HfO2 

and B2O3 as shown in Equation 2.1: 

)(32)(222 l
OBsHfOOHfB +→+             Eq. 2.1 

Since the melting point of B2O3 is only around 450 oC, the product boria formed as liquid 

because oxidation temperature is above 1000 oC. The melting point of hafnia is around 

2800 oC, so the resultant oxide layer is a porous hafnia structure filled with the liquid boria. 

The liquid phase serves as an oxygen diffusion barrier and prevents further oxidation. The 

study shows that oxygen diffusion through boria liquid phase is the rate limiting step 

associated with oxidation of HfB2 up to 1200 oC. Above this temperature, the oxygen is 

transported through the solid oxide, and the oxidation rate constant shows no dependency 

on oxygen partial pressure. Compared to carbides, boride samples will not generate 

gaseous products during the oxidation, which is also the main reason that the boride 

samples show better oxidation resistance. However, the evaporation of boria becomes 

significant at elevated temperatures. The evaporation of B2O3 can not only thin the 

protective liquid layer but also can disrupt the formed oxide layer and lead to further 

oxidation. The addition of SiC can improve composites oxidation resistance. Upon 

oxidation, SiC can form SiO2, a much stable liquid glass phase; it can stabilize the liquid 

boria glass phase and form borosilicate glass phase. The reduction of oxidation rate was 
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observed above 1350 oC. This is because not enough of SiC oxidized when the temperature 

was lower than 1350 oC.  

The microstructural analysis suggested the HfO2 can provide a stable frame and the 

boria, silicate, and other glassy phases can fill the pores. Such structure displays 

outstanding oxidation performance until the glassy phases start evaporating.   

 

2.2 Oxidation Behavior of Tantalum Carbide 

The oxidation behavior of tantalum carbide has been investigated in the forms of 

coatings, additives, and bulk materials. The main oxide of TaC, Ta2O5, has a melting point 

of 1872 oC with two stable phases. The high temperature form, α-Ta2O5, has a monoclinic 

crystal structure with space group C121, (also some reports stated that α-Ta2O5 has a 

triclinic crystal structure.) The low temperature form, β-Ta2O5, belongs to space group 

C2mm which corresponds to the orthorhombic structure. The transition temperature 

between two phases is around 1320 oC. During the oxidation, tantalum carbide undergoes 

the following reaction:  

225222/92 COOTaOTaC +→+    Eq. 2.2 

Due to the evolution of gaseous products and large Pilling-Bedworth ratio (2.47)[106], the 

formed oxide layer is not protective.  

 

2.2.1 Isothermal Furnace Studies on the Oxidation Behavior of TaC 

Desmaison-Brut et al. studied the oxidation behavior of hot isostatically pressed 

TaC and Ta2C up to 850 oC[14]. The oxidation experiments were carried out in a lab 
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furnace with a dynamic flow of pure oxygen (5.6×10-3 L/s) at atmospheric pressure. Cubic 

samples were polished and washed before the testing, and a Setaram microbalance was 

used to monitor the weight changes. Kinetic curves were obtained by plotting the fractional 

weight change α (α= ∆m/∆m∞) versus time. The infinite weight gain ∆m∞ was considered 

the total conversion from TaC to Ta2O5 according to Eq. 1. Figure 2.2 was then acquired 

from the oxidation test with a heating rate of 17× 10-3 oC/s.  

 

Figure 2.2: Non-isothermal oxidation curves for TaC and Ta2C. [14] 

 
TaC started oxidizing at the temperature of 700 oC and reached full oxidation at 

around 1000 oC. The oxide scale was identified as β-Ta2O5 by X-ray diffraction.  

Desmaison-Brut’s work included tests that had a temperature range up to 850 oC 

(isothermal oxidation), whereas most the UHTCs application temperature is above 2000 
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oC. UHTC’s application conditions are required to understand the oxidation behavior of 

tantalum carbide. Additionally, the microstructure information was lacking from his work. 

Due to the low sinterability, achieving fully dense TaC is always challenging. Different 

sintering receipts would lead into entirely different microstructures. A detailed 

characterization is crucial to understand the samples’ microstructure properties.  

Previous studies on TaC suggested its low sinterability and poor oxidation 

resistance, Additives were added into TaC system to serve as sintering aids, and 

reinforcement in both mechanical properties and oxidation resistance. Zhang et al. 

synthesized TaC-TaB2 mixed ceramics using hot pressing[15]. 10 wt% (11 vol%) of TaB2 

was added as a sintering aid, and a final 98.6% relative density was achieved.  Improved 

mechanical properties benefited from the higher densification. An oxidation study was 

conducted by TGA method in the air up to 1500 oC. The inspiration of TaB2 addition was 

probably from the superior oxidation resistance of diborides which can form a B2O3 

protective layer. Similar temperature versus weighing change curve was obtained as shown 

in Figure 2.3.  



  

19 
 

 

Figure 2.3: Temperature vs. weight change curves for TaC, TaC-TaB2, and TaB2. [15] 

 

Monolithic TaB2 displayed the highest oxidation resistance among the three 

samples in that study. The mechanism of this superior resistance has been investigated 

extensively for the diborides. However, oxidation resistance improvement in TaC-TaB2 

was only marginal to monolithic TaC. The formed B2O3 layer in the mixed carbides sample 

was insufficient to protect the carbides from oxidation. The gaseous products from TaC 

oxidation and maltase crosses resulted from the stress on the surface which provided the 

pathway for oxygen to penetrate the oxide layer. Aside from the diborides, disilicides were 

also studied as additives to TaC system. Sciti et al. selected TaSi2 and MoSi2 as reinforcing 

additives into TaC (TCT and TCM)[107]. The oxidation testing in this study was conducted 

in static air for 15 min at the temperature of 1600 oC. The XRD results found the only phase 

on post-oxidation samples was Ta2O5. There was no obvious difference between two 



  

20 
 

different disilicides, and nominal TaC oxidation results were not reported. The SEM of the 

fractured cross-section showed the Ta2O5 were embedded in a silica-based glassy phase 

which resulted from the oxidation of disilicides. The Ta2O5 and silica glass have 

immiscibility which caused the phase separation. The resultant Ta2O5 crystal presented a 

preferred 001 orientation. There are some studies that suggest the liquid phase separation 

caused by the immiscibility can increase the viscosity of the liquid, which can lead to a 

more stable protective layer against further oxidation. However, in Sciti et al. study, even 

though the testing temperature was highest among the oxidation study of TaC using lab 

furnace, the temperature was still not high enough to melt Ta2O5, and the protective 

multiphase layer was not observed.  

 

2.2.2 Simulated Studies on the Oxidation Behavior of TaC  

Lashtabeg et al. realized the necessity of higher temperature oxidation study, a 

series of simulated extreme conditions tests were carried out on pure TaC sintered pellets 

by an oxyacetylene torch[19]. The torch temperature in the tests was calculated at 3160 oC, 

the sample surface temperature was measured at 2100 oC, and the gas flow was recorded 

at 200 m/s. The testing conditions were much closer to the real application conditions 

compared to those testing inside the lab furnace, and the temperature was high enough to 

melt the Tantalum oxides. XRD results are shown Figure 2.4. The XRD profile in line (a) 

was taken from the area in the direct flame path. The temperature was estimated around 

3000 oC in this area.  
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Figure 2.4: XRD results for different regions in the sample after oxidation tests. (a) In direct path, 
(b) Away from the direct path, (c) From the back side of the sample. (Open square: TaC, filled 

circle: β-Ta2O5, asterisk: α-Ta2O5.) [19] 

 
As a result, the predominated phase was α-Ta2O5. Although α-Ta2O5 is stable only 

when the temperature is above 1320 oC, the α-Ta2O5 was still detected. The transformation 

was reported as a slow process, and the α-Ta2O5 can be stabilized with other cation. In this 

case, samples were air quenched after the oxidation test. Large temperature difference led 

to a high driving force that accelerated the cooling process, and the carbon can be the cation 

source that can stable the α-Ta2O5 phase. The phases away from the flame direct path was 

detected mainly as β-Ta2O5 with some α-Ta2O5. In the back side of the sample, un-reacted 

TaC was detected after the oxidation tests. The existence of molten Ta2O5 was confirmed 

by the post oxidation SEM analysis. Moreover, the author found that the liquid phase that 

was formed could not serve as a protective layer, but instead it was attacking the carbides 
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during the oxidation. The author proposed that the metal (Ta) would react with oxygen first, 

and formed Ta2O5 would melt and surround the TaC surface. When the temperature was 

above 2500 oC, the reaction between TaC and Ta2O5 becomes favorable and generates 

tantalum oxycarbide. Further oxidation would transform the oxycarbides into oxides and 

gaseous products. Paul and his team conducted the oxyacetylene oxidation test on the TaC 

at almost the same time. The variable in this oxidation testing was the standoff distance 

from the oxyacetylene torch to the sample. As a result, the peak temperature on the sample 

surface decreased with increased standoff distance. The highest temperature was measured 

at 2300 oC with a 10 mm standoff distance. Temperatures of 2190 oC and 1990 oC were 

measured at 15 mm and 20 mm distance respectively. Two phases, α-Ta2O5 and β-Ta2O5 

(Note: The α-Ta2O5 phase in Paul’s work was described as a triclinic structure.[26]) were 

also observed in the XRD analysis from the post-oxidation samples. However, unlike the 

XRD in the Lashtabeg et al. work, where all peaks belonged to α-Ta2O5 in the region 

exposed to flame directly, the XRD in Paul et al. work showed the mixture of both oxide 

forms. This may be because the peak temperature in Paul et al. was lower than the one in 

Lashtabeg’s work. This means that the cooling rate was not high enough to preserve the α-

Ta2O5 form. Delamination of the oxide layer from carbides was observed in Paul’s work, 

which is contributed to the gaseous products and thermal mismatch. The formation of 

tantalum sub-oxides, including TaO2 and Ta2O3 were also concluded. Big cracks on the 

samples were noticed. This was due to the stress concentration introduced by screws which 

were used to hold the sample. The large opening not only enhanced the oxygen inwards 

flow, but also disturbed the thermal gradient of the sample. A fixture without stress 

concentration is also critical to a successful oxidation test.  



  

23 
 

2.2.3 Ablation Evaluation of TaC 

Aside from the oxidation testing on the bulk tantalum carbide, ablation evaluation 

on the TaC as a form of the protective coating has also been conducted. Wang et al. decided 

to fabricate a uniform, dense, and crack-free TaC coating to provide enough protection.[16] 

The TaC coating was plasma sprayed on SiC coated C/C substrate. The ablation tests were 

conducted using an oxyacetylene torch with three different temperatures: 2100, 1900, and 

1800 oC. No new mechanism has been noticed in this study. The best protection was found 

in the 1800 oC test since the temperature was below the melting point of tantalum oxide. 

Higher temperature resulted in liquefied Ta2O5 that was blown away during the test and 

failed to protect the beneath substrate. Owing to its poor oxidation performance of tantalum 

carbide under the simulated oxidation tests, few studies proposed using reinforcing 

additives like CNT, SiC, disilicides, and graphene to enhance the TaC oxidation resistance 

under the simulated conditions. In our previous work, we incorporated graphene 

nanoplatelets (GNP) with TaC powder, followed by the consolidation using spark plasma 

sintering (SPS) to achieve near fully dense TaC-GNP composites.[27] The composites 

were exposed to a high temperature plasma flow of  above 2500 oC. The high temperature 

plasma flow was created by a SG-100 plasma gun using in plasma spraying system. 

Compared to the more commonly used oxyacetylene torch, the high temperature plasma 

flow provides high heat and gas flow without generating byproducts, such as water, which 

may affect the interpretation of the oxidation performance. The oxidation results showed 

that the addition of GNP suppressed the oxidation layer formation up to 60%. The addition 

of GNP was found to be beneficial to the samples’ thermal conductivity. As a result, the 

heat was dissipated more easily from the most intense heating zone, which provided less 
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energy for the oxidation of TaC. The GNP was visually spotted from the post-oxidation 

SEM analysis, which suggests its survival from the harsh environment.  Moreover, the 

GNP was proven to be an excellent oxygen shield since it laid at the grain boundaries of 

TaC. The predominated oxygen diffusion pathway was through grain boundaries, the 

existence of GNP stopped the oxygen penetration and prevented further oxidation. Very 

recently, Nisar et al. explored the effects of CNTs, SiC and CNT-SiC additions on the 

oxidation behavior of TaC under the extreme conditions using plasma torch.[20] Both 

CNTs and SiC have been proven effective in dissipating the heat away from the hottest 

zone due to their superior thermal conductivities. The oxidation onset temperature shifted 

towards higher temperature in TaC-CNT-SiC composite than the monolithic TaC, and the 

enthalpy of oxide formation decreased compared to TaC. Both observations suggested 

synergetic reinforcement of SiC and CNT in improving the oxidation resistance of TaC. 

Disilicides were also employed in reinforcing the oxidation resistance of TaC. The most 

common disilicides including MoSi2 and TaSi2. Although the experimental methods vary, 

the results were always as anticipated. The molten Ta2O5 cannot provide enough protection 

and has a high ablation rate. However, the multiphase oxide layer of Ta2O5-SiO2 showed 

much-improved oxidation resistance. The gaseous products and thermal stresses lead to the 

delamination of the oxide layer and jeopardize the integrity of the whole sample.  

 

2.2.4 TaC Oxidation Performance in the Rocket Engine Application  

 After extensive researches on the oxidation performance, TaC does not show 

promising oxidation resistance under the extreme conditions. However, when it comes to 
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the aluminum burning rocket engine, tantalum carbide was found to be the best performing 

lining materials. The candidate materials for such applications should withstand not only 

high temperatures but also the chemical attacks from the molten alumina. This is the main 

product of an aluminum burning rocket engine. The thermodynamic calculation showed 

that the onset temperature of the reaction between TaC and Al2O3 occurs around 3000 oC. 

That is 400 oC higher than hafnium carbide. So tantalum carbide can provide a thermally 

and chemically stable aluminum burned engine. [21] 

 

2.3 Oxidation Behavior of Hafnium Carbide 

There are more precedent studies on the oxidation of hafnium carbide than on 

oxidation of tantalum carbide. This is probably because the resultant oxide: HfO2 is a much 

more stable oxide, so the hafnium carbide presents relatively good oxidation resistance 

under extreme conditions. Hafnium oxide has an extremely high melting point at around 

2800 oC and low vapor pressure. There are three main phases for HfO2: monoclinic, 

tetragonal, and cubic. The transition temperatures are 2100, 2793, and 3073K, respectively. 

The Pilling-Bedworth ratio for hafnium to hafnium oxide is 1.62. Such promising 

properties make HfC a potential candidate material for UHTCs applications.  

 

2.3.1 Kinetics Studies on the HfC Oxidation Process and Counter-Current Gaseous 

Diffusion Model 

The systematic studies on the oxidation of hafnium carbide began with Courtright 

et al. work.[108] In their work, hot-pressed hafnium carbide pellets underwent a serial of 
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oxidation tests with temperatures up to 2200 oC. Thermogravimetric analysis (TGA) was 

applied to the oxidation temperature from 1200-1530 oC, and a laser heating apparatus was 

used to conduct the oxidation testing from 1800-2200 oC. (Note: The oxidation temperature 

was high enough to be considered as ultra-high temperature. However, because there was 

no strong gas flow, the laser was used purely as a heating source, this series of oxidation 

tests cannot be considered as simulated testing.)  Parabolic growth kinetics were observed 

for HfC over the entire temperature range so that the growth kinetics can be described by 

the expression:  

                                                  RtkR p 0

2/1 +=                                         Eq. 2.3 

Figure 2.5 shows the temperature dependence of the oxide growth constant for HfC. 

A break in the curve was observed at around 1800 oC. Two growth constants were provided 

for two temperature ranges:  

For T= 1473-2073 K,         ))(/716exp(1083.4 4 KTk p

−×=  cm/s1/2 

For T= 2073-2473 K,          ))(/13700exp(05.0 KTk p
−=  cm/s1/2 

 After examination of the morphology of post-oxidation samples, pores and cracks 

were spotted. The oxidation temperature was above 2100K, which is the transition 

temperature for HfO2 transforming from monoclinic to tetragonal. The formed HfO2 was 

supposed to experience phase transformation accompanied by modest volume change, 12.7% 

expansion. However, the cracking patterns on the oxidized samples above and below this 

transition temperature did not display significant difference, suggesting that this 

transformation was not a major reason for the crack. In fact, at 1700 oC, the plasticity 

should be able to accommodate the stress caused by the phase transformation.  
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 Another significant contribution from this report was the introduction of a counter-

current gaseous diffusion model that describe the oxidation behavior of hafnium carbide. 

The more detailed description was reported by Holcomb et al. in a separate document.[22] 

The resultant hafnia scale was observed as a porous layer with interconnection pores. Those 

interconnected pores provided a pathway for the inward diffusion of oxygen and outward 

diffusion of CO. At oxidation testing temperature, the CO and O2 gasses were not 

compatible and formed CO2. This reaction created a gas sink (flame front) that resulted in 

a new gas flow from both sides of the flame front. Figure 2.5 illustrates the chemical 

reactions, and gas flows at both sides of flame front.  



  

28 
 

 

Figure 2.5: Gas flows, reactions, and partial pressures of O2, CO, and CO2 across hafnia scale 
during the oxidation of HfC at 1400 oC. [22] 

 
An approximation of the Stefan-Maxwell equation was adapted to calculate the 

gaseous concentration profiles across both regions of the porous hafnia scale. The model 

investigated the effects of porosity, tortuosity, and gas-wall interactions. The predictions 

on parabolic rate constants in the case of a porosity of 2% and a pore radius of 0.01 µm 
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hafnia scale were close to the constants obtained from the thermogravimetric analysis. Both 

predicted and measured parabolic rate constants had the same dependence on temperature 

and oxygen partial pressure.  

 

2.3.2 The Discovery of the Hafnium Oxycarbides Layer  

Bargeron et al. conducted the oxidation study on hafnium carbide in the temperature 

range 1400 oC to 2060 oC inside an induction furnace with the gas composition of 93% of 

argon and 7% oxygen. In their study, three distinct layers were observed.[109] Besides the 

outermost oxide and inner residual carbide layer, a dense, crack-free interlayer was spotted, 

which later was confirmed as hafnium oxycarbide. It is a unique feature of hafnium carbide, 

and it can absorb oxygen into its lattice without disturb the crystal structure. The study 

showed that the amount of dissolved oxygen could up to 30%. A moving boundary model 

was also introduced in this study, and a schematic is shown in Figure 2.6.  
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Figure 2.6: Schematic of the moving-boundary model. The subscript “0, 1, 2” represented oxide 
layer, interlay oxycarbide, and residual carbide layer, respectively. “t” indicated the reaction time. 

Superscript “+ and -” suggested the growth or recession in layer thickness. [109] 

 

The schematic is self-explanatory, the subscript “0, 1, 2” represents oxide layer, interlay 

oxycarbide, and residual carbide layer, respectively. “t” indicates the reaction time. 

Superscript “+ and -” suggestes the growth or recession in layer thickness. The model 

neglected only the inward diffusion of oxygen, and the oxidation process follows: carbide 

→ oxycarbide → oxide. Oxygen diffusion constants were calculated at a temperature of 

1400 oC and 2060 oC; the results showed that the oxygen diffusion in interlayer oxycarbide 

was one magnitude lower compared to in oxide layer, and more than two magnitudes lower 
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than in carbide layer. Oxycarbide layer was the main reason for exceptional oxidation 

performance of HfC as a protective layer against oxidation.  

 Shimada et al. carried out a series of hafnium carbide oxidation studies in the 

temperature range of 480 oC to 600 oC, and 600 oC to 900 oC.[110, 111] In the temperature 

range of 480 to 600 oC tests, three oxygen partial pressures were selected: 4, 8, and 16 kPa 

for isothermal oxidation tests. The results showed that after the initial rapid oxidation with 

the formation of oxycarbide, the oxidation process could be divided into three stages: (1) 

diffusion controlled oxidation, (2) phase-boundary controlled process. The activation 

energies for both stages were the same (~197 kJ·mol-1), and (3) chemical-reaction 

controlled stage. In the first stage, oxide layer build up at the surface. With the progress of 

the oxidation, the grains located near the surface area formed a thicker layer of oxides 

compared to those remote from the surface. When the oxide layer grew thick enough (10 % 

of the grain size), stress accumulated cracked the oxide layer and provided an easier 

pathway of oxygen diffusion. This was the sign of the beginning of the second stage 

oxidation. The newly exposed grains started to oxidize and create a cycle of cracking-

rebuilding.  Thus, the hafnia scale was a compact but cracked layer. The authors observed 

that both the oxygen/compact HfO2 interface and HfO2/oxycarbide interface moved at the 

same speed, which led to a constant thickness of diffusion layer. The time-independent 

thickness introduced the last stage of the oxidation, chemical-reaction controlled stage. It 

also appeared that the evolution of gasses did not contribute to the cracked hafnia scale 

significantly. If all of the carbon was consumed into gaseous products the final weight gain 

should have been 130 %. However, none of the tests weight gain percentage was close to 

130%. This results indicated the retention of carbon. The oxidation temperature in this 
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work was relatively low; the authors suspected the oxygen potential at the interface 

between HfO2 and oxycarbide phase was lower than the oxygen potential in equilibrium 

with carbon, CO, and CO2. This differs from other literature where researchers claimed 

that in order for CO to have a destructive effect on the oxide layer temperature should be 

as high as 1730 oC. Unfortunately, in the UHTCs applications, 1730 oC is considered low. 

This is the main reason that HfC is not a favorable candidate material to use on the space 

transportation vehicles, even HfO2 is a protective oxide layer. However, in our present 

work, the results indicated otherwise. Detailed discussion can be found in Ch. 4. 

 

2.3.3 Other Isothermal Oxidation Studies of Hafnium Carbide 

 Later Shimada et al. investigated the isothermal oxidation of HfC single crystals 

with (100) orientation at temperature 600 to 900 oC and an oxygen pressure of 2 to 8 kPa 

for up to 180 h. Two zones were found in the oxide scale, zone 1 and zone 2. Zone 1 was 

dense and pore-free. This zone contained twice the amount of carbon than zone 2. The 

thickness of this zone remained constant even after prolonged exposure. Zone 2 was 

identified as hafnium oxide layer. This layer contained many pores and cracks as observed 

in the other hafnium carbide oxidation study. The description of this layer matched the 

characteristics of the oxycarbide layer that can be observed by the previous researchers. It 

seemed that the formation of the oxycarbide layer is an inevitable step of the hafnium 

carbide oxidation process. It was widely accepted that the hafnium carbide can dissolve 

oxygen at its carbon site which was accounted for the formation of this oxycarbide layer. 

Nevertheless, the carbon retention was observed by multiple researchers. It was proposed 
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that if the local oxygen potential was low at the carbide surface at relatively low 

temperature, the oxidation of hafnium carbide became a “displacement reaction” between 

hafnium carbide and oxygen and formed the amorphous carbon and hafnium oxide. Noted 

that the carbon content was measured higher than in oxide layer in all the studies. So the 

retention of carbon is also essential to the formation of oxycarbide. 

 

2.3.4 Simulated Oxidation Studies on the Hafnium Carbide 

 Savino et al. compared the oxidation behavior of HfB2 and HfC reinforced by 

MoSi2 using arc-jet testing.[58]  The use of MoSi2 was inspired by its oxidation product: 

SiO2 glass phase which can serve as a protective layer. 5 volume percent of MoSi2 was 

added. The experimental temperature exceeded 2000 oC. Three different layers of oxides 

were found. The outer layer displayed silica-based glassy phase partially filled hafnium 

oxide. The intermediate layer consisted of hafnium oxide layer with fine porosity, and 

isolated pockets of molybdenum oxide were also observed. The inner layer contained 

partially oxidized HfC and SiC, and residual Mo-Si species. Unlike the oxidation of HfB2 

from which a continuous glassy layer can be found, such continuous layer was not found 

in the HfC oxidized layers. It was suggested by the author(s) that the CO formed during 

the oxidation of HfC reacted with MoSi2 and released the volatile SiO gas. The oxycarbide-

like layer mixed with SiOxCy was also observed. However, the detailed mechanisms are 

yet to be understood.  
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2.3.5 Oxidation Studies of HfC as Protective Coatings 

 A series of oxidation studies of HfC as a protective coating were reported in the 

last five years. The C/C was selected as substrate materials in those studies. SiC was 

another popular material in the oxidation of protective coating studies. Both HfC and SiC 

can be found as matrix or additive to the other. A study on 2D and 3D structure multilayers 

coating was also reported.[112] Despite the coating preparation, compositions, thickness, 

testing methods, testing conditions varied, the main oxidation mechanisms of HfC-SiC 

coating were basically the same. It was widely reported that the porous hafnium oxide 

could provide a frame for the glassy SiO2, this layer would slow down the oxidation process 

by limiting the oxygen diffusion.  

 

2.4 Oxidation of TaC-HfC Mixed Carbides  

The research interests began on the oxidation study of Hf-Ta metallic alloys. The 

addition of Ta melt during the hafnium oxide and formed a dense, crack-free oxide layer. 

In the early 1960s, the study on the vaporization of TaC-HfC solid solution has been 

reported. [113]The results indicated that among all the compositions, 80-mole percent of 

TaC and 20-mole percent of HfC showed the lowest volatility or a maximum stability at 

the temperature range of 2500 to 3000 K. In the other report, the melting point of this 

composition was found to the highest among the known materials. [12] Although this result 

cannot be reproduced by other researchers, the melting point of TaC and HfC are the 

highest among the UHTCs ceramics, it is worth investigations. In the second part of 

Courtright et al. oxidation of HfC work, 25 wt% TaC was added, and same oxidation study 



  

35 
 

with the temperature up to 2200 oC was performed.[108] This work was directed inspired 

by the Hf-Ta metallic alloys according to the authors. However, the results suggested 

otherwise. Instead of a dense, crack-free oxide layer, the resultant oxide scale was porous, 

the surface of the scale was ragged and irregular. The porous structure was due the 

evolution of the gaseous products. Five thermal cycles were also performed between 2000 

oC and 500 oC on pure HfC and HfC-TaC sample, the post-SEM analysis showed the HfC 

oxide scale was intact while the mixed carbides oxide scale was spalled and porous, and it 

was almost double in thickness compared to pure HfC.  

 Due to the military interest of this sample, and partially due to the Courtright report, 

literature on TaC-HfC mixed carbide system and their oxidation studies are limited. 

 In 1996, NASA reported an oxidation study on TaC-HfC film prepared CVD 

methods. [114]Three compositions were selected, HfC-10, 20, 30 wt% TaC. The oxidation 

tests were carried out in air, in a tube furnace at 1000 oC and 1200 oC. Higher temperature 

tests were conducted by an oxyacetylene torch, with no temperature information provided. 

The results showed that the overall oxide scales were well attached to the substrate after 8 

hours oxidation tests, but severe cracking was noticed. In the oxyacetylene oxidation tests, 

except for the HfC-20 wt% TaC sample, the rest two were intact for 5 min tests. The HfC-

20 wt% TaC sample was cracked and flaked away totally. Later in 1999, another report 

was published. [115]Two carbides were again co-deposited on a graphite substrate by CVD 

then annealed for 2 hours at 1600 oC to obtain the solid solution (Such annealing process 

was not mentioned in the 1996 report). The oxidation testing was performed by an 

oxyacetylene torch at a temperature of 1750 oC. The 1-22 vol % TaC was chosen for the 
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oxidation testing. The results indicate a trend towards more oxidation and more spalling 

with increasing TaC content.  

 So far, the oxidation testing on TaC-HfC mixed carbide system did not show any 

promising improvement. Since hafnium carbide showed relatively good oxidation 

resistance and low volatility, it was also selected as the matrix material, and TaC was 

chosen as an additive. In the Courtright et al. work, HfO2 and a mixed oxide, Ta2Hf6O17 

was identified by XRD after oxidation. Hafnia was a well-studied oxide, but the properties 

of Ta2Hf6O17 are yet to be determined. Since it is a mixture of Ta2O5 and HfO2, its melting 

point should be between two oxides. Ta2Hf6O17 can also be considered as Ta2O5-(HfO2)6, 

so the melting point should be closer to HfO2 side, as in the HfO2-ZrO2 system, melting 

point of this compound increases with the increasing HfO2 content due to the higher 

melting point of hafnia than zirconia. Based on this discussion, more studies on Ta2Hf6O17 

should be carried out.  

 Wang et al. conducted the similar ablation testing on co-deposited TaC-HfC coating. 

[116]The ratio of Ta/Hf is 1:3. The coating was identified as the mixture of HfC and 

HfTaC2. The ablation testing was using an oxyacetylene torch for 1 min. The results 

indicated the HfTaC2 could promote the formation of a dense oxide layer, Ta2Hf6O17 was 

indexed by XRD and showed outstanding ablation performance. Ghaffari et al. pressure-

less sintered Ta0.8Hf0.2C solid solution with the addition of MoSi2 as a sintering aid. 

[10]They also conducted the oxidation tests on this solid solution using an oxyacetylene 

torch. Double layered oxide scale was found, and both layers were protective against 

oxidation. The outer layer comprised mainly Ta2Hf6O17 and the inner layer is a diffusion 

barrier based on Ta-Hf-Mo oxycarbide. This test results predicted the potential of TaC-



  

37 
 

HfC oxidation resistance. However, the content of MoSi2 was relatively high (24 vol.%) 

that prevented the true mechanisms of TaC-HfC oxidation behavior. TaC-HfC solid 

solution samples without sintering aids would be the ideal sample to study their oxidation 

behaviors.  

 

2.5 Summary 

 From the oxidation behavior of diborides system and the oxidation behavior of HfC 

and TaC, an oxide scale with a stable frame filled with glassy phase is found to be the ideal 

structure for the high temperature applications. Tantalum oxide has a low melting point, 

and hafnium oxide is a stable oxide phase. The TaC-HfC solid solution has great potential 

for high-performance oxidation materials. Studies on the oxidation behavior under the 

extreme conditions are needed. Hence, the present work will focus on the oxidation of fully 

dense TaC-HfC solid solutions under the simulated conditions.  
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Table 2.1: Literature review summary of the oxidation studies of TaC, HfC, and TaC-HfC 

Tantalum carbide 

Material Preparation methods 
Oxidation testing 

conditions 

Lab furnace 
testing(L) or 
Simulated 
testing (S) 

Main oxide 
phases 

Morphology Remark Reference 

TaC HIP 
750-850 oC, Atm, 
O2 flow= 5.6 × 10-

3 L/s 
L β-Ta2O5 

Maltese cross, 
cracks 

No oxycarbide 
found 

[14] 

TaC, TaC-10 
wt.% TaB2 

HIP 
TGA in air up to 

1500 oC 
L Ta2O5, B2O3 

Non protective 
scale 

TaB2 did not 
improve 
oxidation 
resistance 

significantly 

[15] 

TaC- 15 vol. % 
TaSi2, TaC-15 
vol.% MoSi2 

HIP 
In air 1600 oC for 

15 min 
L Ta2O5 

Maltese cross, 
cracks 

Badly oxidized 
with cracks. No 

noticeable 
difference 

between TaSi2 
and MoSi2 

[117] 

TaC-coated 
SiC/C-C 
substrate 

Plasma spray 

1800, 1900, 2100 
oC in air for 60 s 

with an 
oxyacetylene 

torch 

S  
Ta2O5, 
SiO2 

Ablation pit 

Coating will be 
broken through 
rapidly if the 
temperature 

higher than the 
melting point of 

Ta2O5 

[16] 
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TaC HIP 

3160 oC in air 
with a flow 

velocity of 200 
m/s with an 

oxyacetylene 
torch 

S 
β-a2O5,  

α-Ta2O5 

Porous,  
liquid phase 

formed with TaC 
island floated,  

A 4-step 
oxidation 

process was 
proposed, 

including the 
initial Ta2O5 

forming and 
melting and the 

formation of 
oxycarbide 

phase.  

[19] 

TaC HIP 

Oxyacetylene 
with 10, 15, 20 
mm standoff 

distance, 
corresponding to 
2300, 2190, and 

1990 oC 

S 
β-Ta2O5,  

α-Ta2O5 
Delamination  

Cracks  

Delamination 
caused by the 

combination of 
thermal 

mismatch and 
gasses escape.  
Cracks caused 
by the fixture 
due to thermal 

expansion. 

[26] 

TaC-GNP SPS 
Plasma spray  

gun,  
T=2575 ± 55 oC 

S 
Ta2O5,  

TaO3 

Surface burst 
Oxide scale 

thickness reduced 
with GNP 
additions  

The surface 
burst was due to 

the gaseous 
product.  

The addition of 
GNP can shield 

oxygen 
diffusion so 
increased the 

oxidation 
resistance. 

[27] 
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TaC-MoSi2 HIP 

Preliminary 
oxidation at 1600 

oC 
 Combustion 

flame of oxygen 
and hydrocarbon 

gasses  
 

S+L 

Ta2O5 

SiO2 (L) + 
Ta2O5 

SiO2 

(Ta, Si)O 
Mo5Si3 (S) 

Ta2O5 with 
Glassy Ta-Si-O, 

and crack 
Silica phase 

exposed during 
severer 

conditions 
 

Cracks were due 
to the gaseous 
products, and 

thermal 
mismatch. 

MoSi2 did not 
improve 
oxidation 
resistance 

significantly. 

[107] 

TaC-MoSi2, 
TaC-SiC 

Plasma sprayed Plasma flame over 
2000 oC for 60s 

S Ta2O5 
SiO2 

TaC coating was 
totally oxidized. 
The tac-mosi2 

oxide layer was 
partially 
detached. 

TaC-SiC showed 
low mass loss 

The MoO3 is 
responsible for 

the 
delamination, 

Ta2O5-SiO2 is a 
protective layer 

and prevent 
further 

oxidation.  

[76] 

TaC-SiC-CNT SPS 
Plasma arc-jet 

under a heat flux 
2.5 MW/M2 

S 
Ta2O5 
SiO2 

Multiple chasms, 
cracks, and deep 
pits are seen in 
TaC, but not in 

TaC-CNT, TaC-
CNT-SiC 
sample.  

The addition of 
CNT improves 

the thermal 
conductivity to 
dissipate heat 
better. Grain 

sealing was also 
overserved by 

CNT. SiO2 

showed 
protective 
properties 

against 
oxidation.  

[20] 
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Hafnium carbide 

HfC HIP 

TGA: 1200-1530 
oC 

Laser heating: 
1800-2200 oC 

PO2: 0.02 and 1 at 

L 
HfO2 

 

Permeated with 
small pores and 

cracks 

A gasses 
counter 

diffusion model 
was developed. 

The volume 
change due to 

the phase 
transformation 
did not cause 

cracks 

[108] 

HfC HfC powder 

Isothermal: 478-
602 oC 

PO2: 4, 8, and 16 
kPa 

 

L 
HfO2 

Oxycarbide 
C 

Cracks, powder, 
broke down into 
small particles 

After initial 
oxidation and 

formed 
oxycarbide, 2 

steps oxidation: 
(1) diffusion 

controlled, (2) 
Phase boundary 

controlled at 
50 % of 

oxidation.  
Residual carbon 

was found. 

[110] 

HfC CVD film 

240 s at 1400, 
2060 oC 

390 s at 2060 oC 
7 % O2, 93 % Ar 

L 
HfO2 

oxycarbide 

3 distinct layers 
formed after 
oxidation, 

including porous 
HfO2, dense 

oxycarbide, and 
inner carbide 

A moving-
boundary 

diffusion model 
developed and 
suggested that 
the oxycarbide 
is a protective 
layer with low 

O2 diffusion rate 

[109] 
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HfC (100) 
single crystal 

Floating zone 
technique 

Isothermal: 600-
900 oC 

Oxygen pressures: 
2 to 8 kPa mixed 

with Ar for 180 h.  

L 
HfO2 

 

Two zones were 
found.  

A dense inner 
zone and pores 
and cracks were 
found in zone 2 

Zone 1 
contained a 

twice amount of 
carbon than 

zone 2, and the 
thickness of 

zone 1 remained 
constant. Zone 2 
was HfO2 layer 
and its thickness 

increased 
linearly with 

time.  

[111] 

HfC-MoSi2 
Pressureless 

sintering 

Arc-jet testing, 
Lower enthalpy 
for 100 s, higher 

enthalpy for 300 s 

S HfO2,  
SiO2 

Surface crack. 
Discontinued 

SiO2 was found. 
Oxide scale 

showed layered 
structure. 

No continued 
SiO2 observed 

due to the 
gasses products. 

The layered 
scale consisted: 
1. Porous outer 

layer. 2. A 
dense interlayer 

and an 
oxycarbide 

layer. 3. 
Innermost layer 

HfOxCy  and 
SiOxCy.  

[25] 
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HfC-MoSi2 
HfC-TaSi2 

HIP 1600 oC in air L 
HfO2 

Hf6Ta2O17 

Cracks, pores. 
No continuous 

silica layer 

MoSi2 contained 
samples 

performed better 
than TaSi2 

based samples. 
Mixed oxide 

Hf6Ta2O17 was 
found due to the 

solid solution 
formed during 
the sintering.  

[107] 

HfC LPCVD  

Oxyacetylene 
torch at 3000 oC 
for 60, 120, 180, 

240 s.  

S HfO2 

3 distinct regions 
were found. 

Micro-cracks 
found at the 
hottest zone. 

Border region 
was porous. 

Promising 
protection 

against 
oxidation.  

The molten 
HfO2 and 

oxycarbide 
phase were 

responsible for 
such behavior. 

[118, 119] 

HfC-MoSi2 
Pressureless 

sintering 

Reactor called 
REHPTS. In air, 

at 1800, 2000, and 
2200 K for 20 min 

L 
HfO2 

HfSiO4 

Porous and 
cracked surfaces 
look similar after 

oxidation at 
1800, 2000, and 

2200 K.  

Oxidation 
performance 
was better in 

higher 
temperature test 

due to the 
formation of 
glassy phase 

[32] 
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HfC-SiC 
2D and 3D CVD 

coating 

in the air with the 
arc-image furnace. 

The highest 
temperature went 

up to 2000 oC 

L 
HfO2 

HfSiO4 

Extensive liquid 
phases formed 

where HfO2 

island floated. 

The liquid phase 
was responsible 

for the high 
oxidation 

performance. 
The 3D 
structure 

showed better 
oxidation 

resistance than 
2D structure.  

[112] 

TaC-HfC 

HfC-25 wt% 
TaC 

HIP 

TGA: 1200-1530 
oC 

Laser heating: 
1800-2200 oC 

PO2: 0.02 and 1 at 

L 
HfO2 

Hf6Ta2O17 

Oxide scale was 
porous. Surface 
was ragged and 

irregular 

Gaseous 
products 
evolution 
caused the 

cracking and 
spalling.  

[108] 

HfC-10, 20, 30 
wt %TaC 

CVD film 

In the air, in a 
tube furnace at 

1000 and 1200 oC. 
Oxyacetylene 
torch for high 
temperature 

L+S N/A 

Oxide scales 
were well 

attached to the 
substrate. 

Only HfC-20 
wt% TaC 

cracked and 
flaked away in 

high temperature 
tests.  

N/A [114] 

HfC-1-22 vol% 
TaC CVD+annealing 

Oxyacetylene 
torch at 1750 oC S N/A Scale spalled  

More spalling 
with increasing 

TaC content 
[115] 



  

45 
 

3HfC-1TaC CVD 
oxyacetylene 

torch 
S 

HfO2 

Hf6Ta2O17 
3 zones were 

observed  

The formation 
of Hf6Ta2O17 

was responsible 
for the 

outstanding 
oxidation 

performance. 

[116] 

Ta0.8Hf0.2C-
MoSi2 

Pressureless 
sintering 

oxyacetylene 
torch 

S 
Ta2Hf6O17 

Ta-Hf-Mo 
oxycarbide 

Double layer 
structure was 

observed 

The outer layer 
comprised 

Ta2Hf6O17, inner 
layer was Ta-

Hf-Mo 
oxycarbide. 
Both layers 

were protective 
against 

oxidation.  

[10] 
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Chapter III Materials and Methods 

This chapter details the materials used, the characterization techniques and 

equipment utilized in the present study.  

 

3.1 Materials 

 In this study, only two ceramics powders were used for synthesizing the TaC-HfC 

solid solution samples. No sintering or reinforcing additives were added. In the following 

subsections, the characteristics and properties of these two powders will be described.  

 

3.1.1 Tantalum Carbide Powder 

 Tantalum carbide powder in this study is a commercial powder obtained from 

Inframat Advanced Materials LLC, Connecticut, USA. It has dark brown color. The 

powder has an average particle size of 0.360 ± 0.016 µm measured by imaging processing 

method. The purity information is provided by the vendor, and the information is as follow: 

the purity of the powder is 99.7 wt. %, the impurities include: free carbon (<0.15 wt. %), 

oxygen (0.15-0.30 wt. %), and niobium (< 0.3 wt. %). The Ta to C ratio is approximately 

1:1. The Ta to C ratio is also provided but also verified by the XRD analysis on this powder. 

The lattice parameter of TaC was measured as 4.4483 Ȧ by XRD analysis.  
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Figure 3.1: SEM image of the as-received TaC powder  

 

3.1.2 Hafnium Carbide Powder 

 Hafnium carbide powder is a commercial powder obtained from Materion LLC, 

Cleveland, Ohio, USA. The powder has an average particle size of 0.330 ± 0.075 µm 

measured by imaging processing method. The purity information is provided by the vendor, 

and the information is as follow: the purity of the powder is 99.5 wt. %, the impurities 

include: Cd, Cr, Pb (<0.1 wt. %), Al (0.08 wt. %), and Zr (0.1 wt. %). The Hf to C ratio is 

approximately 1:1. This is verified by the XRD analysis on this powder. The lattice 

parameter of HfC was measured as 4.6357 Ȧ by XRD analysis.  
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Figure 3.2: SEM image of the as-received HfC powder 

 

3.2 Experimental Procedure 

3.2.1 Powder Preparation Methods 

 Five compositions of TaC-HfC were selected in the present study: pure HfC, 80 

vol.% HfC-20 vol.% TaC, 50 vol.% HfC- 50 vol.% TaC, 20 vol.% HfC- 80 vol.% TaC , 

and pure TaC. Different powder treatment methods have been explored in the present study 

to (1) achieve uniform particle size in the starting pure TaC and HfC powder, (2) uniformly 

mix TaC and HfC for the synthesis of TaC-HfC solid solutions. Among different powder 

treatment methods, tip sonication and ball milling were selected for the present work. 

Compared to regular bath sonication, tip sonication provides much more intense energy. 
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TaC and HfC are heavy particles; higher energies are required to achieve the goals in the 

present study. Similar logic applies to the selection of ball milling technique too; strong 

mechanical force introduces during the ball milling would be beneficial for breaking down 

agglomerates and better dispersion. Due to the similar in densities, centrifuge mixing can 

also be utilized for mixing powders. The detailed description of three techniques will be 

provided below.   

 Tip sonication was conducted by a 3/4 ʺ high gain probe attached to a Vibra-Cell 

VCX750 ultrasonic processor (Sonics & Materials, Inc., Newtown, CT). For pure TaC, 15 

g of as-received TaC powder was mixed with 400 ml of acetone inside a 500 ml beaker. 

Acetone was served as mixing media as well as protection against the oxidation and other 

contamination during the sonication. The beaker was placed into an ice bath to reduce the 

heat from the sonication process. Each batch of powder mixture was sonication for 45 min 

at 95% amplitude. Following sonication, the powder mixture was dried inside overnight 

inside an oven at 80-85 oC. The mortar and pestle were crushed and further heated for 

additional 2 hours to ensure fully dried. Previous sintering experience on as-received HfC 

showed 98% of densification without any powder treatment and sintering additives, so no 

powder treatment was performed on powder.  

 Centrifuge mixing was done by a planetary centrifugal mixer (Model: ARM-310, 

Thinky Mixer, Thinky USA Inc., Laguna Hills, CA. USA) for 30 s with a spinning speed 

of 2000 rpm. The mixed powders were sent to tip sonication for another 10 min and 

followed by drying process mentioned above.  



  

50 
 

 Ball milling was utilized in the present study as well. Powders were mixed by a 

desktop high-energy vibratory ball mill machine (Across International LLC. New Jersey, 

USA).  Pure TaC and HfC initial powders were ball milled for one hour individually, and 

then the powders mixture was milled for an extra hour. The ball to powder ratio was 3:1, 

using WC balls 6 mm in diameter. No further powder refinement was intended, which is 

why the ball to powder ratio was set lower than one would normally do in the ball milling 

treatment. The mixing results and phase evaluation after ball milling will be discussed in 

Chapter 4.  

 

3.2.2 Consolidation by Spark Plasma Sintering 

 Mixed powders were consolidated by spark plasma sintering using a Thermal 

Technologies model 10-4 spark plasma sintering machine (Thermal Technologies, LLC, 

Santa Rosa, CA). A 20 mm in diameter graphite die was used due to its high electrical and 

thermal conductivity. Graphite foils have wrapped the powders between the powders and 

the inner wall, and the upper and lower punches for easy removal. The temperature was 

measured by a pyrometer targeting at a pre-drilled hole on the side of the graphite die. 

Samples were sintered at 1850oC with a heating rate of 100 oC/min and a pressure of 60 

MPa. The holding time was 10 min and the environment in the vacuum was set at a pressure 

of 4 Pa. The sintering parameters were decided based on our previous experience on 

sintering TaC-GNP composites. [18] Near full dense samples was achieve in these studies. 

The relative ram displacement along with the temperature, pressure, power input, and 

vacuum was logged during sintering. This information can be used for the calculation of 
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the instantaneous relative density, which can provide insight information on the 

densification mechanisms. The instantaneous relative density can be calculated by the 

following equation:  

                                          
f

f

inst
L

L
ρρ 







=                                Eq. 3.1 

In which ρinst is the instantaneous relative density, L is the specimen thickness at time t 

throughout the SPS process, which can be calculated by subtracting the ram displacement 

from the initial compact thickness. Lf and ρf are the final specimen thickness and final 

densification, respectively.  

 

3.3 Microstructural Characterization 

 The sintered pellets were ground using SiC paper to remove the graphite foil 

surrounded the pellets surface. The apparent bulk density of the sintered pellets was 

measured by Archimedes methods. De-ionized water was used as immersion media. 

Helium gas pycnometer (Accupyc 1340, Micromeretics Instrument Corporation, Norcross, 

GA) was also employed to measure the densities. Helium pycnometer should give more 

accurate results, but the results can be affected if the sample contains open pores. The 

results from both methods were compared to achieve the most accurate data. The relative 

density was obtained from the ratio between the measured density and theoretical density. 

Theoretical values were calculated based on the rule of mixing. Phase’s information for the 

each starting powder and the sintered samples were characterized by X-ray diffraction 

(XRD) (Siemens D-500) using Cu Kα radiation at a scan rate of 2 deg/min. The operating 
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voltage and current were set at 40 kV and 35 mA, respectively. The sintered pellets were 

sliced off a 2-3 mm strip by a low-speed diamond saw for fracturing. JEOL 6330F FE-

SEM was used to examine the morphology of initial powders, mixed powders and fracture 

surface of sintered pellets. The fracture surfaces were also used for measuring the grain 

size by image processing (Image J). At least 30 grains were measured for each sintered 

samples. A Focused Ion Beam (FIB) (JIB 4500, JEOL USA Inc., Peabody, MA) was used 

to expose subsurface to investigate the grain sizes and elemental analysis by an integrated 

X-ray spectroscopy (EDS). TEM was conducted by a Tecnai FEI F30 TEM equipped with 

field emission gun (FEI). The operating voltage was 300 kV. “Digital Micrograph” 

software was used for micrograph analysis. 

 

3.4 Mechanical Properties Characterization 

 Remaining samples were ground using diamond grit paper to the 15 µm level 

followed by polishing with diamond suspensions to a 1 µm finish. Nanoindentation was 

carried out by a Hysitron Triboindenter TI-900 to investigate the elastic moduli for each 

sintered samples. Sixteen indents were performed on each sample at different locations 

with a constant load of 8000 µN. Vickers hardness was measured by a LECO LM810AT 

(LECO Corporation, St. Joseph, MI) microindentation hardness tester at a load of 1 kg and 

a dwell time of 10 s. 7 to 8 indents were performed on each sample, and the average and 

standard deviations were calculated as well as the crack length was also measured. 

Indentation toughness was then evaluated by Anstis equation [120].  



  

53 
 

                                          




















=
2

3

2

1

1 016.0

C

P

H

E
K C                                 Eq. 3.2 

 

3.5 Oxidation Study  

 Three 20 mm in diameter pellets of each TaC-HfC solid solutions were prepared 

by ball milling method and sintered using the same receipt mentioned before. The oxidation 

tests were conducted by a plasma flow generated from a SG-100 DC plasma gun. The input 

power was 30 KW and the exposure time was 60s, 180s, and 300s for all the samples. A 

75 mm standoff distant was measured from the plasma gun and sample front surface. A 

significant standoff distance ensured the ample air (oxygen) exposure. Primary argon gas 

flowed at 56 slpm, and secondary helium gas flowed at 60 slpm. The front side temperature 

and gas flow velocity were evaluated by an accuraspary in-flight particle diagnostic sensor 

(Tecnar Automation Ltd., QC, Canada). The sensor head was mounted 75 mm from the 

plasma gun, and AlO-101 spray dried powder was used as spraying powder for the 

temperature and velocity measurement. Pellets were placed in front of a steel tube and held 

by vacuum. A thermocouple was inserted into the steel tube to measure the samples’ back 

side temperature. It was swirled into a coil shape to make sure proper contact during the 

oxidation tests. A schematic of the oxidation study was displayed in Figure 3.3. Post-

oxidation analysis included phase evaluation by XRD, morphology, and elemental analysis 

by SEM and EDS.  
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Figure 3.3: Plasma torch oxidation setup 
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 Chapter IV: Results and Discussion 

 The objectives of the present work are (1) achieving the full dense sintered samples, 

studying the sintering mechanism of TaC-HfC mixed carbide samples, and investigating 

the solid solution formation without the help of sintering aids. (2) Evaluation of the 

oxidation behavior under the simulated environment. In this chapter, detailed discussions 

on the powder treatment, sintering process, and oxidation behavior will be carried out.  

 

4.1 Powder Treatment 

 The relationship between the powder treatment and final relative density has been 

investigated. In both TaC and HfC as-received powders, major agglomerations were found. 

The size of agglomerates was up to 100 µm. Figure 4.1 shows the lumps in both as-received 

TaC and HfC powders. The as-received HfC without powder treatment was sintered by 

SPS using the parameters mentioned in chapter 3; the final densification shows 98%, which 

was satisfying considered no sintering aids additions and sintered at a relatively low 

temperature. (The sintering temperature in most of the studies on sintering HfC was 

exceeded 2000 oC). Previous studies in our group on the sintering of TaC suggested that 

TaC has really poor sinterability; powder treatment is necessary to achieve highly dense 

pellet. Tip sonication was applied to as-received TaC powder for 45 min. The treated 

powder was shown in Figure 4.2. It can be seen that the particles lumps have been broken, 

but major agglomeration still can be seen. This powder was then sintered by SPS and 85% 

dense pellet was achieved. Even with 45 min tip sonication, the TaC was still poorly 

sintered. A close look at the agglomerates in the as-received TaC powder shown in Figure 
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4.2b. The agglomerates were partially fused already. Ball milling was then applied to the 

powders for its higher energy during the mixing process. Figure 4.3 shows the as-received 

TaC and HfC powder after ball milling. Compared to the powder after tip sonication, the 

particles have been broken down, the size of the powder was uniform. It has been pointed 

out that small particles with uniform size distribution are a must for achieving high 

densification in the sintering process. [121] The TaC ball milled powder showed much-

improved densification, the final relative density indicated a 97% dense pellet had been 

made. So the ball milling was used for all the powder treatment in this study.  

 



  

57 
 

 

Figure 4.1: Agglomeration in as-received powders: (a) TaC, (b) HfC 
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Figure 4.2: TaC powder after tip sonication: (a) Low magnification picture of tip sonicated 
powder, (b) High magnification picture of partially fused agglomeration 
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Figure 4.3: Powder morphology after ball milling: (a) TaC, (b) HfC 

 The ball milling is a high energy mixing processing, and TaC and HfC can form 

unlimited solid solutions, so XRD analysis has also conducted on the powders before and 

after ball milling to detect if there was any phase transformation occurred during the ball 

milling process. The results shown in Figure 4.4. There is no phase transformation has been 

detected. This result indicated that the ball milling process in this study was solely used to 

break down the agglomerates, and did not affect the phases of TaC and HfC powders.  
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Figure 4.4: Powder XRD patterns of five powders after ball milling treatment 

 

 

4.2 Spark Plasma Sintering of TaC-HfC Solid Solution 

4.2.1 Sintering Mechanism 

 Results of characterization of the density and mechanical properties of sintered 

samples are tabulated in Table 4.1. For all five compositions of more than 96% 

densification was achieved. The addition of HfC, including pure HfC itself presented over 

98% densification. This indicates that at the present conditions HfC had superior 

sinterability than that of TaC. Fracture surfaces of sintered composites were examined by 

SEM and shown in Figure 4.5 and 4.6. All five samples show near fully dense fracture 
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microstructure, but micropores were also observed in some of the cases, especially in pure 

TaC. The relative density of pure TaC was measured at 96.7%. There were signs of liquid 

phase formation during SPS, which were mostly found at the grain boundaries, and on the 

surfaces of the pores on TaC’s exposed grains, as the arrows point out in Figure 4.5b. The 

phenomenon coincided with Kelly and Graeve’s work on pore formation mechanisms for 

sintering TaC. The liquid phase was identified as melted Ta2O5. The Ta2O5 comes from the 

oxygen contamination in the initial TaC powder. [122] 

Table 4.1: Density, grain size and mechanical properties of sintered TaC-HfC 
Name Densification 

(%) 

Avg. 

Grain 

Size 

(µm) 

 

Microhardness 

(GPa) 

Elastic 

Modulus 

(GPa) 

Indentation 

toughness 

(MPa·m1/2) 

Pure TaC 96.7 6.8±1.4 12.27±0.87 331.67±4.23 4.56±0.52 

T80H20 97.8 6.2±2.1 16.39±0.86 443.24±23.65 4.58±1.06 

T50H50 98.2 3.8±1.2 17.15±1.1 523.82±7.03 6.03±0.70 

T20H80 98.8 3.1±1.1 19.06±0.27 577.30±6.04 5.51±0.56 

Pure HfC 98.5 2.3±0.7 18.46±0.22 360.86±29.53 3.39±0.97 
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Figure 4.5: Fracture surface of Pure TaC. (a): low magnification, (b): High magnification, arrows 
pointed at liquid phase. (Tiny lumps on TaC grain were over-coated gold) 

The average grain size increased from 0.36 µm, which is the initial particles size, 

to 6.8 µm. Some significant gaps were noticed in pure TaC samples, which is due to the 
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fast grain coarsening without proper densification. In fact, numerous small particles were 

found sitting on larger grains as shown in Figure 4.5b. The average size of these little 

particles was close to the initial particle size, and it appears as if they were being absorbed 

by the larger grains. This behavior can be explained by Ostwald Ripening mechanism. This 

also suggested that some of the pores of TaC’s exposed grain surfaces could be the residual 

dents left by the small particles when the sample was fractured.  

With the addition of HfC, the morphology of the fracture surfaces changed 

dramatically. Figure 4.6 a, b, c are the fracture surfaces of T80H20, T50H50, and T20H80 

respectively. At first glance, the overall densification has been improved. The exposed 

grain surfaces were clean and free from pores as those in the exposed TaC grains. Fracture 

behavior also shifted from intergranular to transgranular which implied stronger grain 

bonding as a result of better densification. Overall densification for these three samples 

was 97.8%, 98.2%, and 98.8% respectively, with some marginal improvement when HfC 

content is increased. However, the average grain sizes of these samples dropped 

significantly: 6.2 µm for T80H20, 3.8 µm for T50H50 and 3.1 µm for T20H80. It was 

evident that the addition of HfC suppresses grain growth during SPS. What was also of 

interest is that the pores seen in the pure TaC sample, which was caused by oxygen 

contamination, have almost disappeared. This occurred in the T80H20 sample where only 

20% of HfC was added. This implicated that the oxygen contamination was transferred. 

There was a new feature in fracture surfaces of samples that contain HfC, which was 

highlighted in the circled area of Figure 4.6a. 
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Figure 4.6: Fracture surfaces of HfC contained samples. (a): T80H20, circled areas were 
amorphous due to oxygen contamination, (b): T50H50, (c): T20H80, (d): pure HfC 
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This has not been observed in pure TaC. The circled area in Figure 4.6 a showed 

smeared, ultrafine grains that were noticeably smaller than the average initial particle size 

of HfC or TaC. EDS on the FIB milled section identified oxygen, carbon, and hafnium as 

the main elements in the ultrafine region (The EDS mapping and point analysis were shown 

in the Appendices, section 1). Oxygen was not detected in the rest of milled surface. The 

oxygen content in these areas was around 16 at.%, significantly richer than the one in initial 

HfC particles (<2 at.%), suggesting the oxygen was transported from elsewhere. Based on 

thermodynamics calculation completed using FACTSAGE software (results shown in the 

Appendices, section 2), HfC can react with Ta2O5 and form TaC, HfO2, and CO in the 

temperature range (1850 oC) of this study. The fine grained region in HfC-contained 

samples can be recognized as a mixture of HfC, HfO2, and Hafnium oxycarbide phase. Pure 

HfC sample in Figure 4.6d shows high densification with the mildest grain growth. Since 

the activation energy needed for diffusion to occur in HfC was much greater than that of 

TaC [28], very limited grain growth took place in pure HfC sample. The amorphous 

particles can still be found in pure HfC sample but at many small concentrations than in 

the 3 TaC-contained samples. One possible reason is the lower oxygen contamination in 

pure HfC sample, up to 0.3 % was reported for the TaC powder from the manufacturer vs. 

trace amounts in the HfC sample. It was evident that the porosity in TaC-HfC samples was 

mainly due to the oxygen contamination, and it affected TaC and HfC in different ways. 

The pore formation in TaC was caused by liquefied Ta2O5 (melting point of Ta2O5 is1850 

oC). HfO2 would not melt since it has a much higher melting point i.e. 2800 oC. The trace 

amount of oxygen contamination on HfC powder surface retarded the diffusion between 

HfC, hence, resulted in minor porosity in the final HfC-contained pellets. 



  

67 
 

To better understand the sintering behaviors of these five samples, overall 

densification versus heating period time curves are plotted and displayed in Figure 4.7. Full 

densification was reached prior to the end of the holding time for all samples. So, the 

holding time can be reduced in the future work to restrain the grain growth during the 

holding. Each sample presents three distinct stages based on this plot, the starting and end 

time for each stage has been summarized in Table 4.2. The 0 s was defined when the 

temperature reached to 600 oC due to the sensitivity of the pyrometer. In the first stage, the 

maximum pressure was achieved around 100 s. External loads were responsible for the 

initial densification through rearrangement and compaction of the initial powders. 

Furthermore, a minor degree of diffusion started. The second stage started from 400 s to 

the time the samples reached full densification. In this second stage, the slopes of each 

curve reflect the densification rate. The densification rates for five samples was calculated, 

and results were tabulated in Table 4.2. It was apparent that the pure TaC had the quickest 

diffusion rate, and the rest of the samples had similar densification rates. The onset 

densification time increased with the increase of the HfC addition. The delay in 

densification for HfC contained samples can be explained from the energy point of view.  

During the SPS the densification process, though with the different driving forces, is 

mainly a diffusion process. The energy provided by SPS is responsible for heating the 

samples and accommodating the diffusion. The activation energies of diffusion for pure 

TaC and HfC are 39.49 kJ and 60.42 kJ respectively [28]. A 21 kJ energy difference 

between the pure TaC and pure HfC resulted in a 2 min early densification as shown in 

Table 4.2.  For the three solid solution samples, the formation of the solid solution has been 

observed in the present study (Detailed analysis shown in the next section) and also has 
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been confirmed by other researchers [7-11].  The enthalpy of mixing for three solid solution 

samples have been calculated (the procedure shown in the Appendices, section 3) and can 

be found in Table 4.2. Since the enthalpy of mixing is greater than zero for all three solid 

solution samples, extra energies are needed in order to form a solid solution. Additionally, 

due to the higher activation energy for diffusion of HfC, the onset densification time 

gradually increased from T80H20 to T20H80 samples. The total time needed to reach the 

highest densification (stage 2) for three solid solution samples and pure HfC sample were 

comparable, and the slope of stage 2 were the same. However, the pure TaC sample showed 

extreme high densification rate compared to the rest 4 samples. This advocated the 

existence of a faster densification mechanism beside diffusion and well collaborated with 

aforementioned liquid phase formation in TaC sample due to the melt of Ta2O5 during SPS. 

No liquid phase formation was observed in the rest 4 samples; the dominated densification 

mechanism was the only diffusion in the HfC contained samples. The addition of HfC also 

introduced the lattice mismatch, so the diffusions in HfC contained samples were slower. 

Table 4.2: Densification stages and enthalpy of mixing of TaC-HfC samples of five compositions 
 1st stage 2nd stage 3rd stage Densification rate 

(%/min) 

∆Hmix 

(kJ) 

Pure TaC 0s ~ 304s 304s ~ 

479s 

479s ~ 

750s 

16.2 N.A. 

T80H20 0s ~ 358s 358s ~ 

685s 

685s ~ 

750s 

7.8 139.01 

T50H50 0s ~ 413s 413s ~ 

722s 

722s ~ 

750s 

7.8 139.05 

T20H80 0s ~ 420s 420s ~ 

758s 

758s ~ 

750s 

7.2 139.10 
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Pure HfC 0s ~ 460s 460s ~ 

753s 

753s ~ 

750s 

7.8 N.A. 

 

Figure 4.7: Relative densities verse time plot during spark plasma sintering 

 

 

4. 2. 2 Phase Evaluation of Sintered Pellets 

Figure 4.8 shows the XRD patterns of five sintered samples. Figure 4.8a shows the 

XRD patterns of starting powders and sintered pellets. For the pure HfC and TaC, peak 

location, width and relative intensity remain consistent, as expected.  In the mixed carbide 

samples, displays in Figure 4.8b, the peaks of each composition shifted between the pure 

TaC and HfC peaks. These results strongly demonstrate the formation of solid solutions. 

These results contrast the findings of Ghaffari et al. in which TaC0.8HfC0.2 was consolidated 
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with SPS and disilicide sintering aids [10], in that study, two individual peaks form with 

the HfC remaining. This may be a result of the processing parameters (1650 oC, 30 MPa 

pressure, and a holding time of 5 min) as it can be concluded that higher temperature, 

pressure, and longer holding time were needed to have thorough solid solution formation.  

In addition, the use of sintering aids could also have been responsible for the two individual 

phases remaining, as they may induce additional diffusion paths.  
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Figure 4.8: XRD results of sintered TaC-HfC composites. (a): pure TaC powder vs. pellet and 
pure HfC powder vs. pellet, (b) XRD of 5 sintered pellets, caption showed peaks from 33o to 37o 

 

The lattice parameters of TaC-HfC solid solution obeyed Vegard’s law. The TaC and HfC 

values were taken as 4.441 Å and 4.645 Å respectively. [5] The theoretical values of 

Ta0.8Hf0.2C, Ta0.5Hf0.5C and Ta0.2Hf0.8C were calculated. The calculated lattice parameters 

from XRD patterns of three solid solution samples were summarized in Figure 4.9. The 

calculated lattice parameters from XRD matched the theoretical values. For additional 

confirmation, HR-TEM was also employed to measure the lattice constants of three solid 

solution samples to confirm solid solution formation further. In the Figure  4.10, three areas 

with three different lattice parameters were identified and labeled as “a,” “b”, and “c” 

respectively. The lattice parameters were measured as 4.572 Ȧ, 4.467 Ȧ and 4.486 Ȧ for 

the area “a”, “b”, and “c”. The values deviated from the original lattice parameters of TaC 

and HfC suggesting the formation of solid solutions. However, compared to the theoretical 

value calculated from Vegard’s Law, only the area “c” can be considered as T80H20 solid 

solution. TaC and HfC can form a solid solution at any compositions, and the formation of 

solid solution is a diffusion process. Even there was only one single phase shown in the 

XRD pattern; the samples should be considered as mixtures of TaC-HfC solid solution with 

different compositions.  
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 Figure 4.9: Lattice parameter comparison between theoretical value and calculated values from 
XRD 
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Figure 4.10: HR-TEM image of T80H20. The “a” area had the lattice parameter close to the one 
of the HfC, the one in the “b” area closed to the one of the TaC, and “c” area was completed 

“T80H20.” 

 

 

4.2.3 Mechanical Properties of Sintered Pellets 

The micro-hardness, elastic moduli, and indentation toughness values for all five 

samples are summarized in Table 4.1. The pure TaC sample shows the lowest values in 

both hardness and elastic modulus. The relatively high porosity and large grain size were 

responsible for these relatively low values. In addition, the pure HfC sample had higher 

densification and much smaller grain size; it displayed higher values of hardness and elastic 

modulus than those for the pure TaC sample. The solid solution formation between TaC 

and HfC is a substitutional reaction. The Ta/Hf atoms are replaced by Hf/Ta atoms in the 

lattices. As a result, some degree of lattice distortions is introduced into the lattices. 

Analogous to solid solution strengthening mechanism in metal alloys, these distortions 

create a local stress field which results in increased hardness. Figure 4.9 shows position 
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deviation in the lattice parameter of T80H20 sample and negative deviation in T20H80 

sample which could be due to incomplete solid solution formation. Since Hf is a larger 

atom than Ta; the deviation could also be the results of lattice distortion created by the 

introduction of larger/smaller atoms inside the lattices. This phenomenon explained the 

increased hardness values in solid solution samples. Similar strengthening mechanisms can 

be found in CrO2 strengthening Al2O3, Y2O3 stabilize ZrO2.[123, 124] In addition, the 

overall densification for solid solution samples increased with the increased HfC content, 

while the grain size decreased. So the increase in hardness values in solid solution samples 

was anticipated and it was in full accordance with the classic relationship between hardness 

and grain sizes. Elastic moduli (E), followed the same trend as hardness in all samples. 

Higher E values were observed for solid solution samples than in monolithic carbides. E 

value increased with an increasing HfC content for solid solution samples. Although elastic 

modulus is a material’s intrinsic property, the explanation in hardness values can also be 

applied in elastic moduli data since the evaluation of elastic modulus involved indentation 

method. 

 The indention toughness followed the same trend as the hardness and elastic 

moduli data as well. Despite the toughness value for T50H50 was higher than the one for 

T20H80, the difference was not statistically significant. The increase in overall 

densification also strengthened the bonding between the grains. This was concluded from 

the change in fracture mode shifted from inter-granular (pure TaC) to trans-granular (three 

solid solutions). Moreover, the solid solution samples had unique ultrafine grain regions 

that was not found in the pure carbides samples, the ultrafine grain can serve as energy-
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dissipation zone resulting in higher indentation toughness in solid solution samples than in 

pure carbides samples. 

 

4.3 Evaluation of Oxidation Performance 

4.3.1 Determination of Oxidation Conditions 

 The high-temperature simulated oxidation tests have been performed on each 

sintered samples for 1, 3, and 5 min. The SG-100 plasma gun was utilized in this study 

since it is originally used for plasma spray, the temperature and velocity generated in the 

present tests were determined by in-flight particle diagnosis. An accuraspray sensor head 

was utilized, and ALO-101 spray dried powder was used for analyzing. The sensor was 

targeted at a distance of 75 mm from the spray gun to measure the temperature of the 

samples surface. Figure 4.11 shows the results from the accuraspray sensor. The 

temperature at the surface was measured above 2700 0C with a velocity of 330 m/s. With 

these simulated testing conditions, samples would experience both oxidation and ablation 

similar to the ones that space vehicles would face upon reentry.  
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Figure 4.11: Accuraspray screenshot the temperature measurement 

 

 

4.3.2 Morphologies of Post-Oxidation Samples 

 The morphologies of the post-oxidation samples were studied by SEM and the 

images for each sample are shown in Figure 4.13-22. Most of the samples remained intact, 

and did not show any spallation or delamination except for pure TaC samples. The oxide 

layers of TaC post-oxidation samples were very fragile, and spallation was observed during 

the tests. So both oxide layer thickness measurement and weight changes data might not 

be accurate. The data displayed in the Table 4.3 is just for comparison, not for any 

quantitative analysis. 
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Table 4.3: Oxide layer thickness 

Unit: µm PT T8H2 T5H5 T2H8 PH 

1 min 35.99±2.33 19.74±1.00 9.00±0.44 20.30±2.29 57.28±3.44 

3 min 73.36±6.64 29.18±1.43 15.73±1.09 50.54±3.43 151.05±2.86 

5 min 305.20±11.47 39.64±1.91 28.46±1.41 101.04±2.36 189.78±2.72 

  

For the sake of better visualization, the oxide layer thickness data was also plotted 

in bar chart shown in Figure 4. 12. 

 

 

Figure 4.12: Oxide layer thickness bar chart plot 

From Figure 4.12, it can be concluded that solid solution samples display better 

oxidation resistance compared to both monolithic carbides. Among the three solid solution 
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samples, T50H50 had the thinnest oxide layers for all the three time durations. SEM 

examination on the top surfaces and cross-sections of each samples are discussed below.  

 

4.3.2.1 The Morphologies of Pure HfC Top Surface and Cross-Section. 

For pure HfC, there was no significant difference between the samples for different 

time duration oxidation tests. In the low magnification pictures, there is no significant 

difference between 1 min test and 3 min test, and the top surfaces for both the time duration 

are dense with scattered cracks. The top surface for 5 min is less dense, and beside the 

cracks that be seen in the 1 min and 3 min tests, spallation could also be observed. The 

underneath materials were fully exposed to the high-temperature plasma flame and 

oxidized. The high magnification pictures for each test time duration are also shown. All 

three tests showed the sign of melting and the degree of melting increased with the grown 

in testing time. In the 1 min test, grains can still be observed, and the size of grains was 

still comparable to the initial HfC grains. However, in the 3 min and 5 min tests, the grains 

disappeared. The high magnification pictures suggest that the grains have melted and fused 

together. The melting point of HfO2 is around 2800 oC, the sign of melting could also verify 

our temperature measurement for the present study.  

The cross-section of HfC oxidized samples were porous, and only a single layer 

oxide was observed. Samples from different time duration did not show obvious difference 

except for the thickness. The thickness of the oxide layers for the three samples were 

uniform. Most outer layers exhibited the sign of melting, in accordance with the 

observation from the top surface. Oxidized grains could be clearly seen in the cross-section, 
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suggesting that the oxidation initiated at the grain boundaries. The cracks were inter-

connected, which provided a pathway for the gaseous products without disrupting the oxide 

layers. One of the important reasons for HfC has superior oxidation resistance is the 

formation of a dense, crack-free oxycarbide layer, which is considered as a protective layer. 

However, in the present study, such oxycarbide layer is barely visible; only few micron 

thick dense layer can be seen, as shown in Figure 4.14b.HfC can dissolve oxygen without 

turning into HfO2, so the oxidation process of HfC always begins with the adsorption and 

diffusion of oxygen into the lattice. However, in the present study, high temperature and 

high velocity accelerate the diffusion process. Hence, the oxycarbide phase became 

unstable and transformed into HfO2.  
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Figure 4.13: Top surface of the pure HfC after oxidation tests. Low magnification (a) 1 min, (b) 3 
min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, and (f) 5 min  
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Figure 4.14: Cross-section of the pure HfC after oxidation tests. Low magnification (a) 1 min, (b) 
3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, and (f) 5 min  
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4.3.2.2 The Morphologies of T20H80 Top Surface and Cross-Section 

The top surfaces of T20H80 samples were dense but covered with much more 

cracks compared to pure HfC samples. The crack density increased with increased 

oxidation time duration. The high magnification pictures also showed the signs of melting. 

This is expected since the melting point of Ta2O5 from the TaC addition is only around 

1800 oC, way below our testing temperature.  

The cross-section images of T20H80 samples showed a single layer of oxides and 

the thickness was uniform. Although the oxide scales were covered by cracks, they were 

much denser than those for pure HfC. The added TaC would rapidly oxidize and melt under 

current testing conditions. The liquid phase of Ta2O5 with solid frame HfO2 structure 

improved the oxidation resistance. The thickness of the oxide scales in T20H80 samples 

reduced by more than 50% as compared to pure HfC oxidation. From the cross-section 

images, the grain shapes could still be seen, so the grain boundaries were the preferential 

diffusion pathway as well for T20H80 samples. Since the testing temperature was high 

enough, the resultant HfO2 could be sintered, and the liquid Ta2O5 serve as a sintering aid. 

As a result, the oxide scales in T20H80 samples were denser than those in pure HfC 

samples.  
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Figure 4.15: Top surface of the T20H80 after oxidation tests. Low magnification (a) 1 min, (b) 3 
min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, and (f) 5 min  
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Figure 4.16: Cross-section of the T20H80 after oxidation tests. Low magnification (a) 1 min, (b) 
3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, and (f) 5 min  
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4.3.2.3 The Morphologies of T50H50 Top Surface and Cross-Section 

The top surfaces for T50H50 were dense and crack-free. Long straight lines left by 

the grinding process could be spotted in all the samples’ surface, suggesting the oxidation 

was not severe for all the three time durations. Low magnification images showed the sign 

of melting and some micro-cracks as the results of gaseous products.  

The cross-section pictures of the T50H50 post-oxidation samples showed a very 

dense oxide scale. The oxide scales and residual carbides had distinct interfaces, and no 

other layers could be found in the scales. Some cracks still can be spotted inside the oxide 

scales of the three time durations. But crack-healing can also be observed as the oxidation 

proceeded. Such thin oxide scales indicating a protective oxidation mechanism was 

dominant during the T50H50 oxidation. The XRD analysis revealed a hafnium carbide 

oxide formed during the oxidation testing, which was responsible for this promising 

oxidation resistance. A detailed description will be provided in the next section.  
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Figure 4.17: Top surface of the T50H50 after oxidation tests. Low magnification (a) 1 min, (b) 3 
min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, and (f) 5 min 
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Figure 4.18: Cross-section of the T50H50 after oxidation tests. Low magnification (a) 1 min, (b) 
3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, and (f) 5 min 
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4.3.2.4 The Morphologies of T80H20 Top Surface and Cross-Section 

The top surfaces of T80H20 were similar to the surfaces of T20H80 samples. The 

surfaces were flat and covered by cracks. Besides the cracks, spallation was also noticed 

in the surfaces and intensified with the increase of testing time duration. The spallation 

caused much larger opening than just the cracks did, and the opening created a pathway for 

oxygen diffusing deeper in the samples.  

Although the cross-section of T80H20 samples suggested the oxide scales were full 

of cracks, but no sign of delamination was observed, the scales remained intact in all the 

three cases. The high magnification images showed few deep cracks crossed the scale 

thickness, which was identified as a gaseous pathway and cracking caused by thermal 

mismatch upon cooling. In the 5 min testing sample, signs of liquid attacking were spotted 

indicating massive liquid phase generated during the oxidation testing. Such signs of liquid 

attacking could also be found in T50H50 samples, but T80H20 showed much severe 

attacking, especially in 5 min testing. This might be due to the low melting point of Ta2O5 

from the increased amount of TaC. Another interesting characteristic of T80H20 cross-

section images was the significant crack-healing. In the 5 min testing sample, the oxide 

scale was dense and without any obvious cracks or pores. This phenomenon could also be 

explained by the liquid phase formation, which will be elaborated in the following text.  
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Figure 4.19: Top surface of the T80H20 after oxidation tests. Low magnification (a) 1 min, (b) 3 
min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, and (f) 5 min 
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Figure 4.20: Cross-section of the T80H20 after oxidation tests. Low magnification (a) 1 min, (b) 
3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, and (f) 5 min 
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4.3.2.5 The Morphologies of Pure TaC Top Surface and Cross-Section 

The quality of the top surfaces of TaC samples was the worst among all the five 

samples. They not only were full of cracks and pores but also showed delamination. The 1 

min testing top surface was loose but still intact. Delamination started occurring in 3 and 5 

min testing. The surface became irregular and uneven. The excessive gaseous products 

lifted the surfaces and disrupted the integrity of the oxide scale. The high magnification 

images showed some sub-micron grains. The sub-micron grains came from the re-

crystallization of Ta2O5 or other tantalum oxides upon cooling. The defects in the oxide 

layers provided the nucleation sites and resulted in sub-micron grains.  

The cross-section morphology of pure TaC is similar to the top surfaces. Numerous 

cracks and pores were observed as a result of gaseous products. No crack-healing has been 

observed. Instead, the oxide scale was totally lifted and destroyed. The Ta2O5 did not 

provide any protection to the underlying carbide against oxidation. Tantalum carbide 

would definitely not be suitable for use in the extreme conditions.  
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Figure 4.21: Top surface of the pure TaC after oxidation tests. Low magnification (a) 1 min, (b) 3 
min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, and (f) 5 min 
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Figure 4.22: Cross-section of the pure TaC after oxidation tests. Low magnification (a) 1 min, (b) 
3 min, and (c) 5 min. High magnification (d) 1 min, (e) 3 min, and (f) 5 min 

 



  

94 
 

4.3.3 Oxidation Scale Phase Evaluation 

  Three samples for each composition have been evaluated by XRD analysis 

to identify the oxide phases. The results are shown below:  

4.3.3.1 Phase evaluation on the pure HfC post-oxidation samples 

The XRD results of three HfC oxidation samples are shown in Figure 4.23. The 

XRD patterns for the three samples are identical and indexed as monoclinic hafnium oxide 

(00-034-0104). This HfO2 is recognized as the low temperature form of hafnium oxide. 

The phase transformation from high temperature form to low temperature form is always 

accompanied by volume changes. In an earlier report, [108] the morphologies of the HfO2 

from HfC oxidation which experienced phase transformation and the one without phase 

transformation did not show any difference. So the author concluded that the phase 

transformation did not lead to the crack formation, and the plasticity of HfO2 at high 

temperature accommodated the volume changes.   
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Figure 4.23: XRD patterns of HfC oxidized samples  

 

 

4.3.3.2 Phase Evaluation on the T20H80 Post-Oxidation Samples 

The XRD patterns for T20H80 samples after oxidation are shown in Figure 4.24. 

With 20 vol. % of TaC addition, the post-oxidation phases showed a mixture of HfO2 and 

Hf6Ta2O17. The phase’s information matched the early oxidation work on the oxidation of 

HfC-TaC solid solutions. There is no substantial difference between the samples for the 

three time durations.  
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Figure 4.24: XRD patterns of T20H80 oxidized samples 

 

 

4.3.3.3 Phase Evaluation on the T50H50 Post-Oxidation Samples 

The XRD patterns for T50H50 samples were the same for the three time durations 

and displayed in Fig. 4. 25. The overall patterns were similar to the ones for T20H80 

samples. The major difference was at 22-23o where Ta2O5 peak started to appear. This 

could be due to the increased amount of TaC addition compared to the T20H80 samples. 

The formation of Hf6Ta2O17 is the result of the reaction between Ta2O5 and HfO2. At the 
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extreme testing conditions, individual Ta2O5 and HfO2 can still be detected, suggesting the 

reaction was blocked by separating the Ta2O5 and HfO2. 

 

Figure 4.25: XRD patterns of T50H50 oxidized samples  

 

 

4.3.3.4 Phase Evaluation on the T80H20 Post-Oxidation Samples 

The XRD patterns for T80H20 samples after oxidation are shown in Figure 4. 26. 

At first glance, the XRD peaks for the three time durations were identical. All the peaks 

were indexed as orthorhombic Ta2O5, the low temperature forms of tantalum pentoxide. 

No presence of HfO2 was detected. The excessive amount of molten Ta2O5 covered the 
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formed HfO2, which made the latter undetectable to the XRD analysis. This observation 

also collaborated with the theory of solid scaffold and liquid phase structure. A closer look 

at 3 min and 5 min tests XRD pattern, as marked by arrows, tiny peaks started to appear 

and are indexed as Hf6Ta2O17. The formation of Hf6Ta2O17 requires more HfO2 than Ta2O5 

according to its reaction equation. In the 1 min test, there was not enough HfO2 formation, 

so no Hf6Ta2O17 was detected. Only after 3 min exposure when enough HfO2 had formed, 

Hf6Ta2O17 started appearing on the XRD patterns.  

 

Figure 4.26: XRD patterns of T80H20 oxidized samples  

 



  

99 
 

 

4.3.3.5 Phase Evaluation on the Pure TaC Post-Oxidation Samples 

The XRD patterns for pure TaC samples after oxidation are shown in Figure 4. 27. The 

1 min and 3 min tests samples are identical and indexed as orthorhombic Ta2O5. However, 

in 5 min test samples, in addition to the orthorhombic Ta2O5 phase, triclinic Ta2O5 was also 

detected. The triclinic Ta2O5 is reportedly a high temperature form of tantalum pentoxide. 

The transformation of tantalum oxide from high temperature form to low temperature form 

was sluggish, so the high temperature form of the oxide can be retained when samples were 

quenched. Delamination and spallation were severe in 5 min oxidized sample, which 

provided more pathway to cool air and resulted in high cooling rate.  
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Figure 4.27: XRD patterns of pure TaC oxidized samples. (a) 1 and 3 min samples, and (b) 5 min 
sample 

 

 

4.3.4 Back-Side Temperature Measurement During the Oxidation 

  The back side temperature plots for the oxidation tests are shown in Figure 

4.28. The temperature was normalized to their thickness. The thermal conductivities of 

TaC-HfC were measured and reported by Cedillos-Barraza et al. The results showed the 

TaC has better thermal conductivity than HfC. The thermal conductivity of TaC-HfC solid 

solutions decreases with the increasing HfC amount. The higher thermal conductivity 
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should result in higher measured back-side temperature. The 1 min temperature plot for 

each sample followed their carbides trend. The pure TaC and T80H20 had the highest 

measured temperature. Although TaC had better thermal conductivity, the cross-section of 

TaC oxidized samples revealed its highly porous oxide scale. Combined with the lower 

densification of pure TaC, the porosity reduced the thermal conductivity of pure TaC 

oxidized sample, so the measured temperature was similar to T80H20 sample. In 3 min 

and 5 min tests, the thermal gradient of the pure TaC dropped after 60s oxidation exposure 

in both time durations. Based on the analysis of TaC oxidation behavior, the decline in the 

measured temperature could be the result of the delamination or spallation of the tantalum 

oxide. It also suggests the oxide scale of pure TaC could only remain intact for 1 min under 

the present testing conditions. The cooling curve of pure TaC for 5 min oxidation showed 

a steep drop, which coincided with the formation of the triclinic Ta2O5 caused by quench 

cooling. In 3 min and 5 min tests, the measured temperature was lower than pure HfC, but 

T20H80 had better thermal conductivity than HfC according to the literature. This can be 

related to the lower thermal conductivity of Hf6Ta2O17 as compared to HfO2. Also, in 3 

min and 5 min tests, T80H20 showed slight dips in both thermal gradient curves around 

150 s. This could be attributed to the formation of Hf6Ta2O17 which has lower thermal 

conductivity than HfO2. Although the melting point of Hf6Ta2O17 is unclear at this point, 

its melting point should be in between Ta2O5 and HfO2 deduced from the ZrO2-HfO2 mixed 

oxides [125]. The reactant Ta2O5 in the formation of Hf6Ta2O17 was in the liquid state; it 

is very likely that after the formation of Hf6Ta2O17, the liquid phase is consumed and forms 

solid state Hf6Ta2O17. The Hf6Ta2O17 later melts due to the high temperature, and 

consequently the thermal gradient recovers to the original level. The reaction occurred at 
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around 150s, so Hf6Ta2O17 phase was not enough to be detected by XRD in 1 min and 3 

min tests. The Hf6Ta2O17 formation was rapid and occurred at the early stage of the 

oxidation process; the dips were not observed in the other solid solution samples.  
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Figure 4.28: Back side temperature plots: (a) 1 min, (b) 3 min, and (c) 5 min 
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4.3.5 Oxidation Mechanisms and Models 

 The oxidation of pure HfC and pure TaC have been investigated by different 

researchers. Due to the different testing conditions, the proposed mechanisms and models 

cannot be directly applied to the current study. In the oxidation of pure HfC samples, it was 

believed that the oxidation process begins with the absorption of oxygen, followed by the 

diffusion of oxygen through the grain boundaries and formed HfO2 and grain surfaces. 

With the help of thermal mismatch and gaseous products, cracks occur and create new 

pathways for oxygen diffusing deeper into un-oxidized carbides and start a new cycle of 

oxidation. A similar mechanism can be adopted for the present study. The HfC samples 

were sintered pellets from powders. Compared to other synthesis methods, sintering would 

generate more grain boundaries regardless of the densification. The grain boundaries are 

the preferred diffusion pathway due to their high defects concentration. When the HfC 

pellets are exposed to the high temperature oxygen flow, the initial oxygen absorption and 

oxidation are accelerated due to the high temperature. First layer HfC was rapidly oxidized 

and formed HfO2. The grain boundaries became vulnerable due to the thermal mismatch 

between oxide and carbide, and the high vapor pressure from the gaseous products. Such 

vulnerability led to the formation of cracks and provided pathways for oxygen. With the 

near sonic speed, the oxygen was pushed through those formed cracks instead of diffuse 

through the grains to oxidize the underlying carbide, which also explained the reason why 

there was no oxycarbide layer observed in the present study. As shown in Figure 4.14, the 

oxide scale in pure HfC samples are granular; each grain is isolated by intermediate gaps. 

Only a very thin dense layer was seen which matched the description of oxycarbide phase 

suggesting the high oxygen potential throughout the oxide scale. The grain size of the oxide 
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scale was found to vary due to the localized sintering. The sintering temperature for 

material is considered the two third of its melting point. The melting point of HfO2 is 

around 2800 oC, and the present oxidation testing temperature was close to its melting point, 

which could provide enough driving force for the sintering of HfO2. The sintering of HfO2 

densified the oxide scales, and the low Pilling-Bedworth ratio of HfO2 allows good 

adherence to the carbide. As a result, HfO2 scales remained intact, and no obvious 

spallation was noticed under the extreme conditions.  

 Tantalum carbide exhibited poor oxidation resistance in the present study. Not only 

it had the thickest oxide layer, but its oxide scales were also peeled off from the carbide 

surfaces. Similar to the oxidation of hafnium carbide, the oxidation process in tantalum 

carbide began at the grain boundaries. The oxygen diffusion/penetration process was akin 

to the process in the HfC; cracks and gaps were formed at the grain boundaries and allowed 

oxidation into the deeper carbide. The difference was the oxygen diffusion pathway into 

the grains. In case of HfC, after the initial oxidation on the surfaces of the grains, the 

oxidation of each grain was completed by the oxygen lattice diffusion. However, in the 

case of TaC, the formed Ta2O5 on the grain surface rapidly melted under the high 

temperature environment and covered the TaC grains. The liquid phase formation hindered 

the oxygen lattice diffusion, but the liquid layer was far from being protective. It was 

pointed out that [19] Ta2O5 would react with TaC and further oxidize the underneath 

carbides. The formed Ta2O5 cannot withstand the high temperature environment and 

liquefies during the oxidation process. The gaseous products generated can easily disturb 

and lift the liquid phase oxide scales, causing massive spallation and cracking. Although 

liquid phase is considered beneficial to the oxidation resistance, the liquid phase itself 
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should not react with the parent material. Ta2O5 has a low melting point so the liquid phase 

could form at the early stage of the oxidation, however, the reaction with TaC makes it an 

unfavorable phase during oxidation. Also without the solid phase structure, the liquid phase 

would be prone to ablation under the high gas blow. These were the main reason that TaC 

had worst oxidation resistance in the present study.   

TaC-HfC solid solutions had much better oxidation resistance than their monolithic 

carbides. In the case of T50H50, the oxide scales were not only thin but also highly dense. 

The thickness of T50H50 oxide scale was 1/10 of the thickness of pure TaC 5 min oxidation, 

1/6 of the thickness of pure HfC 5 min oxidation. The oxidation mechanisms for TaC-HfC 

solid solutions could be deduced from the oxidation mechanisms for oxidation of 

monoclinic TaC and HfC. In the T20H80 sample, the 20 volume percent TaC was added. 

During the oxidation, HfO2 and Ta2O5 were formed at the surfaces of the top layer grains. 

Due to the extreme testing conditions, especially the high temperature, the formed Ta2O5 

melted and covered on HfO2 surface. However, like in the pure TaC oxidation case, the 

formed liquid Ta2O5 was not a protective layer against oxidation. It could react with both 

TaC and HfC and form tantalum sub-oxide and HfO2. In the XRD analysis on the T20H80 

post-oxidation samples, only HfO2 and Hf6Ta2O17 were detected without the presence of 

Ta2O5, which implies that the Ta2O5 has been consumed by the reaction. The formation of 

one mole of Hf6Ta2O17 requires one mole of Ta2O5 and six moles of HfO2, so no Ta2O5 

would remain with the presence of HfO2. Additionally, multiple reports suggest that the 

formation of Hf6Ta2O17 requires at least 10 hours and the temperature exceeding 1200 oC. 

Although the current testing conditions accelerated the reaction, Hf6Ta2O17 can only be 

formed after the formation of Ta2O5 and HfO2. The Hf6Ta2O17 formed was a protective 
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layer against oxidation [116], so the thickness of the oxide scale had reduced up to 65%. 

However, the amount of liquid phase formed was not enough to form a continuous liquid 

layer and protect the T20H80 samples from oxidation. The cross-section images showed 

that though the oxide scales were not as granular as the ones in pure HfC samples, the large 

cracks and big gaps still could be seen. Some minor cracks along the grain boundaries 

indicate that the same oxidation mechanism is prominent in both pure HfC and T20H80 

samples. Additionally, oxide scale sintering occurred, especially in the presence of liquid 

phase, explained some large grains found in T20H80 oxide scales.  

When 50 volume percent of the TaC was added to T50H50 samples, more liquid 

phase was generated during the oxidation. The beginning of the oxidation was the same as 

the pure HfC and the T20H80 samples. The XRD patterns showed the mixture of Ta2O5, 

HfO2, and Hf6Ta2O17. As discussed in the eariler, the Ta2O5 and HfO2 could not co-exist, 

the Ta2O5 should be consumed into the formation of Hf6Ta2O17 at such high temperature. 

However, the XRD resulted suggest otherwise. The only explanation was the formed Ta2O5 

and HfO2 were separated. In the T50H50 samples, the Ta2O5 formed on the HfO2 melted 

and formed Hf6Ta2O17. The formed Hf6Ta2O17 did not react with underlying materials and 

also separate the Ta2O5 and HfO2. The stress at the grain boundaries was quickly eased by 

the abundant liquid phase, so the oxide scale was much denser compared to the other 

samples. Moreover, enough liquid formed during the oxidation which formed a continuous 

liquid layer. Two different liquid phases exist in the T50H50 samples resulted in high 

viscosity fluid, which could withstand the high gas flow. The formed HfO2 also provided a 

scaffold structure that further stabilized the oxide scales. The gaseous products introduced 

some pores, but the damage from the high vapor pressure which caused big cracks in the 
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other samples was prevented due to the liquid in the scale. Furthermore, the pores inside 

the oxide scales were sealed over the time as the liquid flowed into such porous areas, 

which later was observed as crack-healing in the 5 min oxidation sample.  

The morphology of T80H20 1 min test sample was similar to the one of pure TaC, 

but the thickness of the oxide scale of T80H20 was only 45% of the thickness of pure TaC 

oxide scale. The main difference was the 20 volume percent of HfC in the system. The 

excessive Ta2O5 melted and totally wrapped the HfO2 grain inside, so the HfO2 was not 

detected by XRD. The HfO2 secured the oxide scale from ablation, and the oxide scale 

remained intact. Fig 4.29 shows that a single grain was attacked and lifted by the liquid 

phase indicating the liquid phase prevented the oxygen diffusion, and the oxidation of 

T80H20 was from the liquid attack to the carbides. In the 3 and 5 min test samples, crack-

healing was again noticed, which also verified the existence of HfO2 that hosted and 

stabilized the liquid phase. Such “scaffold” structure was not noticed in pure TaC samples, 

so no crack-healing was noticed. In the 5 min test, the Hf6Ta2O17 peaks started to appear 

due to the HfO2 formation of large amount of HfO2 generated during the oxidation tests. 

The liquid layer became more protective against the oxidation, and further crack-healing 

occurred as seen in the cross-section images.  

A model is developed and the schematic is shown in Figure 4.30. The carbides and 

their solid solutions had a flat surfaces with grains. Oxidation in all cases began with the 

oxygen attacking the first layer grain through grain boundaries (Step 1, Figure 4.30). Due 

to the relatively small grain sizes in all samples, and harsh oxidizing conditions, the 

oxidation of individual grain was not the rate determining process. The oxidation in the 

present study is dependent on the availability of oxygen. In the case of pure HfC samples, 
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oxygen penetrated the oxide scales through the cracks created by the thermal mismatch and 

gaseous products (Step 2, Figure 4.30a). Some liquid phase appeared in the T20H80 

samples, the liquid phase was not enough to cover the oxidized surface. Oxygen could still 

reach to the underlying carbides through the cracks, but much limited compared to the pure 

HfC samples. The protective layer Hf6Ta2O17 was also formed, which further protected the 

carbides from oxidation (Step 2, Figure 4.30b). Sintering of the oxide scales was spotted 

in the pure HfC and T20H80 samples due to the extreme high temperature. Sintering in the 

oxide scales were beneficial to the structural integrity. In the T50H50 samples, enough 

liquid was generated, so the oxygen penetrating pathway was blocked. The oxidation 

process was driven by the chemical reactions between the liquid phase (Ta2O5) and residual 

carbides (Step 3, Figure 4.30b). Furthermore, decent considerable amount of Hf6Ta2O17 

formed during the oxidation. It not only serves as a protective layer, but also blocks the 

contact between Ta2O5 and the residual carbides. However, Hf6Ta2O17 also retarded its 

own formation from the reaction between Ta2O5 and HfO2. Due to the large amount of 

liquid phase formed in T80H20, the morphology of the oxide scales was similar to the pure 

TaC. The HfO2 covered by Ta2O5 provided frame for the liquid, so that the liquid would 

not be pushed away by the high velocity gas flow. After 5 min exposure, the Hf6Ta2O17 

appeared and provided extra protection against oxidation. Crack-healing (Step 5, Figure 

4.30b) was observed in T50H50 and T80H20 samples due to the large amount of liquid 

and HfO2 scaffold. The oxide scales in the pure TaC samples were similar to the “Boiling 

water”. Excessive amount the liquid and gaseous products generated during the oxidation 

resulted in the worst oxidation resistance of TaC. Spallation and delamination occurred 
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especially in 5 min samples causing the sample to experience quench cooling. The high 

temperature form of Ta2O5 was retained and detected by XRD analysis.  

 

Figure 4.29: Liquid phase attacking on the underlying carbides 
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Figure 4.30: Oxidation schematic for (a) Pure HfC, and (b) solid solution samples 
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4.3.6 Effect of the Formation of the Solid Solution on the Oxidation Behavior 

In the present study, the oxidation behaviors of TaC-HfC solid solutions were 

investigated. The advantages of solid solutions compared to the composites became clear 

after the detailed analysis. The oxidation resistance increased in the TaC-HfC solid solution 

samples due to the liquid phase formation, especially the Hf6Ta2O17 which was considered 

the main reason for the advanced oxidation performance. In the solid solution samples, the 

oxide products: Ta2O5 and HfO2 were generated and remained in contact. Closed contacted 

two oxides promoted the formation of Hf6Ta2O17. In the composites, on the other hand, the 

Ta2O5 and HfO2 formed and separated, making the formation of Hf6Ta2O17 and a 

continuous liquid layer more difficult. The study on the absorption of oxygen on TaC and 

HfC suggest that the oxygen tends to sit on the Hf- C bridge, and further formed HfO2 and 

CO. In the case of TaC, the preferential oxygen site was on the Ta-Ta bridge. When 

forming a solid solution, the oxidation of Hf element was not affected. However, the Ta 

atoms were partially replaced by Hf atoms, so the availability of Ta-Ta was disturbed. As 

a result, the formation of Ta2O5 was delayed, and the formation of HfO2 was unaffected. 

In the oxidation of solid solutions, the formation of HfO2 was guaranteed. Otherwise, the 

excessive molten Ta2O5 would hinder the oxidation of HfC. The HfO2 is crucial to the 

stability of the oxide scales as it provides the scaffold to the oxide scale. So the solid 

solutions should have superior oxidation resistance than the TaC-HfC composites. 
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4.3.7 The Evaluation on the Reusability of the Post-Oxidation Samples 

 The evaluation on the reusability of the post-oxidation samples will be carried out 

in different ways, including both high and low load indentation, and oxidation testing on 

the oxidized samples. In the present work, nano-indentation (NI) testing was conducted on 

the top surface of the oxidized samples from the 3 min testing. The purpose of these tests 

was to assess the integrity of the oxide scales on the post-oxidation samples. Instead of 

getting elastic modulus and hardness values from NI tests, the present work investigated 

the shape of the loading curves based on our previous work [126]. The curves obtained 

from NI tests are shown in the Figure 4.31 and the average indentation depth is tabulated 

in the Table 4. 3. Pure carbides had the largest average indentation depth, which can be 

deduced from their cross-section images: pure HfC had an oxide scale with granular 

structure with inter-connected pores, and pure TaC had a porous oxide scale with serve 

delamination. Both structures would not be able to withstand the external loads, which 

resulted in a discontinued curves in the loading segments of pure TaC and pure HfC 

samples. The discontinuity occurred when the tip indented at a porous area, which caused 

a large displacement and minor increased load. Large standard deviations also indicated 

that the oxide scales are extremely un-uniformed. The oxide scales of the solid solution 

samples, on the other hand, showed much more improved integrity, by exhibiting the 

smoother loading curves and reduced the total displacement. The results advocate the 

formation of the liquid phases during the oxidation tests which filled the pores in the oxide 

scales, resulted in a dense and continuous structure. Such structure will not only withstand 

the impact that hypersonic vehicles may face after entering the Earth orbit, but also have 

large potential to be reused.  
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Figure 4.31: Representative loading segments of post-oxidation samples: (a) pure HfC, (b) 
T20H80, (c) T50H50, (d) T20H80, and (e) pure TaC  

Table 4.4: Average nano-indentation displacement on the top surface of the oxide layer 
Sample Pure HfC T20H80 T50H50  T80H20 Pure TaC 

Depth 

(nm) 
1526.3±1203.0 316.0±167.5 294.5±105.4 354.7±308.7 1176.5±1032.8 
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Chapter V Summary 

The present study investigated the synthesis of TaC-HfC solid solutions by spark 

plasma sintering method. Five compositions were chosen: pure HfC, 80 vol.% HfC-20 vol.% 

TaC, 50 vol.% HfC- 50 vol.% TaC, 20 vol.% HfC- 80 vol.% TaC, and pure TaC. Major 

conclusions are listed below: 

• The solid solutions were formed in all composition after sintering. The lattice 

parameters for the solid solution samples were calculated by the XRD analysis, and 

the results provided an excellent match with theoretical values according to the 

Vegard’s Law.  

• No phase transformation occurred after ball milling of the powders. The ball milling 

in the present study was solely used for breaking agglomeration of the powders.  

• Nearly fully dense samples were achieved by spark plasma sintering with the peak 

temperature of 1850 oC, 60 MPa pressure, and 10 min holding time without any 

sintering aids. 

• The porosity in pure TaC samples was caused by the oxygen contamination (Ta2O5) 

on the starting powder surface. Due to low melting point (1872 oC) of Ta2O5, liquid 

phase formation was observed in the pure TaC samples.   

• In HfC-TaC samples, the oxygen contamination from the TaC surface was 

transferred to the HfC surface by the reaction between HfC and Ta2O5 and formed 

ultrafine HfO2 particles. No sign of liquid phase was spotted in the HfC samples 

due to the much higher melting point of HfO2.  
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• Significant grain growth was observed in the pure TaC and TaC-rich solid solution 

samples. The final grain sizes were measured at 6.8 and 6.2 µm, respectively. With 

the increase of HfC concentration, grain growth was hindered, and the grain size 

was reduced by 50% from T80H20 to T20H80 sample.  

• The elastic moduli, hardness and fracture toughness of the solid solution samples 

outperformed the pure carbides samples partially due to the increased densification 

and smaller grain size.  

• The solid solution samples showed improved oxidation resistance as compared to 

the pure carbides samples. The thickness of the oxide scales in T50H50 samples 

was 90% and 85% lower compared to the one in pure TaC and pure HfC, 

respectively.  

• The oxidation process under the extreme conditions was governed by the 

availability of the oxygen, not diffusion.  

• Liquid phase and solid scaffold structures were formed in all solid solution post 

oxidation samples. The liquid phase protected the underlying carbides from 

exposing to the oxygen, while the solid scaffold anchored the liquid phase and 

guaranteed the integrity of the oxide scales.  

• The molten Ta2O5 attacked the un-oxidized carbides and promoted the oxidation 

process.  

• A new phase, Hf6Ta2O17, was formed from the reaction between HfO2 and Ta2O5, 

and it was responsible for the exceptional oxidation resistance in the solid solution 

samples.  
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The present work has proven the feasibility of achieving fully dense solid solutions 

of carbides without sintering aids by spark plasma sintering. The oxidation studies 

conducted using high speed and high temperature plasma jet exhibited better oxidation 

resistance in solid solution samples than their constituent carbides. It also suggests that the 

key to the superior oxidation resistance is to form a liquid + solid scaffold structure in the 

oxide scales. The Hf6Ta2O17 and HfO2 combination in this case showed the promising 

oxidation performance. This work provides a guideline for screening the candidate 

materials for use on the hypersonic vehicles that require to survive under the extreme 

conditions.  
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Chapter VI Future Work and Recommendation 

The present work shows the great potential of TaC-HfC solid solutions being used 

on the next generation space vehicles. Especially the T50H50 solid solution displayed the 

exceptional oxidation resistance. Spark plasma sintering is also proven as an effective 

method for synthesizing the solid solution samples. Based on the current work, the author 

believes some further studies are needed in the following aspects.  

 

6.1 Powder Treatment and Sintering Parameters 

The current sintering conditions resulted in near full densification samples without 

the sintering aids additions. The porosity came from the oxygen contamination on the 

starting powders. Better powder treatment is needed to remove such oxygen contamination 

in order to achieve denser samples. The TEM analysis on the sintered samples suggested 

the solid solution formation was not completed, so some adjustment on the sintering 

parameters is required. Higher sintering temperature and longer hold time will be the 

starting point.  

 

6.2 Study on the Different Solid Solution Compositions and Possible Additives.  

The T50H50 samples were the best performing solid solution in the current study, 

more comprehensive study is required to predict the optimum composition. Based on the 

present results, the composition range should be focused from T80H20 to T20H80. In the 

present work, no sintering aids were added. This is because the addition of sintering aids 
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would introduce the secondary phases and increase the complexity of the system, which 

prohibits the truly understanding of the oxidation behaviors of the solid solution samples. 

However, after thorough studies, additives is again an effective way to improve the 

oxidation resistance of the solid solutions. Due to the high melting point of Ta2O5, no liquid 

phase would generate when the temperature under 1850 oC. The additives such as B4C and 

SiC are expected to form liquid phase in the lower temperature range, so that the solid 

solution samples would have better oxidation resistance.  

 

6.3 Lower Temperature Oxidation Study  

 The promising oxidation performances of the solid solution samples were mainly 

due to the liquid phase formation, included Ta2O5 and Hf6Ta2O17. The presence of such 

liquid phase would not be possible if the testing temperature is lower than the melting point 

of Ta2O5, which is around 1850 oC. In the lower temperature oxidation studies, the solid 

solution samples are expected to behave differently than in the present study. So it is crucial 

to understand the oxidation behaviors of the solid solutions under the lower temperature 

conditions.  

 

6.4 Mechanical and Reusability Evaluation after Oxidation 

 After entering the Earth orbit, the reentry vehicles would still travel at high speed. 

So the materials for the reentry vehicles should be able to remain intact in order to 

withstand the strong shear force and possible impact from the loose particles. Also, in the 

cost perspective, reusable materials are highly welcomed. The present work has assessed 
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the reusability of the post-oxidation samples using nano-indentation technique. The results 

indicated the oxide scales in T50H50 samples owned superior integrity.  

To further understand the deformation behaviors of the oxide scales, higher load 

indentation technique is needed. In our previous studies, we developed an in-situ high load 

indentation technique that can be used to evaluate the reusability. The testing setup is 

shown in Figure 6.1. The indentation is carried out inside a SEM. A linear, screw driven 

micro-load frame attached a 1 µm; 120o conospherical tip was employed for the indentation 

testing. The test will be monitored by SEM, and a real-time video is recorded. The 

reusability will be assessed by analyzing the size of the total impact area, and the 

deformation behavior.  

Besides from the evaluation on the mechanical properties of the post-oxidation 

samples, repeated oxidation testing is also desired on T50H50 oxidized samples to estimate 

the lifespan of this solid solution sample. Combining the results from both mechanical and 

repeated oxidation testing, we will be able to get the full picture of the reusability of the 

solid solution samples.   



  

124 
 

 

Figure 6.1: High load in-situ indention setup 
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APPENDICES 

Appendix 1: Elemental identification on the ultrafine particles 

The EDS mapping and point analysis results suggested that the ultrafine particles (point 

1) were mainly HfO2 and shown in Figure A1.   

 

Fig. A1. EDS mapping and point analysis on the ultrafine particles from the FIB 
sectioned surface. 

 

Ultrafine particles 
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Appendix 2: The enthalpies of mixing calculations for the three solid solutions formation 

The enthalpy of mixing (∆Hmix) was calculated as the enthalpy difference between the 

products (solid solution) and the reactants (TaC and HfC). The enthalpies of the reactants were 

taken as the formation enthalpy of TaC and HfC, as shown below: [28] 

HTaC =-38497 + 1.332T (Cal/mol), T: 298-3000K; 

HHfC =-48500 + 3.262T (Cal/mol), T: 298-2600K. 

The temperature T was taken as the sintering temperature 1850 oC, 2123 K. Given the 

molecular weight of TaC and HfC are 192.96 g/mol and 190.5 g/mol respectively, and total powder 

weight was 15 g. The enthalpies of formations for 3 mixed carbides samples were tabulated in 

Table A1.  

The enthalpies of products were calculated by using the bonding energies of TaC and HfC. 

The bonding energies of TaC and HfC are 16.92 eV and 16.45 eV respectively. [5] The enthalpies 

of three mixed carbides samples were also summarized in Table A1.  

Table A1: Enthalpies of mixing calculations for T80H20, T50H50, and T20H80 

Unit: kJ Hproducts Hreactants ∆Hmix 

T80H20 126.95 -12.06 139.01 

T50H50 126.36 -12.69 139.05 

T20H80 125.78 -13.32 139.10 
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Appendix 3: Gibbs free energy calculation for the reaction between Ta2O5 and HfC 

The Gibbs free energy of the reaction:  

Ta2O5 + HfC = HfO2 + TaC + CO 

Was calculated by using Factsage software:  

∆G (kJ) = -0.14T-759.76      T: 500-2000 oC 

It is negative for the temperature range of present study, hence the above reaction was feasible 

during the SPS process.  
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