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The current ecological hypothesis states that the soil type (e.g., chemical and 

physical properties) determines which microbes occupy a particular soil and provides the 

foundation for soil provenance studies.  As human profiles are used to determine a match 

between evidence from a crime scene and a suspect, a soil microbial profile can be used 

to determine a match between soil found on the suspect’s shoes or clothing to the soil at a 

crime scene. However, for a robust tool to be applied in forensic application, an 

understanding of the uncertainty associated with any comparisons and the parameters that 

can significantly influence variability in profiles needs to be determined. This study 

attempted to address some of the most obvious uncertainties of soil provenance 

applications such as spatial variability, temporal variability, and marker selection (i.e., 

taxa discrimination). Pattern analysis was used to validate the ecological theories driving 

the soil microbial biogeography. Elucidating soil microbial communities’ spatial and 

temporal variability is critical to improve our understanding of the factors regulating their 

structure and function.  Microbial profiling and bioinformatics analyses of the soil 
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community provided a rapid method for soil provenance that can be informative, easier to 

perform, and more cost effective than approaches using traditional physico-chemical 

data. This study also showed that stable profiles may allow comparison between evidence 

and a possible crime scene despite the time lapse (4 years) between sample collections, 

however, this is dependent on the analysis method, site, vegetation, and level of 

disturbance. Marker selection was also an important consideration for profiling. Even 

though Fungi look promising for single taxon soil discrimination, the additional markers 

can help discriminate between a wide variety of soil types. As in human identification, 

the more DNA markers queried the greater the discrimination power. Lastly, this study 

illustrated a novel method to query the iron relating genes and ability to design a novel 

marker that can easily be used to profile the functional diversity of a soil community to 

enhance soil classification. Overall this research demonstrated the potential and 

effectiveness of using microbial DNA from soil, not just for comparison, but also for 

intelligence gathering to pinpoint the geographic origin of the soil. 
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Introduction: Soil Microbial Profiling for Forensic Application-A Review 

Soils are very important ecosystem components and contain a vast array of 

information, both abiotic and biotic, and are one of the most challenging natural 

environments to study, especially for microbiologists [1,2].  Microbial community 

interactions are complex with individuals within the functional guilds often relying on the 

presence and interactions of many other species [3]. Moreover, soil is known to contain 

more microbial species than can be detected by traditional culturing methods [4].  For 

example, a gram of soil can contain 106-1010 organisms [5]. However, only about one 

percent of soil microbes are culturable using standard laboratory cultivation methods. 

Therefore, the true intrinsic diversity of soil microbial communities is largely unexplored 

[1].  

The soil communities are important drivers of ecosystem functions such as 

decomposition, nutrient cycling, and plant production [6-8].  Their spatial variability is 

often regarded as random noise [9].  However, elucidating their spatial and temporal 

variability is critical to improving our understanding of the factors regulating their 

structure and function. Studies have tried to verify the Beijerinck hypothesis that states 

“everything is everywhere but the environment selects” to specify which environmental 

factors exert the strongest influence on the microbial communities [10]. “Distance-decay” 

is a universal biogeographic pattern that is commonly observed with a wide variety of 

organisms and illustrates a decrease in community similarity with increasing geographic 

distance [11].  Understanding the cause of the “distance-decay” pattern is an area of 

intense research.  Distance decay can be observed as a result of the environmental 

variables being spatially auto-correlated and organisms with specific niche preferences 
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being selected [11]. Modeling approaches can be used to study the soil processes and 

microbial patterns by observing the spatial and temporal distribution using abiotic and 

biotic information.  Seasonal and temporal variability are important to understand as soil 

microbial communities are susceptible to seasonal fluctuations such as temperature, water 

content, and nutrient availability [12].  Pattern analysis can help to develop, test, and 

validate prominent ecological theories driving the biogeography [13].  Moreover, 

Beijerinck and distance decay hypotheses lay the foundation to use soil microbial 

communities in forensic field for intelligence purposes to predict where the soil evidence 

originated from geographically.  

I. Forensic Applications of Soil 

Soil can provide valuable corroborative evidence in forensic investigations due to 

its prevalence and its transferability (based on the Locard Exchange Principle: when two 

objects come into physical contact an exchange of material takes place [14]).  Provenance 

and forensic investigations of soil are usually conducted by comparing questioned 

samples with samples of known origin to evaluate if they are significantly similar 

(inclusion) or different (exclusion) based on elemental [15] and physical characteristics 

[16].  Tests usually consist of looking at the physical properties of soil such as soil color, 

texture, consistency, density, porosity, and particle size [17].  A study in 1996 showed 

that approximately 79% of soils could be differentiated by comparing air-dried soil color 

to the Munsell color chart under the microscope [18]. These methods are cost-effective 

and non-destructive, but require some expertise in geology.  However, when there are no 

distinguishable features observed using microscopy, more detailed methods are necessary 

such as elemental analysis [17].  Other analyses include rock and mineral identification 
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and chemical methodologies to identify unknown trace materials [19]. Moreover, no 

single physical analysis is sufficient to distinguish two soil samples are from the same 

source, as shown by a blind study that looked at independent and collective testing of 

three samples from four different experts.  They concluded that independent 

interpretations were less accurate than those where multiple techniques were combined 

[20].  Pye & Blott (2009) supported this by also stating that elemental analysis should 

always be carried out in conjunction with other methods [16].  

II. Microbial Community Profiling 

A vast array of biotic information is associated with soils and, therefore, should 

provide valuable information for provenance of soil samples.  The current ecological 

hypothesis states that the soil type (e.g., chemical and physical properties) determines 

which microbes occupy a particular soil [11,21,22] and provides the foundation for soil 

provenance studies.  Therefore, soil microbial community profiling should produce a 

unique biotic profile at the community level and provide rapid and efficient methods to 

see a snapshot of the patterned diversity within the communities using expertise and 

instrumentation already employed in a DNA crime laboratory.  Several studies to date 

have used microbial analysis for soil provenance using culture-independent, molecular 

biology techniques [17,23-26].  Before Horswell et al. in 2002, biological analysis of 

soils for forensic purposes was largely ignored [23].  Analysis consisted of looking at the 

morphology of plant material such as pollen grain, plant seeds, and fungal spores when 

mineral and chemical properties of soils were undistinguishable.  However, methods 

required scanning electron microscope and transmission electron microscope, which are 

destructive and render the sample unusable for other analysis [17].  Recently with the 
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growth of molecular biology techniques, research has shown the potential of 

microorganisms for reliable forensic soil analysis [17].  

Horswell et al. (2002) was the first to use microbial community analysis for soil 

forensics.  Their results indicated that ecosystem profiles within the environments were 

significantly more similar to each other than to those from other habitats [24].  The pilot 

study provided preliminary data regarding the potential of the microbial community to 

identify which type of environment from which a soil sample may originate [27].  Further 

studies have shown that bacterial profiles within habitats are more similar than different 

environments, though there can be large spatial and temporal variability within habitats 

[28].  Since 2002, there have been an increasing number of studies looking at soil 

microbial dynamics for forensic applications.  A majority of the studies explore the 

bacterial 16S rRNA genes using terminal restriction length fragment polymorphism (T-

RFLP) [29-31] or length heterogeneity polymerase chain reaction (LH-PCR) [23].  In a 

study by Smalla et al. (2007), microbial metagenome profiling using T-RFLP was able to 

discriminate between soil types and showed higher resolution than Denatured Gradient 

Gel Electrophoresis (DGGE) and Single Strand Conformation Polymorphism (SSCP) 

methods [29].  In a study by Moreno et al. (2006), microbial community profiling using 

LH-PCR was concluded to be better able to discriminate between soil types with a high 

degree of reproducibility than elemental analysis with inductively coupled plasma optical 

emission spectrometry (ICP-OES) [23]. Overall, biotic results have been promising.  

Microbial DNA fingerprinting has the potential to be a powerful method for 

forensic investigation as human DNA [30]. DNA fingerprinting techniques such as 

terminal restriction fragment length polymorphism (T-RFLP) and length heterogeneity 
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polymerase chain reaction (LH-PCR) have been widely used and validated for rapid 

microbial profiling for forensic applications [32-34].  The advantage of LH-PCR is that it 

is rapid, robust, reproducible, requires small sample size (<500mg), and can be done with 

equipment and expertise already found in most crime laboratories [23]. Their limitation is 

that the microbial diversity can be underestimated as more than one species can be 

represented by one peak [35].  These techniques look at the length heterogeneity instead 

of the sequence differences, therefore considers the community level rather than the 

individual organism level.  Microbial communities can be complex, consisting of a wide 

variety of species and organisms therefore, it is impractical to use culture-based methods 

for species identification [25]. Analyzing the entire community enables fast and efficient 

ways to provide a glimpse of the diversity in the location, and develop links between 

community structure and the soil habitat [25,35].  As in human DNA profiling, the 

pattern of the amplicons (LH-PCR peaks) generated from the microbial profile can 

provide discrimination of samples. Soil microbial profiles have been shown to provide a 

unique soil fingerprint that could potentially be used as collaborative evidence to 

establish evidentiary relationship between suspect and crime scene as well as provide 

origin of the soil [24,32,36].  Furthermore, the amplicon lengths are phylogenetically 

relevant and can be sequenced to provide taxonomic identity if needed [33,37].  

III. Microbial Profiling Effectiveness 

Microbial profiling effectiveness is dependent on the uniqueness among different 

habitat types, level of heterogeneity within a habitat, and stochastic processes in 

community over time [32]. The assumption states there should be limited temporal 

variability as soil should not change substantially over time to allow use of pattern 



6 
 

modeling of community analysis for forensic application [32]. Soil communities are not 

static and, therefore, can fluctuate with disturbance and seasons [38].  Spatial variability 

has been shown to be more significant than temporal variability [30,32].  Previous studies 

have assessed the temporal variability of the soil however, they were restricted within one 

year [24,27,28]. Lenz & Foran (2010) found that known soil samples can potentially be 

collected well after a crime occurred without detrimental outcomes as the time/season did 

not have a substantial negative influence on the ability to group soils from a habitat even 

though they were collected throughout a one year period [28].  Horswell et al. (2002) 

found that samples collected eight months apart were less similar to each other than those 

collected at the time of original sampling; however, they still showed a high degree of 

similarity (70% compared to 90%) [24].  However, if archived data and training sets are 

to be useful, long-term temporal variability (> 2yr) should be considered.  Unlike human 

identification, the soil environment is dynamic and changes over time.  Therefore, it is 

important to see if meaningful comparisons and links can still be made between soil 

evidence deposited at the crime and archived reference data previously collected (> 2yr) 

from a site can still be classified [5].  

Most often soil forensic analyses have exclusively looked at bacteria.  However, a 

study by MacDonald et al. (2008) illustrated a multiplex approach that analyzed bacteria, 

archaea, and fungi, which led to better discrimination [30].  Bacteria provide greater 

resolution between two sites, however, they appear to be more susceptible to air-drying, 

and sensitive to dehydration pressures that lead to population shifts. Many bacteria, 

however, have survival mechanisms that allow for rapid adaptation such as changing 

allocations of osmolytes or having thicker cell walls or sporulation capabilities as often 
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seen in gram-positive bacteria which help survive with spurts of dry-rewetting 

environmental conditions [39].  Fungi are less altered by air-drying, resilient to 

desiccation, tolerant to wider variation of pH (i.e., persist in acidic soils), and provide 

discrimination between sites [40].  Lastly, Archaea are most useful to identify saline or 

water logged soil environments.  Therefore, a multi-taxon approach will lead to better 

discrimination than a single taxon approach [30] and microbial community profiling has 

the potential for use in forensics to link soil evidence to its origin.  

IV. Functional Diversity 

Over the past decade, a shift in research has been observed to study the functional 

diversity of an ecosystem versus the structural diversity.  Biodiversity is usually defined 

as the species abundance and richness in an environment.  However, the Millennium 

Assessment group (http://www.millenniumassessment.org/en/index.html) termed 

biodiversity as the genetic diversity, species richness and abundance, and functional traits 

present in an ecosystem [41].  Under global threats such as climate change (drought, 

flooded, etc.), major alterations of ecosystems are predicted, which can lead to substantial 

microbial community compositional changes affecting the ecosystem functioning and 

biogeochemical cycles.  Biodiversity has been argued to influence ecosystem stability 

and resilience toward stress and disturbance.  However, the relationship between the 

biotic diversity and microbial guild function in soil is understudied [12].  Currently, two 

overarching hypotheses regarding ecosystem function exist: ecological equivalence and 

functional dissimilarity (Figure 1).  The ecological equivalence hypothesis states that the 

microbial communities in the same environment are functionally equivalent displaying 

functional redundancy [42].  The hypothesis assumes that the environment impacts 



8 
 

function, therefore soil type drives function [42].  In contrast, functional dissimilarity 

assumes that the community functions are dissimilar and not attributed to the 

environmental conditions but rather linked to the diversity of the microbes present in the 

system [42].  Therefore, a key question is whether all soil organisms are important for 

soil functioning or only a few species are more relevant while others are redundant.  In 

other words, some organisms excel at a particular function and are critical to the system 

while others are capable but perhaps less efficient in getting the job done.  Therefore, loss 

of those that excel could impact ecosystem services in different ways: processing rates, 

inferior metabolic by-products for community use, etc.  Understanding these relationships 

will increase our understanding of the sensitivity of the composition-functioning 

relationship under accelerated or prolonged environmental changes.  

 

Figure 1. Species richness and ecosystem function graph adapted from Bengtsson 1998. 

Type 1=functional dissimilarity; Type 2=ecological equivalence. The figure depicts a 

hypothetical example of quantifying the relationship between ecosystem function and 

richness/diversity to determine the type of the relationship [43,44]. The straight line 

(Type 1) depicts that function only is maximized when the species diversity is 

maximized.  Dotted line (Type 2) describes the maximium function is quickly reached 
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with low diversity but with critical species present and then all other species have a 

redundant function within the system.   

The ecological equivalence hypothesis has been related to the biological insurance 

hypothesis, which states that redundancy within functional groups because of an increase 

in diversity will result in overall ecosystem performance and stability [43].  The 

ecological equivalence hypothesis assumes (a) that microbial communities under similar 

environments are more functionally similar across time; and (b) that highly diverse 

systems support a healthy ecosystem because many taxonomically unrelated organisms 

have intrinsic functional redundancy that buffer ecosystem services when environmental 

stress is experienced [45].  However, studies have shown that distance-decay which is 

commonly observed in structural genes (i.e., 16S rRNA) was not observed in a sulfate-

reduction gene (dsrA) [46].  Therefore, more studies should be conducted to understand 

the regulating forces behind specific functional guilds to determine if soil type drives 

function or if other environmental factors (e.g., moisture) structure their biogeographical 

patterns.  Using functional markers can be valuable to be used in forensics to discriminate 

soils.  They can potentially reduce the complexity of assaying all bacteria that lead to 

high level of variability within and among habitats by profiling specific functional 

markers to discriminate the soils.  

V. Statistical Approaches for Soil Microbial Analysis 

In forensic science, the probability that a sample originated from one source 

rather than another selected at random must be evaluated with statistics such as the 

Random Match Probability or Likelihood Ratio commonly used for Human DNA 

profiling [47]. However, soil analysis differs from human identification as soil is not 
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discrete and the soil community is vulnerable to spatial and temporal variability.  To date, 

there is no standard way to process T-RFLP or LH-PCR profiles--a standard method to 

quantify the calculated similarity in a forensic setting and develop a decision model to 

estimate evidential value of such similarities are needed [31].  Therefore, two soil 

samples cannot be said in the absolute sense to have originated from a single source 

[47,48] and it is only possible to establish a degree of probability regarding whether or 

not the sample derived from a given location [47].  Sorenson’s similarity index has been 

commonly used to determine the variation within and between soil sites; however it is not 

optimal as the main differences between profiles may not be the presence or absence of 

peaks but the relative abundance (peak heights) [24].  The Bray-Curtis similarity measure 

is a non-parametric approach that takes into account the relative abundance to determine 

the similarities and differences between profiles and can be a more sophisticated 

approach for statistical interpretation for soil DNA profiles.  Bray-Curtis similarity 

matrices are best suited for continuous datasets such as LH-PCR; however, negligible 

bias is introduced into the calculations as a result of shared absences of the amplicons 

[23,33].  For any statistical procedure, data transformation is often required since non-

parametric and parametric tests can suffer when normality assumptions are violated.  This 

is especially the case with microbial profiles, as true normality is rare in nature; therefore, 

data transformation is commonly used to improve the normality.  Square-root 

transformation changes the values of the data points but not their rank and does not give 

special treatment to zeros.  The square-root transformation moderates the imbalance of 

very abundant and rare peaks that are often observed in LH-PCR and T-RFLP profiles, 
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reducing the amount of noise and increasing the significant signals within the microbial 

community dataset [36].   

Multidimensional scaling analysis (MDS) allows for a deeper inclusion of data 

than similarity indices as SIMPER only examines profile pairs by multiplying shared 

peaks by two and dividing by the total number of peaks present in both [28].  Similarity 

percentages can be a disadvantage in forensics, where precise origin of the sample is 

unknown. Multidimensional scaling generates a matrix of similarities that are weighted 

with peaks found in multiple habitats accentuated and background noise eliminated. The 

similarities are visualized in two-dimensional space resulting in an easy way to interpret 

profiles depicting similarities of the different soil samples [28].  In nMDS, each sample is 

represented as a point, and the relative interpoint distances reflect the relative 

dissimilarities between the sample pairs [23].  However, what do we mean by 

“sufficiently similar” or “sufficiently different” when we compare samples? Analysis of 

Similarity (ANOSIM) has been commonly used to provide a statistical significance to the 

dissimilarity.  The best recommendation to date has been to project the unknown 

microbial DNA profile onto nMDS plot obtained from other localities and evaluate the 

similarities using ANOSIM statistics, but this is an investigative stage case [5].  

Techniques for prediction and classification are developing rapidly [50].  Previous 

literature has discussed the usefulness of machine learning tools for classification 

[25,26,51].  These tools are statistical algorithms designed to study patterns in data that 

can then provide predictive models for the classification of unknown samples.  Yang et 

al. (2006) illustrated the potential of supervised machine learning methods using Support 

Vector Machines (SVM) to classify samples using LH-PCR profiles for distinct soil use 
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and types.  Support Vector Machines is a supervised learning method that has the ability 

to train on a known set of data and then be able to classify unknown soil samples to a 

high degree of certainty when tested against the trained set. Their results illustrated that 

there were a hidden pattern within the bacterial profiles that could be seen by 

mathematical tools [25].  Support Vector Machines, however, is not the only supervised 

machine learning tool that can be used for classification.  Decision Trees, Random Forest, 

Neural Networks are other types of supervised machine learning tools. The forensic 

community could benefit enormously by the utilization of the classification tools and 

comprehensible reference database to distinguish soil samples and determine their 

geographic origin.  Unlike nMDS that takes into account all LH-PCR peaks, of which are 

undoubtedly noisy, machine-learning tools throw out the noise and concentrate on those 

component that can define origin.  Further bioinformatics trials are required to establish 

optimal data analysis pipeline and assess the signal to noise ratio and false 

positive/negative error rates [47].  

The classification method, however, implies that the soil properties are 

discontinuous which is not correct as soil processes operate under different scales [52].  

Therefore, meaningful data are usually lost during classification, which is a type of 

generalization that organizes the data into structural patterns to gain clarity.  Soil 

properties have been known to vary spatially and can be related to several physical, 

chemical, and biological processes that act at different scales.  Studies at a microscale 

have illustrated that soil structure and porosity as well as organic carbon content have 

been factors determining the soil microbes distribution while at field scale (10m-<200m), 

physicochemical characteristics such as texture, pH, and plant cover have been the main 
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factors structuring their distribution [22].  Geostatistics has been a popular method for 

soil science as it does not assume that the soil properties are discontinuous. Geostatistics 

uses the soil sample’s spatial information to model spatial patterns, interpolate to 

unsampled locations, and assess uncertainty of the predictions [53].  Autocorrelation is at 

the heart of geostatistics, which is a term for spatial dependence, and queries the 

resemblance between “neighbors” as a function of spatial separation distance.  When near 

neighbors are more similar than those farther away, the data are said to be autocorrelated, 

and therefore, violate the assumption that the data are independent [9]. The SoilFit 

project in the UK has used Geographic Information Systems (GIS) in soil forensics to 

integrate soil fingerprinting profiles with data held in spatially references soil databases 

to improve matching of evidentiary samples or predict provenance of soil [54].  

Overall, environmental profiling has great potential to establish provenance of 

soil samples.  Profiling involves comparing samples with those from a database to assess 

degree of similarity. Therefore, establishing an efficient database will aid in greater 

confidence of the conclusions reached [55].  There is currently no soil database to assist 

in interpretation of data and few attempts have been made for local forensic applications.  

Databases can provide useful information and assist in forensic investigation.  However, 

degree of sample representation, the type and quality of information, discriminatory 

capacity, and the use of obsolete data or dynamic data need to be considered when 

constructing a searchable database [16].  It is also important to understand different sites 

spatial variability to see if different sampling designs are needed to accurately depict the 

soil site [56].  Previous studies have illustrated the differences of within site variability 

between homogeneous grassland over shrub land [57].  Local heterogeneity can be the 
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result of different soil properties and multiple environmental factors such as unique plant 

species, sunlight amount, and differing moisture content [28,58].  Geographic 

Information Systems’ semivariograms can provide a useful tool for designing robust 

sampling strategies by estimating the variance (sill) that can be used to inform sample 

size in future studies as well as estimate the minimum distance required for samples to be 

considered spatially independent (range) that can be used to inform sample spacing to 

build a robust database for soil provenance.  Further research is needed to understand the 

number of samples needed to represent the population and the discriminatory capacity to 

determine if one test fits all or if the model needs to be tuned to fit particular soil types or 

geographic situations.  

 

Figure 2. The semivariograms show the hypothetically observed distance class (filled 

circles) and the fitted model (solid line).  The theoretical semivariogram model fitting is 

usually expressed by three parameters: nugget, sill, and range.  The nugget represents the 

measurement errors or spatial dependence at scales not explicitly sampled.  The sill 

represents the variance of the correlated measurements. The range shows the extent of 

heterogeneity (i.e., zone of influence or distance of dependence) [9,53]. 
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Figure 3. Plots illustrate different hypothetical semivariograms with their associated 

surface maps adapted from Ettema & Wardle (2002).  A) pure nugget effect: no spatial 

structure was observed at the spatial extent studied. This can occur as a result of random 

sampling variance or variability that is occurring at other spatial scales not examined in 

the spatial extent.  B) Large-scale heterogeneity: few, large and smoothly continuous 

gradients.  C) Small-scale heterogeneity: many, small, sharply discontinuous patches.  D) 

Nested heterogeneity: multiple scales of patchiness where more than one factor is 

influencing the pattern at different scales [9].  

VI. Validation of Soil Analysis 

Soil DNA profiling has great potential as a forensic tool and research to date has 

been promising.  However, for microbial soil fingerprinting to be forensically useful, 

optimization and standardization needs to be conducted [36].  Research examining the 
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ability to discriminate soil samples and their limitations are needed [59].  Impact of 

abiotic conditions (moisture and organic content) as well as seasonal and temporal affects 

are critical to establish the robustness of this method in practice, furthermore determining 

the most reliable and robust target taxa or multiple taxa is important.  Analytical 

approaches to microbial community profiling needs to combine discriminatory power, 

robustness and, reliability as well as statistical methods must be identified to provide 

objective measures for assessing the similarities/differences between samples [5].  Like 

human DNA fingerprinting, a validated statistical method to provide definite proof 

linking suspects or victim to crime scene based on the soil microbial fingerprint is needed 

[36].  For a robust tool to be applied in forensic application, an understanding of the 

uncertainty associated with any comparisons and the parameters that can significantly 

influence variability in profiles needs to be determined.  These issues include selecting 

suitable microbial markers and the influence of temporal variability on the DNA profile.  

Soil analysis can be time consuming and complicated as the techniques vary [18].  

Also there is no single application or set of techniques that are suitable for all 

circumstances and to date there is no standard forensic soil examination method [14].  

Therefore, standardization and validation for forensic soil analyses are required.  

Validation is a common process in forensic science to generate reliable, robust, confident, 

and discriminatory power analyses.  The validation process determines the conditions 

required to obtain results, limitations of the methods, areas that need to be monitored and 

controlled, and interpretation guidelines to express significance.  Validation of methods 

of collection, preservation, extraction, analysis, and interpretation are required to 

document their specificity, sensitivity, reproducibility, bias, precision, false 
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positives/negatives, appropriate controls, and interpretative thresholds [60].  Therefore, 

there is a need for standard operating procedures from the collection to the interpretation 

of microbial forensic analysis to be accepted in the court of law [38].  

VII. Objectives of study 

In this study, modeling approaches will be used to study the microbial patterns 

and drivers of the variability by observing the spatial and temporal distribution of 

microbes using abiotic and biotic information. Soil biotic content at both the structural 

and functional level will be assessed. Pattern analysis will be used to validate the 

ecological theories driving the soil microbial biogeography. Moreover, the spatio-

temporal variability of the soil will be observed to determine the usefulness for soil 

provenance studies. Bioinformatic tools and Geographic Information Systems will be 

used to determine if soil biotic profiles can be used to classify soil on the basis of soil 

type or location and their ability interpolate to un-sampled locations. Four taxa will be 

observed together and separately to determine their discrimination power for soil 

classification. Lastly, functional diversity profiles using iron cycling genes will be 

assessed to determine if soil type drives function and if the addition of these data can 

enhance soil classification.  

A. AIM 1: Comparison of machine learning algorithms for the classification and 

provenance of soil samples using biotic content 

Hypothesis: Soil microbial communities exhibit biogeographical patterns based on the 

soil type and therefore, they can be used for soil provenance applications as these patterns 

are predictable. 

The first aim was to first determine if the soil samples collected were spatially correlated 
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to their respective geographic locations. Analysis of both the geographic location and 

genetic profiles of the soils permit the evaluation of the hypothesis that geographically 

closer samples will display similar microbial profiles than those farther apart. Secondly, 

five supervised machine learning algorithms were evaluated based on their accuracy in 

classification of samples at different spatial scales (soil types, transects, and subplot) to 

determine the potential to use soil microbial profiles and bioinformatics tools for 

determination of soil origin.  

B. AIM 2: Geographic Information Systems approach to characterize the spatial 

variability of the soil microbial community and the application to forensics 

Hypothesis: Geographic Information Systems’ semivariograms can provide a useful tool 

for designing robust sampling strategies to build a microbial community database for 

forensic provenance applications. 

The second aim was to examine the organization of the microbial community structure at 

multiple spatial scales across Miami-Dade, Florida using multivariate statistics and 

geostatistics to observe patterns as a function of distance. Geographic Information 

Systems provides a useful tool that can be used to inform sample strategies to build a 

robust database for soil provenance applications. Geographic Information Systems’ 

semivariograms can provide a useful tool for designing robust sampling strategies by 

estimating the variance (sill) between sampling points as well as estimate the minimum 

distance required for samples to be considered spatially independent (range).   

C. AIM 3: Assessing temporal variability and DNA marker selection for forensic soil 

provenance applications 

Marker Hypothesis: The more molecular markers queried the greater the discrimination 
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power therefore, the four taxa approach will provide the highest degree of discrimination 

between and within sites.  

Temporal Hypothesis: Soil microbial communities will display limited temporal 

variability over a four-year time span.   

The third aim was to determine the microbial community effectiveness by determining 

the marker discrimination as well as the temporal variability. Bacteria, fungi, archaea, 

and plant community profiles will be assessed independently and combined to determine 

the best marker or markers for forensic comparison of soil evidence. Secondly, the 

temporal variability of the soil microbial community will be assessed after a four year 

time span (2010 and 2014). This is vital as microbial communities should be stable 

enough to be able to use for forensic purposes over a reasonable time span.   

D. AIM 4: Analysis of the microbial functional diversity using iron genes across 

different soil types in Miami-Dade County, FL 

Hypothesis: Soil iron and moisture content are responsible for the microbial community’s 

functional guild (biogeographical) distribution and therefore, the functional diversity 

profiles can supplement other biotic information for soil provenance applications.   

The fourth aim was to use GeoChip microarray to query the iron cycling genes across 

different soil types in Miami-Dade, FL to determine the distribution of their structural 

and functional diversity. One of the discriminatory iron genes (feoB) detected in GeoChip 

was used to design a novel degenerate primer that can be used to make functional 

diversity profiles to determine if it adds to the discrimination for soil provenance.    
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I. Abstract 

Soil type (i.e., elemental composition, chemical/physical properties) is often 

correlated with the microbial community that inhabits it and the food web it supports. 

Therefore, soil metagenomic profiling should produce a distinguishable biotic profile 

from a specific soil type and location. Additional bioinformatic analyses of the soil 

community can provide a rapid method for soil provenance that can be informative, 

easier to perform and more cost effective than approaches using physico-chemical data. 

However, the intrinsic spatio-temporal heterogeneity of soil needs to be considered in 

community analyses for forensic applications. The objective of this study was to compare 

five machine learning tools for their predictive ability to recognize biotic patterns for 

rapid classification of soils at different spatial scales. Metagenomic DNA was extracted 

from 1268 soil samples that represent the six soil types in Miami-Dade County, FL. 

Bacteria, archaea, fungi, and plant universal DNA markers were amplified, separated by 

capillary electrophoresis and profiled. Autocorrelations were conducted using Mantel 

tests which linked metagenomic content to soil type as well as to specific transects within 

a soil type with strong accuracy.  Seasonal changes (wet and dry) did not reduce the 

correlation; however, soil disturbance did. Five machine learning tools were employed 

for soil classification at different spatial scales: K-Nearest Neighbor, Decision Trees, 

Random Forests, Neural Networks, and Support Vector Machines. Of all of these tools, 

Random Forests had higher accuracy than the others, and were able to accurately classify 

soils at the level of soil type, transect, and subplot. These methods illustrated the potential 

of using soil metagenomic profiles and bioinformatic tools for soil provenance testing.   
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II. Introduction 

Soil can provide valuable information as evidence in forensic investigations; its 

value is associated with its prevalence and transferability. Several forensic soil studies 

have used microbial analyses for soil provenance using culture-independent, molecular 

biology techniques [1-6]. Previous studies have shown the enormous potential of methods 

that use microbial community profiling to determine soil origin of an unknown sample. 

However, spatial distribution and sensitivity of the analysis method to detect differences 

in microbial communities from similar soil types (i.e., similar physical and chemical 

properties) and local scales (i.e., similar location) have to be investigated before being 

applied in the forensic context [7]. Currently, knowledge of the spatial and temporal 

distribution of the microbial communities at multiple scales is lacking. The effectiveness 

of using microbial community profiling to differentiate forensic soil samples depends on 

the existence of a quantitative measure or method (a) that helps distinguish soils from 

different types of habitats, (b) that soils exhibit spatial autocorrelation, and (c) that 

remains relatively stable within limited temporal scales [8]. In the present study, soil 

using four-taxa profiles (bacteria, archaea, fungi, plant) at multiple spatial scales—soil 

type, transect (>1.6 km apart), subplot level (within 1 m), and over one year period 

(seasons-dry and wet)—were conducted to determine the effectiveness of this method for 

forensic applications. 

Machine learning tools have been used for pattern discovery, classification, and 

prediction and many studies have indicated the usefulness of these different algorithms 

for classification [4,5,9]. These tools are statistical algorithms designed to study patterns 

in the data that can provide predictive models for the classification of unknown samples. 
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Machine learning tools are separated into two categories: supervised and unsupervised. 

Supervised learning involves using a training set to build a model of causation for the 

desired classification, whereas unsupervised learning does not make such assumptions 

and attempts to discover patterns and structures in the data without a training set [10]. In 

the present study, community DNA profiles using universal primers for four taxa were 

used to generate data to evaluate five different machine-learning algorithms for their 

ability to determine soil provenance:  K-Nearest Neighbor, Decision Trees, Random 

Forests, Neural Networks, and Support Vector Machines.  

These machine-learning tools have been used previously to discriminate bacterial 

communities in different microbiomes. For example, Yang et al. (2006) used Support 

Vector Machines and K-Nearest Neighbor to classify samples using length heterogeneity 

PCR 16S bacterial profiles across distinct soil types under different agricultural use [4].  

Beck and Foster (2014) used Logistic Regression, Genetic Programming, and Random 

Forest to classify bacterial vaginosis characteristics from female microbiomes [11]. 

However, studies have shown that no single classification method is superior in every 

case [9,12,13]. For example, Kampichler et al. (2010) showed that modelling methods for 

one dataset might not be optimal for another [9]. A similar conclusion was arrived at by 

Tan & Gilbert (2003) [13]. Each classification tool has its own learning and prediction 

procedure and differs in complexity and computation time. For example, Neural 

Networks and Support Vector Machines are more complex as compared to Decision 

Trees, Random Forests, and K-Nearest Neighbors. Recent studies have used bacterial 

metagenomics data and machine learning algorithms but none have compared five 

different algorithms for their ability to accurately classify soils using four-taxa profiles at 
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different spatial scales. Therefore, the current study compared the five machine learning 

tools to determine which tool was the best to predict provenance of soil using four-taxa 

(bacteria, archaea, fungi, plant) profiles at different spatial scales. The profiles can be 

quickly and easily generated and interpreted without the need for data analysis pipelines 

for complex data analyses such as that needed for metagenomic analyses. For forensic 

provenance applications, the technique should provide rapid analyses, be reproducible, 

have a high degree of classification accuracy, and be easily interpretable for 

implementation in a court of law—all the attributes satisfied by the approaches used in 

this study. 

III. Materials and Methods 

A. Soil Collection 

Soil samples (N = 1268) were collected across Miami-Dade County, Florida. 

Given that the collections were made from public access sites and did not involve 

endangered or protected species, no special permits were required. Six soil types with 2-4 

transects within each were surveyed. Each transect was at least 1.6 km away from each 

other, transects were 100 m in length and within each transect, six subplots were 

randomly selected. Within each subplot, six cored samples were taken within a 1.0 m2 

quadrat.  A five-centimeter diameter soil corer was used to collect the top 5-10 cm of the 

soil (Figure 4).  Samples were collected during one year, with one transect (FIU) 

collected over a 1.5 year period.  In South Florida with its monsoonal subtropical climate, 

sampling was repeated at the same sites during both the dry and wet seasons (and dry-

wet-dry in the 1.5 year sequence).  Most transects were established in undisturbed sites 

that had limited public access. The soils were labeled as one of six different soil types 
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according to USDA soil surveys [14]: 1-Urban Land-Udorthents, 2- Lauderhill Dania-

Pahokee, 3- Rock Outcrop-Biscayne-Chekika, 4- Perrine-Biscayne-Pennsuco, 5- Krome 

Association, 6- Perrine-Terra Ceia-Pennsuco. Global Positioning System (GPS) 

coordinates for each subplot for each transect were recorded. Wet and dry seasons were 

defined by Florida Automated Weather Network (FAWN, http://fawn.ifas.ufl.edu) where 

seasons in Florida are classified based on the average rainfall. The wet season is defined 

as the period during which the average rainfall is four times more than that in the 

corresponding dry season. The wet season occurs from May-October, while the dry 

season is from November-April [15].  
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Figure 4. Map of Miami-Dade County, FL. Shaded areas represent the six soil types of 

Miami-Dade according to USDA: 1-Urban Land-Udorthents, 2-Lauderhill Dania-

Pahokee, 3-Rock Outcrop-Biscayne-Chekika, 4-Perrine-Biscayne-Pennsuco, 5-Krome 

Association, 6-Perrine-Terra Ceia-Pennsuco [14]. Stars indicate transect sites. Within 

each 100 m transect, six subplots were sampled and six cored samples were taken within 

a 1.0 m2 quadrat from each subplot.  A five-centimeter diameter soil corer was used to 

collect the top 5-10 centimeters of the soil. 

B. DNA Extraction 

The soil samples were transported back to the laboratory on ice, manually 

homogenized, and sieved to remove large objects and debris. The DNA was extracted 

using the BIO 101 Fast DNA Spin Kit for Soil® and FastPrep®-24 System homogenizer 

(MP Bio, Solon, OH). The Fluorescent DNA Quantitation Kit (Bio-Rad, Berkeley, CA) 

and Modulus™ Microplate Multimode Reader (Turner Biosystems, Sunnyvale, CA) were 

used to quantitate the extracted metagenomic DNA. Samples were diluted to a working 

stock of 20 ng/l. Lastly, a 1% agarose yield gel was run to assess the integrity and 

quality of the extracted DNA. 

C. Length Heterogeneity Polymerase Chain Reaction 

The DNA was amplified using Length Heterogeneity Polymerase Chain Reaction 

(LH-PCR) using two PCR duplexes: (1) bacteria and fungi, and (2) plant and Archaea. 

Universal primers for the following genomic regions for each taxa were used: 16S rRNA 

for bacteria (27-F, 355-R) [16] and Archaea (21-F, 518-R) [17,18], ribosomal internal 

transcribed spacer region (ITS) for fungi (ITS5-F, ITS2-R) [19], and chloroplast trnl 

intergenic region for plant (trnL-F, trnL-R) [20]. Forward primers were labeled with 6-

FAM fluorescent dye. PCR reaction mixtures were: 1X reaction buffer, 2.5 mM MgCl2, 

250 µM dNTPs (Promega, Madison, WI), 1% BSA (fraction V, Fisher Scientific, 

Pittsburgh, PA), 1% DMSO (Promega, Madison, WI), various concentrations of primers 
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(bacteria, 0.5 µM; archaea and fungi, 0.4 µM; plant, 0.6 µM), 40 ng DNA, 0.5 U 

AmpliTaq Gold® DNA Polymerase (Applied Biosystems, Foster City, CA), and 

diethylpyrocarbonate-treated (DEPC) water to a final volume of 20 µl. Each duplex was 

amplified with the same program using the ABI 9700™ thermocycler (Applied 

Biosystems, Foster City, CA) with the following parameters: initial 10 min denaturing 

step at 95°C, 25 cycles of denaturation at 95°C annealing at 54°C and extension at 74°C 

each for 30 sec with a final extension at 74°C for 10 min. 

D. Capillary Electrophoresis 

Samples from the two duplexes were co-loaded where 0.5 µl of each duplex PCR 

product was added to a mixture of 11.5 µl Hi-Di™ Formamide (Applied Biosystems, 

Foster City, CA) and 0.65 µl internal size standard, GeneScan LIZ® 600 (Applied 

Biosystems, Foster City, CA), denatured by heating for 2 min at 95C and then snap-

cooled on ice for 2 min. The amplicon data were analyzed using the DS-33 matrix and 

filter set G (Applied Biosystems, Foster City, CA). The samples were electrokinetically 

injected at 15 kV for five sec and separated at 60°C on an ABI Prism™ 310 (Applied 

Biosystems, Foster City, CA) using Performance Optimized Polymer 4 (POP4) (Applied 

Biosystems, Foster City, CA) with laser power at 9.9 mW and capillary length of 36 cm 

well to read (WTR) distance to the detection window. 

E. Analyses 

Raw data were analyzed using the GeneMapper™ research software, version 4.0 

(Applied Biosystems, Foster City, CA). Local Southern size calling was used for the 

analysis parameters with a minimum threshold of 50 relative fluorescent units (RFUs). 

Bins were created to separate amplicons that differed from each other in length by a 
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single base pair. The relative ratios were calculated by normalizing the heights of each 

peak in the genotype to the total peak intensities resulting in the ratio for each peak height 

as a decimal value from zero to one. Data from all taxa were concatenated for subsequent 

analyses. Relative GPS coordinates were taken for each sample by making the center of 

the subplot as the true GPS coordinate. 

F. Mantel Test 

Mantel tests were performed using R programming language with the ade4 library 

[21]. Two distance matrices were tested: geographic distance and genetic distance with 

data imported as binary data (presence/absence). The Mantel tests were performed and 

plotted using the function mantel.randtest in the ade4 package and calculated based on 

the random permutation using the Monte Carlo method.  The method relies on repeated 

random sampling (using 999 permutations) to compute the results so that no assumptions 

regarding the statistical distributions of samples in the matrix were needed. The rows and 

columns of one matrix were randomly permutated followed by recalculation of the 

correlation after each permutation, thereby testing the significance. Detailed script can be 

found in supporting information (S1 File). 

G. Machine Learning Tools 

The R software package was used for all the classification methods; the specific R 

packages used for these methods include: class for K-Nearest Neighbor [22], rpart for 

Decision Trees [23], randomForest for Random Forests [24], neuralnet for Neural 

Networks [25], and e1071 for Support Vector Machines [26]. Detailed scripts can be 

found in supporting information (S2 File). Two thirds of the dataset was used for training 

and one third was used for testing for each replicate run and across each algorithm. For 
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comparison and reproducibility, the datasets were re-tested by randomly selecting a 

different training and testing set, three different times. Comparisons of the methods were 

conducted by calculating the percent of samples correctly classified into soil type, 

transect, or subplot for each test set. Second performance criterion evaluated was the area 

under an ROC curve (AUC), which is a widely used measure of performance for 

supervised classification methods using their ranking quality of sensitivity (true positive 

rate) as a function of the specificity (false positive rate). An AUC value of 1 illustrates a 

perfect test that has zero false positives and zero false negatives. Multi-class AUC was 

conducted using the pROC package in R [27]. Random Forest and Support Vector 

Machines were re-evaluated using different minimum ratio thresholds for the 

electrophoretic data (1%, 5%, 10%, and 20%) to check if the classification accuracy 

changed. Student two-sample T-tests were conducted to determine significant differences 

between different classification scales and machine learning tools. Random Forest 

analysis was conducted to provide the most important variables for classification for each 

spatial scale-soil type, transect, and subplot. 

H. Similarity Percentages 

A SIMPER analysis using Primer-E v.7 was conducted to determine the percent 

dissimilarity within and between samples at multiple spatial scales-soil type, transect, 

subplot- and seasonal differences (wet, dry). The analysis was also conducted to identify 

unique LH-PCR peaks contributing to dissimilarity between sites and was compared to 

the Random Forest important variable plot that illustrated the significant LH-PCR peaks 

to discriminate between samples.  
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IV. Results 

A. Spatial Autocorrelation Analysis: Mantel Test 

The genetic profiles from most sites in Miami-Dade displayed a significant 

positive spatial autocorrelation between its geographic location and biotic composition 

illustrating that samples that were geographically closer together were statistically similar 

in their biotic composition. Out of eighteen transects, six transects had non-significant 

correlations (Table 1). These six sites were found to have been previously disturbed (e.g., 

fire, illegal dumping, agricultural disturbance). These sites included: OSP1 (ob = -0.04, p 

= 0.58) from soil type 1, CH (ob = 0.03, p = 0.29) from soil type 3, PE (ob = -0.17, p = 

0.99) from soil type 4, and USDA 1 (ob = -0.05, p = 0.73) from soil type 5 during the wet 

season as well as OSP1 (ob = 0.09, p = 0.15) from soil type 1, OSP2 (ob = -0.08, p = 

0.81) from soil type 1, NW 137 (ob = -0.01, p = 0.42) from soil type 2, and USDA 1 (ob 

= -0.17, p = 0.98) from soil type 5 for the dry season. 

Table 1. The Mantel test results for all of Miami-Dade County’s six soil types, transects 

within each soil type, for each season (wet and dry). Numbers in parentheses are p values. 

    Soils Wet Dry 

1 - FIU 0.43 (0.001) 0.18 (0.001) 

1 – OSP1 - 0.04 (0.583) 0.09 (0.148) 
1 – OSP2 0.24 (0.003) - 0.08 (0.812) 
1 - OSP3 0.19 (0.011) 0.22 (0.006) 

2 - CC6 0.29 (0.001) 0.55 (0.001) 

2 - KNT 0.43 (0.001) 0.16 (0.023) 

2 - KS8 0.41 (0.001) 0.53 (0.001) 

2 - NW137 0.25 (0.001) - 0.01 (0.424) 
3 - CH 0.03 (0.285) 0.42 (0.001) 

3 - KK 0.35 (0.001) 0.46 (0.001) 

4 - CS 0.17 (0.008) 0.35 (0.001) 

4 - PE - 0.17 (0.993) 0.22 (0.002) 

5 - HA 0.46 (0.001) 0.13 (0.001) 

5 - TREC 0.21 (0.006) 0.16 (0.011) 

5 - USDA1 - 0.05 (0.725) - 0.17 (0.984) 
5 - USDA2 0.42 (0.001) 0.31 (0.001) 
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6 - USDA3 0.15 (0.006) 0.37 (0.001) 

6 - FC 0.51 (0.001) 0.43 (0.001) 

 

B. Soil Classification: Comparison of Five Machine Learning Algorithms 

Using only the soil type as the classifier, the biotic information provided 98%, 

95%, 99%, 91% and 91% accuracy (AUC= 0.93-1) with K-Nearest Neighbors, Decision 

Tree, Random Forest, Neural Networks, Support Vector Machines, respectively (Figure 

5). At the transect level, accuracies were 92%, 85%, 98%, 64% and 89% (AUC= 0.95-1) 

and at the subplot level, classification accuracies dropped to 51%, 6%, 67%, 13%, 45% 

(AUC= 0.97-0.99) with K-Nearest Neighbors, Decision Tree, Random Forest, Neural 

Network, Support Vector Machines, respectively (Figure 5). Irrespective of which 

machine learning was used, soil type classification resulted in significantly higher 

accuracy when compared to transect, and subplot (p< 0.007). With all three classifiers, 

Random Forest had the highest classification accuracy compared to the other algorithms.  

Student t-test results show that Random Forest significantly outperformed all other 

algorithms regardless of the level selected (e.g., soil type (p< 0.044), transect (p< 0.001), 

subplot (p< 0.001) except K-Nearest Neighbors (p= 0.065) for Soil type.  

Table 2. Prediction accuracy and AUC values (±SD of the mean) for each of the five 

machine learning tools (KNN, DT, RF, NN, SVM) based on three repeats. 

  
Soil Type Transect Subplot 

KNN 
Accuracy 98.5 ± 0.44 92.57 ± 0.42 51.67 ± 2.65 

AUC 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 

DT 
Accuracy 95.26 ± 1.54 85.45 ± 1.37 6.16 ± 2.06 

AUC 0.97 ± 0.01 0.96 ± 0.00 0.94 ± 0.01 

RF 
Accuracy 99.76 ± 0.24 98.1 ± 0.36 67.98 ± 1.52 

AUC 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 

NN 
Accuracy 91.61 ± 1 64.71 ± 0.67 13.91 ± 0.94 

AUC 0.93 ± 0.01 0.95 ± 0.01 0.97 ± 0.00 

SVM Accuracy 91.86 ± 0.84 89.47 ± 0.68 45.95 ± 1.86 
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AUC 0.95 ± 0.01 0.97 ± 0.00 0.98 ± 0.02 

 

Figure 5. Prediction accuracy values and AUC values (±SD of the mean) for each of the 

five machine learning tools (KNN, DT, RF, NN, SVM) using training and test sets 

randomly chosen three different times from the complete database. Black bars = soil type, 

light grey bars = transect, dark grey bars = subplot. 

Two machine learning tools, Random Forest and Support Vector Machines, were 

re-evaluated using different minimum relative ratios of the electrophoretic data (1%, 5%, 

10%, 20%) to determine if reducing the number of variables would increase or decrease 

the classification accuracy. For example, 5% threshold indicated that relative peak ratios 

under 0.05 were marked as zero. Testing only Random Forest and Support Vector 

Machine algorithms, the classification accuracy did not significantly alter by increasing 

the electrophoretic threshold to 5% (p= 0.528). However, increasing the threshold to 

above 10% did significantly reduce the classification accuracy (p< 0.001). Using 1% and 

5% threshold, Random Forest significantly outperformed Support Vector Machines (p< 

0.004); however, under higher thresholds (10%, 20%) the two machine learning tools 
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were not significantly different (p= 0.570, 0.848, respectively). Prediction accuracy and 

AUC values are given in Table 3.  

Table 3. Prediction accuracy and AUC values (±SD of the mean) for Random Forest and 

Support Vector Machines using different minimum relative ratios of electrophoretic data 

(1%, 5%, 10%, 20%).  

  
Soil Type Transect 

 
Threshold Accuracy AUC Accuracy AUC 

RF 

1% 99.76 ± 0.24 1.00 ± 0.00 98.10 ± 0.36 1.00 ± 0.00 

5% 99.19 ± 0.32 0.99 ± 0.01 94.27 ± 0.89 0.99 ± 0.00 

10% 93.23 ± 0.12 0.97 ± 0.00 73.97 ± 0.78 0.95 ± 0.00 

20% 63.30 ± 1.59 0.86 ± 0.01 35.72 ± 0.84 0.86 ± 0.02 

SVM 

1% 91.86 ± 0.84 0.95 ± 0.01 89.47 ± 0.68 0.97 ± 0.00 

5% 93.21 ± 0.55 0.96 ± 0.01 87.94 ± 0.23 0.96 ± 0.00 

10% 89.63 ± 0.88 0.95 ± 0.00 70.38 ± 0.94 0.92 ± 0.01 

20% 64.52 ± 0.21 0.87 ± 0.01 37.9 ± 0.65 0.85 ± 0.02 

 

C. Similarity Percentages  

A SIMPER analysis conducted at different scales—soil type, transect, subplot and 

season illustrated the dissimilarities between and within each scale. (See Tables 4 and 5) 

For example, at the level of soil types (labeled “Between”), Table 4 shows the average 

dissimilarity of one soil type (i.e., soil type 1) when compared to the other five soil types, 

while the “Within” comparisons consider the average dissimilarity of the 2-4 transects 

within a soil type. In contrast, as shown in Table 5, the “Between” column compares the 

average dissimilarity of one transect (i.e., FIU) when compared to the other seventeen 

transects, while the “Within” column compares the average dissimilarities of the six 

subplots within the transect. Overall, the average dissimilarity between site comparisons 

were greater than within sites. For example, between soil type dissimilarities ranged from 

80-88% and between transects dissimilarities ranged from 74-92%, while their within site 

dissimilarities ranged from 50-80% and 28-65% for soil type and transect, respectively. 
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Seasonal dissimilarity was different based on soil type and transect. For example, for 

transect level, KS8 had the lowest season dissimilarity of 28% while, PE had the largest 

seasonal dissimilarity of 76%. This can be attributed to the soil physical characteristics. 

Table 4. SIMPER analysis illustrating the average dissimilarity between and within each 

soil type.  (± is the SD of the mean % dissimilarity). 

 
Dissimilarity (%) 

Soil Type Between Within  Season 

1 80.27 ± 8.17 67.52 ± 6.42 64.57 

2 81.82 ± 6.56 54.40 ± 2.59 51.08 

3 81.78 ± 7.19 50.82 ± 0.00 54.90 

4 88.39 ± 5.21 80.84 ± 0.00 79.07 

5 82.67 ± 3.87 66.01 ± 6.70 61.71 

6 81.12 ± 1.82 65.73 ± 0.00 59.89 

Table 5. SIMPER analysis illustrated the average dissimilarity between and within each 

transect (± is the SD of the mean % dissimilarity). 

 
Dissimilarity (%) 

Transect Between  Within  Season 

FIU 78.07 ± 9.04 62.33 ± 4.44 63.24 

OSP1 77.79 ± 9.46 52.92 ± 8.77 51.09 

OSP2 74.14 ± 9.06 42.41 ± 3.40 46.54 

OSP3 80.01 ± 7.92 52.95 ± 10.84 54.90 

NW 75.03 ± 12.07 42.72 ± 7.12 44.78 

KNT 77.27 ± 12.14 53.93 ± 9.28 59.45 

KS8 76.62 ± 12.64 28.54 ± 3.34 28.57 

CC6 74.64 ± 11.58 31.73 ± 3.54 35.01 

KK 79.16 ± 9.95 46.86 ± 3.54 57.81 

CH 78.95 ± 10.21 47.74 ± 8.74 52.45 

CS 85.44 ± 4.64 64.10 ± 6.97 70.00 

PE 92.18 ± 6.34 60.27 ± 2.25 76.06 

HA 75.95 ± 8.63 31.16 ± 4.12 31.70 

TREC 80.05 ± 8.71 52.50 ± 4.21 54.78 

USDA1 81.88 ± 7.53 53.94 ± 4.60 63.94 

USDA2 78.74 ± 7.29 45.16 ± 4.36 46.43 

USDA3 79.92 ± 5.95 46.08 ± 2.75 64.16 

FC 80.64 ± 5.54 41.80 ± 4.90 42.65 



40 
 

D. Discriminatory LH-PCR Peaks 

Random Forest analysis provided a “Mean Decrease Accuracy” for the different 

LH-PCR peaks to determine the most important variable to discriminate between the soils 

being classified. The higher the accuracy decrease due to the exclusion of a single 

variable, the more important that variable is deemed. Three scales were analyzed-soil 

type, transect, and subplot. The Mean Decrease Accuracy is calculated based on an out of 

bag error calculation phase to determine if the accuracy of the random forest prediction 

decreases when the single variable is excluded. Overall, the results illustrated that with 

finer resolution scale (i.e., subplot vs soil type) more peaks were important to accurately 

classify the soil’s origin (Figure 6). Moreover, these data support the threshold data 

(Table 3) and illustrated that all four taxa were important to discriminate between soils. 

Lastly, the Random Forest analyses were supported by SIMPER analysis results of their 

unique LH-PCR peaks that contributed to the dissimilarity between sites.   
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Figure 6. Most Important Variables for discriminating between soils at multiple spatial 

scales (soil type, transect, and subplot) based on Random Forest analysis. The greater the 

Mean Decrease Accuracy, the more important the LH-PCR peak for classification. 

V. Discussion 

Several studies have recently shown that bacterial community profiling of 

metagenomic samples using Next Generation Sequencing (NGS) technologies is strongly 

correlated with soil location and soil disturbance [28,29]. In the present study, Length 

Heterogeneity PCR (LH-PCR) data instead of NGS metagenomic sequencing were used 

for several reasons:  First, the method has been proven to be fast, robust and reproducible 

in studying microbial community dynamics [30,31].  Second, many forensic laboratories 

have not implemented NGS technologies in their laboratories and LH-PCR is one that 
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can be used with the standard forensic DNA instrumentation. Third, generating LH-PCR 

data is less expensive than generating NGS data. Finally, the purpose was to compare 

algorithms for their ability to discriminate patterns within a large data set, regardless of 

the method in which the data were generated. Previous study by MacDonald et al. utilized 

a multiplex T-RFLP approach that analyzed bacteria, archaea, and fungi, which led to 

better discrimination of soil samples as different taxa responded differently to spatio-

temporal ecological drivers [6]. They showed prokaryotic composition provided greater 

resolution between two sites, but were more susceptible to air-drying and sensitive to 

dehydration pressures when processing the soil samples that led to population shifts.  

Many bacteria do, however, have survival mechanisms that allow for rapid adaptation 

such as changing allocations of osmolytes or having thicker cell walls or sporulation 

capabilities as often seen in Gram-positive bacteria which help survive with spurts of dry-

rewetting environmental conditions [32]. Fungi provided discrimination between sites 

and archaea were most useful in identifying saline or water logged soil environments [6]. 

Plants also have a potential to be used to discriminate soils, as they are dependent on the 

soil’s microbes, water, and nutrients. In this study, a four-taxa approach was employed to 

include plants as well as bacteria, archaea, and fungi, for better discrimination of soils for 

provenance applications. Moreover, five supervised machine-learning tools were 

evaluated to determine the best tool for classification and determine at what spatial scale 

they can predict origin of the soil.  To our knowledge, the work presented here is one of 

the first studies to use bioinformatic tools for soil forensic application using four-taxa and 

is unique in its consideration of multiple spatial scales.  



43 
 

The present study builds on our growing knowledge of spatial relationships in 

microbial communities by applying the Mantel statistic to this dataset to illustrate that the 

biotic patterns and their geographic location are indeed spatially auto-correlated in 

Miami-Dade soils (Table 1). The non-significant spatial autocorrelation proved to be an 

indicator of disturbed or constructed sites when compared to the undisturbed transects 

within the same soil type—value added for discrimination of sites for provenance or 

forensic applications.  Sites that showed non-significant spatial autocorrelation were 

found to have been disturbed by humans (i.e.,  CH had been burned six months prior to 

soil collection, PE was an old abandoned nursery, NW137 was an illegal mixed trash 

dump site, and the OSP transects spanned mixed forest vegetation to abandoned 

construction sites) [8]. Previous study conducted by Meyers & Foran (2008) showed that 

extensive human activity appeared to homogenize bacterial content [8]. On the basis of 

the four-taxa microbial profiles and Mantel test, correlation between biotic content and 

geographic location was observed, thus justifying the use of machine learning tools to 

predict biotic patterns that can be applied for determination of soil provenance.  

Five supervised machine-learning algorithms were evaluated for their predictive 

value when using four-taxa biotic profiles for soil classification. Three spatial scales (soil 

type, transect (>1.6 km), subplot (within 100 m)) were evaluated to determine the scale at 

which the algorithms are able to accurately classify the microbial profiles. The main 

performance criterion that was evaluated was the classification accuracy, which is the 

measurement of the correctly classified instances (accuracy = total number of samples 

correctly classified/total number of samples) as well as a measure of the overall error 

rate. The second performance criterion evaluated was the area under an ROC curve 
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(AUC). Area under an ROC curve is widely used to measure the performance of 

supervised classification methods based on their ranking quality of sensitivity (true 

positive rate) as a function of the specificity (false positive rate). For forensics, a balance 

of sensitivity is required in which the method should be sensitive to detect differences but 

avoid false positive results [29]. Each classification tool has its own learning and 

prediction procedure; therefore, to be able to compare between the five different 

supervised machine learning tools, all classifiers were generated using the same training 

and test sets.  

Studies have shown that no single classification method is superior in every case 

[9,12,13]. In the present study, we compared the five machine learning tools to determine 

which is the best tool to predict provenance of soil using four-taxa biotic LH-PCR 

profiles. For forensic provenance applications, the model needs to have a high degree of 

classification accuracy and be easily interpretable for implementation in a court of law. In 

the current study, all algorithms were able to classify the soil samples with high accuracy 

and high AUC values. Irrespective of the spatial scale (soil type, transect, or subplot), 

Random Forest had the highest classification accuracy and AUC value compared to the 

other algorithms (Figure 5). Moreover, Random Forest was able to accurately predict the 

origin of the soil using the four-taxa profiles at subplot level (samples within 100 m 

apart) with 67% accuracy (Figure 5). Those samples that misclassified were still 

classified within the transect of origin. The SIMPER analysis illustrated that the within 

transect variability was less than the variability between transects (Table 5). Multiple 

studies support these results and have also found that bacteria profiles within a habitat are 

more similar to each other than those from other ecosystems [33,34]. For example, in this 
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study, site KK had a 46% within site dissimilarity compared to 79% dissimilarity 

between transect (Table 5). This can be attributed to the similar and almost identical 

microbial flora and fauna within some transects. Previous studies have illustrated the 

differences of within site variability between homogeneous grassland over shrubland. 

Mummey & Stahl (2003) showed that homogeneous grasslands had a highly similar 

bacterial community and lower within site variability [35]. Local heterogeneity can be to 

the result of different soil properties and multiple environmental factors such as unique 

plant species, sunlight amount, and differing moisture content [34,36]. Seasonal 

dissimilarities also varied between transects (Table 5); however, it did not alter the 

classification of the microbial profiles at the different spatial scales. Lenz & Foran (2010) 

also found that there was a large level of variability within habitats spatially and 

temporally, but the variability did not have a substantial negative influence on the ability 

to group soils from a habitat from samples collected throughout a year [34].  

When choosing the most appropriate algorithm, it is important to take into 

account the dataset.  Neural Networks and Support Vector Machines are more complex 

algorithms as compared to Decision Trees, Random Forests, and K-Nearest Neighbors.  

For example, Decision Trees and Random Forest are simpler classifiers that perform 

better with discrete and categorical data as they approach the variables with the purpose 

of finding the most discriminative variable that classifies and repeats this process until all 

of the data are classified [13]. Support Vector Machines and Neural Networks essentially 

find the maximal margin that can distinguish different classes that result in a highly 

comprehensible model but at times can also have the potential to over-fit the data [4,13]. 

Therefore, Support Vector Machines and Neural Networks are capable of working with 
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high-dimensional and continuous data, but require variable selection and do not perform 

well with large number of irrelevant variables [13].  

As variable selection can significantly influence the performance of machine 

learning tools, Random Forest and Support Vector Machines were re-evaluated using 

different minimum thresholds based on the relative ratios electrophoretic data (1%, 5%, 

10%, and 20%). Increasing the minimum threshold resulted in a continuous reduction of 

peaks, essentially removing the less intense peaks.  It was expected that Support Vector 

Machines classification accuracy would increase with more stringent electrophoretic 

thresholds as we expected “irrelevant” variables (i.e., low intensities) would be reduced 

with higher RFU thresholds. The results indicated that for both Random Forest and 

Support Vector Machines, the classification accuracy did not significantly alter by 

increasing the electrophoretic threshold to 5% (p= 0.528). However, increasing the 

threshold above 10% did significantly reduce the classification accuracy (p< 0.001) of 

both algorithms. With the higher thresholds (10%, 20%) the two machine learning tools 

were not significantly different (p= 0.570, 0.848, respectively) in their prediction 

accuracy; however, Random Forest outperformed Support Vector Machines at thresholds 

of 1% and 5% (p< 0.004). A previous study (Meyers and Foran, 2008) found that using 

the “top (highest peak intensity) 40 peaks” of a bacterial profile generated with universal 

primers was as effective in discriminating soil samples versus using all of the 

electrophoretic peaks and similarity indices. They determined that observing the top 40 

peaks, reduced the inclusion of small non-reproducible peaks that can occur by slight 

differences in amount of DNA injected into the capillary [8]. In our study, using four-taxa 

profiles showed that as the minimum relative ratio threshold was raised, the majority of 
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the peaks that were removed were archaea, fungi, and plant peaks (100-200 and >350bp) 

and resulted in a decrease in classification accuracy. Increasing the threshold resulted in 

lowering the number of data points being analyzed and resulted in losing peaks that 

represented distinguishing taxa. Therefore, these ‘rare’ peaks representing various 

members of the community are important to the specific habitat and provided 

“uniqueness” to the sample, which is important in forensics and provenance studies. Our 

results show that as you increase the spatial resolution from soil type to subplot level all 

the LH-PCR amplicons are important to discriminate locations (Figure 6). A peak 

threshold between 1-5% was needed that included all taxa in order to provide the identity 

of an unknown sample to its approximate origin. Therefore, this demonstrated the 

significance of using four taxa to provide higher accuracy and discrimination between 

sites.  

The current study demonstrated that using four-taxa biotic profiles combined with 

user-friendly classification algorithms can provide a significant tool to the forensic and 

intelligence community. The biotic analyses can be conducted with the DNA expertise 

and instrumentation already employed in many crime laboratories making it easy to 

implement and can be used with ≤ 500 mg of soil [31,37]. The implementation of these 

methods could provide a routine use of soil microbial community profiles for soil 

provenance and assist in intelligence gathering or forensic investigations. This study 

recommends the use of Random Forest Supervised Machine Learning Tool with a 

threshold below 5% as a data analysis pipeline for best classification of soil provenance. 

Previous study by Beck and Foster (2014) also concluded that Random Forest was 

computationally efficient and easy to extract important model features [11]. Kampichler 
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et al. (2010) also recommended the utilization of Random Forest for biologists and 

decision makers due to their ease of interpretability of classifiers and clarity of the 

method [9]. Further studies should be conducted to determine the sampling design- 

number of samples collected and distance between samples across different habitats- to 

utilize soil microbial profiling for intelligence based forensic investigations and 

ultimately establish a usable database for soil provenance. 

VI. Conclusion 

In conclusion, this study showed that there was a correlation based on the four-

taxa biotic community profiles and the geographic locations from which they were 

collected. The sites that displayed non-significance correlation between its geographic 

location and microbial profile information still provided important information 

illustrating site disturbance (i.e., recent fire, constructed site). These ‘red flags’ could 

allow further corroboration for soil evidence to a particular site.  Moreover, this study has 

demonstrated the power of bioinformatic tools such as machine learning algorithms for 

identifying patterns in data. While each of the tools utilized in this study performed with 

high accuracy and would prove useful, Random Forest analysis demonstrated 

consistently high accuracy at all spatial scales and would be recommended for use in 

provenance and soil forensics.  
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VIII. Supplemental Information 

A. S1 File. Script example for the Mantel tests performed in this study.  

Below demonstrates how to perform the Mantel test for soil type level (ex. soil type 

1). This was performed using R software with the ade4 library. Each soil type/ 

transect was made up of subsets out of the dataset by using rows that displayed the 

samples of interest. Mantel test was performed based on the genetic distance (E.dists) 



52 
 

and gps distance (gps.dists) based on 999 permutations. The Mantel tests were plotted 

using the function mantel.randtest.  

Require (ade4) 

# Input data 

> All<-read.csv(file.choose(), header=TRUE) 

# Make subsets to get row of interest 

> Soil1<-subset(All[c(1:303),]) 

# GPS matrix 

Soil1.gps.dists<-dist(cbind(Soil1$West,Soil1$North)) 

# Genetic matrix 

> Soil1.E.dists<-dist(cbind(Soil1[,4:235])) 

# Mantel test based on 999 permutations 

> Mantel.Soil1<-mantel.randtest(Soil1.gps.dists,Soil1.E.dists,nrepet=999) 

# Plot Mantel test 

> plot(Mantel.Soil1<-mantel.randtest(Soil1.gps.dists,Soil1.E.dists),main="Soil 1 

Mantel Test") 

B. S2 File. Script examples for Machine Learning tests performed in this study. 

a=K-Nearest Neighbor b=Decision Tree, c=Random Forest, d=Neural Networks, 

e=Support Vector Machine). Below demonstrates how to perform the different 

Machine Learning tests for soil type level (ex. soil type 1). 

a) K-Nearest Neighbor: 

Require (class) 

# Input data: Testing and Training data separately 

> Train<-read.csv(file.choose(), header=TRUE) 

> Test<-read.csv(file.choose(), header=TRUE) 

# Column Classification 

> cl<-traindata[,1] 

# Predict classification 

> pred<-knn(traindata[,2:11],testdata[,2:11, cl,k=3]) 

# Print prediction results 

> print(pred) 

b) Decision Tree: 

Require (rpart) 

# Input data: Testing and Training data separately 

> Train<-read.csv(file.choose(), header=TRUE) 

> Test<-read.csv(file.choose(), header=TRUE) 

# Model the training data 

> model.train_Type<-rpart(Train_Type$Soil.Type~.,method="class",data=Train) 

# Prune the training model 

> model.prunetrain_Type<-prune(model.train_Type,newdata=model.train_Type, 

cp=model.train_Type$Soil.Type[which.min(model.train_Type$Soil.Type[,"xerror"]),

"CP"]) 
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# Print the training model 

> model.prunetrain_Type 

# Plot the training model 

> plot(model.prunetrain_Type, uniform=TRUE, main="Pruned Tree for Biotic 

Training Data for 

Soil Type") 

> text(model.prunetrain_Type, use.n=TRUE, cex=.5, pretty=0) 

# Predict classification of testing data based on the training model 

> pred.prunetest_Type<- predict(model.prunetrain_Type,newdata=Test,type="class") 

# Print prediction results 

> pred.prunetest_Type 

c) Random Forest: 

Require (randomForest) 

# Input data: Testing and Training data separately 

> Train<-read.csv(file.choose(), header=TRUE) 

> Test<-read.csv(file.choose(), header=TRUE) 

# Model the training data 

> model.rf_Type <- 

randomForest(Train_Type$Soil.Type~.,data=Train,importance=TRUE, 

mtry=3) 

# Print the training model 

> model.rf_Type 

# Plot the important variables for classification 

> varImpPlot(model.rf_Type,type=1,sort=FALSE,n.var=10,main="Variable 

Importance for 

Biotic Training Data for Soil Type", cex=.5) 

# Round and print the important variables 

> round(importance(model.rf_Type),2) 

# Predict classification of testing data based on the training model 

> pred.rf_Type <- predict(model.rf_Type,newdata=Test,type="class") 

# Print prediction results 

> pred.rf_Type 

d) Neural Networks: 

Require (neuralnet) 

# Input data: Testing and Training data separately 

> Train<-read.csv(file.choose(), header=TRUE) 

> Test<-read.csv(file.choose(), header=TRUE) 

# Model the training data 

> net.train_Type<-neuralnet(Train_Type$Soil.Type~.,data=Train,hidden=155, 

threshold=0.01, 

rep=5) 

# Print the training model 

> print(net.train_Type) 
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# Predict classification of testing data based on the training model 

> net.results_Type <- compute(net.train_Type, Test_Type) 

# Print prediction results 

> Type<-print(net.results_Type$net.result) 

e) Support Vector Machines: 

Require (e1071) 

# Input data: Testing and Training data separately 

> Train<-read.csv(file.choose(), header=TRUE) 

> Test<-read.csv(file.choose(), header=TRUE) 

# Model the training data 

> model<-svm(Soil~Type.,data=traindata,type="C-classification") 

# Print the training model 

> model 

# Predict classification of testing data based on the training model 

> pred<-predict(model,testdata) 

# Print prediction results 

> table(pred) 
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Chapter 2: Geographic Information Systems approach to characterize the spatial 

variability of the soil microbial community and the application to forensics 

 

This chapter is currently under review in Applied Geography. 
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I. Abstract 

Soil DNA profiling has great potential as a forensic tool and research to date have 

been promising.  As human profiles are used to determine a match between evidence 

from a crime scene and a suspect, a soil microbial profile can be used to determine a 

match between soil found on the suspect’s shoes or clothing to the soil at a crime scene.  

Soil properties are known to vary spatially and can be related to several physical, 

chemical, and biological processes that act at different scales and are important in 

shaping the composition of the microbial community.  Therefore, spatial scale is an 

important consideration for forensic application.  Understanding the spatial variability of 

the microbial community and the extent to which other soil variables might shape the 

community structure are important factors needed to develop sampling strategies.  This 

variability is important for understanding the spatial range to determine the sampling 

scheme required to represent an ecosystem.  In this study, a survey was conducted to 

examine the organization of the microbial community structure at multiple spatial scales 

across Miami-Dade, Florida.  Multivariate statistics and geostatistics were used to 

observe the patterns as a function of distance.  The results illustrated that semivariograms 

can provide a useful tool for designing robust sampling strategies by estimating the 

variance (sill) between sampling points as well as estimate the minimum distance 

required for samples to be considered spatially independent (range).  Therefore, GIS 

provides a useful tool that can be used to inform sample strategies to build a robust 

database for soil provenance. 

II. Introduction 

“Distance-decay” is a universal biogeographic pattern that is commonly observed 
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with a wide variety of organisms and illustrates a decrease in community similarity with 

increasing geographic distance (Martiny, Eisen, Penn, Allison, & Horner-Devine, 2011).  

Studies have shown that soil organisms are not randomly distributed and exhibit spatially 

predictable, aggregated patterns with scale-dependent controls (Ettema & Wardle, 2002).  

Soil variability can be influenced by a combination of different factors such as spatial 

location, resolution or map scale, and specific soil properties (Lin, Wheeler, Bell, & 

Wilding, 2005a).  Studies have attempted to verify the Beijerinck hypothesis “everything 

is everywhere but the environment selects” (a.k.a., soil type determines the microbial 

communities) to specify which environmental factors exert the strongest influence on the 

microbial communities (Fierer & Jackson, 2006).  Understanding the cause of “distance-

decay” patterns is an area of great interest.  Based on the Beijerinck hypothesis, the 

distance decay patterning can only be driven by differences in environmental conditions 

across space.   

Spatial ecology and modeling studies have concentrated on aboveground biota 

and abiotic properties (i.e., biogeochemical data and physical properties) and very little 

on microbial communities (Ettema & Wardle, 2002).  Spatial data have the potential to 

improve our understanding of the ecological factors that regulate the soil biota and their 

functional roles (Tsiknia, Paranychianakis, Varouchakis, Moraetis, & Nikolaidis, 2014).  

Geostatistics has been used in soil science studies to assess and quantify the 

heterogeneity (patchiness) and variability of the spatial structure (Goovaerts, 1998).  

Pattern analysis can subsequently help develop, test, and validate prominent ecological 

theories driving biogeographic differences (Violle, Reich, Pacala, Enquist, & Kattge, 

2014).  Moreover, these hypotheses lay the foundation for using soil microbial 
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communities for forensic applications.  Geostatistics uses the soil sample’s spatial 

information to model spatial patterns, interpolate to unsampled locations, and assess 

uncertainty of the predictions (Goovaerts, 1998).  This can be a valuable tool in forensics 

or for intelligence purposes to determine soil origin.  Furthermore, Geostatistical analysis 

is a promising approach to model spatial patterns at various scales to understand whether 

a soil profiling approach can be applied in a one test fits all model or needs to be tuned 

depending on a particular soil type or geographic situation (Sensabaugh, 2009).  

Soil DNA profiling has great potential as a forensic tool and research to date have 

been promising.  The current ecological hypothesis states that the soil type (e.g., chemical 

and physical properties) determines which microbes occupy a particular soil and provides 

the foundation for soil provenance studies.  Studies to date have shown the potential and 

effectiveness of using microbial DNA from soil, not just for comparison, but also for 

intelligence gathering to geographically pinpoint the origin of the soil (Heath & 

Saunders, 2006; Horswell et al., 2002; Moreno, Mills, Entry, Sautter, & Mathee, 2006).  

Previous studies have shown that supervised classification algorithms were able to 

classify and distinguish soils at multiple spatial scales--soil type, transect, and subplot 

levels--with high accuracy (Damaso et al., in review). This indicated that there are hidden 

patterns within the microbial profiles that can be discerned by the mathematical-based 

tools (Yang et al., 2006) 

However, some layers of data, thus information, are often lost during 

classification schemes as a generalization is performed in order to organize the data into 

clear structural vectors.  Moreover, these classification methods imply that the soil 

properties are discontinuous which is not correct as soil processes operate under different 
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scales (McKinley, 2013).  Therefore, the spatial scale is important consideration for 

forensic applications (Sensabaugh, 2009).  Understanding the spatial variability of the 

microbial community as a whole and the extent to which other soil variables might shape 

the structure is important to develop a sampling strategy and to understand the sample 

size, and the spatial and temporal scale of the collection required in order to 

representatively sample an ecosystem (Mummey & Stahl, 2003; Sensabaugh, 2009). 

III. Processing Overview 

In this study, multivariate and geostatistical techniques were used to validate the 

ecological theories structuring the soil microbial biogeography at multiple spatial scales.  

A survey was conducted to examine the spatial organization of the microbial community 

structure at multiple spatial scales across Miami-Dade, Florida.  The community structure 

was compared using four-taxon microbial profiles.  Spatial autocorrelation, a term for 

spatial dependence and queries the resemblance between “neighbors”, was used as a 

function of spatial separation distance.  When near neighbors are more similar than those 

farther away, the data are said to be autocorrelated, and therefore violate the assumption 

that the data are independent (Ettema & Wardle, 2002). The relative dissimilarity was 

calculated and compared using geostatistical variograms to observe the spatial patterns as 

a function of separation distance at different scales by fitting a continuous function to 

smooth sample fluctuations.  The best variogram model would then be used to interpolate 

soil properties at un-sampled locations.  

IV. Materials and Methods 

A. Soil Collection 

Soil samples (N= 1268) were collected across Miami-Dade County, Florida in 
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2010-2011 over two season (dry and wet) and one transect (FIU) over 1.5 year (dry-wet-

dry) as described in Damaso et al. 2016 in review.  The soils were classified into six 

different soil types according to USDA soil surveys (Noble, Drew, & Slabaugh, 1996):  

1-Urban Land-Udorthents, 2- Lauderhill Dania-Pahokee, 3- Rock Outcrop-Biscayne-

Chekika, 4- Perrine-Biscayne-Pennsuco, 5- Krome Association, 6- Perrine-Terra Ceia-

Pennsuco.  All six soil types with 2-4 transects per type were surveyed. Most transects 

were established in undisturbed sites that had limited public access.  Each transect was ≥ 

1.6 km distant from the next, transects were 100 m in length and six subplots were 

randomly sampled along each transect.  GPS coordinates for every subplot for each 

transect were recorded.  Within each subplot, six cored samples were taken within a 1m2 

quadrat.  A 5 cm diameter soil corer was used to collect the top 5-10 cm of the soil.  The 

soil samples were transported back to the laboratory and sieved to remove large objects 

and debris for subsequent processing. 

B. Microbial DNA Profiles 

In this study, microbial DNA profiles were obtained by first extracting the 

metagenomic DNA from the soil sample, then amplified using length heterogeneity 

polymerase chain reaction (LH-PCR). This technique is a rapid, robust, and reliable 

method that uses universal taxa primer sets that have broad specificity for organisms 

known to be ubiquitous in soil.  In this study, four taxa (i.e., bacteria, Archaea, fungi, and 

plant) universal DNA markers were amplified and separated by capillary electrophoresis 

to obtain a DNA profile that provide a unique soil fingerprint.   

i. DNA Extraction 

Extraction was conducted using the BIO 101 Fast DNA Spin Kit for Soil® and 
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FastPrep®-24 System homogenizer (MP Bio, Solon, OH).  Quantification was conducted 

using the Qubit® Assay kit on the Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA).  

Samples were diluted to a 20 ng/l working stock.  

ii. Length Heterogeneity-PCR (LH-PCR) 

DNA was amplified as described in Damaso et al. 2016, in review using two PCR 

duplexes: (1) bacteria and fungi, and (2) plant and Archaea as well as each taxa 

separately.  PCR reaction mixtures were: 1X reaction buffer, 2.5 mM MgCl2, 0.25 mM 

dNTPs (Promega, Madison, WI), 1% BSA (fraction V, Fisher Scientific, Pittsburgh, PA), 

1% DMSO (Promega, Madison, WI), various concentrations of primers (bacteria=0.5 

µM, Archaea=0.4 µM, fungi=0.4 µM, plant=0.6 µM), 40 ng microbial DNA, 0.5 U 

AmpliTaq Gold® DNA Polymerase (Applied Biosystems, Foster City, CA). Universal 

primers were used for the following genomic regions for each taxa: 16S rRNA for 

bacteria (27-F, 355-R) (Suzuki, Rappe, & Giovannoni, 1998) and Archaea (21-F, 518-R) 

(Cocolin, Manzano, Cantoni, & Comi, 2001; DeLong, 1992) ribosomal internal 

transcribed spacer region (ITS) for fungi (ITS5-F, ITS2-R) (White, Bruns, Lee, & Taylor, 

1990) and chloroplast trnl intergenic region for plant (trnL-F, trnL-R) (Taberlet, Gielly, 

Pautou, & Bouvet, 1991). Forward primers were labeled with 6-FAM fluorescent dye. 

Each duplex was amplified with the same program using the ABI 9700™ thermocycler 

(Applied Biosystems, Foster City, CA) with the following parameters: initial 10 minute 

denaturing step at 95°C, 25 cycles of denaturation at 95°C annealing at 54°C and 

extension at 74°C each for 30 seconds with a final extension at 74°C for 10 minutes.  

iii. Capillary Electrophoresis 

Fragment analysis was conducted using the ABI Prism™ 310 (Applied 
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Biosystems, Foster City, CA) using Performance Optimized Polymer 4 (POP4) (Applied 

Biosystems, Foster City, CA).  Samples from the two duplexes were co-loaded where 1 

µl of each PCR product was added to a mixture of 11.5 µl Hi-Di™ Formamide (Applied 

Biosystems, Foster City, CA) and 0.65 µl internal size standard, GeneScan LIZ600 

(Applied Biosystems, Foster City, CA), denatured by heating for 2 min at 95C and then 

snap-cooled on ice for 2 min. Raw data were analyzed using the GeneMapper™ v 4.0 

(Applied Biosystems, Foster City, CA).  Local Southern size calling was used for the 

analysis parameters with a minimum threshold of 50 relative fluorescent units (RFUs).  

The relative ratios were calculated by normalizing the heights of each peak in the 

genotype to the total peak intensities resulting in the ratio for each peak height as a 

decimal value from zero to one using the Galaxy ABI Data Formatting tool found in 

http://usegalaxy.org/ (Afgan et al., 2016).   

C. Assessment of Spatial Variability 

Multivariate and geostatistical techniques were used to validate the ecological 

theories that shape the soil microbial biogeography at multiple spatial scales.  Spatial 

autocorrelation using Mantel Test was determined, which is a term for spatial dependence 

and queries the resemblance between “neighbors” as a function of spatial separation 

distance.  The relative dissimilarity using Bray Curtis Similarity was calculated and 

compared using geostatistical semivariograms to observe the spatial patterns as a function 

of separation distance at different scales by fitting continuous function to smooth out 

sample fluctuations.  For the first set of analyses, the relationship between all samples in 

Miami-Dade were considered to obtain an average overall spatial variability in the plot. 

Then subsets of the data were analyzed to quantify the autocorrelation and spatial 
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variability at different spatial scales by varying the maximum separation distance.  The 

scales were based on relative size: 1) plot scale (all samples in Miami-Dade County), 2) 

soil type scale (i.e., same physical and chemical properties as defined by USDA and 

>1.6km), and 3) transect scale (100m).  Because of the relatively small number of 

samples (i.e., 6 samples per subplot), correlation analysis did not analyze subplot scale 

(1m2).  The best variogram model was used to interpolate soil properties at un-sampled 

locations.  

i. Spatial Autocorrelation (Mantel Test) 

Mantel tests were performed using R programming language with the ade4 library 

(Dray & Dufour, 2007).  Two distance matrices were tested: geographic distance and 

genetic distance with data imported as binary data (presence/absence). The Mantel tests 

were performed and plotted using the function mantel.randtest in the ade4 package and 

calculated based on the random permutation using the Monte Carlo method.  This method 

relies on repeated random sampling (using 999 permutations) to compute the results so 

that no assumptions regarding the statistical distributions of samples in the matrix were 

needed.  The rows and columns of one matrix were randomly permutated followed by 

recalculation of the correlation after each permutation, thereby testing the significance.  

ii. Statistical Analysis (Dissimilarity Percentages) 

All analyses were conducted using Primer-E v.7 software (PRIMER E Ltd., 

Plymouth Marine Laboratory, Plymouth, U.K.).  Dissimilarity percentages were obtained 

from Bray-Curtis similarity matrices that were generated on relative abundance ratios that 

had been square-root transformed prior to analysis. SIMPER analysis was conducted to 

determine the percent dissimilarity within and between samples at multiple spatial scales 
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(i.e., soil type, transect, subplot) and seasonal differences (i.e., wet, dry).  The 

dissimilarity percentages were used as the input data in the semivariogram tool to assess 

the variability in the microbial community composition at various spatial scales.  

iii. Geographic Information Systems (Semivariograms) 

Geostatistics tool within GIS was utilized to observe the spatial patterns of the 

soil microbial profile at different scales.  The theoretical semivariogram model fitting is 

usually expressed by three parameters: nugget, sill, and range.  The nugget represents the 

measurement errors or spatial dependence at scales not explicitly sampled.  The sill 

represents the variance of the correlated measurements.  The range shows the extent of 

heterogeneity (i.e., zone of influence or distance of dependence) (Ettema & Wardle, 

2002; Goovaerts, 1998).  Since microbial profiles generate multivariate relative 

abundance data, it is not possible to calculate the semi-variance between sample pairs.  

Instead pseudo-variograms were created using ‘relative dissimilarity’ values calculated 

from the Bray Curtis similarity index.  These pseudo-variograms are constructed and 

analyzed the same way as the traditional variograms (Franklin & Mills, 2003).  

Semivariograms were constructed that represented the spatial variability in terms of 

dissimilarity between observations as a function of geographic distance (Goovaerts, 

1998).  The semivariograms show the hypothetically observed distance class (filled 

circles) and the fitted model (solid line).  Three different variogram models: spherical, 

exponential, and Gaussian models were conducted and the best model was chosen based 

on the Root Mean Square Error (RMSE).  An exponential semivariogram best describes a 

spatial structure where a variable displays abrupt changes at all distances.  A Gaussian 

variogram fits the spatial patterns where the variable has a continuous, gradually varying 
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structure.  Lastly, the spherical semivariogram describes spatial structure that has no 

clearly defined abrupt boundaries (Franklin, Blum, McComb, & Mills, 2002).   

Prior to constructing the variograms, it was necessary to segregate the data into 

distance classes by calculating the appropriate number of bins and appropriate bin width 

(i.e., lag distance) because this allows for the maximum resolution to be obtained at small 

distances without being misled by structural artifacts.  This technique allowed dominant 

spatial patterns at each scale to be quantified and obscured the autocorrelation structure at 

smaller distances.  The lag distance was calculated by considering the maximum 

separation distance between sample pairs as discussed in Franklin et al. (2002 & 2003).  

The appropriate number of bins for each analysis was determined by Sturge’s rule, which 

states that appropriate number of classes , where  is the number of points 

in either the upper or lower triangle matrix.  Furthermore, variograms are not valid 

beyond half of the maximum distance between samples and so the appropriate lag 

distance (distance increment for each class) was calculated as maximum pair distance 

divided by 2 and then subdivided into number of equal classes as described in (Franklin 

et al., 2002). 

V. Results 

A. Spatial Autocorrelation Analysis: Mantel Test 

Autocorrelations were conducted using Mantel tests which linked microbial DNA 

profiles to soil type as well as to specific transects within a soil type with strong accuracy 

(Table 6).  Therefore, spatial autocorrelation observed in the soil samples illustrate that 

the microbial communities that are closer geographically are closer genetically.  The four 

taxonomic profiles of each soil type displayed significant positive autocorrelation ranging 
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from 0.22-0.83 for both seasons (Table 6). At the transect level, six transects had non-

significant correlations (Table 6). Some sites were found to have been previously 

disturbed (e.g., fire, illegal dumping, agricultural disturbance).  

Table 6. The Mantel test results for all of Miami-Dade County's six soil types, transects 

within each soil type, for each season (wet and dry).  Numbers represent the Mantel 

coefficient (positive correlation>0; negative correlation<0; random=0). 

Soils Wet Dry 

All Miami-Dade 0.32* 0.35*  

By soil type  

Soil Type 1 0.24* 0.29* 

Soil Type 2 0.53* 0.42* 

Soil Type 3 0.22* 0.44* 

Soil Type 4 0.43* 0.47* 

Soil Type 5 0.38* 0.48* 

Soil Type 6 0.83* 0.79* 

By transect#  

    1–FIU 0.43* 0.18* 

    1–OSP1 -0.04 0.09 

    1–OSP2 0.24* -0.08 

    1–OSP3 0.19* 0.22* 

    2–CC6 0.29* 0.55* 

    2–KNT 0.43* 0.16* 

    2–KS8 0.41* 0.53* 

    2–NW137 0.25* -0.01 

    3–CH 0.03 0.42* 

    3–KK 0.35* 0.46* 

    4–CS 0.17* 0.35* 

    4–PE -0.17 0.22* 

    5–HA 0.46* 0.13* 

    5–TREC 0.21* 0.16* 

    5–USDA1 -0.05 -0.17 

    5–USDA2 0.42* 0.31* 

    6–USDA3 0.15* 0.37* 

    6–FC 0.51* 0.43* 

#: Soil samples are identified by a soil type number, followed by a transect descriptor 

(e.g., 1-FIU corresponds to soil type 1, transect FIU). 

*Represents significant (p ≤ 0.05) spatial autocorrelation. 
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B. Multivariate Statistics: Dissimilarity Percentages 

SIMPER analysis conducted at different scales—soil type, transect, subplot and 

season illustrated the dissimilarities between and within each scale (Table 7). For 

example, at the level of soil types (labeled “Between”), Table 7 shows the average 

dissimilarity of one soil type (i.e., soil type 1) when compared to the other five soil types, 

while the “Within” comparisons consider the average dissimilarity of the 2-4 transects 

within one soil type.  In contrast, under transects, the “Between” column compares the 

average dissimilarity of one transect (i.e., FIU) when compared to the other seventeen 

transects, while the “Within” column compares the average dissimilarities of the six 

subplots within the transect.  “Season” represents the average dissimilarity between wet 

and dry season for each site.  Overall, the average dissimilarity between site comparisons 

was greater than within sites.  For example, between soil type dissimilarities ranged from 

80-88% and between transects dissimilarities ranged from 74-92%, while their within site 

dissimilarities ranged from 50-80% and 28-65% for soil type and transect, respectively.  

Seasonal dissimilarity varied based on soil type and transect with transect level, KS8 

having the lowest season dissimilarity of 28% while, PE had the largest seasonal 

dissimilarity of 76%.  This can be attributed to the soil physical characteristics. 

Table 7. SIMPER analysis illustrating the average dissimilarity between and within each 

soil type and transect (± is the SE of the mean % dissimilarity). 

Soils Between Within  Season 

Soil Type 

1 80.27 ± 3.34 67.52 ± 2.62 64.57 

2 81.82 ± 2.68 54.40 ± 1.06 51.08 

3 81.78 ± 2.93 50.82 ± 0.00 54.9 

4 88.39 ± 2.13 80.84 ± 0.00 79.07 

5 82.67 ± 1.58 66.01 ± 2.74 61.71 
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6 81.12 ± 0.74 65.73 ± 0.00 59.89 

Transect# 

1–FIU 78.07 ± 2.13 62.33 ± 1.15 63.24 

1–OSP1 77.79 ± 2.23 52.92 ± 2.26 51.09 

1–OSP2 74.14 ± 2.14 42.41 ± 0.88 46.54 

1–OSP3 80.01 ± 1.87 52.95 ± 2.80 54.90 

2–NW 75.03 ± 2.84 42.72 ± 1.84 44.78 

2–KNT 77.27 ± 2.86 53.93 ± 2.40 59.45 

2–KS8 76.62 ± 2.98 28.54 ± 0.86 28.57 

2–CC6 74.64 ± 2.73 31.73 ± 0.91 35.01 

3–KK 79.16 ± 2.35 46.86 ± 0.91 57.81 

3–CH 78.95 ± 2.41 47.74 ± 2.26 52.45 

4–CS 85.44 ± 1.09 64.10 ± 1.80 70.00 

4–PE 92.18 ± 1.49 60.27 ± 0.58 76.06 

5–HA 75.95 ± 2.04 31.16 ± 1.06 31.70 

5–TREC 80.05 ± 2.05 52.50 ± 1.09 54.78 

5–USDA1 81.88 ± 1.77 53.94 ± 1.19 63.94 

5–USDA2 78.74 ± 1.72 45.16 ± 1.13 46.43 

6–USDA3 79.92 ± 1.40 46.08 ± 0.71 64.16 

6–FC 80.64 ± 1.31 41.80 ± 1.26 42.65 

#: Soil samples are identified by a soil type number, followed by a transect descriptor 

(e.g., 1–FIU corresponds to soil type 1, transect FIU). 

C. Geographic Information Systems: Semivariograms 

Miami-Dade County samples illustrated limited spatial autocorrelation (Figure 

7A).  At the soil type scale, spatial variability varied with soil type 2, 4, 5 showing 

limited spatial autocorrelation and soil type 1, 3, 6 showing no spatial structure at the 

extent studied (Figure 7B). At transect scale, most transects demonstrated no spatial 

structure (i.e., PE in Figure 7C) at this scale, while OSP3 and FC illustrated a limited 

spatial autocorrelation.  The three models tested (i.e., spherical, exponential, and 

Gaussian) displayed similar results (data not shown).  All samples had a nugget effect 

ranging from 26-751 (Table 8 & 9).  Those that showed a spatial autocorrelation in the 

semivariograms, illustrated in the table to have a partial sill, while those that showed no 
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spatial structure had a partial sill of 0.  Partial sill (calculated by subtracting the sill and 

nugget) shows the variance of spatial autocorrelation without any nugget effect. The root 

mean square standardized (RMS std) for all samples was close to 1 and ranged from 0.75-

1.01 (Table 8 & 9).  All semivariograms tested had a RMS std less than one except Soil 

Type 1 that had a value of 1.01. A RMS std less than one illustrated a potential 

overestimation of the variability in the predictions.  The Mean standardized error was 

close to 0 ranging from -0.17-0.18 which means that the predictions are unbiased and 

centered on the true values. 
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Figure 7. Semivariogram illustrating A) Miami-Dade spatial variability, B) soil type level 

spatial variability, C) Transect level variability. 

Table 8. GIS semivariogram results of Miami-Dade County samples (plot) and soil type 

(ST) scales. Number of sample points per site/scale and maximum distance between 

samples were used to calculate number of lags and lag size for the semivariogram. Root 

mean square error (RMS), mean standardized error (Mean Std), root mean square 

standardized (RMS Std), and average standard error (Avg SE) was used to determine the 

best model. Nugget, partial sill, and range was used to determine the spatial variability at 

the extent. 

Scale 
# 

point 

# 

Lags 

Max 

pair dist 

(m) 

Lag 

size 

(m) 

RMS 
Mean 

Std 

RMS 

Std 

Avg 

SE 
Nugget 

Partial 

Sill 

Range 

(m) 

Plot 1269 11 68669 3121 11.06 -0.02 0.91 12.22 138.68 155.33 14263 
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Table 9. GIS semivariogram results at transect scale. Number of sample points per 

site/scale and maximum distance between samples were used to calculate number of lags 

and lag size for the semivariogram. Root mean square error (RMS), mean standardized 

error (Mean Std), root mean square standardized (RMS Std), and average standard error 

(Avg SE) was used to determine the best model. Nugget, partial sill, and range was used 

to determine the spatial variability at the extent. 

Scale 
# 

point 

# 

Lags 

Max 

pair dist 

(m) 

Lag 

Size 

(m) 

RMS 
Mean 

Std 

RMS 

Std 

Avg 

SE 
Nugget 

Partial 

Sill 

Range 

(m) 

FIU 100 8 105.69 7 25.61 -0.17 0.90 28.45 750.95 0 56 

OSP1 65 7 229.10 16 11.67 0.02 0.95 12.27 140.26 0 112 

OSP2 72 7 141.14 10 10.71 0.10 0.98 10.91 110.95 0 70 

OSP3 66 7 372.00 27 10.47 0.07 0.80 13.05 148.34 187.89 189 

NW 72 7 227.84 16 10.37 -0.01 0.92 11.34 118.25 6.90 112 

KNT 67 7 172.76 12 11.01 0.14 0.79 14.07 176.23 3.22 38.39 

KS8 72 7 47.41 3 4.33 0.18 0.82 5.29 25.82 0 21 

CC6 71 7 306.83 22 5.84 -0.06 0.90 6.48 38.48 0 154 

KK 67 7 83.25 6 14.90 0.01 0.95 15.71 221.14 0 42 

CH 69 7 182.16 13 10.94 0.05 0.98 11.30 116.34 0 91 

CS 69 7 98.76 7 23.49 0.09 0.91 25.88 613.30 0 49 

PE 65 7 85.11 6 8.63 0.10 0.97 8.87 72.92 0 42 

HA 72 7 89.46 6 9.81 0.10 0.88 11.08 113.94 0 42 

TREC 64 7 102.09 7 9.36 0.02 0.90 10.41 99.26 0 49 

USDA1 72 7 89.55 6 12.71 -0.08 0.82 15.62 221.55 0 42 

USDA2 68 7 120.56 9 6.22 -0.07 0.87 7.16 46.60 0 63 

USDA3 71 7 74.37 5 19.75 0.14 0.97 20.36 384.56 0 35 

FC 67 7 476.90 34 5.15 -0.10 0.76 6.77 39.97 42.06 238 

 

VI. Discussion 

Three issues need to be addressed for sampling the soil spatial variability: location 

of sample points, size of sample, and total number of samples to be collected (Lin, 

Wheeler, Bell, & Wilding, 2005b).  In sampling theory, spatial scale is defined by the 

ST 1 303 9 30902 1717 18.22 -0.08 1.01 18.13 307.67 0 15453 

ST  2 282 9 8010 445 8.24 -0.03 0.88 9.37 81.00 184.35 1519 

ST  3 136 8 11083 693 13.37 0.02 0.95 14.12 181.11 0 5544 

ST  4 134 8 12193 762 16.60 -0.02 0.90 18.36 302.77 58.84 48 

ST  5 276 9 29627 1646 10.02 0.04 0.92 10.90 109.83 193.16 3729 

ST  6 138 8 4718 295 14.85 0.01 0.95 15.58 226.37 0 2360 
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grain size, sampling interval, and extent.  The grain size is the size of the sampling unit, 

sampling interval is the average distance between sampling units, and the extent is the 

total area included in the study (Franklin et al., 2002).  Intuitively, researchers know that 

a large number of widely spaced samples are likely to be a better measurement of the 

spatial mean of a soil property rather than few samples located close to one another; 

however what is “a large number” or “widely spaced” (Loescher, Ayres, Duffy, Luo, & 

Brunke, 2014). Adequate spacing will ultimately minimize costs with increasing distance 

separation.  However, it is also important to understand different sites spatial variability 

to see if different sampling designs are needed to accurately depict the soil site (Loescher 

et al., 2014).  Previous studies have illustrated the differences of within site variability 

between homogeneous grassland over shrubland (Mummey & Stahl, 2003). Mummey & 

Stahl (2003) showed that homogeneous grasslands had a highly similar bacterial 

community and lower within site variability compared to the shrubland (Mummey & 

Stahl, 2003). In this study, variability within sites varied from 28-65% illustrating that the 

level of heterogeneity differed based on site. For example, site KK had a 46% within site 

dissimilarity compared to FIU that had a 62%. This can be attributed to the similar and 

almost identical microbial flora and fauna within some transects.  Local heterogeneity 

can be due to different soil properties and multiple environmental factors such as unique 

plant species, sunlight amount, and differing moisture content (Franklin & Mills, 2003; 

Lenz & Foran, 2010).  

Semivariograms can provide a useful tool for designing robust sampling strategies 

by estimating the variance (sill) that can be used to inform sample size in future studies as 

well as estimate the minimum distance required for samples to be considered spatially 
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independent (range) that can be used to inform sample spacing as explained by (Lin et al., 

2005b).  In this study, the multivariate, non-parametric LH-PCR microbial community 

profiles could not be calculated using the traditional autocorrelation function.  Instead, 

the relative dissimilarity values were plotted with distance and took the form of the 

traditional correlogram as was described in various studies (Franklin & Mills, 2003; 

Mummey & Stahl, 2003). The semivariograms illustrated spatial autocorrelation for plot 

scale (all Miami Dade County samples), three soil types (2,4,5) and two transects (OSP3 

and FC). For these sites, there was small scale heterogeneity observed that could be 

attributed to many small and sharply discontinuous distinct patches (Ettema & Wardle, 

2002). However, the other three soil types (1,3,6) and most transects showed a pure 

nugget effect in where no spatial structure (zero partial sill) was observed at the spatial 

extent studied (Figure 7).  Therefore, at the finer scales such as the PE site, no spatial 

variability was observed within the 42 meters extent and therefore, the interpolation (i.e., 

prediction) designated the samples within this site to have the same microbial 

communities in contrast to FC site that showed a spatial variability within the 238 meters 

and could distinguish samples within that distance (Figure 7C). Similar results have been 

found in previous studies by (Franklin & Mills, 2003; Loescher et al., 2014). Franklin & 

Mills (2003) found that the spatial distribution of the community was different based on 

the scales used with finer scales not able to detect spatial patterns. This can occur due to 

random sampling variance or variability that is occurring at other spatial scales not 

examined in the spatial extent.  For instance, more samples at greater distances (>42 

meters) are needed to see the spatial variability at the PE site. The decreased number of 

samples at the transect scale (N=65-100), compared to the soil type (N=134-303) and plot 
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scale (N=1269) could also limit our ability to detect fine scale relationships.  A ‘rule of 

thumb’ in geostatistics suggest that each class should contain at least thirty pair of points 

(Franklin & Mills, 2003).  The greater the number of points, the greater the statistical 

reliability is.  This could be a reason as to why spatial variability was not observed at the 

finer resolution (i.e., transect) as only 12 samples were collected for each of the six 

locations.   

For forensics, it is important to understand the scale at which the soil microbial 

community must be measured to create a sampling design that will result in sound 

discrimination Geostatistics can assist in assessing the spatial variability and offer an 

index to quantify the magnitude and scale of spatial variation in a soil property (i.e., 

microbial community profiles). The significance of this for forensics links back to the 

issue of soil variability at the crime scene and how realistic it is to expect a soil sample 

collected by an investigator to be similar to a questioned sample (Lark & Rawlins, 2008). 

GIS is increasingly being used to integrate and analyze data. However, robust databases 

and sampling schemes are needed for forensic purpose and spatial resolution, amount of 

material, and condition of sample collection need to be addressed (McKinley, 2013).  

This can be a useful technology that can capture a wide range of useful soil properties 

and incorporate the results into a common format that can be quantitatively measured at 

low cost.  Kriging interpolation methods under GIS can be then used to predict values at 

unsampled locations using the theoretical semivariograms depicting the spatial 

variability.  Kriging estimates linear combinations of the data with weights from the 

model semivariogram (Tsiknia et al., 2014).   
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Further research is needed to understand the number of samples needed to 

represent the population and the discriminatory capacity to determine if one test fits all or 

if the model needs to be tuned to fit particular soil types or geographic situations.  This 

study recommends a hierarchical sampling approach similar to the one used in this study 

to catalog the soil spatial variability at multiple scales so that an understanding the soil 

variability across different landscapes, but also at what scale the variability is most likely 

to occur (Lin et al., 2005b).  These results showed a snapshot of the relationship at 

various soil sites at a single time, and therefore, did not consider the temporal variability 

or its interaction with spatial heterogeneity in determining the community pattern 

(Franklin & Mills, 2009). Further studies are needed to examine both spatial and 

temporal scales simultaneously to determine the usefulness of this technique over time.  

Currently there is no comprehensive soil microbial community profiling database and 

very few published attempts to develop databases of soil properties (i.e., chemical and 

physical) specifically with forensic application in mind (Pye & Blott, 2009).  Soil 

databases can be useful and suitable for forensic inferences; however, as (McKinley, 

2013) states they need to be consistent, compatible, and applicable to be useful in 

forensic cases.  
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I. Introduction 

Soil particles can provide valuable information when recovered from a crime 

scene.  Its value is due to its prevalence, high transferability, and retention probability 

that can easily adhere to objects such as footwear and car tires that are often overlooked 

by a suspect in attempts to conceal evidence [1].  With the advances in molecular 

genomics, the forensic potential for using microorganisms to query soil provenance for 

intelligence assessments or to establish an evidentiary link between suspect and soil 

evidence have been increasing [1-2].  Microorganisms are abundant and ubiquitous in all 

environments and can therefore serve as a powerful source of trace evidence [2-6]. 

Microbial community profiling can be done using a very small sample size (~50-500 mg) 

with the DNA expertise and instrumentation already employed in many laboratories [7]. 

Previous research has shown the potential to use microbial community profiling in 

forensics to link soil evidence samples to its origin [8-11].  Although microbial soil 

profiling has been promising, its application is still in its infancy and further research 

needs to be conducted to develop standard operating procedures (SOPs) for the 

collection, analysis, and interpretation of microbial forensic evidence for it to be 

acceptable in a court of law [2].   

For a robust tool to be applied in forensic application, an understanding of the 

uncertainty associated with any comparisons and the parameters that can significantly 

influence variability in profiles needs to be determined.  These issues include selecting 

suitable microbial markers and the influence of temporal variability on the DNA profile. 

Most often soil forensic analyses have exclusively looked at bacteria [10,16,17]. 

However, fungi have been recently shown to be robust for soil forensic discrimination 
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and resistant to biological, chemical, and mechanical degradation [6,11,14].  As in human 

identification, the more DNA markers queried the greater the discrimination power.  

Previously, MacDonald et al. (2008) illustrated a multiplex approach that analyzed 

bacteria, archaea, and fungi, which led to better site discrimination [14].  Bacteria 

provided greater resolution between two sites, but were more susceptible to air-drying, 

and sensitive to dehydration pressures that lead to population shifts.  Fungi were less 

altered by air-drying, resilient to desiccation, tolerant to a wide range of pH (i.e., persist 

in acidic soils), and provided discrimination between sites [18].  Lastly, Archaea were 

useful to identify saline or water logged soil environments. Therefore, a multi-taxon 

approach can provide a different level of discrimination [14] and has the potential for 

forensics to link soil evidence to its origin.  The first objective of this study was to 

analyze four taxa (bacteria, fungi, archaea, and plant) individually and compare to a 

multi-taxon approach to determine which would provide the highest degree of 

discrimination between and within sites. 

An assumption underlying the use of microbial profiling is that there should be 

limited temporal variability as soil and its biotic communities should not change 

substantially over time in order to use pattern modeling for forensic application [12]. 

Therefore, the reliability of this approach needs to be tested to determine if major spatio-

temporal changes in a soil’s microbial community could have an effect on its probative 

value [2].  Soils are extremely complex environments that exhibit substantial spatial and 

temporal heterogeneity [13]; however, it has been shown that spatial variability is more 

significant than temporal variability [12,14].  If the microbial community changes 

substantially over time, origin of evidentiary soil may be excluded in error and it may be 
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more difficult to link soil from a suspect to a specific location if not analyzed within a 

certain time frame [12,15].   

Previous results have assessed short-term (1-1.5 yr) spatio-temporal variability of 

soil communities and showed that biotic content was correlated to soil type and to 

specific transects with strong accuracy using pattern analyses and machine learning 

algorithms (Damaso et al. 2016 In Review).  However, if archived data and training sets 

are to be useful long term, temporal variability (> 2 yr) also needs to be considered.  

Unlike human identification, soil environment is dynamic and changes over time. 

Therefore, it is important to see if meaningful comparisons and links can still be made 

between soil evidence deposited at the crime and archived reference data previously 

collected (> 2 yr) from a site can still be classified [7]. The second objective of this study 

was to determine if there was temporal site variability observed in the microbial 

communities from freshly sampled soils after a four-year time span (2010 to 2014).  This 

is vital as microbial communities need to be stable enough over a reasonable time span if 

they are to be useful for forensic purposes.  The goal was to characterize the temporal 

dynamics of microbial communities from three previously sampled sites to establish how 

variable the communities may be over time.  

II. Materials and Methods 

In this study, universal primer sets were selected that have broad specificity for 

organisms known to be ubiquitous in soil. Bacteria, archaea, fungi, and plant universal 

DNA markers were PCR amplified, separated by capillary electrophoresis, and queried 

across three soil types in Miami-Dade County, Florida over two seasons (dry and wet) in 
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2010 and again four years later in 2014.  Abiotic information such as pH, organic matter 

content, moisture content, and soil texture was also obtained from the soil.  

A. Soil Collection 

In 2010-2011, sites across Miami-Dade County, Florida were sampled during the 

dry and wet seasons (Damaso et al. 2016 In Review).  Three sites were again sampled 

during the dry and wet seasons in 2014 and 216 samples were collected and analyzed. 

Sites included (as categorized by USDA-NRCS [19]): FIU as soil type 1 (Urban Land-

Udorthents), CC6 from soil type 2 (Lauderhill Dania-Pahokee), and KK from soil type 3 

(Rock Outcrop-Biscayne-Chekika).  Sites were established in undisturbed sites that had 

limited public access in the three different soil types.  Each site was at least ≥ 1.6 km 

distant from the next, 100 m in length and six subplots within each site were randomly 

sampled.  GPS coordinates for every subplot were recorded.  Within each subplot, six 

cored samples were taken within a 1 m2 quadrat using a 5 cm diameter soil corer to 

collect the top 5-10 cm of the soil. The soil samples were transported back to the 

laboratory and sieved to remove large objects and debris. 

B. Abiotic Analysis 

Soil texture (% sand, silt, and clay) was obtained for each site for the wet season 

in 2014. Percent moisture, percent total organic content (TOC), and pH were obtained for 

subplot level for each season (dry and wet) in 2014.  Soil texture was obtained using the 

Bouyocos hydrometer method.  The pH was measured in soil-water (1:2) solutions. Soil 

slurries were made by adding 3 g of soil to 6 ml of distilled water, stirred, and measured 

using the calibrated electrode/digital pH meter (LaMotte, Chestertown, MD). The 

moisture content was determined gravimetrically by oven drying the soils at ~55°C for 24 
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hours. The TOC was determined gravimetrically by measuring the difference between the 

dry weight and the ash-free dry weight that was obtained by igniting the dry soils in an 

ash oven at ~550°C for 4-5 hours. The percent carbon is 50% of the ash free dry mass for 

plant matter. Student two-sample t-tests were conducted to observe if there was a 

significant difference seasonally for each of the abiotic parameters.  

C. DNA Extraction 

Extraction was conducted using the BIO 101 Fast DNA Spin Kit for Soil® and 

FastPrep®-24 System homogenizer (MP Bio, Solon, OH).  Quantification was performed 

using the Qubit® Assay kit on the Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA). 

Samples were diluted to a 20 ng/l working stock. 

D. Length Heterogeneity-Polymerase Chain Reaction 

Two samples per subplot from each season (dry and wet) for the three sites (FIU, 

CC6, and KK) were used to test the temporal variability of the soil (n=72). DNA was 

amplified as described in Damaso et al. 2016 In Review, using two PCR duplexes: (1) 

bacteria and fungi, and (2) Archaea and plant.  PCR reaction mixtures were: 1X reaction 

buffer, 2.5 mM MgCl2, 0.25 mM dNTPs (Promega, Madison, WI), 1% BSA (Fraction V, 

Fisher Scientific, Pittsburgh, PA), 1% DMSO (Promega, Madison, WI), various 

concentrations of primers (bacteria=0.5 µM, fungi=0.4 µM, Archaea=0.4 µM, plant=0.6 

µM), 40 ng DNA, and 0.5 U AmpliTaq Gold® DNA Polymerase (Applied Biosystems, 

Foster City, CA).  Universal primers were used for the following genomic regions for 

each taxa: 16S rRNA for bacteria (V1 +V2 domains, 27-F, 355-R) [20] and Archaea (V1-

V3 domains, 21-F, 518-R) [21,22], ribosomal internal transcribed spacer region (ITS) for 

fungi (ITS5-F, ITS2-R) [23], and chloroplast trnL intergenic region for plant (trnL-F, 
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trnL-R) [24]. Forward primers were labeled with 6-FAM fluorescent dye. Each duplex 

was amplified with the same program using the ABI 9700™ thermocycler (Applied 

Biosystems, Foster City, CA) with the following parameters: initial 10 min denaturing 

step at 95°C, 25 cycles of denaturation at 95°C, annealing at 54°C, and extension at 74°C 

each for 30 sec with a final extension at 74°C for 10 min. In addition to the duplexes 

described above, each individual taxon was also amplified separately to determine the 

discrimination power of each taxon.   

E. Capillary Electrophoresis 

Fragment analysis was conducted using the ABI Prism™ 3130xl (Applied 

Biosystems, Foster City, CA) using Performance Optimized Polymer 7 (POP7) (Applied 

Biosystems, Foster City, CA). Samples from the two duplexes were co-loaded where 1 µl 

of each PCR product was added to a mixture of 11.5 µl Hi-Di™ Formamide (Applied 

Biosystems, Foster City, CA) and 0.65 µl internal size standard, GeneScan LIZ600 

(Applied Biosystems, Foster City, CA), denatured by heating for 2 min at 95C and then 

snap-cooled on ice for 2 min. CE preparation and separation were conducted using the 

same parameters as the multiplex approach without co-loading the samples for the 

individual taxa.  

Raw data were analyzed using GeneMapper™ v 4.0 (Applied Biosystems, Foster 

City, CA).  Local Southern size calling was used for the analysis parameters with a 

minimum threshold of 50 relative fluorescent units (RFUs). The relative ratios were 

calculated by normalizing the heights of each peak in the profile to the total peak 

intensities resulting in the ratio for each peak height as a decimal value from zero to one 

using the Galaxy ABI 310 Data Formatting tool found in http://usegalaxy.org/ [25].  

http://usegalaxy.org/
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F. Statistical Analysis 

All analyses were conducted using Primer-E v.7 software (PRIMER E Ltd., 

Plymouth Marine Laboratory, Plymouth, U.K.).  Bray-Curtis similarity matrices were 

generated on relative abundance ratios that had been square-root transformed prior to 

analysis. Analysis of Similarity (ANOSIM) was used to determine the significant effect 

of time as well as the significant differences between sites based on individual taxa and 

the combined four-taxa profiles.  ANOSIM reports the level of dissimilarity between 

samples groups (Global R) and the associated level of significance (p) to provide 

statistical pair-wise comparisons between designated groups.  The ANOSIM R-statistic 

indicates the level of discrimination between groups (sites), with a value close to one 

indicating complete group discrimination and a value close to zero implying no 

differences exist between groups [26]. The associated significance level (p) is equivalent 

to the p-value where 0.1%, 1%, and 5% is equal to p<0.001, p<0.01, and p<0.05, 

respectively.  Non-metric Multidimensional Scaling (nMDS) was used to visualize the 

site heterogeneity, temporal and seasonal variability, and discrimination power of each 

taxon to distinguish sites apart.  Non-metric Multidimensional Scaling (nMDS) allows 

complex datasets to be easily visualized, with more similar samples grouping together. 

The level of confidence in the 2-D plot is indicated by the stress, i.e. <0.2 provides good 

representation of the fit [1].  Similarity Percentages (SIMPER) analysis was used to 

identify the LH-PCR peaks contributing to the dissimilarity between sites and temporal 

variability as well as the percent contribution each amplicon provided for the overall 

dissimilarities.  
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G. Random Forest 

Random Forest analysis was conducted in R programming language using the 

randomForest package [27] for soil classification. To determine the temporal effect, the 

2010-2011 dataset was used for training and the 2014 four-taxon dataset was used for 

validation/testing.  When determining the individual taxon (bacteria, Archaea, fungi, and 

plant) as well as the four-taxa discrimination power, two thirds of the 2014 dataset were 

used for training the algorithm and one third was used for testing each replicate run for 

each dataset. For reproducibility, the datasets were re-tested by randomly selecting a 

different training and testing set three different times.  Classification accuracy was used 

to determine the performance of the classification method for each taxon and the multi-

taxa. Classification accuracy calculated the percent of samples correctly classified. 

Student two-sample T-tests were conducted to determine significant differences between 

different taxon classifications. 

III. Results 

A. Taxa Discrimination (2014) 

To test which taxa would give the best site discrimination, all taxa were examined 

individually as well as in combination.  The nMDS showed a discrete spatial separation 

between sites using fungi (Figure 8C).  Bacteria was able to group KK site and FIU based 

on seasons (Figure 8B).  Four taxa were able to show discrete spatial separation between 

sites as well as the seasons within the sites (Figure 8A).  These results show that four taxa 

combined the site discrimination of fungi and the seasonal discrimination of bacteria. 

ANOSIM statistic also supported nMDS results illustrating that fungal profiles were 

significantly influenced by soil site (R=0.47, p=0.1%), whereas four taxa profiles were 
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significantly influenced by soil sites and seasons within sites (R=0.58, p=0.1%).  Archaea 

and plant profiles were poor, observing few LH-PCR peaks with low signal intensity and 

therefore, did not provide a clear distinction between soil sites with exception of KK site 

that grouped using Archaea markers (Figure 8D).  Even though nonparametric tests could 

not differentiate sites clearly using the individual taxa other than fungi and four-taxa, 

Random Forest was able to classify the soils based on site and classified with accuracy of 

72%, 36%, 90%, 98%, and 95% for Archaea, plant, bacteria, fungi, and four-taxa, 

respectively (Figure 9).  Archaea, bacteria, fungi, and four-taxa did not show a significant 

difference in classification accuracy (p>0.07).  Plant had significantly lower classification 

accuracy (36% accuracy, p<0.009) than the other individual taxa as well as the four-taxa 

combined. 
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Figure 8. Nonmetric Multidimensional Scaling 2-D plots illustrating the discrimination 

power to distinguish three sites (Red=FIU, Blue= CC6, Green= KK) and season 

(▲Dry/▼Wet).  A) Four-taxa was able to discriminate sites and seasons within a site. B) 

Bacteria marker was able to group KK and group FIU based on season.  C) Fungi was the 

best marker to discriminate the three sites. D) Archaea was unable to discriminate FIU 

and CC6; however, it was able to group KK.  E) Plant was unable to distinguish the three 

soil sites apart.   
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Figure 9. Random Forest classification accuracy using individual taxa and four-taxa to 

discriminate three sites (FIU, CC6, and KK). Archaea, bacteria, fungi, and four-taxa did 

not show a significant difference in classification accuracy (p>0.07). 

B. Abiotic Seasonal Variability 

Soil texture, pH, moisture content, and total organic content were collected to 

determine the characteristics of the soil samples and the abiotic seasonal (dry and wet) 

variability. Results indicate that there were no significant differences seasonally for pH 

and total organic content of the soils (Table 10).  However, moisture was significantly 

different seasonally with exception of CC6 that did not have a significant difference 

between dry and wet season (Table 10).  Both FIU and KK are sandy loam while CC6 is 

sandy clay loam in texture (Table 10).  

Table 10. Abiotic seasonal (dry and wet) variability for three sites (FIU, CC6, and KK). 

Soil texture classification based on the % sand, silt, and clay for each site collected in 

2014. pH and total organic content illustrated no significant difference between seasons. 

Moisture was significantly different seasonally except for CC6. Parenthesis represent 

standard error. 

  
FIU CC6 KK 

Soil Texture  Sandy Loam Sandy Clay Loam Sandy Loam 

pH Dry 7.48 (± 0.12) 7.68 (± 0.07) 7.88 (± 0.02) 
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Wet  7.47 (± 0.12)  7.64 (± 0.10) 7.91 (± 0.03) 

Moisture (%) 
Dry 17.31 (± 2.34) 44.93 (± 4.16) 21.07 (± 1.80) 

Wet 23.67 (± 4.38) 48.02 (± 6.46) 29.53 (± 1.78) 

Organic (%) 
Dry  9.86 (± 1.71) 24.54 (± 4.21) 13.17 (± 0.47) 

Wet 12.34 (± 4.80) 26.80 (± 6.31) 13.38 (± 0.82) 

 

C. Biotic Temporal and Seasonal Variability 

Temporal variability was observed for the three sites (FIU, CC6, and KK) 

between 2010 and 2014, however sites still grouped based on location with exception of 

CC6 (Figure 10).  ANOSIM results showed that there was a significant temporal 

variability (p=0.1%) with a global R of 0.68, 0.81, 0.68 for FIU, CC6, and KK, 

respectively. SIMPER results showed that FIU, CC6, and KK sites were 79%, 96%, and 

84% dissimilar across time (between 2010 and 2014 profiles), respectively.  Nonmetric 

Multidimensional Scaling (nMDS) illustrated the temporal variability observed for each 

site, however FIU and KK still grouped regardless of the four year time span (Figure 10). 

When the combined 2010 dataset (all six soil types and seasons) was used as the 

Random Forest training set to classify the 2014 sites to their origin, the algorithm 

classified FIU collected in 2014 to its proper origin with only 16% accuracy, while KK 

and CC6 were not able to be classified at all.  Using just the soil type subsets (including 

both seasons) of the 2010 dataset to train (i.e., soil type 1-2010 for FIU, soil type 2-2010 

for CC6, soil type 3-2010 for KK), classification accuracy increased to 83% for FIU and 

71% for KK; however, CC6 was still unable to be correctly classified.  When the same 

soil type and season were used as the training set (i.e., soil type 1 samples collected in 

2010 wet season for FIU samples collected in the wet season in 2014), FIU classification 

accuracy increased to 100% for wet season and 67% for dry season.  KK accuracy was 
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8% for wet season and 42% for dry season.  CC6 however, was not able to be correctly 

classified. Google Earth images and ground truthing showed that FIU’s above ground 

mixed forest plant community had not changed over the four year time span; however, 

KK had an increase in vegetation over time and CC6 had a major disturbance within the 

four year time span.  

 
Figure 10. Temporal variability within three sites (Red=FIU, Blue=CC6, and Green=KK) 

across a four year time-span (▲2010/▼2014) based on Nonmetric Multidimensional 

Scaling (nMDS) analysis using Bray-Curtis similarity coefficient. 

IV. Discussion 

Microbial community profiling studies have been promising using bacterial 

markers alone to distinguish between soil types and has been the standard marker 

[8,11,12,16]. However, additional taxonomic groups can provide further discriminatory 

power and requires further investigation. As in human identification, the more DNA 

markers queried the greater the discrimination power.  In this study, we assessed the 

resolution of bacteria, archaea, fungal, and plant community profiles independently and 

combined to determine the best marker or markers for forensic comparison of soil 

evidence.  Ideal markers for soil provenance should be sufficiently variable to 
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discriminate among samples but conserved enough to be less variable within than 

between species, be robust, and have highly reliable DNA amplifications [41].   

A majority of the studies using soil microbial profiling for forensic applications 

involve the bacterial 16S rRNA genes using T-RFLP [14,31,42] or LH-PCR [8], 

ribosomal internal transcribed spacer region (ITS) for fungi [43], Archaea 16S rRNA, 

and[43], the chloroplast trnL intergenetic region for plant [41]. In this study, fungi 

provided clear discrimination between sites using nMDS and ANOSIM as did the multi-

taxon approach (Figure 1C).  However, the four taxa concatenated were able to better 

discriminate between transects and seasonally within a transect (Figure 1A). Unlike 

fungi, bacteria did not provide a clear discrimination between sites as these markers have 

a high level of variability within and among sites due to their heterogeneous nature 

[11,15,30].  Targeting only bacteria have been shown to produce too much noise to be 

useful in differentiating between sites [12] as bacteria form micro-spatial niches within 

micro-aggregates of soil particles; therefore, their distribution is more heterogeneous than 

non-bacterial taxa [6,12].  Bacteria can generate a high site-specific DNA profile as their 

structure can be influenced by soil type, seasonal variation, site management, vegetation 

cover, and environmental conditions [1,17,44]. Plant and Archaea were not able to 

distinguish the transects and had a low number of OTU as was found in previous studies 

[6,14]. Even though Archaea and plant had low informational value within the profiles 

and were unable to differentiate between the three sites, they may still be useful markers 

in specific cases.  For example, trnL marker can be useful when detecting the presence of 

a certain plant species.  Wetland sites are found to have significantly higher Archaea [6] 

and the 16S rRNA Archaea marker can be useful, as shown with the KK site, to identify 
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and distinguish soils from water logged environments where Archaea have a greater 

presence [14].  

Using Random Forest machine learning tool, the soils were able to be classified 

with over 95% accuracy using fungi and the four-taxa. Moreover, even though 

nonparametric tests, such as nMDS, could not differentiate sites clearly using bacteria 

and Archaea, Random Forest was able to classify the soils based on site with high 

accuracy and was not significantly different than fungi and four taxa in their 

classification accuracies (Figure 2).  This is supported by previous research that found 

that multiplexing bacteria, fungi, and Archaea led to better discrimination compared to 

soil color and single taxa profiling, but was not significant when classifying using linear 

discriminant analysis [14].  In conclusion, even though fungi look promising for single 

taxon soil discrimination, the additional markers can help discriminate between a wide 

variety of soil types. Plants can assist to link a certain plant species to the site, Archaea 

can indicate water logged or extreme environments, and the core bacteria can be useful at 

site specific and when seasonal discrimination is needed [1,45].  

This study shows the potential benefit of utilizing classification tools and 

comprehensible reference database to distinguish soil samples and determine their 

geographic origin.  However, it is also important to understand the manner and level that 

the communities change temporally if they are going to be used as markers.  This is 

critical to understand how frequently a reference dataset needs to be updated. Extensive 

study is required using different ecosystems to evaluate the stability of microbial DNA 

profiles to determine the maximum time that can elapse between sample deposition and 

reliable comparison with collected samples [16].  Difference in profiles with time is 
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expected as temporal and seasonal fluctuations such as rainfall and temperature, may 

impact the microbial community causing population shift [10,35].  Previous studies have 

tested the temporal variability of the soil; however, they were restricted within one year 

and looked at the presence/absence similarity [10,15,16]. Lenz & Foran 2010 found that 

known soil samples can potentially be collected well after a crime occurred throughout a 

one-year period as the time/season did not have a substantial negative influence on the 

ability to group soils [15].  Horswell et al. 2002 also found that soil samples collected 

eight months apart had somewhat dissimilar bacterial TRFLP profiles; however, they still 

showed a high degree of similarity (70% (8 months) compared to 90% (time of 

collection)) [10].  The apparent stability of the bacterial profiles could be attributed to the 

bacterial mechanisms of resistance and dormancy.  Even though different species 

alternate between growth and dormancy based on environmental changes, the cells/DNA 

will still be present in the soil and can be detected with DNA profiling methods such as 

TRFLP or LH-PCR [16].    

In this study, four year temporal variability as well as the relative abundance 

similarities across three different soil types were examined. Results indicated that using 

ANOSIM, there was a significant temporal variability observed between 2010 and 2014 

for all sites.  Multidimensional scaling (nMDS) also illustrated a temporal variability for 

each site; however, FIU and KK still grouped regardless of the four-year time span 

(Figure 3).  Using Random Forest machine learning tool, which finds hidden patterns of 

the microbial communities, it was able to correctly classify the soils based on location 

regardless of the temporal variability when no disturbances occurred during the time 

span.  One of the three sites, CC6, was unable to be correctly classified as a result of 
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major disturbances throughout the years.  Other two sites were able to be classified with 

FIU having higher classification accuracy compared to KK as FIU’s above ground mixed 

forest plant community had not changed over the four year time span while KK had an 

increase in vegetation over time.  Overall this study showed that stable profiles may 

allow comparison between evidence and a possible crime scene despite the time lapse 

between sample collections. However, this is dependent on the analysis method, site, 

vegetation, and level of disturbance [16].  Therefore, temporal variability of the soil 

microbial communities and how this variability compares among different soil types is 

important to understand.  

Research suggests that microbial communities exhibit a wide range of discernable 

temporal patterns that reflect underlying biotic and abiotic processes [36]. Meta-analysis 

by Shade et al. (2013) showed that microbial communities’ temporal dynamics are 

dependent on habitat type.  Previous study by Lauer et al. (2013) found that land use type 

and vegetation dynamics played a large role in modulating the temporal variability of the 

soil bacterial community [37].  Soil texture has also been found to influence temporal 

variations; Pereria e Silva et al. (2012) found that temporal variations were higher in 

clayey soils than in sandy ones for archaeal and bacterial communities.  Therefore, the 

temporal variability of CC6 can be attributed to the soil texture of CC6 that is a sandy 

clay loam soil unlike, FIU and KK that are sandy loam soils.  In this study, abiotic 

properties such as pH, moisture, organic content, and soil texture were collected at each 

season in 2014 to determine the seasonal variability of the physical properties of the 

different soils and relate it to the microbial community.  Results indicated that there were 

no significant differences seasonally in pH or total organic content.  However, moisture 
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did have a significant difference seasonally with exception to CC6 that did not have a 

seasonal difference.  This can be attributed to the soil texture of CC6 as soil texture has 

been shown to have a relationship with moisture content as smaller soil particles such as 

clay have a larger surface area and therefore have a higher water holding capacity than 

larger sand particles [29].  Therefore, as CC6 has more clay particles than the other 

transects, it should have a higher water holding capacity and would not experience a 

significant difference seasonally.  CC6 also had higher organic content compared to the 

other two transects (average ~25% for CC6 compared with 10% and 12% for FIU and 

KK, respectively).  Humic acid, a known PCR inhibitor, have been shown to be present 

in higher quantities in soils with high organic matter and can introduce bias and result in 

lower diversity estimates [16].  The results suggest that abiotic and biotic factors 

determine the community assembly of these communities.  

Understanding the temporal patterns of the communities have been fundamental 

in ecology to anticipate the responses of ecosystems to global change and disturbance 

[38,39]. Small disturbances can affect the soil microbial community at different temporal 

and spatial scales.  Even though microorganisms are ubiquitous, abundant, and have 

critical roles in ecosystems, their temporal dynamics is largely unknown.  This study 

determined that although temporal variability was observed throughout a four-year time 

span, without drastic disturbance, the soils were still able to be classified. Therefore, 

there is a great potential of establishing a permanent training set or database to determine 

soil provenance.  This study attempted to address some of the most obvious uncertainties 

of soil provenance applications, marker selection and temporal variability. However, 

more data and tests, especially in forensically relevant settings, are required to offer 
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reliable support for forensic investigators.  Moreover, further temporal studies are needed 

to determine the maximum amount of time lapse that can occur between collections for it 

to be a viable database for searching as well as further studies examining the possible 

limitations are needed.  
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I. Introduction 

Over the past decade, a shift in research has been observed to study the functional 

diversity of an ecosystem versus the taxonomic diversity.  Biodiversity is usually defined 

as the species abundance or richness in an environment.  However, the Millennium 

Ecosystem Assessment group (http://www.millenniumassessment.org/en/index.html) 

termed biodiversity as the genetic diversity, number (abundance) of species, and 

functional traits present in an ecosystem [1].  Under global threats such as climate change 

(drought, flooded, etc.), major alterations of ecosystems are predicted, which can lead to 

substantial microbial community compositional changes affecting the ecosystem 

functioning and biogeochemical cycles.  Biodiversity has shown to influence ecosystem 

stability and resilience toward stress and disturbance.  However, the relationship between 

the biotic diversity and microbial guild function in soil is understudied [2].  Ecological 

equivalence and functional dissimilarity are two contrasting hypotheses that have been 

the subject of debate.  Ecological equivalence hypothesis assumes that under similar 

environments the microbial communities will display functional redundancy.  In contrast, 

functional dissimilarity assumes that the community functions are dissimilar and not 

attributed to the environmental conditions but rather linked to the diversity of the 

microbes present in the system [3].  Ecological equivalence hypothesis has also been 

related to the biological insurance hypothesis, which states that redundancy within 

functional groups due to increase diversity will result in overall ecosystem performance 

and stability [4].  This hypothesis assumes (a) that microbial communities under similar 

environments are more functionally similar across space and time; and (b) that highly 

diverse systems support a healthy ecosystem because many taxonomically unrelated 
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organisms have intrinsic functional redundancy that buffer ecosystem services when 

environmental stress is experienced [5]. 

Therefore, more studies should be conducted to understand the regulating forces 

behind specific functional guilds to determine if soil type drives function or if other 

environmental factors (e.g., moisture) structure their biogeographical patterns.  

Correlating the abiotic factors of soil can help understand ecological factors that could 

regulate the soil biota and their functional guilds.  In the current study, the functional 

gene diversity, specifically the genes related to iron cycling, were queried.  Iron is an 

essential element in organisms and is important in cellular metabolism, respiration, 

photosynthesis, and other processes.  Even though iron is the fourth most abundant 

element on earth, this transitional element is not readily available for biotic assimilatory 

or dissimilatory uptake in many environments [6].  Under anaerobic and neutral pH 

conditions, soluble ferrous iron (Fe2+) is easily accessible and can be taken up by 

organisms.  However, under aerobic and acidic conditions, (Fe2+) is rapidly converted to 

ferric iron (Fe3+) leading to reduced levels of bioavailable iron for microorganisms. 

Moreover, intracellular ferrous iron has to be strictly regulated as large quantity can result 

in cellular toxicity.  Microorganisms play a vital role in regulating the transformation and 

uptake of bioavailable iron under aerobic and anaerobic conditions.  Many have also 

evolved to have the ability to use this terminal electron acceptor (Fe3+) in respiration 

when oxygen is absent [7,8].  

Using functional gene markers could be valuable in forensics to discriminate 

soils.  In this study, the relationship between the abiotic conditions and the functional 

guilds related to the iron cycle was observed to determine if soil type influenced function.  
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One of the discriminatory iron genes (feoB) detected on the microarray platform, 

GeoChip, was used to design novel degenerate primers and ultimately make functional 

diversity profiles to determine if it adds to the discrimination for soil provenance.  This 

approach can potentially reduce the complexity of assaying all bacteria that lead to high 

level of variability within and among habitats by profiling specific functional markers to 

discriminate the soils. 

II. Materials and Methods 

A. Soil Collection 

Soil samples (N=168) were collected from five sites across Miami-Dade County, 

Florida during the wet season in 2014.  Sites included: FIU categorized by USDA-NRCS 

[9] as soil type 1 (Urban Land-Udorthents), CC6 and KNT from soil type 2 (Lauderhill 

Dania-Pahokee), KK from soil type 3 (Rock Outcrop-Biscayne-Chekika), and CS from 

soil type 4 (Perrine-Biscayne-Pennsuco).  Sites were established in undisturbed areas that 

had limited public access in the four different soil types.  Each site was at least ≥ 1.6 km 

distant from the next, 100 m in length and six subplots within each site were randomly 

sampled.  GPS coordinates for every subplot were recorded.  Within each subplot, six 

cored samples were taken within a 1-m2 quadrat using a 5 cm diameter soil corer to 

collect the top 5-10 cm of the soil. The soil samples were transported back to the 

laboratory and sieved to remove large objects and debris. 

B. Abiotic Analysis 

Soil texture (% sand, silt, and clay), pH, percent moisture, and percent total 

organic content (TOC), was obtained for each site.  Soil texture was obtained using 

Bouyocos hydrometer method.  The pH was measured in soil-water (1:2) solutions.  Soil 
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slurries were made by adding 3 g of soil to 6 ml of distilled water, stirred, and measured 

using the calibrated electrode/digital pH meter (LaMotte, Chestertown, MD).  The 

moisture content was determined gravimetrically by oven drying the soils at ~55°C for 24 

hours.  The TOC was determined gravimetrically by measuring the difference between 

the dry weight and the ash-free dry weight that was obtained by igniting the dry soils in 

an ash oven at ~550°C for 4-5 hours. The percent carbon is 50% of the ash free dry mass 

for plant matter. Lamotte Model STH-14 Outfit (Code 5010-01) (LaMotte, Chestertown, 

MD) was used to analyze the soil for ferric iron. The methods involve addition of 

potassium thiocyanate that reacts with iron to give the colored ferric thiocyanate. 

C. GeoChip 5.0 Preparation/Analysis 

Extraction was conducted using the BIO 101 Fast DNA Spin Kit for Soil® and 

FastPrep®-24 System homogenizer (MP Bio, Solon, OH).  All samples (N=18) per site 

were pooled and then precipitated with 100% ethanol and 0.3 M sodium acetate.  DNA 

quantity and purity (A260/280~1.8 and A260/230 >1.7) were assessed using UV 

absorbance.  DNA samples were then dried down using the vacufuge before shipping to 

Institute of Environmental Genomics (IEG) at University of Oklahoma (Norman, OK) for 

analysis using the GeoChip 5.0.  The data were obtained as normalized signal intensity 

depicting all positive probes detected in each sample and were queried for the iron-

related genes.  One-way analysis of variance (ANOVA) and Tukey’s multiple 

comparison tests were used to determine iron discriminative genes to distinguish between 

soil types.  

D. Primer Design 

Degenerate primers were designed for the feoB gene that showed a significant 
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difference between sites based on the GeoChip analysis.  GeoChip data was queried to 

obtain the GenBank sequences from the feoB gene (most discriminative gene) and 

aligned using Jalview [10] to visualize multiple sequence alignments and show the 

consensus sequence.  Highly conserved areas were targeted to design optimal primers 

using Primer-BLAST [11].  Novel degenerate primers are listed in Table 11. 

Table 11. Degenerate primers designed to amplify the feoB gene fragments. 

Primer Sequence (5'-3') Location 

feoB_157F CCG AAC DBS GGC AAG A 157-172 

feoB_555R CCD BGT CSA NCA TGT TCA 564-581 

 

E. Length Heterogeneity-Polymerase Chain Reaction 

DNA was amplified using novel feoB primers designed based on the GeoChip 

results.  PCR reaction mixtures were: 1X reaction buffer, 2.5 mM MgCl2, 0.25 mM 

dNTPs (Promega, Madison, WI), 0.1% BSA (Fraction V, Fisher Scientific, Pittsburgh, 

PA), 0.1% DMSO (Promega, Madison, WI), 0.6 µM of primers, 40 ng DNA, 0.5 U 

AmpliTaq Gold® DNA Polymerase (Applied Biosystems, Foster City, CA).  Reverse 

primer was labeled with 6-FAM fluorescent dye.  The Bio-Rad C1000 Touch™ 

thermocycler (Bio-Rad, Hercules, CA) with the following parameters: initial 10 min 

denaturing step at 95°C, 35 cycles of denaturation at 95°C, annealing at 56°C, and 

extension at 72°C each for 30 sec with a final extension at 72°C for 10 min.  

F. Capillary Electrophoresis 

Fragment analysis was conducted using the ABI Prism™ 3130xl (Applied 

Biosystems, Foster City, CA) using Performance Optimized Polymer 7 (POP7) (Applied 

Biosystems, Foster City, CA).  Samples were prepared adding 2 µl of each PCR product 

to a mixture of 11.5 µl Hi-Di™ Formamide (Applied Biosystems, Foster City, CA) and 
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0.65 µl internal size standard, GeneScan LIZ™ 600 (Applied Biosystems, Foster City, 

CA), denatured by heating for 2 min at 95°C and then snap-cooled on ice for 2 min.  

Raw data were analyzed using the GeneMapper™ v 4.0 (Applied Biosystems, 

Foster City, CA).  Local Southern size calling was used for the analysis parameters with a 

minimum threshold of 50 relative fluorescent units (RFUs).  The relative ratios were 

calculated by normalizing the heights of each peak in the profile to the total peak 

intensities resulting in the ratio for each peak height as a decimal value from zero to one 

using the Galaxy ABI 310 Data Formatting tool found in http://usegalaxy.org/ [12].  

G. Statistical Analysis 

All analyses were conducted using Primer-E v.7 software (PRIMER E Ltd., 

Plymouth Marine Laboratory, Plymouth, U.K.).  Bray-Curtis similarity matrices were 

generated on relative abundance ratios that had been square root transformed prior to 

analysis.  Analysis of Similarity (ANOSIM) was used to determine the significant 

differences between sites.  ANOSIM reports the level of dissimilarity between samples 

groups (Global R) and the associated level of significance (p) to provide statistical pair-

wise comparisons between designated groups.  The ANOSIM R-statistic indicates the 

level of discrimination between groups (site), with a value close to one indicating 

complete group discrimination and a value close to zero implying no differences exist 

between groups.  The associated significance level (p) is equivalent to the p-value where 

0.1%, 1%, and 5% is equal to p<0.001, p<0.01, and p<0.05, respectively.  Non-metric 

Multidimensional Scaling (nMDS) was used to visualize the site heterogeneity and 

discrimination power of the iron primers to distinguish sites apart.  nMDS allows 

complex datasets to be easily visualized, with more similar samples grouping together. 
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The level of confidence in the 2-D plot is indicated by the stress, i.e. <0.2 provides good 

representation of the fit [13].  Similarity Percentages (SIMPER) analysis was used to 

identify the LH-PCR peaks contributing to the dissimilarity between sites as well as the 

percent contribution each amplicon provided for the overall dissimilarities. Canonical 

correspondence analyses (CCA) was performed to determine the effect of the abiotic 

factors (i.e., moisture, TOC, pH, Fe3+) on the feoB functional diversity.  

III. Results 

A. Abiotic Results 

Across the four soil types, samples from soil types 1 and 3 were similar in abiotic 

content while, soil types 2 and 4 were similar (Table 12).  Soil type 1 and 3 had less 

moisture and organic content compared to soil type 2 and 4.  FIU and KK from soil type 

1 and 3 respectively were both sandy loam texture, less than 30% moisture, and had 13% 

organic content.  While KNT and CS from soil type 2 and 4, respectively, were both loam 

textures had over 70% moisture, and over 25% organic content.  CC6 from soil type 2 

also had high moisture (48%) and organic content (27%) similar to KNT from soil type 2 

however, it was sandy clay loam.  All sites had similar ferric iron concentration (<2.5 

ppm) except for KNT that had 6.5 ppm. 

Table 12. Soil texture, moisture percent, organic content percent, pH, and ferric iron 

concentration for each site (FIU, CC6, KNT, KK, CS). Soil samples are identified by a 

soil type number followed by a transect descriptor (e.g., 1-FIU corresponds to soil type 1, 

transect FIU).  Soil texture classification based on the % sand, silt, and clay for each site. 

Parenthesis represent standard error. 

  Soil Texture Moisture (%) Organic (%) pH Fe3+ (ppm) 

1-FIU Sandy Loam 23.67 (± 4.38) 12.34 (± 4.80) 7.47 (± 0.12) <2.5 (± 0.00) 

2-CC6 Sandy Clay Loam 48.02 (± 6.46) 26.80 (± 6.31) 7.64 (± 0.10) <2.5 (± 0.00) 

2-KNT Loam 74.61 (± 4.43) 24.40 (± 2.66) 7.43 (± 0.03)  6.5 (± 1.00)  

3-KK Sandy Loam 29.53 (± 1.78) 13.38 (± 0.82) 7.91 (± 0.03) <2.5 (± 0.00) 
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4-CS Loam 79.55 (± 2.51) 41.04 (± 4.47) 7.44 (± 0.05) <2.5 (± 0.00) 

 

B. GeoChip Results 

GeoChip results revealed forty-seven associated iron cycle genes in the soil types 

queried across Miami-Dade County (Figure 11).  Two were involved with iron storage, 

16 for iron transport and 29 for iron uptake (Figure 11). Archaea were involved in iron 

storage and transport, while fungi were involved exclusively for iron transport and uptake 

(Figure 11).  Bacteria had the most iron cycle associated genes relative to Archaea and 

fungi on the microarray and the genes were associated with all three functions (storage, 

transport, and uptake) (Figure 11).  Eight genes were unique to the soil’s moisture 

content: ccm, frgA, fyuA, hasA, hhu, ira, pch, pyoverdin_pvcC were exclusive to KNT 

and CS sites that had >75% moisture, while ira was present in FIU and KK sites that had 

<30% moisture.  Two genes were exclusive to a soil type: mbtD exclusive to KK site and 

psn exclusive to CS site.  Three genes were found to be significantly different (p<0.05) 

across soil types based on ANOVA and Tukey HSD test: dps, cirA, feoB.  Dps is one of 

the three iron storage proteins that are used to enhance growth when external iron 

supplies are limited.  Unlike the other storage proteins, Dps has a lower storage capacity 

and can be involved in protecting DNA from anti-redox agents.  The other two genes 

(feoB and cirA) are involved with iron transport.  The feoB produces a ferrous iron 

transporter that is highly conserved in many bacteria.  This transporter is important 

during low oxygen conditions when ferrous is stable and dominates over ferric iron.  In 

contrast, the cirA gene is an important transporter when iron is limited and interacts with 

fur (ferric uptake regulator).  Under iron limitation, regulators such as fur, uptake ferric 

iron and convert it to the bioavailable form [14].  One of the discriminatory iron genes 
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detected in GeoChip (feoB) was used to make functional diversity profiles to determine if 

it adds to the discrimination for soil provenance.   

 

Figure 11. GeoChip results illustrating the Kingdom distribution across the four soil types 

for each iron gene.  Out of the 47 iron genes, two were involved with iron storage, 16 for 

iron transport, and 29 for iron uptake.  Archaea (Arch) was involved in iron storage and 

transport, while fungi (Fun) was involved exclusively for iron transport and uptake. 

Bacteria (Bac) had the most iron genes and were involved with all three functions, 

storage, transport and uptake. 

C. Soil discrimination using feoB degenerate primers 

The feoB degenerate primers were able to produce profiles for all the sites except 

for KNT. Further troubleshooting and optimization is ongoing for the KNT transect. 

Therefore, transect KNT was not included in further statistical analysis.  Similarity 

percentages (SIMPER) were used to show the variability (dissimilarity) of the functional 

diversity among and within the sites (Table 13).  The “Among” column compares the 

average dissimilarity of one site (i.e., FIU) when compared to the other three sites (CC6, 

KK, CS), while the “Within” column compares the average dissimilarities of the six 
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subplots within the site.  Overall, the average dissimilarity among sites was greater than 

within sites.  Moreover, the within site average dissimilarity varied compared to site. For 

example, KK had the lowest within site dissimilarity of 50%, whereas CC6 had the 

largest within site dissimilarity of 97%. This can be attributed to the site soil and above 

ground biomass heterogeneity (Table 12).  This was also visualized in the nMDS plot 

where KK grouped together, while CC6 and FIU subplots did not all group together 

(Figure 12).  ANOSIM statistic also supported nMDS results illustrating that the profiles 

were significantly influenced by site (R=0.44, p=0.1%). However, some sites were not 

significantly different such as FIU and CC6.  This was also shown by nMDS in where 

some subplots grouped together.  For instance, FIU subplot 3 & 4 grouped with CC6 

subplot 1, 3-5 (data not shown). Based on canonical correlation analysis (CCA), no 

significant relationship (p>0.05) between the abiotic parameters measured (i.e., moisture, 

TOC, pH, Fe3+) and the microorganism’s feoB functional diversity profiles was shown 

(data not shown). 

Table 13. SIMPER analysis illustrating the average dissimilarity between and within each 

site (± is the SE of the mean % dissimilarity). 

 
Dissimilarity (%) 

Transect Among Within  

FIU 93.61 (±3.27) 86.00 (±8.67) 

CC6 96.90 (±1.14) 96.86 (±12.81) 

KK 94.16 (±3.38) 50.24 (±4.83) 

CS 96.48 (±1.18) 71.16 (±10.49) 
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Figure 12. Non-Metric Multidimensional Scaling 2-D plot illustrating the discrimination 

power to distinguish five sites (Red=FIU, Blue=CC6, Green=KK, Yellow=CS) using 

novel degenerate feoB primers. Numbers represent the subplots for each site. 

IV. Discussion 

Ecological equivalence and functional dissimilarity are two contrasting 

hypotheses that have been the subject of debate over the past decade.  Most previous 

research has supported the ecological functional redundancy hypothesis [15]; however, 

others such as Strickland et al. (2009) found that soil microbial communities in the same 

environment are not functionally equivalent as the rates of carbon dioxide production 

from the litter decomposition were dependent on the microbial inoculum [3].  Studies by 

Desai et al. (2012) showed that in phototrophic organisms, there was a clear influence of 

the ecological niche on the diversity of Fe uptake systems and that Fe uptake and 

homeostasis mechanisms differed significantly across marine niches defined by 

temperature and bioavailable Fe concentrations.  This was linked to the distribution of 

microbial taxa in these niches [16].  In the present study, eight genes (ccm, frgA, fyuA, 
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hasA, hhu, ira, pch, pyoverdin_pvcC) were unique to some sites and were related to the 

environmental conditions, specifically the moisture content.  These genes were found in 

sites that had a >75% moisture, except for ira that was also found in drier soils with 

<30% moisture.  This supports the ecological equivalence hypothesis that assumes that 

the microbial community under similar environments will function more similarly.  This 

can also be useful in a forensic setting to assist in determining origin of the soil sample.  

Soils can be a great source of evidence to assist in criminal investigations as they 

are highly individualistic, have high probability of transfer and retention, and nearly 

invisible so suspect will often overlook the evidence [17].  Several forensic soil studies 

have shown the potential of using microbial profiles to distinguish soils and also to 

identify origin of the soil sample; however, assaying all bacteria can lead to complex and 

noisy data due to their high level of variability within and among habitats [18-20].  

Previously, Lenz & Foran (2010) profiled recA gene specific to nitrogen fixing bacteria 

rhizobia that lead to less complex TRFLP profiles than bacterial 16S rRNA gene [20].  

However, Angermeyer et al. (2015), showed that distance-decay which is commonly 

observed in structural genes (i.e., 16S rRNA) was not observed in a sulfate-reduction 

gene (dsrA) [21].  In this study, some iron related genes were unique to an environment 

(i.e., eight genes unique to moisture content).  Moreover, three genes (dps, cirA, feoB) 

were found to be significantly different based on geographic location.  One of the 

discriminatory iron genes detected in GeoChip (feoB) was used to make functional 

diversity profiles to determine if it adds to the discrimination for soil provenance. 

Currently, there is feoB primers have been species specific.  In this study, novel 

degenerate ‘universal’ primers were designed to target a vast array of species.   
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The feoB is a ferrous iron transporter that is highly conserved in many bacteria. 

This transporter is important during low oxygen conditions when ferrous is stable and 

dominates over ferric iron.  Under anoxic conditions, Fe2+ is stable and more soluble than 

Fe3+, this allows the transport without complexation by ligands [22]. Under anaerobic-

microerophilic conditions, bacteria use the FeoB pathway to mediate the transport of free 

Fe2+ across the inner membrane to the cytoplasm in a GTP-dependent manner [23].  

FeoAB consists of cytosolic protein and inner membrane transporter for uptake of ferrous 

iron [24].  Ferrous iron transporter is encoded by anaerobically induced, and iron 

repressed feoAB genes that are highly conserved in many bacteria [14].  FeoB systems 

have no significant difference between Gram positive and Gram negative bacteria; 

however, high GC Gram positive bacteria generally do not possess ferrous iron uptake 

systems [25].  

This study has shown that using functional markers can be used in forensics to 

discriminate soils and have the potential to reduce the complexity of assaying all bacteria. 

Functional diversity profiles using novel feoB primers did show both among and within 

sites variability.  As commonly observed with structural diversity (i.e., 16S rRNA) the 

functional diversity among sites was greater than the within site variability.  Moreover, as 

commonly seen the within site variability differed based on more homogeneous sites (i.e., 

KK) having lower within site dissimilarity than more heterogeneous sites (i.e., FIU). 

However, not all sites were distinguishable.  Some sites within FIU and CC6 were 

indistinguishable.  In this study, no significant relationship between the abiotic 

parameters measured (i.e., moisture, TOC, pH, Fe3+) and the microorganism’s feoB 

functional diversity profiles was observed. Further research is needed to determine the 
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factors regulating the microbial organisms’ functional diversity and their biogeographical 

patterns.  Moreover, not all sites produced a profile (i.e., KNT).  Optimization and 

troubleshooting is ongoing to determine the sensitivity and effectiveness of the 

degenerate feoB primers for all sites. This study, showed a novel method to query the iron 

relating genes and ability to design a novel marker that can easily be used to profile the 

functional diversity of a soil community. 
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Conclusion 

The current ecological hypothesis states that the soil type (e.g., chemical and 

physical properties) determines which microbes occupy a particular soil and provides the 

foundation for soil provenance studies.  As human profiles are used to determine a match 

between evidence from a crime scene and a suspect, a soil microbial profile can be used 

to determine a match between soil found on the suspect’s shoes or clothing to the soil at a 

crime scene.  This research showed the potential and effectiveness of using microbial 

DNA from soil, not just for comparison, but also for intelligence gathering to pinpoint the 

geographic origin of the soil.  

Microbial profiling and bioinformatics analyses of the soil community provided a 

rapid method for soil provenance that can be informative, easier to perform, and more 

cost effective than approached using traditional physico-chemical data.  To our 

knowledge, the work presented here is one of the first studies to use bioinformatic tools 

for soil forensic application using four-taxa and is unique in its consideration of multiple 

spatial scales.  This present study builds on our growing knowledge of spatial 

relationships in microbial communities by applying the Mantel statistic to this dataset to 

illustrate that the biotic patterns and their geographic location are indeed spatially auto-

correlated in Miami-Dade soils.  Based on the four-taxa microbial profiles and Mantel 

test, correlation between biotic content and geographic location was observed, thus 

justifying the use of machine learning tools to predict biotic patterns that can be applied 

for determination of soil provenance.  Five supervised machine-learning algorithms were 

evaluated for their predictive value when using four-taxa biotic profiles for soil 

classification. 
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Currently there is no comprehensive soil microbial community profiling database 

and very few published attempts to develop databases of soil properties (i.e., chemical 

and physical) specifically with forensic application in mind.  Determining the sampling 

design- number of samples collected and distance between samples across different 

habitats- to utilize soil microbial profiling for intelligence based forensic investigations 

and ultimately establish a usable database for soil provenance are needed.  This study 

showed that Geostatistics can assist in assessing the spatial variability and offer an index 

to quantify the magnitude and scale of spatial variation in a soil property (i.e., microbial 

community profiles). The significance of this for forensics links back to the issue of soil 

variability at the crime scene and how realistic it is to expect a soil sample collected by 

an investigator to be similar to a questioned sample (Lark & Rawlins, 2008).  

Moreover, for a robust tool to be applied in forensic application, an understanding 

of the uncertainty associated with any comparisons and the parameters that can 

significantly influence variability in profiles needs to be determined.  These issues 

include selecting suitable microbial markers and the influence of temporal variability on 

the DNA profile.  Previous results have assessed short-term (1-1.5 yr) spatio-temporal 

variability of soil communities however, if archived data and training sets are to be useful 

long term, temporal variability (> 2 yr) also needs to be considered.  Unlike human 

identification, soil environment is dynamic and changes over time.  Therefore, it is 

important to see if meaningful comparisons and links can still be made between soil 

evidence deposited at the crime and archived reference data previously collected (> 2 yr) 

from a site can still be classified.  
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Overall this study showed that stable profiles may allow comparison between 

evidence and a possible crime scene despite the time lapse between sample collections, 

however, this is dependent on the analysis method, site, vegetation, and level of 

disturbance.  Therefore, temporal variability of the soil microbial communities and how 

this variability compares among different soil types is important to understand.  More 

data and tests, especially in forensically relevant settings, are required to offer reliable 

support for forensic investigators.  Moreover, further temporal studies are needed to 

determine the maximum amount of time lapse that can occur between collections for it to 

be a viable database for searching as well as further studies examining the possible 

limitations are needed.  This is critical to understand how frequently a reference dataset 

needs to be updated. 

Lastly, marker selection is an important consideration for microbial profiling.  In 

this study, we assessed the resolution of bacteria, Archaea, fungal, and plant community 

profiles independently and combined to determine the best marker or markers for forensic 

comparison of soil evidence.  In conclusion, even though fungi look promising for single 

taxon soil discrimination, the additional markers can help discriminate between a wide 

variety of soil types. As in human identification, the more DNA markers queried the 

greater the discrimination power.  In this study, functional diversity was also assessed to 

determine if soil type drives function and their potential to use functional markers for 

forensic purposes to discriminate soils.  This study, showed a novel method to query the 

iron relating genes and ability to design a novel marker that can easily be used to profile 

the functional diversity of a soil community. 
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