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 ABSTRACT OF THE DISSERTATION 

INVESTIGATING SUB-TROPICAL COMMUNITY RESISTANCE AND 

RESILIENCE TO CLIMATE DISTURBANCE 

By 

Ross Boucek  

Florida International University, 2016 

Miami, Florida 

Professor Jennifer Rehage, Major Professor 

Changes in global climate will likely increase climate variability. In turn, changes in 

climate variability have begun to alter the frequency, intensity, and timing of climate 

disturbances. Continued changes in the climate disturbance regime experienced by 

natural systems will undoubtedly affect ecological processes at every hierarchical scale. 

Thus, in order to predict the dynamics of ecological systems in the future, we must 

develop a more mechanistic understanding of how and in what ways climate disturbance 

affects natural systems. In South Florida, two climate disturbances recently affected the 

region, a severe cold spell in 2010, and a drought in 2011. Importantly, these disturbances 

affected an ecosystem of long-term, comprehensive, and persistent ecological study in the 

Shark River estuary in the Everglades National Park. The aims of my dissertation were to 

(1) assess the relative severity of these two climate disturbances, (2) identify effects of 

these disturbances on community structuring, (3) compare community change from the 

2010 cold spell with community change from another extreme cold spell that affected 

sub-tropical China in 2008, (4) assess the effects of the drought on predator prey 
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interactions in the Shark River and (5) apply a spatial approach to predicting population 

resistance to these events. My results show that the 2010 cold spell was the most severe 

cold event to affect the Shark River in the last 80 years, while the drought was the worst 

drought to occur in the last 10 years. The cold spell drove community change that was 

predictable based on the traits of component species, whereas community change was 

less predictable using trait-based approaches. When comparing community change from 

the extreme 2010 event in Florida with the event in China, I identified three consistencies 

related to community change from extreme cold events that occurred across both events 

that will help build generalized understanding of community resistance to increasingly 

extreme climate events in the future. From the trophic study, I found that the drought 

reduced prey for estuarine piscivores. Not only was prey biomass reduced, the drought 

drove a compositional shift in prey communities from fish to invertebrates, which are 

lower in calories.  Last, I found that animal movement may create temporally dynamic 

resistance scenarios that should be accounted for when developing predictive models.  

 

 

 

 

 

 

 



TABLE OF CONTENTS 

 
CHAPTER                                            PAGE 

 

INTRODUCTION .........................................................................................................1 
 

I. CLIMATE EXTREMES DRIVE CHANGS IN FUNCTIONAL 

COMMUNITY STRUCTURE ..........................................................................5 

  ABSTRACT .................................................................................................6 

  INTRODUCTION .......................................................................................7 

  MATERIALS AND METHODS ...............................................................11 

  RESULTS ..................................................................................................16 

  DISCUSSION ............................................................................................21 

  TABLES ....................................................................................................30 

  FIGURES ...................................................................................................33  

  

II. A REVIEW OF SUB-TROPICAL COMMUNITY RESISTANCE AND 

RESILIENCE TO EXTREME COLD SPELLS..............................................37 

  ABSTRACT ...............................................................................................38 

  INTRODUCTION .....................................................................................39 

  CLIMATE FACTORS THAT DRIVE EXTREME COLD SPELLS .......41 

SUB-TROPICAL EXTREME COLD SPELLS RELATIVE TO OTHER 

EXTREME CLIMATE EVENTS..............................................................44 

CHANGES IN COMMUNITY STRUCTURE FOLLOWING  

EXTREME COLD SPELLS IN THE SUBTROPICS...............................47 

EFFECTS OF LANDSCAPE FEATURES ON SUBTROPICAL 

COMMUNITY RESISTANCE AND RESILIENCE ................................48 

DIFFERENCES IN RESISTANCE AND RESILIENCE AMONG 

TROPICAL NATIVE AND NON-NATIVE TAXA ................................51 

CONCLUSIONS: SUB-TROPICAL CONSERVATION IN A 

WARMING WORLD WITH EXTREME COLD SPELLS ......................52 
 

III. A ONCE IN TEN YEAR DROUGHT ALTERS THE COMPOSITION  

AND MAGNITUDE OF A FLOODPLAIN PREY SUBSIDY TO  

COASTAL RIVER FISHES ............................................................................55 

  ABSTRACT ...............................................................................................56 

  INTRODUCTION .....................................................................................57 

  MATERIALS AND METHODS ...............................................................60 

  RESULTS ..................................................................................................64 

  DISCUSSION ............................................................................................67 

  FIGURES ...................................................................................................73 
 

IV. CAN ANIMAL HABITAT USE PATTERNS INFLUENCE THEIR 

VULNERABILITY TO EXTREME CLIMATE EVENTS? AN  

ESTUARINE SPORTFISH CASE STUDTY .................................................78 

brandiethomas
Typewritten Text

brandiethomas
Typewritten Text

brandiethomas
Typewritten Text
ix



  ABSTRACT ...............................................................................................79 

  INTRODUCTION .....................................................................................80 

  MATERIALS AND METHODS ...............................................................84 

  RESULTS ..................................................................................................91 

  DISCUSSION ............................................................................................93 

  FIGURES .................................................................................................102 
 

     CONCLUSION AND DISCUSSION.........................................................................110 
 

     LIST OF REFERENCES ............................................................................................114 
 

     VITA ...........................................................................................................................131 
 

brandiethomas
Typewritten Text
x



xi 
 

LIST OF FIGURES 

FIGURES                                                                                                                  PAGE 

CHAPTER I 

1.1 Map depicting location of our study sites in the southwest region of ENP. 
Circles represent 6 fixed sampling sites, while squares represent USGS and NPS 
hydrostations .....................................................................................................33 

 
1.2 a) Area under the severity index curves (AUC) for all 319 cold fronts 

identified between 1927 and 2012. b) Minimum air temperature (black line), 
minimum water temperature (dashed line) , and duration (in # of days, 
vertical bars) for each cold front during the study, 2004–2012, blue lines in 
panels (a) and (b) highlight the 2010 cold front. c) The number of days per 
year with no freshwater flow into the estuary for the longest period of record 
in ENP, 1955 2012. d) The number of days the estuary experienced no 
freshwater flow during the study, 2004-2012 (bars, red highlights the 2011 
drought), and the accompanying maximum daily salinity values (solid 
line)………………………………………………………………………...34 

 
1.3 a) Yearly variation in total fish abundance (sum of the 15 dominant species, # 

of fish per 100 m of mangrove shoreline) between 2006 to 2012. b) Variation 
in functional trait identities across years for our Everglades fish community. 
The solid line and black symbols represent the salinity functional identity, 
whereas the dashed line and white symbols reflects the temperature 
functional identity. The blue line shows the timing of cold front, while the 
red line shows the drought……………………………………..…….…...35 

 
1.4 Figure 1.4 Changes in structure of our Everglades fish communities across 

functional trait space defined by maximum salinity and minimum 
temperature limits (Table S1). The size of the circles corresponds to each 
species relative abundance (natural log transformed). Panels show changes in 
abundance across the four time periods of interest: a) pre-disturbance (2006-
2009, green), b) pre-disturbance (green) vs. 2010 cold front (blue), c) pre-
disturbance (green) vs. 2011 drought (orange), and d) pre-disturbance (green) 
vs. post-disturbances (red). Two letter codes identify individual species: plain 
co des are euryhaline species, italicized codes are freshwater species and 
bolded codes are nonnatives (see Table 1 for species common names & Table 
S2 for scientific names). The dashed circles on figure 4d highlight which 
species that fully recovered from the cold 
front………………………………………………………………………..36 

 
 
 
 



xii 
 

CHAPTER III 
 
3.1             Map showing the location of the five study sites in the upper Shark River 

Estuary in southwestern region of Everglades National Park. Study sites are 
shown in black circles, while black squares denote hydrological stations used 
to examine drought severity. Insert shows the three fixed bout locations 
sampled via electrofishing at each site. Shaded area denotes Shark River 
Slough, located upstream of study sites and the main freshwater drainage in 
the southern Everglades.…………………………………….……………….73 

 
3.2            Daily floodplain stage at station SH1 (see map above) from November 2010 to 

September 2014 (black line), and the number of days floodplains remained 
dry per year (grey bars). The red line represents the water depths that 
floodplain habitats are no effectively dry for centrarchid fishes (10 cm, 
Trexler et al 2005)………………………………………………………..…..74 

 
3.3             Mean kilograms per 100 meters of sunfishes (upper panel, ± 1 SE), and the 

mean abundance of snook per 100 meters (lower panel, ± 1 SE) from 2010-
2014…………………………………………………………………...……...75 

 
3.4             Mean biomass consumed by snook per 100 meters of all prey (upper panel), 

macroinvertebrates (middle panel) and fishes (± 1 SE). Note that scaling in the 
middle panel differs from the other panels…………………………………..76 

 
3.5             Figure 3.5 Mean caloric content of common fish (grey) and 

macroinvertebrates  (white) species in the study region. Bars represent 1 
standard error from the mean…………………………………………….…..77   

 
CHAPTER IV 
 
4.1           Conceptualization of the interaction between animal habitat use and spatially 

explicit nature of ECEs. Consider a population that moves freely between 
habitat patches (shaded shapes) that differ in their capacity to mitigate stressors 
from ECEs, represented by the color of the shape. In the high vulnerability 
scenario, animal density is high in habitats that cannot modulate stressors from 
the disturbance (blue circle), and population losses are high. In the low 
vulnerability scenario, population densities are higher in a habitat that mitigates 
stressors of climate disturbance (green symbol), and population losses are 
lessened……………………………………………………………………...102 

 
4.2            Flow diagram of our research approach……………………………………..103 
 
4.3             Map of study system, polygons represent habitat zones, consisting of the 

downstream coastal zone (black dashed line), meso-haline bay habitat (grey 



xiii 
 

dashed line), and the upstream habitat (solid black line).  Black dots represent 
passive acoustic monitoring stations used to track snook movements. Red dots 
and red halos on acoustic monitoring stations represents temperature loggers 
that were active for a least a portion of the study, and grey squares represent 
USGS temperature loggers…………………………………………………104 

4.4             Average paired difference in Tave (open circles) and Tmin (black circles) during 
the 22 cold events that occurred from 2003-2012. The error bars represent 
95% confidence intervals…………………………………………………...105 

 
4.5             Left: Average daily temperatures across the three USGS stations during the 

January 2008 (A), the January 2010 (B), and the December 2010 (C) event, 
grey shaded areas mark the lethal limit for snook. Center: Spatial variation in  
Tave across the January 2008 (D), January 2010 (E), and December 2010 (F) 
events, each bubble represents a temperature logger active during the event, 
the size and color of the bubble represents the difference in Tave at that station 
relative to the mean Tave across all stations active during the event. For visual 
aid, those bubbles that recorded Tave, similar to the mean are outlined in red. 
Bubbles with the dashed border are the USGS hydrostations used in for the 
long term analysis. Polygons correspond to the zones used in analyses. Mean 
Tave per zone for the January 2008 (G), January 2010 ( H), December 2010(I) 
disturbances. Error bars represent 95% confidence intervals………………106 

 
4.6             Frequency distribution of the calendar day of the year that each of the 312 

cold events occurring in Everglades National Park. The Black dashed lines 
represent +- 1 standard deviation around the mean (January 20th). The blue 
lines indicate when each of the three extreme events occurred over the last 90 
years. The height of the lines represents their relative severity from Boucek 
and Rehage (2014)…………………………………………………………107 

 
4.7            The daily standardized proportion of snook occurring within the upstream zone 

(upper panel), bay zone (mid panel) and the coastal zone (lower panel). Error 
bars represent +-1SE from the mean.  The grey dashed line represents the 
average proportion of snook occurring within each zone for the entire time 
series. The grey shading indicates the windows in time when cold spells are 
most frequently occurring (Dec 23-Feb 27)……………………………….108 

 
4.8             The average proportion of snook occurring within the a) upstream zone), bay 

zone (b) and the coastal zone (c) during the 23rd-Feb 17th window in time 
when cold spells are most frequent. The error bars represent 95% confidence 
intervals……………………………………………………………………109 



xiv 
 

ABBREVIATIONS AND ACRONYMS 
 

AMO             Atlantic Multi-decadal Oscillation    

AUC              Area Under the Curve 

CE            Climate Extreme 

CPUE            Catch Per Unit Effort 

ENP               Everglades National Park 

ENSO            El Niño Southern Oscillation 

FCE               Florida Coastal Everglades  

FL                  Florida  

ISO                Intraseasonal Oscillation  

LTER             Long Term Ecological Research 

NAO              North Atlantic Oscillation  

PNA              Pacific North American  

SH                 Siberian High  

U.S.               United States 

 

              

 

 

 

 

 

 

 



1 
 

INTRODUCTION 

Forecasted changes in global climate predict not only shifts in climate averages, 

but a general increase in climate variance (Easterling et al., 2000; Karl et al., 2008). 

Future changes in climate variability will in turn alter the frequency, intensity, and timing 

of climate disturbances, and importantly those disturbances that are considered extreme 

climate events (Smith 2011).  Climate disturbance can be defined as events with a clear 

beginning and end that affect temperature, precipitation, or wind speed, in ways that 

result in biomass loss or mortalities of species within the affected region (Sousa 1986; 

White and Jentsch 2001; Smith 2011).  These disturbances are having pronounced effects 

at every socio-ecological scale, altering not only on the functioning of ecological 

systems, but also the provisioning on natural resources, economies, anthropogenic 

infrastructure, human health, and federal and international legislation (Adger et al. 2005; 

Jentsch et al. 2007; Smith 2011).  Not only are these disturbances already driving 

meaningful social-ecological change, but as gradual climate shifts and growing 

anthropogenic pressures continue to add stress to many ecosystems, the probability for 

climate disturbance to elicit non-linear or hysteretic social-ecological change will only 

increase (Smith 2011).  Thus, as future climate disturbance regimes change, we as 

researchers must develop a more mechanistic and predictive understanding of how socio-

ecological systems can resist or be resilient to these disturbances, in order to develop the 

most proactive, effective, and sustainable management strategies for the future. 

Two climate disturbances that expected to change in their frequencies, timing, and 

intensities in the future are cold spells and droughts. Both disturbances are capable of 
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driving extreme ecosystem change, natural resource losses, damage to anthropogenic 

infrastructure, alter economies, legislation actions, and result in the loss of life (Zhou et 

al. 2011; Pinho et al. 2014).  Cold spells are generally defined consecutive days of 

temperatures that fall well below normal temperature averages, that cause stress for 

species occurring in the affected area. These events are abrupt, with temperatures 

decreasing to stressful levels almost overnight, are short in duration, lasting only days to 

weeks, and usually incur few dimensions of stress related to extreme low temperatures 

and physical damage due to ice formations (Wang et al. 2010; Zhou et al. 2011).  In 

contrast, droughts are characterized by precipitation deficits that result in water shortage 

for some ecological process or anthropogenic activities (Wilhite and Glantz 1985).  

Unlike cold spells, which are abrupt, stressors associated with droughts increase in 

strength more gradually. Likewise, droughts are long in duration, with some events 

lasting years (Peters et al. 2012). Last, droughts often co-occur with other events such as 

heat waves that can interact to drive complex ecological responses that are difficult to 

predict.  Thus, these climate disturbances provide good contrasts to develop generalities 

about how different drivers associated with climate disturbance may alter ecological 

processes. 

In South Florida, both cold spells and droughts drive substantial ecological 

change, ranging from almost complete population losses of tropical species from extreme 

cold spells, to drought-induced fires that can completely re-arrange landscapes (Beckage 

et al. 2003; Stevens et al. 2016).  In 2010, an extreme cold spell affected South Florida, 

and one year later, a once-in-10-year drought desiccated the region.   The passage of 
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these events provides a unique opportunity to improve our understandings of how these 

disturbances effect ecosystems in South Florida and thus improve predictions of 

ecosystem change following the passage of future events.  Of particular interest, are the 

ecological effects of these to climate disturbances in the Shark River Estuary within the 

Everglades National Park.  This region is a focal site of the Florida Coastal Everglades 

Long Term Ecological Research (FCE LTER), and is a region of persistent and 

comprehensive long-term study (Childers 2006). Using data from the FCE LTER and 

other long-term data sources, we aim to answer the following questions related to these 

two recent climate disturbances 

1) What is the relative severity of these two climate disturbances in the Shark  

River estuary? 

2) How do these disturbances differ in their effects on communities within the 

Shark River estuary? 

3) How does population and community change from extreme cold spells differ 

in sub-tropical Florida from other Sub-tropical regions? 

4) How does drought affect the trophic dynamics of consumers occurring within  

the shark river estuary?  

5)         Can spatially explicit approaches improve our understandings of population 

level vulnerability of mobile species to extreme climate events? 

In Chapter 1, I use long-term climate and hydrologic records to assess the relative 

severity of the two climate disturbances. Along with our assessment of severity, we 

applied novel functional community-based metrics to test whether change in an estuarine 
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fish community following the two disturbances was predictable based on component 

species’ lethal upper salinity tolerance limits  and lethal lower temperature limits 

(Mouillot et al. 2014).  

The geographic scope of Chapter II expands beyond the Everglades. The 

overarching goal of Chapter II is to contrast community level effects of the 2010 extreme 

cold spell that affected South Florida with another extreme cold event that occurred in 

Southern China in 2008. In this chapter, I also review the meteorological drivers that 

influence the dynamics of extreme cold spells. I end this chapter by proposing three 

potential generalities of community change following extreme cold spells in the sub-

tropics. In chapter III, I conducted a multiple year diet study to examine the effects of the 

2011 drought on trophic interactions between an estuarine piscivore and a freshwater fish 

prey community. I complemented this diet study with an energetic analysis of prey to 

determine energetic differences between pre- and post-drought prey communities.  Last 

in Chapter IV, I conducted a multiple-year habitat-use study during the coldest 

wintertime windows, or when cold spells are most frequent. I coupled this tracking work 

with a study on landscape level differences in temperatures during cold events. My 

hypothesis was that higher densities of snook occur in habitats that generally are colder 

during cold events, thus increasing vulnerability to these disturbances.  
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CHAPTER I 

CLIMATE EXTREMES DRIVE CHANGES IN FUNCTIONAL COMMUNITY 

STRUCTURE
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ABSTRACT 

The response of communities to climate extremes can vary between no effects to 

complete and permanent community change. Much of this variation has been attributed to 

differences in community-specific functional trait diversity, as well as community 

composition. Yet, few if any studies have explicitly tested the response of the functional trait 

structure of communities following climate extremes (CEs). Recently in South Florida, two 

independent, but sequential CEs took place, a 2010 cold front, followed by a 2011 drought, 

both of which had profound impacts on a subtropical estuarine fish community. These CEs 

provided an opportunity to test whether the structure of south Florida fish communities 

following each extreme was a result of species-specific differences in functional traits. From 

historical temperature (1927-2012) and freshwater inflows records into the estuary (1955-

2012), I determined that the cold front was a statistically extreme disturbance, while the 

drought was not, but rather a decadal rare disturbance. The two disturbances predictably 

affected different parts of functional community structure and thus different component 

species. The cold front virtually eliminated tropical species, including large-bodied snook, 

mojarra species, nonnative cichlids, and striped mullet, while having little effect on temperate 

fishes. Likewise, the drought severely affected freshwater fishes including Florida gar, 

bowfin, and two centrarchids, with little effect on euryhaline species. My findings illustrate 

the ability of this approach to predict and detect both the filtering effects of different types of 

disturbances and the implications of the resulting changes in community structure. Further, I 

highlight the value of this approach to developing predictive frameworks for better 

understanding community responses to global change. 
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INTRODUCTION 

Forecasted changes in global climate predict not only shifts in average conditions, 

but also increases in the frequency and intensity of climatic extremes (CE; Karl et al. 

2008; Easterling et al. 2000). CEs can be defined as statistically rare events that result in 

conditions that abruptly and substantially exceed the acclimation capacity of organisms 

(Gutschick & BassiriRad 2003). CEs often trigger ‘punctuated killing events’ for 

vulnerable species that can alter community structure, selection regimes, and push 

ecosystems into novel trajectories outside their normal dynamic equilibrium (Kreyling et 

al. 2011; Jentsch et al. 2007; Sousa 1986). Thus, predicted future changes in the 

magnitude, timing, duration and frequency of CEs may result in profound ecological and 

evolutionary effects, driving long-term, hysteretic alterations to ecosystem structure and 

functioning (Bender et al. 2010; Jentsch et al. 2007; Haddad et al. 2002). Despite the 

gravity of these events, far fewer studies address the effects of CEs than gradual climate 

change (reviewed by Jentsch et al. 2007).  

Community-level responses to climate extremes (i.e., changes in species 

dominance, richness and/or composition) have shown to be highly variable, spanning 

from events that had no effect on community composition nor species abundance patterns 

(Marchand et al. 2006) to those that completely re-organized dominance structure 

(Thibault and Brown 2008). This variability in community responses to CEs has made 

developing a predictive framework a difficult task, leading to an emphasis on context 

specificity at the expense of generality (Suding et al. 2008; McGill et al. 2006). Previous 

work suggests that community responses to CEs may be at least in part driven by 

interspecific variation in the functional traits of member species within each community, 
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and variation in trait composition across communities (Kreyling et al. 2011; Smith 2011; 

Thibault and Brown 2008). A community of species with traits resistant to the abiotic 

stress caused by the CE will not change in composition (Marchand et al. 2006), whereas a 

community made up of species with traits vulnerable to the abiotic stressor may show 

species declines or losses, potentially restructuring biotic interactions, and resulting in 

major changes to the community. Yet, despite the likely importance of community 

functional trait structure in dictating responses to CEs ( Mouillot et al. 2013; Suding et al. 

2008), few studies, if any, have explicitly evaluated the role that variation in functional 

trait structure plays in shaping community responses to CEs (but see Milbau et al. 2005).  

Functional trait-based approaches are better suited than traditional taxonomic-

based community metrics (e.g., diversity indices) for examining community-wide 

responses to disturbance (Mouillot et al. 2013; Webb et al. 2010), including CEs. 

Approaches that use functional traits (i.e., quantifiable traits that strongly influence 

fitness) are taxon- and system-independent, directly link traits to environmental drivers, 

and allow for a more mechanistic prediction of changes in species composition and 

abundance (Elliott et al. 2007; McGill et al. 2006). Trait-based approaches may be 

especially informative in predicting community shifts following CEs relative to other 

more gradual climate stressors. Due to the rapid rate of environmental change, the high 

intensity of CEs, and the suite of accompanying effects (e.g., aquatic habitat contraction 

associate with a drought), CEs may become dominant structuring drivers in effected 

communities. Thus, by identifying traits that make species resistant to these extremes, we 

can gain predictability of community structure responses following these events that is 
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not system-specific nor specific to the identity and diversity of component species (Webb 

et al. 2010). 

Two climatic extremes recently affected South Florida (U.S.A.), a cold spell in 

2010 and a drought in 2011. Effects of the 2010 cold spell were severe on fishes and 

other taxonomic groups (e.g., corals, primary producers and top predators; Barr et al. 

2013; Adams et al. 2012; Matich & Heithaus 2012; Mazzotti et al. 2011; Kemp et al. 

2011). Estuarine fish communities in this region may be particularly vulnerable to these 

CEs. These communities are largely composed of tropical euryhaline species originating 

from the Caribbean, and temperate freshwater species that colonized south Florida from 

more northern regions of the continental U.S. The tropical euryhaline species can suffer 

hypothermal stress in the sub-tropics during episodic cold spells (Adams et al. 2012). 

Whereas, temperate freshwater species are resistant to sudden temperature drops, but are 

vulnerable to osmoregulatory stress from high salinities brought on by reduced 

freshwater flows to estuaries in times of drought (Blewett et al. 2013). The 2010 cold 

spell and 2011 drought provide a unique opportunity to test the response of the functional 

trait structure of this estuarine community to two unrelated but sequential CEs.  

Using a functional structure approach developed by Mouillot et al. (2014), we 

quantified the effects of both CEs on the structure of this estuarine subtropical fish 

community. Their functional structure approach provides ways to measures changes in 

the abundance-weighted trait distributions of communities before and after disturbance, 

and provides a way to visualize both the distribution and abundance of component 

species in multidimensional functional trait space. The combination of abundance and 

species functional traits may serve as a more sensitive and accurate representation of 
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community changes to CEs, since CEs may be more likely to affect abundance patterns 

rather than altering the species assemblage itself (Mouillot et al. 2013; Kreyling et al. 

2011; Thibault and Brown 2008; Mueller et al. 2005).  

I used species’ temperature and salinity lethal limits to characterize the functional 

trait structure of an estuarine fish community, and used these trait values to predict 

community structure following the two CEs. I first examined the severity of each CE, and 

then quantified changes (1) in total fish abundance, and (2) on complimentary indices that 

describe functional structure. The index I used, functional identity, calculates a mean 

abundance-weighted trait value for the community (Mouillot et al. 2014). I used this 

approach to calculate the functional temperature identity and the functional salinity 

identity of this fish community or, in other words, the abundance-weighted average 

minimum temperature and maximum salinity lethal limits of dominant members of the 

focal subtropical estuarine community.  

I predicted that interspecific variation in temperature and salinity lethal limits 

would shape community structure following each CE. More specifically, I predicted that 

the cold spell would affect tropical species with relatively high minimum temperature 

lethal limits, increasing the dominance of temperate species with low temperature lethal 

limits, thus decreasing the community functional temperature identity. In contrast, I 

predicted that the drought would affect species with low salinity lethal limits, increasing 

the dominance of species with higher salinity lethal limits, and increasing the overall 

salinity identity of the community. If these focal traits are not important in shaping 

community responses to CEs, I expected to see changes in total fish abundance, but no 

changes to community functional identities.  I also expected that the effects of the CEs 
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would overwhelm other important structuring forces in the system (e.g., predation; 

Boucek and Rehage 2013), at least in the short-term, resulting in a strong signal of trait 

selection following the disturbance.  

 

MATERIALS AND METHODS 

Cold spell severity  

To assess the severity of the 2010 cold spell relative to previous cold events, I 

used fall, winter, and spring (September-March) minimum daily air temperatures from 

the longest and closest air temperature record (Everglades City, FL; 1927-2012, 

approximately 66 km from study sites; http://www.ncdc.noaa.gov/cdo-web/). To ensure 

that these records were representative of temperature conditions at our study sites, I first 

used simple linear regression to relate minimum daily air temperatures at the Everglades 

City station to minimum daily water temperatures at the closest hydrostation to study 

sites (Bottle Creek, < 1 km , Fig. 1,  http://sofia.usgs.gov/eden ) for the period of study 

(2004-2012). Regression fit was adequate (r2 = 0.83,  p < 0.001, N = 2873 days), 

indicating that minimum air  temperatures at this station correspond to minimum water 

temperatures experienced by our focal ecotonal fish community.  

I then identified individual cold spells in the 85-year time series. I defined a cold 

front as single or consecutive days when the minimum daily air temperature dropped to 

or below two standard deviations from the mean minimum daily temperature of the entire 

time series. Because the ecological severity of cold fronts depends both on the amplitude 

(degree of coldness) and duration (length of cold front), I used methods to account for 

http://www.ncdc.noaa.gov/cdo-web/
http://sofia.usgs.gov/eden
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both of these parameters. First, I developed an index to describe the amplitude of the 

event. The ecological severity of extreme temperature events increases non-linearly as 

temperature changes (Smith 2011). I accounted for this non-linearity by converting daily 

minimum temperatures during the cold front to severity index values with the equation 

below:  

 

Where MTij is the minimum temperature of day i of cold front j, MTave is the 

average minimum temperature of the time series, and MTmin the coldest temperature of 

the time series. The inverse power function was used to increase the weight of lower 

temperature days. Also, by calculating the difference of the average and minimum 

temperatures of the time series in the denominator, I ensured that all severity index values 

were positive.  

To account for the duration of each cold front, I used these daily severity index 

values to develop severity index curves and then calculated the area under the curve 

(AUC) following each cold front. Cold fronts with greater AUC were considered more 

severe. The AUC approach is a common method to relate the effects of temperature to 

biological processes (Baskerville and Emin 1969; Chezik et al. 2014). Cold fronts that 

were considered a CE were those with AUCs that fell in the upper one percent median 

probability distribution of all the cold front AUCs of the entire time series (Smith 2011). 

Drought severity 

Severity Index𝑖𝑗 =  
1

(𝑀𝑇𝑖𝑗𝑖 + (𝑀𝑇𝑎𝑣𝑒 −𝑀𝑇𝑚𝑖𝑛 ))
 1 
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I determined drought severity by calculating the number of days per year marshes 

upstream of study creeks were dry (i.e., no freshwater flow and higher salinity regimes in 

the estuary (Boucek and Rehage 2015).  I extracted stage data from hydrostation SH1 

(Fig. 1, http://sofia.usgs.gov/eden/). Since stage data at SH1 dates back to only 1996, I 

complemented stage data for 1955 to 1995 with data from Everglades National Park 

(ENP) hydrostation P33 (approximately 21.1 km upstream of SH1, 

http://sofia.usgs.gov/eden/ ). For these years, I regressed stage between the SH1 and P33 

stations (r2 = 0.801, p < 0.01), and used this relationship to predict SH1 stages for the 

earlier part of the time series. To ensure that duration of marsh drying had an effect on 

salinity conditions experienced by estuarine fishes in focal mangrove creeks, I regressed 

the number of days per year that marshes were dry against peak annual salinities at the 

nearby Bottle Creek hydrostation (Figure 1.1, r2 = 0.78, p < 0.001, N = 9 years). 

Sampling effort  

I sampled fish communities three times per year at six fixed ecotonal mangrove 

creek sites in ENP (Figure 1.1): once in the wet season (November-December), and twice 

in the dry season (early dry: February-March, and late dry: April-May) from February 

2006 to December 2012.  The ecotone I sampled serves as s a transitional habitat and 

physical connection between inland freshwater Everglades marshes and the mangrove-

dominated estuary downstream (Basset et al., 2013).  At these sites, fish communities are 

relatively dynamic across seasons, following patterns similar to those of many tropical 

floodplain rivers (Boucek and Rehage 2015; Jardine et al. 2012; Rehage and Loftus 

2007). However, despite strong seasonal structuring, community composition and 

dominance do not vary across multiple years sampled prior to these CEs.   

http://sofia.usgs.gov/eden/
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Sampling was conducted using a boat-mounted, generator-powered electrofisher 

(two-anode, one cathode Smith-Root 9.0 unit). These sites are generally oligohaline with 

the average salinity of 1.3 ppt (SE 0.12), therefore electrofishing is an adequate sampling 

method (Burkhardt and Gutreuter 1995). I conducted three replicate electrofishing 

transects at fixed points in each site, each 200 m apart (6 sites x 3 transects x 3 seasons x 

7 years = 378 electrofishing samples; Figure 1.1). I report fish abundance, as the number 

of fish caught per 100 meters of mangrove creek shoreline (see Boucek & Rehage 2013; 

for additional details). Because of our interest in examining the effect of the 2010 and 

2011 CEs and because there is little inter-annual variation in community structure (Table 

1.1), I aggregated CPUE from 2006-2009 as pre-disturbance years for all analyses. I also 

averaged the two dry season samples, prior to all analyses (3 bouts x 6 sites x 2 samples 

per year x 7 years = 252 samples used in analyses).  I chose to aggregate these dry season 

samples a priori to avoid increasing the weight of dry season community samples relative 

to wet season community samples in our statistical analyses.  Within this focal 

community, the majority of dominant species are adults (Boucek and Rehage, unpubl. 

data), thus within species ontogenetic differences in lethal limits is expected to be 

minimal.   

Abundance and functional trait-based analyses  

I first examined fish community responses to the two CEs by comparing total 

abundance patterns (number of fish/100 m) for the 15 dominant species (>1% of total 

catches; Table 1.2), which accounted for 84% of total fish abundance, and the 

abundances of each of the 15 species across four time periods of interest: pre-disturbance 
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(2006-09), 2010 cold front, 2011 drought, and post-disturbances (2012). Since lethal 

drought conditions occurred in June and July 2011, after our last dry season sample, I 

expected drought affects to be observable in the 2012 samples. Comparisons of total 

abundance, and the abundances of individual species across these time periods of interest 

were done using Friedman’s test (a non-parametric test analogous to repeated measures 

ANOVA; Verbitsky 2012; Bonnington et al. 2013; Castillo et al. 2013).  Subjects were 

defined as sampling bouts nested within season. Post hoc comparisons were done with 

Mann Whitney U tests in SAS® 9.2.  

Following Mouillot et al. (2014), I plotted both the distribution of the 15 species 

and changes in their abundances in two-dimensional Euclidian trait space (analogous to 

Bary diagrams for multiple taxa; Whitfield et al. 2012; Taylor 1993) across the four time 

periods of interest. I defined this two-dimensional trait space using each species 

minimum lethal temperature limit and maximum lethal salinity limit. I chose these traits 

because they most likely reflect each species’ susceptibility to either the cold front or 

drought conditions. Trait values were extracted from the literature, and if none were 

reported, temperature and salinity limits were inferred based on the species’ geographic 

ranges or survival from documented extreme temperature or salinity disturbances (see 

Table 1.1). These biplots provide not only a clear visualization of the trait values of 

component species, but more importantly of the changes in the functional structure of the 

entire community in response to both CEs.  

I then examined changes in the community trait composition across years by 

calculating abundance-weighted average values for both the temperature and salinity 

traits (i.e. functional identity; Mouillot et al. 2014). Using the minimum temperature and 
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maximum salinity traits of all species, I calculated the community’s salinity and 

temperature functional identity, or the abundance weighted average trait value of the 

community:  

 

With functional identityj being either the salinity or temperature identity of the 

community; the standardized trait value representing the maximum salinity or minimum 

temperature lethal limit of species i, and spi representing the proportion of fish abundance 

accounted by species i per electrofishing sample. I square root transformed proportional 

species abundances to reduce the influence of very abundant species, as commonly done 

in community-based studies (Anderson et al. 2006). Functional identities were compared 

across the four same time periods using Friedman’s tests.  I considered sampling bout 

nested within season as the subjects in tests, and post hoc comparisons were done with 

Mann Whitney U tests in SAS® 9.2 as done with abundance analyses.  

RESULTS 
2010 cold spell severity  

From 1927 to 2012, I identified 319 cold front events (i.e., single or consecutive 

days events with air temperatures two standard deviations below the average 

temperature-days < 5.37 °C). The 2010 cold front dropped minimum daily air 

temperatures to a low of  -3.3 °C. This minimum temperature is tied for the fourth lowest 

of all of the cold spells in the time series. The five cold spells with the lowest minimum 

temperature in rank order were the Feb 1996 (minimum temperature of - 5.0°C), followed 

by Dec 1989 and January 1940 (-4.4°C), Jan 2010 and Jan 1981 (-3.3°C, Fig. 1.2b). The 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦𝑗 =   𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑡𝑟𝑎𝑖𝑡 𝑣𝑎𝑙𝑢𝑒𝑖 ∗  𝑠𝑝𝑖  1 
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duration of the 2010 cold spell (or number of days with air temperatures <5.37°C) lasted 

for 12 days, 5 days longer than any cold spell of the entire time series. The next four 

longest cold fronts were the Jan 1940 (7 days), January 1977 (6 days), Jan 1981 (6 days), 

and the Jan 1970 (4 days).  

 Based on the severity index curves I created, which incorporate both the 

amplitude and the duration of cold spells, I identified three extreme cold spells that fell 

outside the 99% median probability distribution:  Jan 2010, Jan 1940, and January 1981 

cold spells. The 2010 cold spell was the most severe of the entire time series (Fig. 1.2a). 

The relative magnitude of 2010 cold spell (based on AUCs) was approximately 36% 

greater than second most severe (Jan 1940), and 44% greater than the third most severe 

event (Jan 1981).  At study sites, Jan 2010 water temperatures reached a minimum of 6.2 

°C, at or below the minimum lethal temperature limit for tropical fishes (Fig. 1.2b, Table 

1.1). 

2011 drought severity  

Between 1955 and 2012, the average number of days that marshes were dry and 

the estuary experienced no freshwater inflow was 47.0 days (± 8.4 SE, Fig. 1.2c). The 

number of days with no freshwater flow to the estuary in 2011 doubled the mean for this 

period (95 days), but unlike the cold front, the 2011 drought did not fall outside the 99% 

median probability distribution, and thus does not constitute a true CE (only 1963 fell in 

this range; Smith, 2011). Although the 2011 drought is not a statistically extreme event 

(i.e., a 100-year drought), a drought of this magnitude has not been experienced in the 

system since 2001 (99 days with no freshwater flow to the estuary), thus is a rare event. 
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Daily salinities during the 2011 drought reached a maximum 13.9 PSU at the Bottle 

Creek hydrostation, within the range that would cause mortalities to some species (Fig. 

1.2d; Table 1.1).  

CE effects on total fish abundance  

Total fish abundance varied as a function of disturbance periods (Table 1.3, Fig. 

1.3a). Surprisingly, total CPUE following the 2010 cold front did not differ from pre-

disturbance total fish abundance (p = 0.129). However, total fish abundance in 2011 

(prior to the drought) decreased by 28% relative to pre-disturbance values (p < 0.001). 

Total fish abundance further decreased in 2012 to 10.8 fish/100 m, 45% lower than total 

fish abundance in 2011, and 61% lower than pre-disturbance conditions (p < 0.001).   

Changes in community salinity and temperature identity  

Both the cold spell and the drought had effects on the temperature and salinity 

functional identities of the mangrove creek fish community (Fig. 1.3b; Table 1.3). The 

cold spell caused the temperature and salinity identity of this fish community to decrease 

by 42% and 48% respectively (p < 0.001), leaving a community dominated by temperate 

freshwater species. In 2011, the temperature and salinity identity remained 21% and 18% 

lower than pre-disturbance conditions (p < 0.001), however they were 35% and 62% 

higher compared to trait identities in 2010. In 2012 (post-drought), both temperature and 

salinity functional identity increased by 26% and 30% relative to 2011 (p <0.001), 

returning to pre-disturbance conditions (p > 0.45).  

Functional structure in salinity and temperature trait space 

 The biplots of species trait values in salinity and temperature lethal limits show 

that native taxa fall along an axis of low salinity and low temperature lethal limits 
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occupied by the freshwater fishes, to high salinity and high temperature lethal limits 

occupied by the euryhaline fishes (italicized vs. plain text species codes in Fig. 1.4a). 

These trait patterns are likely due to the different colonization histories by these 

freshwater and estuarine species (Lodge 2005).  Of interest is that the three nonnative 

taxa (blue tilapia, peacock eels, and Mayan cichlids) appear to fall off this axis, perhaps 

occupying novel trait space, characterized by middle salinity tolerances and greater cold 

tolerance (bold species codes in Fig. 1.4a).  

CE effects on individual species abundances  

Of the 15 dominant species (6 euryhaline, 6 freshwater and 3 nonnative taxa), the 

abundances of 12 species abundances changed following both CEs (Fig. 1.4, Table 1.2, 

Table 1.3).  Following the 2010 cold front, 7 species abundances decreased by at least an 

80% relative to pre-disturbance conditions, all with a minimum temperature tolerance 

above 6 °C (p < 0.02; Fig. 1.4b). Affected species included four of the six euryhaline 

species and all three dominant nonnatives (Table 1.3). Of these affected species, the 

abundance of the dominant estuarine predator, snook, decreased by 86%.  Nonnative 

Mayan cichlids and tidewater mojarras dropped completely from our catches after the 

cold front in 2010 (Fig. 1.4b). In contrast, only one species with a minimum temperature 

lethal limit below 6°C decreased in abundance (by 59%) relative to pre-disturbance 

conditions (bowfin, p = 0.032; Fig. 1.4b). Yet, decreases in bowfin abundance were likely 

caused by unrelated factors since no bowfin were observed dead during statewide fish 

and wildlife mortality surveys (Blewett & Stevens 2013) nor at our own at study sites 

(Boucek  & Rehage unpublished data). Interestingly, two of the dominant freshwater prey 
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species, dollar and spotted sunfish increased in abundance by 490% and 420% 

respectively in 2010, relative to the pre-disturbance period (p < 0.02; Fig. 1.4b).   

Post-cold spell and pre-drought in 2011, of the seven species potentially 

negatively-affected by the first CE, striped mullet was the only species whose abundance 

returned to pre-disturbance conditions (p = 0.55; Fig. 1.4c). In contrast, for the six other 

negatively-affected species, their numbers remained at least 47% below their pre-cold 

front abundance, indicating little recovery (p < 0.033; Fig. 1.4c). The two sunfish species 

that increased in abundance in 2010, decreased in abundance in 2011, returning to pre-

disturbance numbers (p > 0.061).  Likewise, bowfin abundance returned to levels 

indistinguishable from before the disturbance (p = 0.345). 

Following the drought, four of the six temperate dominant freshwater species 

decreased in abundance relative to pre-disturbance conditions (Table 1.3, Fig. 1.4d).  Of 

these four affected species, three had salinity lethal limits below the maximum salinity 

measured during this study. Two of the three large-bodied freshwater predators, Florida 

gar and bowfin, decreased in abundance by 69% and 88% relative to pre-disturbance 

conditions, and by 54% and 87% relative to their post-cold front abundances (p < 0.001, 

Fig. 1.4d).  Also, the abundance of the two small-bodied freshwater prey species that had 

responded positively to the cold front (dollar and spotted sunfish) now decreased by 66% 

and 79% relative to pre-disturbance conditions, and by 81% and 76% when compared to 

abundances in 2011 (p < 0.014).  Along with these declines in the freshwater fishes, 

snook, a euryhaline species, still remained at an abundance 60% lower in 2012 relative to 

pre-disturbance (p < 0.001), but trended toward levels higher than its 2010 abundance (p 

= 0.072), possibly indicating some recovery from the cold front.  
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Out of the other seven species negatively affected by the cold front, two fully 

recovered to pre-disturbance conditions by 2012, striped mullet, which recovered in 

2011, and tidewater mojarra (p > 0.16, Fig. 1.4d).  The native euryhaline hogchoker, 

which was unaffected by the cold front, showed an 80% increase in abundance relative to 

pre-disturbance conditions following the drought and a 61% increase compared to 2011 

(p < 0.001). In contrast, the three dominant nonnative taxa remained at least at 93% lower 

abundances compared to pre-disturbance (p < 0.001), suggesting no population recovery.   

DISCUSSION 

With forecasted increases in CEs (Smith 2011), community assembly mechanisms 

may be altered, including selection for novel functional traits, and perhaps a greater role 

of exogenous (e.g., environmental) relative to endogenous (e.g., species interactions) 

structuring mechanisms (Webb et al. 2010). Thus, developing unifying frameworks that 

will help predict these new or altered trait structures and species assemblages is 

paramount. Our results show that interspecific differences in abiotic limits to temperature 

and salinity drove changes in functional trait and thus the community structure of 

estuarine fish community following a 70-year cold front and a 10-year drought in a 

predictable fashion. The cold spell negatively affected half of the fish community, 

reducing the abundance of tropical euryhaline and nonnative species, and re-organizing 

community dominance to favor temperate freshwater species.  These temperate 

freshwater species were then affected by the 2011 drought, which restored the dominance 

of the recently affected and recovering tropical euryhaline native taxa. The second 

disturbance, the drought, pushed both the salinity and temperature functional identities of 

this community back to pre-disturbance conditions. However, changes in abundance were 
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not due to the recovery of affected species, since total fish abundance was reduced by 

61% post both CEs and many tropical euryhaline species still had yet to recover. But, 

instead the post community observed in our community surveys represents the combined 

restructuring effects of the sequence of both CEs, and their differential effects on 

community components.   

  I view the sequence of these two disturbances as an opportunity since studies that 

document multiple and varied CEs are rare. At the same time, CEs are projected to 

increase with future climate change. Because CEs are increasing in frequency, a pressing 

need exists to better understand the potential effects of multiple CEs (Smith 2011).  But, I 

acknowledge that due to the sequence of CEs, the effects of the drought cannot be easily 

separated from the recovery of impacted species from the preceding cold front in shaping 

functional structure in 2012. The observed drought effects are thus, to some extent, 

conditional on the prior cold front effects. For instance, the upward shift in functional 

identities I observed post both CEs in 2012 likely resulted from a combination of factors, 

including (1) the recovery of tropical euryhaline species post cold-spell, (2) the loss of 

temperate freshwater species presumably from the drought, (3) the effects of the CEs on 

species vulnerable to both (i.e., nonnatives), and (4) the subsequent effects of these 

altered abundances on species interactions.   

I speculate that mortality caused by the drought may have been a more important 

driver than these other mechanisms potentially shaping trait structure post both CEs in 

2012. The drought caused 66-90% decreases in the abundance of the dominant freshwater 

species (i.e., bowfin, Florida gar, and dollar and spotted sunfishes), which accounted for 

55% of the total fish abundance pre-disturbance. Upon recovery from the cold front, only 
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two tropical euryhaline species, accounting for 7% of the total abundance, showed 

increases in 2012. Thus, their recovery probably had little effect on functional community 

trait structure following the two CEs (Fig 4d). The loss of nonnative fishes prior to the 

drought also likely dampened the magnitude of change in functional trait identities in 

2012. I expect that if the drought had occurred in isolation, nonnatives would have been 

negatively affected, the same as native freshwater species, and thus the magnitude of 

change in functional identify due to the drought would have been greater than that seen 

here. Lastly, I hypothesize that the loss of individuals and species from the cold spell 

likely reduced interspecific competition and predation between tropical euryhaline 

species and temperate freshwater species (Sponseller et al. 2010), making temperate 

freshwater species less vulnerable to the drought than predicted by mortality due to 

physiological stress alone. These factors highlight the need for both manipulative and 

long-term observational studies to not only capture community responses to single CEs, 

but to the combination of multiple and varied CEs.  

Two differences in the behaviors of these CEs exist that merit consideration when 

comparing their effects on community structure: (1) their abruptness and duration 

(Jentsch et al. 2007) and (2) the number of complementary stressors associated with each 

CE. The cold spell was a more abrupt disturbance, decreasing water temperatures to 

lethal conditions within days, but was short in duration, lasting less than two weeks. In 

contrast, the drought increased salinities gradually and lasted for over 3 months. The 

second key difference between these two CEs is that the cold front only influenced 

temperature regimes, whereas the drought likely incurred other complementary effects.  

Droughts in estuarine systems not only increase salinities, but also reduce flushing, which 
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results in an accumulation of organic matter, increased respiration and decreased oxygen 

levels (Koehn et al. 2011). Reduced freshwater inflows associated with droughts can also 

reduce the extent of littoral and floodplain habitat, increasing concentration of fish in less 

structurally-complex and deeper estuarine habitats, and subsequently increasing inter and 

intra-specific competitive interactions, as well as predation risk (Welcomme and Halls 

2003). 

These differences in the nature of the two CEs likely explain some of variation in 

the species responses observed. Following the cold front, every species with a 

temperature lethal limit warmer than the lowest water temperature of the cold front 

decreased in abundance by at least 70%.  On the other hand, species with maximum 

salinity lethal limits below the maximum measured during the drought, showed no 

change in abundance (e.g., red-ear sunfish), and species with salinity lethal limits well 

above the maximum salinity values I observed, showed up to 80% decreases in 

abundances (e.g., Florida gar).  One explanation for the more direct effects of the cold 

front on abundances may be the abruptness of the event. The rapid chilling of the water 

following the cold front may have prevented vulnerable species from moving to suitable 

temperature refugia microhabitats (Kearney et al. 2009). Alternatively, the temperature 

may have dropped faster than normally cold-tolerant species can acclimate (Matich and 

Heithaus 2012). These two factors likely increased the importance of purely 

physiological tolerances in surviving this climate extreme.  In contrast, with the drought, 

potentially vulnerable species may have been able to acclimate to these conditions or 

seek out more freshwater refuge habitats, shielding species from large mortality effects. 
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Complementary stressors associated with the drought may have also played some 

role in the overall functional community response.  I speculate on their relative 

importance for certain species based on their traits. For instance, bowfin showed a high 

degree of change following the drought. This species has a vascular swim bladder 

(Peterson and Meador 1994), and can tolerate anoxic conditions. However, bowfin have 

low salinity lethal limits, making salinity, and not anoxia, the likely cause of their 

decline. Similarly, the dollar and spotted sunfishes affected by the drought have salinity 

lethal limits close to the maximum salinity observed (Table 1.1) and can tolerate hypoxia 

(Schofield et al., 2007), but they are a major prey class for larger predators (Boucek and 

Rehage 2013). A reduction in littoral habitat area by the drought should have increased 

their vulnerability to predation, likely driving their reduction in numbers. These 

differences between the two disturbances may indicate that simple trait-based (two traits) 

approaches like ours may be appropriate for CEs that are pulsed and affect species via a 

single or few mechanisms.  In cases where CEs are more gradual and result in multiple 

stressor effects, a more complex multivariate trait-based approach involving more and 

different types of traits may be needed.  

CEs may alter the functional trait structure of affected communities in two 

fundamental ways, both of which have the potential to be detected with trait-based 

approaches.  First, the CE causes mortality in species with vulnerable traits, acting as a 

performance filter, and thus increasing the representational dominance of species with 

resistant trait values without changing their population sizes (i.e., changes in trait 

structure and decreased total abundance, Webb et al., 2010). Second, the loss of 
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vulnerable species may alter biotic controls (predation and competition) causing less 

competitive species, that may be resistant to the extreme, to increase in abundance, 

further shifting functional structure and identity in favor of resistant species (i.e., higher 

than expected changes in trait structure with less than expected decreases in abundance). 

For instance, Thibault and Brown (2008) found that an extreme flood, affecting rodent 

communities in arid grasslands of the southwestern US, severely affected dominant, 

larger bi-pedal kangaroo rats that are relatively poor swimmers and climbers, but had no 

effect on smaller, invasive pocket mice that have more plastic locomotion. The loss of the 

competitively-dominant kangaroo rat subsequently released pocket mice from food 

competition causing their populations to increase. Thus, through direct mortality of the 

dominant species, competitive release, and the positive numerical response of the less 

competitive species, the community’s functional traits (i.e., size and locomotion) shifted 

to favor smaller rodents with more plastic locomotion following the CE. In this example, 

biotic regulation of the rodent community was lessened by the climate extreme, resulting 

in a change in trait dominance, but accompanied by relatively small changes in total 

abundance. 

Like this rodent example, the cold front altered an important biotic interaction in 

the focal system. Despite the extreme nature of the 2010 cold front, and the substantial 

mortality across about half of the 15 dominant species, I detected no change in total fish 

abundance post cold front. I suspect that the role of predation, a dominant structuring 

mechanism in this fish community, was lessened following the cold front. Previous diet 

work showed that tropical euryhaline snook heavily exploit freshwater sunfishes when 

the sunfish move off drying marsh floodplains into the estuary (Boucek and Rehage 
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2013).  Sunfish abundance quadrupled in the year following the cold spell and the loss of 

snook, likely the result of a release from snook predation. Thus, the major tropical taxa 

declines were compensated by increased survival of small-bodied temperate freshwater 

species, explaining why total fish abundance did not change. Restructuring of biotic 

interactions, in this instance predation, likely drove functional identities further toward 

temperate freshwater species than what would be predicted with the loss of the tropical 

species alone. This result highlights the need to incorporate species interactions and 

trophic linkages into trait-based approaches to fully understand the mechanisms of 

community response to CEs (Wootton and Emmerson 2005; Suding et al. 2008).  

Whether increases in the frequency of CEs will facilitate species invasions is 

uncertain (Diez et al. 2012). For instance, CEs can increase the vulnerability to invasion 

of ecosystems by directly increasing resource availability or by causing mass mortality in 

native species, freeing resources (e.g., nutrients, prey, light, space), and allowing for the 

establishment and propagation of more opportunistic nonnative species with novel and/or 

resistant functional traits (Jiménez et al. 2011; Shea and Chesson 2002; Davis et al. 

2001). Likewise, CEs can create conditions that are unsuitable for the invader, reducing 

their abundance (Kreyling et al. 2008). Whether invadibility of an ecosystem will change 

following CEs will likely depend on the traits of the invader, the CE, and the affected 

community structure. Functional structure approaches should improve our understanding 

of whether CEs act to shield or promote invasions. For instance, in the coastal 

Everglades, the three dominant nonnatives (Mayan cichlids, blue tilapias, peacock eels) 

are likely vulnerable to both droughts and cold fronts, failing to recover after the 2010 

cold front. If either of these CEs increase in frequency (Berry et al. 2011, Kodra et al. 
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2011), I may expect population regulation and thus reduced abundances for nonnative 

species. However, if a new nonnative species is appears with traits resistant to both of 

these filtering mechanisms, then CEs may instead act to increase the invasibility of 

estuarine reaches.  

 Our results suggest that with increases in the frequency of CEs, biotic structuring 

mechanisms may be replaced by abiotic structuring mechanisms. These changes may 

result in the increased dominance of species with traits resistant or resilient to CEs and 

possibly of generalist species able to survive in extreme abiotic environments (Elliot and 

Whitfield 2011). The capability to survive under extreme abiotic environments may be of 

importance in already altered ecosystems such as the Florida Everglades (Sklar et al. 

2005) and others, where the structure of communities is already influenced and 

responsive to anthropogenic-driven abiotic regimes (e.g., changes in water management; 

Trexler et al. 2005). Functional structural approaches allow researchers to identify the 

relative vulnerabilities of member species, and more important the vulnerabilities of their 

traits, to specific stressors associated with CEs. Identifying a quantifiable link between 

environmental stressors and community responses greatly improves our predictive 

understanding of how CEs may similarly affect different communities affect by climate 

change, and potentially providing a powerful tool in biodiversity conservation. 

Researchers may also use this information to guide manipulative experiments testing how 

community structure, species interactions, and ecosystem functioning may be altered with 

vulnerable species at reduced abundances or perhaps absent. The challenge continues to 

be the development of conceptual frameworks that combine trait-based approaches with 

the indirect effects of biotic interactions to better predict community responses to CEs 
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(Smith 2011). However, functional structure approaches may provide a good first step to 

identify at least the loss of species to communities and the resulting changes in trait space 

associated with CEs.
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TABLES 
 
Table 1.1 Trait values used in all analyses for the 15 dominant members of the community. 
Trait values used came from published physiological studies, or inferred from extreme ranges 
and/or published mortality experienced during extreme temperature and salinity disturbances 
 

 
 
 
 
 
 
 
 

          

Species Scientific name 

Salinity 
lethal 
limit 

(PSU) 

Temperature 
lethal limit 

(°C) 
Sources 

Euryhaline     
Tidewater mojarra Eucinostomus harengulus 90 8 15 

Striped mullet Mugil cephalus 75 12.3 16 
Snook Centropomus undecimalis 50 6 7 

American eel Anguilla rostrate 36 3 10 
Striped mojarra Eugerres plumieri 36 7.2 14 

Hogchoker Trinectes maculatus 30 5 4, 5 
 

 

Nonnative     
Blue tilapia Oreochromis aureus 27 6.5 4, 11 
Peacock eel Macrognathus siamensis 15 9 13 

Mayan cichlid Cichlasoma urophthalmus 37 9.9 12 
 

Freshwater  

Florida gar Lepisosteus platyrhincus 18 3 1, 2 
Largemouth bass Micropterus salmoides 16 1.5 1, 3 
Red ear sunfish Lepomis microlophus 12 3 1, 6 
Dollar sunfish Lepomis marginatus 12 3 1, 6 
Spotted sunfish Lepomis punctatus 12 1.5 1, 6 

Bowfin Amia calva 8 0 8, 9 
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Table 1.2 Percent abundances across years of the 15 dominant species in the focal subtropical estuary community 
 

 

 Year 

Florida 

gar  

Largemouth 

bass Hogchoker 

Red 

ear 

sunfish 

Spotted 

sunfish 

Dollar 

sunfish Snook 

 2006 26.2 8.0 3.3 2.8 6.2 14.2 12.9 
 2007 31.7 9.0 2.2 1.0 1.9 0.8 11.6 
 2008 24.1 15.2 1.8 0.8 1.3 2.0 13.5 
 2009 19.2 8.4 3.1 1.2 8.8 5.7 10.9 
 2010* 22.7 6.9 4.0 2.1 17.0 20.3 6.5 
 2011 24.5 12.4 3.9 2.4 11.6 10.9 6.3 
 2012** 15.8 9.5 9.2 6.0 3.3 2.7 11.5 
         

 Year American eel Bowfin 

Blue 

tilipia1 

Mayan 

cichlid1 

Peacock 

eel1 

Striped 

mojarra 

Tidewater 

mojarra  

Striped 

mullet 

 2006 1.4 1.4 0.9 6.4 0.0 4.1 5.0 7.1 
 2007 2.1 6.2 5.8 5.9 0.0 4.4 10.7 6.5 
 2008 3.2 7.5 10.7 0.5 1.3 4.0 5.8 8.2 
 2009 2.0 3.9 4.5 2.2 14.9 3.5 6.0 5.5 
 2010* 1.4 1.8 1.7 0.1 0.3 5.9 2.4 7.0 
 2011 0.9 6.4 0.8 0.2 0.1 3.7 7.6 8.3 
 2012** 3.0 1.1 0.4 0.3 1.0 9.8 12.7 13.8 
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Table 1.3: Summary statistics testing the impacts of the CEs on the abundance of the 15 
dominant species and the community trait identities. Bold font indicates significant 
disturbance period effects. 

Response variable χ2
(df,N) P 

   

Total fish abundance 32.1(3,252) <0.01 

   

Community trait identity    

Temperature identity 57.67(3,250) <0.01 

Salinity identity 56.34(3,250) <0.01 

   
Freshwater species   

Florida gar(FG) 42.68(3,252) <0.01 

Bowfin(BF) 30.33(3,252) <0.01 

Spotted sunfish (SF) 32.06(3,252) <0.01 

Dollar sunfish (DF) 15.32(3,252) 0.02 

Red ear sunfish (RS) 1.30(3,252) 0.73 
Largemouth bass (LB) 4.70(3,252) 0.2 
   
Euryhaline species   

Snook (SK) 37.63(3,252) <0.01 

Striped mojarra (SM) 18.51(3,252) <0.01 

Tidewater mojarra (TM) 34.85(3,252) <0.01 

Striped mullet (MU) 10.72(3,252) 0.01 

Hogchoker (HC) 9.26(3,252) 0.03 

American eel (AE) 5.17(3,252) 0.16 
   
Nonnative species   

Blue tilapia (BT) 29.92(3,252) <0.01 

Mayan cichlid (MC) 37.31(3,252) <0.01 

Peacock eel (PE) 10.17(3,252) 0.02 

 

Subscripts are used to identify these species in Fig.1.4.  



33 
 

FIGURES 
 

Figure 1.1 Map depicting location of our study sites in the southwest region of ENP. Circles 
represent 6 fixed sampling sites, while squares represent USGS and NPS hydrostations. 
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Figure 1.2 a) Area under the severity index curves (AUC) for all 319 cold fronts 
identified between 1927 and 2012. Dashed line represents the 99% confidence interval.  
Blue line denotes the 2010 cold front. b) Minimum air temperature (black line), minimum 
water temperature (dashed line), and duration (in # of days, vertical bars) for each cold 
front during the study, 2004–2012.  Blue line denotes the 2010 cold front. c) The number 
of days per year with no freshwater flow into the estuary for the longest period of record 
in ENP, 1955 2012. d) The number of days the estuary experienced no freshwater flow 
during the study, 2004-2012 (bars), and the accompanying maximum daily salinity values 
(solid line). Red bar highlights the 2011 drought. 
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Figure 1.3 a) Yearly variation in total fish abundance (sum of the 15 dominant species, # 
of fish per 100 m of mangrove shoreline) between 2006 to 2012.  
b) Variation in functional trait identities across years for our Everglades fish community. 
The solid line and black symbols represent the salinity functional identity, whereas the 
dashed line and white symbols reflects the temperature functional identity.  
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Figure 1.4 Changes in structure of our Everglades fish communities across functional 
trait space defined by maximum salinity and minimum temperature limits. The size of the 
circles corresponds to the relative abundance of each species (natural log transformed). 
Panels show changes in abundance across the four time periods of interest:  a) pre-
disturbance (2006-2009, green),  b) pre-disturbance (green) vs. 2010 cold front (blue), c) 
pre-disturbance (green) vs. 2011 drought (orange), and d) pre-disturbance (green) vs. 
post-disturbances (red). Two letter codes identify individual species: plain codes are 
euryhaline species, italicized codes are freshwater species and bolded codes are 
nonnatives (see Table 1 for species common names). The dashed circles on figure 4d 
highlight which species that fully recovered from the cold front.  
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CHAPTER II 

A REVIEW OF SUB-TROPICAL COMMUNITY RESISTANCE AND RESILIENCE 
TO EXTREME COLD SPELLS 
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ABSTRACT 
 

Forecasted changes in global climate predict not only shifts in average conditions 

but also changes in the frequency and intensity of climate extremes. In the sub-tropics, 

the passage of extreme cold spells functions as a major structuring force for ecological 

communities, and can incur substantial losses to biodiversity, agriculture and 

infrastructure. If these events persist in the future, climate extreme effects on sub-tropical 

communities and ecosystems will become more pronounced, as tropical species migrate 

poleward. Recent extreme cold spells in subtropical China (2008) and U.S. (2010) 

occurred in ecosystems that are the subjects of long-term ecological study, enabling key 

questions about cold spell affects to be addressed. In this paper, I (1) discuss the 

meteorological drivers that resulted in these two extreme cold spells, and (2) use findings 

from case studies published in the Ecosphere special issue “Effects of extreme cold spells 

on the dynamics of sub-tropical communities, and on poleward expansion of tropical 

species” and other previously published works to identify consistencies of sub-tropical 

community resilience and resistance to extreme cold spells. In this review, I highlight 

three consistent findings related to this particularly type of extreme climate event.  (1) 

Cold spells drive predictable community change in the subtropics by altering ratios of 

coexisting tropical and temperate species.  (2) Certain landscape features consistently 

affect sub-tropical resistance and resilience to extreme cold spells.  (3) Native tropical 

species are more resistant and resilient to extreme cold spells than tropical non-native 

taxa.  Our review should improve forecasts of the response of sub-tropical community 
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dynamics in scenarios where extreme cold spells either increase or decrease in frequency 

and intensity. 

INTRODUCTION 
 

Forecasted changes in global climate include not only shifts in average conditions, 

but also changes in the frequency and intensity of climatic extremes (Easterling et al. 

2000; Karl et al. 2008). Climate extremes can be defined as discrete weather events that 

fall within the statistical tails of some climate parameter, and create conditions exceeding 

the acclimation capacity of species occurring within the affected region, often causing 

large scale mortality events (Gutschick & BassiriRad 2003; Smith 2011).  Extreme cold 

spells are a form of climate extreme predicted to change in frequency, intensity, and 

duration in the future (Kodra et al. 2011; Field 2012; Gao et al. 2015). Changes in the 

future dynamics of extreme cold spells will play an important role in shaping the future 

distribution of species, community organization, and ecosystem function, especially in 

environments where species groups occur at their highest latitudinal or altitudinal 

distribution  (Precht and Aronson 2004; Beck and Goetz 2011).  

 The subtropical zone (25-40° latitude) is thermally characterized by regions where 

long-term average minimum monthly temperatures are greater than 13°C, and the 

frequency of subfreezing minimum temperature days range from once a year to less than 

annual (Holdrige’s life zones; Neilson 1995). Despite being a warm environment, the 

occurrence of cold spells are common in the sub-tropics, with ecologically meaningful 

events being reported in the U.S. (Boucek and Rehage 2014), China (Liu et al. 2014), 

Taiwan (Hsieh et al. 2008), Australia (Gilman et al. 2008), Brazil (Gallucci and Netto 
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2004), and the northwest Mediterranean (Coles and Fadlallah 1991). Similar to other 

climate extremes, extreme cold spells affecting the sub-tropics are capable of driving 

wholesale changes to ecosystem structure and function (Stone 2008; Boucek and Rehage 

2014; Kemp et al. 2015; Santos et al. 2015). For instance, the extreme cold spell that 

affected the southeastern U.S. in 2010 drove a likely stable-state shift in coral 

communities occurring in shallow waters off Florida’s Middle and Upper Keys 

archipelago. The 2010 extreme climate event caused almost complete mortality of some 

key foundational stony coral reef building species, while causing less mortality of soft 

octocoral species. Since the 2010 cold spell, affected stony corals have shown little 

recovery, resulting in a stable, post-cold event community with an increased dominance 

of soft octocoral species (Colella et al. 2012; Kemp et al. 2015).   

Apart from affecting ecosystem structure and function, extreme cold spells incur 

substantial losses to agriculture and fisheries in the subtropics (Dontown and Miller 1992; 

Zhou et al. 2011; Khounsy et al. 2012).  For instance, a 2008 extreme cold spell that 

affected sub-tropical China resulted in losses of 40% of winter time crops, 30% of bee 

colonies, 75 million livestock, and 0.45 million tons of aquacultured fish (Zhou et al. 

2011). Similar catastrophic losses to other natural resources have been observed in 

subtropical Florida’s citrus industry (Sheridan 2003), where the passage of a series of 

extreme cold spells in 1980s killed approximately one third of Florida’s commercial 

citrus trees (Downton and Miller 1993). Thus, extreme cold spells, like many climate 

extremes, can elicit extreme ecosystem responses, and incur substantial economic losses.  

If these events persist in the future, extreme cold spells will continue to be one of the 

dominant structuring forces of ecological communities in the subtropics. Further, as 
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tropical species continue to advance poleward into the sub-tropics due to climate 

warming, effects of these cold events on sub-tropical communities and ecosystems will 

become more pronounced. Thus, in order for us to forecast ecosystem dynamics in the 

sub-tropics, we must understand how and what factors dictate sub-tropical community 

responses to these extreme disturbances.  

In this introductory paper, I discuss the meteorological drivers that resulted in 

these two extreme cold spells in China and in the U.S., and highlight consistent findings 

in sub-tropical community resistance and resiliency to these extremes from the papers 

featured and previously-published works. Overall, I expect that the passage of extreme 

cold spells to function as a major force shaping sub-tropical community dynamics, 

changing structuring processes to those dictated by species tolerance to low temperatures, 

and the external features in the landscape that buffer communities from cold 

temperatures. 

CLIMATE FACTORS THAT DRIVE EXTREME COLD SPELLS 

In the subtropics, cold spells result from polar air moving into lower latitudes. 

Equatorial movement of polar air is often correlated with winter shifts in upper airflow 

from predominantly zonal (west-east) flow to meridional (north-south) flow, via changes 

in ocean-atmospheric teleconnections (Sheridan 2003; Chen et al. 2008; Wang et al. 

2010; Na et al. 2012).  For instance, in the subtropical U.S., upper air flows during the 

positive phase of the Pacific North American anomaly (PNA) coincide with 80% of the 

region’s ecologically meaningful cold spells (Downton and Miller 1993; Sheridan 2003). 

At the onset of extreme cold spells, minimum daily air temperatures decrease to extreme 

low values almost overnight.  These extreme low temperatures persist for usually days 
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before minimum daily air temperature returns to normal variability (Zhou et al. 2011; 

Boucek and Rehage 2014).  

In China, the 2008 cold spell brought on not only extreme low temperatures that 

persisted for approximately a month, but also unseasonally high precipitation (Hong and 

Li 2009; Zhou et al. 2011). These extreme low temperatures in sub-tropical China and 

Southeast Asia were a product of interactions between Siberian high (SH), intraseasonal 

oscillation (ISO), and El Niño Southern Oscillation (ENSO) climate anomalies. Across 

Asia, this 2008 extreme event started in mid-January, when the Siberian high anomaly 

moved into an enhanced phase, coinciding with the movement of multiple cold air 

outbreaks into lower latitudes in central China.  These cold air outbreaks were initially 

blocked from the subtropics by suppressed convention over Sumatra (associated with the 

dry phase of the ISO). However, in February, the ISO shifted from a dry phase to a wet 

phase, increasing convection and pushing cold air outbreaks as far south as the South 

China Sea.  On average, ISO wet phases and cold air advection to subtropical China 

persists for 10 days, but in 2008, the transition out of this wet phase was stalled by a La 

Niña episode, causing the ISO wet phase to persist for 30 days, resulting in continuous 

cold air outbreaks in sub-tropical China for the entire month of February (see Hong and 

Li 2009 for additional details).  On top of these cold air outbreaks, an anomalous and 

persistent summer-monsoon-like flow pattern moved high-moisture tropical maritime air 

masses from the Bay of Bengal northward.  The convergence of the tropical and polar air 

masses resulted in both extreme low minimum air temperatures in subtropical China for 

24 days, and unseasonal precipitation (Zhou et al. 2011).  As a result, the 2008 cold spell 

broke 50-year records for the maximum number of consecutive low temperature days 
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throughout many regions of subtropical and temperate China (Chen et al. 2009).  This 

extreme disturbance affected natural systems and resources and caused $22.3 billion 

dollars (U.S.) in damages to infrastructure, resulting in 129 human fatalities and 

displacing 1.7 million people (Zhou et al. 2011).  

Shifting to the 2010 extreme cold spell in subtropical United States. Across the 

Eastern U.S., the winter of 2009-2010 had the most snow fall and lowest temperatures 

since 1950 (Wang et al. 2010). The severity of the 2009-2010 winter inspired the media 

to report that the next ‘mini ice age starts here’, increasing public skepticism of climate 

warming (Wang et al. 2010; New York Times Feb 10, 2010; Wall Street Journal Feb 16, 

2010).  Like the 2008 China event, this extreme cold spell resulted from the interaction of 

multiple climate anomalies, namely the North Atlantic Oscillation (NAO) and the PNA. 

Starting on December 28th 2009, the NAO shifted into an extreme negative phase, 

indicating a weakening of the Icelandic low and the Azores High, and the PNA shifted 

into the positive phase. These phase shifts coincided with a northerly directional change 

in surface wind anomalies across the U.S., causing cold air outbreaks to sweep into lower 

latitudes and down into Florida.  Extreme negative phases of the NAO usually occur 

during decades of longer term durations of lower phases of the NAO, therefore, it is 

likely that the longer the NAO remains in a negative phase the more likely an extreme 

negative phase event will occur, and as a consequence, an increased probability that the 

U.S will be affected by an extreme cold spell (Wang et al. 2010).   

In Florida, cold air incursions are relatively common each winter, usually lasting 

one or two days, and without incurring meaningful ecological change. Once every 20 

years, episodic cold spells affect sub-tropical Florida, whereby temperatures decrease to 
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extreme low values (> 3 SD from long term temperature average), and remain at these 

low values for extended periods (up to seven days, Boucek and Rehage 2014).  These 

episodic cold spells have occurred in the months of December or January in the years 

1940, 1977, 1981, and 1985, all of which resulted in major ecological effects. Unlike 

these less severe episodic spells, the 2010 spell both drove minimum temperatures to 

extreme low levels (-4.16 SD from 80-year mean), but more damaging, this event kept 

temperatures at extreme lows for 14 days, 7 days longer the next longest cold spell 

(January 1940; Boucek and Rehage 2014). Effects of the 2010 cold event were severe or 

extreme for many taxonomic groups (e.g., corals, primary producers, and top predators; 

Kemp et al. 2011; Adams et al. 2012; Matich & Heithaus 2012; Mazzotti et al. 2011; Barr 

et al. 2013).  The Florida Citrus industry and coastal fisheries incurred substantial losses 

(Fantz 2010; Barbour et al. 2014; Blewett and Stevens 2015).  

SUB-TROPICAL EXTREME COLD SPELLS RELATIVE TO OTHER EXTREME 
CLIMATE EVENTS 

Despite the accepted power of climate extremes to shape natural systems, few 

generalizations exist to address the population, community, and ecosystem responses to 

such events (Jenstch et al. 2007; Smith 2011). First, few generalizations exist because 

climate extremes are rare, and relatively few field studies have captured ecosystem 

responses to such events. Second, few experimental systems are in place that can 

simulate extreme climate conditions over relevant spatio-temporal scales (Smith 2011). 

Third, ecological responses to climate extremes cannot be predicted with less severe and 

more frequent disturbances because climate extremes can create stressors of sufficient 

amplitude and duration to elicit unexpected threshold responses (Jenstch et al. 2007, 
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Smith 2011, Peters et al. 2012). Finally, climate extremes often create many stressors that 

can interact with other local drivers to change ecosystems in complex and often context-

dependent ways, limiting our ability to develop overarching generalizations of ecological 

responses we may expect to climate extremes (Kreyling et al. 2011, Peters et al. 2012).   

  The effects of extreme cold spells on subtropical ecosystems may be less 

complicated than effects of other climate extremes, and thus potentially easier to predict. 

First, subtropical cold spells are thermal events, unlike other climate disturbances such as 

tropical cyclones and drought that can incorporate multiple dimensions of stress (e.g., 

wind, fire, and precipitation in addition to temperature).  Even extreme heat waves co-

occur with other extreme climate drivers, including droughts, stressful UV intensity, and 

increased fire risk, all of which may increase context-specificity in ecological responses.  

For instance, during the 2011 heat wave in Australia, extreme temperatures were the 

dominant driver of change in coastal marine systems (Smale & Wernberg 2013). In 

contrast, in the 2003 European heat wave in Northern Italy, extreme drought conditions 

drove a state shift in primary producer communities in Mediterranean lakes (Bertani et al. 

2015). And a combination of extreme heat, extreme low precipitation, and high UV 

intensity drove changes in grassland communities following the same extreme 2003 

European heat wave (Kreyling et al. 2011).  In contrast, unlike heat waves and other 

extremes, the effects of cold events may be easier to link to a single driver, fostering 

easier comparisons across place and time, and allowing for greater predictability in their 

effects.  

  Another aspect of extreme cold spells that make their effects tractable is their 

relatively short duration, usually measured in days to weeks, compared to other climate 
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extremes that can last for years (e.g., droughts). The consequences of such persistent 

extreme events can be complicated since effects can be driven by secondary influences 

that occur after the initial restructuring effects related to physiological stress and physical 

damage caused by the climate extreme. Secondary drivers might include positive 

feedbacks that cause persistent state changes. For instance, in arid and semi-arid 

grasslands, prolonged droughts combined with overgrazing can shift primary producer 

community dominance from perennial grasses to drought resistant woody plants that 

sequester nutrients and form “islands of fertility”, ultimately leading to an ecosystem 

state change (Peters et al. 2012).  

Relative to other climate extremes, ecological responses to extreme cold spells 

should be governed largely by thermal constraints controlled by either internal factors 

(e.g., physiological optima) or external factors (e.g., landscape refuges) that dictate a 

species’ ability to tolerate relatively short durations of low temperature exposure. Though 

species can resist some negative deviations in temperature from less severe and more 

frequent cold spells, during extreme cold spells, temperatures often decrease below the 

physiological limits, particularly for many tropical species, resulting in abrupt, non-linear 

decreases in species abundances.  

In the next sections, I highlight three findings consistently identified as significant 

in the special issue. I discuss these in the context of previous studies on subtropical 

community responses to extreme cold spells. Beyond improving our understanding of 

ecological change mediated by extreme cold spells in the sub-tropics, identifying these 

consistencies may help guide interpretation of short-duration thermal disturbances 

occurring across the globe.  
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CHANGES IN COMMUNITY STRUCTURE FOLLOWING EXTREME COLD 
SPELLS IN THE SUBTROPICS 

In the subtropics, communities are composed of tropical species at the poleward 

extent of their range, temperate species at their equatorial range limit, and sub-tropical 

species within their core range. Tropical species evolved in warm, thermally aseasonal 

environments (i.e., thermal specialists; Tewksbury et al. 2008), while temperate and sub-

tropical species have adapted to relatively wide seasonal fluctuations in temperature 

(thermal generalists; Sunday et al. 2014). Thus, tropical species are generally limited in 

their physiological acclimation to extreme cold and even exhibit maladaptive behaviors 

during extreme cold events (see Mazzotti et al. 2016). In comparison to tropical species, 

temperate species have the physiological capacity to resist both relatively high and low 

temperature extremes (Sunday et al. 2014). Because tropical species are less resistant to 

extreme cold spells compared to temperate and sub-tropical species, cold spells should 

shift community dominance in favor of more temperate species. 

The studies in this issue, along with prior work support this generalization. 

Starting with top predators in Florida, the 2010 event reduced abundances of tropical 

American crocodile (Crocodylus acutus), while having little influence on more thermally 

tolerant American alligators (Alligator mississippiensis; Mazzotti et al. 2016). Moving 

down the food web, following the same event in Florida coastal rivers, an immediate 

decline in tropical fishes was observed, while temperate fish abundances remained 

unchanged or increased (Boucek and Rehage 2014; Santos et al. 2016). Switching over to 

the spell in China, similar decreases in tropical species dominance were observed 

following the 2008 event. For instance, Wang et al. (2016) showed that the 2008 cold 
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spell caused disproportionate mortalities of tropical butterflies, resulting in an increased 

community dominance of temperate butterflies.  In coral reef communities, a switch from 

tropical species to broadly temperature tolerant species was observed following both the 

2008 China and the 2010 U.S. event (Chen et al. 2008; Kemp et al. 2011; 2016). Outside 

these two extreme cold spells, other research has supports this generalization. In coastal 

sub-tropical zones across the globe, the passage of extreme cold spells have been shown 

to switch vegetation communities from tropical mangrove-dominated environments to 

temperate saltmarsh-dominated habitats (Stevens et al. 2006; Osland et al. 2013; 

Cavanaugh et al. 2014).   Sub-tropical cold spells, therefore, appear to lead to rapid shifts 

in community structure toward greater broadly tolerant species dominance.  

EFFECTS OF LANDSCAPE FEATURES ON SUBTROPICAL COMMUNITY 
RESISTANCE AND RESILIENCE 

Extreme cold spells affecting the sub-tropics can incur ecological change across 

entire regions. In both Florida and China, mortality of tropical species was observed from 

latitudes 19°N, and 29°N, to latitudes of 24°N and 28°N, respectively (Chen et al. 2016; 

Stevens et al, 2016, Kemp et al. 2016). Despite the large footprint of the area affected by 

extreme cold spells, tropical species and sub-tropical community resistance and resilience 

vary across space.  

Landscape features may either promote or reduce tropical species and sub-tropical 

community resistance to extreme cold events. Further, these landscape features may 

operate at every spatial scale.  At the scale of a single forest patch, larger trees that 

occupy the upper canopy are more severely damaged by extreme cold spells (by both 

physiological damage from cold shock and physical damage from icing) than smaller 
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lower understory trees in Floridian and Chinese mangrove forests and in Chinese 

evergreen forests (Ross et al. 2009; Chen et al. 2016; Wang et al. 2016).  In these forests, 

temperature and humidity both decrease moving from the floor to the canopy, increasing 

stressful thermal conditions for taller trees (Ross et al. 2009; Chen et al. 2016).  Similar 

differences between forest floor vs. canopy effects were also documented in small-bodied 

consumers inhabiting Chinese mangrove forests.  Arboreal mollusks suffered higher 

mortalities than their benthic counterparts in Chinese mangrove forests following the 

2008 cold spell, likely due to similar temperature and humidity drivers (Liu et al. 2016).  

Variation in cold spell resistance across patches also exists.  Landscape features 

that may influence cross patch resistance to extreme cold spells include, (1) proximity to 

water bodies that can buffer patches from extreme cold temperature, (2) features that may 

block wind, and (3) elevation differences (e.g., valleys) that can trap cold air. Starting 

with examples from citrus groves in Florida, following a series of episodic cold spells in 

the 1980s, Downton and Miller (1993) showed that cold resistance of citrus groves varied 

based on whether the grove was on a hill or in a valley, or whether the grove was close to 

a lake. Groves in valleys were more at risk to freeze damage due to the settling of denser 

cooler air in these valleys that create cold pockets. Similarly, groves on the windward 

north facing sides of hills suffered more damage. In mangrove forest patches in 

subtropical China, Liu et al. (2012) came to a similar conclusion: mangroves located on 

the leeward sides of hills suffered minimal damage following the 2008 cold spell relative 

to those on the windward side. In a similar fashion, subtle changes in elevation that may 

trap cool air in addition to distance to oceans that can act as a heat source and alter 
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mangrove cross-patch forest resistance in both sub-tropical China and the U.S. (Liu et al. 

2014; Zhang et al. 2016; Chen et al. 2010, 2016).    

At the largest scales, ocean currents and ecosystem geomorphology can dictate 

cross-ecosystem resistance.  For instance, Stevens et al. (2016) found nearly complete 

resistance for a tropical estuarine fish population in Florida at one estuary, and virtually 

no resistance in three others.  These inter-estuary differences in tropical fish resistance 

were likely a result of multiple interacting factors, including availability and abundance 

of deepwater habitats (though mostly anthropogenic), abundance of freshwater springs, 

and proximity to warm tropical oceanic currents.  Similarly, in the Florida Keys 

archipelago, following the 2010 cold event, shallow water coral reefs in the Middle to 

Upper Keys suffered community wide change while coral reefs in deeper water and 

closer proximity to the warm Gulfstream were less affected by the disturbance (Colella et 

al. 2012).  

Like resistance, sub-tropical community resilience can vary across spatial scales. 

For instance, Rehage et al. (2016) showed that across eight non-native fish populations 

affected by the 2010 disturbance, population resilience varied from within one year, to 

populations that have exhibited no recovery five years post disturbance.  Rehage et al. 

(2016) attribute this spatial variation in resilience to differences in distance to warm 

water source populations. Likewise, Stevens et al. (2016) found that following the 2010 

cold spell in Florida, resistance of a tropical estuarine piscivore were similar across three 

of four estuaries but resilience varied, possibly an effect related to inter-estuary 

differences in geophysical structuring that may influence reproduction, recruitment, and 
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juvenile survival.  Thus, landscape features are an important consideration since they can 

influence both resistance and resilience.  

DIFFERENCES IN RESISTANCE AND RESILIENCE AMONG TROPICAL NATIVE 
AND NON-NATIVE TAXA 

Native and nonnative species may differ in a variety of ways, including how they 

are affected by extreme events. Within the context of extreme cold events, nonnative 

tropical species appear to be less resistant and resilient than their tropical native 

counterparts. This finding agrees with hypotheses proposed by Kreyling et al. (2015), 

when measured the thermal tolerance of 27 northern Hemisphere native and nonnative 

tree species. Kreyling et al. (2015) found that cold tolerance was related to the 

temperature conditions in the species’ native range. The authors conclude that developing 

cold tolerance operates on relatively long timescales. Thus, the lack of cold tolerance 

observed in non-natives could be that tropical species native to the sub-tropics may have 

developed limited tolerance to extreme cold spells, while tropical non-native species with 

distributions in more core areas of the tropics have not yet acquired any physiological 

capacity or behaviors that may improve their resistance to extreme cold spells (Cook 

Patton et al. 2015).   

Findings from previous and ongoing work support this notion. Chen et al. (2016) 

found that mangroves introduced to subtropical China (Sonneratia caseolaris, S. apetala) 

suffered higher mortalities than native species. Similarly, bamboo fields planted with 

non-native species suffered greater losses than fields seeded with native bamboo 

following the 2008 cold event (Junming et al. 2008; Zhou et al. 2011). In Florida, Boucek 

and Rehage (2014) and Rehage et al. (2016) found that tropical native fishes were both 
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more resistant and resilient to extreme cold compared to their functionally similar non-

native counter parts. Similarly, Downing et al. (2016) found that non-native bees in sub-

tropical Florida were less resistant to the 2010 cold spell than native bees. Many non-

native species are introduced to the subtropics from lower latitudes, because of their high 

ornamental value (Schofield and Loftus 2014).  Thus, as the dynamics of extreme cold 

spells change in the future, invasion risk, and the population stability of currently 

established non-natives will track the changes in the frequency, intensity and duration of 

extreme cold spells in the sub-tropics.   

CONCLUSIONS: SUB-TROPICAL CONSERVATION IN A WARMING WORLD 
WITH EXTEME COLD SPELLS 

Whether extreme cold spells will increase or decrease in frequency, intensity, or 

duration is uncertain, and is likely to vary geographically (Vavrus et al. 2006, Kodra et al. 

2011). Previous research shows that any change in their dynamics may have 

consequences for subtropical ecosystems.  If these events increase in frequency, we may 

expect non-native population dynamics to become less stable, and the probabilities of 

new species invasions to be reduced.  At the same time, we may see losses to many 

important natural resources in these latitudes, including coral reefs and mangrove forests, 

which provide key ecosystem services to the region, in addition to losses to agriculture 

and fisheries productivity.  Further, increases in these events may function to slow the 

poleward migration of tropical species, as well as impair translocation success in 

conservation efforts, which could be particularly problematic since tropical species are at 

very high risk from climate warming (Sunday et al. 2014).   
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Under scenarios where extreme cold spells remain constant or increase in 

frequency, we could consider developing conservation and management strategies that 

account for variation in resistance to these events, considering both the component 

species within that community (non-native, tropical, temperate), and the landscape 

features the community occupies. For habitats and communities that offer little resistance 

to these cold disturbances, we could implement strategies to provide extra protection for 

tropical species occurring in those areas that are at increased risk to cold spell effects 

(discussed in Stevens et al. 2016).  This added protection may be particularly important 

for highly managed tropical fisheries that due to harvest are increasingly responsive to 

climate stressors (Britten et al. 2014; Santos et al. 2016; Stevens et al. 2016).  On the 

other hand, habitats that have landscape features that offer high resistance to these 

disturbances, could be identified and set aside as refuges for endangered and or imperiled 

tropical species occurring in the sub-tropics such as American Crocodiles (Mazzotti et al. 

2016).   Similarly, these cold spell refuge habitats could serve as key introduction sites of 

the species being considered for assisted migration programs and translocation 

conservation strategies. 

 Last, decreases in the frequency of these events could provide long-term benefits 

to agriculture and aquaculture, like Florida citrus and that could add facilities at higher 

latitudes (Sheridan 2003).  Likewise, we may expect tropical fisheries to become more 

stable and potentially increase in productivity (Stevens et al. 2016; Santos et al. 2016). 

Decreases in the frequency of these events may also increase the population stability of 

threatened tropical species occurring within the sub-tropics (i.e., American crocodile; 

Mazzotti et al. 2016), as well as increase habitat suitability in the sub-tropics for tropical 
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species threatened by climate warming (Liu et al. 2012; Kemp et al. 2016).  Regardless of 

the fate of extreme cold spells in the future, our special issue highlights key responses 

that we can expect subtropical systems to exhibit in light of these extreme events. 
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CHAPTER III 

A ONCE IN TEN YEAR DROUGHT ALTERS THE COMPOSITION AND 
MAGNITUDE OF A FLOODPLAIN PREY SUBSIDY TO COASTAL RIVER FISHES 
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ABSTRACT 

Movement of energy, nutrients, and prey to river and stream systems from 

adjacent habitats can be the dominant driver of river and stream foodwebs. As such, 

disturbances that alter these foodweb linkages can lead to whole scale changes to receipt 

aquatic systems. However, how and in what ways disturbance alters cross-habitat 

foodweb linkages and prey subsidies is largely understudied. In coastal rivers of the 

Southwest Everglades (FL, U.SA.), seasonal increases in rainfall inundate adjacent 

floodplains, providing habitat for an abundance of floodplain fish and macroinvertebrate 

species.  In the dry season, rainfall decreases and floodplains dry, forcing floodplain prey 

into these river systems. These floodplain prey provide an important prey subsidy for an 

estuarine predator, common snook (Centropomis undecimalis).  In 2011, a once-in-ten-

year drought affected the region, tripling the number of days floodplains remained dry, 

likely affecting this prey subsidy. In this study, I ask (1) did the 2011 drought affect the 

magnitude and composition of floodplain prey subsidies to snook, and (2) if species 

composition changed, were there energetic differences between the pre and post-

disturbance prey species?  Our results showed that one year following the drought, prey 

subsidies to snook decreased by 75%. On top of that decrease in overall flux, snook diet 

composition switched from floodplain fishes to drought-tolerant floodplain 

macroinvertebrates.  Last, energetic analyses showed that these post-drought 

macroinvertebrate prey subsidies had 43% less calories per gram than floodplain fishes. 

In the sub-tropics and tropics, droughts are expected to increase in frequency and 

intensity in the future. As droughts become more frequent and intense, these cross-habitat 
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foodweb linkages will likely change depending on ecosystem contexts, affecting river 

ecosystems. 

INTRODUCTION 
 

  Over the past two decades, research has established the importance of cross-

ecosystem resource subsidies to recipient populations, communities, and ecological 

processes (Polis et al. 1997; Richardson and Sato 2015: Richardson and Wipfli 2016). 

For instance, fluxes of prey from floodplains to rivers can provide up to 75% of the total 

biomass consumed by predatory fishes inhabiting riverine systems (Winemiller and 

Jepsen 2004; Jardine et al. 2012; Boucek and Rehage 2013). These prey subsidies can 

have strong direct bottom up effects, and thus sustain high predatory fish biomass (Allen 

and Wesner 2016).  In turn, these predatory fishes not only support lucrative fisheries 

(Jardine et al. 2012), but through increased top-down pressure, shape riverine trophic 

structure and influence whole-ecosystem energy flows (Nakano et al. 1999; Kawaguchi et 

al. 2003). Given the scale of these effects, any alterations to these fluxes can have major 

ecological and economic ramifications for recipient ecosystems, and communities that 

rely on the fisheries provided by the river systems.  

 Disturbance can alter these cross-ecosystem resource subsidies in a number of 

ways. First, disturbance can alter the magnitude of resource fluxes. For instance, 

Greenwood and McIntosh (2010) showed that decreased river flows lowered aquatic 

insect prey abundance, which in turn reduced biomass of the recipient terrestrial 

consumer, a riparian fishing spider. Disturbance could also affect the species composition 

of trophic subsidies, with important implications for subsidy quality and incorporation 
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into receipt foodwebs (Marcarelli et al. 2011). For instance, invasions by Russian olive 

(Elaeagnus angustifolia) in riparian corridors in the western US have resulted in a 25-

fold increase in allochthonous inputs to streams, but due to the low quality and chemical 

properties of the leaves, increased inputs did not affect stream productivity (Mineau et al. 

2012). A third possibility is that disturbance could affect the ability for response by 

recipient consumers. In streams, flood disturbances positively affected aquatic prey 

abundance, but fishing spiders were unable to capitalize on this subsidy due to decreases 

in habitat quality in riparian areas at less flood-prone rivers (Greenwood and McIntosh 

2008). Surprisingly, aside from this handful of examples, few studies have quantified 

how disturbance can affect upper trophic level trophic fluxes.  

 One of the key disturbances to consider in a future of climate change, and of 

relevance for secondary trophic level fluxes to many aquatic systems is drought (Lake 

2011). In river floodplain systems, droughts can have persistent effects on floodplain to 

river energy flows (Junk et al. 1989; Magoulick and Kobza 2004; Bond et al. 2015). 

Drought in these river floodplain systems can be facilitated by both anthropogenic water 

management practices related to agricultural use, flood control and human consumption, 

deviations in precipitation driven by larger ocean-atmospheric teleconnections, and also 

by higher than normal temperatures that increase evapotranspiration (Trenberth et al. 

2013).   In river floodplain systems, droughts reduce the number of days that floodplains 

are inundated, which both increases the time that floodplain species spend in rivers, and 

the decreases the subsequent growing season for floodplain fishes.  Similarly, freshwater 

flows are reduced during drought, which can create exceedingly harsh abiotic (anoxia) 
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and biotic (high competitor and predator density) conditions in river habitats. These 

effects decrease floodplain species survival, floodplain re-colonization, and the future 

productivity of floodplain subsidies (Welcomme and Halls 2001; Magoulick and Kobza 

2004).  

In the Florida Everglades wetlands, wet-dry rainfall cycles drive prey productivity 

and fluxes of fish prey across ecosystem boundaries. During the wet season (June-

November), high rainfall results in the inundation of vast expanses of graminoid 

freshwater marshes that provide habitat for prey fishes (Trexler et al. 2005; Boucek and 

Rehage 2013). In the dry season (December-May), marsh drying forces fish prey into the 

deepest habitats in the landscape, including canals, sloughs, biogenic depressions , and in 

the southern reaches of the ecosystem, coastal rivers (Rehage and Trexler 2006; Parkos 

and Trexler 2011; Boucek and Rehage 2013). These prey fish concentrations are then 

exploited by avian, piscine, and reptilian consumers (Frederick et al. 2009). At the marsh-

coastal mangrove interface, concentrations of these marsh prey constitute a major subsidy 

for estuarine piscivores, particularly recreationally-valuable Common Snook 

(Centropomis undecimalis), that migrate to this river floodplain system to capitalize on 

this resource (Boucek and Rehage 2013). 

In the greater Everglades, droughts are a common re-occurring disturbance driven 

by both larger ocean-atmospheric teleconnections, and anthropogenic water management 

practices (Gaiser et al. 2012). Like many river-floodplain systems, droughts in the 

Everglades both have pronounced immediate and long-term effects on prey abundances, 

trophic interactions and whole scale ecosystem processes (Trexler et al. 2005, Dorn and 
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Cook 2015). In 2011, a once-in-10-year drought affected South Florida, providing an 

opportunity to examine the effects of drought of prey subsidies across the marsh-coastal 

mangrove interface, and more broadly learn about how disturbance can alter prey 

subsidies (Figure 3.2). In this study, I asked (1) how did the 2011 drought affect the 

magnitude and composition of floodplain prey subsidies to common snook, and (2) if 

drought altered species composition of subsidy, did food quality (energetic value) of prey 

species differ before and after the drought? I hypothesize that (1) the 2011 drought would 

result in a both temporary decrease in the magnitude of the subsidy, and a compositional 

shift in trophic subsidies from centrarchid fishes to drought tolerant macroinvertebrates 

(crayfish, crabs and shrimp). I also expected that (2) macroinvertebrates would be of 

lower energetic quality relative to centrarchid prey items. To assess the effects of the 

drought on subsidy quantity, composition, and quality, I tracked the abundance of 

common snook, biomass of centrarchid floodplain species, and snook diets for four years 

(2010-2014). Last, I compared the energetic value of prey species common in snook diets 

during the study. 

MATERIALS AND METHODS 
Study system 

  My study was conducted in a series of first and second order creeks in freshwater 

reaches of the upper Shark River in the southwest region of Everglades National Park 

(ENP; Figure 3.1). These creeks are crowned by an expansive floodplain, the Shark River 

Slough. The Shark River Slough and Shark River represents the largest freshwater 

drainage of the southern Florida Everglades and a focal point of ongoing Everglades 

hydrological restoration efforts (Childers et al. 2006). Long-term hydrological monitoring 
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from this region shows that these floodplains generally dry every year, with the number 

of dry days varying from 0-210 per year (Boucek and Rehage 2014a). In the southern 

Everglades, the number of floodplain dry-days and drought are closely linked in the El 

Niño Southern Oscillation (ENSO) and Atlantic Multidecadal Oscillation (AMO) ocean 

atmospheric teleconnections (Gaiser et al. 2012).   

On the biological side, during the dry season, three guilds of prey move into the 

river system (Boucek and Rehage 2013). These guilds consist of cyprinodontoid fishes, 

macroinvertebrates, and larger bodied sunfishes. Along with these prey, three species of 

freshwater floodplain top predators move off drying floodplains into the river system: 

Florida bass (Micropterus floridanus), bowfin (Amia Calva), and Florida gar (Lepisosteus 

platyrhincus).  In comparison to snook, these freshwater piscivores are generally smaller 

in body size, and principally forage on different functional groups of prey. For instance, 

bass and Florida gar (Lepisosteus platyrhincus) show preference for cyprinodontoids that 

generally occupy the top of the water column, bowfin principally feed on floodplain 

macroinvertebrates, while snook primarily consume sunfishes (Boucek and Rehage 

2013).  Though these consumers seemingly partition resources, the abundance of 

freshwater floodplain piscivores can be high enough that they still consume 

approximately half the sunfish biomass that enters the river system (Boucek and Rehage 

2013).  In the wet season, high diet overlap is high among these consumers, with 

generally all species consuming invertebrates.   

Sampling effort 
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  In order to examine the effects of the 2011 drought on prey fluxes between 

upstream marshes and the mangrove riverine areas downstream, I tracked diets of the 

focal consumer snook, along with changes in snook abundance, and the biomass of their 

dominant prey item, centrarchid fishes originating from the floodplain system. My study 

was conducted at five creek sites approximately each month from December to July (dry 

season) each year from 2010 to 2014 via electrofishing methods (Figure 1). At each creek 

site, three standardized electrofishing transects were conducted using a boat-mounted, 

generator-powered electrofisher (15 transects per month x 26 months sampled = 390 

transects).  For each transect, I drove the electrofisher (two-anode, one cathode Smith-

Root 9.0 unit) at idle speed in parallel to shorelines and applied power for 300 seconds, 

netting all immobilized snook and sunfishes. From these electrofishing samples, I report 

catch per unit effort (CPUE) for snook, as the number of fish caught per 100 m of 

mangrove creek shoreline (see Boucek & Rehage, 2013; Boucek and Rehage 2015 for 

additional details).  For sunfish prey, I report abundance as the biomass of sunfishes per 

100 m of shoreline. Upon capturing snook, I removed stomach contents via pulsed gastric 

lavage, a relatively non-invasive and effective method for sampling fish stomach contents 

(Barbour et al. 2012, Boucek and Rehage 2013).   

Stomach content samples were preserved in formalin for later processing. At the 

lab, consumed prey items were identified to the lowest taxonomic resolution, measured 

and weighed (wet weights). I then calculated the average biomass (wet weight of 

consumed prey) of macroinvertebrates and fishes consumed per 100 meters of shoreline 

by snook using the equation below.  
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Where BCi represents the prey biomass consumed per 100 m that was either fish 

(all taxa combined) or macroinvertebrate (all taxa combine). This metric provides a good 

measure of the overall flux of both floodplain prey that is incorporated into the foodweb, 

and floodplain energy and nutrients deposited in the receipt river system through trophic 

pathways. I then compared yearly differences in snook abundance, prey fish biomass, and 

the mean biomass consumed per 100 meters of all prey, macroinvertebrates, and fishes 

using the Friedman’s test, (a nonparametric test analogous to a repeated measures 

ANOVA; Verbitsky 2012) with month used as the independent variable. Post hoc 

comparisons were done using Mann-Whitney U-tests.  

Energetic analyses 

Energetic values of specific prey taxa in the focal system are not available from 

the literature, particularly the nonnative species.  However, findings from other studies 

show that fishes are generally higher in caloric content than invertebrates, and fish of 

larger body size are higher in calories than their smaller counterparts (Kushlan 1979; 

Adams et al. 1982). For our energetic analysis, I collected large-bodied (>5 cm total 

length or TL) fishes via electrofishing and small bodied fishes (<5 cm) and 

macroinvertebrate prey, using unbaited 3 mm, metal-mesh minnow traps (25.4 mm 

opening) set overnight. When potential prey species could not be captured from our five 

study sites, I augmented our collection using both electrofishing and minnow traps from 

canals bordering ENP (32 km away from study sites).  

𝐵𝐶𝑖 =  
𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡  𝑔 𝑜𝑓 𝑝𝑟𝑒𝑦𝑖  𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑝𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑒𝑐𝑡

𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑣𝑖𝑎 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑓𝑖𝑠ℎ𝑖𝑛𝑔 𝑡𝑟𝑎𝑛𝑠𝑒𝑐𝑡 (𝑚)
 ∗ 100 
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  I measured the caloric content of prey items that made up greater than 1% of the 

biomass that snook consume, or are common prey items consumed by snook in other 

systems (Blewett et al. 2006; Stevens et al. 2010; Blewett et al. 2013). I measured the 

caloric content of focal prey using bomb calorimetry (Kushlan 1979; Adams et al. 1982). 

This process combusts 0.5-1.0 g of sample, producing a change in the water temperature 

inside of the bomb calorimeter which is used to calculate the specific heat for the sample. 

Prior to combustion, all samples were dried at 75°C for 3-5 days. Prey items were then 

homogenized, and compressed into multiple 0.5-1.0 g pellets. I processed 3-5 individuals 

per species. For the smaller prey, when the dry weight of an individual was below the 

minimum requirement to produce a successful run (< 0.5 g), per previous energetic 

studies, I combined multiple individuals from a single species to obtain the minimum 

sample weight (Glover et al. 2010). I examined variation in the caloric content of prey 

items using a one-way ANOVA, testing for energetic differences in prey type (fish or 

macroinvertebrate). I analyzed a total of 17 fish prey species and 5 macroinvertebrate 

species. All statistical analyses were conducted in SAS 9.2.  

RESULTS 
 

Drought effects on floodplain inundation  

Over the course of the four year study, the focal system experienced a drought 

(2011), one especially wet year where floodplains did not fully dry (2013), and two years 

with average conditions (Figure 3.2). Floodplains dried or reached their shallowest depth 

for the year in March (2011), in April (2012 and 2013), and in May (2014).  In 2011, 
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during the drought year, floodplains remained dry for 105 days (March 12th –July 3rd), 

tripling the long-term average number of dry days (Boucek and Rehage 2014). In 

contrast, floodplains only dried for six days in 2012, and 28 days in 2014.     

Biomass of prey fish 

The biomass of sunfish sampled per 100 m via electrofishing varied across years 

of study (χ2 = 32.1, p<0.01). From 2011 to 2012, one year following the drought, average 

sunfish biomass per 100 m decreased by 90% (p<0.01; Figure 3.3 upper panel).  From 

2012- 2013, the mean biomass of sunfish per 100 m, showed a 12.5 fold increase 

(p<0.01). Similarly, in comparison to 2011, mean sunfish biomass per 100 m in 2013 was 

30% higher (p<0.01). Last, from 2013 to 2014, mean sunfish biomass per 100 m 

decreased by 66% (p<0.01), and did not differ from 2011 (p=0.07). 

Abundance of Common Snook 

The abundance of snook also varied across years (χ2 = 12.9, p< 0.01; Figure 3.3 

lower panel). From 2011 to 2012, the average number of snook per 100 m did not differ 

(p=0.14). But, from 2012 to 2013, the mean number of snook per 100 m showed an 11% 

increase (p=0.02). In 2014, snook abundances increased by 72% compared to 2013.   

Increases in snook abundance over time are likely a result of recovery from an extreme 

cold spell in 2010 that resulted in 80% mortality across these study sites as well as 

throughout the state of Florida (Boucek and Rehage 2014; Stevens et al. 2016). 

Variation in Common Snook diets over time  
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Through the course of the study, a total of 626 snook diets were sampled. Across 

the four years of the study, average biomass consumed of all prey, average consumption 

of macroinvertebrate biomass, and mean consumption of fish biomass per 100 m varied 

(χ2> 9.9, p < 0.02; Figure 3.4). One year after the drought, mean biomass of all consumed 

prey and biomass consumed of all fishes decreased by 75% and 86% respectively in 2012 

(p < 0.05; Figure 3.4 all panels). At the same time in 2012, mean consumption of 

macroinvertebrate biomass showed an 8.7 fold increase compared to 2011 (p = 0.01, 

Figure 3.4 middle panel). Post-drought in 2012-2013, average biomass consumed for all 

prey and fishes increased by 2.1 and 4.4 fold respectively. In contrast, mean consumption 

of macroinvertebrate biomass decreased by 94% from 2012 to 2013. By 2014, mean 

biomass consumed for all prey, sunfish prey and macroinvertebrate prey, was similar to 

the pre drought (2011) and to 2013 (p< 0.33).   

Prey energetic content  

Energetic analyses showed that fishes were higher in calories than 

macroinvertebrate prey (F= 76.1, p<0.01). The mean caloric content of fish species were 

18,740 j g-1 (joules per gram ) and 10,811 j g-1 for macroinvertebrates, 42% lower than 

fish (Figure 3.5). I found that the caloric content of fish species ranged between 23,364 j 

g-1 and 14,274 j g-1 with dollar sunfish (Lepomis marginatus) being the most energy rich 

species and warmouth sunfish (Lepomis gulosus) being the lowest energetically valuable 

species. The caloric content of macroinvertebrates ranged from 16,143 j g-1 and 6,276 j g-

1, with riverine grass shrimp (Palaemonetes paludosus) and blue crab (Callinectes 

sapidus) being the highest and the lowest energy rich species, respectively.   
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DISCUSSION 

 Climate projections predict that precipitation will decrease in the tropics and 

subtropics. Overlaid on this precipitation decrease, human populations will continue to 

grow, and as a consequence of increased urban water demand, the frequency and 

intensity of droughts will likely increase as well (Obeysekera et al. 2011).  Changes to 

drought intensity and frequency will most likely alter the dynamics of important 

floodplain prey resources, which, in turn, will affect river-floodplain fishery productivity 

and the trophic structure of these ecosystems (Trenberth et al.  2013).  The results of this 

study indicate that droughts temporarily reduce the magnitude of prey flux from donor 

floodplains to receipt habitats, and change the composition of prey flux from higher 

calorie fish prey to lower calorie, drought-tolerant macroinvertebrate prey. We can expect 

such changes to increase in frequency with climate change and increased human water 

demands. 

The South Florida disturbance regime is punctuated by three event types, cold 

spells, tropical cyclones, and droughts (Davis et al. 2016).  In the context of coastal 

fishes, all three disturbances can affect fish communities.  For instance, cold spells 

disproportionately affect tropical snook that colonized South Florida from the Caribbean, 

while incurring little physiological stress on temperate freshwater prey species 

originating from the continental U.S. (Boucek and Rehage 2014). In contrast, tropical 

cyclones deposit large amounts of organic matter in upstream freshwater bodies, creating 

anoxic conditions that trap and kill freshwater species, while having little effect on 

marine fishes that can flee to more oxygenated coastal waters (Stevens et al. 2006).  Last, 
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droughts have more pronounced effects on freshwater species in South Florida coastal 

environments, and have little effect on marine species.  Over the last seven years, two of 

these disturbances affected the study site, a once-in-100-year cold spell in 2010, and the 

2011 drought.  The 2010 cold spell resulted in 80% decrease in snook abundance while 

having no negative and possibly positive effects  (through top down predation releases) 

on sunfish abundance (discussed in Boucek and Rehage 2014). While the 2011 drought 

had no obvious effect on the tropical marine species. To this end, when considering the 

disturbance history of the study site over the last seven years, and the duration of the 

study, the drought likely functioned as the driver of change, at least for the abundances of 

forage fishes.    

Consumption of macroinvertebrates  might have increased following the drought 

for two reasons: (1) allochthonous macroinvertebrate prey availability increased while 

fish prey decreased, and (2) macroinvertebrate prey availability remained constant while 

fish prey decreased, forcing snook to consume their less-preferred food type.  The second 

explanation is possible but the first seems more likely. Dorn and Cook (2015) simulated a 

drought in a 100 ha experimental Everglades wetland, and following the drought they 

observed a threefold increase in crayfish abundance. They attributed this increase to the 

drought tolerance of crayfish (Dorn and Trexler 2007) and predation release from 

Everglades wetland fish predators that suffered mortalities from the drought. This 

increase in crayfish abundance appeared to result from the higher survival of juvenile 

crayfish in the absence of fish predators and not from enhanced algal resources for 

crayfish. At larger landscape scales, Dorn and Cook (2015) also found crayfish densities 
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to be positively correlated with the severity of local drying during the preceding dry 

season. These wetland systems are functionally similar to the focal floodplain habitats, 

thus the same dynamics are likely occurring (Boucek and Rehage 2014).  

Similar predator-prey linkages occur in other Florida coastal river-floodplain 

systems. However, key differences exist between these systems and the focal Everglades 

system. For instance, in the Peace River of west-central Florida, floodplain inundation 

provisions prey subsidy for snook.  Unlike the Everglades, the Peace River floodplain 

subsidy is dominated by crayfish (Blewett et al. 2013).  Why floodplain prey subsidies in 

the Everglades are principally fish, and in the Peace River are primarily 

macroinvertebrates, is likely a function of the duration that these floodplains are 

inundated. In the Everglades, floodplains remain in the hydroperiod for an average of 330 

days. Whereas, in the Peace River, floodplains are inundated for approximately 30-90 

days (Stevens et al. 2010; Blewett and Stevens 2013). I speculate that in Florida river 

floodplains such as the Peace River, only drought tolerant floodplain species such as 

crayfish can propagate under the shorter hydroperiods.  However, if floodplain 

inundation durations were to increase, then the subsidy may switch from energetically 

poor crayfish, to fish that are almost double in calories per gram. A potential exciting 

area of research may be developing models that explore relationships between floodplain 

inundation duration and floodplain prey communities, which may allow water 

management agencies to predict at what floodplain inundation durations are sufficient to 

cause compositional switch in these floodplain subsidies.  
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Decreases in the magnitude of this subsidy to snook has the potential to affect 

snook condition, reproduction, and their population dynamics. Snook are an iteroperous, 

highly fecund, batch spawning species, with peak reproduction occurring in May and 

June (Taylor 1998; Andrade et al. 2013).  This subsidy peaks in magnitude in March and 

April, and therefore immediately prefaces snook reproductive windows. As such, energy 

from this subsidy could go directly to gonadal growth. Decreases in the magnitude and 

quality of this subsidy facilitated by drought could affect snook spawning in a number of 

ways. For instance, reductions in pre-spawning prey resources could result in some 

individual snook forgoing reproduction or skip spawning, thus affecting future cohort 

size (Secor 2008; Trotter et al. 2012).  Similarly, the loss of this resource may delay peak 

reproduction (Farmer et al. 2015). Delays in the timing of reproduction may reduce the 

growing season of young of the year snook, decreasing their survival during winter time 

and dry season stressors, such as low temperatures and increased predation risk (Houde 

1998). Ongoing research aims to better understand these linkages between freshwater 

allocation to coastal river systems, floodplain productivity, snook reproduction, cohort 

strengths, and ultimately changes in catch rates of snook.   

In addition to prey moving into these river systems, abundant floodplain top 

predators also move into these estuarine creeks. During non-drought years, dry season 

survival of these top predators is relatively high.  However, during drought, due to 

increasing salinities in the estuary, increased water temperature and due to low dissolved 

oxygen, apparent survival of these predators decreased by 80% (Boucek & Rehage 

2015a).  Similar to the fish prey, abundances of floodplain top predators returned to pre-
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disturbance in two years (Boucek and Rehage 2015b).  Thus, because of the consumption 

of fish prey and mortalities of floodplain top predators, during drought, consumer 

mediated energy and nutrient flux into these creeks may be higher than normal. However, 

following drought, due to the absence of fish prey and absence of floodplain top 

predators, energy and nutrient flux may be below average.   

As droughts increase in frequency and intensity in the future, year-to-year 

variability of fluxes to these lotic systems are likely to increase.  Higher variability in the 

magnitude of this flux has the potential to affect processes at every ecological scale. For 

instance, Jardine et al. (2015) showed that ecosystem productivity, species richness, and 

population stability of avian top predators all decreased as the year-to-year predictability 

of flood pulses decreased across a gradient of neotropical rivers in Australia. Beyond 

river floodplain systems, increased inter-annual variance in abiotic and biotic drivers 

have shown to affect functional diversity and ecosystem productivity in arid desert 

grassland systems (Gherardi and Sala 2015). Thus, as droughts increase in these tropical 

and subtropical regions, and the year-to-year differences in the magnitude and 

composition of these fluxes increase, many processes will likely change in tandem.  

Throughout aquatic ecosystems, disturbance has profound effects on the structure, 

function and services provided (e.g., Collins et al. 2010). The present study builds on our 

understanding how disturbance affects both the magnitude and composition of prey 

fluxes across ecosystem boundaries and particularly, on the potential energetic 

consequences of drought-related decreases in the quality and size of prey fluxes for 

socioeconomically valued recreational fisheries. With predicted intensification of 
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disturbance such as droughts (Bahn et al. 2014), we must develop a more comprehensive 

and predictive understanding of the potential for intensified disturbance regimes to alter 

or sever important spatial food web connections between lotic environments and 

periphery habitats.   
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FIGURES 
 

Figure 3.1.  Map showing the location of the five study sites in the upper Shark River 
Estuary in southwestern region of Everglades National Park. Study sites are shown in 
black circles, while black squares denote hydrological stations used to examine drought 
severity. Insert shows the three fixed-bout locations sampled via electrofishing at each 
site. Shaded area denotes Shark River Slough, located upstream of study sites and the 
main freshwater drainage in the southern Everglades. 
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Figure 3.2.  Daily floodplain stage at station SH1 (see map above) from November 2010 
to September 2014 (black line), and the number of days floodplains remained dry per 
year (grey bars). The red line represents the water depths that floodplain habitats are 
effectively dry for centrarchid fishes (10 cm, Trexler et al. 2005). 
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Figure 3.3 Mean kilograms of sunfishes per 100 m  of river bank (upper panel, ± 1 SE), 
and the mean abundance of snook per 100 m (lower panel, ± 1 SE) from 2010-2014.  
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Figure 3.4 Mean biomass of all prey consumed by snook per 100 m of river bank (upper 
panel), macroinvertebrates (middle panel) and fishes (± 1 SE). Note that scaling in the 
middle panel differs from the other panels.  
 



77 
 

 
 
 

Figure 3.5 Mean caloric content of common fish (grey) and macroinvertebrates (white) species in the study region. Bars represent 1 
standard error from the mean. 
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CHAPTER IV  

CAN ANIMAL HABITAT USE PATTERNS INFLUENCE THEIR VOLNERABILITY 
TO EXTREME CLIMATE EVENTS? AN ESTUARINE SPORTFISH CASE STUDY 
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ABSTRACT 

Global climate forecasts predict changes in the frequency and intensity of extreme 

climate events (ECEs).  The capacity for specific habitat patches within a landscape to 

modulate stressors from extreme climate events, and animal distribution throughout 

habitat matrices during events could influence the degree of population change following 

the passage of ECEs. Here, I ask 1) does the intensity of stressors of an ECE vary across 

a landscape?  And 2) Do habitat use patterns of a highly mobile species, potentially 

influence their vulnerability to ECEs? Our focal ECE are extreme cold spells, and our 

focal population consists of a tropical, estuarine-dependent large-bodied fish, 

(Centropomus undecimalis, Common Snook), occurring within Everglades National Park 

estuaries (FL US) which suffer catastrophic population losses following extreme cold 

spells. I examined temperature variation across space during cold disturbances with 

different degrees of severity, including an extreme cold spell occurring in January 2010. I 

quantified snook distribution patterns when the passage of extreme events are most likely 

to occur from 2012-2016 using passive acoustic tracking.  Our results showed that spatial 

heterogeneity in the intensity of cold existed, with component habitats being 3-5 ⁰C 

colder than others. Snook distribution during periods of greatest risk to experience an 

extreme cold event varied across years. In 2013-2014 and 2014-2015 winters, a greater 

proportion of snook occurred in the colder habitats. In contrast, during 2012-2013 and 

2015-2016 winters, more snook were observed at the warmest habitats less likely to 

experience temperatures lethal to snook. This study shows that snook habitat use patterns 

could influence vulnerability to extreme cold events; however whether snook habitat use 
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increases or decrease their vulnerability to disturbance depends on the year, creating 

temporally dynamic vulnerability based on mechanisms that influence animal movement.   

Faunal global change research should address the spatially explicit nature of extreme 

climate events and animal habitat use patterns to identify potential mechanisms that may 

influence population effects following these disturbances.    

 

INTRODUCTION 

Forecasted changes in global climate predict changes in the frequency and 

intensity of ECEs (Dale et al. 2001; Smith 2011).  ECEs can be defined as discrete 

weather events with climate drivers (wind speed, temperature, and precipitation) with 

both intensities and resultant ecosystem change that are well outside normal variability, 

and are statistically rare (Smith 2011). In contexts where ECEs increase in frequency or 

intensity, these climate disturbances will likely become a more apparent driver of 

ecosystem dynamics, potentially resulting in long-term and hysteretic ecological change 

(Jentsch et al. 2007; Smith 2011).  Even in ecosystems where ECEs become less frequent 

or less intense, the absence of these disturbances can still have a pronounced effect on 

ecosystem structure. Extreme cold spells for instance, often control the poleward 

distribution of species (Osland et al. 2013; Kreyling et al. 2015; Osland et al. 2016). If 

these events decrease in frequency or intensity, then we may expect that species 

distributions will likely rapidly shift in accordance with that change (Osland et al. 2013; 

Osland et al. 2016).  Given the gravity of any future changes to the ECE regime, we must 

develop more mechanistic understandings of how ECEs influence ecological processes, 

in order to predict the functioning of ecological systems in the future. 
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Animal habitat use patterns, and their population distribution during the event 

could influence population losses and their recovery from ECEs. Animals should 

distribute themselves non-randomly in space and in time based of a suite of intrinsic and 

extrinsic drivers, thus creating dynamic spatiotemporal animal densities across habitats 

(Nathan et al. 2008). In conjunction with animal spatial-temporally dynamic habitat use 

patterns, previous research of disturbance shows that the intensity of stressors, the 

buffering capacity of habitat patches (i.e., ability to modulate the intensity of stressors), 

and the magnitude of ecological effects varies across space (White & Jenstch 2001; 

Nimmo et al. 2015; Boucek et al. 2016a). Thus, by combining information on the spatial 

pattern of disturbance and on animal habitat use, we can potentially identify mechanisms 

responsible for faunal population change from ECEs. For example, if animal density is 

high in habitat patches that do not mitigate or even exacerbate the intensity of stressors 

from an extreme climate event, then following the event, population losses would be 

greater than predicted if individuals were uniformly distributed across all patches (Figure 

4.1). Conversely, if animal density were higher in a habitat patch that modulates stressful 

conditions from disturbance, then population change would be less than predicted if the 

population was uniformly distributed in space (Figure 4.1).  Thus, understanding the 

spatially explicit nature of ECEs, and spatio-temporal dynamics of animal habitat use 

could improve predictions of the degree of effects expected from ECEs. 

In sub-tropical Florida, the passage of winter time cold events are a common 

phenomenon, but do not induce ecological changes. However, higher intensity cold events, 

and or cold spells (i.e. multiple consecutive cold events) that result in isolated effects to 
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natural systems occur once every 10 years. And, importantly, extreme cold spells that cause 

catastrophic losses to natural resources, and non-linear ecosystem change occur once every 

20-30 years (Boucek et al. 2016a). These extreme disturbances are abrupt, decreasing 

temperatures to lethal levels for vulnerable species within days, resulting in punctuated and 

mass mortality events that are highly visible to the public, and as a consequence, effects of 

these disturbances are well publicized. Of particular importance, these extreme cold spells 

drive population crashes of many of Florida’s economically important tropical sportfishes, 

including bonefish, juvenile goliath groupers, and common snook (Santos et al. 2016). The 

effects of these disturbances on sportfishes result in substantial economic losses for those 

who rely on those resources (Boucek et al. 2016a; Stevens et al. 2016).  

In 2010, the most severe cold spell to occur in the last 80 years affected sub-tropical 

Florida (Boucek and Rehage 2014). This ECE was particularly detrimental in the estuaries 

of Everglades National Park (F.L., U.S.), where water temperatures rapidly dropped to 

lethal levels for tropical species within 3 days, remained at lethal temperatures in some 

areas for 4 days, and kept temperatures at sub-lethal levels for 12 days. The spell was the 

third coldest and the longest spell on record (Boucek and Rehage 2014). The abundance of 

adult snook, the most sought after gamefish in the area, decreased by over 94% following 

the passage of this event (Santos et al. 2016; Stevens et al. 2016).   The occurrence of this 

event in South Florida, coupled with comprehensive long-term biological and abiotic 

monitoring networks occurring in Everglades National Park, provide a model to study how 

animal habitat use patterns and subsequent population distributions can influence 

population vulnerability to these events. Using snook in Everglades Nation Park as our 

model, our research questions were: 
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1) Does the degree of coldness during cold spells vary across habitats in the 

Everglades estuaries? 

2) When are extreme cold events most likely to occur in South Florida? 

3) Does snook habitat use patterns during the coldest winter windows (i.e. when 

extreme cold spells are most likely to occur), place their populations at lower or 

greater vulnerability to ECEs than what would be predicted in they were uniformly 

distributed throughout the system?  

Snook are a good candidate species to assess how landscape patterns of disturbance and 

animal movement could influence vulnerability to disturbance for 3 reasons. 1) Snook are 

highly mobile, and use the entire estuary during the course of the year (Trotter et al. 

2012; Barbieri et al. 2015). 2) Due to the economic importance of the fishery, general 

biology and ecology of the species are well understood (Muller and Taylor 2006), 3) 

population crashes from previous extreme cold spells are well studied, and previous 

research has anecdotally attributed their habitat use patterns and distribution during cold 

events to be a mechanism that regulates population effects and recovery (Stevens et al. 

2016).  

To answer these questions, I compared landscape differences in cold temperatures 

during a series of cold disturbances that affected the Everglades over the last 12 years, 

including the extreme event in 2010. To assess snook spatial temporal habitat use 

patterns, I tracked the movements of 79 snook throughout the estuary using acoustic 

telemetry from 2012-2016. Our research approach follows the flow chart in Figure 4.2.  I 

hypothesized that downstream coastal habitats that mix with the Gulf of Mexico, which, 
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due to the size of the water body, would take longer to cool and stay warmer during cold 

disturbances. In contrast, upstream habitats fed by to vast expanses of shallow freshwater 

marshes that cools rather quickly, would be colder during cold events.  Second, I 

hypothesize that a greater proportion of snook would occur in upstream habitats when 

cold spells are most frequently occurring, due to the coincidental occurrence of a prey 

subsidy available within that habitat around that window in time (Boucek and Rehage 

2014; Boucek et al. 2016b).  

MATERIALS AND METHODS 

Study system: Shark River estuary in the Everglades National Park 

This study took place in the Shark River of the Everglades National Park FL, U.S. 

(Figure 4.3). South Florida and the Everglades National Park are within a subtropical 

climate zone, experiencing a pronounced hydrologic seasonality, with 80% of annual 

rainfall occurring in the summer and fall (July – November; Price et al. 2008). Within the 

estuarine habitats of the greater Everglades, freshwater inputs function as one of the 

major drivers of ecological processes, affecting spatial patterns in productivities, 

biogeochemical processes, community structuring, animal movements, and possibly 

water temperatures (Childers 2006; Rosenblatt & Heithaus 2011, Boucek and Rehage 

2013). In this estuary, oligotrophic freshwater inputs create an upstream-downstream 

gradient of productivity, with phosphorus limited conditions upstream and more 

productive conditions downstream, fueled by marine derived phosphorous subsidies 

(Childers 2006). Though the upstream environment is generally the least productive, due 

to its connectivity to upstream floodplains, this region receives a seasonal pulse of prey in 
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the winter and spring that many piscivores including snook migrate upstream to consume 

(Boucek and Rehage 2013; Boucek et al. 2016b). I can partition the focal study system, 

the Shark River, into three ecologically distinct zones that snook may utilize at different 

times of the year. Not only are these zones ecologically distinct, but the zones may vary 

in their capacity to mitigate extreme cold temperatures. The three zones are the 

freshwater upstream zone, mesohaline bay zone, and the more marine coastal zone 

(Matich et al. 2016; Figure 4.3).  Previous research has shown that in the winter, snook 

move upriver to freshwater and oligohaline areas to capitalize on highly abundant 

freshwater prey flushing off of upstream floodplains, then migrate to the coastal zone in 

the spring and summer to spawn (Taylor et al. 1998; Blewett and Stevens 2013; Boucek 

& Rehage 2013, Boucek et al. 2016b).   

Temperature Analysis: Assessing cross-habitat differences during cold spells 

To assess whether habitat differences in water temperatures during cold events 

exist, and if those habitat differences were consistent across multiple cold disturbances, I 

used two approaches. I first used a long-term, albeit coarse spatial resolution approach, to 

capture temperature variation across the three zones during every cold disturbance that 

affected the region from 2003-2012 (window based off of data availability, # of cold 

disturbances =22). Second, I examined temperature changes at higher spatial resolutions 

(3-7 sensors per zone, 19 sensors total), during the extreme 2010 spell, one moderate 

event (January 2008) and another moderate spell (December 2010) that resulted in 

negative effects on tropical species (Rehage et al. 2016; Zhang et al. 2016).  

For the long-term, low spatial resolution approach, I compared both the absolute 

lowest daily minimum water temperature (Tmin), and the absolute lowest daily average 
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water temperature recorded during a cold event (Tave), within each of the three ecological 

zones across 22 cold events that occurred from 2003-2012. Water temperature 

observations used here were from bottle creek (upstream), SH2 (Bay) and Gunboat Island 

(coastal) hydrostations (http://sofia.usgs.gov/; Figure 4.3). I identified these 22 events as 

cold disturbances using long term (1927- 2012) minimum daily air temperature 

observations from Everglades City (FL; approximately 66 KM from focal study sites). I 

defined a cold event as single or consecutive days when the minimum daily air 

temperature dropped to or below two standard deviations from the mean minimum daily 

winter temperature of the entire 85-year time series (See Boucek and Rehage 2014 for a 

more detailed description). From these 22 events, I then identified Tmin and Tave at each 

monitoring station during each event. To determine if landscape differences in the degree 

of coldness existed, I calculated the habitat paired differences in both Tmin and Tave (i.e., 

Bay vs Upstream, Bay vs Coastal, etc) during each of the 22 events. I then calculated the 

average paired difference of Tmin and Tave for each habitat pairing (i.e. upstream versus 

bay) and used those for comparisons.  

I acknowledge that temperature observations can vary depending on location of 

sensors in relation to water depth, and fine scale landscape contexts such as exposure to 

winds (Blewett and Stevens 2014). Thus, as a supplement to our longer-term analysis, 

and to potentially account for finer scale spatial patterns in temperatures, I conducted a 

higher spatial resolution analysis of water temperatures. These disturbances occurred in 

January of 2008, January 2010 (ECE), and December 2010, and all resulted in some 

negative impact to tropical species (Rehage et al. 2016; Blewett and Stevens 2014; Zhang 

et al. 2016).  Though these events incurred ecological change, they differed in both their 

http://sofia.usgs.gov/


87 
 

intensity (degree of coldness) and duration (number of days temperatures remained at 

stressful levels for tropical species). For instance, the 2008 event drove minimum daily 

air temperatures at the Everglades City to -1.7 ºC, however, those temperatures only 

remained at levels stressful for tropical species for 1 night. The January 2010 spell, drove 

air temperatures to a minimum of -3.3 ºC, and kept temperatures at stressful levels for 

over 12 days. In contrast, the December 2010 spell reached a minimum of 1 ºC, leaving 

temperatures at stressful levels for 4 days.  

 For this higher spatial resolution analysis, I only used Tave (based off of 

availability) from a total of sixteen HOBO temperature loggers that were active for at 

least one of the 3 focal events, provided through the Florida Coastal Everglades Long 

Term Ecological Research Network (http://fce.lternet.edu/data). Most temperature 

loggers were attached to VR2W acoustic monitoring station housings in the focal system 

(Figure 4.3). I also incorporated the three USGS data loggers from long term analysis, 

thus totaling 19 temperature stations that were available for at least 1 of the three events. 

From these temperature stations, I identified Tave at each station during each of the three 

focal severe cold events.  

Our goal was to assess whether 1) zone specific differences in temperature 

existed, and 2) if those spatial differences were consistent across the three events. Prior to 

analyses I first applied a standardization to each station to account for differences in the 

overall magnitude and degree of coldness across disturbances. For my standardization, I 

first calculated the mean Tave across all active stations during each event. I then calculated 

the difference between Tave at each station and the mean Tave across all stations for that 

event, providing us with a standardized temperature change at each station that I could 
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now compare. Last, I calculated the mean standardized Tave, for all stations occurring 

within each zone, and used those averages for comparisons.  

Identifying risk in time to experience an extreme cold event or spell 

 Following the flow chart, I identified when cold spells and events were most 

frequent, and when extreme events occurred over the last 80 years. This analysis provides 

a temporal window when snook are most vulnerable to cold disturbances. I identified the 

calendar day that every cold disturbance between 1927–2012 began (first day the 

disturbance decreased minimum daily air temperatures < 2SD of the winter time 

average). Once events were identified from the temperature time series, I calculated the 

number of calendar days before or after January 1st that each cold event began, and built a 

frequency distribution from those values. I also identified the days before or after January 

first that extreme cold events over the last 80 years occurred. I considered the temporal 

window in which the focal system is most likely to be affected by a cold event or spell as 

the range of calendar days that are within one standard deviation from the mean day of 

the year in which cold spells and events occur. I validated this window by identifying if 

the extreme events fell within this timeframe.  

 

Tracking snook habitat use patterns during temporal windows of highest risk of extreme 

cold 

I tracked the movements of individual fish using acoustic telemetry. With acoustic 

telemetry, researchers fit transmitters to individuals, and once a transmitter is deployed, 

the transmitter sends ultrasonic sound pulses that can be interpreted by specialized 

listening acoustic receivers (Hussey et al. 2015). To track habitat use patterns of snook, I 
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used the Florida Coastal Everglades Long Term Ecological Research acoustic telemetry 

array in place in the Shark River (Figure 4.3, Matich et al. 2011; Rosenblatt and Heithaus 

2011). The array consists of 37 autonomous VR2W listening receivers, spaced 

approximately 1 KM apart, extending from the upper reaches of the Shark River down to 

the coastal regions of the Shark and Harney River systems (Figure 4.3). If a tagged snook 

passes a listening station, the autonomous device records the tag ID, along with a date 

and time stamp. Snook were captured using a boat-mounted, generator-powered 

electrofisher (two-anode, one cathode Smith-Root 9.0 unit; Boucek et al. 2016b). 

Electrofishing effort was roughly split between the bay zone and the upstream zone. 

Upon capture, snook were measured, weighed, and internally marked with a Passive 

Integrated Transponder (PIT) tag to identify recaptures.   

To quantify habitat use patterns, 79 snook caught in good condition (based on 

swimming performance and visual inspection) from February 2012 to April 2015 were 

anesthetized in an ambient water and Alka-Seltzer solution (1 to 1.5 tablets per four liters 

of water) prior to surgery.   Once a fish was anesthetized, a 30 mm incision was cut in the 

lower abdomen of each snook, and each individual was surgically fitted with either a 

Vemco V16 or V13 transmitter (interpulse delay, 120 seconds) and wounds were closed 

with 1-3 stitches (Adams et al. 2009).   Approximately seventy percent of tags were 

deployed in the spring and 30% in the fall. Body length of tagged fish ranged from 45-86 

cm standard length.  

Using these detections by acoustic receivers, I calculated the daily proportion of 

tracked snook that occupied each of the three habitat zones, from May 2012 to May 2016.  
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Since tagging effort varied across habitats, I standardized these daily proportions by 

habitat type using the equation below.  

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑑𝑎𝑖𝑙𝑦 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖 =
  𝐷𝑎𝑖𝑙𝑦 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑖  − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑎𝑖𝑙𝑦 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖    

𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑑𝑎𝑖𝑙𝑦 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑖
 

Where the standardized daily proportion of snook within the ith habitat is a function of 

the difference between daily observed proportion in habitat i  and the average daily 

proportion for that habitat during the entire time series, divided by the daily proportion 

for that habitat during the entire time series.   Standardized daily proportions within each 

zone were then smoothed prior to analysis using an 11 day running average.  The 11 day 

binning was chosen based on previous estuarine fish habitat use studies that showed the 

11 day temporal window as effective measure to reduce auto-correlation between 

observations with a minimal loss of information (Walsh et al. 2013).  

Using the results from the previous sections, I assessed the potential for snook 

habitat use patterns to contribute to their population vulnerability to extreme cold events. 

I calculated the mean standardized 11 day average proportion of snook per year occurring 

within each habitat zone during the windows in time when cold spells are most frequent 

and used these averages were used for comparisons. 

Statistical analyses  

For each average I derived for temperature and movement data, I calculated the 

95% confidence interval around those means. Confidence intervals were built from a 

bootstrapped distribution using 1,000 simulations (Program R, mosaic package).  For 

statistical comparisons, I determined if effects existed depending on if these 95% 

confidence intervals overlapped with zero or the confidence intervals of other treatments.  
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RESULTS 

Habitat specific temperature differences during cold spells 

 Over the 11 years and 22 cold events, I found consistent differences in Tmin and 

Tave experienced across habitat types during a cold event. As expected, I found that in the 

coastal zone Tmin and Tave daily temperatures stayed on average 4.5 and 2.8 °C warmer 

than the upstream zone, and 4.8 and 3.2 °C warmer than the bay habitat (Figure 4.4). The 

mean habitat differences in temperatures were similar for Tmin and Tave, for upstream 

versus bay comparisons, and bay versus coastal comparisons, indicating that patterns in 

minimum daily temperatures and average temperatures track each other between those 

zones. In contrast, for upstream versus coastal comparisons, differences in Tave and Tmin 

existed, with average differences in Tmin between those zones being 1.7 °C colder than  

Tave, indicating a greater separation in the degree of coldness for minimums than average 

temperatures.  

The fine scale spatial analysis during the three disturbances (e.g., January 2008, 

January 2010, December 2010) showed variation in their degree of coldness both within 

and between the habitat zones. For instance, the 2008 event decreased average daily 

temperatures to a minimum of 12.8 °C in the upstream zone, 17.9 °C in the bay and 16.9 

°C at the coastal station (Figure 4.5a). The January 2010 spell average daily temperatures 

reached below the 10 °C lethal limit of snook in the upstream zone  (Tave =8.3 °C) and in 

bay zone (Tave, = 9.9 °C), while remaining above the lethal limit in coastal zone (Tave, 11.9 

°C). Importantly, average daily temperature in the upstream zone stayed at or below the 

lethal limit for 4 days during the January 2010 event (Figure 4.5b).  The December 2010 

spell created one day of average temperatures at the lethal limit for snook in the upstream 
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zone (Tave, 10.5 °C), 2 days below the lethal limit in the bay zone (Tave, 9.5 °C), and 

temperatures well above the snook lethal limit in the coastal zone (Tave, 14.3 °C; Figure 

4.5c).  

   When examining the finer scale examining spatial patterns in coldness across 

the specific disturbances, I found variation in Tave across stations (Figure 4.5 d,e,f). 

Consistently across all three disturbances, Tave  at the two upstream most stations 

remained 2 to 4 °C cooler than the mean Tave. In contrast, the coastal stations’ Tave did not 

decrease below the average during any event, with most coastal stations Tave being 1-2 °C 

warmer than the average. The bay zone stations seemed to vary more across events, and 

showed the most within zone variation. For instance, during the 2008 event, all bay 

stations were near, or above average, however during the extreme January 2010 spell, and 

December 2010 spell, bay stations recorded Tave that were both above and below the all 

station averages. 

 Our finer scale analysis for two of the three disturbances (January 2010 & December 

2010), showed that during cold spells, the coastal habitat stays warmer than the upstream 

habitat (Figure 4.5 g,h,i).  For instance, during the extreme January 2010 spell, mean Tave 

for the upstream habitat was 3.3 °C colder than the coastal habitat. Likewise, during the 

December 2010 spell, the upstream habitat remained 4.0 °C colder than the coastal 

habitat. 

Habitat use analysis: Identifying temporal windows when cold disturbances are most 

likely to occur 

 Boucek and Rehage (2014) identified 319 cold disturbances from 1927 to 2012. 

Cold disturbances identified in that analysis were most likely to occur from December 
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23rd to Feburary 17th. The average day of the year that a cold event began was January 

20th, with a standard deviation of 29 days (Figure 4.6). In agreement with our 

distribution, all of the extreme events over the last 90 years identified by Boucek and 

Rehage (2014) fell within this ± 1SD window. These other extreme cold spells started on 

January 25th , 1940 and January 11th, 1981, with the 1940 spell being more severe than 

the 1981 spell, but less severe than the 2010 spell.  

Snook habitat use patterns when cold events are most frequent   

  The average number of days I detected a snook out of the 79 tagged was 344 days 

(+- 33 days SE, range = 15-912 days).  On average, I tracked 26 snook per day (+-1 

snook SE, range = 18-35). Over the entire time series, snook habitat use and distribution 

patterns showed both inter- and intra-annual variation (Figure 4.7). As expected from 

previous work, in the upstream and bay zone, snook distribution showed seasonal 

temporal patterns, increasing in the winter and spring and decreasing in the summer and 

fall.   In contrast, the proportion of snook in the coastal areas showed more interannaual 

variation, with the years of 2012 and 2016 having generally higher numbers of snook at 

the coastal areas.   During the windows in time of highest risk (December 23rd to 

February 17th), I found that the distribution of snook varied across years (Figure 4.8). 

During the winter of 2013-2014 and 2014-2015, more snook occupied the upstream zone 

whereas during 2015-2016, more snook occupied the coastal zone during the temporal 

window of highest risk. 

DISCUSSION 

         Forecast changes in global climate predict changes to extreme climate disturbance 

regimes. Spatially explicit approaches that both quantify landscape variation in 
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disturbance intensity and spatial-temporal habitat use patterns of mobile individuals could 

help identify mechanisms that influence population change from ECEs.  Our results 

showed that during cold spells, temperature differences across the estuary existed (by up 

to 4-5 ⁰C), with the upstream habitats being the coldest and the coastal being the 

warmest.   I also found that snook distribution throughout the estuary during windows 

when cold disturbances are most frequent (December 23rd-February 17th) varies across 

years, potentially creating temporally dynamic scenarios of risk. If a severe or extreme 

cold event spell were to occur in 2013-2014, when a greater proportion of snook were 

upstream, I postulate that the disturbance would result in greater snook mortality than an 

event occurring in 2015-16 when fewer fish were upstream. Future work should focus on 

identifying drivers that influence interannual variation in snook habitat use, and as such, 

those drivers could be used to improve predictions of population change from extreme 

cold spells and ultimately management actions.  At the more general scale, our results 

highlight the importance of considering both spatial patterns of disturbance and animal 

habitat use when developing mechanistic models to predict population level effects from 

extreme climate events at least for mobile species.   

I was not surprised to find habitat-specific differences in cold temperatures across 

the cold events. In the sub-tropics and across a suite of ecosystem types, the degree of 

coldness experienced by habitat patches from extreme cold spells varies depending on 

landscape contexts (Reviewed in Boucek et al. 2016a). For instance, in coastal aquatic 

systems of South Florida, coral community resistance was largely a function of their 

distance to warm water ocean currents. Coral patches occurring in shallow waters away 

from tropical ocean currents experienced almost complete loss of habitat-forming hard 
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corals, while reefs occurring in deeper waters adjacent to ocean currents experienced 

minimal change (Kemp et al. 2016).   In the Shark River estuary, the upstream-

downstream gradient in absolute low temperatures during these events was likely a 

function of the hydrology of the estuary. First, freshwater flowing into the upstream 

habitat prior to reaching the estuary travels across a shallow expansive floodplain 

(McVoy et al. 2011). Water on these shallow, exposed floodplains during cold nights 

rapidly cools before it enters the estuary, creating a colder environment in the upstream 

zone. Similar thermal gradients occurred in other Florida rivers, where water 

temperatures far inland were colder than the lower river (Blewett and Stevens 2014). At 

the downstream coastal zone, extreme low temperatures are buffered to some degree by 

tidal mixing from the Gulf of Mexico, that takes longer to cool, and possibly groundwater 

seepage in the deeper sections of the rivers (Saha et al. 2011). Last, in the bay zone, 

temperatures recorded across sensors were more variable during cold events. This 

between sensor variability was likely a function of finer scale spatial processes such as 

exposure to wind and U.V., that would have more of an effect in that open water 

environment relative to the other riverine habitats.  

Spatial variation in disturbance intensity of are not specific to cold events (White 

and Jentsch 2001). For instance, during tropical cyclones that affect Caribbean islands, 

the dimensions and intensity of stress imposed on ecological systems vary considerably 

in space, depending on ecosystem distance to the coast, whether the system occurs on a 

windward or leeward side of the island, and their proximity and orientation to geologic 

features such as mountains that may block winds (Borkaw and Gutreuter 2012).  

Heatwaves also show spatial patterning; for instance, the extreme heatwave that affected 
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most of Europe in 2003 showed that mortalities of rocky benthic macro-invertebrate 

species varied across a gradient in space, with populations occurring in deeper waters 

showing lesser change, while populations in shallow waters decreased by 80% (Garrabou 

et al. 2009). Similar relationships between habitat patch depth and survival of stream fish 

have been observed following extreme drought (White et al. 2016). To conclude, spatial 

variation in the intensity and dimensions of stressors caused by ECEs is likely a 

consistent property across most, if not all, extreme climate events and should be 

considered in conceptual models.   

An important generalization of ECEs is that the events are rare enough to not 

promote local adaptions and propagation of phenotypes that would be more resistant to 

those disturbances (Smith 2011, Lytle and Poff 2004). Tropical species in Everglades 

National Park and in the sub-tropics, both are unable to physiologically tolerate extreme 

cold temperatures (thermal specialists Tweksbery 2010), and utilize behaviors that hinder 

their survival during extreme cold spells (Boucek et al. 2016a). For instance, tropical 

American Crocodiles show maladaptive behaviors during extreme cold spells compared 

to more temperate American Alligators (Mazzotti et al. 2016).  During these events, 

American Crocodiles will attempt to bask out of the water to warm themselves, despite 

that basking in the cold windy days during events have deleterious cooling effects. In 

contrast, American Alligators, adapted to coping with cold, will actively seek warm water 

refugia during these events (Mazzotti et al. 2016). Like American Crocodiles, snook 

exhibit somewhat mal-adaptive movement behaviors with respect to risk from cold 

disturbances. Stevens et al. (2016) showed that in other estuaries on the east coast of 

Florida, during the extreme cold spell in 2010, most snook did not make broad-
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scale movements from their position at the time of the cold spell to the suitable refugia 

for extreme cold spells. Instead, snook likely made shorter movements to habitats that 

would function as appropriate refuge during less severe but more frequent cold 

disturbances.  In contrast to the limited movement behaviors of snook during the 2010 

event, and similar to more temperate alligators, sub-tropical bullsharks that were tracked 

in the Everglades estuary during the 2010 extreme cold event, underwent whole 

population movements, leaving the bay habitat and migrating to the warmer coastal 

habitat (Matich and Heithaus 2012). Thus, during extreme cold spells in the Everglades, 

snook likely do not actively migrate to the most appropriate refuge habitat, but instead 

move to the closest habitat they perceive to be a refuge, which is possibly an ineffective 

strategy unless those individuals are already in the coastal environment. 

A trait of extreme cold spells, relative to other types of ECEs, that may emphasize 

the interaction between animal habitat use and the spatially explicit dimensions of stress 

from ECEs, are the abrupt nature of extreme cold spells. For instance, during extreme 

cold spells, air and water temperatures decrease to stressful and lethal levels of tropical 

estuarine species within one to three days (Boucek et al. 2016a).  In comparison, droughts 

and heatwaves can take weeks or months to reach stressful and lethal levels (Peters et al. 

2012). Under more gradual ECEs, animals may have the time to explore and relocate to 

refugia, exemplified by the hyper abundance of faunal species at or near remaining water 

sources during drought (Wato et al. 2016). I speculate with pulsed disturbances such as 

extreme cold spells, individuals likely do not have the time to find refugia prior to the 

onset of lethal stressors, resulting in a more static distribution during the event than you 

would expect for more gradual disturbances such as drought . Further, for ectothermic 
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species like snook, as temperature begins to decrease at the onset of cold disturbances, 

animal metabolism will decrease, and as a consequence, mobility and activity of fishes is 

reduced (Portner and Kunst 2007). This physiological constraint on activity imposed by 

temperature, will act as another impediment for individuals to seek out distant refuge 

habitats, and further function to freeze population distributions during events.  

 I hypothesize that two drivers influence the habitat use of snook within the coastal 

and upstream habitats: 1) annual variation in freshwater flow, and 2) spawning and life-

history patterns.  In the Everglades, freshwater flows decrease to the lowest levels during 

March or April, drying floodplains that crown the upstream habitat, forcing an abundance 

of prey there (Boucek and Rehage 2013; Boucek et al. 2016b). Around the same time, 

snook catch per unit effort (CPUE) in upstream electrofishing samples triples (Boucek et 

al. 2016b) as the snook move upstream from the coast and bays to capitalize on the 

increased prey densities (movement upstream is also apparent from telemetry, this study).  

However, the timing of decreasing flows and this prey subsidy varies somewhat across 

years (Boucek et al. 2016b), potentially causing snook to migrate to the upstream 

environment earlier or later in the year, affecting their vulnerability to extreme cold. The 

interaction between freshwater inputs and snook vulnerability to extreme cold events is 

exemplified in another Florida estuary. Snook in the Charlotte Harbor estuary (FL), were 

one of the most resilient populations following the 2010 spell. Like the Everglades, 

Charlotte Harbor experiences cross-habitat differences in low temperatures during cold 

spells (Blewett and Stevens 2014). The warmest habitats during a cold disturbance there 

are in the lower river, where deep bends and canal systems are thought to moderate water 

temperatures. The proportion of the snook population that is present in the lower rivers 
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during winter varies by year, and is strongly correlated with mean annual freshwater 

inflow (Blewett et al. 2016). The 2010 cold event occurred during a wet year, and so 

snook use of deep, wind-protected river habitat was maximized. If the cold event had 

occurred a year later (a dry year), there would have been half as many snook in the rivers. 

Snook typically move upstream during the latter half of the winter cold period or just 

after. Thus, an early snook migration to upstream habitats puts snook at greater risk of 

mortality. Such early migrations could occur with greater frequency if overall conditions 

in the Everglades become drier and with sea level rise, which is expected under climate 

change scenarios and without restoration (Obeysekera et al. 2011). Both sea-level rise 

and predicted decreases in precipitation could be offset to a degree by Everglades 

restoration actions.  

  Another possible mechanism that could explain interannual variation in habitat 

use observed during the cold spell months are snook spawning and life-history patterns. 

Snook are iteroperous marine-obligate batch-spawners that spawn in coastal habitats 

between April and November (Trotter et al. 2012). Like many iteroperous species, snook 

exhibit skip spawning, where a segment of the sexually mature population does not 

reproduce in a given season (Trotter et al. 2012). For snook, skip-spawning fish will 

remain in upstream freshwater and brackish water environments throughout the spawning 

season. During 2012 and 2015, spawning effort seemed to be high and the number of skip 

spawning fish was relatively low (Boucek unpublished data), which may explain the 

increased proportion of snook that were observed in coastal habitats in the subsequent 

winters (2012-2013 and 2015-2016) of this study. Alternatively, greater use of coastal 

habitats may have been influenced by other drivers including storm events (a tropical 
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storm in 2012) or growth of tagged fish into larger sizes that use habitat differently than 

when they were smaller (last year of the study 2015-2016). Regardless, a variety of life 

history traits and environmental cues may influence the distribution of snook across the 

landscape, which in turn affects resistance to disturbances such as cold events. Snook 

vulnerability to other disturbances is not considered here (e.g., red tide, hurricanes), but 

are likely predicated on the distribution of snook across the landscape at a given time. 

Unraveling the factors that contribute to differential use of habitat between seasons and 

years can lead to predictive models that incorporate scenarios of climate change, 

anthropogenic stress, and restoration.    

To conclude, the evolution of ECE research must progress from documenting 

effects of these disturbances, to identifying mechanisms that drive observed ecological 

change.  By identifying these mechanisms that cause ecological change from ECEs, we 

will improve our capacity to, at the least, predict and adapt to that ecological change. 

And, more optimistically, manage ecosystems in ways that improves resistance and 

resilience. For snook, resource managers should continue to develop risk assessments for 

extreme cold spells in Florida, incorporating animal movement and landscape contexts 

into conceptual models. Incorporating these processes could potentially optimize 

management interventions aimed at protecting both the species and angler fishing rights. 

Beyond snook, research focusing on animal population change and disturbance should 

aim to incorporate space into their conceptual models and study design. As animal 

movement tracking technologies become more sophisticated, affordable, and pervasive 

across many systems and species, spatially explicit models will only improve. These 
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models will likely not only improve stock assessment and fisheries management but 

conservation management strategies in the future, and our resilience to global change.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 
 

FIGURES 

Figure 4.1 Conceptualization of the interaction between animal habitat use and spatially 
explicit nature of ECEs. Consider a population that moves freely between habitat patches 
(shaded shapes) that differ in their capacity to mitigate stressors from ECEs, represented 
by the color of the shape. In the high vulnerability scenario, animal density is high in 
habitats that cannot modulate stressors from the disturbance (blue circle), and population 
losses are high. In the low vulnerability scenario, population densities are higher in a 
habitat that mitigates stressors of climate disturbance (green symbol), and population 
losses are lessened.  
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Figure 4.2 Flow diagram of our research approach 
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Figure 4.3 Map of study system, polygons represent habitat zones, consisting of the 
downstream coastal zone (black dashed line), meso-haline bay habitat (grey dashed line), 
and the upstream habitat (solid black line).  Black dots represent passive acoustic 
monitoring stations used to track snook movements. Red dots and red halos on acoustic 
monitoring stations represents temperature loggers that were active for a least a portion of 
the study, and grey squares represent USGS temperature loggers. 
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Figure 4.4 Average paired difference in Tave (open circles) and Tmin (black circles) during 
the 22 cold events that occurred from 2003-2012. The error bars represent 95% 
confidence intervals. 
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Figure 4.5 Left: Average daily temperatures across the three USGS stations during the January 2008 (A), the January 2010 (B), and 
the December 2010 (C) event, grey shaded areas mark the lethal limit for snook. Center: Spatial variation in  Tave across the January 
2008 (D), January 2010 (E), and December 2010 (F) events, each bubble represents a temperature logger active during the event, the 
size and color of the bubble represents the difference in Tave at that station relative to the mean Tave across all stations active during the 
event. For visual aid, those bubbles that recorded Tave, similar to the mean are outlined in red. Bubbles with the dashed border are the 
USGS hydrostations used in for the long term analysis. Polygons correspond to the zones used in analyses. Mean Tave per zone for the 
January 2008 (G), January 2010 ( H), December 2010(I) disturbances. Error bars represent 95% confidence intervals.   
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Figure 4.6 Frequency distribution of the calendar day of the year that each of the 319 cold 
events occurring in Everglades National Park. The Black dashed lines represent +- 1 
standard deviation around the mean (January 20th). The blue lines indicate when each of 
the three extreme events occurred over the last 90 years. The height of the lines 
represents their relative severity from Boucek and Rehage (2014). 
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Figure 4.7 The daily standardized proportion of snook occurring within the upstream 
zone (upper panel), bay zone (mid panel) and the coastal zone (lower panel). Error bars 
represent +-1SE from the mean.  The grey dashed line represents the average proportion 
of snook occurring within each zone for the entire time series. The grey shading indicates 
the windows in time when cold spells are most frequently occurring (Dec 23-Feb 17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 
 

 

Figure 4.8 The average proportion of snook occurring within the a) upstream zone), bay 
zone (b) and the coastal zone (c) during the Dec 23rd-Feb 17th window in time when cold 
spells are most frequent. The error bars represent 95% confidence intervals.  
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CONCLUSIONS AND DISCUSSION 

Forecasts of global climate predict changes in the climate disturbance regime that 

ecosystems are currently experiencing. In many instances, this change in the climate 

disturbance regime is associated with increases in frequency and intensity of events, as 

well as potential shifts in the timing in which these events occur.  In contexts where 

climate disturbance increases in frequent, disturbance may become a more apparent 

driver of community dynamics, potentially overwhelming and replacing other current 

drivers that shape communities (Smith 2011).  Even in ecosystems where climate 

disturbance becomes less frequent or less intense, the absence of these disturbances can 

still have pronounced effects on ecosystem structure. Cold spells for instance, often 

control the poleward distribution of species (Kreyling et al. 2015). If these events 

decrease in frequency or intensity, then we may expect that the distribution of species 

will likely rapidly shift in accordance with that change (Cavanaugh et al. 2014).  Given 

the gravity of changes to future disturbance regimes, we must develop a more 

mechanistic understanding of the role that climate disturbance plays on influencing 

communities. With this information, we will improve our predictive capacity of 

community structure and function under future scenarios of climate variability.  

 In chapter I, I provide evidence that community change from a once-in-80-year 

cold spell is predictable based off component species lower lethal limits to temperature. 

In contrast, community change following a once-in-10-year drought was not well 

explained by the thermal and osmotic trait structure of the community.  We speculate the 
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differences in predictability between these two climate disturbances may be due to 

differences in the durations of the event.  For instance, the cold spell, though extreme, 

only lasted for 12 days. In contrast, the drought persisted for nearly 100 days.  During the 

100 days of drought, species less resistant to those stressors from the disturbance (i.e., 

increases salinity) were forced to into small refugia, with likely limited food, high 

conspecific densities, and gradually decreasing water quality, creating extra dimensions 

of stress that was not accounted for in our two-trait analysis. Thus, as we develop 

predictions and generalities for community change from climate disturbance, we should 

consider not only the classification of the climate disturbance (cold spell, drought etc.) 

but also the functional traits of disturbance, such as the amplitude, duration, and timing of 

the event. 

 Chapter II builds off of my cold spell findings in Chapter I, providing a review of 

community effects of cold spells that affect the sub-tropics.  In particular, I contrast 

community change from extreme cold spells that affected sub-tropical China in 2008, and 

sub-tropical U.S. in 2010.  In this review, I identify three consistencies across the two 

extreme events, and other extreme events that have affected other regions in the sub-

tropics.  The first consistency is that extreme cold events alter the ratios of co-existing 

tropical and temperate species, namely by causing mortalities to those species of tropical 

origin. The second consistency is that the effect of these climate disturbances vary in 

space, and that some landscape features can consistently promote community resistance 

to extreme cold spells. The last consistency I found is that tropical non-natives are less 

resistant to extreme cold spells than tropical natives.   
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With these consistencies in mind, I propose general predictions about sub-tropical 

communities in scenarios where extreme cold spells increase in frequency and decrease 

in frequency. For instance, if extreme cold spells decrease in frequency, we may expect 

community dominance to shift towards more tropical species, spatial differences in 

community structure to decrease, and increased presence and abundance of non-native 

tropical species.  In contrast, if these climate disturbances increase in frequency, we may 

expect increases temperate species community dominance, increases in the spatial 

structuring of communities, and a decreased presence of non-native species.  

In chapter III, I show that droughts can temporarily alter the trophic dynamics of 

an estuarine fish population. In particular, I show that droughts reduce the overall 

magnitude of a seasonal freshwater prey subsidy. Droughts also affect species 

composition of prey from fish that are relatively high in calories, to invertebrates that are 

approximately half the calories per gram. This study shows that not only can climate 

disturbance such as drought affect community structuring, but that these changes can then 

have consequences on trophic interactions, and the potential performance of species not 

directly affected by disturbance (i.e., estuarine piscivore). 

Last in chapter IV, I demonstrate the potential value of incorporating spatial 

ecology into understanding population resistance to extreme climate events. As these 

disturbances become a more prominent driver of ecological change, research needs to 

emphasize spatial processes and adapt more spatial approaches to predicting and 

managing for resistance.  
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In conclusion, climate disturbance can function as an important driver of community 

dynamics. And, as climate disturbance regimes change in the future, their role in 

influencing communities will change with it. Changes to communities from climate 

disturbance can have important consequences for services provided by natural systems, 

such as the provisioning of fish and wildlife (Stevens et al. 2016), agriculture (Downton 

& Miller 1993), coastal storm protection (Zhang et al. 2016), and many others. These 

studies improve our mechanistic understandings of how two types of climate disturbances 

can affect sub-tropical communities, and provides a framework of research to build on, 

especially related to those indirect consequences of these community changes, such as 

changes to predator prey interactions that could be studied in the future.  

 

 

 

 

 

 

 

 
 

 



114 
 

LIST OF REFERENCES 
 

Adams, A., Wolfe, R.K., Barkowski, N. and Overcash, D., (2009) Fidelity to 
spawning grounds by a catadromous fish, Centropomus undecimalis. Marine 
Ecology Progress Series, 389: 213-222. 

Adams, A.J., Hill, J.E., Kurth, B.N., Barbour, A.B. (2012) Effects of a severe cold 
event on the subtropical, estuarine dependent common snook, Centropomus 

undecimalis. Gulf and Caribbean Research, 24: 13-21. 

Adams, S.M., McLean, R.B., & Parrotta, J.A. (1982) Energy partitioning in Largemouth 
Bass under conditions of seasonally fluctuating prey availability. Transactions of the 
American Fisheries Society, 111(5): 549–558.  

 

Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R., & Rockström, J. (2005) 
Social-ecological resilience to coastal disasters. Science, 309(5737): 1036-
1039. 

 
Allen, D.C., & Wesner, J.S. (2016). Synthesis: comparing effects of resource and 

consumer fluxes into recipient food webs. Ecology, 97(3): 594–604.  
 
Anderson, M.J., Ellingsen, K.E., & McArdle, B.H. (2006) Multivariate dispersion 

as a measure of beta diversity. Ecology Letters, 9: 683-693 

Andrade, H., Santos, J., & Taylor, R. (2013) Life-history traits of the Common 
Snook Centropomus undecimalis in a Caribbean estuary and large-scale biogeographic 
 patterns relevant to management. Journal of Fish Biology, 82(6): 1951–1974.  

 
Bahn, M., Reichstein, M., Dukes, J.S., Smith, M.D., & McDowell, N.G. (2014) 

Climate–biosphere interactions in a more extreme world. New Phytoligist, 
202(2): 356–359. 

Barbour, A. B., Adams, A. J., & Lorenzen, K. (2014) Emigration-corrected 
seasonal survival of a size-structured fish population in a nursery 
habitat. Marine Ecology Progress Series, 514: 191-205. 

Barr, J.G., Engel, V., Fuentes, J.D., Fuller, D.O., & Kwon H (2013) Modeling 
light use efficiency in a subtropical mangrove forest equipped with CO2 eddy 
covariance. Biogeosciences, 10, 2145-2158. 

Baskerville, G.L., & Emin, P. (1969) Rapid estimation of heat accumulation from 
maximum and minimum temperatures Ecology, 50: 514-517  

 Basset, A., et al., (2013) A unifying approach to understanding transitional 
waters: Fundamental properties emerging from ecotone ecosystems Estuarine 
and Coastal Shelf Science, 132: 5-16 



115 
 

 
Beck, P.S., & Goetz, S.J. (2011) Satellite observations of high northern latitude 

vegetation productivity changes between 1982 and 2008: ecological 
variability and regional differences. Environmental Research Letters, 6(4): 
045501. 

 
Beckage, B., Platt, W. J., Slocum, M. G., & Panko, B. (2003) Influence of the El 

Nino Southern Oscillation on fire regimes in the Florida Everglades. 
Ecology, 84(12): 3124-3130. 

 
Bender, M.A., Knutson, T.R., Tuleya, R.E. et al., (2010) Modeled impact of 

anthropogenic warming on the frequency and of intense Atlantic hurricanes. 
Science, 327: 454-458. 

Berry, L. et al., (2011) Florida water management and adaptation in the face of 
climate change, Florida Climate change task force 
http://Floridaclimate.org/whitepapers  

Blewett, D.A., Hensley, R.A., & Stevens, P.W. (2006) Feeding habits of common 
snook, Centropomus undecimalis, in Charlotte Harbor, Florida. Gulf and Caribbean 
Research, 18(1): 1–14.  

Blewett, D.A., & Stevens, P.W. (2013) The effects of environmental disturbance 
on the abundance of two recreationally-important fishes in a subtropical 
floodplain river. Florida Scientist, 76: 191-197 

Blewett, D.A., Stevens, P.A., & Call, M.E. (2013) Comparative ecology of euryhaline 
and freshwater predators in a subtropical floodplain river. Florida Scientist 76(2): 
166–190. 

 
Blewett, D.A., & Stevens, P.W.  (2014) Temperature variability in a subtropical 

estuary implications for Common Snook Centropomus undecimalis, a cold-
sensitive fish. Gulf of Mexico Science, 32:44–54. 

 
Bertani, I., Primicerio, R.,  & Giampaolo, R. (2016) Extreme climate events 

trigger regime shifts in lakes that propagate across multiple trophic levels. 
Ecosystems 19:16-31.  

 
Boeuf, G., & Payan, P. (2001) How should salinity influence fish growth? 

Comparative Biochemistry and Physiology Part C: Toxicology & 
Pharmacology 130: 411-423  

 
Bond, N.R., Balcombe, S.R., Crook, D.A., Marshall, J.C., Menke, N., & 

Lobegeiger, J.S. (2015) Fish population persistence in hydrologically variable 
landscapes. Ecological. Applications 25(4): 901–913. 



116 
 

Bonnington, C., Gaston, K.J., Evans, K.L. (2013) Fearing the feline: domestic 
cats reduce avian fecundity through trait-mediated indirect effects that 
increase nest predation by other species. Journal of Applied Ecology, 50: 15-
24. 

Boucek, R,E., & Rehage, J.S. (2013) No free lunch: Displaced marsh consumers 
regulate a prey subsidy to an estuarine consumer. Oikos, 122: 1453-1464.  

Boucek, R. E., & Rehage, J.S. 2014. Climate extremes drive changes in functional 
community structure. Global Change Biology, 20(6): 1821-1831. 

 
Boucek, R.E., & Rehage, J.S. (2015) A tale of two fishes: using recreational 

angler records to examine the link between fish catches and floodplain 
connections in a subtropical mangrove estuary. Estuaries and Coasts, 128:124-
135 

Boucek, R.E., Gaiser, E.E., Liu, H. and Rehage, J.S. (2016a) A review of 
subtropical community resistance and resilience to extreme cold spells. 
Ecosphere, 7(10). 

 
Boucek, R.E., Soula, M., Tamayo, F. and Rehage, J.S., (2016b) A once in 10 year 

drought alters the magnitude and quality of a floodplain prey subsidy to 
coastal river fishes. Canadian Journal of Fisheries and Aquatic 
Sciences,73(11): 1672-1678. 

 
Britten, G. L., Dowd, M., Minto, C., Ferretti, F., Boero, F., & Lotze, H.K. 2014. 

Predator decline leads to decreased stability in a coastal fish 
community. Ecology letters, 17(12): 1518-1525. 

 
Brokaw, N. ed., (2012) A Caribbean forest tapestry: the multidimensional nature 

of disturbance and response. Oxford University Press. 

Burkhardt, R.W., & Gutreuter, S. (1995) Improving electrofishing catch 
consistency by standardizing power North American Journal of Fisheries 
Management, 15: 375-381 

Castillo, D.M., et al., (2013) Specialist pollinating seed predator exhibits 
oviposition strategy consistent with optimal oviposition theory. Ecological 
Entromology, 38: 164-172. 

Cavanaugh, K. C., Kellner, J.R., Forde, A.J., Gruner, D.S., Parker, J.D., 
Rodriguez, W., & Feller, I.C (2014) Poleward expansion of mangroves is a 
threshold response to decreased frequency of extreme cold events. 
Proceedings of the National Academy of Sciences, 111(2): 723-727. 

 



117 
 

Chen, Y. G., & Nong, M.S. (2008) Causality Analysis on a severe chilling icy 
rain and snow freezing disaster weather event in early 2008 in Guangxi 
[J]. Journal of Meteorological Research and Application, 2: 004. 

 
Chen, T., Yu, K., Shi, Q., Li, S., Price, G.J., Wang, R. & Zhao. J. (2008) Twenty-

five years of change in scleractinian coral communities of Daya Bay (northern 
South China Sea) and its response to the 2008 AD extreme cold climate 
event. Chinese Science Bulletin, 54(12): 2107-2117. 

 
Chen, L., WenQing, W., YiHui, Z., Li, H., ChunLei, Z., ShengChang, Y., & 

Chang, J. 2010. Damage to mangroves from extreme cold in early 2008 in 
southern China. Journal of Plant Ecology (Chinese Version), 34(2): 186-194. 

 
Chezik, K.A., Nigel, P.L., & Wenturelli, P.A. (2014) Fish growth and degree-days 

I: selecting a base temperature for a within-population study Canadian Journal 
of Fish and Aquatic Sciences, 71: 47 -55.  

Childers, D. L. (2006) A synthesis of long-term research by the Florida Coastal 
Everglades LTER Program. Hydrobiologia 569(1): 531-544. 

 
Childers, D.L., Boyer, J.N., Davis, S.E., Madden, C.J., Rudnick, D.T., & Sklar, F.H. 
(2006) Relating precipitation and water management to nutrient concentrations 
in the oligotrophic “upside-down” estuaries of the Florida Everglades. Limnology and 

Oceanography. 51(1 Pt 2): 602–616. 
 
Coles, S.L., &  Fadlallah, Y.H. (1991) Reef coral survival and mortality at low 

temperatures in the Arabian Gulf: new species-specific lower temperature 
limits. Coral Reefs, 9:231-237. 

 
Colella, M.A., Ruzicka, R.R., Kidney, J.A., Morrison, J.M., Brinkhuis V.B. (2012) Cold-

water event of January 2010 results in catastrophic benthic mortality on patch reefs in 
the Florida Keys. Coral Reefs, 31: 621-631. 

Collins, M.R. (1985) Species profiles: life histories and environmental 
requirements of coastal fishes and invertebrates (South Florida) striped mullet 
. U.S. Fish Wild life Service Biological Report 82(11.34). U.S. Army Corps of 
Engineers, TR EL-82-4. 11 pp. 

Collins, S.L., Carpenter, S.R., Swinton, S.M., Orenstein, D.E., Childers, D.L., 
Gragson, T.L., Grimm, N.B., Grove, J.M., Harlan, S.L., Kaye, J.P., Knapp, A.K., 
Kofinas, G.P., Magnuson, J.J., McDowell, W.H., Melack, J.M., Ogden, L.A., 
Robertson, G.P., Smith, M.D., &  Whitmer, A.C. (2011) An integrated conceptual 
framework for long-term social–ecological research. Frontiers in Ecology an 
Environment 9(6): 351–357.  

 



118 
 

Cook-Patton, S. C., Lehmann, M., & Parker, J.D. (2015) Convergence of three 
mangrove species towards freeze-tolerant phenotypes at an expanding range 
edge. Functional Ecology, 29: 1332-1340. 

 
Dale, V.H., Joyce, L.A., McNulty, S., Neilson, R.P., Ayres, M.P., Flannigan, 

M.D., Hanson, P.J., Irland, L.C., Lugo, A.E., Peterson, C.J. and Simberloff, D. 
(2001) Climate change and forest disturbances: climate change can affect 
forests by altering the frequency, intensity, duration, and timing of fire, 
drought, introduced species, insect and pathogen outbreaks, hurricanes, 
windstorms, ice storms, or landslides. BioScience, 51(9): 723-734. 

Davis, M.A., Grime, J.P., & Thompson, K. (2001) Fluctuating resources in plant 
communities: a general theory of invisibility Journal of Ecology, 88: 528-534. 

Deutsch, C. A., Tewksbury, J.J., Huey,  R.B., Sheldon, K.S., Ghalambor, C.K., 
Haak, D.C., & Martin, P.R. (2008) Impacts of climate warming on terrestrial 
ectotherms across latitude. Proceedings of the National Academy of 
Sciences, 105(18): 6668-6672. 

 
Diez, J.M., et al., (2012) Will extreme climatic events facilitate biological 

invasions? Frontiers in Ecology and Environment, 10: 249-257. 

Dorn, N.J., & Trexler, J.C. (2007) Crayfish assemblage shifts in a large drought-
prone wetland: the roles of hydrology and competition. Freshwater Biology, 52(12): 
2399–2411.  

 
Dorn, N.J., & Cook, M.I. (2015) Hydrological disturbance diminishes predator 
control in wetlands. Ecology, 96(11): 2984–2993.  
 
Downing J.L., Borrero, H., & Liu, H. (2016) Differential impacts from an extreme 

cold spell on subtropical vs. tropical specialist bees in southern Florida. 7(5). 

Downton, M. W., & Miller, K. A. (1993) The freeze risk to Florida citrus. Part II: 
Temperature variability and circulation patterns. Journal of Climate 6: 364-
372. 

 
Easterling D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R., & 

Mearns, L.O. (2000). Climate extremes: observations, modeling, and impacts. 
Science, 289: 2068–2074. 

 
Elliott, M., Whitfield, K., Potter, I.C., Blaber, S.J.M., Cyrus DP, Nordlie FG, 

Harrison TD (2007) The guild approach to categorizing estuarine 
assemblages: a global review. Fish and Fisheries, 8: 241-268. 

 
Elliot, M., Whitfield, A.K. (2011) Challenging paradigms in estuarine ecology 

and management Estuarine, Coastal and Shelf Science, 94: 306-314. 



119 
 

 
Facey, D.E., Van Den Avyle, M.J. (1987) Species profiles: Life histories and 

environmental requirements of coastal fishes and invertebrates. U.S. fish and 

wildlife Service Biological Report 82(11.74). U.S. Army Corps of 
Engineers,TR EL-82-4. 28 pp 

 
Fantz, A. (2010) Pythons and citrus and iguanas, oh my! Frigid Florida copes. 

CNN US [Internet]. http://www.cnn.com/2010/US/weather/01/10/us.cold.
weather/index.html. Accessed 12 Feb 2010 

 
Field C. B., ed. 2012. Managing the risks of extreme events and disasters to 

advance climate change adaptation: special report of the intergovernmental 
panel on climate change. Cambridge University Press,  

Frederick, P., Gawlik, D.E., Ogden, J.C., Cook, M.I., & Lusk, M. (2009) The White 
Ibis and Wood Stork as indicators for restoration of the Everglades ecosystem. 
Ecological. Indicators. 9(6): S83–S95. 

Gallucci, F. & Netto, S. (2004). Effects of the passage of cold fronts over a 
coastal site: an ecosystem approach. Marine Ecology Progress Series. 281: 
79–92 

Gaiser, E.E., Trexler, J.C., & Wetzel, P.R. (2012) The Florida Everglades. Wetland 
habitats of North America: ecology and conservation concerns. University of 
California Press, Berkeley, Calif. pp. 231–252. 

Gao, Y., Leung, L. R., Lu, J., & Masato, G. (2015) Persistent cold air outbreaks 
over North America in a warming climate. Environmental Research 
Letters, 10(4): 044001. 

Garrabou, J., Coma, R., Bensoussan, N., Bally, M., Chevaldonné, P., Cigliano, 
M., Díaz, D., Harmelin, J.G., Gambi, M.C., Kersting, D.K. and Ledoux, J.B. 
(2009) Mass mortality in Northwestern Mediterranean rocky benthic 
communities: effects of the 2003 heat wave. Global change biology,15(5), 
pp.1090-1103. 

Gilman, E. L., Ellison, J., Duke, N.C., Field, C. (2008) Threats to mangroves from 
climate change and adaptation options: a review. Aquatic Botany 89(2): 237-
250. 

Gherardi, L.A., & Sala, O.E. (2015) Enhanced interannual precipitation variability 
increases plant functional diversity that in turn ameliorates negative 
impact on productivity. Ecology. Letters. 18(12): 1293–1300. 

 
Gilmore, R.G., Bullock, L.H., Berry, F.H. (1978) Hypothermal mortality in 

marine fishes of South-Central Florida January 1977. Northeast Gulf Science. 
2:77-97 

http://www.cnn.com/2010/US/weather/01/10/us.cold.weather/index.html.%20Accessed%2012%20Feb%202010
http://www.cnn.com/2010/US/weather/01/10/us.cold.weather/index.html.%20Accessed%2012%20Feb%202010


120 
 

 
Glover, D.C., DeVries, D.R., Wright, R.A., and Davis, D.A. (2010) Sample preparation 

techniques for determination of fish energy density via bomb calorimetry: 
an evaluation using Largemouth Bass. Transactions of the American. Fisheries. 
Society. 139: 671–675. 

 
Greenwood, M.J., & McIntosh, A.R. (2008) Flooding impacts on responses of a 

riparian consumer to cross-ecosystem subsidies. Ecology, 89(6): 1489–1496. 
 
Greenwood, M.J., & McIntosh, A.R. (2010) Low river flow alters the biomass and 

population structure of a riparian predatory invertebrate. Freshwater. Biology. 55: 
2062–2076. 

 
Gutschick, V.P., & BassiriRad, H. (2003) Extreme events as shaping physiology, 

ecology, and evolution of plants: toward a unified definition and evaluation of 
their consequences. New Phytologist, 160: 21–42. 

 
Haddad, N.M., Tilman, D., Knops, J.M.H. (2002) Long-term oscillations in 

grassland productivity induced by drought. Ecology Letters, 5: 110–120. 
 
Hanson, R.C., Duff, D., Brehe, J., Fleming, W.R. (1976) The effect of various 

salinities, hypophysectomy, and hormone treatments on the survival and 
sodium and potassium content of juvenile bowfin, Amia calva. Physiological 
Zoology 49: 376-385.  

 
Hong, C. & Li, T. (2009) The Extreme Cold Anomaly over Southeast Asia in 

February 2008: Roles of ISO and ENSO. Journal of Climate: 22: 3786-3801 
 
Hsieh, H. J., Hsien, Y. L., Jeng, M.S., Tsai, W.S., Su, W.C., & Chen, C. A. (2008) 

Tropical fishes killed by the cold. Coral reefs, 27(3): 599-599. 

Hussey, N.E., Kessel, S.T., Aarestrup, K., Cooke, S.J., Cowley, P.D., Fisk, A.T., 
Harcourt, R.G., Holland, K.N., Iverson, S.J., Kocik, J.F. and Flemming, J.E.M. 
(2015) Aquatic animal telemetry: a panoramic window into the underwater 
world. Science: 348(6240) 1255642. 

 
Jardine, T.D., Pusey, B.J., Hamilton, S.K., Pettit, N.E., Davies, P.M., Douglas, M.M., 

Sinnamon, V., Halliday, I.A., and Bunn, S.E. (2012) Fish mediate high food web 
connectivity in the lower reaches of a tropical floodplain river. Oecologia, 
168(3): 829–838.  

Jardine, T.D., Bond, N.R., Burford, M.A., Kennard, M.J., Ward, D.P., Bayliss, P., 
Davies, P.M., Douglas, M.M., Hamilton, S.K., Melack, J.M., Naiman, R.J., 
Pettit, N.E., Pusey, B.J., Warfe, D.M., and Bunn, S.E. (2015) Does flood rhythm 
drive ecosystem responses in tropical riverscapes? Ecology, 96(3): 684–692. 

 



121 
 

Jentsch. A., Kreyling, J., Beierkuhnlein. C. (2007) A new generation of climate-
change experiments: events, not trends. Frontiers in Ecology and Environment 
5: 365–374. 

 
Jiménez, M.A., Jaksic, F.M., Armesto, J.J., Gaxiola, A., Meserya, P.L., Kelt, 

D.A., Gutiérrez, J.R. (2011) Extreme climatic events change the dynamics and 
invisibility of a semi-arid annual plant communities. Ecology Letters, 14: 
1227-1235 

Junk, W.J., Bayley, P.B., and Sparks, R.E. (1989) The flood pulse concept in 
river–floodplain systems. In Proceedings of the International Large River 
Symposium. Edited by D.P. Dodge. Can. Spec. Publ. J. Fish. Aquat. Sci. 106: 
110–127. 

Junming, J. I., Benxiang, A.N.G., Nanqing, L. I., WeiShuang, A.N.G., Ying, Z., 
& XiuMing, C. (2008) Impact of the snow disaster occurred in 2008 in South 
China to the clump bamboo in South Sichuan. Scientia Silvae Sinicae,44(11): 
141-144 

Karl T.R., Meehl, G.A., Miller, C.D. et al. (eds.). (2008) Weather and Climate 
Extremes in a Changing Climate. NOAA National Climatic Data Center, 
Washington, DC. 

 
Kawaguchi, Y., Taniguchi, Y., & Nakano, S. (2003) Terrestrial invertebrate inputs 
      determine the local abundance of stream fishes in a forested stream. Ecology, 84(3): 

701–708.  
 
Kearney, M., Shine, R., Porter, W.P. (2009) The potential for behavioral 

thermoregulation to buffer “cold blooded” animals against climate warming 
Proceedings of the National Academy of Sciences 106: 3835 -3840 

Kemp, D.W., Oakley, C.A., Thornhill, D.J., Newcomb, L.A., Schmidt, G.W., Fitt, 
W.K. (2011) Catastrophic mortality on inshore coral reefs of the Florida Keys 
due to severe low-temperature stress. Global Change Biology, 17: 3468-3477. 

Kemp, D. W.,  Colella, M. A.,  Bartlett, L. A.,  Ruzicka, R. R.,  Porter, J. W., 
&  Fitt, W. K. (2016) Life after cold death: reef coral and coral reef responses 
to the 2010 cold water anomaly in the Florida Keys. Ecosphere, 7:e01373. 

Kline, J.L., Loftus, W.F., Kotun, K., Trexler, J.C., Rehage, J.S., Lorenze, J.J., 
Robinson, M (2014) Recent fish introductions into Everglades National Park: 
An unforeseen consequence of water management? Wetlands, 34:174-187  

Koch, J.D. et al. (2009) Population dynamics and potential management of 
bowfin (Amia calva) in the upper Mississippi River. Journal of Applied 
Ichthyology 25: 545-550.  

 



122 
 

Kodra, E., Steinhaesuer, K., Ganguly, A.P. (2011) Persisting cold extremes under 
21st century warming scenarios. Geophysical research letters, 38: DOI, 
10.1029/2011GL047103 

Koehn, J.D., Hobday, A.J., Pratchett, M.S., Gillanders, B.M. (2011) Climate 
change and Australian marine and freshwater environments, fishes and 
fisheries: synthesis and options for adaptation Marine and Freshwater 
Research, 62: 1148-1164.  

Kreyling, J., Beierkuhnlein, C., Ellis, L., Jentsch, A. (2008) Invasibility of 
grassland and heath communities exposed to extreme weather events – 
additive effects of diversity resistance and fluctuating physical environment, 
Oikos, 117: 1542-1554 

Kreyling, J., Jentsch, A., Beierkuhnlein, C. (2011) Stochastic trajectories of 
succession initiated by extreme climatic events. Ecology Letters, 1414(8): 
758–764. 

 
Kreyling, J.,  Schmid, S., & Aas, G. (2015) Cold tolerance of tree species is 

related to the climate of their native ranges. Journal of Biogeography 42:156–
166. 

 
Kushlan, J.A. (1979) Feeding ecology and prey selection in the White Ibis. Condor, 

81: 376–389.  
 
Jardine, T.D., et al., (2012) Fish mediate high foodweb connectivity in the lower 

reaches of a tropical floodplain river. Oecologia, 168: 829-838. 

Lake, P.S. (2003) Ecological effects of perturbation by drought in flowing waters. 
Freshwater. Biology. 48(7): 1161–1172.  

Liu, H.,  Feng, C. L.,  Chen, B. S.,  Wang, Z. S.,  Xie, X. Q.,  Deng, Z. H., 
&  Luo, Y. B. (2012) Overcoming extreme weather challenges: successful but 
variable assisted colonization of wild orchids in southwestern 
China. Biological Conservation, 150:68–75. 

Liu, H.,  Feng, C. L.,  Xie, X. Q.,  Lin, W.,  Deng, Z. H.,  Wei, X. L., &  Luo, Y. 
B. (2014a) Impacts of Extreme Weather Spells on Flowering Phenology of Wild 
Orchids in Guangxi, Southwestern China. Darwin's Orchids: Then and Now. 

   
Liu, K.,  Liu, L.,  Liu, H.,  Li, X., & Wang, S. (2014b) Exploring the effects of 

biophysical parameters on the spatial pattern of rare cold damage to mangrove 
forests. Remote Sensing of Environment, 150:20–33. 

 
Liu, Y.,  Wang, M.,  Wang, W.,  Fu, H., Lu, C. (2016) Chilling damage to 

mangrove mollusk species by the 2008 cold event in southern 
China. Ecosphere, 7:e01312. 



123 
 

Lodge, T.E. (2005) Everglades handbook: understanding the ecosystem. 2nd ed. 
CRC Press, Boca Raton, U.S. 

Lowerre-Barbieri, S., Villegas-Ríos, D., Walters, S., Bickford, J., Cooper, W., Muller, R. 
and Trotter, A. (2014) Spawning site selection and contingent behavior in Common 
Snook, Centropomus undecimalis. PloS one, 9(7), p.e101809. 

 
Lytle, D.A. and Poff, N.L. (2004) Adaptation to natural flow regimes. Trends in ecology 

& evolution, 19(2), pp.94-100. 
 
Magoulick, D.D., & Kobza (2003) The role of refugia for fishes during 

drought: a review and synthesis. Freshwater Biology. 48(7): 1186–1198.  
 

Matich, P., Heithaus, M.R. (2012) Effects of an extreme temperature event on the 
behavior and age structure of an estuarine top predator, Carcharhinus leucas. 
Marine Ecology Progress Series, 447: 165-178. 

Marcarelli, A.M., Baxter, C.V., Mineau, M.M., and Hall, R.O., Jr. (2011) Quantity and 
quality: unifying food web and ecosystem perspectives on the role of resource 
subsidies. Ecology, 92:1215-1225. 

 
Marchand, F.L., Kockelbergh, F., van de Vijver, B., Beyens, L., Nijs, I. (2006) 

Are heat and cold resistance of arctic species affected by successive extreme 
temperature events? New Phytologist, 170: 291–300. 

 
Mazzotti, F.J., Cherkiss, M.S., Hart, K.M., Snow, R.W., Rochford, M.R., Dorcas, 

M.E., Reed, R.N. (2011) Cold-induced mortality of invasive Burmese pythons 
in south Florida. Biological Invasions, 13: 143-151. 

 
Mazzotti, F. J.,  Cherkiss, M. S.,  Parry, M.,  Beauchamp, J.,  Rochford, 

M.,  Smith, B.,  Hart, K., & Brandt, L. (2016) Large reptiles and cold 
temperatures: Do extreme cold spells set distributional limits for tropical 
reptiles in Florida? Ecosphere, 7:e01439. 

 
McGill, B.J., Enquist, B., Weiher, E.,  Westoby, M. (2006) Rebuilding ecology 

from functional traits. Trends in Ecology and Evolution, 21: 178–185. 
 
McVoy, C.W., Said, W.P., OBeysekera, J., Van Arman, J., Dreschel, T. (2011) 

Landscapes and hydrology of the Predrainage Everglades. University Press of 
Fl. Gainesville Florida U.S.A. 

Milbau, A., Scheerlincka, L., Reheulb, D., De Cauwerb, B., Nijs, I. (2005) 
Ecophysiological and morphological parameters related to survival in grass 
species exposed to an extreme climatic event. Journal of Plant Physiology, 
125: 500–512. 

 



124 
 

Mineau, M.M., Baxter, C.V., Marcarelli, A.M., and Minshall, G.W. (2012) An invasive 
riparian tree reduces stream ecosystem efficiency via a recalcitrant organic 
matter subsidy. Ecology, 93(7): 1501–1508.  

 
Mouillot, D., Graham, N.A.J., Villéger, S., Mason, N.W.H., Bellwood, D.R. 

(2013) A functional approach reveals community responses to disturbances. 
Trends in Ecology and Evolution, 28: 167-177 

Mueller, R.C., Scudder, C.M., Porter, M.E., Trotter, R. III, Gehring, C.A., 
Whitham, T.G. (2005) Differential tree mortality in response to severe 
drought: evidence for long-term vegetation shifts. Journal of Ecology, 93: 
1085–1093. 

 
Muller, R.G., Taylor, R.G. (2006) The 2005 stock assessment update of common 

snook, Centropomus undecimalis, Fish and Wildlife Research Institute Tampa 

Florida 

Na, L.,  Jiping, L.,  Zhanhai, Z.,  Hongxia, C., &  Mirong, S. (2012) Is extreme 
Arctic sea ice anomaly in 2007 a key contributor to severe January 2008 
snowstorm in China? International Journal of Climatology, 32:2081–2087. 

Nakano, S., Miyasaka, H., & Kuhara, N. (1999) Terrestrial–aquatic linkages: 
riparian arthropod inputs alter trophic cascades in a stream food web. Ecology, 
80(7): 2435–2441. 

Nathan, R., Getz, W.M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D. and 
Smouse, P.E. (2008) A movement ecology paradigm for unifying organismal 
movement research. Proceedings of the National Academy of 
Sciences,105(49):19052-19059. 

Neilson, R. P. (1995) A model for predicting continental scale vegetation 
distribution and water balance. Ecological Applications, 5:362–385. 

Nimmo, D.G., Mac Nally, R., Cunningham, S.C., Haslem, A. and Bennett, A.F. 
(2015) Vive la résistance: reviving resistance for 21st century 
conservation. Trends in ecology & evolution, 30(9):516-523. 

Obeysekera, J., Irizarry, M., Park, J., Barnes, J. and Dessalegne, T. (2011). 
Climate change and its implications for water resources management in south 
Florida. Stochastic Environmental Research and Risk Assessment,25(4), 
pp.495-516. 

Osland, M. J.,  Enwright, N., Day, R. H., &  Doyle, T. (2013) Winter climate 
change and coastal wetland foundation species: salt marshes vs. mangrove 
forests in the southeastern United States. Global Change Biology, 19:1482–
1494. 



125 
 

Osland, M.J., Day, R.H., Hall, C.T., Brumfield, M.D., Dugas, J.L. and Jones, 
W.R. (2016) Mangrove expansion and contraction at a poleward range limit: 
climate extremes and land‐ocean temperature gradients. Ecology,  doi: 
10.1002/ecy.1625 

Page, L.M., & Burr, B.M. (1991) A field guide to freshwater fishes of North 

America north of Mexico. Houghton Mifflin Company, Boston. 432 p 

Parkos, J.J., Ruetz, C.R., and Trexler, J.C. (2011) Disturbance regime and limits on 
benefits of refuge use for fishes in a fluctuating hydroscape. Oikos, 120(10): 
1519–1530.  

 
Peralta-Meixueiro, M.A., & Vega-Cendejas, M.E. (2011) Spatial and temporal 

structure of fish assemblages in a hyperhaline coastal system: Ría Lagartos, 
Mexico. Neotropical Ichthyology, 9.3: 673-682.  

 
Peters, D., Yao, J., Sala, O. E., & Anderson, J. P. (2012) Directional climate 

change and potential reversal of desertification in arid and semiarid 
ecosystems. Global Change Biology, 18: 151-163. 

Peterson, M.S. & Meador, M.R. (1994) Effects of salinity on freshwater fishes in 
coastal plain drainages in the southeastern U.S. Reviews in Fish Biology and 
Fisheries, 2:95-121 737  

 
Pinho, P. F., Marengo, J. A., & Smith, M. S. (2015) Complex socio-ecological 

dynamics driven by extreme events in the Amazon. Regional Environmental 
Change, 15(4): 643-655. 

Polis, G.A., Anderson, W.B., and Holt, R.D. (1997) Toward an integration of landscape 
and food web ecology: the dynamics of spatially subsidized food webs. Annual 
Reviews in Ecology and Systematics, 28: 289–316.. 
 

Pörtner, H.O. and Knust, R. (2007) Climate change affects marine fishes through 
the oxygen limitation of thermal tolerance. Science, 315(5808): 95-97. 

Precht, W. F., &  Aronson, R. B. (2004) Climate flickers and range shifts of reef 
corals. Frontiers in Ecology and the Environment, 2:307–314. 

Price, R.M., Swart, P.K. and Willoughby, H.E., 2008. Seasonal and spatial 
variation in the stable isotopic composition (δ 18 O and δD) of precipitation in 
south Florida. Journal of Hydrology, 358(3):  193-205. 

Rehage, J.S., & Loftus, W.T. (2007) Season fish community variation in 
headwater mangrove creeks in the Southwestern Everglades. An examination 
of their role as dry-down refuges. Bulletin of  Marine Science, 80: 625 -646 



126 
 

Rehage, J. S.,  Blanchard, J. R.,  Boucek, R. E.,  Lorenz, J. J., &  Robinson, 
M. (2016) Knocking back invasions: variable resistance and resilience to 
multiple cold spells in native vs. nonnative fishes. Ecosphere, 7:e01268. 

Richardson, J.S., & Sato, T. (2015) Resource subsidy flows across freshwater– 
terrestrial boundaries and influence on processes linking adjacent ecosystems. 
Ecohydrology, 8(3): 406–415.  

Richardson, J.S., & Wipfli, M.S. (2016) Getting quantitative about consequences 
of cross-ecosystem resource subsidies on recipient consumers. Canadian Journal of 
Fisheries and Aquatic Sciences 73. doi:10.1139/cjfas-2016-0242. 
 

Robins, C.R. & Ray, G.C. (1986) A field guide to Atlantic coast fishes of North 

America. Houghton Mifflin Company, Boston, U.S.A. 354 p 

Robins, C.R., et al. (1991) Common and scientific names of fishes from the 
United States and Canada. American Fisheries Society Special Publication, 
20:183 

Rosenblatt, A.E. and Heithaus, M.R., (2011) Does variation in movement tactics 
and trophic interactions among American alligators create habitat 
linkages? Journal of Animal Ecology, 80(4): 786-798. 

Ross, M. S., Ruiz, P. L., Sah, J. P., Hanan, E. J. (2009) Chilling damage in a 
changing climate in coastal landscapes of the subtropical zone: a case study 
from south Florida. Global Change Biology, 15:1817–1832. 

Saha, A.K., Saha, S., Sadle, J., Jiang, J., Ross, M.S., Price, R.M., Sternberg, L.S. 
and Wendelberger, K.S., (2011) Sea level rise and South Florida coastal 
forests. Climatic Change, 107(1-2), 81-108. 

Santos, R. O., Rehage, J. S., Boucek, R. E., Osborne, J. (2016) Shift in 
recreational fishing catches as a function of an extreme cold 
event. Ecosphere, 7:e01335. 

Schofield, P.J., Loftus, W.F., Brown, M.E. (2007) Hypoxia tolerance of two 
centrarchid sunfishes and an introduced cichlid from karstic Everglades 
wetlands of southern Florida, U. S. A. Journal of Fish Biology, 71: 87-99.  

Schofield, P.J., Loftus, W.F., Kobza, R.M., Cook, M.I., Slone, D.H. (2010) 
Tolerance of nonindigenous  cichlid fishes (Cichlasoma urophthalmus, 

Hemichromis letourneuxi) to low temperature: laboratory and field 
experiments in south Florida. Biological Invasions, 128: 2441-2457   

 
Schofield, P. J., & Loftus, W. F. (2015) Non-native fishes in Florida freshwaters: 

a literature review and synthesis. Reviews in Fish Biology and 
Fisheries, 25:117–145. 

 



127 
 

Secor, D.H. (2008) Influence of skipped spawning and misspecified reproductive 
schedules on biological reference points in sustainable fisheries. Transactions of the 

American Fisheries Society. 137(3): 782–789. 
  
Shafland, P.L., & Pestrak, J.M. (1982) Lower lethal temperatures for fourteen 

non-native fishes in Florida. Environmental Biology of Fishes, 7(2):149-156.  
 
Shea, K., & Chesson, P. (2002) Community ecology theory as a framework for 

biological invasions. Trends in Ecology and Evolution, 17: 170-176 

Sheridan, S. C. (2003) North American weather-type frequency and 
teleconnection indices. International Journal of Climatology, 23:27–45. 

Sklar FH, et al., (2005) The ecological-societal underpinnings of Everglades 
restoration Frontiers in Ecology and Environment, 3: 161-169. 

Smale, D. A., & Wernberg, T. (2013) Extreme climatic event drives range 
contraction of a habitat-forming species. Proceedings of the Royal Society, 
280:20122829. 

Smith, M.D. (2011) An ecological perspective on extreme climatic events: a 
synthetic definition and framework to guide future research. Journal of 
Ecology, 99: 656–663. 

Sponseller R. A., Grimm N. B., Boulton A. J., & Sabo, J. L. (2010) Responses of 
macroinvertebrate communities to long-term flow variability in a Sonoran 
Desert Stream. Global Change Biology, 16: 2891- 2900 

Sousa, W. P. (1984) The role of disturbance in natural communities. Annual Review of 
Ecology and Systematics, 15: 353-391. 

Stevens, P. W.,  Fox, S. L., & Montague, C. L. (2006) The interplay between mangroves 
and saltmarshes at the transition between temperate and subtropical climate in 
Florida. Wetlands Ecology and Management, 14:435–444 

Stevens, P.W., Blewett, D.A., Champeau, T.R., & Stafford, C.J. (2010) Posthurricane 
recovery of riverine fauna reflected in the diet of an apex predator. 
Estuaries and Coasts, 33(1): 59–66. 

Stevens, P. W., Blewett, D. A., Boucek, R. E., Rehage, J. S., Winner, B. L., Young, J. 
M.,  Whittington, J. A., & Paperno, R. (2016) Resilience of a tropical sport fish 
population to a severe cold event varies across five estuaries in southern 
Florida. Ecosphere, 7:e01400. 

Stone, R. (2008) Ecologists report huge storm losses in China's 
forests. Science, 319:1318–1319. 



128 
 

Suding, K.N., Lavorel, S., Chaplin, F.S., et al., (2008) Scaling environmental 
change through the community-level: a trait-based response and- effect 
framework for plants. Global Change Biology, 14: 1125– 1140. 

 
Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. 

K., Longino, J. T., &  Huey, R. B. (2014) Thermal-safety margins and the 
necessity of thermoregulatory behavior across latitude and 
elevation. Proceedings of the National Academy of Sciences, 111:5610–5615. 

 
Susanto, G.N., & Peterson, M.S. (1996) Survival, osmoregulation and oxygen 

consumption of YOY coastal largemouth bass, Micropterus salmoides 

(Lacepede) exposed to saline media. Hydrobiologia, 119-127. 744 
 
Taylor, C.J.L. (1993) The zooplankton of the Fourth Estuary. Aquatic Ecology, 

27: 87-99 

Taylor, R.G., Grier, H.J., & Whittington, J.A. (1998) Spawning rhythms of common 
snook in Florida. Journal of Fish Biology. 53(3): 502–520.  

 
Tewksbury, J. J., R. B. Huey, and C. A. Deutsch. 2008. Putting the heat on 

tropical animals. Science, 320:1296–1297. 
 
Trenberth, K.E., Dai, A., van der Schrier, G., Jones, P.D., Barichivich, J., 

Briffa, K.R., and Sheffield, J. (2014) Global warming and changes in drought. 
National Proceedings of Climate Change, 4(1): 17–22. 

 
Trexler, J.C., Loftus, W.F., & Perry, S. (2005) Disturbance frequency and 

community structure in a twenty-five year intervention study, Oecologia, 145, 
140-152.  

 
Trotter, A.A., Blewett, D.A., Taylor, R.G., & Stevens, P.W. (2012) Migrations of 

common snook from a tidal river with implications for skipped spawning. 
Transactions of the American Fisheries Society. 141(4): 1016–1025.  

 
Thibault, K.M., & Brown, J.H. (2008) Impact of an extreme climatic event on 

community assembly. Proceedings of the National Academy of Sciences, 105: 
3410–3415. 

 
Vavrus, S., Walsh, J. E., Chapman, W. L., & Portis, D. (2006) The behavior of 

extreme cold air outbreaks under greenhouse warming. International Journal 
of Climatology, 26:1133–1147. 

Verbitsky, O. (2012) Repeated measurements and pseudo-replication in captive 
studies. Marine Mammal Science, 28: 220-223 



129 
 

Walsh, C.T., Reinfelds, I.V., Ives, M.C., Gray, C.A., West, R.J. and van der 
Meulen, D.E. (2013) Environmental influences on the spatial ecology and 
spawning behaviour of an estuarine-resident fish, Macquaria colonorum. 
Estuarine, Coastal and Shelf Science, 118: 60-71. 

Wang, C. Liu, H, Lee S. (2010) The record-breaking cold temperatures during the 
winter of 2009/2010 in the Northern Hemisphere. Atmospheric Science 
Letters, 11: 161-168 

Wang, X., Huang, S., Li, J., Zhou, G., & Shi, L. (2016) Sprouting response of an 
evergreen broad-leaved forest to a 2008 winter storm in Nanling Mountains, 
southern China. Ecosphere, 7:e01395. 

 
Wang, X., Liu, H., Gu, M., Boucek, R. E., Wu, Z., & Zhou, G. (2016) Greater 

impacts from an extreme cold spell on tropical than temperate butterflies in 
southern China. Ecosphere, 7:e01315. 

 
Wato, Y.A., Heitkönig, I.M., van Wieren, S.E., Wahungu, G., Prins, H.H. and van 

Langevelde, F., (2016) Prolonged drought results in starvation of African 
elephant (Loxodonta africana). Biological Conservation, 203:89-96. 

 
Webb, C.T. Hoeting, J.A., Ames, G.M., Pyne, M.I., Poff, N.L. (2010) A 

structured and dynamic framework to advance traits-based theory and 
prediction in ecology. Ecology Letters, 13: 267–283. 

 
Welcomme, R.L., and Halls, A.S. (2001) Some considerations of the effects of 

differences in flood patterns on fish populations. Ecohydrology and Hydrobiology, 1: 
313–321 

 
Welcomme, R.L. & Halls, A.S. (2003) Dependence of tropical river fisheries on 

flow. Proceedings of the Second International Symposium on the 
Management of Large Rivers for Fisheries: Volume 2 (eds. R.L.Welcomme & 
T. Petr), pp 267–283. Food and Agriculture Organization of the United 
Nations & Mekong River Commission. FAO Regional Office for Asia and the 
Pacific, Bangkok. 

 
White, P. S., & Jentsch, A. (2001) The search for generality in studies of disturbance and 

ecosystem dynamics. In Progress in botany (pp. 399-450). Springer Berlin 
Heidelberg. 

White, R.S., McHugh, P.A. and McIntosh, A.R., 2016. Drought‐survival is a 
threshold function of habitat size and population density in a fish 
metapopulation. Global change biology. 

Whitfield, A.K., Elliot, M., Basset, A., Blaber, S.J.M., West, R.J. (2012) 
Paradigms in estuarine ecology- A review of the Remane diagram with a 



130 
 

suggested revised model for estuaries Estuarine Coastal and Shelf Science, 97: 
78-90/ 

Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the drought phenomenon: 
the role of definitions. Water International, 10(3): 111-120. 

Winemiller, K.O., and Jepsen, D.B. (2004) Migratory neotropical fish subsidize 
food webs of oligotrophic blackwater rivers. Food webs at the landscape 
level. University of Chicago Press, Chicago, Illinois. 115–132. 

Wootton, T.J.,  Emmerson, M. (2005) Measurement of interaction strength in 
nature. Annual Reviews of Ecology Evolution and Systematics, 36: 419-444. 

Zhang, K., B. Thapa, M. Ross, and D. Gann. 2016. Remote sensing of seasonal 
changes and disturbances in mangrove forest: a case study from South 
Florida. Ecosphere, 7:e01366. 

 
Zhou, B., Gu, L., Ding, Y., Shao, L., Wu, Z., Yang, X. & Zeng, B. (2011). The 

great 2008 Chinese ice storm: its socioeconomic-ecological impact and 
sustainability lessons learned. Bulletin of the American Meteorological 
Society, 92(1): 47-60. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 131 

VITA 
 

ROSS BOUCEK 

2009    B.S., Fisheries Science 

    Virginia Tech 

    Blacksburg, Virginia 

 

2011    M.S., Environmental Sciences 

    Florida International University 

    Miami, Florida 

 

2013 – 2016   Graduate student co-chair 

    Long Term Ecological  Research Network 

 

2013 – 2016    Graduate student co-chair 

    Long Term Ecological Research Education Committee 

 

    Student President 

    American Fisheries Society education sub-section 

 

2016    Ph.D., Biology 

    Florida International University 

    Miami, Florida 

 

PUBLICATIONS AND PRESENTATIONS 

 

Lead Editor: Boucek R. E., Gaiser E. E., Liu H., Rehage J. S. (2015) Impacts of extreme 

cold spells on dynamics of tropical species and implications on poleward expansion. 

Special issue published in the Journal Ecosphere 

 

Boucek R. E., Gaiser E. E., Liu H., Rehage J. S. (In press) A review of sub-tropical 

community resistance and resiliency to extreme cold spells. Ecosphere. Submitted 

8.27.2015 

 

Wang X., Liu H., Gu M. B., Boucek R. E. (in press) Knocking back invasions: the effect 

of extreme cold events on nonnative Everglades fishes. Ecosphere. Submitted 7.23.2015 

 

Rehage J. S., Blanchard J. A., Boucek R. E. (In press) Knocking back invasions: the 

effect of extreme cold events on nonnative Everglades fishes. Ecosphere. Submitted 

7.2.2015 

 

Boucek R. E., Rehage J. S. (2014) Climate extremes drive changes to functional 

community structure. Global Change Biology 20(6), 1821-1831 

 



 132 

Santos R. A., Boucek R. E., Rehage J. S. (In press) Shift in recreational fishing catches as 

a function of extreme cold event. Ecosphere. Submitted 7.22.2015 

 

Boucek R. E. Rehage J. S. (2015) Effects of an episodic drought on a floodplain subsity 

in a mangrove river. Mangroves as Fish Habitat. Eds. Murchie K. & Daneshager P. 

 

Rehage J. S., Boucek R.E., Gandy D. Lee J. (2015) Mangrove habitat use by a displaced 

freshwater species in the coastal Everglades. Mangroves as Fish Habitat. Eds. Murchie 

K. & Daneshager P. 

 

Boucek R. E., Rehage J. S. (2015) A tale of two fishes: using recreational angler records 

to examine the link between fish catches and freshwater inflows in a subtropical 

mangrove estuary. Estuaries and Coasts 38, 124-135 

 

Boucek R. E., Rehage J. S. (2014) Examining the effectiveness of consumer diet 

sampling as a non-native detection tool in a subtropical estuary. Transactions of the 

American Fisheries Society. 143, 489-494 

 

Boucek R. E., Rehage J. S. (2013) No free lunch: displaced marsh consumers regulate 

prey subsidies to estuarine consumers. Oikos 122, 1453-1464 

 

Rehage J. S., Boucek R. E., Cline E.A., Cook M.I., Gallagher M.B., Kobza M., Saha 

A.K. (2013) Turning passive detection systems into field experiments: an application 

using wetland fishes and enclosures to track fine-scale movement and habitat choice. 

Acta Ecologia 17, 53-61 

 

Barbour A. B., Boucek R. E., Adams A. (2012) Effect of pulsed gastric lavage on 

apparent survival of a juvenile fish in a natural system. Journal of Marine Experimental 

Biology and Ecology 422-423: 107-113. 

 

Layman C., Araujo M., Boucek R. E., Hammerschlag-Peyer C., Harrison E., Jud Z., 

Matich P., Rosenblatt A., Vaudo J., Yeager L., Post D., Bearhop S. (2012) Applying 

stable isotopes to examine food web structure: an overview of analytical tools. Biological 

Reviews: 87, 545-562 

 

Boucek R. E., Adams A. (2011) Comparison of retention success for multiple tag types 

in common snook. North American Journal of Fisheries Management. 31: 693-699 

 

Carlson A., Dunmall K., Boucek R. E., et al. (2015) How to navigate fisheries education 

and employment. Fisheries 40, 196-198 (contributor) 

 

 
 

 


	Florida International University
	FIU Digital Commons
	8-31-2016

	Investigating Sub-tropical Community Resistance and Resilience to Climate Disturbance
	Ross E. Boucek
	Recommended Citation


	tmp.1480958053.pdf.ozrPR

