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ABSTRACT OF THE DISSERTATION 

A FRAMEWORK FOR RECOMMENDING SIGNAL TIMING IMPROVEMENTS 

BASED ON AUTOMATIC VEHICLE MATCHING TECHNOLOGIES  

by 

Xuanwu Chen 

Florida International University, 2016 

Miami, Florida 

Professor Mohammed Hadi, Major Professor 

Continuously monitoring and automatically identifying existing problems in traffic signal 

operation is a challenging and time-consuming task. Although data are becoming available 

due to the adoption of emerging detection technologies, efforts on utilizing the data to 

diagnose signal control are limited. The current practices of retiming signals are still 

periodic and based on several days of aggregated turning movement counts. This 

dissertation developed a framework of automatic signal operation diagnosis with the aim 

to support decision-making processes by assessing the signal control and identifying the 

signal retiming needs. The developed framework used a combination of relatively low-cost 

data from Wi-Fi sensors and historical signal timing records from existing signal 

controllers.  

The development involved applying multiple data matching and filtering 

algorithms to allow the estimation of travel times of vehicular traversals. The Travel Time 

Index (TTI) was then used as a measure to assess the traffic conditions of various 

movements. Historical signal timing records were also analyzed, and an additional signal-
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timing measure, referred to as the Max-out Ratio (MR), was proposed to evaluate the 

frequency in which the green time demand of a phase exceeded its preset value. 

Thresholds for the TTI and MR variables were used as a basis for the diagnosis. 

This diagnosis first identified the needs for assigning additional green times for individual 

signal phases. Further assessments were then made to determine whether or not the cycle 

length for the entire intersection or capacity was sufficient. 

The developed framework was implemented in a real-world signalized intersection 

and proved to be capable of identifying retiming needs, as well as providing support for 

the retiming process. Compared to field observations, the diagnosis results were able to 

reflect the signal operations of most of the movements during various time periods. 

Moreover, the flexibility of the developed framework allows users to select different 

thresholds for various movements and times of day, and thus customize the analysis to 

agency needs. 
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CHAPTER 1  

INTRODUCTION 

1.1 Research Background 

Identifying existing signal control problems is one of the most challenging tasks currently 

confronting transportation agencies. Traditionally, traffic signal control problems are either 

identified by signal operation personnel through field observations or are based on drivers’ 

complaints. Otherwise, a signal is usually reevaluated and retimed as necessary or 

periodically, and the frequency of the reevaluation depends on practitioner resources and 

experience.  

Data collections for signal timing evaluation can be expensive and labor-intensive. 

For instance, a basic, important input to the traditional signal timing optimization software, 

such as SYNCHRO and TRANSYT-7F, is turning movement counts at intersections. 

Collecting turning movement counts requires personnel to stay near an intersection or in 

their offices and watch videos and spend hours manually counting the number of vehicles 

for each movement. Despite the application of newer data collection aid techniques, such 

as video recording and automated data input devices, collecting turning movement counts 

still requires great effort. Consequently, in common practice, turning movement counts are 

only available for one to three days out of a year. These turning movement counts are 

normally combined with three to seven days of tube counts at several locations of the 

arterial in an attempt to capture the variability of demands between days.  
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The collected data are typically adjusted, averaged, and aggregated into 15-minute 

bins, as required by modeling software packages. Although this is the most cost-effective 

option in many cases, it is obviously not adequate enough to predict the large variations in 

traffic patterns between days, and thus to account for signal timing plan selections. 

Developing signal timing plans based on the aggregated data from only a few days may 

lead to inaccurate or biased signal operation assessment of the intersection (Bullock et al. 

2014). The same type of problem is also found in other manual data collection procedures 

for various performance measures.  

With the implementation of central signal control systems, detector and signal 

malfunctions are automatically reported to traffic control centers. In addition, the data 

uploaded to the traffic control centers have traditionally included the status of stop-line 

detectors and signal phase data at signalized intersections. However, these data are only 

used in a limited fashion to support decisions associated with signal control. On the other 

hand, with the emergence of Intelligent Transportation Systems (ITS) detection 

technologies and increasing deployment of ITS devices along arterial streets, such as 

Automatic Vehicle Identification (AVI) technologies (e.g., Wi-Fi sensors, Bluetooth 

sensors, vehicle signature matching based on magnetometers), point detectors, and 

advanced control systems, detailed data are becoming available to support traffic control 

decisions. However, as stated above, such utilization is limited. 

Collecting detailed traffic data from the aforementioned multiple sources for 

signalized arterial streets is increasingly being considered and performed by transportation 

agencies. However, there are limited efforts on the use of such data for better management 

of these streets in current traffic signal practices. Given a 69 out of 100, the 2012 National 
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Traffic Signal Report Card graded the existing traffic signal operation with a “D+” letter 

grade (National Transportation Operations Coalition 2012). In the subcategories of traffic 

signal operation, the signal timing practices received a “C” grade, whereas traffic 

monitoring and data collection were rated as “F.” It was reported that most agencies 

analyzed signal timing settings such as cycle lengths, offsets, phase sequence, and green 

splits as part of their traffic signal implementation and evaluation. However, in terms of 

traffic monitoring and data collection, only a small portion of agencies show significant 

effort in developing performance monitoring systems, assessing the quality of the collected 

data, or archiving traffic data. This implies a gap between signal timing practice (e.g., 

signal evaluation, optimization, etc.) and related technical support (e.g., data collection, 

data analysis, decision support, etc.), which is usually due to either lack of data or analysis 

tools. 

1.2 Problem Statement 

Without further utilization of the data despite availability, practitioners have little 

information about the signal operations, except for detecting malfunctions. Manual field 

observations could be conducted, but they are expensive and labor-intensive. Moreover, it 

is impossible to conduct field observations frequently for a large number of intersections. 

Another limitation of the current practices is the difficulty of monitoring and evaluating 

signal operation continuously, other than for a short period of time.  

1.3 Goal and Objectives 

The goal of this dissertation is to develop a framework for automatic decision-support 

signal operation diagnosis that uses a combination of relatively low-cost data from AVI 
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sensors and data from existing signal controllers. The specific objectives of this dissertation 

are as follows: 

1. Develop data preprocessing procedures to prepare valid data for use in assessing 

signal operation from AVI sensors and existing signal controllers, including data 

matching, data filtering, and data aggregation procedures.  

2. Develop a diagnostic scheme to diagnose the traffic signal operations and provide 

recommendations for improvements, using data from AVI sensors combined with 

historical signal timing records from the signal controller.  

1.4 Dissertation Organization 

This dissertation is organized into six chapters. Chapter 1 introduces the background of 

this dissertation research, describes the problems to be solved, and sets the goals and 

objectives to be achieved. 

Chapter 2 presents a literature review of the existing studies on signal operation 

diagnosis, including data collection, performance measure utilization, and signal operation 

evaluation. The main purpose of this review is to understand the state-of-the-art practices 

on signal operation diagnosis and their advantages and disadvantages. 

Chapter 3 describes the methodology developed in this dissertation for the proposed 

framework of traffic signal operation diagnosis, which includes data acquisition and 

preprocessing, performance measure selection and generation, criteria establishment, and 

signal control problem identification. The complete three-level signal operation diagnosis 

scheme developed in this dissertation is described in detail herein. 
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Chapter 4 details the implementation of the developed framework to assess the 

signal operation of a real-world signalized intersection, followed by an evaluation of the 

framework’s performance. 

Chapter 5 discusses the performance of the framework with various values from 

the corresponding thresholds. The impacts of the thresholds on the diagnosis results are 

also presented in this chapter. 

Finally, Chapter 6 summarizes the findings from this dissertation, highlights the 

research contributions, and provides recommendations for future study. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

Limited studies and practices on traffic signal diagnosis can be found in the current 

literature. In order to diagnose a traffic signal operation, which is the major goal of this 

dissertation, various performance measures are needed. With the appropriate and adequate 

performance measures, it is possible to identify traffic patterns and problems associated 

with signal control systems. In this context, rich data are critical to assure the generation 

of credible performance measures for signal operation diagnosis. 

2.2 Automated Data Collection and Utilization for Traffic Signal Operation Diagnosis 

Even though automated traffic data collection, archiving, and utilization are not new 

concepts, most related efforts are geared toward freeway systems rather than arterial streets. 

An example is the freeway Performance Measurement System (PeMS) (Chen 2002), which 

collects real-time traffic data from point traffic detectors and estimates Vehicle Miles 

Traveled (VMT), Vehicle Hours Traveled (VHT), and travel times. PeMS is a web-based 

tool that provides reports for traffic planners, operators, and engineers. 

With the emergence of a wider use of ITS detection technologies on arterial streets, 

such as Wi-Fi sensors, Bluetooth readers, upstream point detectors, etc., data for signalized 

arterial streets become richer and more complex. In combination with information from 

modern signal controllers and additional stop-line detectors, a full picture of the operation 

at signalized intersections can be delineated. Several studies investigated the subject of 

collecting and analyzing data to extract performance measures for traffic signals.  
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2.2.1 Automated Data Collection and Performance Measure Generation 

The Arterial Performance Measurement System, or A-PeMS, was proposed to adopt 

similar concepts to those for freeway performance measures, as the aforementioned PeMS. 

It is also a web-based system that was developed to automate processes for data collection 

and processing on arterial streets (Petty and Barkley 2011). It utilizes various types of 

sensor information, such as flows, speeds, travel times, and so on, combined with signal 

timing information, including static plans and real-time measurements, and applies it to the 

signalized arterial streets. A-PeMS was designed to process multiple types of sensor data, 

such as simple loops data, video-based detection, Bluetooth tag readings, data from 

automatic vehicle identification technology, etc. The availability of those sensor data is 

location-based. 

A-PeMS computes and graphs the travel time distribution, flow rates, densities, and 

average speeds during the user-selected month and hour of the day. With the installed 

Sensys® wireless vehicle detectors, which applies an AVI technology (also known as 

vehicle re-identification technology), the A-PeMS is able to visualize corridor performance 

by producing time-space coordination diagrams generated for coordinated traffic signal 

control systems. This assessment is based on the Purdue Coordination Diagram (PCD), 

which was previously produced (Day et al. 2009), and requires high-resolution signal event 

data. The high-resolution signal event data collect all phase and detector status changes, 

such as signal indication changes, detector actuation on and off records, and so on, at a 

resolution of 0.1 seconds. The PCD shows the percentage of vehicles arriving on green at 

an intersection, allowing the assessment of signal progression.  
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In addition, A-PeMS can calculate turning movement counts if the data are 

sufficient. A-PeMS also collects the status of the detectors and thus can access the detector 

health and identify the non-working detectors and the reasons for the malfunction. It is also 

worth noting that as part of the A-PeMS system, an analytical model was proposed to 

estimate the travel time on arterial streets with loop detector data and signal settings 

(Skabardonis and Geroliminis 2008).  

Another attempt to automate data collection on arterial streets is the development 

of the Traffic Signal Performance Monitoring System (TSPMS) (Balke et al. 2005). 

TSPMS was developed to assist the Texas Department of Transportation (TxDOT) with 

automatically collecting or generating performance measures, including the following: 

 cycle time 

 time to service 

 queue service time 

 duration of the green time 

 yellow, all-red and red interval for each phase 

 number of vehicles entering the intersection during each interval 

 yellow and all-red violation rates 

 phase failure rate 

TSPMS uses a Traffic Controller Interface Device (CID) to receive electric signals 

from the traffic signal control system, which is, in this case, the Eagle® EPAC 300 

controller. The CID is a type of hardware that has a physical connection between the signal 

controller and a computer inside the cabinet on site. The Traffic Signal Event Recorder 

(TSER), which is a software program, is set up in TSPMS to record the status changes of 
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various outputs from the traffic signal controller and the traffic detector according to the 

electric signals received by the CID. The TSER also stores the time that the changes 

occurred in the daily log files. Finally, another software program, called the Performance 

Measure Report Generator (PMRG), is developed to analyze the log files and calculate the 

mentioned performance measures based on the daily log files created by the TSER, which 

stores the changes in status, as well as the time the change occurred. 

The researchers applied TSPMS to two different intersections in order to assess its 

ability to collect the performance measures. All results from the TSPMS are based on the 

data collected from loop detectors, and thus the system’s effectiveness and accuracy highly 

rely on the design of the detection system and the placement of the detectors. 

With a similar architecture to the one employed in TSPMS, a system for high-

resolution event data collection, named Systematic Monitoring of Arterial Road Traffic 

and Signals (SMART-SIGNAL), was proposed for data collection and performance 

monitoring for closed-loop signal control systems (Ma 2008; Liu et al. 2008). Historical 

traffic signal control data, including all actuation records on detectors and phase changes 

on traffic signals, can be archived and stored by SMART-SIGNAL. The system was 

installed in 2007 at eleven intersections along an arterial corridor in Minnesota for 

automatic data collection. 

In addition to the high-resolution traffic signal event data collection, SMART-

SIGNAL also generates arterial performance measures in real time. Algorithms were 

developed for queue length and turning movement proportion (TMP) estimations by 

combining mathematical models and the high-resolution event data collected by the system. 

An innovative algorithm was also proposed to extract performance measures by tracing 
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virtual probe vehicles, of which the maneuver decisions depended on a set of traffic state 

variables. Three possible maneuvers, acceleration, deceleration, and no-speed-change, can 

be predicted using the decision-tree technique. The aggregated statuses of the virtual probe 

vehicles are used to estimate time-dependent arterial travel times, as well as other 

performance measures, such as delay and number of stops. Additionally, with the high-

resolution event data collected by SMART-SIGNAL, a data-intensive time-dependent 

arterial travel time estimation model was developed in another study based on the 

aggregation of intersection delays using the times of arrival (Liu and Ma 2007). 

Other than TSPMS and SMART-SIGNAL, more efforts can be found on collecting 

and utilizing high-resolution event data that record and store all status changes of detectors 

and signal indications. The Federal Highway Administration (FHWA) conducted a 

research program on ACS-Lite, a reduced-scale version of Adaptive Control Software 

(ACS). One of the achievements of the program is the enhancement of traffic controllers 

from multiple vendors so that not only the timestamps when signal phase changes but also 

the timestamps when the detector state changes (i.e., actuation on and actuation off) were 

able to be recorded and logged. As a result, the high-resolution event data are collected by 

more traffic signal controllers, compared to the previous studies that only accessed a few. 

A similar attempt was made by the American Association of State Highway and 

Transportation Officials (AASHTO), in cooperation with the Utah Department of 

Transportation (UDOT), the Indiana Department of Transportation (INDOT), and the 

Minnesota Department of Transportation (MNDOT), to develop an automated traffic 

Signal Performance Metrics (SPMs) program that shows the real-time and historical 

performance measures at signalized intersections (AASHTO 2014). In contrast to the 
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TSPMS and SMART-SIGNAL system mentioned previously, which collects data locally, 

the SPMs program automates data collection by deploying a communication architecture 

that can transmit high-resolution event data to the traffic management center. The metrics 

are generated from high-resolution event data and implemented in a web interface, along 

with the following performance measures:  

 approach delay 

 approach volume 

 arrivals on red 

 Purdue coordination diagram 

 Purdue phase termination 

 speed 

 split monitor 

 turning movement counts 

2.2.2 Automated Signal Diagnosis Attempts 

The SPMs online tool can identify detector malfunctions, vehicle delays, speeds, and travel 

times, as well as evaluate the quality of signal control and progression of traffic. The 

development of SPMs is based on several previous studies, which were conducted to 

investigate new performance measures that could depict flow rates, quality of coordination, 

and split failures, with three traffic signal controller vendors, Econolite®, Siemens®, and 

Peek® (Smaglik et al. 2007; Li et al. 2013; Day et al. 2009). 

One of the studies that contributed to the development of the SPMs attempted to 

automate the data collection by utilizing the National Electrical Manufacturers Association 
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(NEMA) controller with an enhanced Econolite® ASC/3 controller software. The time-

stamped detector and phase state changes are collected (Smaglik et al. 2007). These event-

based data are collected cycle-by-cycle and utilized to calculate equivalent hourly volume, 

arrival-types, delays, and volume-to-capacity ratio (v/c ratio). The study demonstrated the 

capability of high-resolution event data in generating quantitative graphs for the purpose 

of assessing progression and intersection delay. 

Another research group used a system engineering approach to identify three 

objectives of signal operation, including reliable communication of signal systems, good 

allocation of green times, and good progression (Li et al. 2013). As part of that research, 

the authors proposed a method to identify the potential opportunities for reallocating the 

green time by analyzing the information provided regarding phase force-offs (i.e., max-

outs) and gap-outs. 

The authors suggested that sustained demands can be identified for a phase if it has 

max-outs (reaches the maximum green) in three or more consecutive cycles. The 

researchers studied the typical dual-ring eight-phase signal control, as shown in Figure 2-1, 

and defined pairs of companion phases. Each of the companion phases in a pair conflicted 

with the other phase in the same ring, and thus four pairs of companion phases were defined: 

{1, 2}, {3, 4}, {5, 6}, and {7, 8}. According to the study, if a phase encountered max-outs 

during three or more consecutive cycles, and gap-outs were always found in its companion 

phase during those cycles, these cycles were then marked as opportunities for potential 

split changes. 

The percentages of cycles marked as opportunities for potential split adjustment are 

calculated for a time-of-day (TOD) plan. The authors only considered the cases when the 
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aforementioned percentages were higher than an arbitrary 5% threshold as the candidates 

for split adjustments. They also ranked the opportunities for split changes throughout the 

entire system, with hundreds of traffic signals to prioritize the needs. 

 
Figure 2-1: Typical Dual-Ring Eight-Phase Diagram 

The quality of progression in coordinated traffic signal systems is assessed using 

the PCD. The PCD can be constructed from the high-resolution event data that records 

every vehicle’s arrival time at the intersection (Day et al. 2009). The arrival pattern, such 

as the platoon arrival on green, platoon arrival on red, random arrivals, etc., can be visually 

represented in the PCD. With the high-resolution event data, the percent of vehicles 

arriving on green (POG) is calculated simply by dividing the total number of vehicles 

arriving on green by the approach volume. The vehicle arrival pattern and the associated 

POG can be predicted by shifting the PCD with different time offsets. The study found that 

it is able to improve the offset by finding the maximum value of the total number of 

vehicles arriving on green in concurrent phases.  

An analogous study was conducted later to develop and assess procedures that 

optimize the offset by aggregating the high-resolution event data (Day and Bullock 2010). 

The study found that a Link Pivoting Combination Method (LPCM) algorithm performs 

the best among other tested algorithms, such as the hierarchical heuristic search, Monte 

1 2 3 4 

5 6 7 8 
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Carlo simulation, genetic algorithms, and TRANSYT-style hill climbing, in coordinated 

signal offset optimization. 

Smaglik and his co-authors introduced the Green Occupancy Ratio (GOR) as a 

measure, which is used to quantify the operation of traffic signals, and compared it to the 

traditional v/c ratio metric (Smaglik et al. 2011). The GOR is calculated as the stop bar 

detector occupancy divided by the duration time of the corresponding green phase. The v/c 

ratio, as the name suggests, is the quotient of volume divided by the capacity. The v/c ratio 

was found to be a more robust performance measure than the GOR, which is sensitive to 

detection zone lengths and vehicle speeds. However, the GOR was still suggested by the 

authors to be a reasonable surrogate in the real-time performance assessment of traffic 

signal systems due to its easy accessibility. In another study, arrival types were generated 

to assess the performance of a coordinated traffic signal system by collecting phase status 

and time-stamped vehicle arrivals (Smaglik et al. 2007). Nonetheless, several issues were 

noted with this assessment of arrival types, such as queues beyond the setback detectors, 

appropriateness of the moving averages, and so on. 

Zheng and other researchers developed a flexible and low-cost data collection unit 

(DCU) to enhance the previously described SMART-SIGNAL system on high-resolution 

event data collection. The offset, green split, and cycle length can be extracted from the 

collected data (Zheng et al. 2013). The high-resolution event data collected by the proposed 

DCU is similar to the data mentioned earlier and includes detector events, such as 

occupation start time (i.e., actuation-on time), duration length (such that the actuation-off 

time can be derived), detector ID, and signal events with signal start time, duration time, 

signal status, and phase ID. 
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The authors proposed a diagnosis tool to simultaneously diagnose offset, green split, 

and cycle length. The offset diagnosis in the proposed tool is based on the aforementioned 

LPCM algorithm, while the green split diagnosis relies on the GOR introduced by Smaglik 

et al. The cycle length diagnosis depends on the combination of two types of evaluations: 

1) intersection capacity evaluation based on Webster’s optimal cycle length formula; and 

2) coordination evaluation based on MAXBAND’s maximized bandwidth. In another 

parallel study, the authors added a module of TOD transition optimization and fine-tuning 

based on a mathematical total delay minimization (Liu and Zheng 2014).  

More pilot studies of utilizing high-resolution event data to diagnose signal 

operation can be found in literature. Two techniques, the input-output technique and a 

hybrid technique, were proposed to estimate approach delays and maximum queue lengths 

in real-time (Sharma et al. 2007). The input-output technique utilizes setback detectors to 

provide real-time arrival profiles. Moreover, it generates the departure profiles using 

models of traffic flow characteristics, including start-up lost time, storage capacity, 

saturation headway, queue discharge headway, and the signal phase change data. On the 

other hand, both profiles of arrivals and departures can be extracted by the hybrid technique 

in real-time, which employs data from setback detectors, stop bar detectors, and signal 

controller.  

Using high-resolution event data, another researcher group estimated time-

dependent queue length by identifying traffic state changes with the Lighthill-Whitham-

Richards (LWR) shockwave theory (Liu et al. 2009). The proposed queue length estimation 

algorithm is proven to produce good results, even under congested conditions. Queue 
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lengths are usually difficult to estimate in traffic congestion, since the back of queue is 

often at the upstream of the setback detectors.  

2.3 Summary 

As is evident from the current literature discussed above, efforts have been limited on 

automated data collection and utilization on signalized arterial streets, as well as on 

automated signal diagnosis. Although relatively recent research activities are able to 

produce significant advancements on the topic, they usually require unavailable detector 

and controller data. In particular, the majority of previous studies on the related subject 

rely on high-resolution event data, which are not readily available from existing signal 

control systems. For example, Zheng and the research team developed a complete system 

for signal diagnosis; however, it still requires high-resolution event data (Zheng et al. 2013). 

Albeit the fact that high-resolution event data can provide detailed and accurate 

information on signal operations, collecting this type of data requires hardware and 

software updates that are not always feasible for existing intersection control systems. In 

addition, in the current practices, the lane groups associated with the coordinated phases 

usually do not have detectors installed, which is required in the methods developed based 

on high-resolution event data collection. Therefore, prevailing signal control systems are 

still not equipped to collect the high-resolution event data required by the recently 

developed methods. Thus, there is a need for alternatives including developing methods, 

which allow diagnosing of the signal operation based on lower cost data. 

On the other hand, it has been proven that multiple performance measures can be 

extracted from high-resolution event data in the previous efforts. A more detailed review 
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on high-resolution event data can be found in an overview paper (Wu and Liu 2014). 

Nevertheless, most of the previous studies still rely on human judgement for signal 

diagnoses. For example, the TSPMS and SMART-SIGNAL approaches relate signal 

timings to traffic conditions by aggregating both signal events and detection records. 

However, they only calculated and reported the performance measures, and did not provide 

method for diagnosing signal operation. In other words, they only provided information 

and no recommendations on improving signal operations. Similarly, the PCD approach 

provides excellent visualization of arrival patterns and can assist practitioners in evaluating 

the traffic signal coordination plans, but no automated method is offered to provide 

recommendations regarding signal operations.  

A number of studies can be found on travel time and travel speed estimation without 

high-resolution event data (Frechette and Khan 1998; Courage et al. 1998; Turner et al. 

1998; Zhang 1999; Cheu et al. 2001; Dailey and Cathey 2002). However, these studies do 

not support the purpose of signal operation diagnosis, specifically the type addressed in 

this dissertation.  

As one of the few attempts to automate data collection and utilize it for signalized 

arterial streets, A-PeMS demonstrates the feasibility of aggregating data from multiple 

sources with or without high-resolution event data to reflect the traffic conditions on 

arterial streets. Nevertheless, it focuses on the arterial links with multiple intersections 

rather than an individual intersection. At the intersection level, A-PeMS only reports the 

signal timings; it does not apply the data to the investigation. In other words, A-PeMS does 

not relate the signal timing to the traffic conditions, and thus cannot assess signal operation, 

except for the quality of coordination. 
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It is also noteworthy that a part of the study conducted by Li and the research team 

(2013) provides a concept on diagnosing green split allocation to some extent without high-

resolution event data, but the utilized method is only based on historical signal status 

records (Li et al. 2013). Such diagnosis may be biased since analyzing signal records alone 

without information on traffic conditions is not sufficient. For example, consecutive max-

outs of a phase may be the result of intersection blockage by its downstream traffic instead 

of sustained, high levels of demands as suggested by the study. Another drawback of the 

diagnosis proposed by Li et al. (2013) is that it does not evaluate the opportunity of green 

time adjustment between the two signal phase groups located on the two sides of the dual-

ring barrier, i.e., the potential adjustment between phase {1, 2, 5, 6} and {3, 4, 7, 8}, as 

shown in Figure 2-1. In addition, that study only focuses on diagnosing green time 

allocation (i.e., green time adjustment as quoted in their paper), and thus it is not a holistic 

signal operation diagnosis. 
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CHAPTER 3  

METHODOLOGY 

3.1 Introduction 

As can be concluded from the literature review, there are no existing adequate methods to 

automate traffic signal operation diagnosis, particularly without high-resolution event data. 

To better assist decision-makers in traffic signal operation evaluation and traffic signal 

retiming processes with prevailing traffic signal controllers that do not allow an easy 

collection of high-resolution data, this dissertation proposes a framework of automatic 

decision-support traffic signal operation diagnosis that utilizes a combination of existing 

relatively low-cost archived data from Wi-Fi sensors combined with readily available (non-

high-resolution) archived data from existing traffic signal controllers. 

Figure 3-1 presents the framework of the developed methodology for this 

dissertation, which includes data acquisition, data preprocessing, signal operation 

diagnosis, and diagnosis assessment. In this chapter, the utilized data is introduced, 

followed by a detailed description of data preprocessing procedures for Wi-Fi data and 

signal data. Multiple data preprocessing procedures are applied to Wi-Fi data, including 

data matching, data filtering, and data aggregation. Next, a methodology of combining 

different sources of data (i.e., Wi-Fi data and signal data) to evaluate the current signal 

operation and provide recommendations for improvements is demonstrated. Finally, the 

diagnosis results for the traffic signal operation are assessed by comparing them with the 

field observations. 
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Figure 3-1: Methodology Framework 

3.2 Data Acquisition 

In order to monitor the vehicular traffic conditions at a signalized intersection, data sources 

other than signal phase status are needed. Many technological advances can be found in 

data collection nowadays, such as traffic point detectors (e.g., loop detectors, video image 

detectors, optical detectors, ultrasonic detectors, microwave sensors, magnetometers, etc.), 

automatic vehicle identification (AVI) systems (e.g., electronic toll collection, license plate 

readers, signature re-identification based on magnetic sensors, Wi-Fi sensors, Bluetooth 

sensors, etc.), automatic vehicle location (AVL) systems (e.g., global positioning systems, 

cellular communication systems, etc.), and emerging connected vehicles. Each technology 

has its strengths and weaknesses, and the appropriate selection depends on many aspects, 

for example, installation costs, maintenance costs, type and quality of the collected data, 

endurance, and so on. The comparison and selection of the data collection means are 
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beyond the scope of this dissertation, and thus are not explained here in detail. The 

developed methodology in this dissertation uses the Acyclica® Wi-Fi sensors, but any AVI 

sensor can be utilized, such as Bluetooth, magnetometer-based, and license-plate readers. 

The reason for selecting the AVI sensors (i.e., Wi-Fi sensors in this case) to develop the 

methodology of traffic signal operation diagnosis is because this type of AVI devices are 

low-cost for both installation and maintenance, are easily installed, and produce the 

required input data.  

The Wi-Fi sensors were fit inside the signal controller cabinets, as shown in Figure 

3-2. A Wi-Fi sensor records the Wi-Fi Media Access Control (MAC) addresses of all the 

devices within its detection range radius, along with the associated reading time. Devices 

such as cell phones, laptops, etc., that have Wi-Fi are continuously detected as long as they 

are within the sensor’s detection range. The strength of the received Wi-Fi signals is also 

recorded by the sensor. The signal strengths increase with the decrease of the distance 

between the detected devices and Wi-Fi sensor. 

It is worth mentioning that the Acyclica® Wi-Fi sensors adopt the UNIX time (or 

Epoch time in some references). UNIX time counts the number of seconds elapsed since 

0:00:00 AM on January 1, 1970, in the Coordinated Universal Time (UTC) time standard 

format. Thus, the precision of the Wi-Fi readings is one second of time. The human 

readable times extracted from the Wi-Fi sensors herein are converted from UNIX time to 

Eastern Standard Time (EST) or Eastern Daylight Time (EDT), depending on the time of 

year of the data collection. 

With the application of data matching and filtering algorithms that will be discussed 

later, each vehicle with an activated Wi-Fi device can be identified at different locations 
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relative to an intersection based on the uniqueness of the MAC address, the time detected, 

and the signal strength. An example of the raw data from a Wi-Fi sensor is shown in Table 

3-1. The serial column in the table displays the sensor identification number (sensor ID). 

The sensor ID is unique for each Wi-Fi sensor and thus can be used to identify intersections 

or locations where the sensors are installed. The Wi-Fi sensor assigns an encrypted MAC 

address to each identified device and logs every detection with the received signal strength, 

as well as the timestamp when the signal is detected. Four stages of Wi-Fi detection can be 

identified: 

1. The first detection: the timestamp when the device is first detected 

2. The last detection: the timestamp when the device is last detected 

3. The maximum strength detection: the timestamp when the detection strength 

first reaches the maximum value 

4. Other detection: all timestamps other than the above three 

 
Figure 3-2 Wi-Fi Sensors Installed inside the Traffic Signal Controller Cabinet 

Wi-Fi reader 

installed 
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Due to the space limit, not all detection records of the example device are shown in 

Table 3-1. Using the example in Table 3-1, the first detection of the device by the Wi-Fi 

sensor “265276” is at the timestamp of “1449192285,” or on Thursday, December 3, 2015 

at 8:24:45 PM EST, since it is the first time the device was detected by the sensor. The 

maximum strength detection of the device occurs at the timestamp of “1449192311” (on 

Thursday, December 3, 2015 at 8:25:11 PM EST), as the signal strength first reached the 

maximum value of -54. The last detection of the device is recorded at the timestamp of 

“1449192312” (on Thursday, December 3, 2015 at 8:25:12 PM EST). The remaining 

records are labeled as other detections. A combination of those four detection stages can 

be applied for different purposes. Details will be given in a later section. 

Table 3-1 Wi-Fi Detection Raw Data Example 

Timestamp MAC Address Strength Serial 

1449192285 000812c00ec133d56e0fe87cb83847f8512e464

8e38c5a458b7bd91ee9b2b976 

-61 265276 

1449192289 000812c00ec133d56e0fe87cb83847f8512e464

8e38c5a458b7bd91ee9b2b976 

-58 265276 

1449192289 000812c00ec133d56e0fe87cb83847f8512e464

8e38c5a458b7bd91ee9b2b976 

-58 265276 

1449192293 000812c00ec133d56e0fe87cb83847f8512e464

8e38c5a458b7bd91ee9b2b976 

-58 265276 

1449192293 000812c00ec133d56e0fe87cb83847f8512e464

8e38c5a458b7bd91ee9b2b976 

-61 265276 

1449192296 000812c00ec133d56e0fe87cb83847f8512e464

8e38c5a458b7bd91ee9b2b976 

-60 265276 

…… …… …… …… 

1449192311 000812c00ec133d56e0fe87cb83847f8512e464

8e38c5a458b7bd91ee9b2b976 

-54 265276 

1449192311 000812c00ec133d56e0fe87cb83847f8512e464

8e38c5a458b7bd91ee9b2b976 

-61 265276 

1449192312 000812c00ec133d56e0fe87cb83847f8512e464

8e38c5a458b7bd91ee9b2b976 

-61 265276 

1449192312 000812c00ec133d56e0fe87cb83847f8512e464

8e38c5a458b7bd91ee9b2b976 

-60 265276 
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In this dissertation, the intersection of Southwest 8th Street and Southwest 107th 

Avenue in Miami, Florida was selected as the studied intersection for the initial 

development and assessment of the proposed framework. Five Wi-Fi sensors were installed 

at that intersection and its four adjacent signalized intersections:  

1. Intersection of Southwest 8th Street and Southwest 109th Avenue  

2. Intersection of Southwest 8th Street and Southwest 102th Avenue  

3. Intersection of Southwest 4th Street and Southwest 107th Avenue  

4. Intersection of Southwest 1100th Block and Southwest 107th Avenue  

An illustration of the geographical location of the studied area is shown in Figure 3-3. 

 
Note: Figure not drawn to scale. 

Figure 3-3 Wi-Fi Detector Locations (Background image source: Map data © 2016 

Google) 
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In addition to the data from Wi-Fi sensors, historical intersection timing data are 

downloaded from the Kimley-Horn Integrated Transportation System (KITS®), which is 

the system used for signal controls in Miami-Dade County. Although the data are not in 

high resolution and no detector data are available, the times at which signal indications 

changed are logged in the archived reports. An example of the historical intersection timing 

data is shown in Figure 3-4. 

 
Figure 3-4 Example of KITS® Historical Intersection Timing Report 

3.3 Wi-Fi Data Preprocessing 

Due to the nature of the detection technology, vehicles and any Wi-Fi enabled devices 

within the detection range of the sensors are detected. In order to obtain the travel time 

information for vehicles only, in particular for those traveling through the studied area 

without stopping for other purposes (i.e., gas, shopping, restaurant, etc.), data 

preprocessing methods need to be applied to the original readings. In addition, information 

needs to be extracted from the validated data, for example, performance measures, signal 

characteristics, etc. Therefore, in order to obtain useful information for later use by the 

signal operation diagnosis, the data preprocessing methods, including data matching, data 

filtering, and data aggregation, are applied to the raw data. 
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3.3.1 Data Matching 

As mentioned earlier, readings from Wi-Fi sensors consist of various types of devices. 

Vehicles traveling through the studied area (i.e., traversals) are the data needed to diagnose 

the signal operation. Travel times can be used to distinguish devices with traversals from 

devices with other travel modes, since traversals have different travel times in comparison 

with other devices, such as devices held by pedestrians, devices held by shoppers, etc. In 

order to obtain travel times and then extract traversals from the original readings, trips 

between different intersections need to be extracted from the raw readings in the format 

shown in Table 3-1. A trip herein is defined as a Wi-Fi enabled device that travels from 

one location to another. 

Since a Wi-Fi device can pass an intersection multiple times, using the original 

readings to extract trips will omit multiple trips made with the same device. An example is 

presented in Table 3-2, in which two passages can be clearly identified for the same MAC 

address. The first passage started at the timestamp of “1449154808” (on Thursday, 

December 3, 2015, at 10:00:08 AM EST), and ended at the timestamp of “1449154866” 

(on Thursday, December 3, 2015, at 10:01:06 AM EST). The second passage started at the 

timestamp of “1449192285” (on Thursday, December 3, 2015, at 8:24:45 PM EST), and 

ended at “1449192312” (on Thursday, December 3, 2015, at 8:25:12 PM EST). As a result, 

the following rule is introduced for the original readings from each sensor to identify 

different passages made by the same MAC addresses before matching the data. 

Rule 1: (Identification of Passages)  

Let 𝑝𝛼,𝑗 be the jth passage of intersection 𝛼 made by a MAC address, a next passage 

𝑝𝛼,𝑗+1 is identified from the previous passage 𝑝𝛼,𝑗 if: 
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𝑡𝛼,𝑖+1 − 𝑡𝛼,𝑖 > 60 

where  

𝑡𝛼,𝑖 = the ith timestamp of the MAC address from the sensor installed at 

intersection 𝛼. 

In other words, if two consecutive timestamps of a MAC address are more than 60 

seconds apart, two different passages of an intersection made by the same MAC address 

are identified instead of one. This avoids the omission of multiple trips made by the same 

device in later matching. Furthermore, it prevents the estimation of excessive travel time 

by mistakenly combining multiple trips made by the same vehicle. 

Table 3-2 Example of Multiple Trips Made by One Device 

Timestamp MAC Address Strength Serial Comments 

1449154808 000812c00ec133d56e0fe8

7cb83847f8512e4648e38c

5a458b7bd91ee9b2b976 

-66 265276 First detection of the 

first passage 

…… …… …… …… …… 

1449154866 000812c00ec133d56e0fe8

7cb83847f8512e4648e38c

5a458b7bd91ee9b2b976 

-69 265276 Last detection of the 

first passage 

1449192285 000812c00ec133d56e0fe8

7cb83847f8512e4648e38c

5a458b7bd91ee9b2b976 

-61 265276 First detection of the 

second passage 

…… …… …… …… …… 

1449192312 000812c00ec133d56e0fe8

7cb83847f8512e4648e38c

5a458b7bd91ee9b2b976 

-67 265276 Last detection of the 

second passage 

With the identified intersection passages from each Wi-Fi sensor, trips between the 

studied intersection and its four surrounding intersections can be extracted by matching 

data between the corresponding Wi-Fi sensors. In total, eight sets of matches are identified 

and shown in Figure 3-5. Due to the uniqueness of the MAC address of each device, one 

trip between a pair of intersections can be identified, if a MAC address from one Wi-Fi 
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sensor is equal to the MAC address from the other sensor in the corresponding matching 

set.  

Note: Figure not drawn to scale. 

Figure 3-5 Data Matching between Studied Intersection and Its Surrounding 

Intersections 

However, it is possible that multiple intersection passages are identified from both 

sensors in a matching set. Using only the MAC address in the matching process will lead 

to a large number of mismatches. An example illustrating the correct matches and 

mismatches is shown in Figure 3-6. In the example, assuming there are three passages in 

each intersection, the three correct matches are presented as solid arrows. Figure 3-6 shows 

that there are six possible mismatches, as indicated by the dashed arrows, if only the MAC 

address is used in the matching procedure without considering the difference in the 

timestamps between the readings. 
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Figure 3-6 Example of Correct Matches and Mismatches for a MAC Address from 

Different Wi-Fi Sensors 

Another example with actual data is shown in Figure 3-7 of matching between a 

pair of intersections, with the following information:  

 the studied intersection (i.e., the intersection of Southwest 8th Street and 

Southwest 107th Avenue, with sensor ID 265276); and  

 one of its surrounding intersections (i.e., the intersection of Southwest 8th Street 

and Southwest 109th Avenue, with sensor ID 265375).  

A device with a MAC address shown in the figure passed the studied intersection 

twice on Thursday, December 3, 2015: 10:00 AM and 8:00 PM. If only using the MAC 

address without considering the detection time in the matching procedure, a total of four 

matches can be identified. However, only two matches are correct, and the other two are 

mismatches, due to matching the morning passage to the evening passage. Hence, the 
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following is another rule that is introduced to identify the correct matches between two Wi-

Fi sensors with the same MAC address. 

 
Figure 3-7 Example of Correct Matches and Mismatches with Actual Data 

Rule 2: (Identification of Trips)  

Let 𝑇𝑘 be the kth trip made by a MAC address between the studied intersection 𝛼 

and a surrounding intersection 𝛽. 𝑇𝑘 is identified if:  

1) The MAC address detected by the Wi-Fi sensor at 𝛼  equals the MAC 

address detected by the sensor at 𝛽. 

2) |𝑡𝛼,𝑚𝑎𝑥 − 𝑡𝛽,𝑚𝑎𝑥
′ | ≤ 1200  

where  

𝑡𝛼,𝑚𝑎𝑥 = the maximum strength detection timestamp at studied intersection 𝛼. 

𝑡𝛽,𝑚𝑎𝑥
′ = the corresponding maximum strength detection timestamp at a 

surrounding intersection 𝛽. 
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The first condition in the above rule matches the MAC address from different Wi-

Fi sensors. The second condition identifies a trip during which the difference of the 

corresponding times (i.e., the maximum strength detection time) of the two sensors does 

not exceed an arbitrary threshold of 1,200 seconds (i.e., 20 minutes). The maximum 

strength detections (the detection when the strength of the signal first reaches the highest 

value) are used in the matching process since they occur when the detected devices are 

closest to the Wi-Fi sensors.  

The purpose of adding the 20-minute time threshold to the matching algorithm is 

to prevent mismatches. It also avoids including extreme situations when heavy but non-

recurrent congestion occurs in the analysis period, such as incidents, signal failures, and so 

on. In addition, it also helps differentiate normal trips that travel through the intersection 

(i.e., traversals) from those that made intermediate stops for other purposes near the 

intersection. For example, vehicles that drove through the fast food restaurants near the 

intersection made intermediate stops and took a longer time to travel through the 

intersection. Since the threshold of 20 minutes is arbitrary and indefinite, additional 

filtering methods are applied to further distinguish traversals from other trips, as discussed 

in a later section.  

As shown in Figure 3-5, the matches between pairs of intersections are directional. 

The direction of an identified trip from Rule 2 is introduced in the following rule. 

Rule 3: (Direction of Trips)  

Given a trip 𝑇 , 𝑡𝛼,𝑚𝑎𝑥 ∈ 𝑇  and 𝑡𝛽,𝑚𝑎𝑥
′ ∈ 𝑇 , 𝑇  is traveling from the studied 

intersection 𝛼 to a surrounding intersection 𝛽 if it satisfies the conditions in Rule 2 

and the condition below, and vice versa. 
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𝑡𝛼,𝑚𝑎𝑥 − 𝑡𝛽,𝑚𝑎𝑥
′ < 0 

The device, in tandem with a trip, always reaches one intersection first, then the 

other. Therefore, the UNIX timestamp of the maximum strength detection at the first 

reached intersection is always less than at the second reached intersection in a matching 

set.  

As shown in Figure 3-5., all matching sets end or begin at the studied intersection 

of Southwest 8th Street and Southwest 107th Avenue. Therefore, previously matched trips 

can be associated with turning movements by matching the MAC addresses and 

timestamps between an approaching link and a departing link at the studied intersection. 

Similar to the previous matching procedure, the maximum strength detections are utilized 

in the turning movement matchings. The rule of turning movement identification is given 

as follows. 

Rule 4: (Identification of Turning Movements)  

A trip is associated with a turning movement 𝑇𝑀 if:  

1) The MAC address of a trip 𝑇 that ended at the studied intersection 𝛼 equals 

the MAC address of a trip 𝑇′ that started at the same intersection. 𝑡𝛼,𝑚𝑎𝑥 ∈

𝑇 and 𝑡𝛼,𝑚𝑎𝑥
′ ∈ 𝑇′. 

2) 𝑡𝛼,𝑚𝑎𝑥 = 𝑡𝛼,𝑚𝑎𝑥
′  

For example, as shown in Figure 3-5, if a MAC address of an identified trip 𝑇 from 

the matching set 2 (i.e., an approaching link) is found from an identified trip 𝑇′ from the 

matching set 5 (i.e., a departing link), and 𝑡𝛼,𝑚𝑎𝑥  at the studied intersection 𝛼 of trip 𝑇 
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equals to 𝑡𝛼,𝑚𝑎𝑥
′  at the studied intersection 𝛼 of trip 𝑇′, the two trips are associated with an 

eastbound left-turn (EBL) movement.  

With the association of the matchings with intersection turning movements, it is 

possible to conduct analyses of the performance of various turning movements. Travel 

times for the trips associated with various turning movements can be calculated as the 

difference between the timestamps of the readings at two intersections. As discussed 

previously, travel times can be used to distinguish traversals from other trips. As shown in 

Section 3.2 , there are four stages of detection: First, Last, Maximum Strength, and Others. 

The first three stages of each intersection can be used in the analysis, resulting in as many 

as nine combinations of potential methods to match and estimate travel times between two 

intersections (i.e., 32 = 9). However, the following five types of matched travel times are 

the most popular: 

 First-to-first detection travel time 

 First-to-last detection travel time 

 Max-strength-to-max-strength detection travel time 

 Last-to-first detection travel time 

 Last-to-last detection travel time 

Figure 3-8 illustrates the five types of matched travel times at various stages of 

detection between the upstream intersection and the studied intersection. In this dissertation, 

the travel time for a trip is calculated as the difference between the last detection at the 

upstream intersection and that of the studied intersection, or the last-to-last detection travel 

time. As can be seen in Figure 3-8, utilizing the last-to-last detection in the travel time 

calculation is the best way to eliminate the impacts from the upstream signal at the 
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beginning of the trip. Vehicles should have already passed the upstream intersection when 

the last detections were recorded by the upstream sensor. It also ensures that the influence 

of the studied signal during the trip is retained, as the vehicles should have traveled through 

the studied intersection between the last-to-last detections. In addition, the last-to-last 

detection avoids the impacts from the downstream signal. Vehicles should be a certain 

distance away from the downstream intersection when the last detections were recorded by 

the sensor at the studied intersection. The calculated travel times were then used for further 

data filtering in order to distinguish trips made by traversing vehicles.  

Therefore, the travel time of an identified trip 𝑇  can be calculated with the 

following equation. 

𝑡𝑡𝛼,𝛽 = |𝑡𝛼,𝑙𝑎𝑠𝑡 − 𝑡𝛽,𝑙𝑎𝑠𝑡|   (3-1) 

where 

𝑡𝑡𝛼,𝛽 = the travel time between the studied intersection 𝛼 and a surrounding 

intersection 𝛽, in the unit of seconds.  

𝑡𝛼,𝑙𝑎𝑠𝑡 = the last detection timestamp at the studied intersection 𝛼  of an 

identified trip 𝑇.  

𝑡𝛽,𝑙𝑎𝑠𝑡 = the last detection timestamp at the surrounding intersection 𝛽 of 𝑇. 

It is worth noting that the calculated travel time from Equation 3-1 is always 

positive, since the direction of an identified trip in the analysis is constrained by Rule 3 and 

the trip is associated with the corresponding turning movement by Rule 4.  
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Figure 3-8 Illustration of Different Types of Matched Travel Times 
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3.3.2 Data Filtering 

Traversals at the studied intersection can be distinguished from other trips with the 

calculated last-to-last detection travel times. The travel times of the traversals associated 

with different turning movements should neither be too long or too short. Prolonged travel 

times may belong to devices with different transportation modes or those that made 

intermediate stops for other purposes. They can possibly also exist due to extreme non-

recurrent congested conditions, which are not the targets of the method developed in this 

dissertation. On the other hand, extremely short travel times may belong to errors 

associated with Wi-Fi sensor technologies, or associated with their inability to identify the 

exact locations of the readings. Extremely short travel times may lead to inaccurate 

diagnosis results on the traffic signal operation.  

To prevent the negative impacts of extremely short travel times on distinguishing 

traversals, trips with travel times shorter than the presumed shortest travel time at each 

movement are filtered out. The presumed shortest travel time 𝑡𝑡𝛼,𝛽,𝑚𝑖𝑛  in seconds is 

calculated in the equation below. 

𝑡𝑡𝛼,𝛽,𝑚𝑖𝑛 =
𝐿𝛼,𝛽

𝑆𝐿+5
× 3600    (3-2) 

where  

𝑡𝑡𝛼,𝛽,𝑚𝑖𝑛 = shortest travel time between the studied intersection 𝛼  and a 

surrounding intersection 𝛽, in the unit of seconds.  

𝐿𝛼,𝛽 =  the distance between the two intersections, in the unit of miles.  

𝑆𝐿 = the posted speed limit of the roadway segment between the two 

intersections, in the unit of miles per hour.  
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5 = the upper boundary of the expected excess in speed above the speed 

limit, in the unit of miles per hour.  

Equation 3-2 defines the shortest travel time between the two intersections as the 

travel time spent by a vehicle that is running five miles per hour above the posted speed 

limit. All identified trips with the travel time less than the presumed shortest travel time 

are treated as outliers and filtered out from the dataset. A rule of that filtering procedure is 

given below. 

Rule 5: (Identification of Traversal Candidates)  

A trip 𝑇 is a traversal candidate if: 

𝑡𝑡𝛼,𝛽 ≥ 𝑡𝑡𝛼,𝛽,𝑚𝑖𝑛 

where  

𝑡𝑡𝛼,𝛽 = the travel time between the studied intersection 𝛼 and a surrounding 

intersection 𝛽, calculated from Equation 3-1.  

𝑡𝑡 𝛼,𝛽,𝑚𝑖𝑛 = the presumed shortest travel time between the studied intersection 𝛼 

and a surrounding intersection 𝛽, calculated from Equation 3-2. 

Figure 3-9 shows an example of all traversal candidates with the application of Rule 

1 to Rule 5. In this example, one month’s Wi-Fi readings are analyzed, and travel times in 

different time periods of the day are plotted in the figure. A day is evenly divided into 48 

time intervals, with each interval being exactly 30 minutes long. The distance between the 

upstream intersection and the studied intersection for the northbound thru (NBT) 

movement is 1,000 feet, and the posted speed limit is 40 miles per hour. Thus, the presumed 

shortest travel time between the two intersections is around 15 seconds, according to 

Equation 3-2.  
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Figure 3-9 Example Travel Times with Application of Rule 1 to Rule 5 

The travel time points in Figure 3-9 seem to be dispersed and cover a wide range 

from the presumed shortest travel time (i.e., 15 seconds) to the upper boundary (i.e., 1,200 

seconds). However, it can be seen that the majority of the data points are concentrated 

together in the lower part of the plot, approximately below 200 seconds. An artificial line 

is added to the travel time plot and presented in Figure 3-10. Densities appear to be different 

on the two sides of the added blue dashed line, and points seem to be denser below the line. 

In this context, a cluster analysis is reasonably applied to the data. 

A cluster analysis or clustering can group objects into different clusters so that the 

objects in the same cluster are similar to each other yet different from the objects in other 

clusters (Tan et al. 2006). Based on the example above, the points in a cluster should have 

similar distance between each other if the cluster analysis is applied. In other words, the 

densities in various clusters are expected to be different. Therefore, a clustering algorithm 
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that focuses on density similarity, or DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise), is applied in an attempt to identify traversals from other trips.  

 
Figure 3-10 Example Travel Times with Artificial Dividing Line 

In order to identify different dense regions, DBSCAN requires two parameters:  

1. epsilon, 𝜀(eps) 

2. minimum points (MinPts) 

𝜀 defines the radius of a point’s neighborhood and MinPts finds the minimum density of 

the region within the radius of the point (𝜀). To be defined as a cluster, a group of points 

must satisfy two properties:  

1. All points must be within a region (circle), of which the radius equals to 𝜀. 

2. The number of points in the region must exceed the MinPts. 
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Essentially, DBSCAN finds the groups of points or clusters, which are denser than 

the preferred minimum density. With the appropriate parameters, clusters can be identified, 

as well as the outliers that are not in any of the clusters. 

Figure 3-11 shows an example of clusters identified by the DBSCAN algorithm, 

with the noises (outliers) presented using black solid dots. A large number of clusters are 

identified with similar densities. However, not all of them belong to traversals. Different 

clusters represent a group of detected devices that have similar travel time characteristics. 

There are numerous possibilities, such as pedestrians, bicycles, vehicles stopped at fast 

food restaurants, vehicles stopped at an ATM, etc. In order to identify traversals only, the 

following assumptions are made. 

Assumption 1: (The Fastest Transportation Mode)  

With the purpose of traversing the intersection, traveling in a vehicle is the fastest 

transportation mode between a surrounding intersection and the studied intersection. 

Assumption 2: (Identifying Clusters of Traversals)  

The cluster that has the shortest travel time is the cluster of traversals. 

Figure 3-12 presents the identified traversals from other trips based on the above 

assumptions. Only the cluster that has the shortest travel time is identified as the group of 

traversals. Almost all identified traversals have lower travel times compared to other trips, 

except a few between 2:30 AM and 3:30 AM. Moreover, the results meet the expectation 

that the points below the dividing line in Figure 3-10 are distinguished as traversals from 

other trips.  

Nevertheless, it is possible that multiple clusters should be selected in some 

situations so that all valid traversals will be counted, especially when cycle failures are 
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observed in the field. In cases where the cycle failure occurs, there will be significant gaps 

between travel times among different groups of vehicles, according to their arrival types. 

For example, vehicles arriving at the studied intersection during the green time and passing 

through the intersection in the same cycle will have significantly shorter travel times than 

those arriving on red and still experiencing cycle failures. As a result, traversal vehicles 

will be grouped in two different clusters by the algorithm. This points to the need for the 

identification of multiple clusters in the DBSCAN algorithm to identify all valid traversals. 

Only one cluster from the DBSCAN filtering algorithm is identified in this dissertation 

since there is no proof from the data, implying that multiple clusters should be included. 

However, future efforts are needed to investigate this issue. 

 
Figure 3-11 Clusters Identified by DBSCAN Algorithm 

In summary, in order to identify traversals from other trips from the original 

readings of the Wi-Fi sensors, the following data matching and filtering procedures are 

applied in this dissertation: 
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 A passage is identified if the difference between two consecutive timestamps in a 

Wi-Fi sensor for one MAC address is not more than 60 seconds. 

 A trip is identified if the difference between the following timestamps is not more 

than 1,200 seconds for a MAC address: 

o the maximum strength detection timestamp of the corresponding passage at 

the studied intersection 

o the maximum strength detection timestamp of the corresponding passage at 

a surrounding intersection 

 A trip is associated with a turning movement if the MAC address and the 

corresponding timestamp starting/ending at the studied intersection are exactly the 

same as those of a trip ending/starting at the studied intersection. 

 A traversal potential is identified if the difference between the following 

timestamps is not smaller than the presumed shortest travel time, at each movement: 

o the last detection timestamp of a trip at the studied intersection 

o the last detection timestamp of the trip at a surrounding intersection 

 A traversal is identified if it belongs to the cluster that has the shortest travel time 

with the application of the DBSCAN algorithm. 

The traversals identified by the DBSCAN algorithm for each turning movement 

associated with a signal phase are presented from Figure 3-12 to Figure 3-19. 
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Figure 3-12 Identified Traversals and Other trips on the NBT Movement 

 

Figure 3-13 Identified Traversals and Other trips on the EBL Movement 
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Figure 3-14 Identified Traversals and Other trips on the EBT Movement 

 

Figure 3-15 Identified Traversals and Other trips on the NBL Movement 
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Figure 3-16 Identified Traversals and Other trips on the WBL Movement 

 

Figure 3-17 Identified Traversals and Other trips on the WBT Movement 
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Figure 3-18 Identified Traversals and Other trips on the SBL Movement 

 

Figure 3-19 Identified Traversals and Other trips on the SBT Movement 
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3.3.3 Data Aggregation (Travel Time Representation) 

The calculated travel times for traversals at each turning movement can be represented in 

different ways for further utilization in the analysis. For example, it can be represented by 

the average travel times, percentile travel times, delays, travel time indices, and so on. Due 

to the link length differences and geometry diversities among various movements, the 

travel times may not reflect the traffic conditions correctly. A better measure is the use of 

delay, which is the extra time spent on travel compared to free-flow travel conditions. This 

measure considers the heterogeneity of the geometry attributes, since it uses the free-flow 

travel time as the basis, which is movement-specific. In this context, delay equals the 

difference between the actual travel times and free-flow travel time of a movement. As an 

alternative, the travel time index (TTI), which is the ratio of the actual travel time to the 

free-flow travel time as represented in Equation 3-3, also considers the dissimilarity of the 

geometry conditions. TTI is a prevailing measure of effectiveness (MOE) that is used in 

travel time reliability studies. This measure has the added advantage in that different 

percentile travel times can be considered in the analysis. 

𝑇𝑇𝐼 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒

𝐹𝑟𝑒𝑒−𝐹𝑙𝑜𝑤 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
    (3-3) 

TTI, as is the case with delays, reflects the extra time spent on travel compared to 

the time spent in free-flow conditions. TTI is used in this dissertation as a main MOE for 

signal operation diagnoses. Instead of using an absolute value, such as delay, a ratio will 

give an intuitive impression of the traffic conditions.  

In order to aggregate the Wi-Fi data to reflect the traffic conditions, TTI is used to 

produce the Cumulative Distribution Function (CDF) plots, which are a visualization and 

analysis method extensively applied in the Transportation Research Board’s second 
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Strategic Highway Research Program (SHRP 2) L02 project for travel time reliability 

analysis (List et al. 2014). The CDF is a function in which the dependent variable is the 

probability that a variable is less than or equal to the independent variable x. The CDF of 

a random variable X is defined in Equation 3-4 below (Cumulative Distribution Function 

2016): 

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥)    (3-4) 

In this dissertation, a set of CDF plots of TTI for each movement at the studied 

intersection are produced based on December weekday data covering the investigated 

period from 5:00 AM to 8:00 PM. The TTI for each movement is calculated from the Wi-

Fi data as the ratio of the actual travel time to the estimated free-flow travel time for that 

movement. The utilized estimation of free-flow travel time for each movement is selected 

as the 15th percentile of all travel times during the day, which are calculated based on the 

measurements of valid traversals of that movement. The 15th percentile travel time 

indicates the travel time that is faster than the travel times of 85 percent of traffic. This is 

a commonly used method of selecting representative free-flow speed/travel time of traffic. 

Different estimation of free-flow travel times in the proposed framework of traffic signal 

operation diagnosis can be selected by decision-makers based on their needs and 

experience. 

An example of the CDF plots is shown in Figure 3-20. The TTI values of the 

eastbound left-turn (EBL) movement of the studied intersection are summarized by hours 

and presented in three different graphs based on the time of day: morning (from 5:00 AM 
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to 9:59 AM), midday (from 10:00 AM to 2:59 PM), and afternoon (from 3:00 PM to 7:59 

PM). 

In terms of a CDF, the higher the cumulative probability at lower TTI values, the 

better the TTI performance. These lower values indicate that the majority of vehicles spend 

shorter times to traverse the intersection. In the examples shown in Figure 3-20 for the EBL 

movement, the best travel time performance is between 5:00 AM and 5:59 AM. All 

percentiles of the TTI are below 2.5 for this time period due to the low traffic volume. The 

worst performance is between 8:00 AM and 8:59 AM, with an 80th percentile TTI around 

3. This may due to an observed queue spillback from a downstream intersection (i.e., the 

intersection of Southwest 4th Street and Southwest 107th Avenue, as shown in Figure 3-3). 

During that hour, the City of Sweetwater police officers take control of the downstream 

intersection next to the Sweetwater Elementary School and give higher priority to 

pedestrians. Other than the time between 8:00 AM and 8:59 AM, the TTI of the EBL 

movement performs well, and the quality of the performance seems consistent. 

Figure 3-21 through Figure 3-24 show the CDF plots of all turning movements. The 

hours marked with the black dotted CDF curves in the abovementioned figures indicate the 

time periods that have relatively better TTI performance, as the majority of cumulative 

probabilities stay at the lower TTI. The hours when the TTI performances are significantly 

worse than the rest of the day are highlighted in different colors and dotted shapes.  

The following TTI performance can be interpreted for the east-west direction, as 

shown in Figure 3-21 and Figure 3-22:  

 The TTI performance of the EBL movement is the worst between 8:00 AM and 

8:59 AM. 
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 The worst TTI performance of the eastbound thru (EBT) movement, as indicated 

by Figure 3-21, is between 3:00 PM and 3:59 PM, which is highlighted in red.  

 The westbound left-turn (WBL) movement has worse TTI than the EBL movement, 

with particularly high TTI in the afternoon hours; for example, between 3:00 PM 

and 3:59 PM, 4:00 PM and 4:59 PM, and 6:00 PM and 6:59 PM. 

 High TTI of the westbound thru (WBT) movement occurs between 3:00 PM and 

6:59 PM.  

 The TTI performance of the WBT movement from 7:00 PM and 7:59 PM improves 

slightly but is still worse than the hours before 3:00 PM.  

It is interesting to note that the TTI of the WBT movement is the worst between 

3:00 PM and 3:59 PM. The EBT also has the worst TTI performance during this period. 

This indicates that the pre-PM peak plan between 3:00 PM and 3:59 PM is not suitable for 

the main street traffic, and the PM plan needs to start earlier. 

The interpretation for the north-south direction in Figure 3-23 and Figure 3-24 can 

be summarized as follows: 

 The TTI performance of the northbound left-turn (NBL) movement, as shown in 

Figure 3-23, does not perform well after 11:00 AM. The CDF plots of NBL between 

11:00 AM and 7:59 PM indicates a high percentage of vehicles taking a longer time 

to traverse the intersection.  

 With regards to the NBT movement, the movement performs slightly worse 

between 8:00 AM and 8:59 AM, compared to the rest of the studied time periods. 

This can be due to the backup from the intersection of Southwest 4th Street and 

Southwest 107th Avenue, as mentioned earlier.  
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 As shown in Figure 3-24, the southbound left-turn (SBL) movement experiences 

high travel times past 12:00 PM, particularly during the PM peak period between 

4:00 PM and 7:59 PM.  

 The southbound thru (SBT) movement has the worst performance between 1:00 

PM and 7:59 PM, and between 8:00 AM and 8:59 AM. The latter may be due to 

police operations at the upstream signal in the school area. 

 
Figure 3-20 Cumulative Density Functions by Hours for Eastbound Left-turn 

Movement 
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Figure 3-21 Cumulative Density Functions by Hours for Eastbound Movements. 

 
Figure 3-22 Cumulative Density Functions by Hours for Westbound Movements. 

In summary, the following can be concluded based on the CDF plot interpretations: 

 The WBT performance worsens in the PM peak period, starting at 3:00 PM. 

 The SBL and SBT movements experience high travel times, starting at midday. 

 The NBL performance is inferior most of the day, particularly starting around 11:00 

AM. 



53 

 In the PM peak period after 4:00 PM, there should be an opportunity to take some 

green time from the EBL and EBT and add it to the WBT, SBT, SBL, and possibly 

the NBL. 

 At midday before 3:00 PM, the SBL and NBL movement should receive more 

green time, which can potentially be taken from the EBL, WBT, and NBT. 

 The SBT and NBL movements possibly need capacity improvements, as will be 

discussed shortly. 

 
Figure 3-23 Cumulative Density Functions by Hours for Northbound Movements. 

In addition, it seems that the timing plan between 3:00 PM and 3:59 PM is unable 

to accommodate the mainline traffic, thus switching to the peak period plan is 

recommended. To explore this further, the historical Time-of-Day (TOD) signal timing 

schedule at the target intersection is presented in Figure 3-25. The intersection has separate 

timing plans between 3:00 PM to 3:59 PM (i.e., Plan 11) during weekdays, which assigns 

shorter green times to the EBT and WBT movements, compared to the PM peak (i.e., 4:00 
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PM to 6:59 PM). This confirms the need to either apply Plan 12 starting at 3:00 PM, or 

fine-tune Plan 11 to give more green time to the main street thru movements. 

 
Figure 3-24 Cumulative Density Functions by Hours for Southbound Movements. 

Figure 3-25 also indicates that the SBL movement receives a small portion of the 

green time in the cycle, compared to other movements. The CDF plots show the 

deterioration in travel time performance of the SBL movement after 12:00 PM, and the 

field observations reported heavy traffic congestion at that time of day. A possible increase 

of the green time of Phase 3 for the SBL movement should help improve its TTI 

performance. In contrast, the SBT movement receives a large portion of green time but still 

shows poor TTI performance, indicating a possible need for capacity increase. It is worth 

mentioning that the phases for the northbound and southbound directions are non-

coordinated. That also contributes to the performance issues with the southbound 

movements. In the NBL movement, the TTI performance is found to be inferior during 

most times of the studied period. This indicates that the NBL movement either needs more 

green time or a geometry improvement. 
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Figure 3-25 Time-of-Day Signal Timing Plan Schedule Report for the Intersection of 

Southwest 8th Street at Southwest 107th Avenue 

This section presents a methodology on utilizing TTI and aggregating them on the 

CDF plots to investigate traffic conditions. However, the interpretation of the CDF plots 

relies on human experience. Moreover, it only utilizes traffic conditions on signal operation 

diagnosis. It lacks information on the traffic signal itself and therefore does not have a full 

picture of the signal operation in the field. In sum, using CDF plots alone is not enough for 

automatic signal operation diagnosis. An additional attempt is made to automate the 

process of identifying the need for improvements by combining interpretations from the 

CDF plots above with other measures such as the signal green time max-outs for various 

movements. A description of this effort is presented in the later section. 

3.4 Signal Data Preprocessing 

The above analysis is based on Wi-Fi data analyses that provide information about vehicle 

travel times. However, utilizing only Wi-Fi data may lead to biased results on signal 

diagnosis since it does not utilize any information from the traffic signal operations. In 

order to better understand the signal impacts on traffic conditions, which are indicated by 

the TTI from Wi-Fi data as described earlier, information of the traffic signal operation can 
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be obtained from the historical signal timing records downloaded from the central signal 

control software. A signal timing performance measure, the Max-out Ratio (MR), is 

introduced herein to represent the traffic signal performance. This parameter is calculated 

from Equation 3-5 listed below, in which the values of the variables can be extracted from 

the historical signal timing records. 

𝑀𝑅 =
Number of Max−outs

Number of Cycles
    (3-5) 

As can be seen from the equation above, MR is calculated as the ratio of the number 

of times a phase experiences max-out to the total number of cycles in the studied time 

period. According to the signal timing manual (Koonce et al. 2008), max-out is defined as 

“a type of actuated operation for a given phase where the phase terminates due to reaching 

the designated maximum green time for the phase.” Thus, if a phase experiences a max-

out, it indicates that the demand for green time of that phase exceeds the allocated green 

time in the corresponding cycle. In other words, the MR represents the frequency in which 

the green time demand of a phase exceeds its preset value. 

3.5 Signal Operation Diagnosis 

3.5.1 Diagnostic Scheme 

Traffic conditions were derived from the CDF plots of TTI that were aggregated from travel 

time information. Although CDF plots provide excellent visualization of TTI performance, 

the conclusions were made based on human interpretation of the CDF plots. On the other 

hand, combining the preprocessed Wi-Fi data and signal data, the relationship between 

signal control parameters and vehicle travel times can be identified, allowing even better 

support for signal operation diagnosis. A diagnostic scheme is proposed in this context and 
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presented in Figure 3-26. The proposed scheme diagnoses the green time allocation for the 

individual signal phase first. It then divides phases into various sections and diagnoses the 

sectional green time allocation. Finally, the scheme inspects the cycle length or capacity 

adequacy for the entire intersection based on the results from the previous steps.  

As is the case with the CDF analyses presented in the previous section, TTI is used 

as the performance measure for the evaluation of traffic conditions. The TTI used in the 

proposed diagnostic scheme is calculated from the Wi-Fi detections as the ratio of the 

actual travel time to the estimated free-flow travel time. As discussed earlier, the 15th 

percentile travel time of all weekday data is used as the estimated free-flow travel time for 

each movement. The 50th percentile TTI is used as the measure that represents travel time 

in this dissertation. However, the analyst may replace the 50th percentile TTI with the 80th 

percentile TTI or any other TTI. Similarly, the users of the proposed diagnostic scheme can 

change the values of the estimated free-flow travel time. Selecting different percentile TTI 

in the analysis would reflect an agency’s desire to make its decision based on the worst 

20th percentile of traffic (i.e., if the 80th percentile TTI is used) versus the worst 50th 

percentile of traffic (i.e., if the 50th percentile TTI is used). A utility index that combines 

different percentile TTI can also be used.  
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Figure 3-26 Proposed Decision-Support Signal Operation Diagnostic Scheme 
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In this dissertation, a typical dual-ring eight-phase coordinated signal control is 

investigated in the framework development because it is the type of signal control utilized 

at the studied intersection. However, the proposed framework can be applied to any other 

type of fixed-time or actuated signal control. As shown in Figure 3-26, the proposed 

scheme first inspects the performance of the individual phase for the corresponding turning 

movement. At the individual phase diagnosis stage, the TTI and MR are compared to 

selected thresholds. The comparison results are then combined to examine whether or not 

the allocated green times for the phases are appropriate. For example, if a signal phase 

experiences high TTI and high MR, the diagnosis will recommend increasing the preset 

green time for that individual phase. The rules of the diagnosis will be presented shortly.  

After diagnosing all individual phases, a sectional level diagnosis is conducted by 

grouping specific individual phases together. An intersection level diagnosis is then 

performed on the basis of the results from the previous diagnoses. The intersection level 

diagnosis inspects whether the cycle length can provide sufficient capacity to serve the 

overall intersection in order to avoid oversaturation. At this intersection level signal 

diagnosis stage, the inspection considers all diagnosis results of the individual phase, and 

the sections combine them. It then searches for opportunities to switch green times between 

phases, if there are any. The diagnostic scheme also takes the signal control logic into 

account and examines the feasibility of the green time exchange between phases. 

3.5.2 Individual Phase Diagnosis 

The studied intersection is controlled by a typical dual-ring eight-phase coordinated signal 

control; the phase diagram is illustrated in Figure 3-27. With this control, Phase 2 and 
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Phase 6, which corresponds with the EBT and WBT movement for the studied intersection, 

are the coordinated phases. The coordinated phases are always given green time that are 

equal to or are more than the preset maximum value, regardless of traffic conditions, and 

thus the max-out information is not used in the analysis of these phases. On the other hand, 

the uncoordinated phases will have a gap-out if there are not enough demands on the 

corresponding movements. Consequently, the diagnostic scheme only combines TTI and 

MR to diagnose the uncoordinated phases and uses TTI as the only measures for 

coordinated signal phase diagnosis. 

 
Figure 3-27 Typical Dual-Ring-Eight-Phase Signal Diagram for the Signal Control 

at the Studied Intersection 

The uncoordinated signal phases (and their corresponding movements) in this case 

include Phase 1 (EBL), Phase 3 (SBL), Phase 4 (NBT), Phase 5 (WBL), Phase 7 (NBL), 
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adequate for the traffic conditions, the user-selected TTI and MR thresholds are compared 

with the corresponding measures derived from the field data. For an uncoordinated phase 
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o -1 signifies the potential to reduce the green time of the phase; 

 If 𝑇𝑇𝐼𝑘 ≤ 𝑇𝑇𝐼𝑇𝐻,𝑘 and 𝑀𝑅𝑘 > 𝑀𝑅𝑇𝐻,𝑘, then 𝐷𝑃𝑘 = 0;  

o 0 signifies no recommendations regarding reducing or increasing the green 

time of the phase; 

 If 𝑇𝑇𝐼𝑘 > 𝑇𝑇𝐼𝑇𝐻,𝑘 and 𝑀𝑅𝑘 ≤ 𝑀𝑅𝑇𝐻,𝑘, then 𝐷𝑃𝑘 = 0; 

 If 𝑇𝑇𝐼𝑘 > 𝑇𝑇𝐼𝑇𝐻,𝑘 and 𝑀𝑅𝑘 > 𝑀𝑅𝑇𝐻,𝑘, then 𝐷𝑃𝑘 = 1.  

o 1 signifies the need to increase the green time of the phase 

where  

𝑇𝑇𝐼𝑘 = the field-estimated TTI for phase 𝑘 . In this case, phase 𝑘  is an 

uncoordinated phase.  

𝑇𝑇𝐼𝑇𝐻,𝑘 = the user-selected TTI threshold for phase 𝑘.  

𝑀𝑅𝑘 =  the measured max-out ratio for phase 𝑘.  

𝑀𝑅𝑇𝐻,𝑘 = the user-selected MR threshold for phase 𝑘.  

𝐷𝑃𝑘 =  the diagnosis result for phase 𝑘.  

The above diagnoses and recommendations are summarized in Table 3-3. 

Table 3-3 Diagnoses of the Uncoordinated Phases 

calculated TTI vs. TTI 

threshold 

calculated MR vs. MR 

threshold 

recommendation on 

green time 

code 

≤ ≤ decrease -1 

≤ > keep 0 

> ≤ keep 0 

> > increase 1 

As discussed earlier, the examination of TTI provides information on the movement 

operation conditions, and the examination of an MR reflects the green time demand of the 
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corresponding signal phase. Therefore, the above criteria for an individual signal phase 

essentially attempts to answer the following questions:  

1. Is the movement congested?  

2. Is the assigned green time adequate?  

For example, the first criterion in Table 3-3 indicates that a movement is not 

congested and the assigned green time is more than adequate. In this case, the 

corresponding phase is flagged to be the candidate that will potentially decrease the green 

time. When a movement has low TTI but experiences frequent max-outs (i.e., high MR), it 

implies that the assigned green time setting is well utilized. As a result, the diagnosis 

recommends keeping the current setting. It is noteworthy that as described by the third 

criterion, when the movement suffers from high TTI but the allocated green time seems to 

be adequate (i.e., low MR), the reason for the high TTI is uncertain and should be further 

examined. The reasons may be due to conditions such as signal settings or geometric 

conditions leading to frequent gap-outs, even though the demand of the corresponding 

movement is high. It can also occur when the corresponding movement is blocked by 

another movement on the same approach but controlled by a different phase (such as a left-

turn movement blocked by a through movement). With these conditions, there is no 

evidence to support changing the phase timing. The diagnosis therefore recommends 

keeping the current setting. Lastly, if a movement experiences high TTI and high max-out 

frequency, this indicates that there is a demand for more green time for the phase that serves 

the movement. 

Since the coordinated phases assigned green times that are equal to or are more than 

the maximum green time, utilizing the MR in the diagnostic scheme for the coordinated 
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phases is meaningless. Therefore, the criteria for diagnosing the assigned green time on a 

coordinated phase 𝑘 is only based on TTI, as presented below. 

 If 𝑇𝑇𝐼𝑘 < 𝑇𝑇𝐼𝑇𝐻,𝑘, then 𝐷𝑃𝑘 = −1; 

 If 𝑇𝑇𝐼𝑘 = 𝑇𝑇𝐼𝑇𝐻,𝑘, then 𝐷𝑃𝑘 = 0; 

 If 𝑇𝑇𝐼𝑘 > 𝑇𝑇𝐼𝑇𝐻,𝑘, then 𝐷𝑃𝑘 = 1. 

The diagnoses and recommendations are summarized in Table 3-4.  

Table 3-4 Diagnoses of Coordinated Phases 

calculated TTI vs. TTI threshold recommendation on green time code 

< decrease -1 

= keep 0 

> increase 1 

3.5.3 Sectional Level Diagnosis 

Since the settings of the dual-ring controller result in dependency between phases, 

recommendations to change signal phase timing will have to acknowledge these 

dependencies. For example, if the EBL green is excessive but the WBT traffic is heavy, 

then it is possible to switch the green time from the EBL to the WBT. In contrast, if the 

EBL green time is excessive but the EBT needs more, the green time cannot be transferred 

from the EBL to the EBT. 

Numeric categorical variables are continually used to represent various diagnosis 

results. Based on the above discussion, “1” is used to represent the recommendation to 

increase the green time, “0” indicates the recommendation to keep the allocated green time, 

and “-1” stands for the recommendation to flag the phase for potential green time decrease. 

The recommendations are stored for later diagnosis on the signal plan of the whole 

intersection. As can be seen from the diagnosis scheme in Figure 3-26, after diagnosing 
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individual phases, a judgement is placed to see whether all phases have been diagnosed. If 

there are still phases that have not been diagnosed, the system will go back to the phase 

selection and start the diagnosis on an individual phase again. The diagnostic scheme for 

the intersection level signal timing is based on all individual phase diagnosis results. 

Therefore, unless all phases are diagnosed, the scheme will not move on to the next level 

of diagnosis. 

Once all individual phase diagnoses are completed, the system will start the 

sectional level diagnosis by first dividing the eight signal phases into four sections. As 

shown in Figure 3-28, the sections are naturally divided by the barrier (i.e., the vertical 

solid line) and the ring boundary (i.e., the horizontal dashed line). Hence, the sections of 

the dual-ring eight-phase signal control can be divided as:  

 Section 1: ring 1 and barrier 1 

 Section 2: ring 1 and barrier 2  

 Section 3: ring 2 and barrier 1  

 Section 4: ring 2 and barrier 2 

Phases inside each divided section can exchange green time with each other without 

affecting the phase timing in other sections. For instance, Phase 2 can borrow some green 

time from Phase 1 without violating either the barrier or the ring boundary, but other phases 

cannot take any green time from Phase 1 freely since they are separated by either the ring 

boundary or the barrier. 

A sectional phase diagnostic scheme is then applied to each section to determine 

whether there is a need to increase the green time for that section. Each section has two 

phases in the dual-ring eight-phase signal control, and each phase will have three possible 
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diagnosis results, as discussed earlier. There will be a total of nine (i.e., 32 = 9 ) 

combinations of individual phase diagnosis results in each section. Using the numeric 

categorical variables, the diagnosis results of each section based on the combinations of 

individual phase recommendations are shown in Figure 3-29. 

 
Figure 3-28 Illustration of Signal Phase Sections in the Phase Diagram 

 
Figure 3-29 Sectional Diagnostic Scheme 
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 In each section, the total allocated green time of the two phases in the section is 

recommended to increase if:  

o there is at least one phase that needs more green time (“1”); and  

o the green time of the other phase is not flagged to be a candidate of green 

time decrease (“0” or “1”).  

 The diagnosis recommends flagging the section as a candidate of the sectional 

green time decrease if:  

o at least one phase shows an interest in decreasing the green time (“-1”); and  

o the other phase is not recommended to increase its green time (“0” or “-1”).  

 The diagnosis recommends keeping the sectional green time for the remaining 

combinations of individual signal diagnosis results. More specifically, the total 

allocated sectional green time should be kept if:  

o both phases are recommended to keep their green time (“0”); or  

 one phase is recommended to increase its green time (“1”); and  

 the other is flagged as a candidate to have its green time decreased 

(“-1”).  

It should be noted that if one phase is recommended to increase the green time (“1”) 

and the other is recommended to do the opposite (“-1”), then the system suggests keeping 

the current setting due to the lack of evidence to suggest any changes, and a further 

investigation is needed. In spite of the fact that the green time can be exchanged between 

the two phases in a section, there may be still a need to increase the total allocated green 

time. In addition, it is interesting to note that the rules can be summed up mathematically, 

as presented below.  
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 If 𝑃𝑖,1 + 𝑃𝑖,2 > 0, then 𝐷𝑆𝑖 = 1; 

 If 𝑃𝑖,1 + 𝑃𝑖,2 = 0, then 𝐷𝑆𝑖 = 0; 

 If 𝑃𝑖,1 + 𝑃𝑖,2 < 0, then 𝐷𝑆𝑖 = −1. 

where  

𝑃𝑖,1 = the leading phase in section 𝑖.  

𝑃𝑖,2 = the lagging phase in section 𝑖.  

𝐷𝑆𝑖 = represents the diagnosis result of the total allocated green time for section 𝑖. 

3.5.4 Intersection Level Diagnosis 

With the completion of the individual phase diagnoses and sectional level diagnoses, the 

signal plan for the entire intersection, in particular, the cycle length, is evaluated based on 

the previous results. The intersection level diagnosis, which is similar to the presentation 

of the sectional level diagnosis, is shown in Figure 3-30 and Figure 3-31. Figure 3-30 shows 

all of the combinations resulting in “1” as the diagnosis results for the cycle length. Similar 

to the definition of the numeric categorical variables used earlier, the diagnosis result of 

“1” indicates the need for a longer cycle length. More specifically, increasing the capacity 

of the entire intersection is required if the criteria are to be met. For the signal plans that 

already have long cycle lengths, geometrical improvement may be required.  

As can be seen in Figure 3-30, the intersection level diagnosis decides whether to 

recommend increasing the cycle length by examining the diagnosis results from two 

sections located in different barriers. It is recommended to increase the cycle length if the 

sum of the diagnosis results from each pair of two sections is positive. The diagnoses can 
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be described mathematically as the following. Each rule is based on one row in Figure 3-30, 

which contains three graphs. 

 If 𝐷𝑆1 + 𝐷𝑆2 > 0, then 𝐷𝐼 = 1; 

 If 𝐷𝑆3 + 𝐷𝑆4 > 0, then 𝐷𝐼 = 1; 

 If 𝐷𝑆1 + 𝐷𝑆4 > 0, then 𝐷𝐼 = 1; 

 If 𝐷𝑆2 + 𝐷𝑆3 > 0, then 𝐷𝐼 = 1. 

where  

𝐷𝐼 = denotes the diagnosis result of the intersection level diagnosis. 

It is worth pointing out that any of the above four conditions will lead to the 

intersection level diagnosis of “1,” requesting a cycle length increase for the whole 

intersection. Each of the conditions only examines the diagnosis results of two sections. 

Therefore, the remaining two sections can have any diagnosis results, and the intersection 

level diagnosis will be the same. However, no diagnosis results are given if only the two 

sectional results in the same barrier (i.e., Section 1 and Section 3, Section 2 and Section 4) 

are examined. Since the sections in the same barrier may exchange green time with the 

sections in the other barrier, further investigation is needed. Each section with a letter “A” 

in Figure 3-30 can have three sectional diagnosis results. As a result, the intersection level 

diagnosis of “1” can process 9 × 3 + 6 × 3 + 4 × 3 + 2 × 3 = 63 combinations, given a 

total of 34 = 81 scenarios. 

Figure 3-31 shows the opposite when the diagnostic result for the intersection level 

signal timing is “-1,” meaning that the cycle length of the intersection can be reduced. As 

can be seen from the figure, no diagnosis result of “1” is found in all sections. In addition, 

there are at least two sections diagnosed as “-1.” In either barrier, both sections in the two 
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rings should have the sectional level diagnosis result of “-1” (e.g., Section 1 and Section 3, 

or Section 2 and Section 4). The conditions can be summarized mathematically, as 

presented below. 

 If 𝐷𝑆1 < 0, and 𝐷𝑆3 < 0, and 𝐷𝑆2 ≤ 0, and 𝐷𝑆4 ≤ 0, then 𝐷𝐼 = −1; 

 If 𝐷𝑆2 < 0, and 𝐷𝑆4 < 0, and 𝐷𝑆1 ≤ 0, and 𝐷𝑆3 ≤ 0, then 𝐷𝐼 = −1. 

It is interesting to point out that the second rule is the same as the first rule but is 

only applied to the different sides of the barrier. As seen in the figure, the intersection level 

diagnosis of “-1” can handle 7 out of 81 combinations of the sectional level diagnosis 

results. 

The scenarios shown in Figure 3-30 and Figure 3-31 recommend changing the cycle 

length, with 63 + 7 = 70 combinations of the sectional level diagnosis results. Therefore, 

the remaining 81 − 70 = 11 scenarios will result in the intersection level diagnosis of “0,” 

yielding a recommendation to keep the cycle length setting as long as it is appropriate or 

there is not enough evidence to support the change. 

It seems it is easier to achieve the criteria of increasing cycle length, compared to 

keeping or decreasing it. It is reasonable because of the nature of the signal control logic.  

An at-grade intersection has more pairs of conflicting movements than overlapping 

movements. In this context, it is difficult to exchange green time between signal phases 

since there is a high chance that they will conflict with each other. Given the fact that an 

increasing cycle length is an outcome of a failure in the exchange of green time between 

phases, qualifying the cycle length decrease is the most difficult part; it is relatively easier 

to qualify increasing it. 



70 

 
Figure 3-30 Combinations While Intersection Level Diagnosis Results are “1” 
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Figure 3-31 Combinations While Intersection Level Diagnosis Results are “-1” 
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3.6 Summary 

In this chapter, the methodology framework of this dissertation is presented. With the 

appropriate installation of the Wi-Fi readers, the devices traveled between the studied 

intersection and the surrounding intersections can be matched. The methodology of data 

matching is applied in order to avoid mismatches, as well as to identify multiple trips made 

by each device. By matching the identified trips between the studied intersection and its 

surrounding intersections, turning movements can be categorized based on the matches of 

MAC addresses and the corresponding timestamps between different trips. 

Various pairs of timestamps between the studied intersection and its upstream 

intersections at different detection stages are discussed in this chapter. The last-to-last 

travel times are selected in the calculation of trip travel times between the studied 

intersection and its upstream intersections. The calculated travel times are then used to 

distinguish traversals from all identified trips by applying the presumed shortest travel 

times and DBSCAN algorithm in various turning movements.  

The travel times of the valid traversals are then aggregated to investigate the traffic 

conditions in the field. TTI is used as a performance measure, and CDF plots of TTI are 

utilized to represent the traffic status during different times of day. Moreover, information 

extracted from the historical signal timing records of the studied intersection signal control 

are combined with the CDF plots in order to obtain accurate information from the field 

traffic conditions and signal performance. 

Since CDF plots rely on human interpretation, an automatic diagnosis scheme is 

developed, which utilizes TTI derived from the Wi-Fi readings and MR calculated from the 

signal records. TTI sheds light on the traffic conditions, and MR reflects the signal 



73 

operations. The combination of the two measures provides a complete picture of signal 

performance at the studied intersection.  

The scheme first diagnoses the individual phase green time allocation. By dividing 

individual phases into different sections based on the location in the ring-barrier diagram, 

the scheme then diagnoses the total allocated green time for each section. Lastly, the 

scheme diagnoses the cycle length of the intersection based on the previous sectional level 

diagnosis results. Combining the results from different level diagnoses, the developed 

framework of signal operation diagnosis is able to provide information to decision-makers 

on the needs of signal timing improvements, as well as the direction of the suggested 

improvements. The implementation and evaluation of the proposed framework of signal 

operation diagnosis are presented in detail in the next chapter.  
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CHAPTER 4  

DIAGNOSIS IMPLEMENTATION 

4.1 Introduction 

The proposed decision-support framework for traffic signal operation diagnosis was 

implemented in the studied intersection of Southwest 8th Street and Southwest 107th 

Avenue in Miami, Florida. The Wi-Fi data and historical signal timing data for all 

weekdays in December 2015 were utilized. The goal of implementation is to identify issues 

with the current signal timing plans. Only the data from weekdays were analyzed, based 

on the fact that weekday traffic conditions are significantly different than the weekends.  

The analysis time period is from 5:00 AM to 8:00 PM, and is divided into 30-minute 

intervals. The framework inspects each interval following the steps illustrated in Figure 

3-26. In this implementation, the preferred TTI threshold is set to 2.5 for every turning 

movement associated with a signal phase. In spite of the fact that the best threshold should 

be the one which can identify signal operation problems, the selected TTI threshold of 2.5 

is widely accepted for urban streets in travel time reliability studies (Zegeer et al. 2014). 

The preferred MR threshold is set to 0.5 for all uncoordinated signal phases. For each 

turning movement, the 50th percentile TTI estimated based on the valid traversals is selected 

to be the measure to assess traffic conditions. The utilization of the 50th percentile TTI, 

which is the median of all TTI for valid traversals, indicates that the diagnosis is based on 

the conditions of the worst 50% of traffic. It is noteworthy that the percentile TTI and 

thresholds can be varied by users to accommodate different situations. The diagnostic 
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scheme used in this dissertation is written in the Visual Basic® language and Structured 

Query Language (SQL). 

4.2 Diagnosis Results 

The proposed scheme of signal operation diagnosis starts with the execution of the 

individual phase signal timing diagnosis; the results are displayed in Figure 4-1 through 

Figure 4-8. Figure 4-1 through Figure 4-6 shows the recommendations for the 

uncoordinated signal phases based on both the TTI and MR. Figure 4-7 and Figure 4-8 

display the diagnosis results for the coordinated signal phases based on TTI. As represented 

by the red dotted line in the figures, the signal diagnosis results of individual phases include 

the following recommendations: 

 “1” recommends to increase phase green time 

 “0” recommends to keep the phase green time settings 

 “-1” recommends to flag the phase for potential green time decrease  

4.2.1 Diagnosis of Uncoordinated Phases 

As shown in Figure 4-1, the diagnosis indicates that the EBL movement does not need an 

increase in the green time, and even assigns green time surpluses. The 50th percentile TTI 

for the EBL movement never exceeds the selected TTI threshold of 2.5. This is consistent 

with the conclusion drawn from the CDF plots shown in Figure 3-20 and Figure 3-21, 

indicating that the TTI performance of the EBL is good during most of the studied time 

periods. Although the TTI deteriorates between 8:00 AM and 8:59 AM, as shown in Figure 

3-21, the 50th percentile TTI is still lower than the threshold at 2.5, as shown in Figure 4-1. 
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The TTI of the NBL movement exceeds the 2.5 threshold in a large proportion of 

the time periods between 11:00 AM and 4:59 PM, as shown in Figure 4-2. However, the 

MR does not exceed the 0.5 threshold in most cases. As discussed in Chapter 3, there are 

numerous reasons for high TTI and low MR. It could be due to inappropriate settings of the 

green extension or the blockage of the NBL movement by the NBT movement. The cause 

remains uncertain until further investigation, such as field observation, is conducted. The 

diagnosis suggests keeping the green time setting for the time intervals with high TTI and 

low MR, since there is not enough evidence to support changing it. Nevertheless, it is 

recommended to increase the green time for the corresponding phase (i.e., Phase 7) at 

midday for the NBL movement.  

The allocated green time for the NBT movement seems to be sufficient to serve the 

movement since the diagnosis recommended keeping it most of the time, except for a few 

occasions, as shown in Figure 4-3. As explained earlier, the inferior performance in the 

timeframe between 8:00 AM and 8:59 AM is expected to be due to spillback from a 

downstream traffic control signal. Other than this period, the diagnosis also recommends 

increasing the green time in the period between 5:30 PM and 5:59 PM, and between 7:00 

PM to 7:29 PM, since both TTI and MR slightly exceed the thresholds. However, it should 

be mentioned that other movements have worse performance than the NBT during the PM 

period, indicating the need for improvement in geometry, such as an additional lane for the 

NBL movement, since both the TTI and MR exceed the thresholds. 

As can be seen from Figure 4-4, the signal operation seems to be appropriate for 

the SBL movement in the morning, primarily before 11:29 AM. However, this move 
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requires additional green time in the periods that follow. This is consistent with the 

conclusions drawn from the CDF plots in Figure 3-24.  

The diagnosis of the SBT movement, as shown in Figure 4-5, is also consistent with 

the CDF plots shown in Figure 3-24. The diagnosis indicates the need for additional time 

between 2:00 PM and 6:59 PM. On the other hand, the diagnosis confirms the CDF 

interpretations that the green time for the WBL movement is sufficient, as indicated in 

Figure 4-6. Moreover, Figure 4-6 implies that the signal phase of the WBL movement has 

extra green time, particularly in the time period before 3:29 PM. 

 
Figure 4-1 Uncoordinated Signal Phase Diagnosis for EBL Movement 
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Figure 4-2 Uncoordinated Signal Phase Diagnosis for NBL Movement 

 
Figure 4-3 Uncoordinated Signal Phase Diagnosis for NBT Movement 

Max-out ratio 
50 Percentile TTI 
Recommendation 

Preferred max-out ratio threshold 
Preferred TTI threshold 

2 4 7 9 11 12 13 

Plan 

number 
17 

Max-out ratio 
50 Percentile TTI 
Recommendation 

Preferred max-out ratio threshold 
Preferred TTI threshold 

2 4 7 9 11 12 13 

Plan 

number 
17 



79 

 
Figure 4-4 Uncoordinated Signal Phase Diagnosis for SBL Movement 

 
Figure 4-5 Uncoordinated Signal Phase Diagnosis for SBT Movement 
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Figure 4-6 Uncoordinated Signal Phase Diagnosis for WBL Movement 

4.2.2 Diagnosis of Coordinated Phases 

As explained in Section 3.5.2 , the proposed framework diagnoses the coordinated signal 

phases based on the TTI, but not on the MR. The diagnosis results for the two main street 

thru movements, EBT and WBT, and their corresponding signal phases (i.e., Phase 2 and 

Phase 6), are shown in Figure 4-7 and Figure 4-8, respectively. The diagnosis indicates that 

with the exception of a short time period between 3:30 PM to 3:59 PM, the TTI of the EBT 

movement is always below the threshold of 2.5. On the other hand, the TTI of the WBT 

movement mostly reaches or exceeds the threshold between 3:00 PM and 6:59 PM, as 

confirmed by the results in Figure 3-22. In particular, the TTI of the WBT movement 

surpasses the threshold between 3:00 PM and 3:59 PM, which is the peak shoulder period. 

According to Figure 4-8, the diagnosis recommends increasing the corresponding green 

time for the WBT movement during that time period. This possibly indicates the need to 

start the peak period plan at 3:00 PM instead 4:00 PM. 
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Figure 4-7 Coordinated Signal Phase Diagnosis for EBT Movement 

 
Figure 4-8 Coordinated Signal Phase Diagnosis for WBT Movement 

4.2.3 Diagnosis of Intersection Cycle Length 
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examining all individual phases in various time periods, the diagnosis investigates the 

whole intersection to determine this need, and the results are presented in Figure 4-9. As 

with the diagnosis results of individual phases, the recommendations of the intersection 

cycle length are: 

 “1” recommends to increase the cycle length 

 “0” recommends to keep the cycle length settings 

 “-1” recommends that the cycle length can be reduced 

As expected, the diagnosis recommends not changing or decreasing the cycle length 

most of the day. However, it should be recognized that this recommendation is based on 

local conditions at the studied intersection. The cycle length is normally selected based on 

the entire coordinated system, and reducing the cycle length may not be possible. The 

diagnosis recommends increasing the cycle length between 3:00 PM and 5:59 PM. Since 

the cycle length included in the Figure 4-9 is already 190 seconds in the PM peak plan 

between 4:00 PM and 6:59 PM, it is not realistic to introduce a longer cycle length. Longer 

cycle lengths cause longer queues, and thus are not normally recommended. This may 

indicate the need for geometry improvement at the studied intersection. On the other hand, 

between 3:00 PM and 3:59 PM, the utilized cycle length is 170 seconds. In general, the 

diagnosis implies that the signal plan for the PM peak (i.e., from 4:00 PM to 6:59 PM) 

should be applied earlier to the so-called peak shoulder period (i.e., from 3:00 PM to 3:59 

PM). Perhaps an early start of the PM peak signal plan could prevent traffic breakdown, 

and the cycle length and geometry would be adequate for the afternoon peak period.  
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Figure 4-9 Intersection Level Diagnosis 

To increase the understanding of the analysis results, the signal operation diagnosis 

can be presented and visualized another way. An example of the results for the time period 

between 3:00 PM and 3:59 PM is shown in Figure 4-10. The intersection level diagnosis 

results are “1” for the hour according to previous discussion, indicating that the cycle length 

of the corresponding signal plan needs to be increased. The hour between 3:00 PM and 

3:59 PM is divided into two time intervals: the interval between 3:00 PM and 3:29 PM, 

and the interval between 3:30 PM and 3:59 PM. Part (a) in Figure 4-10 shows the 

recommendations of the diagnosis for the interval between 3:00 PM and 3:29 PM, which 

suggests that the green times of the WBT and SBL be increased (assigned “1” in the figure). 

As discussed earlier, the phase for the WBT (Phase 2) movement can borrow green time 

from the phase for the EBL (Phase 1), which is marked as a candidate for green time 

decrease (assigned “-1” in the figure). Thus, the diagnosis of Section 1 between 3:00 PM 
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and 3:29 PM shown in part (b) in Figure 4-10 is “0,” confirming the possible exchange of 

green times between the two phases in Section 1.  

 
Figure 4-10 Individual Phase and Sectional Level Diagnosis Results between 3:00 

PM and 3:59 PM 

The phase serving the SBL (Phase 2) cannot borrow green time from the phase that 

serves the NBT (Phase 4), of which there is no surplus green time available. As shown in 

part (b) of Figure 4-10, Section 2 is flagged because it needs additional green time, as the 

sectional diagnosis result equals “1.” Similar relationships between other individual phase 

diagnoses (i.e., part (a)) and sectional level diagnoses (i.e., part (b)) in the figure can be 

derived. Given the fact that Section 2 needs an increase in the sectional green time and 

other sections need to keep their portions, it is recommended that the cycle length for the 

time interval between 3:00 PM and 3:29 PM is increased. In summary, the signal operation 

diagnosis for the time interval between 3:00 PM and 3:29 PM recommends: 

 increasing the cycle length for the intersection 

 switching green time from Phase 1 (EBL) to Phase 2 (WBT)  
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 allocating more green time to Phase 3 (SBL), which can be taken from the 

increased cycle length 

Similarly, the signal operation diagnosis for the time interval between 3:30 PM to 

3:59 PM recommends: 

 increasing the cycle length for the intersection 

 switching green time from Phase 1 (EBL) to Phase 2 (WBT) 

 switching green time from Phase 4 (NBT) to Phase 3 (SBL) 

 allocating more green time to Phase 8 (SBT), which can be taken from the 

increased cycle length 

4.3 Comparison of Diagnoses and Field Observations 

A field observation was conducted by the Florida Department of Transportation (FDOT) 

consultant. The observation report describes the traffic conditions for different movements. 

The observation periods are divided by time of day, as follows:  

 morning peak period from 6:30 AM to 9:29 AM 

 midday peak period from 9:30 AM to 1:59 PM 

 afternoon peak period from 4:00 PM to 6:59 PM 

When compared with the studied time period in this investigation, no information is 

provided during: 

 the pre-morning period between 5:30 AM and 6:29 AM 

 the post-midday peak period between 2:00 PM and 3:59 PM that includes the “peak 

shoulder” period 

 the post-afternoon period between 7:00 PM and 7:59 PM. 
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The observation report is descriptive, and a partial summary of the description is 

shown in Table 4-1 and Table 4-2. Table 4-1 categorizes the queue conditions of each 

movement during different times of day into three levels, as follows: 1) clear, 2) moderate, 

and 3) heavy. Table 4-2 highlights the movement downstream spillback blockages and 

adjacent turn-bay spillover blockages, as well as the reasons for the blockage.  

Table 4-1 Summary of Queue Levels from Field Observation 

Queue Level 

Movement / Period Morning Midday Afternoon 

EBL Moderate Clear Clear 

EBT Heavy Moderate Moderate 

WBL Clear Moderate Moderate 

WBT Moderate Clear Heavy 

NBL Heavy Moderate Heavy 

NBT Moderate Moderate Moderate 

SBL Heavy Heavy Heavy 

SBT Clear Heavy Heavy 

The following results from the developed framework of signal operation diagnosis 

can be confirmed based on the field observations: 

 The WBT movement has inferior performance in the PM peak period and requires 

additional green time. 

 Inferior performance of the SBL and SBT movements begins at midday, and 

additional green time or capacity improvements are needed for these movements. 

At midday, the SBL and SBT movements should receive additional green time, 

which can be taken from the EBL and WBT. 

 In the PM peak period, there is an opportunity to take some green time from the 

EBL movement and add it to the WBT movement. 
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 The NBT movement experiences travel time increase at the studied intersection 

between 8:00 AM and 8:59 AM because of the downstream intersection of 

Southwest 4th Street and Southwest 107th Avenue, which is located within a school 

zone. 

Table 4-2 Summary of Movement Blockages from Field Observation 

Movement Blocked by 

Movement / Period Morning Midday Afternoon 

EBL EBT/Downstream     

EBT       

WBL       

WBT     Downstream 

NBL       

NBT Downstream   NBL 

SBL       

SBT       

On the other hand, some diagnoses cannot be confirmed by the observations. The 

unconfirmed diagnosis results are listed below: 

 The diagnoses between 2:00 PM and 4:00 PM cannot be confirmed due to lack of 

field observations. 

 In the morning, heavy queues are reported for the SBL movement, but the diagnosis 

does not indicate the need for green time increase.  

 Heavy queuing of NBL is observed in the morning and afternoon, and moderate 

queuing is observed at midday. However, the diagnosis identified inferior signal 

operation performance of the NBL movement only during the midday/lunch peak 

period. 
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 In the morning, cycle failures are observed for the NBL, but the max-out ratios 

calculated in this study are relatively low, and thus no green time increase is 

recommended. 

4.4 Summary 

The developed framework of signal operation diagnosis was implemented in this chapter 

at an intersection with a coordinated dual-ring eight-phase signal control. The diagnostic 

scheme was written in Visual Basic® language and Structured Query Language (SQL). 

The 50th percentile TTI was selected for the diagnosis. The preferred TTI threshold was set 

to 2.5, and the MR threshold was set to 0.5. The diagnosis inspected the uncoordinated 

phases and coordinated phases separately, then combined the results for all individual 

phases to diagnose the cycle length and capacity needs of the intersection. The diagnosis 

results are summarized in Table 4-3.  

In the morning between 8:00 AM to 9:00 AM, the green time of the phases for NBT 

and SBT movement is recommended to increase due to the school zone near the 

intersection of Southwest 4th Street and Southwest 107th Avenue. Green time increase is 

recommended for the SBL movement from 11:30 AM. The SBT movement is 

recommended to increase the corresponding phase green time from 2:00 PM. The NBL 

movement is recommended to increase its phase green time at midday between 12:00 PM 

and 1:30 PM. The phase green time for the WBT movement is recommended to increase 

in the afternoon between 3:00 PM to 4:30 PM and between 5:30 PM and 6:00 PM. The 

cycle length of the entire intersection is recommended to increase between 3:00 PM and 

4:30 PM and between 5:30 PM and 6:00 PM. 
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Table 4-3: Summary of Signal Operation Diagnosis Results 

Strat Time 

of Time 

Interval 

Section 1 Section 2 Section 3 Section 4 Intersection 

Phase 
Phase 

1 

Phase 

2 

Phase 

3 

Phase 

4 

Phase 

5 

Phase 

6 

Phase 

7 

Phase 

8 
Cycle 

Length 
Movement EBL WBT SBL NBT WBL EBT NBL SBT 

5:00:00 -1 -1 -1 0 -1 -1 -1 0 -1 

5:30:00 -1 -1 -1 0 -1 -1 -1 0 -1 

6:00:00 -1 -1 0 0 -1 -1 -1 0 -1 

6:30:00 -1 -1 0 0 -1 -1 -1 0 -1 

7:00:00 -1 -1 0 0 -1 -1 -1 0 -1 

7:30:00 -1 -1 0 0 -1 -1 -1 0 -1 

8:00:00 -1 -1 0 0 -1 -1 -1 1 -1 

8:30:00 -1 -1 0 1 -1 -1 -1 0 0 

9:00:00 -1 -1 0 0 -1 -1 -1 0 -1 

9:30:00 -1 -1 0 0 -1 -1 -1 0 -1 

10:00:00 -1 -1 -1 0 -1 -1 -1 0 -1 

10:30:00 -1 -1 -1 0 -1 -1 -1 0 -1 

11:00:00 -1 -1 -1 0 -1 -1 0 0 -1 

11:30:00 -1 -1 1 0 -1 -1 0 0 0 

12:00:00 -1 -1 1 0 -1 -1 1 0 0 

12:30:00 -1 -1 1 0 -1 -1 1 0 0 

13:00:00 -1 -1 1 0 -1 -1 1 0 0 

13:30:00 -1 -1 0 0 -1 -1 0 0 -1 

14:00:00 -1 -1 1 0 -1 -1 0 1 0 

14:30:00 -1 -1 1 0 -1 -1 -1 1 0 

15:00:00 -1 1 1 0 -1 -1 0 0 1 

15:30:00 -1 1 1 -1 0 0 0 1 1 

16:00:00 -1 1 1 0 0 -1 -1 0 1 

16:30:00 -1 -1 1 0 -1 -1 -1 1 0 

17:00:00 -1 0 1 0 -1 -1 0 1 0 

17:30:00 -1 1 1 1 0 -1 -1 1 1 

18:00:00 -1 0 1 0 0 -1 -1 1 0 

18:30:00 -1 0 1 0 0 -1 -1 1 0 

19:00:00 -1 -1 1 1 -1 -1 -1 1 0 

19:30:00 -1 -1 1 0 -1 -1 -1 0 0 
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The diagnosis results are compared to the field observations and the comparison 

indicated that the system is capable of identifying improvement directions to support 

decision-makers in their retiming efforts. The system is able to provide information on the 

current signal operation by answering the following questions: 1) Is there a need to change 

the signal plan? 2) How can the signal plan be changed?  

It should be noted that the same thresholds of the utilized measures (TTI and MR) 

were used for all movements in this implementation. Nevertheless, different thresholds can 

be selected by decision-makers based on their experience and the local situations and 

priorities at the intersection where the diagnosis is performed. The impacts of selecting 

different thresholds will be discussed in the next chapter. 
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CHAPTER 5  

THRESHOLDS SELECTION 

5.1 Introduction 

In the previous chapter, the proposed framework of signal operation diagnosis was 

implemented in the studied intersection with the same TTI threshold and MR threshold for 

all turning movements. The appropriateness of introducing the same thresholds for 

different movements is arguable, since the current practice intends to provide better service 

to the main street traffic streams, whose signal phases are often coordinated. Whether to 

apply different thresholds to various turning movements or not and the selection of the 

appropriate thresholds are decisions that the users can make. The previous chapter provides 

a starting point on implementing the framework. This chapter continues such efforts and 

attempts to select different thresholds for various signal phases.  

5.2 Comparison of Thresholds 

The thresholds of the developed framework include 1) TTI thresholds; and 2) MR 

thresholds. Choosing different thresholds for various signal phases works similar to 

applying different weights to the turning movements. For example, lower thresholds are 

selected for the main street instead of the thresholds preferred for the minor street. Similarly, 

the coordinated phases can be assigned lower thresholds, and the uncoordinated phases are 

given thresholds with higher values. Additionally, other than applying different thresholds 

to different movements, the thresholds can vary by time of day. 

Selecting different thresholds can lead to different diagnosis results. In this chapter, 

the framework of signal operation diagnosis is implemented in the same studied 
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intersection of Southwest 8th Street at Southwest 107th Avenue in Miami, Florida, with a 

different set of thresholds, in comparison to the previous implementation discussed in 

Chapter 4. The thresholds applied in both implementations are summarized in Table 5-1. 

Table 5-1 Thresholds Utilized in Different Implementations 

Phase Movement TTI Threshold 

Set 1 

TTI Threshold 

Set 2 

MR Threshold 

Set 1 

MR Threshold 

Set 2 

1 EBL 2.5 3.0 0.5 0.7 

2 WBT 2.5 2.0 N/A N/A 

3 SBL 2.5 3.5 0.5 0.7 

4 NBT 2.5 2.5 0.5 0.7 

5 WBL 2.5 3.0 0.5 0.7 

6 EBT 2.5 2.0 N/A N/A 

7 NBL 2.5 3.5 0.5 0.7 

8 SBT 2.5 2.5 0.5 0.7 

The TTI threshold set 2 tested in this chapter utilized different values for various 

movements. The new thresholds favor movements in the east-west direction (main street), 

compared to the movements along the north-south direction. They also favor the 

movements compared to left turns. Additionally, the preferred MR threshold of 0.5 is 

replaced by 0.7, indicating a stricter rule to identify the need for green time increase. 

5.3 Comparison of the Diagnosis Results 

The diagnosis results for each individual signal phase with the newly selected thresholds 

are compared with the previous results and presented in Figure 5-1 through Figure 5-9. 

With the newly selected thresholds, higher TTI thresholds are set for the left-turn 

movements, which make it more difficult to recommend green time increase for those 

movements. Moreover, a higher MR threshold has a smaller chance of requesting extra 

green time, since the probability of violating the new MR threshold is lower. Consequently, 
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there should be more recommendations to either keep the current green times or be flagged 

as candidates for green time decrease. 

The above expectations are confirmed in Figure 5-1, Figure 5-2, Figure 5-4, and 

Figure 5-6, as the blue lines tend to stay away from the recommendation of “1” (i.e., 

increasing green time) and vary between “0” (i.e., keeping green time) and “-1” (i.e., being 

flagged as a candidate for green time decrease). More specifically, as shown in Figure 5-1, 

the diagnosis flags the phase for the EBL movement (Phase 1) as a candidate for decreasing 

its green time during the entire studied period.  

The diagnosis results for the thru movements in the north-south direction are 

presented in Figure 5-3 and Figure 5-5. Although the newly selected TTI thresholds are 

exactly the same as the previous ones, the frequency of the recommendation to increase the 

corresponding green time drops due to the higher MR threshold. On the contrary, the 

frequency of recommending green time increase rises for the thru movements in the east-

west direction, as shown in Figure 5-7 and Figure 5-8, due to the lower TTI threshold.  

The findings of the intersection level diagnosis are a combination of the diagnoses 

of all individual signal phases at the studied intersection, as shown in Figure 5-9. The 

diagnosis results of the two scenarios with different thresholds are clearly different. Upon 

applying the newly selected thresholds, the diagnosis does not recommend cycle length 

increase for the intersection, due to the low frequency that the individual phases are flagged 

for green time increase. 
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Figure 5-1 Comparison of Signal Phase Diagnosis Results for EBL Movement 

 
Figure 5-2 Comparison of Signal Phase Diagnosis Results for NBL Movement 

Diagnoses with newly selected thresholds Diagnoses with previously selected thresholds 

Diagnoses with newly selected thresholds Diagnoses with previously selected thresholds 
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Figure 5-3 Comparison of Signal Phase Diagnosis Results for NBT Movement 

 
Figure 5-4 Comparison of Signal Phase Diagnosis Results for SBL Movement 

Diagnoses with newly selected thresholds Diagnoses with previously selected thresholds 

Diagnoses with newly selected thresholds Diagnoses with previously selected thresholds 
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Figure 5-5 Comparison of Signal Phase Diagnosis Results for SBT Movement 

 
Figure 5-6 Comparison of Signal Phase Diagnosis Results for WBL Movement 

Diagnoses with newly selected thresholds Diagnoses with previously selected thresholds 

Diagnoses with newly selected thresholds Diagnoses with previously selected thresholds 
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Figure 5-7 Comparison of Signal Phase Diagnosis Results for EBT Movement 

 
Figure 5-8 Comparison of Signal Phase Diagnosis Results for WBT Movement 

Diagnoses with newly selected thresholds Diagnoses with previously selected thresholds 

Diagnoses with newly selected thresholds Diagnoses with previously selected thresholds 
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Figure 5-9 Comparison of Signal Diagnosis Results for the Intersection 

5.4 Summary 

The proposed framework of signal operation diagnosis utilizes two thresholds, the TTI 

threshold and MR threshold, for various movements and time periods. The previous chapter 

provided a starting point on implementing the framework of signal operation diagnosis in 

a real-world intersection with the application of equivalent TTI thresholds and MR 

thresholds for all turning movements. This chapter presents an example of selecting 

different thresholds in the signal diagnosis. Different TTI thresholds were selected for 

various movements, with lower thresholds for the main traffic stream, as well as the thru 

movements. In addition, a higher MR threshold is applied to all phases. The diagnosis 

results showed less frequent requests for green time increase and more for green time 

decrease for the uncoordinated phases. The intersection level diagnoses were also 

dramatically different than those presented in the previous chapter, with no cycle length 

increase, per the recommendation of the diagnosis.  

Diagnoses with newly selected thresholds Diagnoses with previously selected thresholds 
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CHAPTER 6  

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

6.1 Summary and Conclusions 

The current practices of signal retiming are periodic and based on limited and aggregated 

turning movement counts. There is a need for continuous signal operation monitoring to 

ensure effective and efficient control of signalized arterials. This dissertation developed a 

framework of automatic signal operation diagnosis to support the decision-making process 

by identifying problems in existing signal controls, evaluating the needs of signal retiming, 

and providing directions for the retiming process. The developed framework utilized data 

from relatively low-cost Automatic Vehicle Identification (AVI) detection technology such 

as Wi-Fi and Bluetooth sensors, in combination with data from current signal controllers 

to provide information for diagnosing signal operations, without using high-resolution 

event data.  

Identification of vehicles that traverse the intersection without intermediate stops 

for other purposes under recurrent traffic conditions is critical to the developed the 

framework. With the appropriate installation of sensors at various locations and the 

application of data matching algorithms, trips between different intersections were 

identified. Travel times were calculated as the difference between the timestamps of 

different detection stages from a pair of sensors. By applying multiple data filtering 

algorithms based on the calculated travel times, including introducing the Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) algorithm to the data filtering 

process, it was possible to identify a set of traversals for use in the analysis. This data was 
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aggregated and summarized as Travel Time Index (TTI) with different percentiles and was 

used to generate a series of Cumulative Density Function (CDF) plots for the assessment 

of traffic conditions at an intersection. Initially, these CDF plots were used for “manual” 

identification of problems in signal operation. 

As discussed above, aside from utilizing the TTI estimated based on AVI detections 

to assess traffic conditions, Max-out Ratio (MR) extracted from the historical signal timing 

records was introduced as another variable for use in combination with TTI to reflect the 

status of the signal operations. The developed framework combined TTI and MR to 

automatically evaluate whether or not the green time for an individual phase is adequate to 

serve the corresponding movement. After the completion of diagnosing all individual 

phases at a given intersection, the framework allowed the assessment of the cycle length 

and/or capacity adequacy for the entire intersection with the examination of the diagnosis 

results for all signal phases.  

The developed framework was implemented at a studied intersection under a 

typical dual-ring eight-phase coordinated signal control. The framework diagnosed the 

signal operation every 30 minutes during the studied time period, with the same preferred 

TTI threshold and MR threshold for all movements. The diagnosis evaluated each of the 

eight signal phases and made one of the following recommendations for each phase: 

1. increase its green time 

2. keep its green time allocation 

3.  flag the phase as a candidate for green time decrease. 

The diagnosis then evaluated the cycle length and recommended either to increase or to 

keep the current setting.  
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A different set of thresholds were applied in another implementation of the 

framework to diagnose the same signal operation, for the purpose of understanding the 

impact of the selection of the thresholds. The new set included different TTI thresholds for 

the movements, giving higher priority to the main street and thru movements, and a higher 

MR threshold. The results of the analysis showed the expected trend of the diagnosis results 

caused by varying the set of thresholds. 

6.2 Research Contributions 

Identifying an existing signal control problem is a challenging task in arterial management 

and operations. The existing efforts on signal monitoring and diagnosis are limited and 

sporadic. Recently, advanced efforts to address this problem were based on high-resolution 

controller and detector data, which are still difficult to obtain from most existing 

intersection control systems. This research developed a framework of automatic signal 

operation diagnosis utilizing a combination of low-cost AVI data and signal records from 

prevailing signal controllers. A robust diagnosis scheme was also developed to inspect the 

green time allocation of individual signal phases, as well as the cycle length of the entire 

signal plan. 

6.3 Recommendations for Future Research 

Although a completed framework of signal operation diagnosis was developed in this 

dissertation, the system development will benefit from additional development efforts. 

Future studies on the following areas will help improve the framework: 

 The developed framework was designed to use different AVI data. However, only 

Wi-Fi data were investigated in this dissertation due to the type of data availability. 
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The data filtering methodology may be different among various AVI data. 

Therefore, future investigations need to be conducted on the appropriate utilization 

of other AVI data such as Bluetooth readings. The use of third party vendors should 

also be investigated for this purpose. 

 The DBSCAN algorithm was applied to the data filtering process as part of the 

framework. The two parameters, 𝜀 and 𝑚𝑖𝑛𝑃𝑡𝑠, were manually selected based on 

the actual data obtained from the field. These parameters may not be perfect for all 

situations and thus need further investigation. The optimization or generalization 

technique of the estimation of these two parameters will provide a more efficient 

and precise identification of traversals. 

 When applying the DBSCAN algorithm to the data filtering process, only trips in 

one cluster with the shortest travel times were identified as valid traversals. Future 

studies are needed on the potential of using data from more than one cluster. It is 

possible that traversals are contained in multiple clusters, especially when cycle 

failures occur. 

 The developed framework assessed the green time allocation and cycle length of 

the signal plans. However, it did not take traffic progression and the corresponding 

offsets into account. Due to the difficulties in synchronizing the Wi-Fi sensors with 

the signal controller, the arrival types could not be studied in this dissertation. 

Future work is needed in this area. 

 The framework of signal operation diagnosis examined the decision performance 

measures (i.e., TTI and MR) by comparing them to thresholds with set values. 

However, future research should also consider specifying each threshold as a range 
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rather than a fixed point. This will prevent making two completely different 

decisions for very similar measurements.  
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