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tropical cyclones have depleted isotopic compositions, up to 10‰ (Lawrence et al., 2002) 

compared to typical summer rainfall (Price et al., 2008). Therefore, large δ18O depletions in the 

paleo-record may reflect tropical cyclone events (Miller et al., 2006), while intra-annual variability 

between the earlywood and latewood should be attributed to seasonal differences in precipitation. 

 

1.2 Objectives 

The work presented in the present dissertation was based on the following objectives. The main 

hypotheses for each objective are also provided. 

 

1. To construct a stable isotope-derived sub-annual chronology in subtropical P. elliottii var. densa 

trees, a species known to produce intra-annual density fluctuations that are visibly indistinguishable 

from the annual growth rings. 

H1a: The stable isotope-derived chronology will correlate to the traditionally constructed 

ring width chronology. 

H1b: The narrowest rings will correlate with the most enriched carbon isotope cellulose 

values. 

H1c: The stable isotope-derived chronology can be used to crossdate among trees in the 

same way ring-width patterns are crossdated in standard dendrochronology techniques. 

 

2. To determine if the carbon isotopes within the α-cellulose of individual P. elliottii var. densa 

earlywood and latewood rings can be used as paleoclimate proxies and recorders of disturbance 

events. 

H2a: The P. elliottii var. densa tree-ring isotopic records will correlate with the recorded 

climatology of the Lower Keys, with severe drought years appearing in the record as 

relatively enriched carbon values. 
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H2b: The carbon isotope site index will correlate to the major climate cycles, such as ENSO 

and the AMO, that influence the seasonal precipitation patterns in the Florida Keys. 

H2c: The appearance of intra-annual density fluctuations in the P. elliottii var. densa time-

series will correlate with seasons showing precipitation deficits. 

 

3. To determine if the oxygen isotopes within the α-cellulose of individual P. elliottii var. densa 

latewood rings can be used as recorders of hurricane events, and whether trees growing along a 

hydrologic transect show a gradient in carbon isotope enrichment from sea level rise. 

H3a: The oxygen isotope signatures of the P. elliottii var. densa latewood rings will record 

a distinct signature that correlates to the elevated precipitation levels received during El 

Niño winters  

H3b: Major disturbance events such as Hurricane Wilma will produce “stressed” signatures 

within the carbon isotope record, and the oxygen isotope record will reflect an extremely 

depleted δ18O value associated with tropical cyclones. 

H3c: Trees on the more coastal ends of the hydrologic transect will exhibit increasing 

stressed conditions over time as sea level rises and the areal extent of the freshwater lens 

decreases. 

 

1.3 Dissertation organization 

The individual body chapters (chapters 2-4) of the dissertation were written in manuscript format 

with the intention of submission to peer-reviewed scientific journals. All figures and tables 

referenced within the chapters are included after the reference sections of their respective chapters. 

The concluding chapter (chapter 5) is a brief summation of the overall conclusions of the 

dissertation research as a whole. The final section of the dissertation, the appendices, includes tables 
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for all of the P. elliottii var. densa ring width and stable isotope data and a detailed description of 

the cellulose extraction method used to prepare all wood samples. 

 

Chapter 2 (to be submitted to The Journal of Coastal Research) examines the feasibility of 

constructing a site chronology from the δ13C-derived time series of four P. elliottii var. densa trees 

in Big Pine Key. The isotope chronology is compared and contrasted with a more traditional ring 

width analysis conducted on the same trees. The frequent appearance of IADFs led to discrepancies 

in the interpretation of the tree-rings between the two methods; however, the IADFs could be 

identified more easily by their δ13C signatures. Many of the visibly indistinct IADFs did not vary 

isotopically from the ring in which they appeared, although true latewood rings often showed a 

slight isotopic enrichment in comparison to their earlywood counterparts. In addition, the δ13C-

derived chronology revealed five periods of enrichment when the trees experienced extreme stress 

and the timing of each enrichment event is coincident with the passage of at least one category 3 

or greater hurricane.  

 

Chapter 3 (to be submitted to the Journal of Geophysical Research: Biogeosciences) is an analysis 

of the relationship between the δ13C time series (discussed in Chapter 2) for the four P. elliottii var. 

densa trees collected along a hydrologic gradient and various measured climate variables. Both the 

site-wide index and the δ13C time series for each individual tree were compared to precipitation 

records for the Florida Keys, sea surface temperature anomalies for several teleconnections (AMO, 

ENSO, the North Atlantic Oscillation (NAO) and the Pacific Decadal Oscillation (PDO)), the 

seasonal Accumulated Cyclone Energy for the Atlantic Basin, and the African dust record using 

empirical orthogonal functions (EOFs) over the period of 1950-2006. The carbon isotope records 

for the both the earlywood and latewood components of the four trees correlated well with each 

other in contrast to their ring widths, which had a complicated and inconsistent relationship. The 
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P. elliottii var. densa trees respond to precipitation and ENSO cycles, but the nature of the 

relationship is complicated by the phase of the AMO. Tree growth is heavily influenced by regional 

patterns in precipitation; however, the microclimate and the localized hydrology surrounding 

individual trees ultimately controls the degree of response. 

 

Chapter 4 (to be reformatted for submission to the Journal of Geophysical Research: 

Biogeosciences) examines the relationship between the δ18O values of the P. elliottii var. densa 

tree-ring cellulose and the hurricane record for the years 1922-2005. The trees showed some 

variability in their individual oxygen isotope chronologies; however, small differences in their 

overall average δ18O values indicated that the trees were utilizing the same source waters. A 

composite δ18O residual time series was constructed from the combined individual oxygen isotope 

chronologies of the four trees. The composite record documented 56% of the tropical cyclones that 

passed within a 100 km radius of Big Pine Key, as indicated by residual values ≤-0.1. Unlike 

previous studies, the carbon isotope residual records were also considered and the δ13C composite 

residual chronologies for the latewood samples and the earlywood samples of the following year 

were compared to the latewood δ18O residual time series. The intensity of the storms dictated which 

isotope residual captured the event; tropical depression and tropical cyclones had a limited impact 

on the δ13C residual values, but often appeared as depletions in the δ18O residual record. Several 

major hurricanes (categories 3-5) led to depletions in the δ18O residual record; however, half of 

them also showed enrichments in the δ13C residual values of the earlywood in the following year, 

suggesting that storm surge or high winds caused lasting damage to the trees. In addition, the 

depleted precipitation from the far-reaching rain bands of tropical cyclones in the western Gulf of 

Mexico was also recorded by the trees. 
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1.5 Figures 

 

Figure 1.1 Ring anomalies in Pinus elliottii trees from Big Pine Key, Florida. a) A high-resolution 

scan of a P. elliottii var. densa tree disk showing uneven concentric ring growth typical of trees 

growing in the Lower Florida Keys. b) Close-up of pinched rings. The arrows indicate the point 

where multiple rings pinch into a single narrow ring. c) Diffuse ring boundary. Ring boundaries 

without sharp contacts are a result of continuous annual growth. d) Intra-annual density fluctuations 

(IADFs). The arrows highlight several examples of periods of variable growth that are not related 

to the annual seasonal cycles. The black scale bars in the lower right corner of each picture represent 

one centimeter. 
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Figure 1.2 Diagram showing the factors that influence the δ13C values of tree-ring cellulose and the 

sources of fractionation as CO2 is fixed in the leaf. The environmental factors influencing the uptake 

of CO2 are in blue on the left half of the figure. The text in brown on the right describes the 

fractionation process. a) Atmospheric CO2 is the source for δ13C in the cellulose. There are two 

sources of fractionation: b) the discrimination against 13C associated with the process of diffusion 

of CO2 through the stomata of the leaf, and c) the biological discrimination against 13C as carbon 

is fixed into sucrose. Both fractionation factors are constants, so variations in the δ13C record are a 

result of the combined influence of the environmental conditions under which the tree is 

photosynthesizing. Chapters 2 and 3 provide a more detailed description of the carbon fixation 

process. (Modified from McCarroll and Loader, 2004). 
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Figure 1.3 Diagram showing the source water pools and the processes within the tree that influence 

the δ18O values of tree-ring cellulose. The pools of potential source water are in blue and appear on 

the left side of the figure and the processes are in brown on the right. Each water source has a 

distinct isotopic signature and trees generally utilize more than one source. a) There is no 

fractionation as the tree draws up water through the roots. b) The xylem water becomes slightly 

enriched in the leaf through transpiration. c) Sucrose produced in the leaf travels down the trunk 

where it exchanges with xylem water before being fixed within the cellulose. For a more detailed 

description of the processes involved in the determination δ18O values of tree-ring cellulose, please 

refer to Chapter 4. (Modified from McCarroll and Loader, 2004). 

 

 

 

 

 

 

 

 

 


