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ABSTRACT OF THE DISSERTATION 

CARBON NANOTUBE- AND GOLD NANOPARTICLE-BASED MATERIALS FOR 

ELECTROCHEMICAL AND COLORIMETRIC SENSING APPLICATIONS 

by 

Janak Paudyal 

Florida International University, 2016 

Miami, Florida 

Professor Yi Xiao, Major Professor 

Carbon nanotubes (CNTs) and gold nanoparticles (AuNPs) are widely used for 

sensing applications because of their distinctive electrical and optical properties, and we 

have explored the development of methods that enable the incorporation of these 

nanomaterials into new and improved sensing devices.  

As a means for fabricating simple, low-cost and fast detection platforms for various 

applications, we have developed paper-based electrochemical detection platforms using 

CNTs or platinum nanoparticle (PtNP)-CNT composite materials. We describe the use of 

a paper-based, low density, three-dimensional thin film of interconnected CNTs as an 

electrode material. We studied the electrochemical properties of these paper-based CNT 

electrodes and demonstrated their use as an electrochemical sensor for the sensitive 

detection of guanine-based nucleotides. We further describe the functionalization of this 

paper-based electrode by fabricating a PtNP-SWCNT hybrid film via a vacuum filtration-

based method. The interconnected PtNP structure formed on top of the CNT-coated 

paper was directly used as an electrocatalyst for methanol oxidation. Compared to 

paper-based PtNP-SWCNT hybrid films formed by electrochemical deposition, hybrid 

films formed by vacuum filtration showed a higher electrochemical surface area and 

enhanced electrocatalytic response to methanol oxidation.  
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We have also developed methods based around DNA-modified AuNPs, which offer 

an excellent colorimetric platform for target detection. The DNA density on the surface of 

modified AuNPs affects enzymatic activity, colloidal stability of AuNPs, the orientation of 

the probe DNA and its hybridization efficiency. The combination of all these factors 

ultimately dictates the reaction time and sensitivity of colorimetric assays. we 

demonstrate the use of dithiothreitol (DTT) as a modulator to control DNA surface 

coverage on the surface of AuNPs. Using this DTT treatment and a novel probe for 

exonuclease III activity, we have developed a colorimetric assay using DTT-treated, 

DNA-modified AuNPs that can achieve sensitive and rapid detection of DNA and 

enzymes relative to existing sensor platforms.  
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Chapter 1. Introduction 

1.1. Research overview 

Nanomaterials such as carbon nanotubes (CNTs), graphene, and gold nanoparticles 

(AuNPs) have been used in many detection platforms because of their distinctive size- 

and shape-dependent physical, chemical, electronic and optical properties. These 

properties have led to improved selectivity, sensitivity, and rapid response compared to 

bulk material detection platforms. There is increasing interest in the fabrication of simple, 

cost-effective, portable, and disposable nanomaterial-based detection platforms for 

various sensing applications.   

Carbon nanotubes have been used as both recognition elements and transducers for 

electrochemical sensing applications. Electrochemical detection itself offers a very 

simple, cheap, and portable platform for the detection of target analytes. To further 

simplify electrochemical detection, we describe a paper-based electrode material in 

which nanomaterials are loaded onto the paper substrate. Specifically, CNTs were used 

to fabricate paper-based electrodes with a simple vacuum filtration apparatus. This 

paper-based CNT electrode provides a flexible, versatile and disposable alternative to 

traditional electrodes. The use of these paper-based CNT electrodes for sensitive 

detection of guanine-based nucleotides is described in Chapter Three. These paper-

based CNT electrodes were further functionalized with platinum nanoparticles (PtNPs) to 

form a paper-based PtNP-SWCNT hybrid film. Platinum nanoparticles assemble to form 

a continuous, porous, three-dimensional structure that is directly fabricated on top of a 

paper-based single-walled carbon nanotube (SWCNT) thin film through vacuum filtration 

assembly. The morphology, distribution and oxidation state of the PtNPs were studied in 

detail, and we have evaluated the performance of paper-based PtNP-SWCNT hybrid 

films using methanol as a model molecule in Chapter Four. 
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Gold nanoparticles have been used as a colorimetric probe in combination with 

different recognition elements. Deoxyribonucleic acid-modified AuNPs have been most 

commonly used for target detection, with DNA acting as a recognition element and 

AuNPs acting as a colorimetric probe. The simplicity of the method lies in the fact that 

the presence of the target analyte can be detected by the naked eye without the need for 

instruments. However, this platform usually requires long detection times to achieve 

sensitive target detection. For fast and sensitive analysis, we have proposed new 

colorimetric assays for the detection of DNA and exonuclease III in Chapter Five. A DNA 

substrate that is targeted by both the 3’-to-5’ exonuclease and AP endonuclease activity 

of exonuclease III was conjugated onto the surface of AuNPs. Dithiothreitol (DTT) was 

used as a diluent to modulate the surface coverage of DNA on the surface of AuNPs to 

obtain fast and sensitive detection of DNA and enzyme. 

1.2. Motivation and goal 

The overall aim was to fabricate simple, low-cost, portable and efficient 

nanomaterial-based platforms for electrochemical and colorimetric sensing applications. 

Carbon nanotubes have well-defined electrochemical properties and have been widely 

used for modification of traditional electrode surfaces to improve electron transfer rate 

and increase electrode surface area. On the basis of the excellent conductivity of CNTs, 

we have explored the feasibility of using them as an electrode material on a paper 

substrate. Paper-based electrochemical devices have proven to be a simple, cheap, 

portable and disposable alternative to traditional analytical methods for target detection. 

On the basis of the established electroactivity of CNTs for many analytes, the fabrication 

of paper-based CNT electrodes could be a valuable asset for next-generation sensing 

platforms. We have demonstrated the direct use of paper-based CNT electrodes as an 

electrochemical sensor, using guanine-based nucleotides as a model because of their 
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significance in the mechanistic study of oxidative damage and various metabolic 

processes. 

To further demonstrate the potential of paper-based CNT electrode, we 

functionalized these films with PtNPs to form paper-based PtNP-SWCNT hybrid films 

using two different methods: electrodeposition and vacuum filtration. Platinum was 

selected because of its excellent catalytic activity for hundreds of chemical reactions. We 

characterized the state of the Pt layer on the surface of the CNTs, and evaluated its 

performance using methanol as a model molecule.  

Gold nanoparticles have been used as a simple, sensitive probe for colorimetric 

detection of target analytes as they generate a color change that is 1,000-fold stronger 

than most strongly absorbing color dyes. The combination of AuNPs with DNA as a 

recognition element enables the naked-eye colorimetric detection of various analytes 

without the need for instruments. The difference in color of DNA-conjugated AuNPs (red) 

and aggregated AuNPs (purple or blue) arises from the removal of DNA from the surface 

of the gold nanoparticles as a consequence of direct or indirect interaction with the 

target. The DNA density on the surface of modified AuNPs is known to affect the activity 

of DNA-cleaving enzymes, as well as the colloidal stability of AuNPs and the orientation 

of the probe DNA and its hybridization efficiency with complementary targets. To achieve 

rapid and sensitive detection, we used DTT to adjust the coverage of thiol-conjugated 

DNA on the surface of the AuNPs. We used exonuclease III as a target to demonstrate 

the faster and sensitive detection achieved using DTT-treated AuNP-conjugated probes 

due to its biological significance as both an AP endonuclease and a 3’-to-5’ 

exonuclease. 
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1.3. Dissertation outline 

Chapter Two presents a general literature review of the electrochemical 

properties of CNTs and the optical properties of gold nanoparticles. It also provides a 

complete state of the art literature review of the fabrication of CNT-based electrode 

materials for sensing applications, PtNP-CNT hybrid materials for catalysis applications, 

and DNA-modified AuNPs for colorimetric sensing applications. Furthermore, it 

discusses the importance of paper-based electrode materials. The significance and 

current methods of detection for three different targets—guanine-based nucleotides, 

methanol and exonuclease III—are also discussed. Chapter Three describes the 

fabrication, structural and electrochemical characterization of CNT-fabricated paper 

electrodes and their use for sensitive detection of guanine-based nucleotides. Chapter 

Four discusses the fabrication of PtNP-SWCNT hybrid material on a paper substrate, 

and its characterization and application for electrochemical methanol oxidation. Chapter 

Five describes the development of fast, sensitive colorimetric assays for DNA and 

enzyme detection based on DTT-treated, DNA-modified AuNPs. Chapter Six gives a 

summary of the dissertation and proposes future plans.   
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Chapter 2. Background and literature review 

2.1. Introduction to SWCNT 

Carbon nanotubes (CNTs) are hollow, cylindrical allotropes of sp2-hybridized carbon 

atoms discovered in 1991 by lijima.1 Conceptually, CNTs can be represented as a 

cylinder obtained from folding a one-dimensional sheet of carbon atoms (graphene) as 

shown in figure 1. CNTs exhibit a high aspect ratio and surface area as a consequence 

of their long, hollow cylindrical structure. They are good conductors of heat and 

electricity and are chemically and thermally stable.2,3 

 

Figure 1. Diagram of the conceptual structure of CNTs formed from graphene.4 (A) A 
one-dimensional honeycomb-like graphene sheet can be folded in different manners to 
generate (B) electronically distinct CNTs, such as the zigzag CNT (n=14, m=0) or the 
armchair CNT (n=8, m=8). (C)  single-walled (SWCNT), double-walled (DWCNT) and 
multi-walled (MWCNT) nanotubes. 

Different ways of graphene sheet wrapping along the honeycomb lattice can be 

represented by its “roll up” vector na+mb, where, n and m are integers, and a and b are 

translational vector of graphene (Figure 1A).  Different quantities of integers will yield 

CNTs with distinct electronic properties. For example, if m=0, wrapping produces zigzag 

CNTs, whereas if n is equal to m, it produces armchair nanotubes (Figure 1B).  

Considering the number of cylinders, CNTs may be single-walled (SWCNTs), double-
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walled (DWCNTs), or multi-walled (MWCNTs), as shown in figure 1C. The diameter of 

SWCNTs lies in the range of 1-2 nm whereas the diameter of MWCNTs lies in the range 

of 2-25 nm, with lengths typically ranging from 0.2 to 5 µm. The high surface area-to-

volume ratio, mechanical strength, chemical stability along with its unique electronic 

properties makes SWCNT especially attractive for electrochemical applications.   

2.2. Electrochemical properties of SWCNT 

Graphene is a zero-bandgap semiconductor because of its direction dependent 

conducting behavior. The low energy band structure of graphene can be represented by 

six Dirac cones (Figure 2B). The conducting states (Ef) are present only at specific 

points along certain direction of momentum space but not in all directions as shown in 

figure 2B.5 On the basis of the direction of these momentum states with respect to the 

direction of conduction (chirality), rolling of graphene  may produce either metallic or 

semiconductor CNT.3,6,7 If the rolling of graphene results in SWCNT with straight chiral 

vector, the CNT is called armchair and it will most likely be metallic in nature (Figure 2C). 

Similarly, if graphene rolls with straight translational vector, the resulting CNT will be 

chiral or zigzag and it may act as a semiconductor (Figure 2D). 

Unless separated, random samples of SWCNT contain a mixture of metallic and 

semiconducting SWCNTs, irrespective of the method of synthesis. Theoretical 

predictions have revealed that the typical ratio of semiconducting to metallic SWCNTs is 

approximately 3:1; therefore, SWCNT samples behave overall as a semiconducting 

nanomaterial.8 

2.3. Electrochemical properties of SWCNT ensembles 

The purity, surface defects, size, and length of SWCNTs influence their 

electrochemical properties. Single-walled carbon nanotube ensembles are generally 

used as an electrode material, although there are reports of single SWCNTs being used 
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as electrodes. The state of dispersion and their orientation on the electrode surface also 

greatly influence the electrochemical activities of SWCNTs.  

 

Figure 2. SWCNT exhibit variable electrochemical properties based on the manner in 
which the graphene sheet is rolled up. (A) The lattice structure of graphene, where the 
energy of conducting states varies as a function of the wave vector. (B) Six Dirac cones 
of graphene representing its low energy band structure.  Graphene sheets can be rolled 
up to produce (C) metallic or (D) semiconducting SWCNTs.7  

 
The tip and side wall of CNTs are respectively considered as the edge and basal 

plane of graphite.9–11 Because of its edge plane-like structure, the tip of the CNT is 

believed to more electroactive compared to the side wall. Therefore, vertically-aligned 

CNTs are more electroactive compared to randomly-dispersed CNTs as a result of the 

edge plane-like structure. 

The integrity of localized π-π electrons is critical for maintaining CNT conductivity.2,12 

The cleavage of a CNT’s structure during purification or modification greatly reduces its 
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conductivity. Conductivity is also diminished by carbonaceous and metallic surface 

impurities remaining after the growth process. Therefore, pure CNTs with intact structure 

are preferable for applications as an electrode material. 

Carbon nanotubes are very inert, hydrophobic and insoluble in most solvents.13 They 

also have a tendency to form bundles due to π-π interaction. The dispersed state of 

CNTs is another important criterion to conductivity, making it possible to effectively 

exploit their high surface area and minimize inter-tube junction resistance. Several 

methods have been used to construct SWCNT electrodes, with the aim of producing 

pure, highly dispersed, and minimally damaged CNTs for electrochemical applications. 

2.4. Fabrication of CNT-based electrodes 

Various methods have been used to develop CNT-based electrodes for different 

applications, such as electrochemical sensing,14,15 electrocatalysis,16 super capacitors,17 

lithium ion batteries,18 solar cells19 and fuel cells.20 Here, I focus on the fabrication of 

SWCNT-based electrodes for electrochemical sensing and electrocatalysis applications. 

The major challenge for those applications is to incorporate SWCNT into a working 

electrode without losing its pristine electrochemical properties. The electrochemical 

behavior of such CNT-based electrodes depends on their orientation, density, and 

spatial arrangement on the electrode substrate. However, the method of fabrication 

dictates both their orientation and the choice of the electrode substrate. In general, 

methods for the fabrication of CNT-based electrode can be defined in terms of direct 

growth on the substrate surface and solution-based methods. 

2.4.1. Direct growth on support substrate 

Direct growth of SWCNT on support substrates has been achieved by chemical 

vapor deposition (CVD) methods. The growth involves thermal decomposition of 

hydrocarbons in the presence of a metal catalyst at high temperature and pressure,21–23 
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For example, Viet et al.24 prepared a Fe2O3 catalyst by impregnating fumed alumina with 

Fe(NO3)3 dispersed in methanol solution for one hour. The silicon substrate was 

immersed in the catalyst solution for 10 minutes, heated at 130 °C, then transferred to a 

tube furnace and heated to 825 °C. Argon gas was passed through the tube, followed by 

ethanol as a carbon source at 1.25 atm. Single-walled carbon nanotubes have been 

deposited successfully via similar methods on a variety of substrates, such as metal,25 

carbon fiber,26 and carbon cloth.27  

Single-walled carbon nanotube films obtained via CVD methods may be vertically 

aligned or entangled, depending on the distribution of catalyst on the surface of the 

substrate.28 Besides self- assembly14 and electrophoretic deposition,20 CVD is the only 

method to deposit vertically-aligned CNTs on a support substrate. The thickness of the 

film can also be controlled depending on the time of deposition. However, controlled 

deposition of catalyst on the substrate surface is still difficult and limited to certain 

substrates. For example, there is no straightforward method to deposit SWCNT films on 

the surface of traditional electrode substrates such as gold, glassy carbon (GC), and 

fluorine-doped tin oxide (FTO) for sensing and catalysis applications. Furthermore, the 

method is hard to scale to large areas and is not suitable for mass production, and the 

removal of carbonaceous and metal impurities is also difficult. Therefore, CVD is not 

preferred for fabrication of SWCNT-based electrodes for electrochemical sensing or 

electro-catalytic applications. 

2.4.2. Solution-based methods 

In order to prepare inexpensive CNT-based electrodes, SWCNT thin films can be 

prepared by depositing a suspension solution of pre-synthesized SWCNTs onto different 

substrates. Compared to methods that use direct growth on the substrate surface, 

solution-based methods do not require complex instrumentations, are compatible with 
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various electrode substrates and only entail dispersion and deposition of SWCNTs on 

the substrate surface. The major challenges of these solution-based methods for the 

preparation of SWCNT electrodes include protecting the inherent electrochemical 

properties of the SWCNTs during fabrication, ensuring dispersion in a suitable solvent 

and subsequent removal of that solvent from the substrate, and promoting de-bundling 

of SWCNTs.  

The methods of formation of SWCNT electrodes can be categorized into a variety of 

types, described in the following sections. 

2.4.2.1. SWCNT paste electrode  

Single-walled carbon nanotubes have been mixed with a binder to form a paste, 

which is then packed or sealed within a tube to make a SWCNT electrode.29,30 For 

example, Xuzhi et al.30 mixed SWCNTs with ionic liquid 1-butyl-3-methylimidazolium 

hexafluophosphate (BMIMPF6)  in a 1:1 ratio in a mortar and then packed the paste into 

a glass tube to make an electrode, with copper wire inserted inside the paste for the 

electrical connection. Such paste electrodes have been fabricated with other ionic 

liquids,30,31 paraffin oil,29  and mineral oil.32,33 

2.4.2.2. Deposition of SWCNT solution on conducting electrode surfaces 

Deposition of SWCNT on the electrode surface is the simplest method of electrode 

preparation, and there are several different versions of this approach.  

In the ‘dip coating’ method, a support substrate is repeatedly immersed in a colloidal 

solution of SWCNTs using a dip coater.34–37 For example, Jang et al.34 prepared a 

colloidal solution of nitric acid-treated SWCNTs in 1,2-dichlorobenzene solution by 

sonicating for 10 hr. A glass substrate was prepared with a mixture of sulphuric acid and 

hydrogen peroxide to remove impurities and make it solventphilic, and then cleaned and 

dried before dipping into the colloidal solution. The step motor in the dip coater was 
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mounted to allow the repeated movement of the platform containing the SWCNT solution 

upward and downward, while the glass substrate was held in place on the hanger. Dip 

coating has been used to prepare SWCNT films on glass,34,35 silicon oxide,36 and carbon 

fiber.37 However, dip coating results in a SWCNT layer on both sides of the support 

substrate, which is not desirable in all cases. The aggregation of SWCNTs is also hard 

to control, as shown in carbon fiber in common solvents.37 The use of more soluble 

surfactants than common solvents is limited by the requirement of extra steps to remove 

it. Moreover, surface adhesion is modest because of the inertness of SWCNT.  

The ‘drop casting’ method involves dispersion of SWCNTs in a suitable solvent via 

ultra-sonication; the resulting solution is then dripped or pipetted onto the electrode 

surface, followed by the evaporation of the solvent. This seemingly simple process is 

complicated by the insolubility of non-functionalized SWCNTs in most solvents. Liu et 

al.38 have used solvents such as benzene, acetonitrile, acetone and sodium dodecyl 

sulfate (SDS) solution to disperse pristine SWCNTs prior to drop-casting on the surface 

of Pt and Au electrodes. Although these SWCNT films did not produce well-resolved 

voltammograms, they appear to be promising super-capacitors in an acetonitrile solution 

containing 0.1 M tetra-n-butylammonium hexafluorophosphate (TBAPF6). To improve the 

electro-catalytic behavior of drop-casted SWCNT thin films, Hongxia et al.39 prepared a 

SWCNT solution by ultrasonic agitation of carboxylic acid-functionalized SWCNTs in N-

N dimethylformamide (DMF) solution. The dispersed solution was directly cast onto the 

surface of the glassy carbon (GC) electrode. The solvent was then evaporated using an 

infrared lamp to prepare SWCNT-modified GC electrode. Compared to bare GC 

electrode, CNT-modified electrodes showed higher electrochemical surface area and 

electro-catalytic behavior toward the oxidation of dopamine, ascorbic acid, and 

epinephrine. Wang et al.40 prepared a cast SWCNT thin film by a similar method, with 
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carboxylic acid-functionalized SWCNTs on the surface of GC electrodes. They found 

that the amount of cast SWCNT is critical, as too little casting solution did not produce 

observable voltammetric currents for the oxidation of 0.3 mg ml-1 natural DNA, while too 

much solution increased the background current so much that the redox peak became 

worse.  

Although direct deposition methods are simple and economical, aggregation of CNTs 

is very common in these films. The resulting bundle-like morphology often produces high 

noise and low reproducibility.37,41 Moreover, the CNT layers prepared by such methods 

are usually not uniform, and contain densely-packed CNTs that decrease the total 

available surface area of CNTs. The use of solubility-enhancing surfactants is limited by 

the need to remove these chemicals as a result of their negative effects on 

electrochemical properties. Single-walled carbon nanotube dispersion can be enhanced 

by mixing with ionic liquids42–44 as a binder before casting on the electrode surface. Xiao 

et al.42 showed superior performance of SWCNT-1-butyl-3-methylimidazolium 

(BMIMPF6) paste-modified GC electrodes compared to conventional SWCNT-modified 

GC electrodes for the detection of xanthine. The superior performance was attributed to 

the interaction of BMIMPF6 with SWCNT, which forces heavily entangled SWCNT 

bundles to form finer bundles, increasing the effective area of the electrodes. Similarly, 

Zhang et al.43 showed that the use of ionic liquid as a binder promoted entanglement of 

the SWCNTs to form cross-linking 3D networks that could not be achieved with other 

solvents such as dichlorobenzene, ethanol, and DMF. The three-dimensional structure 

of SWCNT-BMIMPF6 composite materials greatly increased the effective electrode 

surface area. Casting methods have been used to fabricate SWCNT-based electrodes 

on the surface of Au,38 Pt,38 GC,39,40 and graphite45,46 among other materials.  
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Like drop-casting methods, ‘spraying’ methods also involve the sprinkling of a highly-

dispersed SWCNT solution onto the support substrate followed by solvent evaporation. 

For example, Kaempgen et al.17 suspended SWCNTs in pure water with a tip sonicator. 

The suspended solution was then sprayed onto a polyethylene-therephthalate (PET) 

substrate placed on a hot plate at 1000C. The water evaporated quickly, leaving a very 

thin film of SWCNT on the PET surface. That film was used as a supercapacitor. 

Similarly, Kim et al.47 sprayed a SWCNT solution in dodecylbenzenesulfonate (SDBS) 

onto a glass substrate to chemically reduce Pt for solar cell applications. Sprayed 

SWCNT films have been produced on silicon,48 glass,47 and PET substrates.17 

Finally, deposition can be achieved via ‘vacuum filtration’ methods. The vacuum 

filtration involves dispersion of SWCNTs in aqueous surfactant solutions; these are then 

trapped on the surface of a porous filter membrane through vacuum-induced flow, and 

the surfactant is washed away with copious amounts of solvent. Vacuum filtration forms 

thin, uniform and porous SWCNT films on porous substrates. The solvent used for 

dispersion can be washed away easily, in contrast to other methods where this step can 

pose a challenge. 

The density of CNTs used strongly affects the characteristics of the resulting film.49,50 

Low density (close to percolation density) thin films are preferable for sensing 

applications, as it reduces the background current. The use of low-density CNTs for 

electrochemical sensing is permissible when used to modify conducting electrode 

surfaces such as gold, platinum, or glassy carbon electrodes. However, this is not 

suitable for non-conducting surfaces such as paper.  

2.5. Paper-based SWCNT electrodes 

Paper is an abundant, inexpensive, biocompatible, disposable and environment-

friendly substrate that could enable the development of simple, low-cost, portable, 
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quantitative sensors for the analysis of different target molecules. Paper has been used 

in the fabrication of paper-based analytical devices,51 colorimetric52 and electrochemical 

sensors,53 and electrodes.54 For electrochemical applications, the use of paper rather 

than traditional electrode materials such as GC, gold or graphite not only reduces the 

costs but also simplifies the fabrication process. The use of paper as a substrate for 

electrochemical applications requires the deposition of a conductive layer, and CNTs, 

graphene or nano-composites of those materials with metal nanoparticles or polymers 

are materials of choice because of  their large surface area and conducting behavior. 

Several conducting nanomaterials such as CNTs55,56 and CNT-gold57 have been 

deposited onto the surface of the paper, and the resulting electrodes have been used 

directly for electrochemical applications. For example, Da Costa et al.56 used inkjet 

printing to print SDS-dispersed MWCNTs onto paper. We have chosen SWCNTs and 

SWCNT composites with metal nanoparticles (Pt) as a conducting material, because of 

their utility for electro-catalysis and electrochemical sensors. 

2.6. Paper-based Vacuum Filtered SWCNT (VF- SWCNT) thin film as a sensing 

electrode material  

2.6.1. Guanine and its significance  

We selected guanine and its derivatives as target molecules to demonstrate the use 

of paper-based VF-SWCNT thin film as an electrochemical sensor. Guanine is one of 

the four bases found in DNA and RNA and contains the fusion of pyridine and imidazole 

rings as shown as shown in figure 3A. Guanine is linked to pentose, a five-carbon sugar 

molecule, to form the guanosine nucleoside, as shown in Figure 3B. Guanosine can be 

phosphorylated via esterification at its 5’ hydroxyl group to produce guanosine 

nucleotides such as guanosine monophosphate (GMP; Fig. 3C) and triphosphate (GTP; 

Fig. 3D).  
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Figure 3. Chemical structure of guanine and its derivatives. 

 
Besides nucleic acid synthesis, guanine-based molecules play important roles in 

intracellular signaling and as part of the energy reservoir in protein synthesis.58,59 An 

abnormal change in guanine concentration is related to the deficiency of immunity 

system. Guanine concentration changes are also considered as indicative of certain 

diseases such as cancer60 and HIV infection.61 Guanine is also the most susceptible 

base to oxidative stress,45,59 and the detection of guanine levels in response to various 

compounds can be used to study mechanisms of oxidative stress. 

2.6.2. Current approaches to guanine detection 

Various methods have been developed to detect guanine and its derivatives. With 

the exception of a few techniques such as fluorescence62 or chromatography with an 

electrochemical detector,63 most methods rely on direct electrochemical detection at the 
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electrode surface because of the relative ease with which guanine is oxidated as 

compared to other nucleobases. Direct electrochemical detection has several 

advantages-it is inexpensive, requires only a small sample volume and enables rapid 

analysis compared to other methods. Different electrodes materials such as 

nanocarbon,64 boron-doped diamond,65 glassy carbon66 or nanomaterials such as 

graphene,67,68 and CNT-modified electrodes have all been used for detection of guanine 

and its derivatives.   

2.6.3. CNT-based electrochemical methods for guanine detection 

The CNT-based electrodes have attracted enormous interest due to their excellent 

electrochemical properties.2,69 Various analytes such as NADH,70 hydrazine,71 

dopamine,72 and uric acid,72 have been detected by electrodes modified with CNTs. 

Carbon nanotube-based electrodes are especially attractive for guanine detection 

because they can amplify the sensing signal produced when this molecule directly 

adsorbs onto the CNT surface via - interaction.  

Pedano et al.33 prepared carbon nanotube paste electrodes by mixing MWCNT 

powder with mineral oil and then packing the paste firmly into a Teflon tube. The 

prepared electrode was used for the detection of guanine by chrono-potentiometric 

stripping analysis. Similarly, Balan et al.73 packed a Teflon tube with a paste of MWCNTs 

with cobalt pthalocyanine in mineral oil, and used the prepared electrode for the 

oxidation of guanine bases in single-stranded DNA using differential pulse voltammetry 

(DPV). Zhang et al.30 prepared electrodes by mixing SWCNTs with an ionic liquid 

(BMIMPF6) and packing the hand-mixed paste into a glass tube and wiring with copper. 

The electrode was then used for DNA detection using the oxidation signal from guanine.  

In another format, the CNT solution was used to modify electrode surfaces such as 

graphite,74 GC,75 carbon paste,75 edge-plane pyrolytic graphite,45 and screen-printed 



 
 

17 

carbon electrodes76 to enhance the electrochemical signal produced by nucleobases. 

The CNTs were dispersed in solvents including DMF,77 water,78 and dihexadecyl 

hydrogen phosphate.79 Wang et al.40 cast SWCNT-modified GC electrodes to detect 

DNA using the oxidation signal of guanine, using DPV and an accumulation time of five 

minutes. Similarly, Erdem et al.77 cast SWCNT dispersed in DMF onto the surface of 

GCE for direct oxidation of guanine using DPV to monitor nucleic acids and bio-

molecular interaction. The same group also prepared80 electrodes by casting MWCNT 

dispersed in DMF onto the surface of screen-printed graphite electrode for direct 

oxidation of guanine, using DPV to monitor DNA hybridization. Wang et al.75 prepared 

electrodes by casting carboxylic acid-functionalized MWCNT aqueous solution onto the 

surface of GCE. The prepared electrode was directly used for oxidation of guanine using 

cyclic voltammetry. The surface-confined MWCNTs were found to facilitate the 

adsorptive accumulation of guanine. Ye et al.81  also cast an aqueous solution of 

oxidized MWCNTs onto the surface of screen-printed carbon electrodes to prepare 

MWCNT-modified electrodes, which they used for direct oxidation of guanine and 

adenine in ssDNA and RNA via cyclic voltammetry. Erdem et al.74 demonstrated the use 

of MWCNT-modified graphite pencil electrodes for the detection of guanine by DPV. 

Increased porosity contributes to the superior performance of graphite pencil electrodes 

compared to commonly-used glassy carbon electrodes for the detection of guanine 

signal. Deng et al.78 cast an aqueous solution of boron-doped CNTs onto a GC surface 

for electrochemical detection of guanine and other bases. 

To enhance electrochemical detection, CNTs has been combined with other 

chemicals such as ionic liquids,82–84 polymers,85  cyclodextrin,86,87 gold ponanoparticles88 

for the detection of guanine. For example, Abbaspour et al.76 casted oxidized-MWCNT 

on the surface of screen-printed carbon electrodes and further modified with cyclodextrin 
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and polymer to prepare CNT-modified composite material for the detection of DNA. 

Similarly, Cai et al.89 modified GC electrodes by casting carboxyl-functionalized 

MWCNTs on their surface. The functionalized MWCNTs were then used to immobilize 

NH2-modified probe DNA, and the difference in oxidation signal of guanine was used to 

detect the target DNA. Bollo et al.90 casted O-MWCNTs dispersed in chitosan onto the 

surface of GCE for the detection of DNA using oxidation signal by DPV. Similarly, Liu et 

al.88 prepared polythionine/AuNP/MWCNT-modified GC electrodes by casting a mixture 

of MWCNTs and AuNPs followed by electro-polymerization of thionine for the detection 

of guanine using cyclic voltammetry. Wang et al.83 modified GCE by casting DMF-

dispersed oxidized MWCNTs onto positively-charged GCE (due to electrodeposition of 

choline) for the sensitive detection of guanine along with other nucleotides. 

2.7. VF-SWCNT thin film as a conducting supporting material 

Single-walled carbon nanotube films prepared by vacuum filtration are a promising 

conducting support material for different catalysts as a result of several advantages over 

other such materials. Functionalization does not involve harsh treatment with chemicals, 

protecting the SWCNT structure, and the resulting porous structure both increases 

access to reactant material and facilitates removal of the products away from the 

catalyst surface. Additionally, the catalyst is located mainly on its external surface that is 

significant for the catalyst utilization efficiency. Finally, SWCNT thin films can act as both 

a conducting support as well as an electrode material, eliminating the need for extra 

electrode materials such as GC or gold or indium tin oxide (ITO) electrodes. To utilize 

these advantages, we deposited platinum nanoparticles (PtNPs) on the surface of 

SWCNT films to prepare a composite electrode material. The utility of VF SWCNT thin 

film as a platinum support was demonstrated by evaluating the performance of PtNP on 

its surface for the oxidation of methanol.  
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2.8. SWCNT thin film as a conducting support for platinum 

Because of their extraordinary electronic properties, SWCNTs have been used as a 

conducting support of metal catalysts to increase their efficiency. It is considered a near-

ideal conducting support for platinum catalysts, mainly because of its high surface area 

for PtNP dispersal, good electrical conductivity for faster heterogeneous electron 

transfer, and a smaller number of defects and edge-active atoms that prevent 

electrochemical corrosion.91,20,92 Much research is focused on Pt-SWCNT-based 

composite materials for sensing,92 fuel cell,4,5 and solar cell96 applications. The formation 

of CNT-metal nanoparticle composites was pioneered by Planeix et al.,97 who deposited 

ruthenium on the surface of SWCNTs. The organic ruthenium salt was directly reduced 

by hydrogenation. Various methods have subsequently been used to deposit other 

metals, such as platinum, on the surface of SWCNTs. Those methods fall into several 

categories, described below. 

2.8.1. Solution-based synthesis of Pt-CNT hybrid electrodes 

In this approach, Pt-SWCNT composite material is first prepared in solution. The 

solution-based method is further discussed by categorizing it into following types.    

2.8.1.1 Impregnation and reduction of Pt precursor on CNT surfaces 

 Impregnation is the most commonly used method of metal deposition. It involves 

covalent attachment of PtNPs onto the surface of functionalized CNTs by in situ 

reduction of a precursor salt. First, CNTs are functionalized with –COOH or –OH groups 

by chemical oxidation or dispersion with ionic liquids,98 surfactants (SDS solution,99 

PSMA),100 polymers (polyvinylpyrrolidone (PVP)),101 or other compounds (e.g., 1- 

aminopyrene,102 perylene tetracarboxylic acid).103 The functionalized CNTs are then 

dispersed in a suitable solvent—such as glycerol,104 ethylene glycol,105 a mixture of 

ethylene glycol and acetone,106 or 1-propanol95—containing precursor salt and reducing 
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agents in the presence or absence of stabilizing agents (sodium citrate) or other 

chemicals required for the reduction of precursor salt. The reduction is usually carried 

out at 100-150 °C or with the aid of microwaves, using a suitable reducing agent such as 

ethylene glycol,106–108 formaldehyde,109,110 sodium citrate,111 citric acid,111 glycerol,104 or 

sodium borohydride.100,112 The resulting Pt-CNT composite is then purified by multiple 

washing and centrifugation cycles. The mixture is then washed, dried, and mixed with 

5% Nafion solution before casting. In a typical in situ reduction, Selvaraj et al.104 

prepared Pt-SWCNT composite material by using glycerol as a reducing agent. The 

acid-oxidized SWCNT was mixed with aqueous glycerol solution. Pt precursor salt 

dissolved in aqueous solution was slowly added into the SWCNT solution. The mixture 

was then heated to reflux at 130–1400C for 12 hrs to reduce the precursor salt on the 

surface of SWCNT, then washed with water and dried at 60–70 °C under vacuum, and 

finally mixed with 5% Nafion solution before casting on the surface of the graphite 

electrode. 

The impregnation method suffers from the poor dispersion of pristine CNTs in most 

solvents and insufficient binding sites for anchoring PtNPs and precursor salt due to the 

inertness of pristine CNTs. Therefore, CNTs are usually functionalized. The most 

common method of functionalization is to create –COOH groups by chemical oxidation 

with nitric acid.95,107,109,110 The oxidation entails refluxing CNTs in concentrated acid for 

few hours. The harsh procedure usually damages the CNT structure, leading to the loss 

of conductivity and corrosion resistance. Carbon nanotube damage can be mitigated 

with less destructive functionalization techniques such as dispersion in ionic liquid98 or 

surfactants (SDS solution,99 PSMA),100 wrapping with polymers such as 

polyvinylpyrrolidone (PVP),101 or through hydrophobic interaction or dispersion in 1- 
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aminopyrene102 or 3,4,9,10 perylene tetracarboxylic acid103 through π – π interaction. 

Noncovalent functionalization creates different functional groups that not only disperse 

SWCNTs in solution but also act as anchoring sites for the binding of precursor salts and 

PtNPs, leading to formation of more dispersed and uniform PtNPs compared to non-

functionalized SWCNTs. Protecting agents such as Na citrate106 or PVP105 have also 

been used in order to prevent PtNP aggregation during the reduction of precursor salts. 

2.8.1.2. Colloidal synthesis of PtNP and incorporation with CNTs 

Colloidal methods are another solution-based approach, in which PtNPs are 

synthesized separately by reducing the precursor salt in the presence of stabilizing 

agents or suitable solvents to form citrate-capped92 or triphenylphosphine (PPh3)-

modified113 or uncapped in ethylene glycol91,114 PtNPs.  The pre-synthesized PtNPs are 

then attached onto the surface of CNTs by mechanical mixing, or pH-induced 

adsorption, or by using linkers or polymers or ionic liquids to form PtNP-SWCNT 

composite material. The composite material is then mixed with 5% Nafion solution 

before casting onto the surface of graphite electrodes. 

Besides the need for functionalization, the other problem associated with the 

colloidal synthesis approach is the presence of organic stabilizers, or coating agents 

present on the surface of PtNPs during colloidal synthesis. Stabilizing agents are 

essential for colloidal synthesis of PtNPs in solution during reduction of Pt salt; once the 

Pt is deposited on the surface of the CNT electrode, they should be removed, as they 

tend to block the access of reactants to the catalytic surface of the platinum and may 

alter the physiochemical properties of nanoparticles and thereby change their catalytic 

efficiency. Colloidal PtNPs have been synthesized with various stabilizing agents such 

as citrate,115 polymer,116 amine,117 proline,118  polyvinyl pyridine (PVP).119 so far citrate 



 
 

22 

coated,115 PVP coated,119 or uncoated but ethylene glycol dispersed PtNPs120 have been 

incorporated on the surface of the CNT. Those capping agents or solvents are removed 

after incorporation with the CNT.120Alternatively, the pre-formed PtNPs have been 

modified with triphenylphosphine (PPh3)
113 for linking CNT. 

For example, Hrapovic et al.92 prepared citrate-capped PtNPs with a diameter of 2.7 

± 0.7 nm by reducing an aqueous solution of a chloroplatinic acid at 80 °C using sodium 

citrate as both a reducing agent and a capping agent. The charge interaction between 

citrate-capped PtNPs and negatively-charged, Nafion-solubilized SWCNTs was then 

used to incorporate PtNPs onto the surface of SWCNTs. Mu et al.113 prepared PtNPs 

with a diameter of 1.9 ± 0.5 nm by reducing an ethylene glycol solution of chloroplatinic 

acid in alkaline medium (pH~12) by refluxing at 160 °C for three hours. Ethylene glycol 

acts as both a reducing agent and protection solvent to prevent aggregation of PtNPs. 

The PtNP solution was dissolved in ethanol and mixed with a toluene solution of 

triphenylphosphine (PPh3) with stirring to functionalize the PtNPs. The PPh3-modified 

PtNPs were then physically separated from the aqueous layer and washed with 

deionized water three times before incorporation with CNTs. The PPh3 modified PtNP 

solution was then mixed with CNT solution in toluene and ultra-sonicated for five days to 

form Pt-CNT composite material. Triphenylphosphine acts as a linker to attach PtNPs to 

SWCNTs as well as a protecting layer against PtNP aggregation. Anusorn et al.114 

prepared PtNPs in ethylene glycol solution at pH 12.5 by refluxing at 160 °C for three 

hours, and then mixed the colloidal PtNPs (diameter = 2-3 nm) in ethylene glycol with 

either poly(sodium 4-styrenesulphonate) or oxidized SWCNTs in water. The pH of the 

solution was brought to pH 4.0 to attach PtNP to the SWCNTs, after which the SWCNTs 

were filtered and dried. Zhang et al.91 prepared PtNPs in ethylene glycol solution at pH 
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13 by refluxing at 130 °C for 3 hrs. Colloidal PtNPs (diameter = 2-3 nm) in ethylene 

glycol were adsorbed onto the surface of CNT. Carbon nanotube film prepared by the 

CVD method was immersed into the PtNP solution in ethylene glycol for 24 hrs at room 

temperature, after which the excess residue of PtNP and solvent were washed away 

with ethanol solution. The Pt-adsorbed CNT film was then spun to form a yarnlike PtNP-

CNT electrode material. For better attachment of Pt, the yarn was annealed at 600 °C for 

30 minutes in a nitrogen atmosphere. 

2.8.2. Surface deposition methods 

Surface deposition methods offer an alternative to solution-based methods, where 

PtNPs are deposited on SWCNT thin films by electrochemical reduction121–124 or 

electrodeless reduction125,126 of precursor salt. These surface deposition methods result 

in the deposition of PtNPs on the most accessible external surface of the CNT electrode.  

2.8.2.1. Electrochemical deposition method 

Electrochemical deposition is a very simple and inexpensive approach for the 

deposition of PtNPs on the surface of pre-formed CNTs. First, CNT thin films are 

prepared by different methods such as direct growth on SiO2
124,127 or carbon cloth,127,128 

electrophoretic deposition of functionalized SWCNTs on indium tin oxide,20 vacuum 

filtration of CNT suspensions on the paper substrate followed by subsequent transfer to 

GC129,130 and carbon fiber129,130 or casting of MWCNTs in GC122 onto different electrode 

substrates. The prepared CNT film is then modified to incorporate the PtNPs and 

overcome their inherent inertness. Electrochemical oxidation of CNTs,122 casting of pre-

functionalized CNTs,123 dispersion of precursor salt in an organic solvent (e.g., 

ethanol),121 and hydrophilic treatment of CNT films with sulphuric acid127,128 have all been 

used to increase the binding of PtNPs to CNTs. Metal precursors are then adsorbed 
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onto the surface of the SWCNT film and electrochemically reduced, produces PtNPs of 

high purity, which adhere to the surface via covalent bonds. Platinum nanoparticle size 

and morphology can be controlled by varying deposition time, the concentration of 

precursor salt and applied potential. 

Very thick films of CNT prepared by vacuum filtration have also been used for 

electrochemical deposition of platinum after transferring into suitable electrode material. 

For example, Sieben et al.129 prepared films from both pristine and oxidized SWCNT 

suspensions in different liquid media by vacuum filtration onto 0.1 µm Omnipore 

membranes. The membrane was then removed to isolate the resulting SWCNT bucky 

paper, which was then stuck onto a polished GC electrode using 5% Nafion solution as a 

binder. Platinum–ruthenium biocatalyst was then deposited on its surface by pulse 

potentiometry. The platinum particle size, distribution and degree of agglomeration were 

highly dependent on the dispersant used during vacuum filtration. The dependency is 

because of the higher electrochemical surface area of dispersed CNT as compared to its 

agglomeration. Zhu et al.130 prepared a hybrid film by vacuum filtration of a mixture of 

SWCNTs and carbon nanofibers (CNFs) in 1% Triton on 0.45 µm nylon membranes. 

The surfactant was washed away with an isopropanol solution. The membrane was then 

peeled away, and the isolated bucky paper was attached to carbon fiber paper as a 

current collector with a homemade sample holder. Platinum nanoparticles were then 

deposited by pulse potentiometry. The use of CNF to increase the pore size (>10 nm) 

greatly increased the Pt utilization efficiency. However, the Pt was not uniformly 

distributed, and electrochemical surface area (ECSA) could not be further improved 

because of the relatively large Pt particles—6 nm diameter versus ~2 nm in commercial 

Pt/C catalysts. However, the hybrid film showed higher electrochemical durability 
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compared to commercial Pt/C electrode. The same group131 further studied the durability 

of Pt on the surface of a hybrid bucky paper in which only 43% of ECSA was lost, 

compared to 80% of ECSA for a Pt/C electrode. They concluded that the main reason 

for the loss of ECSA on commercial Pt catalysts is carbon corrosion. Compared to 

commercial Pt/C catalyst, the bucky paper exhibited a two-fold slower rate of corrosion. 

2.8.2.2. Electrodeless deposition  

In this method, a Pt precursor is directly reduced on the surface of SWCNTs by the 

galvanic reaction, because of the higher reduction potential of the metal precursor 

(+0.775V for PtCl4-/ Pt) compared to SWCNTs (0.5V) without the use of a catalyst or 

reducing agent. Choi et al.125 deposited PtNPs directly on the surface of SWCNTs grown 

on the surface of silicon oxide just by dipping the SWCNT film into a solution of 

Na2PtCl4. 

2.8.3. VF-SWCNT film for the deposition of platinum 

The VF-SWCNT films offer a promising conducting support for Pt for several 

reasons. First, it has a unique porous nano-structured network of SWCNTs that 

maximizes the three-phase boundary of the electrode, conducting support and the Pt 

catalyst. Second, the high porosity of bucky paper maximizes the mass transfer process 

within the catalyst layer that maximizes the Pt utilization. Finally, PtNPs can be applied 

to the most accessible external surface of the bucky paper.   

Up to now, platinum has been used in bucky papers by electro-deposition methods. 

These methods involve the formation of SWCNT electrode material by transferring the 

bucky paper onto current collectors such as GC or carbon paper, followed by reduction 

of Pt precursor directly onto the surface of the electrode. Until now, there have been no 

alternative deposition methods that directly maximize the surface area to volume ratio. 
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Various reports have shown that this ratio can be maximized either by depositing well-

dispersed, small Pt particles or by forming continuous porous structures. To achieve this, 

we use a very thin VF-SWCNT film as a porous support for the deposition of pre-formed 

PtNPs. This also facilitates the removal of the aqueous phase from PtNP solution by 

vacuum-assisted (VA) layer-by-layer (LBL) assembly. 

2.9. Significance of electro-catalytic oxidation of Methanol  

The electro-catalytic efficiency of Pt can be evaluated using different molecules such 

as hydrogen peroxide,132,133 methanol,113,134,135 and formic acid.104,136 We selected 

methanol as an electrolyte because of its potential utility for portable fuel cells. Methanol 

oxidation reactions (MOR) at the anode of fuel cells are catalyzed by Pt. We, therefore, 

evaluated the performance of paper-based SWCNT thin films as a Pt support for 

electrodes for the anodic reaction of methanol. The oxidation reaction follows a three-

step mechanism (Figure 4).137–139 Methanol is first adsorbed onto the surface of the Pt. 

The adsorbed methanol then undergoes dehydrogenation due to dissociation of the C-H 

bond, forming CO as an intermediate. CO is then oxidized with the help of oxygen-

containing compounds, such as water.  

 

Figure 4. Schematic representation of oxidation of methanol on the surface of platinum. 

 



 
 

27 

2.10. Introduction to gold nanoparticles 

Gold nanoparticles (AuNPs) have significantly optical and electronic properties that 

differ from bulk metal or molecular compounds due to quantum size effects. As the size 

of the AuNP decreases to the same order of magnitude as the de Broglie wavelength of 

valence electrons, the electrons are confined in a metallic-like box. Because of this 

confinement, the interaction of electrons with the electromagnetic radiation is very 

different compared to bulk gold.  

Gold nanoparticles are usually synthesized by the Turkevich method140,141 in 

aqueous solution or by the Brust-Schiffin method142 in organic solvents by reduction of 

precursor salt in the presence of a capping agent. In the Turkevich method, citrate was 

used both to reduce the gold salt and to stabilize the formed nanoparticle (Figure 5). The 

ratio of citrate to gold salt can be varied to synthesize AuNPs ranging in size from 3~120 

nm.   

 

Figure 5. Schematic representation of AuNP preparation through citrate reduction. 

 

2.11. Optical properties of gold nanoparticles 

Citrate-capped 13-nm AuNPs are most commonly used, as a consequence of their 

strong absorption of green light at 520 nm. The color of the AuNPs is governed by 

surface plasmon resonance (SPR) effects.143–145 When a metal nanoparticle is exposed 

to light, the oscillating electromagnetic field of the light induces collective coherent 
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oscillation of electrons. The amplitude of oscillation reaches a maximum at a specific 

SPR frequency. AuNP absorbs and scatters light at the SPR wavelength; this 

wavelength, and thus the color produced by the AuNP, is affected by nanoparticle size, 

shape, dispersal in a solvent, and capping agent. When AuNP size increases from 13 to 

100 nm, its color changes from red to blue due to red-shifting and broadening of the 

surface plasmon band.146,147 Similarly red-shifting of about 130-180 nm relative to the 

spherical particle wavelength is seen with branched gold nanocrystals148 or nanostars.149 

Surface plasmon resonance frequency is also sensitive to the nanoparticle aggregation 

state; when particles are sufficiently close together, red-shifting of wavelength results in 

a color change. The well-dispersed AuNPs can be brought together in the presence of 

targets such as lysine brings the mercury coated AuNPs to render AuNP aggregation 

(Figure 6). 

 

Figure 6. The shifting of color of mercury ion coated AuNPs from red to blue due to 
aggregation caused by target Lysin.150 
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2.12. AuNP-based colorimetric sensing  

The color of AuNPs is five or six orders of magnitude stronger than most strongly 

absorbing organic dye molecules, which is enough to visualize by naked eye. The 

difference in color of individual AuNPs (red) and aggregated AuNPs (purple or blue) has 

been used as a platform for the colorimetric sensing of target analytes that trigger either 

the aggregation or re-dispersion of AuNPs via a variety of strategies. 

2.12.1. Functionalization of gold nanoparticles for enzyme activity 

One characteristic feature of AuNPs is the ease with which surface functionalization 

can be implemented for selective binding and detection of target molecules. Well-

established methods have been developed for the modification of AuNPs with DNA,151 

amino acids,152 peptides,152 antibodies,153 ATP.154 Such functionalized AuNPs have been 

used for various applications, including the sensing of enzyme activity and study of 

enzyme inhibitors for drug development. Such assays are designed so that the substrate 

and product of an enzymatic reaction have different effects on AuNP stability. Typically, 

the substrate is immobilized on the surface of the AuNP without affecting its stability, so 

that it retains its red color. The enzymatic reaction alters the structure of the substrate in 

a manner that affects AuNP stability, imparting purple or blue color. Substrates 

implemented to date include DNA155,156 for endonuclease activity and methyltransferase 

assay, peptides for kinase assays,157,158 and ATP154 for phosphatase activity assays.  

Wang et al.157 used peptide-modified AuNPs for the colorimetric analysis of two 

different kinase enzymes and their inhibitors. The peptide substrate was biotinylated to 

link it with streptavidin-modified AuNPs. In the absence of enzyme or in the presence of 

inhibitor, the substrate remained intact on the AuNP surface, preserving their red color 

because of electrostatic repulsion between peptide molecules. In the presence of 
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enzyme, the substrate was removed from the AuNPs, inducing aggregation and a color 

change from red to blue. 

2.13. DNA-functionalized AuNPs for colorimetric enzyme detection  

Deoxyribonucleic acid-functionalized gold nanoparticles (DNA-AuNPs) have been 

used in gene therapy, drug delivery, and sensing of DNA,159 metal ions (Pb),160 and 

small molecules. These DNA-AuNPs have been used in conjunction with different DNA-

modifying enzymes either to enhance the target signal or to detect the enzyme itself. In 

theory, any DNA-modifying enzyme can be used, and assays described to date have 

employed exonuclease III, DNase1,161 and various endonucleases.155 Several different 

mechanisms have been used to monitor colorimetric enzymatic assays based on DNA-

AuNP assembly substrates.  

2.13.1. Cross-linking mechanisms  

Deoxyribonucleic acid substrate can be conjugated to the surface of AuNPs to 

enable inter-particle DNA crosslinking. The crosslinked DNA gives rise to DNA-AuNP 

aggregates which serve as the substrate for Dnase I endonuclease; enzymatic cleavage 

converts the aggregates into dispersed AuNPs, resulting in a purple-to-red color change, 

as shown in figure 7.  The color change offers a readout for the enzymatic assay. 

Xu et al.155 conjugated two different DNA sequences onto the surface of the AuNPs 

using thiol-gold chemistry. One sequence was attached to one set of AuNPs by its 5’ 

end, whereas the other was attached to another set of AuNPs by modifying its 3’ end 

with a thiol group. These two sets of modified DNA-AuNPs were mixed and heated at 

900C for 10 minutes and slowly cooled to room temperature to form a crosslinked 

aggregate containing 30-nt duplexes that serve as a substrate for the DNase enzyme. 

Incubation with DNase led to dissociation of the crosslinking, enabling AuNP dispersal 

and a purple-to-red color change. To simplify this assay and to make it general for all 
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endonucleases, Guangtao et al.156 used free DNA as a linker to crosslink a single type of 

ssDNA-modified AuNPs. The use of crosslink greatly simplified the assay, and the 

recognition sequence of the linker DNA can be changed to develop assays for other 

endonucleases. 

 

 

Figure 7. Cross-linked DNA-AuNPs as a colorimetric assay for Dnase I endonuclease 
enzyme.155 

2.13.2. Non-crosslinking-based mechanisms 

To further simplify the assay, one can also employ a non-cross-linking mechanism. 

Zhao et al.162 initially reported a colorimetric assay that used non-crosslinking-based 

aggregation of AuNPs to monitor phosphatase-mediated removal of phosphate groups. 

The same group extended the approach to analyze the endonuclease DNase I based on 

removal of enzyme-specific DNA substrates from the surface of the AuNPs by the 

enzyme.161 The assay was based on hybridization of a single type of DNA-AuNP with a 

complementary DNA (cDNA) strand. The DNA substrate is prepared directly on the 

AuNP surface by hybridizing the DNA-AuNP with the cDNA in solution. The AuNPs are 

well dispersed, imparting the characteristic red color due to electrostatic repulsion 
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between the DNA molecules on its surface. In the presence of DNase I enzyme, the 

DNA substrate is degraded, leading to aggregation as a result of removal of electrostatic 

charge from the AuNP surface. The change in color from red to blue is used to measure 

the enzyme activity.  

 

Figure 8. Non-crosslinking-based mechanism for measuring DNase I enzyme activity 
with DNA-modified AuNPs in a colorimetric assay.161 

 
One problem associated with the use of DNA-AuNPs for colorimetric enzyme assays 

is the limited accessibility of conjugated DNA to enzymes compared to solution-based 

assays. However, DNA is more accessible to enzyme in non-crosslinking-based assays 

compared to crosslinking-based assays because of the greater degree of particle 

dispersal. 

2.14. DNA-AuNP as a substrate for exonuclease III  

Exonuclease III is a double-stranded (ds) DNA-specific enzyme. dsDNA-AuNP 

substrates for exonuclease III can be prepared by hybridization of ssDNA probe-

modified AuNPs with a complementary target.163–165  Usually, the 5’ end of the DNA is 

modified with a thiol group and attached to citrate-coated AuNPs using standard gold-

thiol chemistry. This probe DNA-AuNP substrate is then hybridized with its cDNA. In 

addition to reaction conditions such as temperature, concentration of magnesium, and 

ionic strength of buffer, the performance of this enzymatic colorimetric assay depends 
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mainly on the surface density of DNA probes on the AuNPs and their cDNA hybridization 

efficiency. 

2.15. Thiols as a back-filler 

DNA surface density affects the AuNP colloidal stability,166 DNA orientation, and 

steric hindrance167,168 and determines hybridization efficiency,169,170 and hence reaction 

time, in enzyme colorimetric sensors. Therefore, different thiols have been used to 

optimize surface coverage for faster AuNP aggregation.  

The use of thiols as a backfiller is very common on gold surfaces.171,172 DNA-

modified gold surfaces are immersed in mercaptohexanol (MCH) to remove non-

specifically adsorbed DNA and to block the uncovered gold surface. Such treatment 

results in higher hybridization efficiency and improved sensitivity compared to untreated 

gold surfaces. For example, Luo et al.172 used MCH as a back filler after modifying gold 

electrodes with thiolated DNA to align the DNA monolayer and increase hybridization 

efficiency. Such MCH treatment has also been used on DNA-AuNP surfaces. Park et 

al.168 showed that MCH treatment of DNA-AuNPs gives rise to a hybridization-friendly 

stretched oligonucleotide conformation. Zhao et al.161 also showed that MCH treatment 

could selectively remove DNA molecules from the DNA-AuNP substrate to increase the 

sensitivity of the colorimetric reaction. Wu et al. have shown that medium surface density 

is required for optimum cDNA hybridization at the surface of gold electrodes, as 

hybridization efficiency decreases at higher probe density due to steric hindrance.173 

Similarly, Oh et al.174 showed that moderate surface coverage significantly enhances the 

hybridization rates of DNA-AuNP relative to higher surface coverage.  

2.16. Significance of exonuclease III 

Exonuclease III is prokaryotic DNA-modifying enzyme.175 It is a major 

apurinic/apyrimidinic (AP) endonuclease and cleaves phosphodiester bonds in duplex 
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DNA immediately 5’ to abasic sites to produce a 3’ -OH group.176–178 It has structural and 

functional similarity with other class II AP endonucleases such as human APE1 and 

yeast Apn1, and is often used as a model enzyme for mechanistic studies.179,180 Exo III is 

also a 3’-to-5’ exonuclease and removes mononucleotides from the 3’ end of nicks in 

dsDNA.178,181,182 It also has RNase H and 3’ phosphatase activity.  

 

Figure 9. X-ray crystal structure of exonuclease III from E. coli.178 

 

       Figure 9 represents the X-ray crystal structure of E. coli exonuclease III. Exo III is a 

metal-dependent enzyme, and either Mg2+ or Mn2+ or Ca2+ is essential for its activity.183 

Metal-bound Exo III achieves phosphate bond cleavage via nucleophilic attack.178 

Accordingly, its 3’-to-5’ exonuclease activity hydrolyses phosphodiester bonds in DNA 

from the 3’ OH group, as shown in Figure 10. 
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Figure 10.  Hydrolysis of phosphodiester bonds at the 3’ OH group by Exo III. 

 
Exo III’s AP endonuclease activity hydrolyses phosphodiester bond immediately 5’ to 

the abasic site to produce 3’ OH and 5’ –deoxyribose moieties, and is thus classified as 

a class II AP endonuclease.  Enzymes from this class have been studied as attractive 

targets for drug development in some cancers because of their important role in 

proliferation, and they are viewed as a diagnostic marker for early cancer detection. 

Altered expression and localization of these enzymes have been established as 

common features in different neoplastic diseases, suggesting that these enzymes may 

have prognostic and/or predictive value in cancer.184–186 Similarly, overexpression of 3′-5′ 

exonucleases in human cells is possibly related to increased longevity, owing to 

stabilization of cellular mutation rates, whereas organisms that lack 3′-5′ exonucleases 

are more susceptible to cancer, especially under stress conditions.187,188 Exo III is also 

often used in enzyme-assisted target recycling (EATR) for the detection of DNA, protein, 
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and small molecule targets.189–191 Although in principle APE1 can also be used in such 

assays, Exo III has been preferentially used for the development of colorimetric assays 

due to its commercial availability, higher catalytic efficiency and higher 3’-to-5’ 

exonuclease activity relative to APE1.  

2.17. Current approaches to Exo III detection 

Several methods have been developed to detect Exo III activity. The most common 

traditional method is gel electrophoresis-based radiographic192,193 or fluorescence 

assays, in which labeled DNA is treated with exonuclease III and the digested products 

are then separated via gel electrophoresis. However, these assays require stringent 

safety procedures to control exposure to radiation or biohazard dyes. Furthermore, these 

assays are laborious, and requires lengthy time for gel preparation and analysis. 

As an alternative, solution-based fluorescence assays have been developed for 

quick enzyme analysis. Wu et al.194 used fluorescently-labeled molecular beacons as a 

DNA substrate for the detection of exonuclease activity. The hairpin structure of the 

molecular beacon was modified with a fluorophore (FAM) at its 5’ end and a quencher 

(BHQ1) at its 3’ end. In the absence of enzyme, the fluorescence was quenched in the 

absence of enzyme due to Forster resonance energy transfer (FRET). However, in the 

presence of enzyme, it releases the quencher into due to Exo III’s 3’ to 5’ activity, 

increasing its fluorescence in solution. This change in fluorescence was used as a 

measure of activity of exonuclease III. Alternatively, Su et al.195 used stacked guanines 

as a quencher instead of BHQ1 to reduce the cost of the assay. Label-free fluorescence 

assays have also been developed, based on formation of G-quadruplex structures upon 

Exo III reaction with linear DNA sequences. The enzyme activity was then monitored by 

measuring the fluorescence of G-quadruplex-specific crystal violet dye196 or Tb2O3.
197 
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The use of DNA-AuNP substrates for Exo III detection greatly simplifies the assay, as 

the activity of the enzyme can be monitored by the naked eye without the need for an 

instrument. The high extinction coefficient results in an assay with sensitivity comparable 

to the fluorescence assay. Exonuclease III has been used for target recycling in AuNP-

based colorimetric assays,165 but no colorimetric assays have been developed to date 

for the detection of its activity.   
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Chapter 3. Paper-Based, Carbon Nanotube (CNT) Thin Film for Electrochemical 

Detection of Guanine and its Nucleotides 

3.1. Introduction 

Carbon nanotubes (CNTs) have been widely used as an electrode material to 

promote electron transfer rate between electro-active molecules and underlying 

electrode materials.198–201 The single-walled carbon nanotube (SWCNT) has well-defined 

electronic properties with high surface area (1600 m2g-1) and  high current density 

(109Acm-2) that can form ensemble with high conductance.1–3,5,8 Therefore, it improves 

the electron transfer rate by increasing the electrode surface area and reduces electrode 

fouling,202 leading to sensitive and selective detection of target molecules.  

The control of orientation and density are two key parameters for the performance of 

SWCNT electrodes. Vertically aligned nanotubes formed either by chemical vapor 

deposition,21–23 or by self-assembly,14 have better performance than randomly oriented 

SWCNTs as a result of the larger exposure of edge plane like structures (end) as 

compared to basal plane like structure (sidewall).9–11 However, it requires specialized 

equipment, restricted to certain substrates such as silicon, quartz, metals and carbon 

fibers. The process is complicated, expensive and is not suitable for mass production. 

As an alternative, randomly oriented SWCNT was either packed as a paste29–33 or 

deposited on electrode surface either by casting,39,40 or dip coating.34–37 As compared to 

vertically aligned tubes, it is simple, cost-effective, suitable for mass production and 

compatible to a wide variety of substrates. Usually, the active electrochemical sites exist 

on side walls, or its edge is utilized to achieve the catalytic response.203  

Because of excellent electrochemical properties of SWCNT, it has been used as an 

electrode material to increase electron transfer rate between the electroactive molecule 

and electrode material on the surface of metals,25,38 glassy carbon electrode,39 quartz,204 
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and  graphite.205 Although these electrode materials are widely used, there is growing 

interest on deposition of CNT on the paper substrate. The use of paper instead of 

traditional electrode materials has following advantages: 1) It eliminates the requirement 

of any pre- or post-treatment of electrodes; 2) It significantly reduces the cost of an 

electrode from ~ $100 to <$1; 3) It is disposable and environment-friendly. Fabrication of 

such paper-based electrode material is key for the development of paper-based 

electrochemical sensors which have proven as a simple, low-cost, portable and 

disposable alternatives of traditional analytical methods of target detection.206  

The Vacuum filtration method207 is one of the simplest and well-established method 

of making a CNT thin film on a porous paper substrate. The density can be controlled 

just by controlling the volume of the CNT used. It has been illustrated in various reports 

that this process can form very thin film (~ 50 nm) with high homogeneity and integrity on 

paper substrates.55,207,208 Because of its simple fabrication, stability, and porous 

structure, it has been used as a gas sensor and as a filter. Although paper in general, is 

not considered to be a good substrate for an electrode material, there are few reports 

about the use of vacuum filtered SWCNT paper as electrode material. For example, 

Wang et al.209 investigated the capacitance of SWCNT paper in supporting electrolytes. 

Li et al.210 studied the electron transfer properties of SWCNT paper in ferricyanide redox 

probe. They showed that performance of the electrode depends on the surface density 

and oxides on the nanotube surface contribute to the capacitance current. Hu et al55 

showed wide potential window of SWCNT paper and its successful use as a dopamine 

sensor.  

It has been reported that electrochemical response of the modified electrode 

depends on the surface density of CNT as well as porosity of electrode material. 

Porosity has been attributed to the better performance of graphite pencil electrode as 
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compared to commonly used glassy carbon electrode for the detection of guanine signal 

when both the electrode materials are modified with multi-walled CNT (MWCNT).211 The 

SWCNT thin film network by vacuum filtration method represents a system that can be 

easily prepared at very low fractional surface coverage on paper substrate with high 

porosity. 

Herein, we studied the feasibility of vacuum filtered Pure Single-Walled Carbon 

Nanotube (P-SWCNT) thin film as an electrode on the paper substrate and used this 

paper-based P-SWCNT film for electrochemical sensing. An atomic force microscope 

(AFM) and sheet resistance were used to characterize the surface of SWCNT paper. We 

studied the change in electrochemical properties of P-SWCNT paper as a function of its 

density for sensor application. By lowering the surface density, we were able to reduce 

the background current, which is significant for electroanalytical applications. The low 

density and highly porous PSWCNT paper were used for sensitive detection of guanine 

and its nucleotides. 

3.2. Materials and Methods 

Chemicals and Apparatus. Guanine(G), sodium salt of guanosine 5’-

monophosphate(GMP) and sodium salt of Guanosine 5’-triphosphate(GTP) were 

obtained from MP biochemical, Ohio USA. Puretubes SWCNTs were purchased from 

NanoIntegris (Menlo Park, CA, USA). Potassium chloride, sodium dodecyl sulfate (SDS), 

sodium hydrogen phosphate and dihydrogen sodium phosphate were purchased from 

Sigma-Aldrich. Mixed cellulose (MCE) membrane (47 mm diameter, 100 nm pore size 

and 100 µm thickness) was purchased from Millipore Corporation (Billerica, MA, USA). 

All other chemical reagents were purchased from Sigma-Aldrich and used without further 

purification. All aqueous solutions were prepared using deionized water from a Milli-Q 

water purification system (Millipore Corporation, Billerica, MA, USA). Guanine stock 
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solution was prepared in 0.1M NaOH whereas GMP and GTP stock solutions were 

prepared in DI water. All the solutions were stored in a refrigerator at 4°C before use. 

Fabrication of thin P-SWCNT film. The P-SWCNT thin film was prepared by 

reported vacuum filtration method207 with slight modification. Briefly, concentrated pure 

Single-walled carbon nanotube (P-SWCNT) from Nano Integris (Arc discharge method, 

1.4 nm diameter, 1-micron length) was diluted in 1% SDS solution and dispersed using 

sonication (335 W, 50/60 Hz) for 10 minutes. The well-dispersed P-SWCNT solution was 

then poured onto MCE membrane placed in vacuum filtration apparatus. For optimum 

uniformity, the solution was left to sit for 5 minutes before applying vacuum. The vacuum 

was then applied slowly for 60 minutes to collect P-SWCNT network on the membrane 

surface.  The surfactant was washed away using an excess of DI water. The film was 

finally dried in vacuum filtration apparatus overnight. 

Surface characterization. The surface morphology of MCE membrane and P-

SWCNT thin film loaded on MCE membrane was characterized by using atomic force 

microscope (AFM) (Veeco Metrology, NY, USA) in tapping mode. To measure the 

thickness; the thin film was transferred into a glass substrate by reported acetone 

evaporation method.207 Average film thickness was obtained from AFM by measuring the 

height difference of P-SWCNT thin film and glass substrate at the edge of the thin film.  

Transfer of CNT thin film on glass substrate. The P-SWCNT thin film was 

transferred from paper substrate to glass substrate by reported acetone evaporation 

method207 to measure the thickness of the fabricated CNT films. The glass slide (0.8 cm 

X 1.6 cm) was cleaned with acetone, water and ethanol using sonication each for 5 

minutes. P-SWCNT films (0.8 cm X 0.8 cm) was rinsed with DI water and placed on the 

glass substrate facing it down. The glass slide with samples was then placed in between 

two bigger glass slides and pressed with heavy weight for overnight to stick the P-
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SWCNT film onto the glass substrate. The glass substrate attached with the P-SWCNT 

film was carefully placed into a home-made acetone evaporation apparatus in a fume 

hood. The home-made device contains a 500 ml beaker with ~250 ml of acetone in it 

along with metal mesh on top of acetone solution to hold the sample. The beaker was 

covered with a watch glass to prevent acetone evaporation during heating. The sample 

was heated at 85 0C for one hr. After one hour of gentle heating, the glass substrate 

containing P-SWCNT thin film was placed vertically and was heated further at 115 0C for 

4 hrs to completely dissolve the filter paper from P-SWCNT film. After that, the glass 

substrate containing P-SWCNT film was carefully taken out and subsequently dipped in 

fresh acetone and methanol each for 15 mins. The film was then air dried for 1 hr before 

the measurement. 

Sheet resistance measurement. Sheet resistance was measured using Keithley 

4200 Semiconductor Characterization system using four-point probe set up. A thin layer 

of aluminum foil was used to connect the edge of the P-SWCNT film to complete the 

circuit with source meter.  

Fabrication of electrode from the thin P-SWCNT film. One thin P-SWCNT film 

was used to make ~24 different working electrodes by cutting the film into small pieces 

(0.3 cm × 0.9 cm). Electric contact was made at one end of the piece by using copper 

wire. Silver paint (TED PELLA) was used as a connector between copper wire and 

paper-based P-SWCNT film. The silver paint and copper wire were sealed using Para-

film. The Para-film covering was adjusted to define the geometrical surface area of 

working electrode as 0.3 cm × 0.6 cm. 

Electrochemical experiments. All electrochemical experiments were performed 

using CHI electrochemical station (CH Instruments, Inc., Austin, USA). The paper-based 

P-SWCNT thin film electrode, Ag/AgCl electrode, and Pt wire were used as a working, 
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reference and counter electrode, respectively. All solutions were prepared in 0.1M 

phosphate buffer at pH 7.0 and used without purging with inert gas and without a 

Faraday cage at room temperature. The parameters for differential pulse voltammetry 

were as follows: pulse width = 0.125S, pulse period = 0.25S and pulse amplitude = 

0.05V. 

3.3. Results and Discussion 

3.3.1. Fabrication of paper-based P-SWCNT thin film  

The paper-based P-SWCNT thin film was prepared by depositing P-SWCNT on 

porous mixed cellulose ester membrane using vacuum filtration (VF) method (Figure 

11A). The VF method was chosen because of  its ability to form very thin and uniform 

carbon nanotube network on the porous paper substrate. The natural adjustment of local 

permeation and deposition rate of SWCNT solution due to vacuum force during filtration 

ensures the uniformity of the thin film (Figure 11B). The film thickness could be 

controlled just by varying the volume and/or amount of P-SWCNT solution during 

filtration procedure. Furthermore, the dispersing agents such as surfactants could easily 

be removed by washing with water.  

3.3.2. Characterization of paper-based P-SWCNT thin films 

Previous studies have shown that density of CNT can be used to manipulate 

electrochemical properties for various applications.55,209,210 Specifically, the studies have 

shown that lower density of CNT minimizes the capacitance current, which is very 

significant for detection of electroactive targets. To find the effective surface density, we 

prepared P-SWCNT thin films with the surface density ranged from 2.2 to 17.6 μg/cm2. 

The amount of P-SWCNT used was calculated with the assumption that no P-SWCNT 

was lost during the film preparation or washing. Note that our P-SWCNT density on the 

paper was at least ~400X less than that prepared by Joseph,209 ~ 10X less than that 
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used by Li210 and ~ 6 times less than that used by Chengguo Hu.55 

 

 

Figure 11. Fabrication of paper-based P-SWCNT thin film. (A) Schematic representation 
of vacuum filtration (VF) method. (B) photograph of paper-based P-SWCNT thin film. 

 
3.3.2.1. The morphology of paper-based P-SWCNT thin film  

 We studied the morphology of our paper-based P-SWCNT using atomic force 

microscope (AFM). Figure 12 shows the tapping mode AFM images of the paper-based 

P-SWCNT thin films with different surface densities starting from 2.2 to 17.6 μg/cm2. 

Irrespective of densities, all images showed individual SWCNTs were randomly oriented 

and interconnected to form porous SWCNT network (Figure 12). The highly porous 

structure is in contrast to the compact structure of casted CNT films on glassy carbon 

electrode (GCE).41 The analysis of AFM pictures also showed that porous structure was 

more prominent in lower density films as compared to higher density films. The higher 

degree of asymmetry of surface height distribution of different films indicated that higher 

electrochemical surface area could be achieved with low-density SWCNT films. 
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Figure 12. Surface morphology of paper-based P-SWCNT thin films. Atomic force 
microscopy images of P-SWCNT thin films with different surface densities varying from 
2.2 μg/cm2 to17.6 μg/cm2. 

 
3.3.2.2. The thickness of paper-based P-SWCNT thin film  

The thickness of the paper-based P-SWCNT thin film was further characterized. For 

this, the P-SWCNT thin film was transferred into a glass substrate by acetone 

evaporation method. The height profile difference of P-SWCNT film and glass substrate, 

during AFM imaging, was used to derive the thickness of the film. Figure 13A indicates 

the representative height profile used to calculate the thickness of the P-SWCNT film. 

The height profile of each P-SWCNT film showed that all films were relatively uniform. 

The thickness of the films prepared with surface density in the range of 2.2 to17.6 

μg/cm2 lies in the range of ~46 to 230 nm. Additionally, the linear relationship between 

thickness and surface density indicates the proper control of SWCNT density during the 

fabrication process. 
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Figure 13. Characterization of thickness of paper based P-SWCNT thin film. (A) Height 
profile of P-SWCNT from AFM image. (B) Thickness of various P-SWCNT films 
calculated from height profile as a function of surface density. 

3.3.2.3 The sheet resistance of paper-based P-SWCNT thin film  

  The use of paper-based low-density-SWCNT thin film as an electrode is limited 

by its film conductivity. Usually, the lower value of sheet resistance suggests a higher 

number of conductive pathways for electron transfer within the P-SWCNT film. To 

investigate the relationship between film resistance and surface density of the CNT film 

and to find out optimum P-SWCNT density required to achieve excellent conductance, 

we measured the sheet resistance of various paper-based P-SWCNT films. Figure14 

represents the plot of sheet resistance as a function of the surface density of P-SWCNT 

in the range of 2.2 to 13.2 μg/cm2. It showed that sheet resistance decreases with the 

increase of surface density of SWCNT from 2.2 to 6.6 μg/cm2. The sheet resistance 

remained constant with further increase of SWCNT density above 6.6 μg/cm2. Therefore, 

6.6 μg/cm2 was used as the minimum SWCNT density required to achieve excellent film 

conductance. 

3.3.3. Fabrication of paper-based P-SWCNT film electrodes  

The greatest challenge of solution-based methods for the preparation of CNT 

electrodes is the protection of its inherent electrochemical properties during electrode
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Figure 14. Characterization of sheet resistance of paper-based P-SWCNT thin film. 
Variation in sheet resistance as a function of surface density of P-SWCNT. 

 
fabrication. In traditional manufacturing methods, CNT was oxidized before dissolving 

into less soluble aqueous or organic solvents. The use of more soluble surfactant 

solution was limited because of the difficulty in removing it during fabrication. In contrast, 

the surfactant molecules used for the CNT dispersion can be washed away easily in our 

VF method. Furthermore, uniform, porous, well-dispersed and overlapped structure of 

the P-SWCNT network is ideal for making the CNT-based electrode. To make our P-

SWCNT thin film electrodes, we cut the P-SWCNT thin film into small pieces and the 

paper-based thin film pieces were electrically connected with copper wire using silver 

paint. The geometrical surface area was defined by covering it with parafilm as shown in 

Figure15.  

The fabrication of paper-based P-SWCNT film electrodes brings several advantages 

as compared to traditional casting methods. It involves just vacuum filtration of aqueous 

solution on a paper substrate and does not involve the tedious multistep polishing and 
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cleaning of electrode material before deposition of the CNT layer. It also brings the 

possibility of using one film to make mass production of paper-based P-SWCNT (24 

electrodes). Furthermore, the use of paper instead of traditional electrode materials 

significantly reduce the cost, as MCE filter paper is much cheaper than the most 

commonly used GCE.   

 

Figure 15. Fabrication of paper-based P-SWCNT electrode. Schematic representation 
of production of P-SWCNT film electrode from paper-based SWCNT thin film. 

 
3.3.4. Electrochemical properties of paper-based P-SWCNT film electrode 

To examine the effect of SWCNT density on heterogeneous charge transfer 

mechanism of the paper-based P-SWCNT film electrode, we calculated the electron 

transfer rate of our film electrode using cyclic voltammetry. Ferricyanide redox system, 

which is known to follow inner sphere mechanism, was chosen to account the electron 

transfer rate of the paper-based P-SWCNT film electrodes. Figure 16A is the 

representative cyclic voltammogram of the SWCNT thin film electrode obtained in 5 mM 

Fe3+/Fe2+ containing 0.1M KCl showing both cathodic and anodic peaks. The peak-to-

peak separation was used to calculate electron transfer rate by Nicholson method.212 
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Figure 16. Electrochemical properties of paper-based P-SWCNT electrode. (A) 
Representative cyclic voltammetry of the paper-based P-SWCNT film electrode in 
potassium ferricyanide solution and (B) variation of electron transfer rate as a function of 
surface density of SWCNT. 

 
Figure 16B represents the variation in electron transfer rate as a function of the 

surface density of P-SWCNT. It showed that the maximum electron transfer rate of 

2.8×10-3 cms-1 could be achieved from paper-based P-SWCNTfilm electrode. The 

electron transfer rate increases with the surface density of P-SWCNT. However, it gets 

saturated when 6.6 μg/cm2 of SWCNT or above was used to prepare the film. Therefore, 

6.6 μg/cm2 is taken as optimum P-SWCNT density which is consistent with sheet 

resistance data. 

3.3.5. Electrocatalytic response of paper-based SWCNT thin film electrode  

The electrocatalytic properties of paper-based SWCNT thin film showed that it could 

be used as an electrode material for detection of an electroactive target. The porous 

feature of the paper-based P-SWCNT film may allow fast adsorption and/or diffusion of 

target molecules to/ from the surface of the electrode. These properties of the paper-

based P-SWCNT film could be used for the detection of guanine and its nucleotides.   
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Guanine and its nucleotides were chosen as target molecules because of their 

importance in the mechanistic study and diagnosis. The mechanistic study of the 

guanine can be useful in understanding the oxidative DNA damage and coding of 

genetic information. Due to their role in various metabolic processes such as enzymatic 

reactions, an abnormal change in their concentrations is an indicative of mutation of 

immunity system58,59 and often related to different diseases such as cancer60 and HIV 

infection61. These molecules are electrochemically active and can be oxidized on the 

electrode surfaces. It has been reported that those electro-active molecules can be 

adsorbed on the surface of CNT through Π-Π interaction between carbon nanotube and 

benzene ring of nucleotides.213 

3.3.5.1. Mechanism of electro-oxidation 

The mechanism of electrochemical oxidation of guanine is well established.214,215 The 

oxidation involves two different steps. The first step is irreversible and involves loss of 

two electrons and two protons to form 8-hydroxyguanine. 8-hydroxyguanine further 

undergoes reversible oxidation step involving two electrons as shown in figure 17.  

 

Figure 17. Electrochemical oxidation of guanine. Reaction mechanism, showing the 
formation of intermediates during the electrochemical oxidation of guanine. 

The electro-oxidation of GMP and GTP also follows the similar path due to the same 
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core structure of guanine. However, due to the presence of extra ribose sugar in GMP 

and GTP, we expect the oxidation occurs at different oxidation potentials. 

3.3.5.2. Optimization of conditions 

We optimize experimental parameters for the detection of guanine and its nucleotide.  

3.3.5.2.1. Surface density of P-SWCNT film electrode 

The surface density of P-SWCNT film electrode affects the kinetics of 

electrochemical oxidation of guanine and its nucleotides. It changes the conductivity as 

well as the number of adsorption sites for guanine on the film surface. To find out the 

optimum surface density of P-SWCNT, we varied the surface density from 1.1 to 11.0 

µgcm-2
.  
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Figure 18. Effect of surface density of P-SWCNT film electrodes on electrochemical 
oxidation of guanine. Differential pulse voltammograms (DPV) of paper-based P-
SWCNT film electrodes with densities from 1.1 to 11 µgcm-2 for the oxidation of 20 µM of 
guanine in 0.1M phosphate buffer at pH 7.0. 

Figure 18 represents the background subtracted DPV of 20 µM of guanine on the 

paper-based P-SWCNT film electrode. We found that surface density affects the peak 

potential, peak current as well as background current, indicating the electrocatalytic 
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response of the paper-based P-SWCNT film electrode for guanine highly depends on 

the surface density. Both background current, as well as oxidation peak current, 

increases with the increase of surface density of P-SWCNT. However, peak potential 

decreases from ~0.68 V to ~0.64 V as shown in figure 18. 

To confirm whether the effect of P-SWCNT density is similar for oxidation of guanine 

nucleotides, we also studied the oxidation of GMP with the paper-based P-SWCNT film 

electrode prepared with variable surface density from 1.1 µgcm-2 to 16.6 µgcm-2. Figure 

19A represents the variation in peak potential with the surface density of P-SWCNT. The 

peak potential decreases from ~0.95 V to ~0.88 V with an increase in surface density 

from 1.1 µgcm-2 to 6.6 µgcm-2. No further decrease in peak potential was observed with 

the surface density of P-SWCNT above 16.6 µgcm-2. 
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Figure 19. Effect of surface density on electrochemical oxidation of guanine nucleotides 
using the paper-based P-SWCNT film electrodes. (A) Variation of peak potential and (B) 
signal to noise ratio as a function of surface density of P-SWCNT for the oxidation of 20 
µM of GMP in 0.1M phosphate buffer at pH 7.0.  

We expect the increase in S/N ratio with the decrease of surface density as a result 

of lower background current of low-density P-SWCNT film electrodes. However, we 

found that S/N ratio did not increase significantly when SWCNT density is higher than 
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6.6µgcm-2 (Figure19B). To balance the lower peak potential and higher S/N ratio, the P-

SWCNT film electrode prepared with 6.6µgcm-2 was chosen as optimized surface 

density for further experiments.  

3.3.5.2.2. Effect of pH 

To study the effect of pH on electrochemical oxidation of guanine and its nucleotides, 

we changed the buffer (0.1M acetate buffer for pH 3 and 5 and 0.1M phosphate buffer 

for pH 7.0) pH from 3 to 7. Figure 20A shows background-subtracted DPV of paper-

based P-SWCNT film electrodes for the oxidation of guanine at different pH.  
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Figure 20. Effect of pH on electrochemical oxidation of guanine using paper-based P-
SWCNT film electrode. (A) Background-subtracted DPV of guanine oxidation using 
paper-based P-SWCNT film electrode at different pH and (B) the variation of peak 
potential and peak current as a function of pH. 

The oxidation peak potential decreases from 0.88V to 0.64V with the increase of pH 

from 3 to 7. The plot of peak potential against pH gives the slope of 61 mV/pH which is 

close to the theoretical value of 59 mV/pH, suggesting that electrochemical oxidation of 

guanine is governed by changing two hydrogen ions. However, maximum peak current 

was found in pH 5.0. To mimic the physiological pH and use relatively low peak 
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potential, the 0.1M phosphate buffer (pH 7) was chosen for further experiments. 

3.3.5.3. Detection of Guanine (G) 

Differential pulse voltammetry (DPV) was used for the detection of guanine in the 

concentration range of 1 μM to 500 μM. A distinct peak was observed at potential of 0.64 

V (Figure 21A), indicating the electrocatalytic response of guanine on paper-based 

SWCNT film electrode.  
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Figure 21. Electrochemical detection of guanine on the paper-based P-SWCNT film 
electrode. (A) Background-subtracted DVP of various concentrations of guanine. (B) A 
plot of peak current against the guanine concentration. Inset: linear range. Experiment 
was performed in 0.1 M phosphate buffer (pH 7.0). 

 
The peak potential is at least about 35 mV less positive than previously reported 

values with different CNT-modified electrodes at pH 7.0 (Table1). The peak current 

increases with the increase of guanine concentration and reaches saturated after 

concentration of 200 μM (Figure 21B). The calibration curve was obtained with a linear 

range of 1 to 20 μM (Figure 21B). The linear regression equation was found to be I (µA) 

= 0.228 C  + 1.47 (r = 0.997). The calculated limit of detection is determined to be 0.06 

µM based on the signal to noise ratio of 3. Clearly, the detection limit is comparable to 
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previously reported SWCNT/MWCNT modified electrodes except few ionic liquid/CNT 

modified electrodes as shown in Table 1. 

Table 1. Performance Comparison of various CNT-modified electrodes for Guanine 

detection. 

 

3.3.5.4. Detection of Guanosine monophosphate (GMP) 

Differential pulse voltammetry (DPV) was also used for the detection of GMP in the 

concentration range of 1 μM to 500 μM. A well-defined peak was observed at the 

potential of 0.88 V as shown in figure 22A.  

The peak potential is about 0.1V less positive than previously reported values 

obtained with different electrodes at pH 7.0 (Table 2). It demonstrated electrocatalytic 

activity of paper-based P-SWCNT film electrode for oxidation of GMP. The peak current 

Electrode Method Peak 
potential 
(V) 

LOD (μM) Linear 
range 
(μM) 

References 

MWCNT/Cholin/GCE DPV  0.06 0.20-450 Wang et al.
216

 

PbO2/MWCNT/RTIL/GC

E 

DPV  0.006 0.07-20 Liu et al. 
84

 

MWCNT-OH/GCE LSV  0.02 0.2-10.0 Tu et al. 
217

 

MWCNT/PNF/GCE DPV 0.707 95.7 100-850 Tang el al. 
85

 

SWCNT/EPPGE SWV  0.05 0.1-2.0 Goyal el al. 
45

 

β -SWCNT/GCE DPV  0.01 0.5-12.0  Deng et al. 
78

 

β-CD/MWCNT/GCE DPV  0.0337 10-200 Shen et al. 
86

 

PTH/AuNP/MWCNT/GC

E 

CV 0.7 0.01 0.05-5 Liu et al. 
88

 

β-CD/MWCNT/graphite DPV 0.79 0.20 0-20 Wang et al.
218

 

IL/MWCNT/AuNP/GCE CV 0.73 0.005 0.008-2 Xiao et al. 
82

 

fMWCNT/AuNP/HPβCD CV 0.703 90 360-1200 Umasankar et al. 
87

 

P-SWCNT paper DPV 0.645 0.06 0-20 This work 
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increases with the increase of the concentration of GMP and reaches saturated at the 

concentration of 1000 μM.  A calibration curve is obtained with a linear range of 3 to 100 

μM as shown in figure 22B. The linear regression equation is found to be I (µA) = 0.104 

C  + 2.74 (r = 0.997). The limit of detection was calculated to be 0.245 µM based on the 

S/N ratio of 3. 
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Figure 22. Electrochemical detection of GMP using paper-based P-SWCNT film 
electrode. (A) Background-subtracted DVP of various concentrations of GMP. (B) A plot 
of peak current against the concentration showing linear range. Experiment was 
performed in 0.1M phosphate buffer (pH 7.0). 

Table 2. Comparison of different carbon-based electrodes for GMP detection 

Electrode Method Peak 
potential(V) 

LOD 
(μM) 

Linear 
range(μM) 

References 

Graphene/MWCNT/GCE Amperometry 0.987 0.025 0.1 to 59.7 Huanshun et al.
219

 

Nanocarbon/treated SWV 1.10 - - Kato et al.
220

 

GCE (pre-conditioning) DPV 0.89 (7.4) - - Oliveira-Brett et al.
221

 

Pyrrolic Graphite   1.1 - -  Goyal et.al.
222

  

P-SWCNT paper DPV 0.88 0.245 3 to 100 This work 
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Table 2 shows the performance comparison of various carbon-based electrodes 

for the electrochemical oxidation of GMP. When compared with these previously 

reported results, our paper-based P-SWCNT film electrode shows at least 0.1 V positive 

peak potential showing electrocatalytic activity towards the oxidation of GMP. Except for 

hybrid graphene and MWCNT-modified GC electrode, the P-SWCNT paper 

demonstrated a lower LOD of 0.245 µM and a higher dynamic range of 3 µM to 100 µM. 

3.3.5.4. Detection of Guanosine triphosphate (GTP) 

Differential pulse voltammetry (DPV) was also used for the detection of GTP in the 

concentration range of 3 μM to 500 μM. A well-defined peak was observed at the 

potential of 0.872 V as shown in Figure 23A. The oxidation potential of GTP is almost 

similar to GMP, indicating there is a negligible effect of the phosphate group on oxidation 

of guanine.  
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Figure 23. Electrochemical detection of GTP on the paper-based P-SWCNT film 
electrode. (A) Background-subtracted DVP of various concentrations of GTP. (B) A plot 
of peak current against the concentration of GTP showing a linear range between 3 to 
100 μM. Experiment was performed in 0.1M PBS (pH 7.0). 
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The peak current increases with the increase of the concentration of GTP and 

reaches saturated at 500μM as shown in Figure 23B. A calibration curve was obtained 

with a linear range of 3 to 100 μM and with linear regression equation, I (µA) = 0.1035 C  

+ 3.94 (r = 0.995). The detection limit was calculated to be 0.3μM based on S/N ratio of 

3. This is the first report showing successful electrochemical oxidation of GTP. 

3.4. Broader Impacts 

 We have shown that paper-based P-SWCNT thin film fabricated by routine 

vacuum filtration method can directly use as disposable electrodes for electrochemical 

sensing applications. This porous, uniform, well-dispersed, conductive CNT network on 

the paper substrate provides an excellent alternative of traditional CNT-modified 

electrodes. As compared to previously used CNT-modified electrodes, the paper-based 

P-SWCNT thin film is not only is simple and low-cost but also have comparable or even 

better performance as demonstrated by electrochemical detection of guanine and its 

nucleotides. Given the electrocatalytic activity of CNT for many electroactive molecules, 

the paper-based CNT electrode can be used as a general electrode material for 

electrochemical detection. The paper-based electrochemical detection platform could be 

incorporated into paper-based analytical devices for sensitive detection of target 

analytes. We envision that the paper-based CNT electrode could lead to the 

development of low-cost, portable and disposable analytical devices for on-site or point 

of care detection of target analytes. 
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Chapter 4. A paper-based porous, three-dimensional Pt-CNT hybrid film electrode 

for methanol oxidation 

4.1. Introduction 

Platinum is a single best-known metal catalyst for a wide range of chemical reactions 

such as methanol oxidation, ethanol oxidation, and hydrogen iodide decomposition.94,223 

It also has been widely used as an electrocatalyst for sensing,224 fuel cells,4,5 and solar 

cells96 applications. The use of platinum for such applications often requires the 

formation of platinum nanoparticles (PtNPs) or its clusters directly on different 

conducting supports such as glassy carbon electrode (GCE),225 fluorine-doped tin oxide 

(FTO)226 and carbon paper.227 Usually, the choice of electrode surfaces and platinum 

structures is aimed at achieving simple, effective, fast and low-cost platinum 

electrocatalyst. 

PtNPs can be formed on the surface of conducting supports such as multi -walled 

carbon nanotube (MWCNT),95 single-walled carbon nanotube (SWCNT),228 carbon 

black,229 carbon nanofibers,101 activated carbon230 or graphene.231 Among them, SWCNT 

is considered as nearly ideal conducting support for forming platinum catalysts mainly 

due to its high surface area to disperse PtNPs, good electrical conductivity for faster 

heterogeneous electron transfer and higher corrosion resistance due to its 

inertness.91,20,92 Therefore, different methods have been developed to fabricate Pt-

SWCNT hybrid material with minimally damaged CNT structure and high surface area to 

volume ratio of Pt nanostructures. 

The most common is solution-based methods where pre-formed PtNP-CNT material 

was mixed with 5% Nafion solution before casting on the electrode surface. In most 

widely used impregnation-reduction method, PtNPs were covalently linked with 

functionalized CNT by in situ reduction of precursor salt. First, CNT was functionalized 
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either by chemical oxidation with nitric acid or by dispersion with surfactants such as 

sodium dodecyl sulfate (SDS),99 polystyrene-alt-maleic acid (PSMA)100 or with polymers 

such as  polyvinylpyrrolidone (PVP),101 or with ionic liquids98 or with other compounds 

such as 1- aminopyrene,102 perylene tetracarboxylic acid.103 The functionalized CNT was 

then separated from rest of the products by washing and centrifugation steps. Before the 

reduction, the functionalized CNT was re-dispersed in suitable solvents (glycerol,104 

ethylene glycol,105 mixture of ethylene glycol and acetone106 or 1-propanol95) containing 

precursor salt, reducing agents in the presence or absence of stabilizing agents (sodium 

citrate). The reduction was then carried out at a higher temperature of 1000C -1500C or 

with the aid of microwave using suitable reducing agent. The formed Pt-SWCNT 

composite is purified by multiple washing and centrifugation cycles and washed with 

water and dried at 600C -700C under vacuum.  

As an alternative, the colloidal method has been used where PtNPs were 

synthesized separately (citrate-capped,92 PPh3 modified,113 ethylene glycol 

dispersed91,114) by reducing its precursor salt in the presence of stabilizing agents or 

suitable solvents. The pre-synthesized PtNPs were then attached on the surface of CNT 

either by mechanically mixing, or by pH-induced adsorption or by using linkers or 

polymers or ionic liquids to form PtNP-SWCNT hybrid material. The flexibility of this 

method have been used to prepare highly dispersed, shape and facet-controlled 

platinum-CNT composites.105 However, adsorption of impurities on the Pt surface and 

formation of embedded PtNP structures significantly reduces the catalytic efficiency. 

Furthermore, most commonly used solvents (ethylene glycol, glycerol) have high 

viscosity and a high boiling point which causes difficulty during filtering and rinsing steps 

of fabrication and hard to completely remove solvent from the Pt surface. 
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In contrast to solution-based methods, pure PtNPs were directly formed on the 

external accessible surface of SWCNT thin films for better catalytic efficiency by surface 

deposition methods such as electrochemical deposition,121 or electrodeless 

deposition.126 These methods involved cleaner reduction of Pt precursor on the surface 

of CNT thin film by electrochemical or galvanic force. So far, platinum has been electro-

deposited on several CNT thin films fabricated by different routes such as direct growth 

of CNT on SiO2
127 followed by electrochemical oxidation, or casting of functionalized 

CNT on GC, or by electrophoretic deposition of functionalized SWCNT on FTO, or by 

vacuum filtration of CNT suspensions on paper substrate followed by subsequent 

transfer into the surface of GC129 or carbon fiber130 or self-standing thick film of CNT as a 

buckypaper electrode.131 Despite the readily accessible pure PtNP deposits, the overall 

performance of these surface-based methods is not good due to lack of formation of Pt 

nanostructures that can maximize the surface area to volume ratio. To address the 

problem, the favorable hybrid materials have been achieved either by decreasing the 

size of spherical PtNPs or by forming different shaped PtNPs or interconnected porous 

platinum structures.  

There is a great need for forming clean and catalytic PtNPs on the surface of CNT 

thin film with favorable PtNP structure. We here demonstrated the fabrication of 

interconnected, three-dimension (3D), porous and relatively clean PtNPs on the surface 

of SWCNT thin film using vacuum filtration technique. We first prepared SWCNT thin film 

on a porous membrane and then loaded pre-synthesized PtNPs on its top using the 

downward convective force of vacuum filtration. The porous nature of SWCNT thin film 

facilitates the removal of the aqueous phase from PtNP solution forming a conductive 

layer of PtNP/CNT hybrid film. The developed hybrid material has both favorable PtNP 

as well as pristine SWCNT structure. The porous microstructure SWCNT network 
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maximizes both electron and the mass transfer from the surface of the electrode. The 

SWCNT under layer acts as both rigid support for PtNPs and conducting electrode 

material. Therefore, the resulting PtNP/SWCNT composite material can directly use as a 

flexible electrocatalyst without a need of transfer onto different electrode surfaces.  

Furthermore, the paper-based PtNP/SWCNT hybrid film has several advantages that 

could not be achieved with traditional electrode materials such as glassy carbon, fluorine 

doped tin oxide, graphite: 1) The use of paper instead of electrode material leads to 

significant reduction of cost of electrode material; 2) It eliminates the requirement of pre-

treatment or cleaning of electrode surface before modification; 3) It eliminates the 

requirement of binding polymers to incorporate CNT on paper surfaces; 4) The prepared 

nanocomposite can directly use as a disposable electrode material or can easily transfer 

into preferable substrates which otherwise is technologically challenging;128 5) It is 

environment-friendly.  

To demonstrate the superiority of the hybrid film prepared by vacuum filtration 

method, PtNPs were also deposited on the surface of SWCNT thin film using 

electrodeposition method. The electrocatalytic activity of the prepared PtNP/SWCNT 

hybrid composite was evaluated by oxidation of a benchmark molecule (methanol). The 

platinum microstructures formed on SWCNT-coated paper were characterized by cyclic 

voltammetry (CV), scanning electron microscope (SEM), X-ray photoelectron 

spectroscopy (XPS) and X-ray diffraction (XRD) analysis. Experimental results 

demonstrated that the PtNP/SWCNT hybrid film prepared using vacuum filtration 

produced a higher electrocatalytic behavior and the higher degree of resistance to 

carbon monoxide poisoning during methanol oxidation in the comparison with the hybrid 

film prepared using electrodeposition.  
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4.2. Experimental Approach 

Chemicals and materials. Mixed nitrocellulose membrane (MF-Millipore Membrane 

Filter, USA) was purchased from Millipore Corporation (Billerica, MA, USA). All other 

chemical reagents were purchased from Sigma-Aldrich and used without further 

purification. The aqueous solutions were prepared using deionized water from a Milli-Q 

water purification system (Millipore Corporation, Billerica, MA, USA).  

Preparation of paper-based SWCNT thin film. SWCNT thin film was prepared on 

filter paper using reported vacuum filtration method.207 Briefly, the concentrated pure 

single-walled carbon nanotube (P-SWCNT)(stock concentration: 0.25 mg/mL) from Nano 

Integris (prepared by Arc discharge method) was diluted in 1% sodium dodecyl sulfate 

(SDS) solution and dispersed using sonication (335 W, 50/60 Hz) for 10 minutes. Well-

dispersed P-SWCNT solution was then poured onto nitrocellulose membrane (diameter: 

0.1 μm) placed in vacuum filtration apparatus. For optimum uniformity, the solution was 

first sat for 5 minutes before applying vacuum. The vacuum was then applied slowly for 

60 minutes to form P-SWCNT interconnected network on the membrane surface. The 

remaining surfactant was washed away using an excess amount of deionized water. The 

film was vacuum-dried overnight before making an electrode. 

Fabrication of paper-based SWCNT thin film electrodes. A thin P-SWCNT film 

was used to make 24 working electrodes by cutting thin film into pieces of 0.3 cm × 0.6 

cm size. Silver paint (TED PELLA) was used as a connector between copper wire and 

P-SWCNT thin film. The silver paint and copper wire were sealed with para-film as an 

insulator. The para-film covering was adjusted in such a way that it defines the 

geometrical surface area of working electrode as exactly 0.3 cm × 0.4 cm. 

Electrochemical deposition of PtNPs on paper-based SWCNT thin film 

electrode. The electrochemical deposition of Pt nanoclusters on the SWCNT-loaded 
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paper was carried out at constant potential of –0.20 V for 600s in 0.5 M H2SO4 solution 

containing 2.0 mM H2PtCl6. In control experiments, similar working conditions were used 

for the electrodeposition of Pt nanoclusters on glassy carbon electrode (GCE) and 

Fluorine-doped tin oxide (FTO). Before use, GCE was sequentially polished with 1.0 μm, 

0.3 μm, and 0.05 μm alumina powder, respectively. The electrode was washed with 

ethanol and distilled water after each polishing for 10 minutes using ultrasonication.   

Synthesis of PtNPs. Platinum nanoparticles (size = ~ 29 nm) were synthesized by 

the seed-mediated process according to the procedure reported by Nadja C. Bigall.232 

The Seed of ~5 nm was prepared first. Briefly, 3.6 mL of 0.2 % solution of chloroplatinic 

acid hexahydrate (H2PtCl6·6H2O) was added to 46.4 mL boiling water. After one minute, 

1.1 mL of the solution containing 1 % sodium citrate and 0.05 % citric acid was added, 

followed half a minute later by a quick injection of 0.08 % 0.55 mL freshly prepared 

sodium borohydride containing 1 % sodium citrate and 0.05 % citric acid. The solution 

was then cooled to room temperature with stirring. In order to prepare 29 nm size 

particles, 1 mL of platinum seed was added to 29 mL of deionized water at room 

temperature. Then, 45 μL of 0.4 M chloroplatinic acid solution was added followed by 

addition of 0.5 mL of a solution containing 1 % sodium citrate and 1.25 % L-ascorbic 

acid. Under stirring, the temperature was slowly increased to the boiling point at 

~10 ℃/min, with a total reaction time of 30 min.  The solution was then cooled to room 

temperature with stirring. 

Preparation of PtNP/SWCNT hybrid film using vacuum filtration technique. 

SWCNT thin film was first prepared by vacuum filtration method mentioned above. 

Before loading PtNPs on the P-SWCNT film, 13.1 mL of as-prepared PtNPs were 

washed three times by precipitation in the centrifuge (7100 rpm for 30 minutes). In each 

step, the supernatant was exchanged with an equal amount of DI water to re-disperse 
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the particles. The re-dispersed particles were mixed well and poured slowly from a side 

on pre-formed SWCNT thin film. After five minutes, the vacuum was applied slowly to 

remove water to form PtNP/SWCNT hybrid thin film. The film was dried overnight before 

use.  

Determination of amount of PtNP by ICP/MS. The total amount of platinum 

deposited on SWCNT paper was determined by using ICP/MS (PerkinElmer ELAN 

DRC) experiments. The PtNP/SWCNT hybrid films prepared by both methods was cut 

into the same size as an electrode. The film was then digested in 1 mL aquaregia 

solution for 12 hrs. To ensure complete dissolution of PtNPs from the paper, the film was 

digested further for 3 hours each in two fresh 1 mL aquaregia solutions. The sample 

solution was further diluted 10 × in 2% nitric acid before the ICP/MS experiment. The 

solutions were then analyzed for 195Pt signal, and the signal is converted into platinum 

concentration using calibration curve of sample set of known platinum concentrations 

from 1 to 100 ppm. The parameters for ICPMS experiments are as follows: RF power 

1350W, Torch gas flow rate (Ar)= 0.8 Lmin-1, Isotopes for internal standardization= 89Y.  

Characterization of films. The surface morphology of electrochemical deposited 

and vacuum filtration fabricated Pt/SWCNT hybrid films were characterized by Field 

emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy 

(XPS) and X-ray diffraction (XRD). FE-SEM image was obtained on an S-4800 

microanalyzer (Hitachi, Japan). XPS was carried out on an ESCALAB 250 spectrometer 

equipped with a monochromatic Al Kα X-ray source (Thermo Fisher Scientific Inc., U.K.). 

XRD measurement was performed on a D/MAX 2200 VPC diffractometer using Cu Kα 

radiation (λ = 0.154056 nm) with a Ni filter (Rigaku, Japan). 
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Electrochemical measurements of methanol oxidation. All the electrochemical 

experiments were carried out at ambient condition using CHI electrochemical station. 

Different CNT electrode with platinum and other control electrodes were used as working 

electrode. Ag/AgCl and platinum wire were used as reference and counter electrode 

respectively.  

4.3. Results and Discussion 

4.3.1. Fabrication of paper-based PtNP/SWCNT hybrid film by electrodeposition 

technique. 
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Figure 24. Schematic representation of formation of paper-based SWCNT thin film and 
deposition of PtNPs on the SWCNT film by electrodeposition method. 

 
Figure 24 represents the schematic of fabrication of paper-based PtNP/SWCNT 

hybrid thin films by electrodeposition method. Specifically, we first prepared SWCNT thin 

film (density = 8.8 µg/cm2) by vacuum filtration method207 on mixed cellulose ester 

membrane. The method is well-established for the fabrication of thin, uniform layer of 

CNT on porous substrate.207 The well-dispersed CNT was trapped on porous membrane 

substrate (Figure 2B) by vacuum force resulting randomly oriented network of CNT on 

paper substrate. The formed P-SWCNT layer contains relatively well dispersed, and 

interconnected tube structure with overlapping of CNT. More importantly, it is 

mechanically rigid and conductive as a support structure for PtNPs.  
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4.3.1.1. Electrodeposition of PtNPs on the paper-based SWCNT thin film. 
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Figure 25. Current transients of SWCNT paper electrode during electrodeposition of 
platinum in 2.0 mM H2PtCl6 containing 0.5 M H2SO4. The deposition was carried out at -
0.2 V for 600 S. 

 
To perform electrochemical deposition of platinum on the surface of paper-based 

SWCNT film, we first made paper-based SWCNT electrodes from the thin film (see 

procedure described above). The prepared electrode was directly used to deposit 

platinum from its precursor salt solution containing 2.0 mM H2PtCl6 in 0.5 M H2SO4. The 

potential and time were optimized as -0.2 V for 600 S to obtain maximum deposition of 

PtNPs. Figure 25 represents the current transient curve for the electrochemical 

deposition of platinum on the SWCNT surface. The current transit shows typical 

behavior of P-SWCNT with initial steep decrease for about 20S followed by a slower 

decrease until 600S. This is due to initial oxidation of PtII to Pt IV followed by 

development of diffusion field and its interaction with the oxidation sites of Pt.122  
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4.3.2. Characterization of the PtNP/SWCNT film prepared by electro-deposition. 

4.3.2.1. Pt Concentration on the PtNP/SWCNT film by ICP-MS.  
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Figure 26. Calibration curve of standard 95Pt for the determination of the amount of 
electrodeposited Pt from the surface of paper-based SWCNT thin film electrode. The 
Sample solution was prepared by dissolving Pt from the P-SWCNT surface using aqua-
regia solution. 

 
The platinum from electrodeposited sample was extracted by incubating the 

electrode (0.12 cm2) in aqua regia for overnight. The extracted platinum was measured 

by ICP-MS and calculated with standard 95Pt calculation curve. Figure 26 represents the 

calibration curve of standard 95Pt in the range of 0 to 100 ppm with the linear regression 

equation of y= 0.0113X + 0.0013 (r2 = 0.99985). The total amount of platinum per 

electrode was determined from ICP-MS experiments. We found that Pt density on the 

paper-based P-SWCNT film is 73.6 μg/cm2.  

4.3.2.2. Morphology and size distributions 

Figure 27 represents the morphology of electrodeposited platinum structures on 

paper-based P-SWCNT film. We observed that a porous feature in filter membrane 

(Figure 27A) and interconnected SWCNTs loaded on the paper (Figure 27B). Platinum 
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was present in the form of nanoclusters having outer spike like tips on the surface, 

whichappeared as nano-flowers. The formation of such structure may be due to limited 

adsorption sites on hydrophobic surface of SWCNT. It has been reported that the 

adsorption sites control the nucleation and growth of platinum particles on CNT surface 

during electrodeposition that involves three steps: adsorption of platinum salt, formation 

of Pt complex and reduction of the Pt-complex to nanoparticle.122  

 

Figure 27. Morphology of various films. FE-SEM images of (A) Mixed cellulose ester 
filter paper (B) paper-based SWCNT thin films prepared by vacuum filtration method, (C) 
PtNPs on the SWCNT surface, and (D) size distribution of PtNPs for the paper-based 
PtNP/SWCNT film analyzed using imageJ software. 

Therefore, it is reasonable to predict that nanoparticle formed during the 

electrodeposition acts as a site of nucleation for further growth of particle to form 

complex structure. The formation of nanoclusters instead of the continuous thin film is in 
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accordance with the previous reports that nano-clusters124  are formed on the surface of 

CNT having very few or not functionalized groups. Statistical analysis of SEM image 

using imageJ software indicates that average size of platinum nano-flower like structures 

is 94±17 nm (Figure 27, C & D). 

4.3.2.3. Platinum state of the paper-based PtNP/SWCNT thin film.  

X-ray photoelectron spectroscopy (XPS) was used to verify the formation of Pt 

structures and its oxidation state on paper-based P-SWCNT film. Figure 28A represents 

the XPS analysis of PtNP/SWCNT composites showing platinum 4f spectra, indicating 

the presence of platinum on the surface of the P-SWCNT film. The spectra are well-

resolved showing doublets as Pt4f7/2 and Pt4f5/2 on PtNP/SWCNT film with binding 

energies of 71.63 eV and 74.88 eV, respectively. A comparison with literature value 

suggests that binding energies corresponding to the Pt (0).233 The presence of a higher 

percentage of Pt(0) suggests higher catalytic efficiency could be achieved on the 

prepared PtNP/SWCNT film.  
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Figure 28. State of Pt on the surface of paper-based SWCNT thin film. (A) XPS spectra 
showing oxidation state of platinum and (B) XRD spectra showing the crystalline state of 
PtNPs on the surface of paper-based SWCNT film. 
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The crystallinity of the platinum nanostructure was determined by X-ray 

diffractometry (XRD). Figure 28B represents the XRD pattern of prepared Pt 

nanoclusters on the surface of paper-based SWCNT film. The Peaks at 2θ = 39.8°, 

46.12°, 67.52°, 84.9° and 87.04° correspond to the crystalline planes of face-centered 

cubic as Pt (111), Pt (200), Pt (220), Pt (311) and Pt (222), respectively, indicating that 

platinum exists in crystalline form as in bulk Pt.234 

4.3.3. Evaluation of paper-based PtNP/SWCNT hybrid film electrode for 

electrochemical oxidation of methanol  

We choose methanol as a benchmark molecule to evaluate the electrocatalytic 

performance of paper-based PtNP/SWCNT hybrid film electrode. Electrocatalytic activity 

towards methanol oxidation was determined by performing cyclic voltammetry 

experiments in 0.1 M H2SO4 containing 0.1 M methanol at the scan rate of 50 mV/s. 
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Figure 29. Evaluation of methanol oxidation on various electrodes. Cyclic voltammetry 
responses of (a) paper-based SWCNT film electrode, (b) commercially purchased Pt 
electrode, (c) PtNP-deposited GCE (d) PtNP-deposited FTO and (e) paper-based 
PtNP/SWCNT hybrid film electrode in 0.1 M H2SO4 containing 0.1 M methanol at the 
scan rate of 50 mV/s. All PtNP-modified electrodes are prepared by electrodeposition of 
Pt at constant potential of -0.2 V for 600 S. 
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As a comparison, platinum was also electrochemically deposited on traditional 

electrode surfaces such as glassy carbon electrode (GCE) and fluorine-doped tin oxide 

(FTO) using similar experimental conditions.  

It is evident from Figure 29 that except for only P-SWCNT film electrode, all the 

electrodes showed characteristic methanol oxidation peaks with forward peak potential 

at ~0.65 V and backward peak potential at ~0.44 V. No methanol peak was observed for 

the paper-based P-SWCNT film electrode, indicating that SWCNT has no direct role in 

the oxidation of methanol. Very small oxidation peak current was obtained on 

commercially-purchased Pt electrode. The peak current densities on PtNPs deposited 

on GCE，FTO and P-SWCNT electrodes have 2×, 4×, and 7× higher peak current 

density than the bulk platinum electrode.  
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Figure 30. Electroactive surface area of different electrodes. Cyclic voltammetry 
responses of (a) commercially purchased Pt electrode, (b) PtNP-deposited GCE, (c) 
PtNP-deposited FTO, and (d) paper-based PtNP/SWCNT film paper in 0.5 M H2SO4 at 
the scan rate of 50 mVs–1. All PtNP-deposited electrodes are prepared by 
electrodeposition of Pt from its precursor salt solution at a constant potential of -0.2 V for 
600 S. 
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The difference in the performance of platinum on various supporting electrode 

materials could be explained by measuring their electroactive surface area. Figure 30 

represents the cyclic voltammetry curve of different electrodes in 0.5 M H2SO4, used to 

calculate the electroactive surface area by hydrogen adsorption method.235  The 

electroactive surface area of the PtNP-deposited electrode can be estimated from the 

equation: A = QH /Qm (where QH is the charge of the hydrogen adsorption/desorption 

region of the CV, and Qm is the charge associated with the monolayer adsorption of 

hydrogen (Qm= 210 µC/cm2). Using this equation, we calculated that the electroactive 

surface area for commercially purchased Pt electrode, PtNP-deposited GCE, PtNP-

deposited FTO, and paper-based PtNP/SWCNT film electrode were 0.040, 0.465, 0.152, 

and 1.12 cm2, respectively.  

The roughness factor was determined by the following equation: Rf = Aec/Ag (where 

Aec is the electrochemical surface area of the PtNP-modified electrode, and Ag is the 

geometric surface area of electrode). Thus, the roughness for commercially purchased 

Pt electrode, PtNP-deposited GCE, PtNP-deposited FTO, and paper-based 

PtNP/SWCNT film electrode were calculated to be 1.27, 2.15, 5.16, and 9.33, 

respectively. The experimental results demonstrated that the real surface area was 

increased up to ~ 7.35 times in SWCNT film as compared to just ~ 1.69× in GCE and ~ 

4.06× in FTO which indicates SWCNT paper provides a larger surface support for Pt 

deposition as compared to traditional electrode material with a solid surface.  

4.3.4. Fabrication of paper-based PtNP/SWCNT hybrid film using vacuum filtration 

technique. 

Although electrochemical method provides a simple, rapid and facile method to load 

PtNPs on the surface of CNT, it is not suitable for mass production and precise control of 

amount and size of the platinum structures. Layer-by-layer assembly by vacuum filtration 
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has been used as a very simple and versatile method for incorporation of various nano-

materials without the use of a binder. The versatility of vacuum filtration allows the 

formation of various nanomaterial by downward convective force.236 The highly porous 

structure of CNT thin film, allows removal of surfactant solvent, theoretically, platinum 

nanoparticles of any size or shape can be deposited on top of porous CNT film. Based 

on this concept, we have demonstrated the deposition of citrate-capped gold 

nanoparticles atop of SWCNT thin film on paper substrate.57 We further extended the 

technique to deposit citrate-coated PtNPs on top of CNT film to prepare Pt/SWCNT 

hybrid thin film on the paper substrate.  

 

 

Figure 31. Schematic representation of the preparation of paper-based PtNP/SWCNT 
hybrid thin film by vacuum filtration technique. (A) The SDS-dispersed aqueous solution 
of P-SWCNT was loaded on the surface of MCE membrane to form paper-based, 
porous P-SWCNT thin film. (B) The SDS molecules were washed away using an excess 
of water. (C) The citrate-capped PtNPs were loaded atop of P-SWCNT thin film to form 
paper-based PtNP/SWCNT hybrid thin film. 

Figure 31 represents the schematic of fabrication of paper-based PtNP/SWCNT 

hybrid film by vacuum filtration method. During the vacuum filtration, we physically 
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trapped citrate-capped PtNPs atop of the porous paper-based SWCNT thin film by using 

downward convective force. Pre-synthesized PtNPs (~ 29 nm) were deposited on the top 

of paper-based SWCNT film (11.36 cm2). Citrate-capped PtNPs (diameter ~29 nm) were 

chosen to demonstrate the proof-of-concept. The volume of PtNPs was chosen in such a 

way that the amount of platinum match with the selected electrochemically deposited 

sample (73.6 μg/cm2) that was confirmed by ICP/MS experiments.   

4.3.4.1. Characterization of synthesized PtNPs 

4.3.4.1.1. Preparation and characterization of synthesized PtNPs 
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Figure 32. Characterization of PtNPs by dynamic light scattering (DLS) experiments. 

The synthesized PtNPs have the hydrodynamic size of 355 nm with a polydispersion 
index (PDI) of 0.2. 

PtNPs (diameter ~ 29 nm) were prepared by reported seed-mediated method using 

chloroplatinic acid hexahydrate as a precursor salt.232 The PtNP seed (diameter ~ 5 nm) 

was prepared using a mixture of sodium citrate and citric acid as a stabilizer and sodium 

borohydrate as a reducing agent. Prepared PtNP seeds were further grown in the 

presence of precursor salt using ascorbic acid as a weak reducing agent. Figure 32 

shows the hydrodynamic size and polydispersion index of the synthesized PtNPs. 
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4.3.4.1.2. The concentration of PtNP measured by ICP-MS 

Figure 33 represents a standard calibration curve of different concentration of 

platinum in the range of 0 to 100 ppm. The calibration curve was obtained with linear 

regression equation of y= 0.0029X + 0.0011 (r2 = 0.99992). By relating the observed 

counts (ratio) to the calibration curve, the concentration of PtNPs was determined to be 

0.8552 mg/ml.  
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Figure 33. Calibration curve of standard 95Pt for the determination of the amount of Pt of 
synthesized PtNPs. PtNPs were separated from the supernatant by three rounds of 
centrifugation and washing cycles.  

PtNPs were separated from the supernatant by centrifugation (7100 rpm for 30 

minutes) before ICPMS experiments. Re-dispersion and centrifugation (three times) with 

an equal volume of deionized water was used to clean PtNPs further.  The total Pt 

concentration was determined in the supernatant, separated PtNPs and the whole 

reaction mixture without separation to validate the concentration of Pt in the sample. The 

slight difference (~2.3%) difference in concentration of Pt before and after washing 

showed negligible loss of PtNP during the washing process.  
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4.3.5. Characterization of paper-based PtNP/SWCNT hybrid film prepared by 

vacuum filtration 

4.3.5.1. Pt concentration of the paper-based PtNP/SWCNT hybrid film 
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Figure 34. Calibration curve of of standard 95Pt for determination of the amount of Pt on 
the surface of paper-based PtNP/SWCNT thin film prepared by vacuum filtration 
technique. The sample solution was prepared by dissolving Pt from the surface of 
electrode using aqua-regia solution. 

To match the concentration of PtNPs of paper-based electrochemically deposited 

PtNP/SWCNT hybrid film, 13.1 ml of prepared PtNPs was used to prepare the 

PtNP/SWCNT hybrid film on the paper by vacuum filtration method. In order to confirm 

the actual concentration of Pt on the hybrid film prepared using vacuum filtration 

technique, we performed ICP/MS experiments. Figure 34 represents the standard 

calibration curve of different concentration of 95Pt that was used to calculate the 

concentration of Pt on the prepared film. The Pt concentration in the sample was 

determined by comparing the experimental value with the standard linear regression 

equation. 
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Six different pieces of PtNP/SWCNT film (surface area ~ 0.18 cm2) were selected 

and digested. Their concentration of Pt was determined by ICP/MS. We found that the 

average concentration of Pt from the film is same with that of PtNP solution employed for 

film fabrication (less than 1% error), indicating that no PtNP was lost during the vacuum 

filtration. The average standard deviation of ~6% indicated that even distribution of Pt 

within the entire film during the preparation. The concentration of Pt on the film was 

found to be almost similar to the sample prepared by electrodeposition method (0.0736 

mgcm-2). 

4.3.5.2. Morphology of PtNPs on the surface of PtNP/SWCNT hybrid film 
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Figure 35. Morphology of of PtNP on the surface of PtNP/SWCNT hybrid film prepared 
by vacuum filtration. (A) FE-SEM images of paper-based PtNP/SWCNT hybrid film. (B) 
Size distribution of PtNPs analyzed using an imageJ software. 

 
Figure 35A represents the morphology of platinum structures on paper-based 

PtNP/SWCNT hybrid film prepared by the vacuum filtration technique. Platinum is 

present as a continuous network of spherical platinum particles forming three-

dimensional nano-porous like structure atop of P-SWCNT film. The 3D porous 
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continuous structure is different from the discrete platinum clusters observed with the 

electrochemically deposited PtNP/SWCNT hybrid film. We found that the average size of 

PtNPs was 38.8±2.1. When compared the size distribution of electrochemically 

deposited PtNP/SWCNT hybrid film, it is clear that a relatively narrow size distribution of 

PtNPs was achieved using vacuum filtration technique. 

4.3.5.3. State of Platinum on the surface of paper-based PtNP/SWCNT hybrid film 

X-ray Photoelectron Spectroscopy (XPS) was used for speciation of platinum on 

paper-based PtNP/SWCNT hybrid film prepared by vacuum filtration technique.  
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Figure 36. State of Pt on the surface of paper-based PtNP/SWCNT hybrid thin film 
prepared by vacuum filtration technique. (A) XPS spectra showing oxidation state of 
platinum and (B) XRD spectra showing the crystalline state of PtNP on the surface of 
SWCNT. 

Figure 36A represents the XPS analysis of the PtNP/SWCNT composites showing 

platinum 4f spectra, confirming the assembly of platinum on the surface of SWCNT film. 

The spectra are well-resolved with doublets of Pt4f7/2 and Pt4f5/2 showing the platinum is 

present in the form of Pt (0)95 with binding energies of 71.73 eV and 75.18 eV, 

respectively. The higher intensity of Pt (0) in the sample prepared by vacuum filtration 

(2.84x) as compared to the sample prepared by electrodeposition indicates that higher 
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surface area was achieved with vacuum filtration method.  

Figure 36B represents the XRD pattern of Pt nanoclusters on the surface of 

PtNP/SWCNT hybrid film prepared by vacuum filtration technique. Peaks at 2θ = 39.8°, 

46.12°, 67.52°, 84.9° and 87.04° are assigned to crystalline planes of face-centered 

cubic of Pt (111), Pt (200), Pt (220), Pt (311) and Pt (222), respectively, indicating that 

PtNPs exist in crystalline form.119 We found that a very low intensity of crystalline planes 

in the sample prepared by vacuum filtration technique, as compared to the sample 

prepared by electrodeposition method. This is attributed to random but not a periodic 

distribution of Pt atoms (Pt nanoparticles) on the surface of P-SWCNT. 

4.3.6. Comparison of methanol oxidation of PtNP/SWCNT hybrid films  
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Figure 37. Comparison of electrocatalytic performance of PtNPs prepared by vacuum 
filtration and electrodeposition methods. (A) CV responses of PtNPs on paper-based 
SWCNT thin films prepared by vacuum filtration (red curve) or electrodeposition (black 
curve) in 0.1 M H2SO4 containing 0.1 M methanol at 50 mV/s. (B) Electroactive surface 
area of paper-based PtNP/SWCNT hybrid film prepared by vacuum filtration (red curve) 
or electrodeposition (black curve) in 0.1 M H2SO4 at 50 mV/s.  

We also evaluated the electrocatalytic activity of PtNP/SWCNT hybrid films for 

methanol oxidation in 0.1 M H2SO4 containing 0.1 M methanol at the scan rate of 50 
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mV·s–1 and compared the performance of the films prepared by vacuum filtration 

technique or electrodeposition method. Both films showed characteristic methanol 

oxidation curve with forward peak potential at ~0.65 V and backward peak potential at 

~0.44 V. With the same amount of Pt loaded on P-SWCNT film, the PtNP/SWCNT hybrid 

film fabricated with vacuum filtration showed significantly higher (~2.1×) forward peak 

current density as compared to the hybrid film prepared by electrodeposition method. 

We believe that the higher electrochemical activity is attributed to the porous, uniform 

and continuous platinum structure on the vacuum filtration fabricated sample as 

compared to discrete flower-like platinum clusters on the electrodeposition prepared 

sample.  

The difference of methanol electrocatalytic response between vacuum filtration 

fabricated samples and electrodeposition prepared samples can be explained by the 

difference in electroactive surface area due to different size and orientation of platinum 

particles on P-SWCNT film. The roughness factor from hydrogen adsorption-desorption 

region was found to be 10.88 and 41.66 for vacuum filtration fabricated sample and 

electrodeposition prepared samples, respectively. The mass specific electroactive 

surface area of platinum was calculated as 14.1 m2/g (electrodeposition) and 42.3 m2/g 

(vacuum filtration), which is much higher than bulk Pt (2.8 m2/g).237 The electroactive 

surface area was ~0.6× and 1.8× higher as compared to previously reported 

PtNP/SWCNT hybrid film237 prepared by vacuum filtration of pre-mixed PtNP and CNT 

solution.  

Both samples showed much better CO tolerance as compared to commercially 

available E-TEK catalyst.113 The ratio of forward peak current to backward peak current 

was taken as indicator of tolerance of CO poisoning of an electrode. This ratio was found 

to be 1.65 for vacuum filtration fabricated sample and 1.60 for electrodeposition 
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prepared sample which is much larger as compared to commercially available E-TEK 

catalyst (0.74).113 This is attributed to the porous structure of P-SWCNT thin film where 

oxidative carbon species can be easily moved away from the surface of the electrode.  

4.3.7. Stability and reproducibility of PtNP/SWCNT hybrid film prepared vacuum 

filtration technique  

We evaluated the stability and reproducibility of the PtNP/SWCNT hybrid thin film 

prepared by vacuum filtration by measuring the anodic current for the oxidation of 

methanol. The oxidation peak current density for 0.1M methanol in 0.1M H2SO4 solution 

at peak potential of 0.65V was chosen for the measurement.  
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Figure 38. Stability and reproducibility of paper-based PtNP/SWCNT hybrid film 
prepared by vacuum filtration. (A) Stability and (B) reproducibility of different film 
electrodes in 0.1M methanol oxidation in 0.1M H2SO4 solution.  

Figure 38A represents the stability of the prepared films tested over 15 days. The 

average standard deviation of peak current is about 9%, which indicated that the 

prepared film has good stability. The reproducibility of the film was evaluated by 

randomly choosing five different electrodes from the prepared film (Figure 38B). The 

calculation shows the reproducibility of the prepared film is within 14% of the average 

value. These values have shown that hybrid thin films also have good reproducibility.  
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4.4. Broader Impacts 

We have demonstrated the functionalization of paper-based SWCNT thin film by 

electrodepositing platinum nanoparticles. As compared to common solid surface 

electrodes, the PtNPs electro-deposited on the surface of paper-based SWCNT film 

generated higher electroactive surface area and higher electrocatalytic performance 

towards methanol oxidation. We further demonstrated the use of paper-based SWCNT 

thin film as a conducting support by depositing PtNPs on its surface by routine vacuum 

filtration technique. The newly formed PtNP/SWCNT hybrid film showed a 3D, 

continuous and porous platinum structure with a relatively narrow size distribution of 

PtNPs, resulting in the higher electroactive surface area and higher electrocatalytic 

response towards methanol as compared to the electrochemically deposited sample. 

This fabrication process provides excellent alternatives for simple, fast and cheap 

fabrication of PtNP/SWCNT hybrid film. The flexibility of vacuum filtration could easily be 

extended to a different size, volume, and shape of PtNPs and its alloys for more efficient 

PtNP/SWCNT composite materials. We envision that flexibility of paper and broad 

functionality of platinum can be used to incorporate the paper-based Pt-SWCNT 

composite material in the development of portable sensors, fuel cells, and solar cells. 
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Chapter 5. A colorimetric assay for detecting DNA and exonuclease III based on 

DNA-modified gold nanoparticles 

5.1. Introduction 

DNA modifying enzymes such as polymerases, endonucleases and exonucleases 

are an integral part of genomic stability due to their prominent role in many biological 

processes such as recombination, repair, replication, cloning, genotyping and mapping 

of nucleic acids.179,238 In particular, 3’ to 5’ exonucleases such as E. coli exonuclease III 

(Exo III) and Mre 11 protein are involved in DNA proofreading and repair through their 3’ 

to 5’ exonuclease activity.187,239,240 Similarly, Class II Apurinic/apyrimidinic (AP) 

endonucleases such as exonuclease III and APE1 are involved in recognition and 

processing of AP sites in Base excision repair through their AP endonuclease activity.241–

243 

Based on multi-functions of class II AP endonucleases within cells, numerous studies 

have reported that elevated or altered expression of these endonucleases in breast,244 

cervical245 and non-small cell lung cancers.246 Therefore, the expression of these 

enzymes can be used as a potential biomarker for the prediction of carcinogenesis 

risk,247 or as a druggable target,185 or design, and development of inhibitors186,248,249 or in 

mechanistic study of different cancers.250 Similarly, 3′-5′ exonucleases are involved in 

different biological process such as DNA proofreading.  Their overexpression  in human 

cells is believed to be related to increased longevity owing to stabilization of the mutation 

rates in a cell, whereas organisms that lack 3′-5′ exonucleases are found to be more 

susceptible to cancer, especially under stress conditions.187,240 Therefore, these 

enzymes are good target for drug development and radio and/or chemotherapeutic 

treatments.    
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Exonuclease III is major prokaryotic DNA modifying enzyme in Escherichia coli.175 It 

has AP endonuclease activity and cleaves the phosphodiester bond in duplex DNA 

immediately 5’ to the abasic sites to produce 3’ OH group.176–178 It has the structural and 

functional similarity with other class II AP endonucleases such as APE1 of human cells 

and Apn1 of yeast and often used as a model enzyme for the mechanistic study.179,180 

Similarly, Exonuclease III also has 3’ to 5’ exonuclease and removes the 

mononucleotides from 3’ end or nicks of double strand DNA.178,181,182 Beside AP 

endonuclease and 3’ to 5’ exonuclease activity, Exonuclease III has RNase H and 3’ 

phosphatase activity.  

Exonuclease III was chosen as a target to demonstrate the proof of concept of our 

assay due to its commercial availability. Various methods have been developed for 

detection of the activity of Exonuclease III. The most common method is gel 

electrophoretic-based radiographic assay.192,193 The radioisotope (3H or 32P) labeled 

DNA substrate was reacted with exonuclease III and digested products are then 

separated using gel electrophoresis. The concentration and the length of the digested 

products were determined by comparing the radioactivity of control sample with the 

products. These assays require stringent safety procedure to control radioactive 

exposure. Furthermore, these gel-based assays are laborious, requiring lengthy time for 

the preparation and analysis of gel.  As an alternative, fluorescence assays have been 

developed for quick enzyme analysis in high throughput screening fashion. These 

solution methods use fluorescence label or label-free DNA substrate for the enzymatic 

reaction. For example, Wu et al.194 used fluorescence labeled molecular beacon as a 

DNA substrate for the detection of exonuclease activity. The hairpin structure of 

molecular beacon was modified with a fluorophore (FAM) at its 5’ end and the quencher 

(BHQ1) at its 3’ end. The fluorescence was quenched in the absence of enzyme due to 
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effective forster resonance transfer mechanism (FRET). However, in the presence of the 

enzyme, it releases the quencher from the molecule beacon due to its 3’ to 5’ activity, 

which increases the fluorescence of the solution. The change in fluorescence was used 

as a measure of activity of Exonuclease III. Alternatively, Su et al.195 used stacked 

guanines instead of BHQ1 at the 3’ end as a quencher to reduce the cost of the assay. 

To further simplify the fluorescence assays, label-free fluorescence assays have been 

developed based on the formation of the G-quadruplex structure upon exonuclease III 

reaction from linear DNA sequences. The enzyme activity was then monitored by 

measuring the fluorescence of G-quadruplex-specific dyes such as crystal violet196 or 

Tb2O3.
197 

Gold nanoparticles (AuNPs) as a colorimetric probe provides an excellent alternative 

to traditional gel or fluorescence methods due to their intense optical properties and 

chemical stability.251–253 In particular, the color change can be observed by the naked 

eye without the need of an instrument. Therefore, DNA-AuNPs have been successfully 

used as colorimetric probe for the detection of nucleic acids,254 proteins,255 metal ions,160 

small molecules162,256 and enzymes.155,156,161    

Here, we have reported a novel colorimetric assay for detecting the activity of 

Exonuclease III based on the non-cross linking mechanism of AuNP aggregation 

induced by enzymatic removal of DNA substrate from the DNA-modified AuNPs. This 

method enables naked-eye colorimetric monitoring of AP endonuclease activity and can 

be used for high throughput screening of AP endonucleases inhibitors. Compared to the 

previous assays, we designed the DNA substrate for both Exonuclease III 3’ to 5’ 

exonuclease and its AP endonuclease activity.  
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5.2. Experimental approach 

Materials and Reagents. All the chemicals including Trizma, Tris-acetate, 

potassium acetate, sodium chloride, magnesium chloride, calcium chloride, gold (III) 

chloride tri-hydrate, tri-sodium citrate, dithiothreitol (DTT) were purchased from Sigma-

Aldrich. All DNA sequences were purchased from Integrated DNA Technology (IDT). 

Following DNA sequences were used in this work. 

DNA probe ID Sequences 

0X_Probe_FAM  5’-SH TTT TTT ACC ACA TCA TCC ATA TAA CTG AAA 

GCC AAACAG- FAM-3’ 

1X_probe_FAM 5’-SH TTT TTT ACC ACA TCA TCCX TAT AAC TGA AAG 

CCA AAC AG- FAM-3’ 

1X_probe 5’-SH TTT TTT ACC ACA TCA TCCX TAT AAC TGA AAG 

CCA AAC AG-3’ 

Complementary 

DNA 

5’-CTG TTT GGC TTT CAG TTA TAT GGA TGA TGT GGT-3’ 

 

Synthesis of gold nanoparticles (AuNPs). Gold nanoparticles of ~13 nm were 

prepared by previously reported Fren’s citrate method.257 Briefly, all glasswares were 

incubated in aqua regia overnight and washed with deionized water before use. 96 ml of 

water was boiled in RB flask with vigorous stirring. 2.5 ml of 100 mM freshly prepared 

gold (III) chloride trihydrate solution was then added. Immediately, after addition of gold 

salt, 2 ml of 34 mM sodium citrate solution was added rapidly which acts as both 

reducing and stabilizing agent. The formation of gold nanoparticle was indicated by the 

appearance of red color due to the reduction of Au+3 to Au0. The solution was kept 
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boiling for another 30 minutes and cooled down to room temperature under stirring. The 

solution was filtered using 0.22 μm syringe filter and used immediately for DNA 

modification experiments.  

UV-visible experiments. Prepared gold nanoparticle solution was 5X diluted and 

absorbance was measured by using Cary 100 Bio UV-Vis spectrophotometer. The 

absorbance of DI water was taken as a background and subtracted from the absorbance 

of gold nanoparticle solution. 

Dynamic light scattering experiments. The hydrodynamic radius of citrate-capped 

gold nanoparticles was determined using Malvern DLS Zeta sizer Nano. 1.2 ml of as-

prepared AuNPs was used to determine the hydrodynamic radius. 

DNA modification of gold nanoparticles. Different DNA probes were modified on 

the surface of AuNPs by reported method151 with slight modification. Briefly, disulfide 

bond of DNA probes was cleaved by reacting it with freshly prepared TCEP solution (3 

mg per 100 μl). The TCEP and DNA were mixed in the ratio of 75:1 and reacted for 2hrs 

in the dark at room temperature. The mixture was used immediately for modification 

without purification. The mixture of TCEP-DNA was added into 3 ml of AuNPs slowly 

with stirring so that the final concentration of DNA was 3 µM. The reaction was incubated 

for 12 hrs at room temperature before salt addition. The concentration of NaCl was then 

increased to 0.05 M using 2M NaCl solution dissolved in 100 mM PBS solution (pH 7.0) 

containing 0.01% SDS. The solution was then sonicated briefly for ~ 10s and allowed to 

incubate for extra 20 mins. The process was repeated for an increment of 0.05 M NaCl 

once and for every 0.1 M NaCl after that, until the final concentration of NaCl reached 

1.0 M. Once the NaCl concentration reached 1M, the solution was kept for another 12 

hrs before the separation. After modification, the DNA-modified AuNPs were separated 

from excess of DNA by using centrifuge column (100 KD cut-off, Millipore, USA). The 
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separation was carried out by centrifugation at 1000 rpm for 20 minutes. The DNA-

modified AuNPs were further washed 6 times with 1X Tris buffer (pH 7.4) to remove 

excess of salt and DNA using same centrifugation process. The DNA-modified AuNPs 

were dissolved in 300 µl Tris buffer (pH 7.4) and stored at 4 0C before use. 

Determination of Surface coverage of FAM-labeled probe. The surface coverage 

of DNA in gold nanoparticle was determined from previously reported method.151 To 

determine the surface coverage, the concentration of nanoparticle and DNA probes on 

the surface was determined separately. The concentration of AuNP was determined 

directly from UV-visible experiments whereas the concentration of DNA was determined 

after displacing it from the surface using DTT. To displace DNA from the surface, 2 µl of 

DNA-modified gold nanoparticle was mixed with 48 µl of 1X Tris-acetate. The diluted 

solution was mixed with 50 µl of 1M of DTT in 1X Tris -acetate buffer and reacted 

overnight to completely displace DNA probes from the surface of AuNP. The Gold 

precipitate was removed by centrifugation (21000 rpm for 20 minutes). Standard DNA 

samples (0 to 200 nM) were also prepared by treating with the same amount of DTT in 

1X Tris-acetate buffer pH 7.9. 60 µl of supernatant was placed into 96-plate reader and 

fluorescence was compared with the standard curve of FAM-labeled DNA probe 

solution. During fluorescence measurement, fluorophore was excited at 495 nm and 

emission was recorded at 520 nm. 

Determination of Surface coverage of label-free probe. The surface coverage of 

label-free DNA probe was determined by the similar method except DNA concentration 

was determined by using oligreen assay. 20 µl of the supernatant solution was diluted to 

100 µl solution using 1X TE buffer. To this 100 µl 1X oligreen dye was added. The 

mixture was incubated in the dark for 5 minutes before measuring the fluorescence. 60 

µl of the mixture was taken out and placed in 96 plate reader for fluorescence 
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measurements. The standard solutions were also prepared similarly in the range of 0 to 

200 nM. The fluorophore was excited at 500 nm and emission was recorded at 525 nm. 

Kinetics of DTT reaction on DNA-modified gold nanoparticle probes. Prepared 

DNA-modified gold nanoparticles were diluted 25X using 1X Trizma buffer. 25 µl of the 

diluted solution was mixed with 10 µl of different concentrations of DTT in 1X Trizma 

buffer so that final concentration of the DTT becomes 0 to 50 µM. The kinetics of 

displacement or change in the configuration of FAM-labeled DNA was monitored by 

measuring the change in fluorescence of the FAM labeled DNA for 30 minutes. The FAM 

was excited at 495 nm and emission was collected at 520 nm. 

DDT treatment of DNA-modified AuNPs. 50 µl of (25X diluted in 1X Tris-acetate 

buffer pH 7.9) DNA-AuNPs was mixed with 20 µl of the different concentrations of DTT 

(diluted in 1X Tris-acetate buffer pH 7.9) and reacted for 30 minutes. The excess amount 

of DTT was removed by three cycles of washing and centrifugation steps (each at 21000 

rpm for 10 minutes), and the supernatant was replaced with the equivalent amount of 1X 

Tris-acetate buffer.  

Stability of DTT treated samples Stability of DTT-treated DNA modified AuNPs 

was tested by dispersing it in exonuclease III buffer containing 10 mM tris acetate, 50 

mM potassium acetate, 25 mM NaCl, 3 mM MgCl2, and 20 mM CaCl2 pH 7.9 before 

further experiments. The stability towards the aggregation of particles was tested by 

measuring the UV-visible spectra and by observing the visual change in color. 

Exonuclease activity on DTT treated samples The DTT treated samples were 

finally dispersed in exonuclease III buffer (10 mM tris acetate pH 7.9, 50 mM potassium 

acetate, 25 mM NaCl, 3 mM MgCl2, and 20 mM CaCl2) to which 100 nM of target DNA 

was added and reacted with 0.2units µl-1 of exonuclease III. The exonuclease activity 

was determined by measuring the extent of aggregation of gold nanoparticles as 
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indicated by the ratio of absorbance at 650nm to the absorbance at 520 nm in UV-visible 

experiments. To compare exonuclease activity in different probes, optimum DTT 

concentration for each probe was used.  

Optimization of salt conditions for exonuclease assay Samples were pre-treated 

with DTT as described above. The DTT treated samples were finally dispersed in 1X tris 

acetate buffer pH 7.9 containing different concentrations of NaCl or MgCl2. To this, 50 

nM of target DNA and 0.2 units/µl was added. The effect was monitored by monitoring 

the extent of aggregation of AuNPs as indicated by the ratio of A650/A520 in UV-visible 

experiments. 

Colorimetric exonuclease assay The DTT treated samples were finally dispersed 

in optimized buffer i.e. 1x Tris-acetate buffer pH 7.9 containing 6 Mm of MgCl2. To this, 

50 nM of target DNA was added before adding different amounts of exonuclease III. The 

exonuclease III was detected either by visual assessment of change in color from red to 

blue or by the ratio of A650/A520 in UV-visible experiments. 

5.3. Results and Discussion 

5.3.1. DNA probe design 

The DNA probe was designed to accommodate both 3’ to 5’ exonuclease and AP 

endonuclease activities of exonuclease III. This is in contrast to traditional exonuclease 

III assays based on its 3’ to 5’ exonuclease activity. By designing new probe, we 

hypothesized that the assay would be rapid due to the employment of both 3’ to 5’ 

exonuclease activity of Exonuclease III and its AP endonuclease activity. Figure 39A 

represents the traditional probe design for the exonuclease activity without an abasic site 

(0X). The probe hybridized with the target to form a DNA duplex. In the presence of 

exonuclease III, mononucleotides were released from 3’ end due to its 3’ to 5’ 

exonuclease activity.  The newly designed probe incorporated a 3’-end abasic site (1X) 
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at position 21. When hybridized with the target, it formed a DNA duplex that was the 

substrate for both AP endonuclease activity as well as 3’ to 5’ endonuclease activity as 

shown in figure 39B. The AP endonuclease activity of Exonuclease III hydrolyzes the 

phosphodiester bond 3’ to the AP site forming 3’ OH group. The formed nick with 3’OH 

group then became a new substrate for 3’ to 5’ exonuclease activity. Therefore, in 

contrast to the traditional assays, exonuclease acted on multiple sites of a single DNA 

duplex with dual activities, which greatly enhanced the cleavage rate of DNA substrate.  

 
 

Figure 39. The design of DNA probes for determining the activity of Exonuclease III. (A) 
Traditional probe without an abasic site is the substrate for its 3’ to 5’ exonuclease 
activity. (B) New probe substrate incorporated with AP site, is the substrate for both 3’ to 
5’ exonuclease activity and AP endonuclease activity.  

 
Furthermore, the probe DNA (1X probe) with 38 nucleotides and an abasic site was 

designed as follows: 5’- thiol-poly (T6) - (N)12 - X- (N)20 – FAM-3’. The 5’ end was 

modified with the thiol group to attach it on the surface of AuNP whereas 3’ end is either 
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label-free or fluorescently labeled with the FAM. Poly(T6) was added to increase the 

flexibility of probe on the surface of AuNPs.  

5.3.2. DNA modification on gold nanoparticles 

5.3.2.1. Characterization of gold nanoparticles 
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Figure 40. Characterization of gold nanoparticles. (A) UV-visible spectra of the citrate-
capped gold nanoparticle of ~13 nm size showing a characteristic peak at 519 nm and 
(B) Dynamic light scattering spectra of prepared gold nanoparticle showing the 
hydrodynamic radius of ~ 18 nm with PDI of 0.10. 

 
The citrate-coated gold nanoparticles of ~ 13 nm were prepared by chemical 

reduction method as described in the procedure. Figure 40A represents the UV-visible 

spectra of prepared AuNPs showing the characteristic peak at 519 nm. The 

concentration of AuNPs was determined from UV-Visible spectroscopy using Beer’s 

law.258 The molar concentration was found to be 9.83 nM when the molar extinction 

coefficient of 2.7×108 cm-1M-1 was used. Figure 40B shown the hydrodynamic radius is ~ 

18 nm with a small poly dispersion index (PDI) of 0.10. 

5.3.2.2. Modification of probe DNA on the surface of AuNPs 

5’ thiol modified 1X probe DNA was attached to the surface of the AuNPs using 

standard gold-thiol chemistry whereas its 3’ end was used for exonuclease III reaction. 
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The modification was carried out using previously reported method with slight 

modification (see experimental section). The 3’ end of probe DNA was labeled with FAM 

(1X_FAM) to study the effect of DTT on probe DNA modified AuNPs. The probe DNA 

without incorporation of an abasic site (0x probe) was also modified with AuNPs to 

compare exonuclease assays based on only exonuclease activity or dual activities. 

5.3.2.3. DNA probe density on AuNPs 

DNA density was calculated by dividing molar concentration of immobilized DNA by 

molar concentration of the AuNP. The molar concentration of AuNP was determined 

directly from UV-visible experiments.258 The concentration of FAM-labeled DNA 

immobilized on the surface of AuNP could not measure directly due to the quenching 

effect of AuNPs on labeled FAM fluorophore molecules.259 Therefore, FAM-labeled DNA 

probes were displaced by DTT151 and separated from AuNPs for the measurement.  

Figure 41 represents the schematic of DTT displacement assay for the determination 

of DNA concentration on the surface of AuNP. The thiol-modified DNA was displaced 

from the surface of AuNP using ligand exchange reaction and separated from AuNPs 

using centrifugation. The fluorescence of released DNA was then measured, and the 

concentration of DNA was calculated with the established calibration curve. 

 

Figure 41. Schematic representation of DTT displacement fluorescence assay for the 
determination of the concentration of fluorescence labeled DNA on the AuNPs. 
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Figure 42 represents the calibration curve of the standard solution of 1X probe in the 

range of 0 to 250 nM with linear regression equation of = 178.07 𝐶 (𝑛𝑀) − 541.87 (𝑟 =

0.9993). The DNA probe concentration on the surface of AuNP was calculated by using 

the standard calibration curve. The surface coverage was found to be 106 ± 5 strands 

per AuNP (33.17 ± 1.5 pmole/cm2, by considering the 13-nm sized spherical AuNPs). 

Using similar method, the surface coverage for controlled 0X_FAM probe was found to 

be 95 ± 4 strands per AuNP (29.7 ± 1.25pmole/cm2). The 0X_FAM and 1X FAM probe 

modified AuNPs were also used to compare exonuclease III activity due to their 

comparable surface density.  
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Figure 42. The calibration curve of the standard solution of 1X_FAM probe in the range 
of 0 to 200 nM for the calculation of DNA probe density on the surface of AuNPs. Both 
standard solutions and DNA-modified AuNPs were reacted for 12 hrs with an equal 
volume of 1M DTT before measuring the fluorescence. 
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5.3.3. Principle of colorimetric assay based on exonuclease III assisted target 

recycling for determining the activity of Exonuclease III 

The assay is based on non-cross-linking aggregation of DNA-modified gold 

nanoparticles induced by removal of DNA probes from the AuNPs. Exonuclease 

assisted target recycling strategy has been used to amplify the signal for sensitive target 

detection.189,260 A low target concentration can be used to monitor the enzyme activity. 

This is significant in non-cross-linking AuNP-based colorimetric assays, as an 

aggregation of AuNPs induced by the hybridization of DNA at the concentration of 500 

nM has been reported.261  

Figure 43 represents the schematic of a colorimetric assay for determining the 

activity of Exonuclease III based on the enzymatic cleavage of DNA substrate. The DNA 

probe immobilized on the surface of the gold nanoparticle (Probe-AuNP) acts as both 

colloidal stabilizer of AuNP as well as a recognition element for its complementary target 

DNA. The AuNP-attached probe hybridized with its complementary target to form 

exonuclease specific DNA duplex substrate. In the absence of exonuclease III, the 

AuNP-attached DNA remained intact; therefore, it prevented the aggregation of AuNPs 

and was red due to electrostatic repulsion. In the presence of exonuclease III, duplex 

DNA on the surface of the AuNP was recognized and mononucleotides was released 

from 3’ hydroxyl end of duplex DNA. Meanwhile, its AP endonuclease activity recognized 

the AP site of duplex DNA and underwent AP endonuclease activity to form a new 3’ OH 

nick. The newly formed 3’ OH nick also became the substrate for its exonuclease activity 

and started to release mononucleotides from the probe DNA and ultimately released 

intact target DNA into the solution. The released target hybridized with another probe on 

the surface of the gold nanoparticle and formed a new duplex to restart the cycle. This 
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cycle repeats until almost all the probes were removed from the AuNPs. The sheared 

AuNPs were not stable; resulting in a blue aggregation of AuNPs.  

 

Figure 43. Schematic representation of target recycling in colorimetric assay of 
exonuclease III: (A) Probe DNA with AP site on the surface of the AuNP with 
characteristic red color (B) duplex DNA on the surface of AuNP, (C) Exo III recognizes 
both AP as well as 3’ to 5’ exonuclease site, (D) probes are cleaved from the surface of 
AuNP by exonuclease III (E) most of the probes are cleaved on the surface of AuNP 
resulting aggregation of AuNPs. 

 
Thus, the aggregation of gold nanoparticle is used as an indicator to monitor 

exonuclease reaction on DNA-modified AuNPs. The extent of exonuclease kinetics can 

be monitor by measuring the degree of aggregation of AuNPs. The DNA on the surface 

of gold nanoparticles acts as an electrostatic and steric stabilizer. Therefore, DNA-

modified AuNPs are in the red color with a peak at ~520 nm. The removal of DNA probe 

from the surface of the gold nanoparticle destabilized and increased the tendency of 

aggregation of gold nanoparticles. Therefore, the digested AuNPs produced a blue 
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aggregation with a characteristic peak at ~ 650 nm. Therefore, the ratio of A650/ A520 

was taken as a degree of AuNP aggregation. 

5.3.4. DTT treatment of the DNA-AuNP probe 

The activity of enzyme is significantly different between surface-phase reaction and 

solution-solution reaction. The hybridization of the target on AuNP-conjugated DNA 

probe is possibly inhibited by non-specific adsorption of DNA on the surface, unfavorable 

confirmation of DNA probe on the surface and limited space for DNA binding on the gold 

nanoparticle surface. To solve these problems, we used a thiolated small molecule 

dithiothreitol (DTT) as back-filler to remove non-specific DNA and reduce DNA surface 

coverage on the surface of the gold nanoparticle, facilitating favorable DNA hybridization 

on the nanoparticle surface. We further investigated the kinetics of the enzyme using the 

DTT-treated AuNPs. 

5.3.4.1. DTT as a back-filler  

Alkanethiols such as mercaptohexanol (MCH), mercaptoethanol (MCE) and DTT 

(dithiothreitol) have been widely used to immobilize on the gold surface to form self-

assembly monolayer (SAM) to lift DNA probe for enhanced DNA hybridization 

efficiency.262,263 This backfilling of alkanethiols ensures the vertical orientation of the 

thiolated DNA probe and also reduces non-specific DNA adsorption and DNA surface 

coverage. It has been proven that the back-filling of DTT on the surface of the gold 

electrode is better than that of MCH.264 Although such back-filling of the alkanethiols is 

straight forward on electrode surfaces, it is somehow challenged for the surface of 

AuNPs due to the poor stability of gold nanoparticle at low DNA surface coverage. 

Recently, Zhao et al.161 have used a low concentration of MCH as a back-filler to 

increase DNA hybridization efficiency on AuNPs.  
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Figure 44. DTT as a back-filler for controlling DNA surface coverage on the DNA-
modified AuNPs. 

 
In this study, we used DTT as new back filler to control DNA surface coverage on 

AuNP surface (Figure 44). DTT is a strong reducing agent with a redox potential of -

0.33V at pH 7.265 The reduction of disulfide bond proceeds by two subsequent thiol-

disulphide exchange reactions, resulting in the cyclic structure on the surface of the 

AuNPs. A very high concentration of DTT, typically in molar range, has been used to 

remove DNA probe from the AuNP151 by ligand displacement reaction due to its higher 

affinity to the gold surface as compared to the thiol modified DNA. To partially remove 

the probe DNA on from the modified AuNP, we have used very low concentration of DTT 

in µM range to control DNA surface coverage on the surface of the gold nanoparticle. 

We hypothesize that it works as a backfiller to change the horizontal or tilted orientation 

of DNA strands attached to gold nanoparticle into the vertical ones. During the reaction, 

it may also remove most non-specifically adsorb and some specifically adsorbed DNA 

from the surface.  
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5.3.4.2. Kinetics of DTT-displacement for DNA-modified AuNPs 

To find out whether DTT reduced the DNA surface coverage on the surface of the 

modified AuNPs, we carried out fluorescence experiments using the AuNP-conjugated 

FAM-labeled DNA probe. Figure 45 represents the kinetics of the FAM-labeled probe 

modified AuNPs treated with different concentrations of DTT. Although fluorescence of 

the FAM probe is quenched by AuNPs, we were able to monitor the fluorescence 

change of the modified AuNPs with different concentration of DTT.  

0 10 20 30

15000

30000

45000

50 mM

20 M

10 M

5 M

F
lu

o
re

s
c

e
n

c
e

 (
a

.u
.)

Time (minutes)

0 M

 

Figure 45. Kinetics of displacement of FAM-labeled DNA from the surface of the gold 
nanoparticle by DTT.   

 
In the absence of DTT, there was small fluorescence change of about 3000 a.u. 

during the measurement period, indicating the addition of buffer might have small effect 

on FAM fluorescence. However, with the addition of DTT solution from 5 µM to 50 µM, 

the fluorescence of the solution increased, indicating that DTT either changed orientation 

or/and removed FAM-labeled DNA from the AuNP surface. Both the change in 

orientation and release of FAM-labeled DNA into the solution increased the fluorescence 

due to a decreased quenching efficiency of AuNPs.  
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5.3.4.3 Effect of DTT treatment on surface coverage of the DNA-modified AuNPs 

60-DTT 50-DTT 35-DTT 20-DTT 10-DTT 0-DTT
0

20

40

60

80

100

C
o

v
e

ra
g

e
 (

S
tr

a
n

d
s

/p
a

rt
ic

le
)

0 70 140 210 280

0

15000

30000

45000

F
lu

o
re

s
c

e
n

c
e

 (
a

.u
.)

Concentration (nM)

Samples

 

Figure 46. Effect of DTT treatment on the surface coverage of DNA on the surface of 
AuNP. (A) Calibration curve to determine the change in surface coverage with different 
concentration of DTT and (B) change in surface coverage as a function of DTT 
treatment. 

To find out the change of DNA surface coverage after the treatment with low 

concentration of DTT, we separated the DTT-treated AuNPs by washing and 

centrifugation as described in the procedure. The DNA surface coverage of DTT-treated 

AuNPs was determined by completely removing DNA from the surface of the gold 

nanoparticle using the high concentration of DTT (0.5M). Figure 46A represents a 

calibration curve of standard 1X_FAM probe solutions in the range of 0 to 250 nM with 

linear regression equation of 𝑌 = 179.04 𝐶 (𝑛𝑀) − 298.98 (𝑟 = 0.9994). Using this 

established calibration curve, we calculated the DNA surface coverage of different DTT-

treated samples under same conditions (Figure 46B). The surface coverage of 0, 20, 35, 

50, 60 μM DTT-treated samples was found to be 86, 80, 77, 68, 60, 59 DNA strand per 

AuNP which is equivalent to 26.9, 25.0, 24.0, 21.2, 18.7 and 18.4 pmole/cm2, 

respectively. Clearly, the DNA surface coverage decreased from its initial value (86 DNA 

strand per AuNP) to 59 DNA strand per AuNP with 60 µM DTT treatment for 30 minutes. 
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5.3.5. Activity of Exonuclease III on DTT-treated DNA-modified AuNPs  

5.3.5.1. Effect of DTT treatment on the activity of Exonuclease III 

To find the effect of DTT treatment on the activity of Exonuclease III, we treated the 

DNA-modified AuNPs with DTT concentration in the range of 0 to 60 μM range for 30 

minutes. We found that the DTT treatment above 60μM concentration produced DNA-

modified AuNPs that were not stable in our high salt buffer (10 mM Tris-acetate, 50 mM 

potassium acetate, 20 mM CaCl2, 25 mM NaCl and 3 mM MgCl2). The activity of Exo III 

was determined by monitoring the rate of aggregation (the absorbance ratio between 

650 nm and 520 nm) of DTT-treated AuNPs in the presence and absence of target. 

Figure 47 represents the kinetics of the exonuclease III reaction on DNA-modified 

AuNPs treated with different DTT concentrations. 
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Figure 47. Increase in specificity of exonuclease III by treating with different 
concentrations of DTT in the reaction buffer containing 10 mM tris acetate pH 7.9, 50 
mM potassium acetate, 25 mM NaCl, 20 mM CaCl2 and 3 mM MgCl2. The reaction was 
carried out with 0.02 units/µl of exo III with 100 nM target DNA. 
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It was found that the activity of Exo III increased with the increase of DTT 

concentration in a one-hour reaction time. The enzyme kinetics in the absence of target 

was very similar for all DTT-treated AuNPs as indicated by constant absorbance ratio of 

~0.25. It means that effect of DTT treatment has no effect on the kinetics of exonuclease 

III in the absence of target. However, the remarkable difference of exonuclease III 

kinetics in the presence of target indicated that the activity of Exonuclease III increased 

with the increase of DTT concentration. After a 60-minute reaction, the difference of 

absorbance ratio increased from 0.10 in the sample without DTT treatment to 0.79 with 

60 µM DTT treated sample (Figure 47). This is possibly attributed to more efficient 

hybridization of target DNA with probe DNA and more active Exo III digestion on the 

surface of the AuNPs treated with DTT. 

5.3.5.2. Effect of DTT treatment on rate of Exo III catalyzed reaction 

We also studied the effect of DTT treatment on rate of Exonuclease III-catalyzed 

reaction.  
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Figure 48. Kinetics of exonuclease III on DTT treated DNA-AuNP probes: (A) kinetics of 
AuNP aggregation and (B) plot of rate of reaction vs DTT concentration. 0.02 unitsμl-1 of 
exonuclease III was used in the presence of 100 nM target DNA, with the DTT reaction 
of probe-AuNPs for 30 minutes in the concentration range of 0 to 60 µM. 
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Figure 48 represents the kinetics of exonuclease III on the DNA-modified AuNPs 

treated with different concentrations of DTT in the range of 0 to 60 μM for 30 minutes. It 

was found that rate of Exo III digestion increased with the increase of DTT 

concentration. Figure 48A represents the relationship between the rate of exonuclease 

III-catalyzed reaction and the concentration of DTT employed in the experiment. We 

observed that the rate of reaction increased from 0.0025 per minute with the probe 

without DTT treatment to 0.1040 per minute with 60 µM DTT treated AuNPs (Figure 

48B). 

5.3.6. Effect of concentration of target DNA on reaction rate of Exo III-catalyzed 

reaction 
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Figure 49. Effect of target concentration on the rate of exonuclease catalyzed reaction: 
The plot of the rate of aggregation (absorbance ratio) against the target concentration in 
the range of 0 to 200 nM. 60 µM DTT treated probe-AuNP substrate was mixed with the 
different target concentrations in 10 mM Tris-acetate buffer at pH 7.9 containing 50 mM 
potassium acetate, 20 mM CaCl2, 25 mM NaCl and 3 mM MgCl2 before reacting with 
0.2units/µl for 30 minutes.  
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We used the DTT-treated AuNPs to study the effect of target concentration on the 

reaction rate of Exo III-catalyzed reaction. The concentration of target DNA was varied 

from 0 to 200 nM, with optimum DTT-treated DNA-modified AuNPs. Figure 49 

represents the plot of absorption ratio of the modified AuNPs with different concentration 

of targets and 0.02 units/µl exonuclease III after a 30-minute reaction. Experimental 

results demonstrated that the aggregation rate of AuNPs increased with the increase of 

target concentration from 0 to 50 nM. With further increase in target concentration, the 

rate remained practically constant as shown in Figure 49. Noted that the rate of reaction 

increased linearly from 0 to 15 nM as shown in the inset of Figure 49. When the 

absorbance ratio of ~ 0.6 was used as a threshold value for a clear difference in color 

from red to blue, a concentration of ~ 7.56 nM was the minimum target concentration 

that can be observed by naked eye.  
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Figure 50. Effect of DTT treatment on target concentration on the rate of exonuclease 
catalyzed reaction: The plot of rate of aggregation (absorbance ratio) against the target 
concentration in the range of 0 to 250 nM. 0, 20, 60 µM DTT treated probe-AuNP 
substrates were mixed with the different target concentrations in 10 mM Tris-acetate 
buffer at pH 7.9 containing 50 mM potassium acetate, 20 mM CaCl2, 25 mM NaCl and 3 
mM MgCl2 before reacting with 0.2units µl-1 for 30 minutes.  
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We further compared the exonuclease activity on different DTT-treated, DNA-

modified AuNP. We found that different DTT-treated AuNPs produced different target 

dependency of exonuclease reaction. Figure 50 represents the comparison of the 

calibration curves of different DTT-treated DNA-modified AuNPs. The absorbance ratio 

of DNA-modified AuNPs without DTT treatment remained practically constant in the 

target concentration range from 0 to 250 nM. However, the absorbance ratio of both 20 

and 60 µM DTT-treated, AuNPs increased with the increase of target concentration from 

~ 0.25 to ~0.92 and ~0.25 to ~1.12 respectively, indicating DTT treatment greatly 

enhanced exonuclease III activity.  

For 20 µM DTT-treated, DNA-modified AuNPs, the absorbance ratio increased up to 

0.9 with an increase of target concentration from 0 to 200 nM. However, for 60 µM DTT-

treated DNA-modified AuNPs, the absorbance ratio increased up to 1.1 in concentration 

range of 0 to 50 nM of target and remains constant on further increase in target 

concentration up to 200 nM. The difference in exonuclease kinetics can be explained by 

higher enzyme efficiency in DTT-treated samples as compared to the untreated sample. 

This is attributed to  better hybridization efficiency of target DNA, high Exo III activity and 

faster aggregation of AuNPs in DTT-treated samples due to lower DNA surface 

coverage on the AuNP surface. 

5.3.7. Performance of newly designed DNA probe  

To compare the performance between newly designed 1X probe for the dual activity 

of Exonuclease III and traditional 0X probe for 3’ to 5’ exonuclease activity, we 

performed the Exo III based colorimetric assay under same experimental conditions with 

two different DNA-modified AuNPs that had similar surface density of 105±4 and 90±5 

Figure 51 represents the comparison of assay performance of two different DNA-

modified AuNPs. The comparison of absorbance ratio between the presence and 
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absence of target shows that newly designed probe was more specific. The difference of 

absorbance ratio was ~0.74 for 1X probe as compared to just ~0.35 for 0X probe after 

60 minutes of reaction time. Similarly, the comparison of the reaction rate of two different 

probes demonstrated that faster red-to-blue color change could be obtained in the newly 

designed 1X probe as compared to the traditional 0X probe. 
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Figure 51.  Comparison of performance of newly designed probe with the dual activity of 
exonuclease III (1X) with the traditional probe with 3’ to 5’ exonuclease activity (0X): the 
kinetics of exonuclease III reaction for (A) 0X and (B) 1X probe. The reaction was carried 
out using 0.2 units/µl of Exo III and 100 nM target DNA in 10 mM tris acetate buffer at pH 
7.9 containing 50 mM potassium acetate, 20 mM CaCl2, 25 mM NaCl and 3 mM MgCl2. 
Both DNA probes were treated with optimized dithiothreitol concentration before the 
exonuclease assay. 

 
As a result, the color change from red to blue was observed in ~9 minutes in the 1X 

probe as compared to ~45 minutes in the 0X probe. When the probe was hybridized with 

the target, the newly designed 1X probe was a substrate for both AP endonuclease and 

3’ to 5’ exonuclease activities. Exo III utilized its AP endonuclease activity to cleave the 

abasic site incorporated into the probe, forming a new 3’ OH group for Exo III to employ 

its exonuclease activity. 3’ to 5’ exonuclease activity now acted on two separate 

positions of duplex DNA to perform digestion, releasing mononucleotides from two 
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different positions that remarkably increased the rate of cleavage of probe DNA from the 

surface of AuNPs.  

5.3.8. Exonuclease assay based on DTT-treated DNA-modified AuNPs  

To apply DTT-treated DNA-modified AuNPs for the colorimetric assay of the activity 

of exonuclease III, we modified the unlabeled 1X_NoFAM probe on the AuNPs.  

5.3.8.1. Modification and characterization of unlabeled DNA probes on AuNPs 

Figure 52 represents the schematic of DTT displacement assay for the determination 

of DNA concentration on the surface of AuNP. The thiol modified DNA was displaced 

from the surface of AuNP using ligand exchange reaction and separated from gold 

nanoparticle using centrifugation. The fluorescence of released DNA was then measured 

by using oligreen dye and compared with the calibration curve using standard DNA 

solution.  

 

Figure 52. Schematic representation of DTT displacement fluorescence assay for the 
determination of the concentration of fluorescence labeled DNA on the surface of AuNP. 

Figure 53 represents the calibration curve of unmodified 1X_NoFAM probe in the 

range of 0 to 150 nM using oligreen assay. To avoid the fluorescence change upon 

addition of DTT, the same DTT solution (0.5 M) was used for both preparations of 

standard curve and removal of thiol DNA from the AuNP surface. The concentration of 

DNA on the surface of AuNP was determined using the established calibration curve 
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with a linear regression equation (y = 131.26X + 343). The surface coverage was 

determined by dividing concentration of the DNA immobilized on AuNP by the 

concentration of AuNP (71.68 nM) and was found to be 68 ± 5 DNA strands per AuNP 

(21.2 ± 1.5 pmole cm-2). 
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Figure 53. Calibration curve of of DTT treated 1X_NoFAM probe in the range of 0 to 150 
nM for the determination of surface coverage by DTT displacement method. The DNA 
concentration on DTT treated samples were determined by using oligreen assay. 

5.3.8.2. NaCl concentration for optimizing sensor performance  

Sodium chloride is essential in our Exo III digested colorimetric assays involving 

DNA-modified AuNPs. It is necessary not only to increase DNA hybridization efficiency 

on the nanoparticle surface but also is required to produce a salt-induced aggregation of 

AuNPs. In order to find out whether NaCl is required for detecting the activity of Exo III 

using our DTT-treated DNA-modified AuNPs, we performed experiments with 6 mM 

concentration of MgCl2 and different concentrations of NaCl in the range of 0 to 100 mM. 

Figure 54 represented the effect of 0(A), 25(B), 50(C), 100(D) mM NaCl concentration in 



 
 

110 

the presence and absence of target. In the absence of target, there is negligible effect of 

NaCl indicated by constant absorbance ratio. However, in the presence of target, the 

absorbance ratio decreased with the increase of NaCl concentration (Figure 54E). 
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Figure 54. Effect of different concentration of NaCl (0,25,50 and 100 mM) on the activity 
of Exonuclease III on DTT treated gold nanoparticle substrate in the presence (+) and 
the absence (-) of target DNA (A, B, C and D respectively). Comparison of change in 
absorbance ratio (E) and rate of reaction (F) in different concentration of NaCl in the 
presence of 50 nM of target DNA in 10 mM Tris-acetate buffer pH 7.9 containing 6 mM 
of MgCl2. 

The relationship between rate constant and NaCl concentration indicated that the 

aggregation rate of AuNPs decreased with the increase of NaCl concentration. This is 

due to the decreased activity of Exonuclease III with the increase of salt concentration, 

which is consistent with the previous reports.182 Therefore, we did not use NaCl for our 

colorimetric exonuclease assay to maximize the assay’s sensitivity. 

5.3.8.3. MgCl2 concentration for optimizing sensor performance   

Magnesium chloride is essential for both AP endonuclease and 3’ to 5’ exonuclease 

activity of Exonuclease III.176,178,183 In order to find the optimum concentration of MgCl2 
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for utilizing dual activities of exonuclease III, we varied the concentration of MgCl2 in the 

range of 0 to 10 mM and we found that DTT-treated AuNPs were not stable in the buffer 

containing MgCl2 above 10 mM.  
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Figure 55. Effect of different concentration of MgCl2 (0, 3, 6 and 9mM) on the activity of 
Exonuclease III on DTT-treated probe-AuNP substrate in the presence (+) and in the 
absence (-) of target DNA (A, B, C and D respectively). Comparison of rate of reaction 
(E) in different concentration of MgCl2 in the presence of 50 nM of target DNA in 10 mM 
Tris-acetate buffer at pH 7.9. 

Figure 55 represented the effect of MgCl2 concentration on Exonuclease activity. In 

the absence of MgCl2, there was no activity of exonuclease III, indicating that MgCl2 is 

essential for activating exonuclease activity. The exonuclease reaction rate increased 

with the increase of MgCl2 concentration (Figure 55E). However, with the higher 

concentration of MgCl2(10mM), the specificity of Exo III was lost as indicated by the 

smaller difference of absorbance ratio between with and without target (~ 0.3) (Figure 
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55D) as compared to the difference in absorbance ratio in the presence of 6 mM MgCl2 

(~ 0.6). Therefore, 6 mM of MgCl2 was used as the optimum concentration for 

generating fast and specific exonuclease III reaction. 

5.3.8.4. Colorimetric exonuclease assay based on DTT-treated DNA-modified 

AuNPs 

Figure 56 represents the relationship between the absorbance ratio and different 

concentrations of exonuclease III in the range of 0 to 100 units/ ml after a 15-minute 

exonuclease III reaction. 
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Figure 56. The plot of the ratio of absorbance against different concentration of 
exonuclease III in the range of 0 to 100 units/ml. The absorbance ratio was measured 
after 15 minutes of the reaction of different concentrations of exonuclease III with DTT-
treated 1X probe DNA on the surface of the gold nanoparticle in the presence of 50 nM 
of target DNA in 10 mM Tris-acetate buffer pH 7.9 containing 6 mM of MgCl2. 

 
The aggregation rate of AuNPs, as indicated by absorbance ratio, increased with the 

increase of exonuclease III concentration, suggesting that aggregation of AuNPs is 

directly related to exonuclease activity. The absorbance ratio increased with the increase 
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of exonuclease concentration and became saturated when 20 units/ml or higher of 

Exonuclease III was used. Clearly, as low as 2 units/ml of exonuclease III could be 

detected by naked eye. 

 
5.4. Broader Impacts 

We have developed a new colorimetric assay based on a DNA substrate for detecting 

DNA and exonuclease activity. We were able to enhance the rate of exonuclease 

reactions on AuNP-conjugated DNA probes by designing new probe and by reducing the 

surface coverage of DNA on the surface of AuNPs using DTT as a backfiller. We were 

able to lower the detection time from several hours to 15 minutes by lowering the surface 

coverage of DNA-modified gold nanoparticles by DTT treatment. The developed method 

was able to detect as low as 8 nM of DNA and 2 units/ml of exonuclease III within 15 

minutes by the naked eye, which is significant for point of care applications. The current 

colorimetric assay could be used to screen the inhibitors of class II AP endonucleases in 

a high-throughput fashion to develop and design inhibitors for the predictive and 

prognostic study of cancer markers. The detection platform could be extended to other 

DNA probes or aptamers for fast and sensitive detection of any other disease markers or 

small molecules. We envision that development of transferring the solution-based 

method into paper substrate could lead to the paper-based colorimetric sensor for point 

of care diagnostics in the future. 
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Chapter 6. Summary and Future work 

6.1. Summary 

This dissertation describes the fabrication, characterization, and application of 

simple, cheap, and efficient nanomaterial-based platforms for electrochemical and 

colorimetric sensing applications. This work focused on the use of the excellent 

electrochemical properties of CNTs for paper-based electrodes and the sensitive optical 

properties of AuNPs for colorimetric detection. First, we demonstrated the formation of 

films comprising low-density, three-dimensional, porous, interconnected networks of 

CNTs on paper by vacuum filtration of well-dispersed CNTs, and demonstrated the use 

of such films as electrochemical sensors for the sensitive detection of guanine-based 

nucleotides. Second, we assembled three-dimensional, porous Pt networks on top of a 

conducting CNT support through vacuum-assisted assembly and demonstrated the use 

of these hybrid films as an electrocatalyst for methanol oxidation. Finally, we used DTT 

to modulate DNA surface coverage of modified AuNPs, which we used for sensitive and 

fast detection of DNA and enzymes.  

CNTs have been used in the past as a modifier to increase electron transfer rates on 

different electrode surfaces, and in Chapter 3 we demonstrated the use of paper as a 

substrate for CNT-based electrodes. The resulting porous, uniform, well-dispersed, 

conductive CNT network is an excellent alternative to traditional CNT-based electrodes. 

We found that the optimum surface density of CNTs is very important in terms of 

performance as an electrode material, strongly influencing both conductance and 

electron transfer rates. By lowering the CNT surface density, we were able to decrease 

background current, enabling sensitive detection of guanine-based nucleotides. While 

the sensitivity is not yet ideal for practical applications, it is comparable to recently 

reported CNT-modified electrodes with or without other modifying agents.  
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Pt-SWCNT composites have been widely used on the surface of a variety of 

traditional electrodes, and in Chapter 4 we showed that Pt-SWCNT composites could be 

directly formed on a paper substrate. We further demonstrated the use of paper-based 

SWCNT thin films prepared by vacuum filtration method as a conductive support for the 

platinum catalyst. Our paper-based Pt-SWCNT thin film proved to be a much better 

conducting support compared to the commonly-used classical GC and FTO solid 

electrodes. As a demonstration of the functionalization of paper-based CNT electrodes, 

we deposited platinum nanoparticles via both a vacuum filtration method and an 

electrodeposition method. The Pt-SWCNT composites produced via the vacuum filtration 

method showed three-dimensional, continuous and porous platinum structure with a 

relatively narrow size distribution of PtNPs, resulting in the higher electrochemical 

surface area and electrocatalytic response towards methanol compared to the 

electrochemically-deposited hybrid films.  

It has been demonstrated that the density of thiol-modified DNA on the surface of 

AuNPs affects the colloidal stability of the particles, the orientation of probe DNA and its 

hybridization efficiency with the target, and the activity of DNA-digesting enzymes. The 

combination of all these factors ultimately dictates the reaction time and sensitivity of 

DNA-AuNP-based colorimetric assays. In Chapter 5, we demonstrated that DTT could 

be used as a back-filler to modulate the DNA density on the surface of AuNPs. Using 

this approach, we were able to greatly increase the reaction rate and sensitivity of DNA-

AuNP colorimetric assays for both DNA and exonuclease III. 

6.2. Future work 

This dissertation demonstrates the electrochemical and colorimetric detection platforms 

for the development of low-cost, portable and disposable paper-based analytical devices 

for on-site or point of care applications. The future work involves development of 



 
 

116 

methods to incorporate paper-based SWCNT or PtNP-SWCNT electrode material on 

paper-based devices for the development of low-cost, portable and disposable paper-

based sensors. The flexibility of paper or its ease of dissolution could be used to 

incorporate into the choice of analytical devices. However, possible changes in 

electrochemical properties during incorporation need to consider. Similarly, more 

research is required to adopt solution-based colorimetric detection platform on a paper 

substrate. The incorporation of DNA modified gold nanoparticle on paper substrate, 

efficiency of DTT treatment, the conformation of DNA on the surface of the gold 

nanoparticle and the enzyme efficiency need to be considered before development of 

portable paper-based device for rapid screening of DNA, small molecules or enzyme 

inhibitors. 
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