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ABSTRACT OF THE DISSERTATION 

A CARBON AND OXYGEN STABLE ISOTOPE-DENDROCHRONOLOGY STUDY OF 

TREES FROM SOUTH FLORIDA: IMPLICATIONS FOR THE DEVELOPMENT OF A 

HIGH-RESOLUTION SUBTROPICAL PALEOCLIMATE RECORD  

by 

Carrie E. Rebenack 

Florida International University, 2016 

Miami, Florida 

Professor William Anderson, Major Professor 

The global paleoclimate archive is lacking in tropical dendrochronology studies as a result of 

limitations from inconsistent tree-ring production imposed by precipitation-driven seasonality. The 

slash pine, Pinus elliottii Engelm. var. densa, is the dominant canopy species of Big Pine Key 

(BPK) rocklands and has been shown to produce complicated, but distinct, ring structures; 

however, traditional dendrochronology studies have not established correlations between ring 

width measurements and major climate drivers controlling South Florida precipitation. My study 

utilized the carbon (δ13C) and oxygen (δ18O) isotope records in the α-cellulose component of tree-

rings to extract information about the physiological responses of trees to climate and tropical 

cyclone activity. The δ13C measurements in the earlywood and latewood of four P. elliottii var. 

densa trees were used to build a chronology (1922-2005) and to distinguish annual growth from 

intra-annual density fluctuations (IADFs). Empirical orthogonal functions were used to determine 

individual response to precipitation, El Niño-Southern Oscillation (ENSO), and the Atlantic 

Multidecadal Oscillation (AMO). There is a distinct relationship between the δ13C values of 

cellulose and ENSO; however the nature (direct vs. inversely correlated) is temporally controlled 

by the prevailing phase of the AMO. The appearance of some IADFs coincide with the timing of 

El Niño winters occurring during the cool AMO phase, resulting in enriched δ13C values. The 
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additional precipitation may encourage tree growth, but subsequent dry periods may slow growth 

and cause the tree to employ water-conservation strategies. Tree growth is influenced by the major 

climate drivers and the control they exert over the timing of precipitation; however, growth is 

ultimately controlled by the microenvironment surrounding individual trees. The δ18O and δ13C 

values of the latewood cellulose were compared to tropical cyclone activity occurring within a 

100km radius of BPK. Tropical storms and depressions appeared as anomalously depleted values 

in the δ18O residual record, reflecting large amounts of tropical rain. The effects of hurricanes varied 

by storm; however, many of the major hurricanes (category 3-5) were preserved as an enrichments 

in the δ13C value of the following earlywood season. The application of stable isotope analyses 

greatly increases the breadth of paleoclimate information available from the trees.   
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CHAPTER 1: INTRODUCTION 

The observation that climate influences tree-ring production has been noted many times by several 

independent naturalists and scientists over the span of centuries. The ancient Greeks were the first 

to recognize that wood grows in sequential, concentric rings, and, in the following centuries, notes 

relating variations in tree-ring growth to a range of natural phenomena have been found in the 

writings of Leonardo da Vinci, Carl Linnaeus, Charles Babbage (the “father of the computer”), and 

John Muir, among many others (Speer, 2010). However, it was not until the work of Andrew 

Ellicott Douglass, a late 19th century astronomer looking for evidence of the effects of the 11-year 

sunspot cycle on the Earth’s weather, did dendrochronology emerge as an organized field of study 

(McGraw, 2003). Widely regarded as the “father of dendrochronology” (Schweingruber, 1988), 

Douglass discovered that patterns found in pine and sequoia tree-rings could be crossdated 

(matched among many samples of varying ages) and extended back in time to form centuries-long 

records of drought history (Douglass, 1909, 1920, and 1929). He then went on to apply his newly 

standardized techniques to the dating of wooden structures in several archaeological sites in the 

American Southwest (Douglass, 1929 and McGraw, 2003), thus propelling the interest and demand 

for tree-ring-derived chronologies across the globe and solidifying the legitimacy of the field of 

dendrochronology.  

 

In a 1929 article he published in National Geographic about his work on the Pueblo Bonito 

archaeological site in New Mexico, Douglass described his view of trees as chronographers, 

dutifully recording their time on earth and how he, as a scientist, was simply reading their diaries 

(Douglass, 1929). Through dendroarchaeology, Douglass made significant contributions to the 

understanding of the timing of several Southwestern Native American civilizations (Douglass, 

1929 and McGraw, 2003) and his observations of climate-related tree-ring growth have inspired a 

global network of dendrochronology studies. Since his time, chronologies spanning centuries have 
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been developed for many regions including Central Europe (Becker, 1993, Spurk et al., 2002  and 

Friedrich et al., 2004), Northern Europe (Grudd et al., 2002), Asia (Zhang et al., 2003) and the 

western United States (Ferguson, 1968 and D'Arrigo and Jacoby, 1991).  

 

The science of dendrochronology has also evolved, and it has become more than just counting the 

number of rings or recognizing patterns in their relative thicknesses. Dendrochronologists now have 

the capability of reading tree’s “diaries” at much greater temporal resolutions and the breadth of 

information recovered from the rings is becoming increasingly diverse as new technologies are 

developed (Speer, 2010 and Cernusak and English, 2015). One such addition to the 

dendrochronology toolbox is the measurement of various stable isotopes in either the tree-ring 

whole wood or the extracted α-cellulose component (McCarroll and Loader, 2004). The stable 

isotopes of carbon (δ13C), hydrogen (δD), and oxygen (δ18O) have been used as proxies to infer 

more specific information on both the physiological controls and the ecological factors that 

influence tree growth.  The assimilation of oxygen and hydrogen from water sources and carbon 

from the atmosphere into plant biomass records the stable isotopic composition of source material 

and environmental conditions under which the plant was photosynthesizing (Francey and Farquhar, 

1982, Farquhar et al., 1989, Dawson et al., 1993, and Barbour et al., 2005). The measurement of 

stable isotope ratios in wood has shown that tree growth is sensitive to variability in precipitation 

(Saurer et al., 1997 and Mora et al., 2007), temperature (Libby and Pandolfi, 1974), humidity 

(Sternberg et al. 2007), large-scale ocean/atmospheric oscillations (Gray et al., 2004), and 

disturbance events (Anderson et al., 2005 and Miller et al., 2006). In addition, extremely high-

resolution measurements of δ13C and δ18O have allowed for the analysis of sub-seasonal growth 

dynamics (Loader et al., 1995, Poussart et al., 2004, and Verheyden et al., 2004) on a scale that 

would have been diluted if ring-width measurements were used alone (Managave and Ramesh, 

2012).  
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Advancements in analytic techniques have broadened the applicability of dendrochronology studies 

to the tropical and subtropical regions. Unlike the temperate zone, where the vast majority of tree-

ring studies occur, large gradients in annual temperature and solar insolation are not likely to be 

the limiting factors in tropical and subtropical tree growth (Worbes, 2002). The lack of well-defined 

seasonality dictated by average temperature fluctuations or day length can complicate the cycle of 

tree growth and may result in ring patterns that are difficult to interpret using traditional 

dendrochronology techniques (Tomlinson and Craighead, 1972, and Worbes, 2002). Trees in the 

tropics can be evergrowing (i.e., they grow continuously throughout the year; Glock, 1955), or they 

can exhibit episodic growth spurts with intermittent dormancy periods that occur at regular or 

irregular intervals depending on the tree species and the environment under which it is growing 

(Shukla and Ramakrishnan, 1986). Sporadic and inconsistent growth can lead to the production of 

ring anomalies which can emulate annual rings in appearance and confound a ring-width derived 

chronology.  Common structural features that result from variable growth rates in tropical trees 

include micro rings (very thin rings that are only a few cells wide), diffuse ring boundaries (rings 

that indicate slowed growth, but no cessation), pinching rings (single or multiple rings that narrow 

into a single thin ring or disappear altogether), and false rings, or intra-annual density variations 

(IADFs), that look like annual rings but are produced sub-annually (Tomlinson and Craighead, 

1972 and Speer, 2010). The dendrochronological interpretation of tree species that are known to 

have ring anomalies can be further complicated by the irregular periodicity of one or more 

environmental limiting factors that lead to the production of the anomalies. The appearance of 

IADFs, for example, may be a result of unseasonable wet or dry conditions (Schulman, 1938 and 

Leavitt et al., 2002), a disturbance event (such as an insect infestation; McCarroll and Loader, 

2004), or a vegetational change in their localized environment (Copenheaver et al., 2004). 
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Few dendrochronological studies have been conducted on tree species in the subtropical Florida 

Keys because many species have complicated, subannual ring structures or do not produce visible 

rings. One of the most promising candidates for dendrochronology-based paleoclimate research is 

the slash pine, Pinus elliottii Engelm. var. densa. As the dominant canopy species in the pine 

rockland ecosystem, P. elliottii var. densa has been shown to produce well-defined ring structures 

(Tomlinson and Craighead, 1972) that can be correlated to historical climate records with some 

success (Harley et al., 2011; Harley et al., 2012). The limited success in the correlation of P. elliottii 

var. densa ring width variations to the instrumental climatology is likely a result of the prevalence 

of many of the ring anomalies common in subtropical species. The tree-rings in P. elliottii var. 

densa growing on Big Pine Key do not have perfect circuit uniformity and they exhibit highly 

uneven concentric growth (Figure 1.1a). In addition, other inconsistent ring structures are also 

common in the P. elliottii var. densa trees, such as pinched rings, diffuse ring boundaries, and 

multiple IADFs (Figure 1.1b-d). The variability in ring width around the circumference of the tree 

and presence of other anomalous ring structures makes it difficult to build a site chronology using 

ring width measurements alone. 

 

The research presented in the present dissertation was driven by the need for a high-resolution 

paleoclimate proxy for South Florida. Previous studies conducted in the Lower Florida Keys have 

shown that P. elliottii var. densa trees respond to solar insolation and precipitation (Harley et al., 

2011; Harley et al., 2012); however, relationships between ring production and the strong 

teleconnections controlling South Florida precipitation (the Atlantic Multidecadal Oscillation, 

AMO, and the El Niño-Southern Oscillation, ENSO) have not been found. Decoding the “diaries” 

of the subtropical P. elliottii var. densa trees requires a technique that is capable of unlocking 

information on a chemical level that extends beyond what can be learned from the visible ring 

structures. The current study combines traditional dendrochronology techniques with the modern 
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application of stable isotope analysis in an attempt to gain insight on the climate factors controlling 

P. elliottii var. densa growth over time and, ultimately, to contribute to the paleoclimate and 

hydrological history of the Florida Keys.  

 

1.1 Carbon and oxygen isotopes in cellulose 

Stable isotope-dendrochronology is one of the fastest growing subfields of modern 

dendrochronology (McCarroll and Loader, 2004). Stable isotopes are non-radiogenic and do not 

decay over time. The most common elements whose isotopes are used in ecosystem research are 

carbon, nitrogen, sulfur, hydrogen, and oxygen (Peterson and Fry, 1987); for these elements, the 

lighter isotope accounts for 95 – 99.9% of the natural abundance (Hoefs, 1997). The mass from the 

extra neutrons, as slight as it may be, influences the way the isotope moves through the environment 

in the process known as fractionation. Isotope fractionation is the partial separation of heavy and 

light isotopes through passive equilibrium or active kinematic processes (O’Leary, 1981). The 

relative distribution of the heavier isotopes in an ecosystem can provide a multitude of information 

about element cycles, biological reaction conditions, and the origin of resources used by organisms 

(Peterson and Fry, 1987).   

 

In the field of isotope-dendrochronology, the isotopic ratios (13C/12C or 18O/16O) are measured in 

either tree-ring whole wood or extracted α-cellulose. All isotope data in the present dissertation 

were measured in the α-cellulose component of the tree-rings because the wood of the P. elliottii 

var. densa tree has a high resin content that may interfere with the annual climate signals. The α-

cellulose extraction process reduces the wood to its main structural component by removing all 

resin, lignin, and other mobile constituents (Cullen and Grierson, 2006). A detailed description of 

the extraction process modified after Green (1963) can be found in Appendix 1.  
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Carbon (δ13C) isotopes and oxygen (δ18O) isotopes were analyzed in both the earlywood (lighter, 

thin-walled cells growing in the spring and early summer) and the latewood (darker, thick-walled 

cells produced in the late-summer and fall) portions of the annual P. elliottii var. densa tree-rings 

and each analysis offers different insight into the variability of the environment in which the trees 

were growing over time. The following paragraphs provide an overview of the processes involved 

in the biologic assimilation of carbon and oxygen into the tree-rings and the environmental factors 

controlling their δ13C and δ18O composition. The chapters related to each type of isotopic analysis 

will include more in-depth descriptions of the calculations and the factors influencing the isotopic 

composition of the cellulose. Chapters 2 and 3 will discuss carbon isotopes and Chapter 4 will 

review oxygen isotopes in greater detail. 

 

The variability in the carbon isotopic record may be attributed to changes in stomatal conductance 

in response to suboptimal growing conditions (O’Leary, 1981; Francey and Farquhar, 1982). 

Atmospheric carbon in CO2 is the sole source of carbon in terrestrial plants (O’Leary, 1981) and 

trees are sensitive to the anthropogenic δ13C enrichment of atmospheric carbon (Leavitt and Long, 

1983), so all δ13C values in the time series must be corrected post-analysis (McCarroll et al., 2009). 

The carbon isotopic composition of cellulose is controlled by the fractionation of carbon dioxide 

as it diffuses through the stomata in the leaves during photosynthesis (O’Leary 1988). The isotopic 

signature of the assimilated carbon depends on: 1) the fractionation that occurs as the gas passes 

through the stomata and 2) the fractionation associated with the isotope discrimination of the 

Ribulose-1,5-Bisphosphate Carboxylase enzyme (RuBisCo) during carbon fixation (O’Leary 

1988). If both the fractionation factors are considered to be constants, then the δ13C value of the 

cellulose is a result of the amount of CO2 taken in through the leaves (Farquhar et al., 1989). Trees 

will respond to periods of suboptimal growing conditions by altering their patterns of stomatal 

regulation, particularly if the tree has limited access to water. Therefore, the δ13C signature of a 
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water stressed tree shows a relative enrichment in the amount of assimilated 13C because the tree is 

transpiring less than it would in a more favorable setting (Farquhar et al., 1989). Figure 1.2 shows 

the environmental factors contributing to the δ13C of tree-ring cellulose. 

 

The oxygen isotope composition of cellulose is controlled by three factors: 1) the combined isotopic 

composition of the source waters utilized by the tree, 2) the evaporative enrichment of water in the 

leaves due to transpiration (Dongmann et al., 1974), and 3) the biologic fractionation between 

cellulose and water and the exchange of oxygen atoms during the transfer of sucrose from the leaf 

to the cellulose production site (Sternberg et al., 1989). There is no fractionation associated with 

the uptake of source water by the roots; however, large fractionations can occur in the leaf causing 

the leaf water to be enriched in δ18O relative to the source water (Rodan et al., 2000; Anderson et 

al., 2002). Also, prior to cellulose synthesis, the isotopic composition of the sucrose is modified 

through oxygen exchange with the source water in the xylem (Sternberg et al., 1989). The above 

processes should be relatively constant for the trees in the same area, so any fluctuations in the 

oxygen isotope record should be a result of isotopic variability in the source waters (Anderson et 

al., 2002). 

 

Trees may obtain their water from the soil, the groundwater supply, or a nearby body of surface 

water depending on their root structure (Figure 1.3). Groundwater tends to be more isotopically 

stable over time because it has a long residence time and represents the average of many rain events 

(Gat, 1996). On the other hand, the isotopic signature of soil water is constantly changing as a result 

of precipitation and enrichment in the upper soil column through evaporation (Tang and Feng, 

2001). The isotopic composition of precipitation is highly variable and is controlled by many 

factors (Rozanski et al., 1993; Dansgaard, 1964). Most trees utilize a combination of available 

water reservoirs, and the relative contribution of each source may vary seasonally. In addition, 
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tropical cyclones have depleted isotopic compositions, up to 10‰ (Lawrence et al., 2002) 

compared to typical summer rainfall (Price et al., 2008). Therefore, large δ18O depletions in the 

paleo-record may reflect tropical cyclone events (Miller et al., 2006), while intra-annual variability 

between the earlywood and latewood should be attributed to seasonal differences in precipitation. 

 

1.2 Objectives 

The work presented in the present dissertation was based on the following objectives. The main 

hypotheses for each objective are also provided. 

 

1. To construct a stable isotope-derived sub-annual chronology in subtropical P. elliottii var. densa 

trees, a species known to produce intra-annual density fluctuations that are visibly indistinguishable 

from the annual growth rings. 

H1a: The stable isotope-derived chronology will correlate to the traditionally constructed 

ring width chronology. 

H1b: The narrowest rings will correlate with the most enriched carbon isotope cellulose 

values. 

H1c: The stable isotope-derived chronology can be used to crossdate among trees in the 

same way ring-width patterns are crossdated in standard dendrochronology techniques. 

 

2. To determine if the carbon isotopes within the α-cellulose of individual P. elliottii var. densa 

earlywood and latewood rings can be used as paleoclimate proxies and recorders of disturbance 

events. 

H2a: The P. elliottii var. densa tree-ring isotopic records will correlate with the recorded 

climatology of the Lower Keys, with severe drought years appearing in the record as 

relatively enriched carbon values. 
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H2b: The carbon isotope site index will correlate to the major climate cycles, such as ENSO 

and the AMO, that influence the seasonal precipitation patterns in the Florida Keys. 

H2c: The appearance of intra-annual density fluctuations in the P. elliottii var. densa time-

series will correlate with seasons showing precipitation deficits. 

 

3. To determine if the oxygen isotopes within the α-cellulose of individual P. elliottii var. densa 

latewood rings can be used as recorders of hurricane events, and whether trees growing along a 

hydrologic transect show a gradient in carbon isotope enrichment from sea level rise. 

H3a: The oxygen isotope signatures of the P. elliottii var. densa latewood rings will record 

a distinct signature that correlates to the elevated precipitation levels received during El 

Niño winters  

H3b: Major disturbance events such as Hurricane Wilma will produce “stressed” signatures 

within the carbon isotope record, and the oxygen isotope record will reflect an extremely 

depleted δ18O value associated with tropical cyclones. 

H3c: Trees on the more coastal ends of the hydrologic transect will exhibit increasing 

stressed conditions over time as sea level rises and the areal extent of the freshwater lens 

decreases. 

 

1.3 Dissertation organization 

The individual body chapters (chapters 2-4) of the dissertation were written in manuscript format 

with the intention of submission to peer-reviewed scientific journals. All figures and tables 

referenced within the chapters are included after the reference sections of their respective chapters. 

The concluding chapter (chapter 5) is a brief summation of the overall conclusions of the 

dissertation research as a whole. The final section of the dissertation, the appendices, includes tables 
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for all of the P. elliottii var. densa ring width and stable isotope data and a detailed description of 

the cellulose extraction method used to prepare all wood samples. 

 

Chapter 2 (to be submitted to The Journal of Coastal Research) examines the feasibility of 

constructing a site chronology from the δ13C-derived time series of four P. elliottii var. densa trees 

in Big Pine Key. The isotope chronology is compared and contrasted with a more traditional ring 

width analysis conducted on the same trees. The frequent appearance of IADFs led to discrepancies 

in the interpretation of the tree-rings between the two methods; however, the IADFs could be 

identified more easily by their δ13C signatures. Many of the visibly indistinct IADFs did not vary 

isotopically from the ring in which they appeared, although true latewood rings often showed a 

slight isotopic enrichment in comparison to their earlywood counterparts. In addition, the δ13C-

derived chronology revealed five periods of enrichment when the trees experienced extreme stress 

and the timing of each enrichment event is coincident with the passage of at least one category 3 

or greater hurricane.  

 

Chapter 3 (to be submitted to the Journal of Geophysical Research: Biogeosciences) is an analysis 

of the relationship between the δ13C time series (discussed in Chapter 2) for the four P. elliottii var. 

densa trees collected along a hydrologic gradient and various measured climate variables. Both the 

site-wide index and the δ13C time series for each individual tree were compared to precipitation 

records for the Florida Keys, sea surface temperature anomalies for several teleconnections (AMO, 

ENSO, the North Atlantic Oscillation (NAO) and the Pacific Decadal Oscillation (PDO)), the 

seasonal Accumulated Cyclone Energy for the Atlantic Basin, and the African dust record using 

empirical orthogonal functions (EOFs) over the period of 1950-2006. The carbon isotope records 

for the both the earlywood and latewood components of the four trees correlated well with each 

other in contrast to their ring widths, which had a complicated and inconsistent relationship. The 
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P. elliottii var. densa trees respond to precipitation and ENSO cycles, but the nature of the 

relationship is complicated by the phase of the AMO. Tree growth is heavily influenced by regional 

patterns in precipitation; however, the microclimate and the localized hydrology surrounding 

individual trees ultimately controls the degree of response. 

 

Chapter 4 (to be reformatted for submission to the Journal of Geophysical Research: 

Biogeosciences) examines the relationship between the δ18O values of the P. elliottii var. densa 

tree-ring cellulose and the hurricane record for the years 1922-2005. The trees showed some 

variability in their individual oxygen isotope chronologies; however, small differences in their 

overall average δ18O values indicated that the trees were utilizing the same source waters. A 

composite δ18O residual time series was constructed from the combined individual oxygen isotope 

chronologies of the four trees. The composite record documented 56% of the tropical cyclones that 

passed within a 100 km radius of Big Pine Key, as indicated by residual values ≤-0.1. Unlike 

previous studies, the carbon isotope residual records were also considered and the δ13C composite 

residual chronologies for the latewood samples and the earlywood samples of the following year 

were compared to the latewood δ18O residual time series. The intensity of the storms dictated which 

isotope residual captured the event; tropical depression and tropical cyclones had a limited impact 

on the δ13C residual values, but often appeared as depletions in the δ18O residual record. Several 

major hurricanes (categories 3-5) led to depletions in the δ18O residual record; however, half of 

them also showed enrichments in the δ13C residual values of the earlywood in the following year, 

suggesting that storm surge or high winds caused lasting damage to the trees. In addition, the 

depleted precipitation from the far-reaching rain bands of tropical cyclones in the western Gulf of 

Mexico was also recorded by the trees. 
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1.5 Figures 

 

Figure 1.1 Ring anomalies in Pinus elliottii trees from Big Pine Key, Florida. a) A high-resolution 

scan of a P. elliottii var. densa tree disk showing uneven concentric ring growth typical of trees 

growing in the Lower Florida Keys. b) Close-up of pinched rings. The arrows indicate the point 

where multiple rings pinch into a single narrow ring. c) Diffuse ring boundary. Ring boundaries 

without sharp contacts are a result of continuous annual growth. d) Intra-annual density fluctuations 

(IADFs). The arrows highlight several examples of periods of variable growth that are not related 

to the annual seasonal cycles. The black scale bars in the lower right corner of each picture represent 

one centimeter. 
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Figure 1.2 Diagram showing the factors that influence the δ13C values of tree-ring cellulose and the 

sources of fractionation as CO2 is fixed in the leaf. The environmental factors influencing the uptake 

of CO2 are in blue on the left half of the figure. The text in brown on the right describes the 

fractionation process. a) Atmospheric CO2 is the source for δ13C in the cellulose. There are two 

sources of fractionation: b) the discrimination against 13C associated with the process of diffusion 

of CO2 through the stomata of the leaf, and c) the biological discrimination against 13C as carbon 

is fixed into sucrose. Both fractionation factors are constants, so variations in the δ13C record are a 

result of the combined influence of the environmental conditions under which the tree is 

photosynthesizing. Chapters 2 and 3 provide a more detailed description of the carbon fixation 

process. (Modified from McCarroll and Loader, 2004). 
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Figure 1.3 Diagram showing the source water pools and the processes within the tree that influence 

the δ18O values of tree-ring cellulose. The pools of potential source water are in blue and appear on 

the left side of the figure and the processes are in brown on the right. Each water source has a 

distinct isotopic signature and trees generally utilize more than one source. a) There is no 

fractionation as the tree draws up water through the roots. b) The xylem water becomes slightly 

enriched in the leaf through transpiration. c) Sucrose produced in the leaf travels down the trunk 

where it exchanges with xylem water before being fixed within the cellulose. For a more detailed 

description of the processes involved in the determination δ18O values of tree-ring cellulose, please 

refer to Chapter 4. (Modified from McCarroll and Loader, 2004). 
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CHAPTER 2: DEVELOPING A CARBON ISOTOPE CHRONOLOGY FOR A SUBTROPICAL 

TREE SPECIES WITH VARIABLE SUB-ANNUAL TREE-RING GROWTH 

2.1 Abstract  

The paucity of dendrochronological studies of climate variability in the subtropics is related to the 

challenge of developing ring width-derived chronologies in species that are notorious for irregular 

ring growth or for not producing annual rings as a result of the regional precipitation-driven 

seasonality. This study uses stable carbon isotopes to build a chronology in Pinus elliottii Engelm. 

var. densa (Little & Dorman) growing along a hypothesized hydrologic gradient in the subtropical 

region of the Lower Florida Keys. Pinus elliottii exhibits distinct growth rings; however, the rings 

can show inconsistent growth around the circumference of a given tree. Additionally, the trees are 

known for having frequent intra-annual density fluctuations (IADFs), or false rings, that make 

crossdating the trees very difficult. The δ13C values of earlywood formed during the wet season, 

and latewood formed during the dry season) were used to both identify IADFs and crossdate the 

trees to build a site chronology (1922-2006). The formation of the IADFs is likely related to 

moisture availability and age of the tree, and their appearance varied temporally and spatially along 

the gradient. A traditionally derived ring-width chronology is compared and contrasted with one 

developed from the carbon isotopic composition if the α-cellulose components of the tree-rings in 

four tree disks. The tree that showed the highest sensitivity and the tree living closer to the edge of 

the freshwater lens had a tendency to produce more IADFs during wetter than usual summers, while 

IADFs in the other two trees were more likely to appear in drier summers and wetter El Niño 

winters. Additionally, all four trees exhibited five seasons of prolonged stress that temporally 

corresponded to the passage of six major hurricane events (≥ category 3), the most recent of which, 

Hurricane Wilma in 2005, created a large storm surge in the Lower Keys that produced an 

enrichment response in the δ13C. For the period 1922-2005, the δ13C chronology developed from 

tree-rings of one radius on the tree disk showed similar variability to a traditionally-derived ring 
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width chronology that required the measurement of multiple radii on a tree disk to construct. This 

study shows this subtropical pine species to be a viable source of dendrochrologically-dervied 

paleoclimate inference, which has implications for improved water management in a system where 

freshwater input relies on precipitation.  

 

2.2 Introduction 

The recent focus on global climate trends has ignited the need for long-term, high-resolution 

paleoclimate datasets as a means of contextualizing the current state of climate change. 

Distinguishing and assessing the true effects of climate change from fluctuations in the inherently 

complex natural climate system require long paleoclimate records. The numerous controls on 

natural climate variability occur at different timescales, so several cycles of interrelated multi-scale 

global climate oscillations, such as the Atlantic Multidecadal Oscillation (AMO) and the El Niño-

Southern Oscillation (ENSO), are essential to the understanding of how the different phases of the 

predominant cycles interact with each other to influence climate patterns (Bradley, 1999). 

Therefore, continuous records must span the order of centuries so as to capture both the nuances of 

the Holocene natural climate system and the anthropogenically-induced warming trends of the last 

century (IPCC, 2014; Bradley, 1999). 

  

While an understanding of global climate trends is necessary, the spatial heterogeneity of the 

projected effects, such as an increase in the expected annual precipitation or a greater likelihood of 

the occurrence of prolonged drought, demands a refinement to smaller scales. When the spectrum 

of potential warming and CO2 emissions reduction scenarios are factored in, policymaking 

organizations at all levels require localized data with which to make the most informed and 

economically feasible decisions (IPCC, 2014). The availability of high-resolution site-specific 

paleoclimate records could have important implications for future water management, more 
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efficient farming practices, and the mediation of allergies and infectious disease control (IPCC, 

2014; Epstein, 2005; Vörösmarty et al., 2000; Bradley, 1999). 

The subtropical and tropical zones have important linkages to global climate regulation. Relatively 

small annual temperature gradients cause the characteristic ecosystems of the subtropics and tropics 

to be highly sensitive to increases in temperature; however, the degree of sensitivity is not fully 

understood (IPCC, 2014; Wang et al., 2014; Mora et al., 2013). A recent study by Mora et al., 

(2013) has shown that tropical and subtropical ecosystems are projected to experience greater 

climate-related stress than those located at the poles. Increased warming and enhanced acidification 

of the tropical oceans has led to higher-latitude migration of some marine species and to the 

initiation of the breakdown of coral reef communities (Walther et al., 2002). Terrestrially, the 

subtropical regions are likely to receive less annual precipitation then they do presently while 

evaporation is expected to increase (IPCC, 2014). Additionally, sea level rise in tandem with 

strained resources are forcing highly-vulnerable island states in the Pacific Ocean and Caribbean 

Basin to develop adaptation and mitigation strategies to protect both natural and human assets 

(IPCC, 2014). Yet, in spite of the important meteorological, ecological, and political implications, 

the subtropical region continues to be underrepresented in climate-related studies (IPCC, 2014; 

Mora et al., 2013; Rosenzweig and Neofotis, 2013).    

 

Subtropical Florida faces the risk of immediate effects of global climate change. The nearly 3,700 

km of tidal coastlines and relatively smooth topography make Florida susceptible to both sea level 

rise and climate-related terrestrial changes. Among the threatened coastlines is the South Florida 

coastal ecosystem that includes the Florida Everglades and Big Cypress National Preserve, as well 

as the heavily populated urban areas of Miami-Dade, Broward, and Monroe Counties. In an 

assessment of global port cities with high vulnerability to inundation as a result of climate change, 

Miami was ranked first in assets at risk to sea level rise and ninth in total population exposed to 
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coastal flooding (Hanson et al., 2011).  With a maximum natural surface elevation of about 7 m 

(5.5 m in the Florida Keys) above sea level and a highly permeable and shallow aquifer, the 

valuable freshwater resources of South Florida are at risk of salt water contamination (Schroeder 

et al., 1956; Hoffmeister and Multer, 1968; and Hoffmeister, 1974).  

 

The freshwater resources of particular concern for South Florida are the low-lying Florida 

Everglades, where current restoration projects are underway, and the primary municipal water 

source for southeast Florida, the Biscayne Aquifer. Anthropogenic alterations to the historical 

freshwater flow through the Everglades watershed have greatly impaired the ability of the system 

to naturally mediate the landward encroachment of saline bay and coastal waters (Light and Dineen, 

1994; Wanless et al., 1994; Price et al., 2006; among others). The installation of a network of canals 

and other drainage structures has diverted water from its natural southward course and created 

opportunities for further inland movement of the salt water / fresh water interface; therefore, these 

structures must be heavily managed by the South Florida Water Management District (SFWMD) 

(Light and Dineen, 1994; Wanless et al., 1994). The SFWMD must balance flood control with the 

hydrologic needs of the populated areas and the natural systems in the Everglades and, 

consequently, must rely on predictive hydrologic models (Light and Dineen, 1994; Huser, 1989).  

 

The historical climate datasets available to the SFWMD and policymaking groups in South Florida 

are currently limited. There is a network of climate stations located throughout the Everglades, the 

metropolitan coastal areas, and the Florida Keys; however, very few of the stations have continuous 

historical data extending beyond the mid-1920s (NCDC, 2010).  Access to long-term climate data 

is important because South Florida precipitation patterns have strong teleconnections to the ENSO 

and the AMO; however, the existing instrumental records do not even capture two complete cycles 

of the long-phase AMO (60-80 year cycles) (Gray et al., 2004; Enfield et al., 2001). The ability to 
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supplement the instrumental records with data derived from high-resolution paleoclimate proxies 

provides insight into the intricacies of long-term climate cycles and may help to improve the 

predictive power of current models.  

 

There have been many examples of paleoclimate research in South Florida using proxies such as  

paleolimnological studies (Watts and Hanson, 1988), diatoms (Wachnicka et al., 2010), pollen 

assemblage analysis from peat cores (Donders et al., 2005), and lipid biomarkers (Xu et al., 2007). 

The aforementioned studies have provided invaluable insight into the evolution of the South Florida 

ecosystem over the Quaternary Period; however, none of these proxies has the capability of sub-

annual resolution. Unfortunately, South Florida offers very few options for high-resolution 

paleoclimate proxies, with the two main candidates being corals and tree-rings. Several studies 

relating coral growth bands to climate variables have been published throughout the region (Swart 

et al., 1996; Swart, Dodge and Hudson, 1996; Helmle et al., 2011), although the marine system 

may not capture the nuances of the terrestrial climate system. The tree-ring archive for South 

Florida has been lacking; however, recent research shows promise for its development.  

 

2.2.1 Tropical dendrochronology studies 

In spite of the demand for high-resolution tropical paleoproxies, the vast majority of the robust 

global dendrochronological archive is focused on the species residing in the temperate latitudes. 

Temperature extremes and significant variability in the length of the photoperiod impose 

limitations on cambial activity and lead to distinct growth rings defined by annual periods of 

dormancy in the temperate zone (Fritts, 1976). In contrast, seasonality in the subtropics is driven 

by changes in precipitation, as annual fluctuations in temperature and photoperiod are far less 

pronounced than in their temperate counterparts (Worbes, 2002). A less rigidly-defined growing 

season may allow for everwet conditions ideal for year-long growth or irregular, punctuated 
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cambial activity from inconsistent wet and dry periods (Worbes, 2002). Consequently, many 

tropical and subtropical tree species do not exhibit visible rings or have ring structures that may or 

may not represent annual growth (Poussart et al., 2004; Worbes, 2002; Tomlinson and Craighead, 

1972).   

 

In an assessment of subtropical trees, few tree species in South Florida, including the slash pine, 

Pinus elliottii Engelm. var. densa Little & Dorman, show potential as candidates for 

dendrochronological studies (Tomlinson and Craighead, 1972). Although Tomlinson and 

Craighead (1972) determined that P. elliottii var. densa exhibited light and dark ring patterns that 

may represent annual growth, they also revealed that a more complicated annual ring pattern could 

be present as a consequence of the appearance of up to five false rings, so called intra-annual density 

fluctuations (IADFs) embedded within the true annual rings per year. Ultimately, Tomlinson and 

Craighead determined that each year may appear to have up to five successive growth flushes in a 

single growing season (1972). Research showed that the formation of the IADFs may be a result of 

a localized drought or other type of stress, such as insect infestation or a high-wind event 

(Tomlinson and Craighead, 1972). 

 

Recently, Harley et al., (2011) conducted a dendrochronology study of P. elliottii var. densa trees 

in the lower Florida Keys. They discovered that the crossdating of tree-ring patterns among samples 

was difficult as a result of the uneven growth of the rings; to overcome this setback, they 

intentionally selected trees from sites with known burn histories. The fire scars could be used as 

site-wide marker rings representing a specific, documented date. However, the necessity of visible 

marker rings greatly limits the versatility of a ring width-based approach to dendrochronology in 

South Florida. Additionally, the development of very long paleoclimate datasets often require the 

utilization of partially complete samples from old snags in varying states of decay or from wooden 
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beams in archaeological structures, potentially further reducing the usefulness of a species with 

complicated ring structures in dendrochronological reconstructions. A different approach, such as 

the use of stable isotopes in tree-ring cellulose, will allow for the increase in applicability of this 

type of study in subtropical South Florida. 

 

2.2.2 Carbon isotopes in cellulose  

Traditional dendrochronology studies may be taken a step beyond the physical measurement of 

tree-ring widths by using the stable isotope ratios within cellulose to infer information about 

physiological controls and environmental factors that affect the distribution of isotopes within the 

plant (Francey and Farquhar, 1982). It has been established that the stable isotope composition of 

tree-ring cellulose can be related to temperature (Libby and Pandolfi, 1974), precipitation (Saurer 

et al., 1997), drought (Mora et al., 2007), relative humidity (Sternberg et al., 2007), large-scale 

ocean/atmospheric oscillations (Gray et al., 2004), and disturbance events (Anderson et al., 2005; 

Miller et al., 2006).  

 

The carbon isotopic composition of wood cellulose is controlled by the fractionation of carbon 

dioxide as it diffuses through the stomata in the leaves during photosynthesis (O’Leary, 1981, 

1988). Fractionation is the partial separation of the heavier 13C isotope from the lighter, more 

abundant 12C isotope and it can occur through kinetic or equilibrium processes (O’Leary, 1981). In 

plants, the isotopic signature of the assimilated carbon depends on: 1) the fractionation that occurs 

as the source CO2 passes through the stomata, and 2) the fractionation associated with the isotope 

discrimination of Ribulose-1,5-Bisphosphate Carboxylase enzyme (RuBisCo) during carbon 

fixation (Farqhuar et al., 1989; O’Leary, 1988; Francey and Farquhar, 1982; O’Leary, 1981). The 

influences of these factors on the resultant δ13C of the plant can be expressed as (Francey and 

Farquhar, 1982): 
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                                           𝛿13𝐶 = 𝛿13𝐶𝑎 − 𝑎 − (𝑏 − 𝑎)
𝑃𝑖

𝑃𝑎
                                         (1) 

where δ13C and δ13C a are the δ13C values of the plant and atmospheric CO2, respectively; a is the 

diffusion fractionation that occurs as CO2 passes through the leaf stomata (≈ 4.4‰); b is the 

biologic fractionation by the RuBisCo enzyme (≈27‰); and Pi and Pa are the internal and external 

partial pressures of CO2, respectively. The stomatal conductance is high and the plant is operating 

under more optimal conditions when Pa is greater than Pi, which results in a strong discrimination 

against 13C during carboxylation (Farqhuar et al., 1989). Conversely, when the gradient between 

Pa and Pi decreases, such as in times of water deficit when transpiration is limited, there is a 

decrease in the discrimination of 13C leading to a relatively enriched δ13C value (Farquhar et al., 

1989). The variations of δ13C can be attributed to adjustments in stomatal conductance relating to 

changes in  temperature, precipitation, and  relative humidity, or to environmental disturbances, 

such as hurricanes or saltwater intrusion, that cause the tree to enter a stressed state (McCarroll and 

Loader, 2004; Leavitt and Long, 1991; Farquhar et al., 1988; Pearman et al., 1976). Therefore, the 

carbon isotope signal in cellulose may indicate periods of sustained site-wide stress, which could 

be analogous to narrow growth-rings characterizing sub-optimal growing conditions in traditional 

dendrochronology studies.  

 

2.2.3 Objectives of the study 

This present study seeks to develop a paleoclimate chronology in a subtropical tree species from 

South Florida, Pinus elliottii Engelm. var. densa (Little & Dorman), which is known for having 

intra-annual density variations that may be indistinguishable in appearance from the annual rings. 

Both traditional ring width measurements and carbon stable isotope techniques will be used on 

samples from the same trees to determine if a crossdateable chronology can be developed for trees 

without fire scars or other visual marker rings. The long-term goal is to provide a source of high-

resolution paleoclimate data that could potentially be extended back several hundred years for a 
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region that is highly susceptible to the effects of climate change and requires immediate mediation 

planning. 

 

2.3 Methods 

2.3.1 Site description 

Big Pine Key is the largest island in the lower Florida Keys, with an area of approximately 25 km2 

and a maximum elevation of 3 m (Figure 2.1). A majority of the central region of the island is part 

of the National Key Deer Refuge, home to the endangered key deer, Odocoileus virginianus 

clavium (Barret and Stiling, 2006). Ecosystems represented on the island range from pine rockland 

forests and rockland hammocks at higher elevations to supratidal scrub and mangrove forests along 

the lower elevation gradients (Ross et al., 1992). The hydrology of the island consists of two 

separate shallow freshwater lenses: a large northern lens with a maximum depth of 8 m, and a 

smaller, shallower southern lens (Wightman, 1990; Wightman et al., 1990).  Both lenses exhibit 

seasonally-variable areal extents that fluctuate depending on recharge from rainfall (Wightman, 

1990; Wightman et al., 1990). The freshwater lenses are a key factor in the distribution of the salt-

intolerant pine rockland community. 

 

The endangered, fire-dependent pine rockland ecosystem is unique to southern Florida, although 

similar rockland ecosystems occur in the Bahamas (Noss et al., 1995). It is dominated by a single 

canopy species, the Florida slash pine (P. elliottii var. densa), with a palm and hardwood subcanopy 

and a rich herbaceous groundcover layer (USFWS, 1999). The limestone bedrock substrate is at or 

very near the surface, with small shallow pockets of sand, marl and organic material (3-5 cm 

average depth range) dispersed across a karstic landscape that supports vegetation (Ross et al., 

1994; USFWS, 1999). As noted above, the pine rocklands are dependent on the freshwater lenses 

and the resident botanical species are tolerant of short storm surge flooding events; however, most 
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species will senesce and die if exposed to salt water for long periods of time (USFWS, 1999; Ross 

et al., 2009). A widespread P. elliottii var. densa mortality event occurred on Big Pine Key several 

months after the October 2005 passage of Hurricane Wilma as a result of flooding and subsequent 

salt stress (Ross et al., 2009; Sah et al., 2010). The northeastern track of the hurricane over 

peninsular Florida piled the water of Florida Bay along the northern shorelines of the islands in the 

lower Keys, creating a 1.8 – 2.4 m storm surge (Ross et al., 2009). The detrimental influence of the 

saltwater surge event was intensified by an uncharacteristically dry winter season which prevented 

the removal of the residual salts left in the soils by the overwash. About 80% of pines growing in 

the storm surge zone located at an elevation of less than a meter died within months of the flooding, 

while the loss of pines at elevations greater than a meter was significantly lower (Ross et al., 2009).  

 

2.3.2 Sample selection 

The four primary P. elliottii var. densa samples used in this study were collected by staff at the 

National Key Deer Refuge in April of 2006 along a proposed hydrologic gradient from the high 

mortality region on the northeastern portion of the island (Figure 2.1). The dead trees were cut 

down with a chainsaw and a 4.5-8 cm thick disk was removed at breast height. Three of the trees 

(DBH1, DBH2, and DBH3) are clustered together (≤ 30 m apart) and are growing on the inland 

edge of the sampling transect, while the fourth tree (DBH6) is located 160 m in the eastern direction 

towards the coast. A hydrologic survey completed by Wightman (1990) indicates that trees DBH1, 

DBH2, and DBH3 are growing in an area located over a deeper, more stable part of the northern 

freshwater lens and DBH6 is closer to the less stable periphery of the lens. None of the samples 

show visible evidence of fire scars, nor were the samples located in any of the known historical 

burn units described in Bergh and Wisby (1996). 
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2.3.3 Ring width measurements 

The four P. elliottii var. densa tree disks were divided transversely into two nearly identical disks 

and each was sanded using increasingly finer grits (beginning with 80 grit and ending with 400 

grit) until the surface was completely smooth and all the rings were clearly visible. One disk from 

each tree was analyzed at the Swiss Federal Institute for Forest, Snow and Landscape 

Research (WSL), where ring width was measured in 1 –4 radii per tree disk, depending on the 

characteristics of the rings and the extend of termite damage to the tree disk, to the nearest 0.01mm 

using the Time Series Programme (RinnTech, Heidelberg, Germany). The results of these analyses 

will be distinguished from the ring width measurements conducted on the stable isotope transects 

by referring to them as the “dendrochronology data” or the “dendrochronology transects” from this 

point forward.  

 

From the second set of disks, a single, roughly inch-wide transect extending from bark to pith was 

cut from each disk and used for isotope analysis. The individual transects for each tree were selected 

from the group of 1-4 radii measured at the WSL and they represented the most complete view of 

the rings (a location where the bark was still attached, had the least occurrence of ring compression, 

and were distant from visible termite damage). Standard dendrochronology techniques were used 

to count the rings in each disk sample following the guidelines described in Fritts (1976) and Cook 

and Kairiukstis (1990). During the initial visual analysis of the isotope transects, every distinct ring 

was assigned a consecutive number that correlated to the position of the ring from the bark. The 

last ring formed before death was assigned the label “ring 1” and the numbers increase inward 

towards the pith, with the innermost ring having the highest number for that tree. All alternating 

light and dark bands were counted and individually separated as a sub-annual rings. When an 

obvious visual IADF (a very faint ring a few cells thick) was encountered, a best estimation was 
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used to determine if the IADF was part of the earlywood or latewood growth and it was 

homogenized with that ring. A total of 754 α-cellulose samples were analyzed for δ13C.  

The samples were photographed, examined under a microscope, and the locations of the ring 

boundaries were manually recorded within the digital images using Adobe Photoshop CS2. In this 

preliminary stage, all light and dark bands that appeared to be separate rings were counted and 

obvious IADFs were grouped with their respective rings. 

 

Once each sample was divided into distinct growth rings, the average width of every earlywood 

and latewood ring and the width of the entire annual ring as a whole were measured with the image 

processing and analysis program ImageJ, which uses a simple ratio system to compare a known 

distance within an image with unknown distances. Conversions of the ImageJ ratios to millimeters 

were calculated in a Microsoft Excel worksheet.  All visually identifiably IADFs were measured 

as part of their respective rings. 

 

2.3.4 Sample processing 

Each early- and latewood ring defined during the dendrochronological analysis portion of the study 

was individually separated into ring shavings under a microscope at 15x magnification using an X-

Acto knife. Special care was taken when dividing the rings to accommodate for wood curvature 

and uneven vertical growth, so that each sample contained only material from that growth period. 

The samples were then homogenized into a semi-fine powder using a stainless steel vial and ball 

set in a Spex 8000M Mixer/Mill. The time required to homogenize each sample varied depending 

on the thickness of the ring shavings, the overall amount of sample, and the resin content of the 

wood. Samples from the heartwood took an average of 90 minutes to homogenize, whereas samples 

from thinner rings in the sapwood required around 30 minutes in the ball mill.  A subset of the 

powdered samples underwent a chemical extraction process to isolate the α-cellulose component 
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of the wood using a method modified after Green (1963) (see Appendix 1 for a detailed description 

of the revised process). The extraction process removed the mobile resin component and other 

elements in the wood that can jeopardize the integrity of the climate signal of the isotope analysis 

by introducing unnecessary noise among samples (Cullen and Grierson, 2006; Loader et al., 2007).  

    

2.3.5 Carbon isotope measurements 

Carbon isotope measurements were completed in the Southeast Environmental Research Center 

Stable Isotope Laboratory (SERC SIL) at Florida International University on a Carlo Erba NA1500 

II coupled to a Finnigan MAT Delta C mass spectrometer via a ConFlo II interface using standard 

elemental analyzer isotope ratio mass spectrometry (EA-IRMS) techniques. All isotopic values will 

be expressed as δ‰, which will be calculated using the following formula (Coplen, 1994):  

                                        𝛿‰ = [(
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) − 1] 1000                                             (2) 

where Rsample is the ratio of 13C/12C in the sample and Rstandard is the ratio 13C/12C in the V-PDB 

(Vienna Pee Dee Belemnite) standard for carbon. 

 

2.4 Results 

2.4.1 Building a chronology using standard dendrochronology techniques  

Tree-ring series were constructed using measurements taken along the sampling radii analyzed in 

each individual tree disk at the WSL and along a single 2 - 2.5 cm wide radius on the samples used 

for isotope analysis at the SERC SIL. As described in previous studies (Harley et al., 2011; 2012), 

the four P. elliottii var. densa samples displayed concentrically complicated ring growth and all 

transects measured had examples of IADFs that were, at times, difficult to visually distinguish from 

the annual rings. Additionally, locally absent rings were found along many of the transects; these 

“missing” rings were identified as a single narrow latewood ring on one side of the disk that would 

thicken and divide into several light and dark “rings” on the other side of the tree. Also, there were 
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many examples of latewood rings that gradually transitioned into the next earlywood ring, 

appearing more like a smear than a sharp contact, and indicating that a complete cessation of growth 

may not have occurred during the corresponding dry season. The occasional lack of sharp contacts, 

the locally absent rings, and the presence of IADFs complicated the ring identification and counting 

process. 

 

Crossdating among trees was challenging in the absence of fire scars or another type of visible 

marker ring. Crossdating transects measured within the same tree was also problematic because of 

the locally absent rings and the frequent appearance of IADFs. There was not a consensus between 

the two labs on the definition of ring boundaries or the number of annual rings represented in each 

disk. One reason for this discrepancy may be that the two disks collected from the same tree show 

slight differences in their ring patterns. For example, a latewood ring might appear as a single ring 

in one disk and the same ring may be split into multiple IADFs in the other disk. The tracheid 

growth within these trees is inconsistent around the circumference of the trunk and can also vary 

vertically over relatively short distances (on the scale of several centimeters).  

 

The average ring width index compiled from the combined dendrochronology transects from all 

four trees is shown in Figure 2.2. The gray shaded region indicates the variability among the 

individual tree’s series used to construct the index. The spread between the minimum and maximum 

values varies considerably and there are relatively few years when the trees all show the same 

magnitude and type of growth dynamic. Some variation in annual ring width among the trees is 

expected since growth is ultimately controlled by the immediate conditions around the tree and no 

forest has perfectly homogenous soil and nutrient distribution, water and light availability, etc. 

(McCarroll and Loader, 2004). A ring width chronology developed from the isotope transect is not 
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shown in Figure 2.2 because crossdating the samples with such limited data is challenging and a 

single transect does not fully capture the variability introduced by the complicated ring structures.  

 

The scatterplots comparing the tree-ring series developed from the multiple dendrochronology 

transects and the single isotope transects are provided in Figures 2.3b-e. Linear relationships 

between the two sets of measurements were expected; however, the different measuring techniques 

utilized by each lab is potentially responsible for large discrepancies in the ring width analyses for 

all four trees. The SERC SIL transects used for isotope analyses were as close to parallel as possible 

with one of the dendrochronology transects analyzed in the WSL disk (with a 3.8-7 cm vertical 

displacement in the trunk). The ring width data for the isotope transects are averaged from five 

measurements along a single, inch-wide transect, while the dendrochronology data is an average of 

the measurements of multiple transects taken at different locations around the disks. Trees DBH3 

and DBH6 (Figures 2.3d and e, respectively) are weakly correlated (r2 = 0.31 and 0.47, respectively) 

in their measured ring widths, while DBH1 and DBH2 (Figures 2.3b and c, respectively) show no 

relationship (r2 ≤ 0.03) between lab analyses. There are discrepancies between the total numbers of 

rings counted by the WSL and by the SERC SIL and the lack of a strong correlation between the 

two datasets can be explained by the different interpretations of ring boundary definitions (Table 

2.1and Figure 2.3). Slight disagreements between the two tree-ring series would propagate 

throughout the dataset and result in offsets in numerically corresponding rings. 

 

Comparisons of the high-resolution digital scans of the two sets of tree disks from each tree 

confirmed differences in the visual appearances of the parallel transects. The inconsistent nature of 

P. elliottii var. densa growth under the variability of a precipitation-driven seasonality in the 

subtropics can result in the appearance of ring structures that are not necessarily annual by nature 

(Cherubini et al., 2003). The presence of these sub-annual structures contributed to discrepancies 
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in ring boundaries definitions among the two labs and reinforces the need for an additional 

technique to extract meaningful climate data from this species.  

 

2.4.2 Building a chronology using carbon isotopes 

A relatively enriched δ13C value indicates a period of stressful growth for the tree where 

discrimination against 13C is decreased; thus, it is expected that the most enriched values correspond 

to the narrowest rings and depleted δ13C values are found in samples from relatively wider rings 

produced under optimal growing conditions. Comparisons between variance in ring width and 

variance in the corresponding δ13C value were predicted to plot in quadrants 1 and 4 in the model 

shown in Figure 2.4a; however, no consistent inverse relationship between δ13C and width was 

found (Figure 2.4b-e). Between 45-54% of the samples for each tree exhibit the expected pattern 

of 13C enrichment in narrow rings and the depletion of 13C in the wider rings. Once the yearly 

chronology was established, additional scatterplots were constructed by subdividing the data into 

years of extreme precipitation and drought, ENSO phases, strong ENSO phases, and AMO phases. 

The analyses were repeated using a one season offset to account for any potential lag in growth 

response to the climate variables. No significant relationship was found between δ13C and ring 

width under any of the climate variables tested: Key West precipitation, Palmer’s Severity Drought 

Index, ENSO, AMO, or maximum temperature. This is likely a result of measuring ring width from 

a single transect; better correlations may have been achieved if multiple transects had been used to 

build a ring width index. 

 

A site index for the years 1922-2006 was developed using patterns in the δ13C time-series for the 

four trees. Figure 2.5a shows the plots of δ13C ‰ versus ring number for the entire bark to the pith 

span of the isotope transects. Similar patterns were noted among the samples; however there was 

an offset among the corresponding ring numbers. Crossdating the trees was accomplished by using 
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the four most striking similarities (black circles in Figure 2.5a) in the same way visible marker 

rings, such as fire scars, would be used to align the samples. The IADFs were isotopically similar 

to the sub-annual ring in which they were embedded because they were part of the same ring; 

alternatively, the method used to analyze the samples may have been too coarse to capture the 

individual signatures of the IADFs (De Micco et al., 2012). All IADFs incorrectly identified as 

rings were detected by counting the number of rings in each sample between the anchor marker 

rings intervals. Once suspected IADFs were identified, the original digital images or the remaining 

tree disk was consulted for further scrutiny. Samples were candidates for removal from the carbon 

isotope data set only if they could be confirmed as IADFs in the digital images or there was no 

change in the isotopic value within a span of three or four consecutive samples. A total of 115 

samples were removed from the dataset. Additionally, two trees, DBH1 and DBH6, appear to have 

a missing ring for the years 1936 and 1988, respectively. In both cases, the ring was so narrow at 

the point where it intersected the sampling transect that it was mistakenly grouped in with the next 

season’s sample.   

 

Calendar years were assigned to each ring under the assumption that the lighter rings were 

earlywood and correspond to wet season cambial activity (May to October) and the dark rings were 

formed as latewood during the dry season (November to the following April). The data were 

corrected to the pre-industrial standard value of atmospheric CO2 (-6.4‰) using the method 

described in McCarroll et al. (2009) and the annual historical values of δ13C of atmospheric CO2 

published in McCarroll and Loader (2004). The average index for the three trees from the deeper 

section of the hydrological sampling transect (DBH1, DBH2 and DBH3) is shown in Figure 2.5b. 

The fourth tree, DBH6, was not included in the site index because, given its proximity to the edge 

of the seasonally changing fresh water lens, it showed an overall enriched, possibly water-stressed, 

signature compared to the other trees. However, DBH6 appears to have adapted to its environment, 
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because it shows the same extremes in amplitude and overall trends exhibited by the three interior 

trees, suggesting that it is living in equilibrium under more its restricted hydrologic conditions 

(Figure 2.5a). When the DBH6 data was incorporated in the average δ13C chronology, it dampened 

the signal of the other three trees.    

 

There are several notable periods of enrichment in the carbon isotope chronology that are indicative 

of seasons of prolonged, extreme stress (denoted by the numbers above the enrichment peaks in 

Figure 2.5b). These events do not correspond to anomalously dry seasons with drought-like 

conditions, with the exception of peak 1 that occurs during the very the dry winter season of 2005-

2006. All of the most isotopically-enriched stress events occurred following the passage of a major 

hurricane within a 100 km radius of Big Pine Key. The five enrichment peaks coincide with the 

timing of six hurricanes that were category 3 or greater at the time of passage (Figure 2.5b). The 

hurricanes and their respective intensities at the time of passage are as follows: Hurricane Wilma, 

2005 (Category 3), Hurricane Donna, 1960 (Category 4), two unnamed hurricanes, 1948 

(Categories 3 and 4), Labor Day Hurricane, 1935 (Category 5), and an unnamed hurricane, 1926 

(Category 3) (NCDC, 2012).   

 

Hurricane events are a possible explanation for the periods of prolonged states of stress within the 

trees. In addition to the coincident timing of hurricanes and enrichment events, it has been 

documented that hurricanes can cause long-term damage in South Florida trees through structural 

damage from wind and storm surge (Duryea et al., 1996, Everham and Brokaw, 1996; Koptur et 

al., 2002; Sah et al., 2010). Enrichment peak 1 occurs in the dry season of 2005-2006, just after the 

October impact of Hurricane Wilma. The Florida Keys were not in the direct path of the hurricane; 

however, the hurricane caused a storm surge in Florida Bay that flooded the northern portions of 

the Lower Keys islands and deposited a layer of marine salts that persisted in the soil long after the 
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water subsided (Sah et al., 2010). The combination of residual salts and an abnormally dry winter 

is likely what caused the demise of the trees used in this study; therefore, a peak in δ13C during the 

corresponding dry season is expected (Sah et al., 2010).  

 

The δ13C site index is compared to the site index developed from the traditional ring width 

measurements for the period of 1920-2005 in Figure 2.6. The sub-annual carbon isotope data was 

combined into annual values using weighted averages from the relative contributions of each 

earlywood ring and its corresponding latewood ring. Figure 2.6a is a plot of the variance from the 

respective mean for each chronology, while the first order differences for the two chronologies is 

shown in Figure 2.6b. The two indices do not show a perfect correlation; however, there are 

similarities in their variance, although the nature of their relationship fluctuates over the time 

period. The first order difference is a way of illustrating changes between successive time intervals 

and it is calculated by subtracting the variance of the previous year from that of the current year 

(Hamilton, 1994). There are periods (1923-1930 and 1981-1995, for example) when the δ13C 

chronology and the ring width chronology are coincident and trend together. At other times in the 

record, the response recorded by the two proxies is reversed (1930-1943 and 1998-2005) or 

inconsistent from period to period. The expected relationship between ring width and δ13C is 

depicted in Figure 2.4a. Years when narrow rings are produced are expected to show a 

corresponding enrichment in 13C, whereas wider rings indicate an environment of optimal growth 

and should show a relative depletion in δ13C. 

 

2.4.3 The presence intra-annual density fluctuations 

The IADFs that were indistinguishable from the annual rings over the length of the P. elliottii var. 

densa isotope-derived chronologies is shown in Figure 2.7a. Overall, the trees exhibited little 

overlap in the occurrence of IADFs and there is only a single period, 1978, in the 84-year 
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chronology when all four trees simultaneously produced density variations. Of the 36 seasons with 

IADF production, 32 appeared in single trees and 3 seasons had density variations in at least two 

trees. There is a lack a consistency among trees over which season shows the greatest occurrence 

of IADFs (Figure 2.7b). In total, 60% of the IADFs were formed in the latewood, during the dry 

season (November-following April); however, the trend in seasonal production is opposite of what 

is expected across the hydrologic transect. The frequency of dry seasonal density fluctuation 

production is greatest (73%) in DBH1, the tree located the furthest away from the coast, and it 

decreases across the sampling transect, while the frequency of wet season IADFs increases. The 

tree nearest to the unstable edge of the freshwater lens, DBH6, recorded the largest percentage of 

individual appearances of wet season IADFs, 60%. Tree DBH2 has the highest recorded 

appearances of IAFDs, with the majority (58%) of them forming in earlywood growth; this tree 

also showed the greatest sensitivity in the δ13C record (Figure 2.5a). All trees demonstrated the 

tendency to produce multiple sets of density variations within one season. Nearly 70% of the IDAFs 

appeared as multiples of two to three light and dark bands with gradational contacts within a 

seasonal growth ring, suggesting that normal cell production was interrupted more than once during 

that season (Figure 2.7c). Lastly, three of the five years corresponding to potential hurricane 

impacts (the numbered events in Figure 2.5b) have density variations appearing in the concurrent 

season or the season following the tropical activity: the 1935 hurricane in DBH2, 1948 hurricanes 

in DBH3, and Hurricane Donna (1960) in DBH2. Additionally, DBH1 is missing the ring for the 

season following the 1935 hurricane. 

 

2.5 Discussion 

2.5.1 Ring width vs. carbon isotope-derived chronology 

Traditional dendrochronology methods that rely on the visual appearance of ring structures to 

construct a ring width-derived chronologies may be limited in subtropical trees; however those 
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limitations do not extend to the biochemical composition of the ring cellulose. The differences in 

ring width measurements between the dendrochronology and isotope transects likely occurred 

because of the complicated ring structures of these very southern P. elliottii var. densa trees. 

Although the samples analyzed by each lab were transversally cut from the same disk, the ring 

patterns look slightly different and were difficult to visually compare. The difference is most 

noticeable in the mid-to-later years of growth, as the rings progressively form farther away from 

the pith. The prevalence of complicated ring structures, such as irregular IADFs and locally absent 

rings (rings that are visible in parts of the disk, but not in others), can make crossdating transects 

measured within centimeters of each other in the same disk difficult. Additionally, the appearance 

of IADFs is not consistent among the trees, so they do not make good candidates as visible marker 

rings. Similar results were found in a multi-lab blind test study of olive trees growing in the 

Mediterranean with frequent IADFs and notoriously difficult rings to interpret; five different labs 

using various dendrochronological techniques could not reach a consensus on the age of the trees 

(Cherubini et al., 2013). In addition, because the rings are counted and assigned a calendar year, 

discrepancies in the ring definitions will compound and errors in annual ring definitions will 

propagate throughout the disk. 

 

A reliable ring width-derived chronology could never be developed with confidence from a single 

transect in P. elliottii var. densa from this site, but the δ13C in the cellulose from that same single 

transect was successfully used to assist in the identification of IADFs and to date the tree-rings. 

The intervals of four or more consecutive δ13C samples with almost identical carbon isotope values 

were flagged because they were often revealed to be single rings that expanded into a series of 

density variations where they intersected  the transect. The subannual rings containing the IADFs 

were isotopically similar to density variations, making them easily identifiable. De Micco et al. 

(2012) found that the δ13C values of the IADFs and the rings containing them were not statistically 
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different and a high-resolution in continuum method using laser-ablation was required to 

isotopically distinguish the IADFs.  The high number of samples (6-17% of the sub-annual rings 

identified in the SERC SIL transect) discounted as IADFs is likely a result of being overly-cautious 

when individual rings were identified before the isotope analysis. The suspect IADFs were easily 

identifiable after using the patterns in the isotope data to isolate areas of potential density variations 

and revisiting the digital images.  

 

The ring width chronologies developed independently by the WSL and SERC SIL did not strongly 

correlate with each other (Figure 2.3). However, the carbon isotope site index created from single 

transects in each of the four trees shows promise as an alternative method for developing a 

chronology for the Lower Florida Keys. The variability in the δ13C index is similar to that of the 

WSL ring width chronology derived from traditional dendrochronology methods (Figure 2.6), 

although the character of their variability is not consistent. Enrichment of 13C occurs during both 

the expected anomalously narrow rings and during times when ring growth was not restricted. The 

shifts in type of responses presented by the chronologies do seem to occur at irregular intervals 

over the length of the time series, suggesting that some external forcing or limiting factor may be 

exhibiting varying degrees of control over carbon fixation and radial tree growth. Other studies 

comparing the relationship between δ13C and ring width in multiple tree species have reported 

varying results. For example, Gebrekirstos et al. (2009) reported a significant negative correlation 

between δ13C and ring width in trees growing in tropical Africa, while Brooks et al. (1998) reported 

no relationship between ring width variation and δ13C in spruce and pine species growing in boreal 

forests. Pinus elliottii growth in Big Pine Key may be controlled by a complex interplay of multiple 

climate variables and the degree to which certain climate factors affect tree growth could vary with 

time. Chapter 3 will discuss in greater detail the environmental factors and climate variables 
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contributing to the nature of the relationship between ring width and the carbon isotope composition 

of the cellulose.   

This study had the benefit of working with the whole tree disk, which allowed for the observation 

of the ring growth around the entire circumference of the tree; however, a 360° view is not always 

available. When it is not practical to remove 5-6 cores from a single tree, or if only a small sample 

is available, such as in a rotting, old snag or in an archeological sample, for example, the carbon 

stable isotope signatures may be used in the same way as standard ring widths to build a site 

chronology. A δ13C chronology can be achieved with a single transect because the carbon 

assimilated into the structure of the ring α-cellulose originated from the same source CO2 and was 

incorporated over the same time period under the same conditions throughout the whole ring, 

although there may be a small degree of fractionation within the circumference of the ring itself 

(McCarroll and Loader, 2004). Homogenization and the α-cellulose extraction process help to 

lessen the effects of any unevenly distributed 13C within individual rings (Cullen and Grierson, 

2006; Loader et al., 2007).  

 

2.5.2 The timing of intra-annual density fluctuations 

Intra-annual density fluctuations can occasionally be indistinguishable from true annual rings and 

are described as cells characteristic of latewood growth (smaller and denser with thick cell walls) 

appearing in seasonal earlywood rings (larger, thinner-walled cells), and vice versa (Fritts, 1976). 

The formation of IADFs is indicative of some kind of environmental change that has interrupted or 

encouraged cell production out of season (Schulman, 1938; Fritts, 1976; Cherubini et al., 2003). In 

many species in the Mediterranean, the formation of IADFs can be linked to water stress in trees 

from site-wide drought conditions (Cherubini et al., 2003; Olivar et al., 2011); however, in certain 

environments, the production of density variations may be caused by wetter than normal conditions 

(Vieira at al., 2009; De Micco et al., 2012). The presence of IADFs within trees at a specific site 
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can vary both temporally and spatially (Cherubini et al., 2003), as they did in this study. Even 

though DBH1, DBH2 and DBH3 were growing within 33 meters of each other, only 8% (3 seasons) 

of occurrences of visibly indistinguishable IADFs were recorded in more than one tree, showing a 

high variability in microsite ecological conditions. A13-month micro-coring study of P. elliottii 

var. densa trees in the Lower Florida Keys reported the concurrent formation of density variations 

in four of the six trees studied and determined that the timing of their appearance correlated to 

changes in solar insolation (Harley et al., 2012). 

 

The landscape scale factors controlling tree growth (precipitation, disturbance events, etc.) appear 

to exhibit control on all four trees in this study, as the overall patterns in δ13C are similar. However, 

the degrees of individual response to the climatic and environmental stimuli vary greatly among 

trees, even though they are growing less than 30 meters from each other. For example, during each 

of the periods of prolonged extreme stress (numbered peaks in Figure 2.5b), DBH2 showed a much 

more dramatic response than the other three trees (Figure 2.5a). This enhanced sensitivity must be 

a result of the localized conditions around DBH2. Perhaps this tree had more limited access to a 

water source, or it sustained some type of damage to its canopy, or it was subjected to an insect 

infestation that led to a decrease in stomatal activity (Farquhar et al., 1989). Limitations present in 

the immediate site conditions under which individual trees grow ultimately dictate the tree’s 

ecophysiological response to climate or disturbance events (Fritts, 1976; Saurer et al., 1995; 

McCarroll and Loader, 2004; Anderson et al., 2005; Vieira et al., 2009; De Micco et al., 2012). 

 

The hydrological gradient along which the P. elliottii var. densa trees were collected seems to play 

an important role in the health of the trees. With the exception of DBH2, there is a trend in the 

timing and appearance of IADFs in trees across the freshwater lens transect. Tree DBH1 (more 

centrally positioned over the lens) had a greater occurrence of density variations during the dry 
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season, whereas DBH6 (near the periphery of the lens) was more prone to wet season IADF 

development. This relationship between seasonal density variation production and proximity to the 

freshwater lens was unexpected, and, logically, it should be the inverse, as the tree growing in the 

most water-limited environment should be less productive under drier conditions. This suggests 

that these trees have optimized their growth processes under their individual conditions.  The 

carbon isotope chronology for tree DBH6 further supports this; although its δ13C values were 

consistently more enriched, it did not show the same type of variability in the amplitude between 

periods of enrichment and depletion as in the other trees. DBH6 also had the lowest number of 

IADFs in all four trees (less than half of the next lowest value). It appears that this individual has 

adapted its stomatal regulation to the unstable conditions associated with living close to the 

boundary of the salt water/ fresh water interface.   

 

The trends in δ13C and in IADF production for tree DBH2 did not follow the expected gradient 

across the hydrologic transect. The δ13C record of DBH2 showed the greatest variance in amplitude 

across the time series and this tree had the most frequent appearance of IADFs that are visibly 

indistinguishable from seasonal rings. The pattern of density variation formation in DBH2 mirrored 

that of the tree living on the edge of the freshwater lens, DBH6; the majority of the IADFs appeared 

in the wet season under wetter than average conditions and very few occurred during the dry season. 

The variability in the degree of response to regional climate regimes can give insight into highly 

localized, site-scale conditions. Individual trees that show high sensitivity in comparison to those 

growing around them provide valuable, additional information at multiple scales, from landscape 

down to the microenvironment scale (Leavitt and Long, 1989; McCarroll and Loader, 2004). 

 

Lastly, P. elliottii var. densa in the Lower Florida Keys show promise as a subject for the 

reconstruction of past seasons of pronounced tropical cyclone activity in the region. The event 
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peaks in Figure 2.5b represent sustained periods where the trees were not transpiring at their 

optimal potential. The known effects of the 2005 storm surge from the passage of Hurricane Wilma 

were captured as one of the enrichment peaks (Event 1 in Figure 2.5b) and timing of the peaks 2-5 

corresponds to the passage of several major hurricanes that could have imposed similar types of 

damage. Unfortunately, the historical records on the effects of hurricane impacts in the sparsely 

populated islands in the Lower Keys are extremely limited. Future work on these P. elliottii var. 

densa samples will include an oxygen isotope analysis that may provide more insight into the 

potential of hydrologic stress as a cause of the enrichments in the carbon record. Tropical cyclones 

have depleted isotopic compositions, up to 10‰ (Lawrence et al., 2002) compared to typical 

summer rainfall (Price et al., 2008). Therefore, large δ18O depletions in the paleo-record may reflect 

tropical cyclone events (Miller et al., 2006), while intra-annual variability between the earlywood 

and latewood should be attributed to seasonal differences in precipitation.  

 

2.6 Conclusions 

Stable carbon isotopes in tree-ring cellulose can be used to build a chronology in a subtropical pine 

species known for producing intra-annual density variations, particularly when there are no visible 

marker rings or crossdateable ring width patterns. Adding stable isotope analyses to traditional 

dendrochronological techniques may help extend the applicability of dendrochronology as a viable 

paleoproxy into other subtropical areas where ring-width chronologies are difficult to crossdate. 

Areas like South Florida, where the options for high-resolution paleoclimate proxies are limited, 

yet vital for such applications as the development of climate models used to make informed water 

management decisions, would benefit greatly from stable isotope-dendrochronology studies. South 

Florida is in the position where the need to adapt and to mediate the effects of climate change is 

becoming a necessity. Its freshwater resources are heavily managed to maintain a balance between 

the natural systems and human need and, as population increases and sea level continues to rise, 
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this balance will become increasingly strained. Access to a high-resolution paleoclimate proxy, 

such as the one developed here, could mean the difference between proactive mitigation and 

reactive measures.   

 

Stable isotope-derived dendrochronology studies have the potential for extending the high-

resolution paleoclimate record well beyond the available instrumental record. As mentioned in the 

South Florida example above, the ability to lengthen the regional climate history has major 

implications for untangling the interrelated effects of multiple climate oscillations, such as ENSO 

and the AMO, from the actual climate change trends. However, the applicability of such records 

goes beyond the regional scale and can, perhaps more importantly, provide information on much 

smaller scales; for example, records of the terrestrial impacts of historical hurricane and storm surge 

events for much of the Florida Keys are lacking. A study of trees across the island of Big Pine Key, 

similar to the one conducted here, could help reconstruct the extent of historical storm surges and, 

thus, provide information about the characteristics of seasonal tropical cyclone activity before 

sophisticated monitoring equipment was in place.   
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2.8 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Map of Big Pine Key, Florida showing the areal extent and depths of the two fresh water 

lenses during a typical wet season. The sampling transect is located inside the white box on the 

northeastern side of the island. Image modified from Wightman, 1990.  
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Figure 2.2 Average annual ring width index from 1920-2006 for the four P. elliottii var. densa disks 

measured at the WSL (black line). The index does not include the innermost juvenile rings (1901-

1919) because their thicker ring widths may introduce a false trend in the index. The gray field 

indicates the spread between the maximum and minimum values among the four individual tree 

indices.  
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Figure 2.3 Average SERC SIL single transect measurements vs WSL multiple transect 

measurements ring width scatterplots for the four P. elliottii var. densa trees. The r2 values for each 

tree are displayed on their respective plots. Trees DBH3 and DBH6 (c and d) show weak 

correlations between ring width measurements taken at each lab; however, DBH1 and DBH2 (a 

and b) show almost no correlation between the two labs.  
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width and the δ13C value of the 

cellulose. b-e) Variance in δ13C and 

ring width for the P. elliottii trees. 
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model presented in part a. The 
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Figure 2.5 δ13C chronologies for the four P. elliottii var. densa disks measured at SERC SIL: a) 

Individual δ13C for each of the four P. elliottii var. densa tree disks vs. ring number. The ring 

numbers increase from bark to pith. The black circles highlight the marker features used to 

crossdate the samples and to assist in the identification of IADFs in the dataset. The dashed lines 

connect identical features among samples. b) The final δ13C index for the site. This is an averaged 

value for DBH1, DBH2 and DBH3; the fourth sample, DBH6, was not included because its overall 

enriched signal dampens the data from the other three trees. The gray shaded field indicates the 

range of averaged values. The numbers highlight intervals of enriched δ13C or periods of sustained 

stress. These periods may be a result of hurricane activity within 100km of Big Pine Key. The 

enrichment periods, their coincident hurricanes and respective intensities at the time of passage are 

as follows: 1 = Unnamed hurricane, 1926 (Category 3), 2 = Labor Day Hurricane, 1935 (Category 

5), 3 = Two unnamed hurricanes, 1948 (Categories 3 and 4), 4 = Hurricane Donna, 1960 (Category 

4), 5 = Hurricane Wilma, 2005 (Category 3).  (Hurricane data from NCDC, 2012) 
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Figure 2.6 Comparisons between the chronologies derived from the δ13C data (blue lines) and the 

ring width data (gray lines). The biannual carbon isotope data have been condensed into annual 

measurments by calculating a weighted average for each year using the relative contributions for 

both the earlywood and latewood rings. a) Plot showing the variance from the respective means for 

each chronology. b) Plot showing the first order differences (yt-yt-1) for both chronologies. The first 

order difference calculates the change in variance betweeen consecultive years. While the 

relationship is not perfect, both chronologies show similar patterns in their variance over the course 

of the time series. 

 

  

a 

b 

a 
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Figure 2.7 The intra-annual density fluctuations (IADFs) removed from the isotope transects all 

four P. elliottii var. densa trees. a) IADFs identified over the δ13C chronology. A single circle is 

used to denote seasons when a tree had at least one occurrence of a density fluctuation; however, 

IADFs often occurred in multiples of two or three. For a total number of IADFs removed per tree, 

please refer to Table 2.1. b) The frequency of IADFs occurrence by season across the hydrologic 

transect. Tree DBH1 is closest to the deeper, more stable part of the freshwater lens, while DBH6 

is located near the edge. c) Photograph of typical IAFDs. The arrows indicate two sets of density 

variations in a latewood ring. Most of the IAFDs removed from the dataset post-stable isotope 

analysis were not as visually obvious as the examples shown here. 
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2.9 Tables 

 

Table 2.1 Ring Counts for WSL and SERC SIL. The calendar ages and number of rings counted 

for all P. elliottii var. densa tree disks measured. Annual tree-rings were counted and dated on the 

dendrochronology transects at the WSL (two left columns in the table) and on the isotope transects 

at the SERC SIL (4 columns on the right). The isotope-derived chronology includes oldest rings 

analyzed (the dates in parentheses), the number of intra-annual density fluctuations (IADFs) 

removed from the datasets, and the number of missing rings. The SERC SIL tree-ring and IADF 

data combines the earlywood and latewood components into single annual rings. The values in the 

IADFs column denoted by asterisks reflect the removal of the latewood portions of the 2006 annual 

rings; they were shown to be part of the bark. 
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Table 2.2 Occurrence of Intra-Annual Density Fluctuations. Appearance of IADFs by tree, season, 

and climate variable. The precipitation data is from Key West, the closest, continuously recording 

station and is presented as more than average, “+,” or less than average, “-,“precipitation. The 

ENSO and AMO data are divided into warm phase, “+,” and cool phase, “-.”   All climate data is 

from the NOAA climate data inventories (NCDC, 2010). 

 

  

+ - + - + -

wet 1 2 0 1 0 3

dry 3 5 5 2 4 4

wet 1 4 1 2 2 3

dry 2 2 1 1 3 1

wet 2 3 2 1 3 2

dry 3 3 1 2 2 4

wet 2 1 2 0 2 2

dry 0 3 1 1 2 1

Table 2.2: Occurrence of Inter-Annual Density Fluctuations 

Tree Season
Precipitation ENSO AMO

DBH1

DBH2

DBH3

DBH6

ra 
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CHAPTER 3: CARBON ISOTOPES IN PINUS ELLIOTTII CELLULOSE AND THE 

RELATIONSHIP WITH SEASONAL PRECIPITATION AND CLIMATE OSCILLATIONS 

3.1 Abstract 

Previous dendrochronological studies of Florida slash pine (Pinus elliottii Engelm. var. densa) in 

the pine rocklands of the Lower Florida Keys have not found correlations between ring width and 

the major climate oscillations (the Atlantic Decadal Oscillation, AMO, and the El Niño-Southern 

Oscillation, ENSO) that are strongly tied to regional precipitation patterns. The lack of correlation 

may be a result of the complicated ring structures exhibited by the subtropical tree species, but an 

analysis of the stable carbon isotopes within the tree-ring cellulose can reveal paleoclimate signals 

while overcoming the challenges of the physical appearance of the rings. The carbon isotope 

records (δ13C) of four P. elliottii var. densa trees were examined at different timescales relative to 

potential climate drivers affecting precipitation in the Lower Florida Keys. Monthly dendrometer 

data were compared to cumulative precipitation at 30 and 60 day periods corresponding to the 

sampling intervals using a linear mixed effects model. The 30 day period was found to be 

statistically significant (p-value = 8.2E-), while the 60 day interval was not significant (p-value = 

0.1265), indicating that the trees have an immediate response to precipitation, particularly in the 

dry season. The δ13C composition of latewood tree-ring cellulose correlated positively to 

precipitation received in the previous December and the current November, whereas, there was a 

negative correlation between the δ13C composition of earlywood and previous December and April 

precipitation (p-values ≤ 0.05). Empirical orthogonal function (EOFs) were used to identify the 

direction and magnitude of correlations between the δ13C records for the individual trees and the 

major climate oscillations driving South Florida climate. The EOFs revealed a complicated 

relationship between the δ13C values of tree-ring cellulose and ENSO that is dependent on the 

prevailing phase of AMO. An increase in latewood precipitation during El Niño years of the cool 

AMO phase resulted in enriched δ13C values and may provide the mechanism for the formation of 



63 

 

intra-annual density fluctuations (IADFs). The AMO and ENSO exert first-order control over the 

isotopic composition of the tree-rings; however, the localized hydrology of the site plays an 

important role in the ultimate growth response of the trees. 

 

3.2 Introduction 

Subtropical and tropical ecosystems are predicted to be greatly impacted by climate-related stresses 

in the coming decades; the relative stability of the equatorial and subequatorial climates makes 

them the most sensitive to change (Mora et al., 2013). Yet, the subtropics have an 

underrepresentation of high-resolution terrestrial paleoclimate records, such as those derived from 

the tree-ring archives. Tropical tree-ring research has been ongoing for over a century; however, 

the seasonality defined by precipitation characteristic of this region contributes to the relatively low 

number of studies (Worbes, 2002). At higher latitudes, where the majority of dendrochronology 

studies are conducted, tree growth is limited by seasonally-driven reductions in ambient 

temperature and solar insolation.  In contrast, the subtropical region exhibits a much less extreme 

annual temperature gradient and seasonality is instead defined by the timing and yearly distribution 

of precipitation (Worbes, 2002) Consequently, the growth periodicity may be such that trees 

experience multiple flushes of growth throughout the year, giving rise to complex subannual ring 

formations, or that the growth rate simply may be too consistent to encourage the production of 

visibly detectable rings (Glock, 1955; Worbes, 2002; Poussart et al., 2004).    

 

Dendrochronology is a favored proxy for terrestrial paleoclimate reconstructions and has been 

utilized with much success in many regions of the world. Unlike many other popular terrestrial 

proxies, trees have a wide distribution and can produce perfectly resolved annual chronologies 

spanning centuries; in addition, it is relatively easy and inexpensive to obtain and analyze multiple 

replicates of each sample to produce a robust site index (McCarroll and Loader, 2004; Managave 
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and Ramesh, 2011). However, standard dendrochronology practices that analyze ring width alone 

may not be feasible for many subtropical tree species because of the potentially complicated ring 

patterns characteristic of many subtropical trees (Worbes, 2002). Stable isotope analyses may be 

used as tools to enhance dendrochronology studies by providing insight into the variations of 

biochemical processes involved in tree-growth over time. This allows for the inference of additional 

information about physiological controls and environmental factors that affect the distribution of 

isotopes within the plant. Many studies have shown that the stable isotopic composition of cellulose 

can be related to precipitation (Saurer et al., 1997; Gebrekirstos et al., 2009; Fichtler et al., 2010), 

relative humidity (Sternberg et al., 2007), temperature (Libby and Pandolfi, 1974),  large-scale 

ocean/atmospheric oscillations (Gray et al., 2004) and disturbance events (Anderson et al., 2005; 

Miller et al., 2006). 

 

Several studies employing techniques of the combined field of stable-isotope dendrochronology 

have produced promising results for the future of tropical dendrochronology in species where 

physical tree-ring measurements are difficult or impossible to obtain. Among these, Poussart et al., 

(2004) used δ18O and δ13C to detect seasonal cycles in trees with indistinct growth bands from 

Indonesia and Thailand and Evans and Schrag (2004) used high-resolution δ18O measurements in 

trees lacking a physical ring structures to develop a chronology and a model for rainfall and growth 

rate estimates. More recently the work presented in Chapter 2 showed that the δ13C measurements 

of cellulose in individual tree-rings could be used as an alternative to traditional ring width 

measurements to build a chronology for a subtropical South Florida species that gives the 

appearance of distinct growth rings, but whose interpretation is confounded by the occurrence of 

inter-annual density fluctuations (IADFs), or false rings. 
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South Florida, like many areas of the subtropics, has few tree species that are suitable candidates 

for dendrochronological studies as a result of non-visible or seasonally inconsistent ring production. 

However, several long-term paleoclimate datasets of varying temporal resolutions have been 

derived from other terrestrial proxies, such as pollen assemblage analysis in peat cores (Winkler et 

al., 2001; Donders et al., 2005; Saunders et al., 2006; Willard and Bernhardt, 2011; Donders, 2014), 

paleolimnological cores (Watts and Hanson, 1988), diatom assemblages (Wachnicka et al., 2010; 

Sanchez et al., 2013), and lipid biomarkers (Xu et al., 2007).  Each of these proxies contributes 

valuable information to the paleoclimatological history of South Florida; yet, none of the 

aforementioned studies were able to achieve the sub-annual resolution that tree-ring analyses 

provide and that is required for resolving complicated climate patterns at a seasonal scale.    

 

3.2.1 South Florida climatology 

South Florida exhibits characteristics of a tropical monsoon climate, according to the Köppen-

Geiger classification system, where average monthly temperatures rarely fall below 18°C and the 

seasonality is driven by a distinct annual cycle of rainfall (Peel et al., 2007).  During the summer 

months, average temperatures are consistently above 27°C, and the winter months are mild, with 

average temperatures around 20.5°C; however,  occasional cold fronts may drop temperatures to 

near-freezing (Duever et al., 1994; NCDC, 2014). The average dry season (November – following 

April) precipitation accounts for roughly 25% of the total annual precipitation, with extratropical 

frontal rainfall being the primary source (Ali at al., 2000; NCDC, 2014). Precipitation in the more 

pronounced wet season originates from tropical sources such as daily convective rainfall, tropical 

depressions, and hurricanes (Ali at al., 2000). In addition, there are defined geographical 

precipitation gradients (i.e. the east coast receives relatively more precipitation in the wet season, 

and the west coast dry season is slightly more wet compared to the east coast) and high-resolution 
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spatial variations that cause rainfall events and resultant quantities to be heterogeneous across the 

South Florida landscape (Ali at al., 2000; Moses et al., 2013). 

 

Strong teleconnections exist between South Florida climate and the El Niño-Southern Oscillation 

(ENSO) phases. Variations in seasonal precipitation and their relationship to Niño-3.4 sea surface 

temperature anomalies (SSTA) have been well-documented. Under positive ENSO phase (El Niño) 

conditions, there is an equatorial displacement of the jet stream, which increases the occurrence of 

frontal precipitation in the Southeastern United States leading to cooler and wetter winters in South 

Florida (Hanson and Maul, 1991, Schmidt et al., 2001, and others). The southeastern coast of 

Florida and the Lower Keys show the strongest statewide responses to the El Niño phase (Sittel, 

1994; Livezey et al., 1997; Schmidt et al., 2001) and report up to 150%  of the normal winter 

precipitation (Schmidt et al., 2001). The springs and summers of La Niña (negative ENSO phase) 

years have a high probability of being drier than normal (Sittel, 1994; Livezey et al., 1997; Schmidt 

et al., 2001) and, as a consequence, result in an increase in the incidence of natural wildfires 

(Beckage et al., 2003). The Lower Florida Keys may experience up to 50% less than normal rainfall 

in the winter (January-March), spring (April-June), and autumn (October-December) months 

during La Niña years, although the degree of the seasonal anomalies in precipitation can vary 

among episodes of ENSO cold phases (Schmidt et al., 2001). Additionally, hurricane formation is 

reduced during El Niño years in response to an increase in upper tropospheric westerly winds over 

the Atlantic basin that create wind shear conditions that are unfavorable for sustained organized 

cyclonic activity (Gray, 1984). 

 

The connection between ENSO and precipitation is well pronounced, however, the climate of South 

Florida is further influenced by complicated over-lapping cycles of other multi-scale climate 

oscillations and the interplay of these factors are not constant with time. For example, in a study 
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designed to understand the variability of the Florida wet seasons over time, Misra and DiNapoli 

(2013) reported that ENSO variability affects the length of the wet season over South Florida; 

however, the dominance of that effect varied throughout time. They found that longer wet seasons 

occurred after El Niño winters and shorter wet seasons followed La Niña winters, but the strength 

of that influence has diminished since 1976 when the intensity of the Bermuda High and the size 

of the Atlantic Warm Pool increased, becoming the primary drivers of precipitation (Misra and 

DiNapoli, 2013). The larger-scale AMO has contrasting controls on precipitation throughout the 

United States and, unlike a majority of the country, Central Florida receives significantly less 

rainfall during the negative cycles (Enfield et al., 2001). However, winter El Niño months 

experience above average precipitation regardless of the corresponding AMO phase (Enfield et al., 

2001).  

 

The strength and effects of climate cycles can vary on small geographic scales as revealed in a 

high-resolution spatial analysis of twelve climatological stations scattered across South Florida by 

Moses et al., (2013). According to their study, the nature of the teleconnections between South 

Florida precipitation patterns and the ENSO, the AMO, and the Pacific Decadal Oscillation (PDO) 

were heterogeneous both in time and across the landscape down to a distance of as little as 10km 

(Moses et al., 2013). Regionally, the AMO had no effect on winter precipitation; however, summer 

rainfall was shown to have a positive correlation, except along the southwest coastal and interior 

areas (Moses et al., 2013). Conversely, summer precipitation was unaffected by the ENSO, but 

rainfall occurring during the winter months of December, January and February was positively 

correlated to the ENSO phases, although the correlation was not significant along the southeast 

coast (Moses et al., 2013).  The PDO showed a positive correlation to winter rainfall at some of the 

stations and a negative correlation with winter temperature was shown along the west coast and the 

Florida Keys (Moses et al., 2013). The demonstrated heterogeneity and gradients of South Florida 
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climate and the effects of the teleconnections to global climate oscillations further highlights the 

need for more high-resolution paleoclimate proxies that not only extend the present records, but 

also capture the climate intricacies of the natural landscape.  

 

3.2.2 Carbon isotopes in cellulose 

The carbon isotopic composition of cellulose is controlled by the fractionation of carbon dioxide 

as it diffuses through the stomata in the leaves during photosynthesis (O’Leary, 1988).  In nature, 

the two stable isotopes of carbon, 12C and 13C, are found in the abundance 99:1. Plants will naturally 

discriminate against the heavier 13C isotope because the slight addition of mass from the extra 

neutron imparts small differences in its chemical and physical properties compared to the lighter 

12C isotope (O’Leary, 1988). Consequently, under optimal conditions, plants will selectively 

assimilate fewer 13C for two reasons: (1) they form slightly stronger bonds than their lighter 12C 

counterpart, and (2) the diffusion of 13CO2 through the stomata is slower than 12CO2 (O’Leary, 

1988). 

 

Atmospheric carbon dioxide is the sole source of carbon in terrestrial plants; however, it is not 

consistent in atmospheric concentration or carbon isotopic composition over time. The current 

isotopic value of atmospheric CO2 is around -8.3‰ (CDIAC, 2014); however this value is 

becoming increasingly more negative over time as the atmospheric concentration of CO2 increases. 

The current atmospheric concentration of CO2 is 401 ppm, up from 360 ppm in 1960 (Tans and 

Keeling, 2016). The anticorrelation trend between increasing CO2 concentration and decreasing 

δ13C depletion is referred to as the “13C Seuss Effect” and is a result of the burning of 13C depleted 

fossil fuels (Friedli et al., 1986). To remove this trend from the tree-ring carbon isotope record, 

McCarroll et al., (2009) offers a post-analysis correction that normalizes the data to the pre-

industrial standard value of atmospheric CO2 (-6.4‰).  
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With the variability of the source removed, the isotopic signature of the assimilated carbon in C3 

plants is dependent upon two stages of fractionation; first, equilibrium fractionation occurs as CO2 

diffuses through the stomata and secondly, biological fractionation associated with the isotopic 

discrimination of Ribulose-1,5-Bisphosphate Carboxylase enzyme (RuBisCo) during carbon 

fixation (Francey and Farquhar, 1982; O’Leary, 1988; Farqhuar et al., 1989). The influences of 

these factors on the δ13C of the plant can be expressed as: 

𝛿13C = 𝛿13𝐶𝑎 − 𝑎 − (𝑏 − 𝑎)
𝑃𝑖

𝑃𝑎
                         (1) 

where δ13C, and δ13Ca are the δ13C values of the plant and atmospheric CO2 respectively, a is the 

diffusion fractionation that occurs as CO2 passes through the leaf stomata (≈ 4.4‰), b is the biologic 

fractionation by the RuBisCo enzyme (≈27‰), and Pi and Pa are the internal and external partial 

pressures of CO2, respectively (Francey and Farquhar, 1982). Stomatal conductance increases when 

Pi/Pa increases and there will be a strong discrimination against 13C during carboxylation (Farquhar 

et al., 1989). Conversely, when Pi/Pa is reduced, such as in times of conservative stomatal 

conductance imposed by an environmental stress, there is a decrease in the discrimination of 13C, 

resulting in relatively enriched δ13C value (Farquhar et al., 1989). The variations of δ13C in tree-

ring cellulose are the effect of changes in stomatal aperture patterns; however, when the tree is 

transpiring, there must always be a balance between carbon gain and leaf water loss. Therefore, the 

changes in δ13C may be attributed the influence of external forcing factors such as temperature, 

precipitation, relative humidity, or disturbance events, such as hurricanes, depending on the 

limiting factors on tree growth for a particular environment (Pearman et al., 1976; Farquhar et al., 

1989a and b; Leavitt and Long, 1991; and many others).  Additionally, the characteristics 

(availability of soil moisture, competition for resources, etc.) of the specific location where the tree 

is growing can be equally as important to the carbon isotope record as the broad scale climate 

factors (Saurer et al., 1995; Anderson at al., 2005).  
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3.2.3 Previous South Florida slash pine studies 

The Florida slash pine, Pinus elliottii Engelm. var. densa, is the southernmost native subtropical 

pine in the United States (Little and Dorman, 1952). Pine rocklands once dominated the higher 

elevations of the South Florida landscape, extending from the east to the west coast and from Lake 

Okeechobee to the Lower Florida Keys (Duncan and Duncan, 1988). At present, the areal 

distribution of P. elliotti has been significantly reduced to isolated tracts in Long Pine Key in 

Everglades National Park and the Cypress National Preserve, as well as pockets of pine rocklands 

scattered throughout southern Florida and the Lower Keys (USFWS, 1999).  

 

One of the first P. elliottii var. densa studies from South Florida was conducted by Langdon (1963). 

He installed vernier growth bands on ten P. elliottii var. densa trees at a site in Southwest Florida 

and took bi-weekly incremental radial growth readings for a period of four years. These results 

showed that the trees grew continuously throughout the year, with two main flushes of growth 

occurring in the spring and the fall (Langdon, 1963). Spring growth started in early February and 

continued through April, followed by a slight decrease in the growth rate until the second, smaller, 

period of increased growth beginning in September and tapering off by November. Langdon did 

not report a cessation in growth at any point in his four year study, and he remarked on the 

significance of the continued, albeit much reduced (3% contribution to annual change in diameter), 

growth observed in December and January (1963). Less than decade later, Tomlinson and 

Craighead (1972) published a study of their observations of wood anatomy for several South 

Florida tree species. They concluded that P. elliottii var. densa was one of fifteen South Florida 

trees species that produces annual rings (Tomlinson and Craighead, 1972). However, Tomlinson 

and Craighead did acknowledge that P. elliottii var. densa has a high incidence of false rings 

(indicating up to 5 successive spurts of seasonal growth), yet they do not propose a mechanism for 

their formation or guidelines on identifying their characteristics (Tomlinson and Craighead, 1972).  
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A recent study by Harley et al., (2011) used traditional dendrochronology techniques and wildfire 

scars in several living and remnant P. elliottii var. densa trees from the Lower Keys to develop a 

cross-datable tree-ring chronology from 1871-2009. They determined, like Tomlinson and 

Craighead (1972), that slash pine form anatomically distinct annual growth rings and that, as 

expected, tree growth was influenced primarily by precipitation (Harley et al., 2011). However, 

they could not find statistically significant correlations between ring width and the ENSO or the 

AMO (Harley et al., 2011). In a later study published by the same group, Harley et al., (2012) 

extracted micro-cores from six living P. elliottii var. densa trees for a period of 13 months. Monthly 

cambial growth was quantified by counting the number cells at different stages in the growth 

process; this approach allowed for the comparison of ring growth to monthly climate data at a much 

higher resolution than was previously attainable. Their analysis indicated that the growing season 

for P. elliottii var. densa in the Florida Keys extends from February to December and that solar 

radiation was the primary control on cell production (Harley et al., 2012). The study tracked growth 

from March 2010 through March 2011 and found that the trees produced earlywood cells from 

March to June and latewood growth occurred between June through December or January (Harley 

et al., 2012). Additionally, there was a period from mid-July to mid-August when four of the six 

trees produced inter-annual density fluctuations (IADFs) that indicates a period of punctuated 

growth (Harley et al., 2012). Unlike the Langdon (1963) study where continuous growth was 

observed, Harley et al., (2012) witnessed a period of cambial dormancy from December to 

February.  

 

The Langdon (1963) and Harley at al., (2011; 2012) studies provide general insight into the growth 

dynamics of the only native subtropical pine species in the United States; however, the results 

showed a surprising absence of correlation between tree-ring growth and major climate oscillations. 

The Langdon (1963) study measured biweekly changes in radial diameter between December 1955 



72 

 

and December 1959, a sampling period that included a La Niña year (1956) and two El Niño years 

(1957 and 1958).  The bimodal spring growth peaks observed in 1957 and 1958 and the pronounced 

fall growth peaks of 1956 and 1957 may have been influenced by their respective co-occurring 

ENSO phase.  Harley et al., (2012) did not find any correlations to precipitation in their 13-month 

micro-core analysis, and they did not discuss the possible influence that the corresponding El Niño 

year may have had on the results of their data. In addition, their sampling period included both the 

driest May in five decades and driest February in over 65 years, which may have contributed to the 

production of IADFs and encouraged the 2-month period of dormancy observed in their trees 

(NOAA, 2013). The lack of relationship between the ring width-derived climatologies and large-

scale climate drivers, may indicate that traditional dendrochronology techniques are not on their 

own sufficient proxies for South Florida climate.    

 

3.2.4 Objectives of this study 

The objectives of this study are to determine the relationship between carbon isotopes within the 

α-cellulose of individual Pinus elliottii earlywood and latewood rings and localized precipitation 

and large-scale climate oscillations at several scales. Sub-annual δ13C values are compared to 

biannual climate data and to monthly precipitation data. Monthly dendrometer data are compared 

to precipitation over several intervals to determine the radial growth response to precipitation as a 

modern day analogue for growth. 

 

3.3 Methods 

3.3.1 Big Pine Key site description  

Big Pine Key is the largest and easternmost island in the lower Florida Keys, with a maximum 

elevation of 3 m and an areal extent of approximately 25 km2 (Figure 2.1). Geologically, the island 

is composed of an oolitic facies of the Miami limestone underlain by the coralline Key Largo 
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limestone (Hoffmeister and Multer, 1968). The Pleistocene-aged limestones were formed under 

different nearshore marine settings during the sea level high of the last Pleistocene interglacial 

period (Hoffmeister and Multer, 1968). The Key Largo limestone is an ancient reef tract of variable 

thickness (with a maximum thickness of about 61 m) that is main structural component of the 

elongated and linearly oriented Upper and Middle Florida Keys (Hoffmeister and Multer, 1968). 

The Lower Keys are primarily composed of the Miami oolite, cemented calcium carbonate ooid 

sand deposited in the form of a marine tidal bar system (Hoffmeister and Multer, 1968; Hoffmeister, 

1974; Halley and Harris, 1979). The two facies of the Miami Limestone intersect on Big Pine Key, 

where the ooilite has been found to overlay the Key Largo limestone at a contact depth of 4-6 

meters (Hoffmeister and Multer, 1968; Coniglio and Harrison, 1983) The juxtaposition of the oolite 

with the more transmissive Key Largo limestone allows the island to support two freshwater lenses 

with the bases extending to just below the contact of the two limestone units (Vacher et al., 1992). 

The larger northern lens has a maximum depth of 8 m, and the southern lens is both smaller and 

shallower (Wightman, 1990).  Both lenses are recharged primarily by precipitation and, therefore, 

exhibit variable areal extents in response to seasonal rainfall.  

 

The oolitic limestone bedrock is at or very near the surface and contains small, shallow pockets of 

sand, marl and organic material dispersed across a karstic landscape that supports vegetation (Ross 

et al., 1994; USFWS, 1999). The environments on the island transition from the lowest elevation 

mangrove forests to the pine rocklands and hardwood hammocks found at comparatively higher 

elevations (Ross et al., 1992). The pine rocklands are a disturbance-driven community dominated 

by P. elliottii var. densa as the single canopy species and several species of palm in the understory 

(Ross et al., 1992; Oberbauer et al., 1997). Under natural conditions, pine rocklands rely on 

lightning-induced fires 2-3 times a decade to clear the understory of successional hardwood species; 

however, most fires within the last 50 years have been prescribed by the management at the 
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National Key Deer Refuge (Taylor, 1981; Bergh and Wisby, 1996; Ross and Ruiz, 1996).  The 

slash pine are saltwater intolerant and their distribution on the island is dictated by the freshwater 

lenses; however, they can withstand short hurricane-induced storm surge flooding events, although 

most species will senesce and die if exposed to salt water for longer periods of time (USFWS, 1999; 

Ross et al., 2009). The P. elliottii var. densa trees have a limit to their resiliency as witnessed by a 

major die off in the northern Big Pine Key in early 2006 after two storm surges flooded the island 

during the passage of Hurricane Wilma in October 2005. The detrimental influence of the saltwater 

surges was intensified by an uncharacteristically dry winter which prevented the removal of the 

residual salt deposit from the overwash (Ross et al., 2009; Sah et al., 2010).  

 

The adjacency of the lower Florida Keys to two warm, buffering water bodies, the Gulf Stream and 

the Gulf of Mexico, gives them a mild, tropical-maritime climate (NOAA, 2013). Their position of 

about 24.67 ° N latitude results in a relatively small annual maximum and minimum temperature 

gradient of 24°F, (NCDC, 2013) and a three hour difference in daylight hours between solstices 

(USNO, 2014). Seasonality in the Florida Keys, like mainland South Florida, is defined by annual 

precipitation patterns. The dry season is generally considered to be November through April; it 

accounts for about 29% of annual precipitation (~ 30 cm) (NCDC, 2013). Conversely, 71% of the 

annual precipitation (~ 70 cm) for the Lower Keys falls during the wet season months of May 

through October (NCDC, 2013).   

 

The four P. elliottii var. densa samples used in this study were collected by staff at the National 

Key Deer Refuge in April of 2006. Disks were recovered from trees along a proposed hydrologic 

gradient on the northern freshwater lens from a post-Hurricane Wilma high mortality region on the 

northeastern portion of Big Pine Key the (Figure 3.1). A cluster of three disk samples were collected 

from trees less than 30 m from each other over a deeper, more stable part of the northern freshwater 
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lens (approximately 900 m from the coast). An additional tree was sampled from the less stable 

periphery of the lens about 160 m from the cluster (approximately 750 m from the coast).  

 

3.3.3 Sample processing 

The P. elliottii var. densa tree disks were sanded using increasingly finer sandpapers (beginning 

with 80 grit and ending with 400 grit) until all the rings were clearly visible. A single, roughly inch-

wide radius extending from bark to pith was cut out from each disk from an area in the disk free of 

physical damage and showing the least amount of ring compression anomalies. Standard 

dendrochronology techniques were used to count and identify the rings in each of the radaii 

following the guidelines described in Cook and Kairiukstis (1990) and Fritts (1976). The samples 

were photographed and examined under a microscope. Adobe Photoshop CS2 was used to 

distinguish and record the locations of the ring boundaries on the images. ImageJ, an image 

processing and analysis program that uses a simple ratio system to compare a known distance 

within an image with unknown distances, was used to determine the average width of every 

earlywood, latewood, and whole ring sample. To accommodate for the variability in width of 

individual rings, multiple measurements (5 each for the early- and latewood and 7 for the whole 

ring) were taken along every ring. The measurements were then averaged to obtain the ring width 

values.  

 

Every seasonal (early- and latewood) ring was individually separated under a microscope at 15x 

magnification using an X-Acto knife. Special care was taken when dividing the rings to 

accommodate for curvature and uneven vertical growth of the tree-rings, so that every sample 

contained only material from that growth period. The samples were then homogenized in a Spex 

8000M Mixer/Mill using stainless steel vial and ball sets. On average, an 80 – 90 mg (with as little 

as 20 mg for very thin rings) aliquot of each powdered sample underwent a chemical extraction 
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process to isolate the α-cellulose component of the wood using a method modified after Green, 

1963 (see Appendix 1 for a detailed description of the revised process). These P. elliottii var. densa 

samples were highly resinous and the extraction process removes the mobile resin component and 

any other wood elements that may interfere with the climate signal in the isotope analysis (Loader 

et al. 2007).  

 

3.3.4 Carbon isotope measurements 

Every earlywood and latewood cellulose sample from each of the four P. elliottii var. densa trees 

was analyzed for δ13C individually. All carbon isotope measurements were completed on a Carlo 

Erba NA1500 II coupled to a Finnigan MAT Delta C mass spectrometer via a ConFlo II interface 

using standard elemental analyzer isotope ratio mass spectrometry (EA-IRMS) techniques at the 

SERC Stable Isotope Laboratory (SERC SIL) at Florida International University. Variations of 

isotopic values are expressed in δ‰, which is calculated using the following formula (Coplen, 

1994): 

𝛿13𝐶‰ = [(
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) − 1] 1000 

Where R is the ratio of 13C/12C in the sample (Rsample) and in the V-PDB (Vienna Pee Dee Belemnite) 

standard for carbon (Rstandard).  

 

A biannual chronology using the carbon isotope signature for the four trees was developed and all 

inter-annual density fluctuations were flagged and removed from the dataset using the methods 

described in Chapter 2. Additionally, a correction was applied to normalize the time-series to the 

historical value of δ13C of atmospheric CO2 following the methods in McCarroll et al. (2009) and 

McCarroll and Loader (2004) so comparisons could be made to historical climate measurements. 
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3.3.5 Climate data 

The majority of the long-term climate datasets used here come from the National Climate Data 

Center website (http://www.csc.noaa.gov/). Data for the Atlantic Multidecadal Oscillation (AMO), 

North Atlantic Oscillation (NAO), and the Pacific Decadal Oscillation (PDO) were downloaded 

from the Climate Indices page of the National Oceanic and Atmospheric Administration website 

(NOAA, 2013a). There is not a consensus concerning the timing of the AMO phase shifts; the 

definition of the AMO phases used here may be found in Table 3.1. The El Niño - Southern 

Oscillation (ENSO) dataset is from the Ocean Niño Index of sea surface temperature anomalies 

(SSTA) from the Niño 3.4 region (NOAA, 2013b). Accumulated Cyclone Energy (ACE), which is 

an index used to classify the energy from individual tropical cyclones, as well as entire hurricane 

seasons, was downloaded from the NOAA Hurricane Research Division webpage (NOAA, 2013c).  

 

Although there is currently an operational station on Big Pine Key that was installed after the trees 

used in this study were sampled, temperature and precipitation records were used from the weather 

station on Key West (approx. 40 km distance) because it has the longest historical record of 

consistent data collection in the Lower Keys. In addition, data from the next closest long-term 

weather station (approx. 94 km distance), Tavernier in the Upper Keys, was also included in the 

climate analysis for the sake of completeness; however, the precipitation and temperature data from 

Key West is used in most of the analyses. Although there are some minor variations in the timing 

and the amount of monthly precipitation received between the Key West station and the next closest 

station to the sampling site, Marathon (Figure 3.1), the running annual totals for the two stations 

are nearly identical (Figure 2.2). The monthly differences in average temperatures and monthly 

hours of daylight are also nearly identical between Key West and Marathon (Figure 2.2); therefore, 

it can be assumed that the monthly historical record for Key West is a good representation of Big 

Pine Key climate. The Palmer Drought Severity Index (PDSI), which quantifies the intensity and 
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duration of long-term drought conditions, is for the regional Florida Climate Division 7 (NOAA, 

2013a). The aerosol dust record is modified from Prospero and Lamb (2006) and Prospero (2011), 

and is a measure of aerosol African dust concentrations collected on Barbados. The University of 

Miami Aerosol Research Station in Barbados is located approximately 2,636 km from the P. 

elliottii var. densa sampling site in Big Pine Key; however, aerosol dust collected in the Miami 

showed similarities to the influx pattern, but with lower volumes of dust recorded in Barbados 

(Trapp et al., 2010; Prospero, 2011). 

  

The tree-ring chronology extends from 1922-2006; however, the period between 1950 and 2006 

was selected for many of the analyses because it is the interval of time containing the most complete 

instrumental records for almost all the climate parameters analyzed. All datasets were averaged 

into two annual points, wet season (May-October) and dry season (November to the following 

April), except in the case of ACE, in which the annual value was repeated for both seasons. Before 

being converted into biannual values, the precipitation datasets were normalized by converting each 

point to a variance from the mean by subtracting the monthly means calculated for the period 1950-

2006 from the observed monthly values. The gaps in the Bermuda dust record were filled in with a 

dummy constant (15 μg m-3) and the monthly values were summed into seasonal totals. The carbon 

isotope values and ring width measurements for each of the four P. elliottii var. densa trees were 

also analyzed as variances from the respective mean of each tree. Unless otherwise noted, the trees 

were normalized to the δ13C values averaged over the period of 1950-2006.  

 

3.3.6 Climate data analyses 

The simultaneous comparison between the various climate variables and the individual tree carbon 

isotope variables were calculated in MATLAB using empirical orthogonal functions (EOFs) to 

compare the δ13C values of individual ring cellulose to multiple climate and environmental 
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variables at the same time. Tree growth is likely influenced by a complex interplay of interrelated, 

nonlinear, and multi-scale climate drivers, which exhibit varying degrees of control at scales that 

range from regional down to the microclimate conditions surrounding individual trees. An 

analytical method that can detect the variability in multiple, concurrent factors is required to discern 

the intricacies of the interactions both among the climate drivers themselves and the nature of their 

elicited response in cellular production within trees. The EOFs breaks down a suite of complicated 

time series into a matrix of eigenvectors that show the covariance of the individual components 

(Hannachi, 2004). The MATLAB EOF program used here first detrends the individual datasets 

before calculating a covariance matrix.  

 

Only the leading and secondary eigenvectors (EOF1 and EOF2) will be presented for all the data. 

In general, the first two eigenvectors explain at least half of the variance in EOFs comparing ≤ 8 

datasets. The addition of more datasets to the EOF analyses will result in smaller variances 

explained by the leading eigenvectors because the relationships become increasingly more complex 

as more time series are considered. The variance is quantified as a percent in a table accompanying 

all graphs. It is important to note that EOFs simply show the directional (+ or -) quality and the 

strength of the variability (numerical departure from zero) among the independent and unweighted 

time series being analyzed. They allow a series of complicated datasets to be viewed as a series of 

nested relationships, with the leading eigenvector showing the primary covariance of the dataset 

and the next eigenvector exposing the secondary pattern (Hannachi et al., 2007). 

 

Simple Pearson product-moment correlation coefficient (r) calculations were used to specifically 

assess the relationships between the composite δ13C time series and monthly historical precipitation 

values collected by the Key West weather station following the methods in Harley et al. (2011) and 

Grogan, and Schulze (2012). Pearson values measure the linear dependence between an 
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independent (precipitation amount) and a dependent variable (δ13C value). The results are given as 

a number between -1 and +1, with the end members indicating a prefect negative or positive linear 

relationship, respectively, between the variables. Monthly precipitation data for the concurrent 

season and the previous season were compared to the mean adjusted earlywood and the latewood 

δ13C index values independently. 

 

3.3.7 Dendrometer analysis 

Monthly dendrometer data collected from three P. elliottii var. densa trees growing in 10 x 60 meter 

permanent sampling plots on Big Pine Key and nearby Sugarloaf Key (Ross, unpublished) were 

used to determine the effects of environmental drivers on tree growth. The permanent sampling 

plot on Big Pine Key is located on the northeastern quadrant of the island, approximately 1.25 km 

away from the dendrochronology transect. Spring-loaded vernier growth bands were fixed to three 

of the largest P. elliottii var. densa trees (≥ 26.9 cm diameter) at standard breast height (Cattelino 

et al., 1986) in April of 1990 and readings were collected at monthly intervals until October, 1993. 

Growth was initially recorded as departures (in mm) from the starting position on the dendrometer 

band and it was converted to incremental changes in diameter between subsequent sampling 

periods. The data was compared to cumulative Key West precipitation occurring between each 

sampling period.  

 

A linear mixed effects model (LME) was used to analyze the relationship between radial growth 

and precipitation using the LME package (Bates et al., 2015) in the statistics program, R (R Core 

Team, 2016), through the RStudio interface (RStudio Team, 2015). Cumulative precipitation and 

tree growth were the fixed effects and the tree ID was considered as a random effect to remove any 

potential influence of resampling the same trees over the course of the study period. Originally, 

hours of sunlight was also included as a fixed effect in the model; however, as expected for such a 
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southern latitude, it was not considered to be significant (p-value was not ≤ 0.05). The model was 

run under three precipitation scenarios, the cumulative precipitation over the true sampling interval 

(from actual sampling date to the following sampling date), the precipitation accumulated over a 

static 30 day period before the sampling date and the total precipitation occurring in a static 60 day 

period prior to each dendrometer reading. The different precipitation intervals were designed to test 

whether there is a lag in the trees’ growth response to rainfall.  

 

3.4 Results 

3.4.1 Variability in individual trees 

Previous studies for slash pine in the Lower Florida Keys have used ring width measurements to 

determine the relationship between tree growth and climate variables. The tree-rings in slash pine 

are concentrically variable, which may introduce unnecessary error into the dataset and may not 

provide the most accurate correlations with the climate parameters of interest. Empirical orthogonal 

functions were used to assess the relationships in ring width versus δ13C values among the four 

trees sampled. Figure 3.4 shows the first and second EOFs for ring widths (a-b) and δ13C values (c-

d) in both the earlywood, EW (blue), and the latewood, LW (pink), components of each annual 

ring. The data shown is for 1950-2005. For ring width, the first EOF (EOF1) explains 31.7% of the 

variance among earlywood tree growth and 33.2% variance in the latewood. The second EOF 

(EOF2) accounts for 27.2% and 26.5% of the variance in earlywood and latewood ring width, 

respectively. The variance in the carbon isotope records of the trees is 43.1% (EW) and 39.3% 

(LW) for EOF1 and 28.9% (EW) and 26.4% (LW) in EOF2.  

 

The ring width patterns do not display consistent patterns in either the EW or the LW datasets. For 

example, both earlywood and latewood rings in DBH6 and the latewood portion of DBH2 have an 

inverse trend compared to the other trees (Figure 3.4a), whereas all four trees show the same 
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response in the δ13C values in both seasonal components (Figure 3.4c). The pattern in the carbon 

isotopes in EOF2, indicates that the trees growing adjacent to each other are more similar than the 

trees farther away.  In addition, the proposed hydrologic gradient may play a role in the overall 

carbon isotope signatures of the trees; an inverse relationship exists between trees at either end of 

the sampling transect. The relationship between the trees is more consistent in the carbon isotope 

records in comparison to the ring width records, making the δ13C values a better choice for climate 

analysis. 

 

3.4.2 Comparison of the seasonal carbon isotope record and the climate parameters 

The composite carbon isotope record was compared to monthly Key West precipitation data for the 

period 1922-2005 using a Pearson product-moment correlation coefficient analysis (Figure 3.5). 

The analysis was completed using the monthly precipitation from the previous year (pJan - pDec) 

through the 12 months of the current years (Jan-Dec). Earlywood δ13C values are negatively 

correlated to the precipitation received in the previous December (p-value = 0.021) and the April 

(p-value = 0.042) and positively correlated to the January rainfall in the previous year (p-value = 

0.035). The inverse correlation between dry season precipitation and carbon isotope values, 

particularly for the typically very dry month of April, may indicate that rainfall received during this 

time is crucial in the initiation of sustained earlywood growth. More rainfall at the end of the dry 

season leads to less enriched δ13C values in the earlywood. The carbon isotope values of the 

latewood were significantly positively correlated to the precipitation received in the previous 

December (p-value = 0.035) and the current November (p-value = 0.050). The positive relationship 

between November precipitation and latewood δ13C values is counterintuitive and indicates that 

additional precipitation at the beginning of the dry season leads to more cellulose enriched in 13C. 

It is possible that a spike in dry season rainfall, encourages tree growth that cannot be sustained in 

the subsequent dry months of December and January, leading to enrichment.  
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The first and second EOFs comparing the individual carbon isotope records of the P. elliottii var. 

densa trees to the major climate oscillations controlling South Florida precipitation are shown in 

Figure 3.6a-d. In the case of ENSO, EOF1 explains 34.5% of the variance in the EW and 32.1% of 

the variance in the LW records, while EOF2 accounts for 23.8% (EW) and 22.6% (LW) of the 

variance. The carbon isotope values in the latewood of all four trees respond positively to the added 

precipitation in El Niño winters and negatively during wet season years, although the influence of 

El Niño in the wet season is close to zero (eigenvalue = 0.053). The trees show the effect of the 

hydrologic transect gradient in EOF2 (Figure 3.5b), where DBH1 and DBH6 have inverse 

secondary responses to ENSO. La Niña phases coincident with LW production result in relatively 

more depleted δ13C values in DBH6, a relationship not present in the other trees. The EW cellulose 

in DBH1 is isotopically enriched during El Niño years. 

 

All trees have an inverse correlation with the positive phase of the AMO in the carbon isotope value 

of both their EW and LW components (Figure 3.6c); however, the second eigenvector shows a 

more complicated relationship (Figure 3.6d). In EOF2, the trees, with the exception of DBH1, have 

depleted carbon isotope values during the cool phase of the AMO in their EW and enrichments in 

13C during the positive AMO phase.  The percent variance explained by EOF1 is 37.9% in the EW 

and 34.0% in the LW and 26.3% (EW) and 23.5% (LW).  

 

The first two EOFs comparing Florida Keys precipitation with the major climate oscillations 

(ENSO, AMO, and PDO) and concurrent hurricane activity (ACE) is shown in Figure 3.7. EOF1 

explains 26.0% of the variance in the EW and 39.2% of the variance in the LW records, while 

EOF2 accounts for 22.9% (EW) and 20.5% (LW) of the variance. In EOF1, the precipitation from 

both stations, ENSO, the NAO, and the PDO are positively correlated with each other and 

negatively correlated to the AMO and ACE in both the EW and the LW (Figure 3.7a). EOF2 shows 
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seasonal differences among the climate parameters (Figure 3.7b). The EW phase of the NAO is 

positively correlated to precipitation and negatively correlated to all other climate variables, while 

the LW phase of the NAO is negatively correlated to all other datasets. The negative relationship 

between the NAO and winter Caribbean precipitation has been documented (Jury et al., 2007), but 

it appears to have a limited effect on precipitation in the Florida Keys. The PDO and ENSO have 

been reported to positively correlate with winter precipitation at some historical climate stations in 

South Florida (Moses et al., 2013); this agrees with the relationships seen in EOF1. However, the 

positive correlation between summer rainfall and the AMO found for mainland South Florida 

(Moses et al., 2013) is not replicated in the Lower Florida Keys. The EOFs for the remaining 

climate variables may be found in the Appendices. 

 

3.4.3. Dendrometer data and precipitation 

Figure 3.8 shows the changes in radial growth for the three trees (solid, dashed, and dotted black 

lines) used in the dendrometer study and the corresponding cumulative precipitation (blue bars) for 

each sampling interval. The change in radial growth is defined as the difference (in mm) in the 

dendrometer readings between successive sampling periods. Precipitation values are the 

cumulative daily totals (in mm) as reported by the Key West station. For the purpose of the model, 

the dates have been converted from calendar days into sampling days, where day zero (04/20/1990) 

represents the date of dendrometer installation and day 1275 is end of the study (10/07/1993). 

Vertical gray lines have been added for reference to illustrate the calendar years. A LME model 

was used to determine the relationship between tree growth and three different precipitation 

scenarios while removing any bias from possible resampling effects.  

The results of the LME model analyses are shown in Table 4.2. The interval (Interval Precip) 

between dendrometer readings was inconsistent and ranged from 20 to 44 days, so a static 30 day 

period (30 Day Precip) was also analyzed. Additionally, a static 60 day precipitation (60 Day 
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Precip) period was included to identify any potential lag between precipitation and tree growth. 

Both the Interval Precip and the 30 Day Precip LME results were considered statistically significant 

(p-values = 4.10E-06 and 8.2E-06, respectively); however the 60 Day Precip was not significant 

(p-value = 0.1265). The results of the LME analyses suggest that tree diameter growth is responding 

immediately to precipitation and that there is not a lag or cumulative effect of rainfall received in 

previous months. The time of day the samplings occurred is unknown and it may affect the results 

of the LME models as tropical trees are known to have appreciable fluctuations in stem diameter 

throughout the day (Sheil, 2003). Inconsistency in the timing of the dendrometer samplings could 

account for the negative changes in growth diameter (Figure 3.8). However, the P. elliottii var. 

densa trees of Big Pine Key have access to the freshwater lens all year round and have been 

observed to opportunistically modify their water acquisition strategies to incorporate recent 

precipitation from the soil pore spaces, particularly in the dry season (Ogurcak, 2015). The 

occurrence of precipitation during typically dry months could result in episodic tree growth and 

lead to the formation of IADFs. 

3.5 Discussion  

3.5.1 The landscape –scale picture: carbon isotopes and climate oscillations 

The four P. elliottii var. densa trees showed uniform patterns in their carbon isotope compositions 

(EOF1 Figure 3.4c), indicating that the trees have similar overall responses to the landscape-scale 

drivers that control the timing of precipitation. Previous dendrochronology studies using slash pine 

in the Lower Florida Keys were unable to find a relationship between ring width measurements and 

ENSO (Harley et al., 2011; 2012). The absence of correlation between tree growth and the strongest 

teleconnection impacting South Florida dry season precipitation (Enfield et al., 2001; Moses et al., 

2013) is unexpected, as precipitation is likely to be the primary driver of P. elliottii var. densa 

growth (Langdon, 1963, Fichtler et al., 2010, and Harley et al., 2011). There are two possible 

explanations for the quantitative lack of correlation between the physical characteristics of the P. 
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elliottii var. densa tree-rings and the large-scale climate oscillations. The first could be a result of 

using ring width measurements as the tree response parameter in climate correlation analyses. The 

tree-rings of P. elliottii var. densa display variable widths around the circumference of the tree disk 

and the interpretation of ring boundaries is complicated by the presence of IADFs (Tomlinson and 

Craighead, 1972; Harley et al., 2011; Chapter 2). The leading EOF comparing the ring width 

measurements among the four trees (Figure 3.4a) shows very complicated relationships in the EW 

and LW portions of the trees. The variability in the concentric ring thickness may introduce error 

into the index chronology, and reduce the likelihood of finding statistically significant correlations 

with climate. The dendrochemistry of the structural tree-ring cellulose may provide more accurate 

results in paleoclimate studies because the isotopic composition of the cellulose is controlled by 

the physiologic responses of the tree to the local climate (McCarroll and Loader 2004).  

 

The second reason for the quantitative lack of correlation between tree growth and the large-scale 

climate oscillations is that there is variability in the nature of the interrelated interactions among 

the climate drivers themselves. The trees show strong and well-defined responses in their carbon 

isotope records to both the AMO and ENSO (Figure 3.6 a and c); however, when considering the 

entire span of the δ13C time series, there is a statistically significant correlation for the AMO (p-

value = 0.032), but not for ENSO (p-value = 0.396). Figure 3.9c graphically shows relationship 

between ENSO and the δ13C composite index from 1922-2005. There is a direct relationship 

between ENSO and δ13C over the periods 1922-1938 and 1956-1985; however, the remainder of 

the times series (1939-1955 and 1986-2005) show inverse correlations between the two variables. 

The timing of the transition between the nature of the correlation between ENSO and δ13C seems 

to correspond with a phase shift in the AMO. There is not a consensus among the scientific literature 

about the temporal definitions of the AMO phases (Table 3.1) and there is likely an extended period 

of time (possibly up to a decade) where the AMO wavers between phases before reversing (Enfield 
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et al., 2001; Grey et al., 2004; Knudsen et al., 2011). In general, the relationship between ENSO 

and δ13C values of P. elliottii var. densa cellulose is roughly inverse to the prevailing AMO phase. 

A similar trend was observed in Key West sea level anomalies and ENSO, the sign of their 

correlation reverses with a change in the AMO phase (Karamperidou et al., 2013). 

 

Under a cool AMO phase, both the El Niño and the La Niña earlywood and the El Niño latewood 

seasons have the potential of being wetter than normal (Figure 3.10). The latewood δ13C values are 

more enriched during El Niño seasons occurring during the negative AMO phase; a counter-

intuitive relationship where the trees are assimilating more 13C during times of increased rainfall. 

The P. elliottii var. densa trees have an immediate response to available precipitation, as 

demonstrated by the dendrometer data (Table 3.2) and previous observations (Ogurcak, 2015). Dry 

season precipitation in the Lower Florida Keys may be up to 150% greater than the average amount 

typically received during December, January, and February (Schmidt et al., 2001; Moses et al., 

2013). It is possible that the addition of early dry season rain promotes tree growth; however, the 

sporadic contribution of precipitation, may cause the tree to become water stressed in between rain 

events.  

 

The correlation between the δ13C values of subannual cellulose and the prevailing concurrent 

phases of the AMO and ENSO is complicated, but there is a distinct relationship between the timing 

of precipitation and the resulting carbon isotope signature. The EOFs show that the climate 

oscillations are the primary drivers of tree growth (EOF1 Figure 3.6); however, the localized 

environmental conditions specific to individual trees are also important to growth (EOF2 Figure 

3.6).  Trees growing within tens of meters from each other may have different growth responses to 

the same climate drivers. 
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3.5.2 The individual picture: variability of individual trees across a hydrologic transect 

The location of a tree on the proposed hydrologic transect has an effect on the way the tree responds 

to the climate oscillations and the input of precipitation. The trees exhibit a strong gradient along 

the transect in the relationship between the carbon isotope records of the four trees. For reference, 

tree DBH1 is on inland side of the hydrologic transect, while tree DBH6 is closest to the coast. 

When compared to the other trees, DBH6 has been shown to have overall more enriched δ13C values 

throughout the chronology (Chapter 2) and it has an inverse relationship with DBH1 in the carbon 

isotope EOF2 analysis (Figure 3.4d), implying that it resides in a more water-limited environment. 

The two trees in the middle of the sampling transect, DBH2 and DBH3, show intermediate 

responses to the climate variables and, together, the four trees show a gradient pattern in all of the 

EOF2 analyses (Figure 3.4d and 3.6b and d).  

 

The effect of the position along the gradient was expected and it was initially hypothesized that 

seasonal changes in the size and shape of the freshwater lens would have negative effects on the 

trees closest to its periphery. However, the areal extent of the northern fresh water lens on Big Pine 

Key does not change from wet to dry season, but there is a seasonal cycle in the depth of the 

freshwater lens (Ogurcak, 2015). It is possible that slight increases in salinity near the edges of the 

lens could cause water stress in the trees near the periphery. An increase in salinity may explain 

why tree DBH6 has a positive response to El Niño rainfall and it had the fewest number of IADFs 

(Chapter 2). 

 

The pattern of receiving atypical volumes of precipitation intermittently during a normally very dry 

period (i.e. during a –AMO and +ENSO dry season) may be a contributing mechanism to the 

formation of IADFs. Although not noted in their publication, the IADFs observed in a study of P. 

elliottii var. densa cambial activity by Harley et al. (2012) corresponded to an in influx of 
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precipitation. The limited dendrometer data also supports the assumption that the growth of South 

Florida P. elliottii var. densa is strongly tied to moisture availability (Langdon 1963; Fichtler et al. 

2010; Harley et al. 2011), suggesting that the trees will have a rapid and positive response to the 

addition of precipitation. This opportunistic growth response could contribute to the appearance of 

IADFs during unusually wet winters, when cell production may be triggered by unexpected 

moisture input (Vieira at al. 2009). The increase in water availability encourages growth and cell 

differentiation and leads to the production of earlywood cells within the latewood tree-ring 

(Wimmer et al., 2000; De Micco et al, 2007). 

 

3.6 Conclusions 

The dendrochemistry of tree-rings can provide more information about physiologic responses to 

climate drivers and individual tree site conditions than ring width measurements, particularly in 

trees that have complicated ring structures. The δ13C composition of the P. elliottii var. densa 

cellulose had strong first-order responses to the major climate oscillations controlling seasonal 

precipitation, but the microenvironment surrounding the tree, ultimately dictated the scale of that 

response. The dynamics and salinity of the fresh water lens, the most significant source of water 

for the P. elliottii var. densa trees, is primarily controlled by precipitation patterns influenced by 

global teleconnections and the tree’s position relative to the most variable edge of the lens will 

affect its seasonal transpiration. 

 

Trees contain a breadth of information and finding ways to decode the dendrochemical data grants 

access to a greater array of climate information. The relationship between environmental conditions 

and the nature of the assimilated carbon can have important implications for studying the 

interrelated effects of the teleconnections of multi-scale climate oscillations and their resultant 

precipitation patterns over timescales that transcend the instrumental records. Future work with the 
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P. elliottii var. densa trees on Big Pine Key could focus on extending the high-resolution carbon 

isotope chronology and constructing a site-specific model to predict precipitation patterns under 

different combinations of the climate oscillations at telescoping scales. For example, a mircocoring 

study could be used to measure responses to precipitation on biweekly or monthly scales and the 

results could help refine the interpretation of a biannual dendrochronology study, such as this one. 
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3.8 Figures 

 

 

Figure 3.1 Map of the Middle and Lower Florida Keys showing the sampling site on Big Pine Key 

(blue star) and the locations of the three nearest, historically continuous climate stations; Key West, 

Marathon, and Tavernier (red circles). The red box in the inset shows the area of the Florida Keys 

referenced.  
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Figure 3.2 The Average Annual 

Climatologies for the Lower Florida 

Keys. (1970-2010) a) The average 

monthly precipitation (in cm) for the two 

long-term climate stations nearest to Big 

Pine Key: Key West (KW) and Marathon 

(Mar) (solid lines). The dashed lines 

show the running cumulative total 

percentage of monthly precipitation for 

each station.  b) The average monthly 

maximum (red) and minimum (blue) 

temperatures for the Lower Keys. The 

data shown here is from the Key West 

station. The corresponding data for the 

Marathon station varies ± 0.5 C° except 

for January when minimum temperature 

is 1 C° lower than Key West. c) Hours of 

daylight for the 15th of each month. The 

maximum difference in daylight hours 

between Key West and Marathon is ± 1 

minute. Precipitation and temperature 

data from NOAA and daylight data are 

from the USNO. 
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Figure 3.3 See caption on the following page.  
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Figure 3.3 Time series for the climate variables used in the EOF analyses. All data have be 

converted into wet (May - October) and dry (November-following April) season values. The 

reported monthly sea surface temperature anomalies for each of the four large-scale climate 

oscillations (a-d) have been averaged into biannual values. Daily precipitation data from the two 

longest and most continuously recording climate stations (e-f) have been converted into monthly 

values. The monthly precipitation values were averaged over for the period 1950-2005 and the 

deviation from the mean was calculated for each month before data were averaged into seasonal 

values. The yearly data for Accelerated Cyclone Energy (g), have not been treated, but the values 

have been repeated to conform to the biannual scheme of the datasets. The Bermuda dust record 

(h) is from Prospero and Lamb (2006) and Prospero (2011). The gaps in the dust record were filled 

with a dummy constant for the analyses and the biannual values were calculated by summing the 

corresponding monthly totals. 
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Figure 3.4 The first two EOFs for ring width (a-b) and 

δ13C values (c-d) for both the earlywood (EW) and 

latewood (LW) portions of each of the four P. elliottii var. 

densa trees. The percentage of the variance explained by 

each EOF is in the table to the right. 

 

 

  

Ring Width δ13C Values 
a. 

b. 

c. 

d. 

% Variance EOF1 EOF2

EW Ring Width 31.7 27.2

LW Ring Width 33.2 26.5

EW δ13C 43.1 28.9

LW δ13C 39.3 26.4
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Figure 3.5 Pearson correlation coefficients for the δ13C values for a) earlywood and b) latewood 

and monthly precipitation from previous January (pJan) to current December. Black bars indicate 

months with statistically significant p-values (p-value ≤ 0.05). 

  

a. 

b. 
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Figure 3.6 The first two EOFs comparing the carbon isotope 

records for the individual tree to ENSO (a-b) and the AMO 

(c-d) for both the earlywood (EW) and latewood (LW) 

components of the tree-rings. The percentage of the variance 

explained by each EOF is in the table to the right. 

  

a. 

b. 

c. 

d. 

ENSO AMO 

% Variance EOF1 EOF2

EW ENSO 34.5 23.8

LW ENSO 32.1 22.6

EW AMO 37.9 26.3

LW AMO 34.0 23.5
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Figure 3.7 The leading eigenvector a) and the secondary eigenvector b) comparing precipitation in 

the Florida Keys to the major climate cycles and hurricane records. The percent variance for each 

EOF is shown in the table. KW= Key West precipitation record. TAV = Tavernier precipitation 

records. NAO = North Atlantic Oscillation. PDO = Pacific Decadal Oscillation. ACE 

=Accumulated Cyclone Energy. 

  

Precipitation and Climate Oscillations 
a. 

b. 

% Variance EOF1 EOF2

EW 26.0 22.9

LW 39.2 20.5
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Figure 3.8 Changes in radial growth for the three trees (black lines) used in the dendrometer study 

and the corresponding cumulative precipitation (blue bars) for each sampling interval. The change 

in radial growth is defined as the difference (in mm) in the dendrometer readings between 

successive sampling periods. Precipitation values are the cumulative daily totals (in mm) as 

reported by the Key West station. The dates have been converted to sampling days, where day zero 

(04/20/1990) represents the date of dendrometer installation and day 1275 is end of the study 

(10/07/1993). For reference, vertical gray lines have been added to show the calendar years. 

 

  



107 

 

 

 

Figure 3.9 The major climate drivers of South Florida precipitation and the δ13C composite index 

from 1922-2005. The phases of a) the AMO (shown with a 7-point moving average) and b) ENSO 

(3-point moving average) are shown in red for the positive and blue for the negative phase. c) Graph 

of the δ13C composite index (green line) and ENSO (blue line), both shown with a 3-point moving 

average. The warm (red) and cool (blue) phases of the AMO are represented by the colored bars. 

The white bars are the transitions between the positive and negative phases (See table 3.1 for 

definition). The nature of the relationship between the δ13C composite index and ENSO is variable 

and may depend on prevailing phase of the AMO. 
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Figure 3.10 The relationship between ENSO and Key West precipitation under both phases of the 

AMO for the earlywood a) and the latewood seasons b). In both graphs, red indicates the positive 

phase of the AMO, while blue represents the negative phase.  

 

 

  

a) Earlywood 

b) Latewood 
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3.9 Tables 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 AMO Phase Interpretations and Sources. A list of sources and their respective methods 

used to define the phases of the AMO. 

 

 

  

Source Phases Method

Enfield et al., 2001
- 1965-1994                                

+ 1930-1959

Constructed a 10 year running mean of global SST 

anomalies from Kaplan et al., 1998 for the period 

1920-1995. 

Grey et al., 2004

- 1971-1979                                 

+ 1925-1970                               

-1903-1924

1567-1990 proxy record derived from tree-ring 

global tree ring chronologies

Knudsen et al., 2011

+ 1998- present                        

- 1956-1997                               

+1925-1964                                                

- 1880 - 1924

Subtracted the annual global mean SST anomalies 

from HadlSST from the annual mean North Atlantic 

SST for the period 1870-2008.

Figure 3.4

+ 1996- present                         

- 1963-1995                                   

+1929-1963                                      

- 1920 - 1926
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Table 3.2 Results of the Linear Mixed Effects Model. Results of the LME model used to compare        

changes in radial tree growth measured by dendrometers and cumulative precipitation at different 

intervals. Tree growth and precipitation were the fixed effects and tree ID was considered a                  

random effect. Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 

  

Fixed Effects Estimate Std. Error df t-value p-value

Interval Precip 9.82E-05 2.03E-05 1.21E+02 4.826 4.10E-06 ***

30 Day Precip 9.90E-05 2.13E-05 1.21E+02 4.659 8.2E-06 ***

60 Day Precip 2.44E-05 1.58E-05 1.21E+02 1.539 0.1265

Table 3.2 Results of the linear fixed effects modelLinear Mixed Effects Model 
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CHAPTER 4: TROPICAL CYCLONE ACTIVITY RECORDED IN PINUS ELLIOTTII TREE-

RINGS ON A SUBTROPICAL ISLAND IN THE FLORIDA KEYS 

4.1 Abstract 

The science of extreme event attribution is an emerging field; however, the lack of high-resolution 

spatial and temporal paleoclimate data greatly reduces the applicability of the science to the field 

of tropical cyclone research. The slash pine, Pinus elliottii Engelm. var. densa, of the Lower Florida 

Keys are potentially invaluable repositories of past tropical cyclone activity; the nature of tree-ring 

growth allows for perfect annual to sub-annual resolution and the trees are in a prime location to 

record storms originating from the Atlantic Ocean, the Caribbean Sea, and the Gulf of Mexico. 

Previous studies for trees along the Atlantic Coastal Plain and the Gulf Coast of the United States 

have shown that coastal pines integrate tropical cyclone-derived precipitation as depletions in their 

oxygen isotope (δ18O) records. In order to determine if this relationship between tree-ring cellulose 

δ18O values and tropical cyclone activity extends to South Florida, I conducted a stable isotope-

dendrochronological study of four trees from Big Pine Key. Latewood cellulose samples were 

analyzed for δ18O over the period 1922-2005. The trees showed some variability in their individual 

oxygen isotope chronologies; however, small differences in their overall average δ18O values (± 

1‰) indicated that the trees were utilizing the same source waters. Applying a 100 km radius 

around Big Pine Key, the composite δ18O residual record successfully associated 56% of the 

depleted residual values (≤-0.1) with known tropical cyclone activity. The percentage increased to 

66% when the radius was increased to 225 km. Carbon isotopes were also considered in both the 

latewood samples and the earlywood samples of the following year. Storm intensity dictated which 

isotope residual captured the event. Tropical depressions and cyclones can produce significant 

amounts of rain and resulted in the overall most depleted δ18O residuals in the record (up to -0.6). 

The minor (categories 1-2) and major hurricanes (categories 3-5) could potentially show a depleted  

δ18O residual value; but, instead, were more likely to have an enriched δ13C residual value in the 
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earlywood of the following year. These enrichments could be the result of storm surge, such as in 

2005, but, lack of evidence of storm surges during the corresponding years, suggests that wind 

damage is the cause. Of the 25 tropical cyclones that occurred from 1922-2005, six were not 

recorded by the tree-ring cellulose. The lack of representation in the δ18O residual record was likely 

an effect of a mild tropical cyclone impact or, as in the case of Hurricane Wilma (2005), the 

dampening of the precipitation signature by subsequent evaporative-enrichment of the soil water. 

Additionally, four years appeared as false positives (residual value ≤-0.1) in the δ18O residual 

record, but were lacking documentation of nearby tropical cyclone activity. Three of these years 

occurred during the positive phase of El Niño Southern Oscillation (ENSO) and the depleted 

oxygen isotope values could be a result of changes in atmospheric circulation pattern from El Niño 

or they could be the result of precipitation from far-reaching rain bands of tropical cyclones situated 

over the Yucatan Peninsula. 

 

4.2 Introduction  

Recently, several studies have been published on the emerging field of extreme event attribution. 

The relatively new science aims to conclusively link individual extreme and record-setting weather 

events such as floods, heat-waves, and superstorms to atmospheric forcings brought about by global 

climate change. For example, in the first study of its kind, Schaller et al. (2016) found that changes 

in atmospheric composition related to human activity increased the probability of a low pressure 

area coupled with increased zonal flow forming in the North Atlantic. The greater likelihood of 

these factors occurring concurrently led to extreme precipitation and subsequent property damage 

in England in 2014 (Schaller et al., 2016). Complications in attributing the occurrence of extreme 

weather events to climate change arise when there are uncertainties in the definition of what would 

be considered the natural climate variability of a system versus anthropogenically-induced climate 

change (Trenberth et al., 2015; Stott et al., 2016). Erraticism in the magnitude and frequency of 
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some extreme weather events, such as anomalously low and high temperatures or precipitation, 

influenced by climate change can be distinguished from normal climate fluctuations (Cornwall, 

2016; NASEM, 2016). Yet, highly destructive hurricanes and typhoons are relatively small on a 

global scale and too complex to model as a result of incomplete and historically limited records 

(Cornwall, 2016; NASEM, 2016).  

 

While all extreme weather events can result in significant damage and property loss, hurricanes and 

tropical cyclones accounted for over 47% of the weather and climate related damage in the United 

States between 1980 and 2011 (Smith and Katz, 2013). The impacts of coastal hazards (sea level 

rise and hurricanes) are expected to increase as the population increases and additional people 

relocate to coastal settings (Nicholls et al., 2007; Crossett et al., 2013). At present, the coastlines, 

which account for 10% of the land area in the United States, are home to 39% of the population 

and that number is expected to continue to increase over the next several decades (Crossett et al., 

2013). Excessive urbanization along the coasts has resulted in a disproportionally high percentage 

of people and property exposed to the immediate effects of climate change. Miami and New York 

City are among the top three world coastal cities with assets vulnerable to climate and weather 

related damage, with the combined present-day values exceeding $335 billon (Hanson et al., 2011). 

There is an immediate need for risk-reduction planning for several of the major cities along the 

Eastern coast of the United States (Hanson et al., 2011); however, the challenges in predicting the 

future behavior of destructive tropical cyclone activity make it difficult to construct accurate 

models (Cornwall, 2016).     

 

There does not seem to be a consensus on how the frequency and intensity of tropical cyclone 

activity will be affected by climate change. The tropical Atlantic has warmed over several tenths 

of a degree Celsius in the last few decades, but it is unknown how this increase in temperature will 
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affect cyclogenesis (Santer et al., 2006). There have been conflicting reports on the frequency, 

intensity, duration, rainfall projections, and track probability of future hurricane seasons under the 

projected warmer sea surface temperature scenarios (Mann and Emanuel, 2006; Landsea, 2007; 

Mann et al., 2009; Knutson et al., 2010). The specific details aside, many forecasting models 

converge to indicate a shift to lower frequency, but higher intensity storms in an atmosphere with 

projected 2100 greenhouse gas concentrations (Knutson et al., 2010). Disagreements among 

scientists concerning the uncertainties in Atlantic Basin tropical cyclone behavior are likely related 

to the quality and availability of the source data used in model calculations. 

 

Many of the issues with forecasting future trends of tropical cyclone activity and with the attribution 

of changes in tropical cyclone behavior to climate change stem from incomplete historical data 

before the era of aircraft reconnaissance and satellite-based meteorology. Without an established 

baseline of tropical cyclone cyclicity under multiple climate oscillation regimes, it is difficult to 

extract current trends in activity. It has been argued that the number of tropical cyclones occurring 

before 1940 may have been underestimated, particularly if the storm made landfall near a sparsely 

populated area, and that current estimates of historical tropical cyclone counts may not represent 

the true multidecadal variability (Landsea, 2007; Vecchi and Knutson, 2008). Pre-1940 records of 

tropical cyclone data are limited temporally and spatially and rely on the historical record keeping 

in ship logs, newspaper reports, and diaries. Some areas, such as South Carolina, have very detailed 

and complete records and allow for local reconstruction back to the 1770’s (Mock, 2004); however, 

this level of detail appears to be an exception for the Gulf Coast and Atlantic Seaboard (Landsea, 

2007; Mann et al., 2009; Hippensteel, 2010).  

 

The historical instrumental records have been supplemented and extended through the analysis of 

geologic proxy archives in marginal marine settings (Liu and Fearn, 2000; Hippensteel, 2010). The 
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science of paleotempestology (Emanuel, 2003) utilizes the appearance of marine overwash deposits 

(tempestites) in coastal ponds and marshes (Liu, 2007; Wang and Horwitz, 2007; Liu and Fearn, 

2000; Hippensteel, 2010) and beach ridge storm deposits (Nott and Hayne, 2001) to reconstruct 

past tropical cyclone landfalls. Tempestite deposits have been useful in reconstructing millennial 

scale variability in tropical cyclone impacts; however, they are limited in number, must be carbon 

dated, and require relatively large storms that are powerful enough to push detectable volumes of 

sediment inland (Liu and Fearn, 2000; Liu, 2007; Mann et al., 2009). Speleothems (Frappier et al, 

2007), corals (Hetzinger et al., 2008) and tree-rings (Miller et al., 2006) have been used to refine 

the resolution to decadal and multidecadal timescales. It is possible to achieve annual resolution in 

the growth bands of speleothems and corals; however, both are restricted to specific geographic 

areas. Therefore, tree-rings may provide the best option for a widespread, high-resolution proxy for 

past tropical cyclone impact reconstructions.  

 

Recent isotope-dendrochronology studies along the Atlantic Coastal Plain and the Gulf of Mexico 

have shown that anomalies in the oxygen isotope composition of tree-ring cellulose correlate to the 

passage of tropical cyclones (Miller et al., 2006; Nelson, 2008; Lewis, 2009). In a proof of concept 

study, Miller et al., 2006, compared the occurrence of 18O-depleted oxygen isotope values in 

seasonally-resolved tree-ring cellulose with the available historical records for a site in southern 

Georgia. A strong correlation was found between negative oxygen isotope residuals and hurricanes 

occurring within 400 km of the sampling site with documented localized rainfall over the period 

1940-1997 (Miller et al., 2006). The 220-year study also compared well with the historical 

documentation for southern Georgia before the era of modern instrumental records and discovered 

potential evidence of previously undocumented tropical cyclone activity in the region. One such 

event, the Great Hurricane of 1780, one of the most deadly Atlantic hurricanes on record, passed 

through the Eastern Caribbean and was suspected to have impacted the United States; however, no 
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prior evidence had been found (Sandrik and Landsea 2003; Miller et al., 2006). Subsequent studies 

conducted in the Florida Panhandle and South Carolina (Nelson, 2008) and Texas (Lewis, 2009) 

have had similar success in detecting historical tropical cyclone activity, as well as, showing 

decadal to multidecadal variability in precipitation and seasonal moisture stress (Miller et al., 2006; 

Brienen et al, 2012) The degree to which the trees at each site corresponded to the instrumental 

record varied; however, this new method shows promise as a viable addition to the tropical cyclone 

proxy archive.  

 

The subtropical region, particularly around the Caribbean Sea, is notoriously underrepresented in 

dendrochronology studies; however, it holds promise as a vast repository of paleotempestology 

archives. Just to the north, on the boundary of the Caribbean Sea region, lies the Florida Keys 

archipelago, which extends roughly 200 km southeast into the Straits of Florida between the United 

States mainland and the island of Cuba. The Florida Keys are in a unique geographical location 

because their adjacency to two warm, regulatory water bodies, the Gulf Stream and the Gulf of 

Mexico, gives them a mild, tropical-maritime climate and an increased likelihood of experiencing 

tropical cyclone activity originating from the Atlantic Ocean, the Gulf of Mexico, or the Caribbean 

Sea. The dominant pine rockland canopy species found in the Lower Florida Keys is the slash pine, 

Pinus elliottii Engelm. var. densa, which has been shown to produce visible dateable rings 

(Tomlinson and Craighead, 1972; Harley et al., 2011). The subtropical P. elliottii var. densa trees 

have the potential of recording tropical cyclone activity occurring in both the Atlantic and Gulf of 

Mexico basins. Not all hurricanes have equal effects on the land they pass depending on a multitude 

of variables, i.e. the distance, speed, and direction of the storm at its closest approach, and some 

storms produce damaging winds but very little precipitation. Therefore, combining both the carbon 

and oxygen isotope records in P. elliottii var. densa tree-rings could provide a more complete 

picture of the tropical cyclone activity around the northern Caribbean Sea region.  
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4.2.1 Dendrochemistry 

Trees are potentially invaluable sources of paleoclimate data. They have a wide spatial distribution, 

offer data in perfect annual resolution, and many species are sensitive to small changes in their 

environment. Andrew Douglass, the “father of dendrochronology” (Schweingruber, 1988), was one 

of the first researchers to recognize and explore the potential of using tree-ring width as a proxy for 

the reconstruction of variability in past climate (Fritts, 1976). He observed that radial growth in 

pines was frequently limited by climate; specifically, that pines growing in the American Southwest 

produced narrow rings in the years experiencing regional drought conditions (Douglass, 1909; 

1920). Douglass developed the method of crossdating, where distinct patterns in tree-ring growth 

are matched in increasingly older samples, to allow for the construction of annually-resolved 

chronologies that extend beyond the age of the oldest living trees sampled (Fritts, 1976). However, 

individual and site-wide index data derived from ring width measurements alone may not capture 

the nuances of the tree-environment interactions, particularly in environments such as the tropics 

where seasonality may not be characterized by a regular dormancy period (Worbes, 2002; 

McCarroll and Loader, 2004). The addition of stable isotope analyses to dendrochronology studies 

can provide insight into the biochemical cycles governing tree growth during each season in the 

life of a tree and can be used to infer multi-scale variability in the paleoclimate record (Saurer et 

al., 1997). 

 

The oxygen isotope composition of cellulose is largely controlled by three factors: 1) the combined 

isotopic composition of the source waters utilized by the tree over time (Epstein et al., 1977), 2) 

the evaporative enrichment of leaf water from transpiration (Dongmann et al., 1974), and 3) the 

biological fractionation between cellulose and water and the exchange of oxygen atoms during the 

transfer of sucrose from the leaf to the cellulose production site (Sternberg et al., 1989). There is 

no fractionation associated with the uptake of source water by the roots; however, during 
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transpiration, large fractionations can occur in the leaf causing the leaf water to be enriched in δ18O 

relative to the source water (Rodan et al., 2000; Anderson et al., 2002). The oxygen isotope 

composition of the sucrose produced in the δ18O enriched environment of the leaves is further 

modified through oxygen exchange with the unfractionated source water in the xylem prior to 

cellulose synthesis (Sternberg et al. 1989). The physiological effects of oxygen fixation should be 

relatively constant for the trees growing in the same area, so any fluctuations in the oxygen isotope 

record should reflect isotopic variability in the source waters and, therefore, not require a correction 

factor (Anderson et al. 2002). When looking for tropical cyclone activity preserved in tree-rings, 

the absolute values of the oxygen isotopes are less important than the relative relationships among 

the values from season to season.  

 

The carbon isotope composition of cellulose records regulatory responses by the plant to changes 

in the environment (Francey and Farquhar, 1982; O’Leary, 1988) and it may be used to determine 

sustained periods of sub-optimal growth experienced by the tree. The carbon isotopic composition 

of cellulose is controlled by the fractionation of atmospheric carbon dioxide (the source of carbon 

in plants) as it diffuses through the stomata of leaves during photosynthesis (O’Leary, 1988). 

Variations in δ13C values of tree-ring cellulose reflect temporal changes in environmental 

conditions or climate patterns, such as fluctuations in available soil moisture content, temperature, 

or precipitation (Pearman et al., 1976; Farquhar et al., 1989; Leavitt and Long, 1991). Chapter 3 

gives a detailed description of the process of carbon fixation and the potential causes of variability 

in the δ13C record. The addition of the carbon isotope record to the oxygen isotope-derived tropical 

cyclone identification method establish by Miller et al. (2006) may provide additional information 

about the nature of the storm at the time of impact. For example, a tropical cyclone may have high 

winds or cause a damaging storm surge on Big Pine Key without producing significant amounts of 

precipitation. The oxygen isotope record may not record the event; however, if the tree was 
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damaged in such a way that would require it to enter a mode of increased water use efficiency for 

a sustained period in time, the stress response would stand out in the carbon isotope record. 

 

4.2.2 Oxygen isotopes in meteoric water  

The oxygen isotope value of cellulose is a result of the isotopic compositions of the source waters 

accessed by the plant (Epstein et al., 1977). Trees may obtain their water from the soil, the 

groundwater supply, a nearby body of surface water, or any combination of these. The dynamics 

of the hydrologic cycle dictates the distribution of the oxygen isotopes among its phases and each 

water source has a distinct and characteristic isotopic signature (Dansgaard, 1964; Gat, 1996). The 

oceans are the largest reservoirs of surface water and are thus the main contributors to global 

evaporation (Dansgaard, 1964). Given its primary role in the global hydrologic cycle, ocean water 

was chosen as the reference standard for oxygen isotope analysis (Craig, 1961).  

 

There are three naturally occurring isotopes of oxygen, 16O, 17O and 18O, with relative abundances 

of 99.76%, 0.04% and 0.20%, respectively (Dole, 1949; Hoefs, 1997). Traditionally, the ratio 

between 18O and 16O is measured during isotope analysis and, most commonly, VSMOW (Vienna 

Standard Mean Ocean Water) is used as the international standard to which all samples are 

compared (Craig, 1961; Coplen, 1994). The strength of the chemical bonds vary slightly among 

the isotopes and differences in the amount of energy required to break the bonds results in 

fractionation, or the partial separation of the heavy isotope, 18O, from the light isotope, 16O (Hoefs, 

1997). Equilibrium fractionation of 18O isotopes is temperature dependent (Majoube, 1971) and the 

process follows the rule of thermodynamics where systems in equilibrium will maintain a state of 

minimum energy with the 18O molecules occupying the medium where they are most heavily bound 

(Urey, 1947; Gat, 1996).  Kinetic fractionation occurs when the chemical bonds of the lighter 16O 

are broken more easily through unidirectional diffusion (Gat et al., 2001).  
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The strongly coupled oceanic and atmospheric circulation patterns are responsible for the 

distribution of 18O in reservoirs around the planet. The kinetic fractionation process of evaporation 

results in water vapor that is isotopically depleted in 18O compared to the source water body 

(Dansgaard, 1964). The vapor cools and condenses into clouds that are isotopically enriched 

relative to the vapor surrounding them and Rayleigh distillation controls the isotopic composition 

of precipitation throughout the lifecycle of a cloud (Dansgaard, 1964). The proportion of heavier 

isotopes in precipitation decreases with condensation temperature and 18O is more likely to be 

“rained out” leaving the remaining cloud condensate increasingly more depleted with each rain 

event over time (Dansgaard, 1964). As a result, precipitation is isotopically variable (+5 to -55 ‰, 

globally, Rozanski et al., 1993; Helsen, 2006) spatially and temporally depending on the distance 

and latitudinal gradient from the evaporative source, the topography of the land, seasonality, and 

the amount effect (Rozanski et al., 1993; Dansgaard, 1964). The isotopic signature of soil water is 

constantly changing in response to cycles of precipitation and subsequent enrichment in the upper 

soil column through evaporation (Tang and Feng, 2001). Groundwater tends to be more temporally 

isotopically stable because it generally has a long residence time and represents the average of rain 

events over several seasons (Gat, 1996).  

 

4.2.3 Tropical cyclone development and precipitation  

The nature of tropical cyclone development and their propagation across large expanses of warm, 

subtropical ocean water results in precipitation that is characteristically depleted in 18O (Lawrence 

and Gedzelman, 1996). Tropical cyclones (i.e. tropical depressions, tropical storms, and hurricanes) 

are large, 250-600 km in diameter, convective storms that are characterized by low pressure cores 

and counter-clockwise (in the northern hemisphere) spiraling rotation (Neumann, 1993; NHC, 

2016). Atlantic systems generally originate between 10° and 20°N latitude as disturbances or waves 

in tropical waters off the coast of Africa that move in a westerly track (with varying degrees of 
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northwesterly movement, depending on the steering current) across the Atlantic Ocean (DeMaria 

et al., 2001; NHC, 2016). Tropical cyclones may also develop from systems present in the Gulf of 

Mexico and the Caribbean Sea (NHC, 2016). Sea surface temperatures above 26.5˚C to a depth of 

50-60 m are favorable for cyclogenesis as long as the accompanying vertical wind shear is low 

enough to allow for sustained rotation (Gray, 1968). Tropical cyclone development is also affected 

by the June–September rainfall in the western African Sahel and by the prevailing phases of ENSO 

(El Niño years have increased vertical wind shear that discourages hurricane development), the 

AMO (Atlantic Decadal Oscillation) and other large-scale climate oscillations, although the full 

extent the role of interrelated climate oscillations have on cyclogenesis is not yet fully understood 

(Goldenberg et al., 2001; Landsea, 2007). 

 

The Atlantic hurricane season officially begins on June 1st and ends on November 30th, with the 

peak of the season occurring between mid-September and mid-October (NHC, 2016). Tropical 

cyclones are classified by their wind speed and surface pressures and, throughout the lifetime of 

the storm, it can strengthen and abate through multiple stages of the intensity scale. Tropical 

depressions form as low pressure areas associated with thunderstorms and circular winds with 

sustained speeds below 33 kts (NHC, 2016). A storm is upgraded to a tropical cyclone when the 

sustained winds intensify to 34-63 kts; storms with wind speeds greater than 64 kts are categorized 

by numbers (Categories 1 – 5) on the Saffir-Simpson hurricane intensity scale (Table 4.1). Much 

of the damage associated with the passage of a tropical cyclone is from the winds, particularly the 

wind gusts and storm surge for coastal areas (Table 4.2).  

 

The maximum sustained wind speed is a defining characteristic for tropical cyclones; however, the 

amount and distribution of precipitation depends on a multitude of factors and can vary from storm 

to storm. Structurally, tropical cyclones differentiate into the central eye, the surrounding eyewall 
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and the outer rain bands, which can extend for tens to hundreds of kilometers from the center of 

the storm (Holland, 1993; NHC, 2016). The amount of precipitation produced by a hurricane is not 

related to the intensity of the storm (Rappaport et al., 1999). Precipitation within a tropical cyclone 

is asymmetrically distributed depending on storm’s intensity, the speed and location of the storm, 

moisture distribution within the system, and windshear; the amount of rain a location receives also 

depends on the distance from the tropical cyclone and the direction of approach (Lonfat et al., 

2004). The most intense rainfall occurs in the front quadrant of tropical cyclones; however, the 

intensity of the storm dictates whether the maximum rainfall is from the front-left quadrant (tropical 

storms) or the front-right quadrant (Categories 3-5) (Lonfat et al., 2004). Heavy rain also occurs 

around the eyewall and in the rain bands that spiral outward from the center of the tropical cyclone. 

The rain bands can extend hundreds of kilometers from the center of the storm, although their 

maximum radius decreases as the storm intensifies (Lonfat et al., 2004). 

 

The precipitation associated with tropical cyclones has been found to have a characteristically 

depleted δ18O signature (Nicolini et al., 1989; Lawrence and Gedzelman, 1996). Tropical cyclones 

are very efficient rain generators, acting as fractionation chambers, as they constantly rain out the 

heavier 18O water molecules leading to more isotopically depleted precipitation over time 

(Gedzelman, 2003). Rain from tropical cyclones can be >10‰ more depleted in 18O (Lawrence et 

al., 2002) compared to typical summer rainfall (Price et al., 2008). Precipitation is more isotopically 

depleted near the eyewall; however, rain with depleted values has been recorded several hundred 

kilometers from the eye (Lawrence and Gedzelman, 1996). Areas well outside of the cone of 

trajectory can receive large amounts of tropical cyclone-related rain.  As Hurricane Wilma stalled 

over the Yucatan Peninsula in 2005, isotopically depleted precipitation (δ18O <-10‰) was recorded 

in South Florida, over 1000 km away (Price et al., 2008).  Other studies have reported similar results 

without the hurricane making landfall near the study site. Rain bands from Hurricane Opal (1995) 
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produced precipitation low in 18O in Houston, Texas (Lawrence et al., 1998) and the Florida Keys 

received depleted rain from Hurricane Gabrielle (2001) while the storm was stalled in the Gulf of 

Mexico (Lawrence et al., 2004).  

 

4.2.4 Objectives of this study  

The objectives of this study are as follows: (1) to compare the δ18O measurements of latewood rings 

among the four individual Pinus elliottii trees, and (2) to determine the relationship between oxygen 

and carbon isotopes within the α-cellulose of latewood rings and the following season’s earlywood 

rings with the historical hurricane records for the Lower Florida Keys. 

 

4.3 Methods 

4.3.1 Big Pine Key 

The Florida Keys are located at the southernmost tip of the eastern United States, extending in a 

southwesterly arc from mainland Florida (Figure 4.1). The islands are the remnants of two inter-

glacial Pleistocene nearshore carbonate marine deposits; the Key Largo limestone, an ancient coral 

reef tract, and the Miami oolite, the relics of a calcium carbonate sand tidal bar system (Hoffmeister 

and Multer, 1968; Halley and Harris, 1979). The Key Largo limestone is the surficial bedrock in 

the Upper and Middle Keys and is overlain by the Miami oolite in the Lower Keys (Hoffmeister 

and Multer, 1968). Big Pine Key is largest island in the Lower Keys and is located at the junction 

where the two facies meet with a contact depth of 4-6 m (Hoffmeister and Multer, 1968; Coniglio 

and Harrison, 1983). Both limestone formations are permeable but the juxtaposition of the oolite 

overlying the more transmissive Key Largo limestone allows Big Pine Key to support two Ghyben-

Herberg freshwater lenses (Vacher et al., 1992).  
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The Lower Florida Keys exhibit the characteristics typical of a tropical monsoon climate where 

average monthly temperatures rarely fall below 18°C and the seasonality is driven by an annual 

cycle of precipitation (Peel et al., 2007). The wet season, with 71% of the total annual precipitation, 

is generally considered to fall between mid-May through mid-October, with the dry season 

accounting for the remainder of the year (NCDC, 2013). There are strong teleconnections between 

the timing and volume of precipitation and the AMO and ENSO climate oscillations, with El Niño 

winters and positive AMO phases receiving above average precipitation (Enfield et al., 2001; 

Moses et al. 2013). Peak hurricane season for the Florida Keys occurs between September and 

October with occasional storms in August and November (Table 4.3). Monroe County as a whole, 

including both the Florida Keys and the mainland section of the county, has received 32 direct 

hurricane strikes, 15 of which are considered major, between 1900 and 2010; making it the most 

vulnerable coastal county from Maine to Texas (Jarrell et al., 1992, with updates from the National 

Hurricane Center, http://www.nhc.noaa.gov). The island of Big Pine Key has experienced a total 

of 29 tropical cyclone events (depressions, tropical storms and hurricanes) passing within a 100 km 

radius around the island between the years 1992 and 2005 (Table 4.3). 

 

The slash pine, P. elliottii var. densa, is the dominant tree species of the Big Pine Key pine 

rocklands. The pine rocklands are a disturbance-driven community that occupy the highest 

elevations (~3 m) of the lower Florida Keys (Ross et al., 1992). The karstic landscape results in 

shallow pockets of sand, marl, and organic material that support vegetation (Ross et al., 1994; 

USFWS, 1999), and the slash pine growing there have been shown to access both ground water 

and utilize soil water from storm events, when available (Ogurcak, 2015). As a species that 

opportunistically utilizes soil water, P. elliottii var. densa should contain oxygen isotopic records 

within their tree-ring cellulose that reflect changes in climate and preserve tropical cyclone events 

associated with heavy rainfall.  
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The response of slash pine to an extreme hurricane-related event was witnessed on Big Pine Key 

in late 2005 and early 2006. In October of 2005, a 2 m storm surge flooded the Lower Keys as 

Hurricane Wilma passed to the northwest of Florida Bay as it made landfall in central Florida (Ross 

et al., 2009). The receding surge led to areas of widespread P. elliottii var. densa mortality as the 

salinity of the freshwater lens increased and the Florida Bay salt deposits persisted in the soil into 

June of the following year (Ross et al., 2009; Sah et al., 2010; Ogurcak, 2015). The storm surge 

had devastating and lasting effects on the upland vegetation; however, Hurricane Wilma did not 

produce significant amounts of precipitation (2.5 – 4.5 cm) in the Lower Keys (NCDC Climate 

Data Online, https://www.ncdc.noaa.gov/cdo-web/) and, therefore, is not likely to be recorded in 

the oxygen isotope record. However, the event was captured in the carbon record as a peak in 13C 

enrichment (Chapter 2) and ultimately led to the demise of the trees used in this study, as they could 

not recover from the prolonged salt stress (Ross et al., 2009; Sah et al., 2010). 

 

The four P. elliottii var. densa trees analyzed here were collected along a proposed hydrologic 

gradient by staff at the National Key Deer Refuge in April of 2006 from the Hurricane Wilma pine 

mortality zone. A cluster of three tree disk samples were collected less than 30 m from each other 

(approximately 900 m from the coast) from a deeper, more stable part of the northern freshwater 

lens and an additional single sample was selected from the more coastward side of the lens about 

160 m away from the cluster (approximately 750 m from the coast).  

 

4.3.2. Sample preparation and oxygen isotope measurements 

The tree disks were sanded with increasingly finer grit sandpaper to clearly expose the tree-rings. 

A single inch-wide transect from bark to pith was selected and cut from each disk to be used for 

analysis. The transects were carefully chosen to avoid any ring structure anomalies (i.e. compressed 

or highly expanded rings) and termite damage. The samples were photographed and standard 
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dendrochronology techniques following the guidelines described in Cook and Kairiukstis (1990) 

and Fritts (1976)  were used to count and identify the rings in each transect. The early- and latewood 

rings were individually separated using an X-Acto knife under a microscope at 15x magnification. 

The samples were powdered in a Spex 8000M Mixer/Mill until the wood was homogenized and 

the α-cellulose component of the wood was isolated using a method modified after Green, 1963 

(see Appendix 1 for a detailed description of the revised process). 

 

The individual P. elliottii var. densa samples were dated and crossdated using the δ13C method 

described in Chapter 2. Only the latewood samples were analyzed for δ18O because they correspond 

to late summer and fall growth and should represent the height of hurricane season for South Florida 

(August - November). Trees DBH1 and DBH3 were analyzed for the time period 1950-2005 and a 

longer time series, 1922-2005, was analyzed for DBH2 and DBH6 because both trees showed the 

most sensitivity in their δ13C records. The latewood samples were analyzed in duplicates (0.8 – 0.9 

mg, each) on a Finnigan High Temperature Conversion Elemental Analyzer (TC/EA) coupled to a 

Thermo Scientific Delta V isotope ratio mass spectrometer (IRMS) via a Conflo IV continuous 

flow interface. A TC/EA uses high-temperature pyrolysis (1390˚C) to covert solid cellulose 

samples into CO gas in the absence of oxygen. A total of 23 secondary standards were included in 

each run of 13 duplicate samples to ensure the integrity of the data, including IAEA-CH3 (δ18O = 

32.4‰, with a standard deviation ≤0.4‰, n=75). The raw data was corrected to the Sigma-Aldrich 

α-cellulose, δ18O = 31.4‰ (V-SMOW), with a standard deviation ≤0.3‰, n=190, and expressed in 

standard delta notation (Craig, 1961; Coplen, 1994). At times, the fibrous nature of α-cellulose led 

to issues with homogeneity and samples that were found to have a very large standard deviation 

(≥0.75‰) between their duplicates were reanalyzed. The duplicate latewood samples were 

averaged and the combined error for all sample replicates was ± 0.17‰, n= 274. 
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4.3.3. Statistical analyses and residual calculations 

Residual values for the four δ18O and δ13C time series and the combined site index were calculated 

using the methods described in Miller et al. (2006) and by The Laboratory of Tree-Ring Research 

at the University of Arizona (http://ltrr.arizona.edu/). The process removes short-term 

autocorrelation from the time series and makes the recorded isotopic value for each point 

independent of the previous measurement.  A one-year autoregressive-moving-average model (AR-

1) was applied to each dataset to detect anomalies in the isotopic records. First, the data was mean-

adjusted, where the individual means of each dataset were subtracted from the original data. Then, 

the expected values derived from the AR-1 model were subtracted from the observed values in the 

isotopic time series to calculate the individual residual values (residual = observed – modelled 

expected value).  

 

The residual calculations were compared to historical hurricane track records for the years 1922-

2005 within a 100 km radius around Big Pine Key (NOAA Office of Coastal Management, 

https://coast.noaa.gov/hurricanes/). The 100 km radius around the sampling site is an arbitrary 

value that was selected as an initial starting point to try to describe the effects of the hurricanes that 

pass nearest to the sampling location. Previous studies (Miller et al., 2006; Nelson, 2008; Lewis, 

2009; Lewis et al., 2011) have used 200-250 km starting radii with success, but some have had to 

expand up to 400 km in order to explain all of the depleted δ18O residual anomalies (Miller et al., 

2006). In addition, to assess the likelihood that a passing hurricane would be recorded in the δ18O 

cellulose record, precipitation values were obtained from the National Climate Data Center 

historical instrumental climatology database for the closest weather station at Key West (NCDC 

Climate Data Online, https://www.ncdc.noaa.gov/cdo-web/).  

 



128 

 

4.4 Results 

4.4.1 Variability in the oxygen isotopic record among individual trees  

Trees DBH1 and DBH3 were analyzed over the period 1950-2005 and the chronologies for trees 

DBH2 and DBH6 extend back to 1928 and 1922, respectively. Longer chronologies were analyzed 

for DBH2 and DBH6 because they showed the greatest sensitivity to environmental changes in 

their δ13C records. Variability was observed in the absolute values (measured oxygen isotope 

values) of δ18O in the latewood cellulose for all four individual P. elliottii var. densa trees over the 

period 1922-2005; however, all four P. elliottii var. densa trees followed similar trends over the 

span of the time series, particularly between the years 1958-1982 and 1990-2005 (Figure 4.2a-b). 

Discrepancies in the timing of the peaks among the four trees occur throughout the chronology and 

may be a result of differences in individual, localized environments, such as soil depth. The 

standard deviations for individual trees ranged from 0.66 to 0.68, with DBH1 being the least 

variable and DBH6 showing slightly more instability in δ18O values over the time series. The mean 

for the absolute δ18O values among all four trees was 31.2‰. Tree DBH6 showed the overall most 

enriched mean (31.76‰), while DBH2 was the overall most depleted (30.77‰).  

 

Paired t-tests were used to compare and contrast the individual trees with one another. To account 

for the variability among the absolute cellulose values, the time series were normalized by 

calculating the first order differences in consecutive δ18O values, highlighting the year to year 

trends (Figure 4.2b). All trees were compared over the years 1950-2005 with the exception of 

DBH2-DBH6, in which a longer time series, 1928-2005, was used. No combination of two trees 

(DBH1-DBH2, DBH1-DBH3, DBH1-DBH6, DBH2-DBH3, DBH2-DBH6, and DBH3-DBH6) 

was found to be statistically different from each other at the 95% confidence level (Table 4.4).  
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The oxygen isotope residual time series for individual trees and the composite chronology were 

compared to historical monthly and seasonal precipitation records from the Key West weather 

station (Table 4.5). Pearson coefficients and associated p-values were calculated for each 

chronology using only the data for the years 1950-2005. The Key West weather station has the 

most compete monthly precipitation records over this in interval and the monthly average values 

were substituted when data was missing from the record. There is not a clear relationship between 

the amount of precipitation received and the δ18O latewood values. The amount of precipitation 

received in the November was very weakly positively correlated with the oxygen isotope values in 

tree DBH2 and the average composite chronology (p-values = 0.022 and 0.049, respectively). Tree 

DBH2 showed very weak positive correlations with August precipitation and the seasonal total (p-

values = 0.063 and 0.020, respectively) and tree DBH3 has a very weak positive correlation to the 

amount of precipitation in the following January (p-value = 0.024). Tree DBH6 did not have 

significant correlations with any monthly or seasonal precipitation. A previous study by Lewis 

(2009) showed statistically significant positive correlations between precipitation and the latewood 

δ18O values of trees in the southeastern Texas Coastal Plain; however, this relationship may not 

translate to the Lower Florida Keys. The amount of precipitation may not be as important as the 

precipitation source and the contribution of the evaporatively enriched soil water. 

 

The success rate for capturing tropical cyclone events varied among individual trees and the 

composite record (Table 4.6).  Tropical cyclone events are defined as depleted residual values ≤ -

0.1 occurring in years with a corresponding reported storm (Table 4.3). Of the individual trees, 

DBH6 recorded the least number of tropical cyclones, 20%, while DBH3 had the highest 

percentage of storms in its δ18O residual record, 44%. Trees DBH1 and DBH2 each recorded around 

a third of the tropical cyclones, 38% and 33%, respectively. The composite record captured 56% 

tropical cyclones. There were 14 tropical cyclones with at least 5 cm of storm-related rain recorded 
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by the Key West weather station (blue boxes in Figure 4.6), of these, 10 were captured in the 

composite δ18O residual record (71%).    

 

4.4.2 Comparison of the tropical cyclone activity in the δ18O and δ13C record 

The two carbon isotope residual time series were calculated individually using the absolute values 

for the latewood (solid line) and earlywood (dashed line) components of the combined site δ13C 

chronology developed for the four P. elliottii var. densa trees in chapter 2 (Figure 4.3a). The carbon 

isotope residual latewood values are concurrent to the latewood oxygen isotopes residuals and were 

analyzed from the same cellulose latewood samples. The earlywood carbon isotope residuals are 

also included to more accurately assess the lasting effects of tropical cyclones that may have 

affected the trees into the subsequent growth period. The next season’s δ13C earlywood values are 

paired with the previous δ18O isotope latewood season. For example, the earlywood carbon values 

for 1936 are compared to the latewood oxygen isotope residuals for 1935. The residual values 

greater than 0 have been highlighted in a gray box and may represent prolonged periods of stressful 

growing conditions for the trees. The p-value for the combined δ13C residual index is less than 0.01.  

 

The residual values were calculated for each individual tree and for the combined site index. The 

p-values for the residual time series ranged from 0.001 – 0.645 and only trees DBH2 and DBH6 

and the combined site index were considered statistically significant (p ≥ 0.05). The combined site 

index residual δ18O values will be reported in this paper and the resulting chronology is shown in 

figure 4.3b. The definition of the threshold for anomalously depleted δ18O residual values has been 

somewhat arbitrary in the previous literature and is likely heavily dependent on the site-specific 

environment conditions. Miller et al. (2006) determined that residual values ≤ -0.5 could be 

attributed to tropical cyclone related precipitation with confidence; however, that definition would 

exclude the majority of the Big Pine Key data. To assess the tropical cyclone record for the lower 
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Florida Keys, a less stringent threshold of oxygen residual values ≤ -0.1 was applied to the data 

(gray shaded area in figure 4.3b). 

 

The carbon and oxygen residual data sets were compared to the historical tropical cyclone records 

in figure 4.3a-b. There were 29 tropical cyclone-related storms that passed within 100 km of Big 

Pine Key between 1922 and 2005 (Table 4.3). The storms have been divided by intensity into three 

groups: tropical depressions and tropical storms, minor hurricanes (categories 1 and 2), and major 

hurricanes (categories 3-5). Previous studies have excluded tropical depressions from their 

analyses; however, they have been included here because they can produce large amounts of rain 

in South Florida and may influence the δ18O record. The colored vertical lines in figure 4.3 show 

the timing of tropical cyclone events; the major hurricanes are red, the minor hurricanes are orange, 

and the tropical storms and depressions are blue. In years with more than one tropical cyclone, the 

storm with the greatest intensity was chosen to represent that season. Specific data for each storm 

may be found in table 4.3. There were seven reported storms that appeared as false negatives 

(residuals values ≥ 0.1) in the oxygen isotope record and 11 years with depleted δ18O values (≤ 0.1) 

without corresponding storm (false positive). The most depleted δ18O value (-0.644) in the 

composite oxygen isotope record is a false positive in 1973 (Table 4.7). The years 1924 and 1984 

also have relatively depleted false positive values: -0.356 and -0.359, respectively.  

 

Figure 4.4 shows the relationship between corresponding latewood carbon and oxygen isotope 

residuals for the entire length of the time series. The black circles indicate years with reported 

tropical cyclone activity and the gray boxes are years without storms occurring in a 100 km radius 

of Big Pine Key. The data do not follow the predicted relationship of enriched carbon isotope 

residuals corresponding to depleted oxygen isotope residuals during tropical cyclone years. There 

is little difference in the relationship between the carbon and oxygen isotopes during tropical 
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cyclone versus non-tropical cyclone seasons. Only data for the non-tropical cyclone years are 

significant (p-value =0.0012); the p-value for the tropical cyclone data is 0.5386. 

 

The carbon and oxygen isotope residuals for years with reported tropical cyclone activity are 

presented in scatterplots by intensity to better show the nature of individual storms (Figure 4.5a-c). 

In all plots, the circles represent the concurrent latewood residuals for both carbon isotopes and 

oxygen isotopes and the triangles show a one season offset where the current latewood oxygen 

isotope residual is plotted with carbon isotope residual for the next earlywood season. The seasons 

with tropical depressions or tropical storms (Figure 4.5a) showed the most consistently depleted 

δ18O residual values. The years 1941 and 1994 have enriched δ18O residuals. There was very little 

rain (2.39 cm) recorded at the Key West Station for Tropical Storm Gordon in 1994 and the 

unnamed tropical depression in 1941 may have also had very little rain, although there are no 

precipitation records for that year. The δ13C residual data for both the latewood and the offset 

earlywood appear to be unaffected by the passage of tropical depressions and tropical storms. The 

relatively enriched δ13C residual value in the 1941 offset earlywood sample is likely a response to 

some type of stress occurring during that growing season and not a result of the unnamed tropical 

depression in the previous year. 

 

The seven minor hurricanes that occurred during 1922-2005 did not result in depleted δ18O residual 

values or relatively enriched δ13C latewood residual value (Figure 4.5b). There were two seasons, 

1987 and 2005, with enriched δ13C offset earlywood residual values. In 2005, Hurricane Katrina 

had record precipitation (24.54 cm) recorded by the Key West weather station and Hurricane Rita 

was also a very wet storm (9.74 cm); however the signatures of their depleted 18O precipitation 

were likely dampened by the enrichment of soil water and the trees transitioning to groundwater 

during three drier than normal months during that growing season. The relatively large enrichment 
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in the 2005 δ13C offset earlywood residual has been attributed to Hurricane Wilma (Chapter 2). 

Hurricane Wilma did not pass within 100 km of Big Pine Key; however, it created a storm surge 

in Florida Bay that led to a large area of P. elliottii var. densa trees that were unable to recover to 

the salt stress (Ross et al., 2009; Sah et al., 2010).  

 

All major hurricane seasons but three, 1929, 1935, and 1965, resulted in a significantly depleted 

oxygen isotope residuals (Figure 4.5c). The concurrent latewood carbon isotope residuals for all 

storms did not show any significant enrichment; however, positive values in the offset earlywood 

carbon isotope residuals for the 1935, 1948, and, to a lesser extent, 1926 storms indicate that the 

trees may have been damaged by the storms and were still recovering throughout the following 

spring and early summer months. 

 

4.5 Discussion 

4.5.1 Variability in the oxygen isotope records among individual trees 

The oxygen isotope composition of tree-ring cellulose is a result of the combined oxygen isotope 

signatures of all the water sources utilized by the tree over time (Epstein et al., 1977); however, the 

relative proportions of available water reservoirs accessed by trees may vary within a stand. The 

pine rocklands in the Lower Florida Keys are a heterogeneous landscape, where the exposed 

limestone bedrock is interrupted by shallow pockets of soil that support patches of vegetation. The 

areal extent of the soil coverage and the soil depth are variable throughout the rocklands. The 

average soil depth for pine rocklands in the Lower Florida Keys has been reported to be 7.67 ± 0.32 

cm (Ogurcak, 2005); however, this value can vary between 1 cm and 10 cm (Ross et al., 1992). 

The rooting depth of P. elliottii var. densa on average is 2 to 3 m (van Rees and Comerford, 1986), 

and the trees are known to opportunistically use channels and solution holes in the limestone to 

extend their roots through the bedrock to gain access to the water table (Querejeta et al., 2007). The 
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depth to the northern freshwater lens on Big Pine Key is 1.5 m at the highest elevations on the 

island and it should be accessible to the P. elliottii var. densa trees in the pine rocklands (Wightman, 

1990; Ogurcak, 2005). Water source partitioning by P. elliottii var. densa trees on Big Pine Key 

has been observed to vary with season and groundwater is an important source throughout the year; 

although, the P. elliottii var. densa trees can quickly adapt their water conservation strategies to 

take advantage of soil water after a rain event, particularly during the dry season (Ross et al., 1994; 

Ogurcak, 2015).  

 

The variability in the δ18O records among the four P. elliottii var. densa trees suggests that the 

extent to which trees utilize different water sources is controlled by their individual site conditions. 

While all four trees demonstrated periods of extreme enrichment and depletion in their individual 

δ18O records, the timing of these events didn’t always coincide among the trees (Figure 4.2). 

Assuming that all four trees use the same groundwater source and that precipitation and soil water 

are an important contributors to the oxygen isotope signature of the cellulose, the differences among 

the four trees in their isotope time series should be related to the characteristics of the soil 

surrounding each tree. The heterogeneity of the soil distribution throughout the pine rocklands may 

significantly alter the oxygen isotope compositions of precipitation and soil water available to the 

trees. The isotopic signature of soil water is constantly changing in response to the addition of 

precipitation and the subsequent dampening of that precipitation signal through evaporation (Tang 

and Feng, 2001). This cycle of precipitation and evaporation may be amplified in shallow soils; 

particularly during the dry season when the relative humidity decreases. 

 

Analysis of stem water in P. elliottii var. densa trees on Big Pine Key shows that the relative 

contributions of each source water end member at the end of the wet season in November are 30% 

groundwater, 20% soil water, and 50% precipitation (Ogurcak, 2015).  The reported annual δ18O 
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values of each water reservoir utilized by P. elliottii var. densa on Big Pine Key is -3.8‰ for the 

mean weighted precipitation, -3.2‰ to -3.8‰ for groundwater, and the highly variable soil water 

values are between -3.2‰ and -0.2‰ (Ogurcak, 2015). On average, the absolute oxygen isotope 

values for the four P. elliottii var. densa trees did not vary significantly (±1‰), suggesting that they 

are accessing the same source waters. However, while contributing the lowest percentage, the 

oxygen isotope input of the altered localized soil water could account for the variability among 

trees in the absolute oxygen isotope time series. Similar results were reported by Lewis (2009), 

whose work is the only other study, to date, to use more than one tree per site to construct an oxygen 

isotope residual chronology. Inconsistencies in the absolute oxygen isotope records of four 

individual longleaf pines in Texas were attributed to variation in soil moisture available to the trees 

(Lewis, 2009).  

 

The four trees used in the Texas study exhibited significant, but variable, correlations to historical 

precipitation measurements, with the differences being the most significant in the years with the 

least precipitation (Lewis, 2009). No strong relationships were found between the amount of 

precipitation recorded by the Key West station and the δ18O values of individual Big Pine Key trees 

or the composite residual chronologies (Table 4.5). It is possible that the historical Key West 

weather station is too far away from sampling site and it does not accurately represent precipitation 

falling 40 km away on Big Pine Key. The spatial heterogeneity of South Florida precipitation has 

been well documented and precipitation patterns are strongly tied to ENSO and the AMO (Tokay 

et al., 2003; Moses et al., 2013). Rainfall in the Lower Keys follows a south to north and west to 

east gradient, with the northern and western portions of the islands receiving the most rainfall; 

however, the average difference between precipitation amounts at different locations was less than 

10% (Tokay et al., 2003). The P. elliottii var. densa trees have access to groundwater year round, 

unlike the longleaf pines in Texas (Lewis, 2009), but they take advantage of late wet season – early 
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dry season precipitation (Ogurcak, 2015), so it is possible that quantity is less important than the 

isotopic composition of the incoming precipitation in the determination of the absolute oxygen 

isotope values of the cellulose. Although not quantitatively considered here, the relative humidity 

may play a role in determining the δ18O value of cellulose, as has been found in trees growing in 

the monsoon climate of India (Managave et al., 2010). The timing of precipitation may also be 

important in determining the assimilated tree-ring δ18O values; three of the five time series, DBH1, 

DBH6 and the composite chronology, had very weak, but statistically significant, positive 

correlations to November and January precipitation. The trees appear to take advantage of 

uncharacteristic precipitation in the early dry season, but the soil water is unlikely to be associated 

with a depleted tropical cyclone source and evaporation would occur rapidly resulting in a relatively 

enriched δ18O cellulose value. 

 

The success rate of capturing tropical cyclone events in the δ18O residual records varied among 

individual trees. The average success rate for all four trees is 32%; however, the composite δ18O 

residual chronology identified 56% of the tropical cyclones occurring within a 100 km radius 

around Big Pine Key (Table 5.6). Lewis (2009) reported better results for individual longleaf pine 

in Texas, 42%; although, the composite δ18O residual chronology only recorded 50% of tropical 

cyclones. The lower success rates measured in the Big Pine Key trees compared to the Texas pines 

are likely a result of differences in site conditions. The trees in Texas are not reported to have access 

to groundwater, so the δ18O values of the cellulose reflect solely the isotopic values of soil water 

and precipitation (Lewis, 2009). Additionally, the P. elliottii var. densa trees of Big Pine Key could 

potentially have a longer growing season compared to the Texas longleaf pines. The P. elliottii var. 

densa trees may experience cambial dormancy in December and January, although there may not 

be a cessation in growth if there is anomalously high precipitation in the dry season, as suggested 

by the presence of diffuse ring boundaries and IADFs (Harley et al., 2012; Chapter 3). The addition 
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of more precipitation received during December, January, and February of El Niño years, for 

example, may promote cell production and cause the δ18O signature of a homogenized tree-ring to 

skew towards a more enriched value.   

 

The addition of more trees to the composite oxygen residual chronology may increase the success 

rate of detecting tropical cyclone signals in the δ18O residual values. As an alternative, a more high-

resolution method of measuring the δ18O values in tree-rings could be employed to analyze much 

smaller increments of growth; this may reduce the dampening effect of homogenizing the rings and 

highlight tropical cyclone activity that appears to be missing. Nevertheless, the chance a storm 

event will be preserved in the tree-ring record is dependent on the nature and effects of the storm 

and the environment in which the tree is growing. Significant between-tree variability implies that 

very-localized site conditions control the biochemistry of the P. elliottii var. densa trees in the pine 

rocklands of Big Pine Key; however, a meaningful site chronology can still be developed from as 

few as four individual trees in the Lower Keys.   

 

4.5.2 Oxygen and carbon isotopes and the tropical cyclone record 

The composite oxygen isotope residual time series recorded 14 of the 25 (56%) documented years 

with tropical cyclone storms that passed within 100 km of Big Pine Key. Previous studies from 

several sites along the Gulf Coast and the Atlantic Coastal Plain have reported 24% (Nelson, 2008) 

to 83% (Miller at al., 2006) accuracy in detecting tropical cyclones in tree-ring cellulose over the 

time frame encompassing the most complete instrumental records for their respective sites. The 

δ18O residual method has proven to be successful in reconstructing past tropical cyclone activity; 

however, no previous studies have examined the concurrent carbon isotope residuals. The carbon 

isotope values of tree-ring cellulose can highlight periods of depressed and stressful growth for 

individual trees and it may be useful in the identification of historical tropical cyclone events. 
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Precipitation in tropical cyclones is unevenly distributed throughout the structure of the storm and 

some storms produce very little precipitation (Lonfat, 2014) but, the sustained winds from a 

category 2 hurricane are enough to cause lasting damage to a tree (Duryea et al., 1996) (Table 4.2). 

In addition, the Lower Keys are susceptible to wind-induced storm surge, which can be caused by 

a category 1 hurricane, depending on coastal morphology and the angle of approach of the storm. 

The carbon isotope residual records have the potential to capture the tropical cyclones as peaks of 

13C enrichment from significant and lasting damage to trees that may persist into the subsequent 

earlywood season. 

 

There is no significant relationship between carbon and oxygen isotope residuals during years with 

reported tropical cyclone activity (Figure 4.4). This lack of relationship is expected, as there are 

many factors (i.e. available soil moisture, the localized effects of the storm, and the nature of the 

damage to the tree) that are specific to trees as individuals and may influence the both the carbon 

and oxygen composition of the cellulose (McCarroll and Loader, 2004). Storm intensity appears to 

play a role in determining the relationship between concurrent carbon and oxygen residuals and the 

latewood oxygen and the earlywood carbon residuals for the following season (Figure 4.5). 

Tropical storms and tropical depressions can contribute significant amounts of isotopically-

depleted rain which are preserved in the δ18O residual values of the cellulose (Lawrence and 

Gedzelman, 1996; Miller et al., 2006) (Figure 4.5a). Of the nine tropical storm and depression years 

with instrumental precipitation data, six years (1945, 1952, 1976, 1981, 1990, and 1991) have 

significant amounts of storm-associated rainfall (precipitation ≥ 5 cm). Two of the three years with 

little to no storm-associated precipitation, 1969 and 1970, produced significantly depleted oxygen 

residual values. It is possible that they received tropical cyclone-related rain from a tropical cyclone 

occurring outside the 100 km radius defined in this study. Overall, the oxygen residual values in 

the tree-ring cellulose occurring during tropical storms and depressions are the most depleted in 
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both the individual and composite residual records. The concurrent latewood and offset earlywood 

carbon isotope residuals do not indicate that the tropical storms imposed any long-term damage to 

the trees. The possible exception appears as an enrichment in the earlywood δ13C value for the 

growing season following the 1941 tropical depression. The 13C enrichment in the 1942 earlywood 

samples may be the result of sustained drought conditions; July 1942 is the driest month on record 

for Key West (NWS, 2016), or, less likely, the enrichment may have been caused by damage from 

a relatively small unnamed category 3 hurricane that made landfall just south of Miami (NHC, 

2016). While precipitation data for this period in the Key West climatology is unavailable, the 

hurricane reportedly caused severe and destructive thunderstorms in the Lower Florida Keys 

(Brooks, 1945). 

 

The effects of the passage of the minor (categories 1-2) and the major (categories 3-5) hurricanes 

varied by storm. The minor hurricanes, in general, did not imprint a distinct depleted precipitation 

signature in the oxygen isotope record, with the exception of the 1933 and 1999 seasons, which 

both had residual values < -0.1 in the tree-ring record (Figure 4.5b). Both hurricanes are associated 

with record amounts of precipitation for their respective dates of passage in the Key West 

climatology: the unnamed 1933 hurricane (category 2) deposited 34.39 cm of rain and 21.82 cm of 

rain accumulated during Hurricane Irene (category 1)  (NCDC, 2016). Hurricane Georges also set 

record rainfall in September, 1998 (21.28 cm) and was followed by 4.45 cm of precipitation from 

Hurricane Mitch in November (NCDC, 2016); however, the depleted precipitation signal was not 

retained in the oxygen isotope record of the cellulose. The signature of the depleted precipitation 

was likely dampened through evaporative enrichment of the soil water and a possible transition by 

the trees to a larger proportion of groundwater input during a relatively dry period lasting from 

mid-November well into December (NWS, 2016). The signatures of Hurricane Rita (9.47 cm) and 

Hurricane Katrina’s record-setting 24.54 cm of rainfall were also dampened in the tree-ring record 
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and, interestingly, the year 2005 showed the most enriched δ18O value among all the tropical 

cyclone years. In late October, a storm surge caused by the passing of Hurricane Wilma to the 

northwest flooded the rocklands of Big Pine Key (Ross et al., 2009; Sah et al., 2010); this event 

was followed by the most severe drought on record from mid-November through December, with 

29 days in December receiving no precipitation (NWS, 2016). The concurrent 2005 latewood δ13C 

value shows minor enrichment; however, the δ13C residual value for the following earlywood 

season is significantly enriched. The earlywood δ13C value for 2006 is the second most enriched 

measurement in the entire carbon isotope chronology (Chapter 2) and it documents the decline of 

the P. elliottii var. densa trees as they struggled to recover from the storm surge and subsequent 

drought until their deaths in early 2006. 

 

The major hurricanes also resulted in variable signatures in the carbon and oxygen residual records 

of the four P. elliottii var. densa trees on Big Pine Key (Figure 4.5c). Two storms left no impression 

in either isotope residual record: the unnamed hurricane of 1929 and Hurricane Betsy (1965). 

Hurricane Betsy holds the record volume of precipitation for September 8 in the Key West 

climatology, but enrichment of soil water during the drier than average months of November and 

December seems to have overpowered the effect of the hurricane-related precipitation in the oxygen 

isotopic record (NCDC, 2016). Hurricane Isabell (1964), Hurricane Donna and Tropical 

Depression Florence (1960), and the two unnamed hurricanes of 1948 all resulted in significant 

precipitation in Key West (NCDC, 2016) and their δ18O residual records reflect the input depleted 

precipitation. The 1926 hurricane season was the third most depleted δ18O residual value observed 

in the time series (Figure 4.3). An unnamed hurricane of 1926 made landfall in central Cuba as a 

category 4 and skirted the Florida Keys as it moved northeast (NHC, 2016). As with many of pre-

1950 tropical cyclones, it is difficult to find documentation of the impact the storm had on the 

sparsely populated Lower Florida Keys, although, a newspaper from northern Florida reported rains 
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and high winds in Key West (Bradford County Telegraph, 1926). The well-documented Labor Day 

Hurricane was the strongest storm to make landfall in the western hemisphere and caused 

significant destruction in the Middle Keys from a 5-6 m storm surge (Emanuel, 2005; Henson, 

2007). The compact, category 5 hurricane had an eye that was less than 13 km in diameter, the third 

lowest barometric pressure recorded for an Atlantic tropical cyclone, and is estimated to have 

produced wind gusts exceeding 100 km/hr near Big Pine Key (Barnes, 1998 and Emanuel, 2005). 

There is no available record of precipitation in Key West and the weather station in the Middle 

Keys was washed away in the storm (Barnes, 1998; NCDC, 2016). A Key West newspaper reported 

localized tropical storm conditions associated with the passing of the hurricane, but precipitation 

appears to have been minimal (The Key West Citizen, 1935). The δ18O residual value for 1935 is 

very close to zero (-0.005) and does not reflect the influence of a significant amount of depleted 

precipitation; however, both the concurrent and offset earlywood δ13C residual values show 

enrichment. The earlywood δ13C value for 1936 is the most enriched throughout the time series 

(Chapter 2). 

 

The relative enrichment of δ13C residual values in the earlywood following a major hurricane 

appears seven times in the residual records of the 14 major and minor hurricanes (1926, 1935, 1948, 

1960, 1987, 1998, and 2005). In 2005, Hurricane Wilma produced a storm surge that increased the 

salinity of the freshwater lens for several months (Ross et al., 2009; Sah et al., 2010). Slash pine 

have a low salt tolerance and the prolonged exposure to more saline groundwater caused the trees 

to employ water conservation strategies that were recorded as enrichments in the δ13C value of the 

tree-ring cellulose. A 1.4 m storm surge was recorded in Big Pine Key during Hurricane Georges 

(1998) that flooded the coastal hammock communities, but is not thought to have affected the 

higher-elevation pine rocklands (Sea Systems Corporation, 1998; Ogurcak, 2015). The damage to 

the P. elliottii var. densa trees was attributed to high winds (Ogurcak, 2015); Hurricane Georges 
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produced wind speeds greater than 165 km/h as it made landfall to the west of Key West (NHC, 

2016). Florida slash pine have a medium wind-resistance and wind damage from hurricanes may 

not be outwardly apparent, but can cause death several months after the storm (Duryea and Kampf, 

2007). One quarter of slash pines in Central Florida that appeared unscathed by the passage of 

category 4 Hurricane Charley (2004) died from internal storm-related damage three months later 

and the same phenomenon was witnessed after Hurricane Andrew (Duryea et al, 1996; Duryea and 

Kampf, 2007). The reason for the delayed mortality is not well-understood, but it has been 

attributed to the bending and twisting motion of the tree under sustained high winds (Duryea and 

Kampf, 2007). The wind-related damage and subsequent recovery may also explain the uneven 

concentric growth of the tree-rings. 

 

The elevated δ13C residual values in the earlywood of post-hurricane years may indicate a recovery 

period from high wind damage. In 1948, two category 3 hurricanes passed within 25 km of Big 

Pine Key two weeks apart (NHC, 2016). The late September storm had winds in excess of 193 

km/h and caused severe damage around Key West (The Canberra Times, 1948) and high winds and 

flooding were reported on the island of Key West for the October storm (The Key West Citizen, 

1948). Big Pine Key may have also experienced flooding from one or both storms, but the 

associated enriched offset earlywood δ13C residual value is more likely a result of wind damage. 

The Labor Day Hurricane of 1935 and Hurricane Donna (1960), which had nearly identical 

northwesterly tracks across Florida Bay, and the unnamed hurricane of 1926 were powerful 

hurricanes (categories 4-5) at the time of impact (NHC, 2016). There is no 1935 wind data for Big 

Pine Key; however, there was likely some type of wind-related impact because the greatest 13C 

enrichment over the entire 1922-2005 chronology appeared in the 1936 earlywood samples. 

Hurricane Donna had sustained winds greater than 90 km/h (Houston and Powell, 2003) and the 

1926 hurricane had 200-220 km/h winds in the vicinity of Big Pine Key (NHC, 2016). There may 
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have been some flooding associated with the passage of Hurricane Donna, but the most destructive 

storm surges occurred on the southwestern coast of the mainland (Houston and Powell, 2003). 

Flooding was reported 32 km south of the eye of the storm and the tidal gauge at Key West recorded 

a 1.1 m surge (Dunn and Miller, 1961), while the high water benchmark on Big Pine Key was 

estimated to be just over a meter for the northern portion of the island (Harris, 1963). Whether the 

damage was caused by storm surge or high winds, the recovery period for the trees may have been 

prolonged by record droughts in the 1927 and 1961 (NWS, 2016).  

 

4.5.3 Explanation of false negatives and false positives in the oxygen isotope residual record 

No site is going to capture 100% of historical tropical cyclone activity because there are a host of 

factors that contribute to the likelihood that an isotopically depleted tropical cyclone precipitation 

signature will be preserved in the tree-ring record. For example, the nature of the storm (tropical 

cyclones are not homogenous and their effects are not uniform across the entirety of the storms) 

and the coarse sampling resolution (the latewood samples each represent several months of time 

when the tropical cyclone signal may have been dampened through the input of other water sources 

utilized by the tree) can have a significant impact on the final δ18O value of the cellulose. False 

negatives are defined as years when tropical cyclones passed within 100 km of Big Pine Key, but 

were not recorded in the oxygen isotope record as a depleted residual value (≤ 0.01). False negatives 

appeared throughout the chronology and under all tropical cyclone intensity classifications (Table 

4.7). Previous studies report multiple occurrences of tropical cyclones being absent in their oxygen 

isotope residuals records (Miller et al., 2006; Nelson, 2008; Lewis, 2009). The missing active 

tropical cyclone years may be explained by the dampening of the depleted precipitation signal 

through evaporative enrichment of the soil water or, simply, that the storm did not produce 

significant amounts of rain at the study site. In addition, the position of the sampling location 

relative to the track of a hurricane can dictate the isotopic quality of the precipitation received 
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(Munksgaard et al., 2015), so, if water vapor making up the rain has not undergone repetitive 

fractionation, it will not have the characteristic isotopically depleted signature.  

 

Key West precipitation data is not available for three of the seven years with false negatives (1929, 

1941, and 1947). The tropical cyclone events in 1965, 1987, 1998, and 2005 all produced greater 

than 9 cm of precipitation, but, with the exception of 2005, the months of September and December 

were drier than normal (NCDC, 2016 and NWS, 2016). Interestingly, only one tree, DBH2, 

recorded depleted δ18O residual values in 1987 and 1998; this tree may rely on a larger percentage 

of precipitation and soil water compared to the other three trees. As mentioned, 2005 was the 7th 

wettest year in Key West history (1871-2011); however, December 2005 is the driest on record, 

with a monthly cumulative total of 0.127cm of rainfall (NWS, 2016). The effect of the extremely 

dry December, drier than normal following January and February, and added salt stress may have 

been enough to dilute the depleted signal of the tropical cyclone precipitation from the 2005 

latewood ring. 

 

The small 100 km radius of tropical cyclone activity was intentionally chosen to determine the 

effects of tropical cyclones in the immediate vicinity of Big Pine Key and, as a consequence of this 

rigid restriction, several false positives were recorded. False positives occur when depleted oxygen 

isotope residual values are recorded during years when there is no tropical cyclone activity within 

the defined area around the sampling location. Under the 100 km radial restriction, there were 11 

years with depleted δ18O tree-ring cellulose residuals (Table 4.7). When the radius is widened to 

225 km, a value comparable to the previous studies (Miller et al., 2006; Nelson, 2008; Lewis, 2009), 

the number of false positives is reduced to just 4 years; 1923, 1934, 1973, and 1983. There were 

15 additional storms whose tracks passed within 225 km from Big Pine Key, 14 of which were 

tropical storms or depressions and one major hurricane, an unnamed storm in 1924 (NHC, 2016). 
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The most depleted δ18O value in the residual record (-0.644) occurred in the 1973 tree-ring; 

however, there are no tropical cyclones reported within the expanded radius. The rain bands of 

tropical cyclones can extend hundreds of kilometers from the center of the storm (Lonfat et al., 

2004) and the tropical cyclone-related isotope depletions can be significant even in the most distal 

reaches of the cyclone (Lawrence and Gedzelman, 1996). In South Florida, tropical cyclones 

originating from the west tend to have precipitation with more depleted isotopic values, and the 

center of the storm can be on the western side of the Gulf of Mexico basin and still produce 

characteristically depleted precipitation in Florida through the far-reaching rain bands (Price et al., 

2008). In addition, lower latitude locations have more rainfall and more depleted precipitation, in 

general (Lawrence, 1998).The hurricane season of 1973 produced fewer storms than normal 

because it was an El Niño year and it was the first year in over a decade when a hurricane did not 

make landfall in the United States (Herbert and Frank, 1974). However, there were four tropical 

cyclones that developed in the western Caribbean, an unnamed tropical depression, Tropical Storms 

Delia and Gilda, and Hurricane Brenda (NHC, 2016) with rain bands resulting in some precipitation 

recorded by Key West (NCDC, 2016) (Figure 4.6). Similar tropical cyclones formed near the 

Yucatan Peninsula in 1923 and 1934, and Hurricane Barry (1983) traversed Central Florida en route 

to Mexico (NHC, 2016).  It is possible that the four false positives in δ18O the residual record 

resulted from the tropical cyclone-derived precipitation originating from storms occurring several 

hundreds of kilometers away. As an alternative explanation, three of the four years were under the 

El Niño phase of ENSO (1923, 1973, and 1983) and the isotopic value of the precipitation may 

have become more depleted from the addition of continentally-sourced air masses to the southern 

atmospheric circulation patterns (Nelson, 2008). Nelson (2008) reported a similar relationship 

between false positives and El Niño years, including the years 1973 and 1983, in trees along the 

Atlantic Coastal Plain. 
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4.6 Conclusions 

The oxygen and carbon isotope records of the P. elliottii var. densa trees of the Lower Florida Keys 

have been shown to record the influences of tropical cyclone activity occurring both on local and 

regional scales. The δ18O residuals record episodes of tropical cyclone-derived rain and the δ13C 

residuals highlight periods of stress when the trees are recovering from prolonged damage 

potentially caused by storm surge or high winds. Generally, the study of paleotempestology can 

only record the activity of storms that made landfall or skirted the coast before dissipating or 

making a northeasterly turn back into the Atlantic Ocean. However, the isotopic analysis of tree-

rings may allow for the expansion of those boundaries. As more studies like this one are conducted 

along the Gulf Coast, the Atlantic Coastal Plain, and throughout the Caribbean Sea, regional and 

site-specific maps of past tropical cyclone activity could simultaneously be created for hundreds of 

years into the past. There is great potential for analyzing the regional impacts and temporal patterns 

of the major climate oscillations, such as ENSO and the AMO, superimposed on the changes 

brought about by true climate change, all on an annual scale. The science of extreme event 

attribution would greatly benefit from such archives and it could contribute to a better 

understanding of the past, present, and the future of global circulation patterns. 
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4.8 Figures 

 

 

Figure 4.1 Map of the Lower Florida Keys showing the sampling site on Big Pine Key (blue star) 

and the location of the nearest, historically continuous climate station, Key West (red circle). The 

red box in the inset shows the area of the Florida Keys referenced. 
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Figure 4.2 Oxygen isotope values for the four P. elliottii var. densa trees. a) Latewood δ18O 

measurements for individual trees (‰ V-SMOW). Trees DBH1 and DBH3 span the period 1950-

2005, while the time series for DBH2 and DBH6 extend to 1928 and 1922, respectively. b) The 

first-order difference values for each tree in per mil (δ18O t2- δ18O t1). There are variations in the 

amplitudes of the annual values among individuals; however, the trees follow similar trends during 

several periods throughout the time series. 
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Figure 4.3 Combined average carbon and oxygen residuals for the four P. elliottii var. densa trees 

from Big Pine Key over the period 1922 – 2005. a) Carbon isotope residuals for the latewood (solid 

black line) and the one season offset earlywood (dashed line) samples. The gray shaded area 

includes all residuals greater than zero; indicating enriched δ13C values and possible sustained 

periods of environmental stress. b) Oxygen isotope residual values for the latewood tree-rings. All 

residual values less than zero are included in the gray shaded box. Previous studies have defined 

the threshold for anomalously depleted oxygen residual values as ≥ -0.5; however, that value may 

be too stringent for the Big Pine Key data. The solid vertical lines highlight all tropical cyclone 

events within 100 km of Big Pine Key occurring between the years 1922-2005 (See table 4.3). Blue 

lines are tropical depressions and tropical storms, orange lines are minor hurricanes (categories 1 

and 2) and red lines are major hurricanes (categories 3 – 5). In years with multiple tropical cyclone 

events, the color representing the strongest storm is used. 
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Figure 4.4 Plot showing the relationship between corresponding latewood carbon and oxygen 

isotope residuals for the years 1922-2005. The gray boxes represent years when there were no 

reported tropical cyclone activity within a 250 km radius of Big Pine Key, while the black circles 

indicate years with tropical cyclone activity. The data do not follow the predicted relationship of 

enriched carbon isotope residuals corresponding to depleted oxygen isotope residuals during 

tropical cyclone years. There is little difference in the relationship between the carbon and oxygen 

isotopes during tropical cyclone versus non-tropical cyclone seasons.  
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Figure 4.5 Carbon and oxygen isotope residuals by tropical cyclone type for the years 1922-2005. 

In all graphs, the circles represent the concurrent latewood (LW) residuals for both carbon isotopes 

and oxygen isotopes and the triangles show a one season offset where the current latewood oxygen 

isotope residual is plotted with carbon isotope residual for the next earlywood (EW) season. The 

hurricane seasons are labeled by year and, when possible, the label is placed between the two data 

points for each year.  a) Tropical storms and tropical depressions. b) Minor hurricanes (categories 

1-2). c) Major hurricanes (categories 3-5). See text for discussion. 
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Figure 4.6 Satellite images of two tropical cyclones from the 1973 hurricane season. a) Hurricane 

Brenda which formed near the Yucatan Peninsula in late August, arced westward and made landfall 

in the Yucatan. The rain bands are shown extending across the southern Gulf of Mexico to the 

Florida Keys. b) Tropical Storm Gilda formed in the Caribbean Sea and crossed central Cuba as it 

moved out into the Atlantic Ocean. The two storms could have contributed to the precipitation 

recorded by the Key West weather station and to the most depleted δ18O residual value in the tree-

ring chronology. Image source: The National Hurricane Center Archive 

http://www.nhc.noaa.gov/archive. 
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4.9 Tables 

 

 

 

 

 

 

 

 

 

 
   

 

Table 4.1 Saffir-Simpson Hurricane Intensity Scale. Classification of hurricane intensity by wind 

speed. *Actual storm surge inundation depends heavily on coastal morphology, the speed at which 

the hurricane is moving, and the angle of the wind direction relative to the coast. Table is modified 

from Rowlett (2004) and Schott et al. (2012).  
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Table 4.3 Tropical Cyclone Activity for 1922-2005 within a 100km Radius of Big Pine Key. Bold 

font indicates that the eye of the hurricane passed within 25km of Big Pine Key. * Record 

precipitation for that date, as of May 2016. – Instrumental data unavailable. Data from The National 

Hurricane Center (http://www.nhc.noaa.gov) and National Climate Data Center website 

(http://www.csc.noaa.gov/). 
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Table 4.4 Paired T-Test Comparison of Individual Trees. Table contains data for all combinations 

of individual P. elliottii var. densa trees. All trees were compared over the years 1950-2005 with 

the exception of DBH2-DBH6, in which a longer time series, 1928-2005, was used. No 

combination of two trees was found to be statistically different from each other. 
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Table 4.6 Tropical cyclones recorded in the δ18O residual values. An “X” denotes that time series 

recorded an oxygen isotope residual value < -0.01 during years with reported tropical cyclone 

activity. The blue boxes indicate tropical cyclones with at least 5.0 cm of associated precipitation 

recorded at the Key West weather station. 
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Table 4.7 Anomalies in the Oxygen Residual Record. List of years with false negatives and false 

positives in the δ18O residuals in the combined tree time series. False negatives are years with 

reported tropical cyclones occurring within 100 km of Big Pine Key but the storms are not recorded 

in the δ18O residual values (residual values > zero). False positives in the oxygen residual record 

are indicated by residual values less than -0.1 in years without tropical cyclone activity. 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

Trees are repositories of subannual information concerning their physiologic responses to changes 

in its environment. Collectively, tree-ring studies have produced paleoclimate reconstructions 

spanning centuries, yet the vast majority of studies are concentrated in the temperate latitudes of 

the northern hemisphere. There is a dearth of dendrochronology archives for the tropical region. 

The recent interest in high-resolution climate forecast modelling for the coastal regions that are 

highly susceptible to climate change has enhanced the need for reliable tropical paleoclimate 

archives. 

 

Dendrochronology studies are limited in the subtropics because precipitation-driven seasonality 

can lead to the production of complex physical ring structures that are challenging to interpret and 

to crossdate among trees. The slash pine, Pinus elliottii Engelm. var. densa, of the pine rocklands 

in the Lower Florida Keys produces visually distinct rings; however, the frequent appearance of 

intra-annual density fluctuations, IADFs, complicates their dendrochronological interpretation. 

Previous studies using ring width measurements for P. elliottii var. densa in the Lower Keys have 

not been able to establish correlations with the major climate drivers controlling South Florida 

precipitation, the El Niño–Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation 

(AMO). This study utilized the carbon (δ13C) and oxygen (δ18O) isotope records in the tree-ring 

cellulose of four P. elliottii var. densa trees to overcome the limitations of the physical ring 

structures and to extract information about the chemical responses of trees to tropical cyclone 

activity and climate trends and patterns. 

 

The carbon isotope record in both the earlywood (lighter, thin-walled cells growing in the spring 

and early summer) and the latewood (darker, thick-walled cells produced in the late-summer and 

fall) was used to build a chronology. Traditional dendrochronology studies crossdate the patterns 
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in tree-ring width measurements among trees to build a chronology; however, the uneven growth 

of P. elliottii var. densa tree-rings around the circumference of the tree and the inconsistencies in 

ring boundary definition caused by the IADFs makes crossdating difficult. The patterns in the δ13C 

values among the rings were used identify the IAFDs and to crossdate the four trees to construct a 

dateable chronology in the same way ring width patterns are used in traditional dendrochronology 

studies. The IADFs often had δ13C values very close to the adjacent ring, whereas, true annual rings 

had distinctly different signatures. The carbon isotope record is an indicator of the overall condition 

of the tree during the time in which it was growing. A tree that is water-stressed during drought 

conditions will assimilate more 13C that season, which can be identified as a relative enrichment in 

the δ13C value. There were six periods of extreme enrichment in the combined chronology (1922-

2005) that corresponded to the timing of the passage of major hurricanes near Big Pine Key. The 

isotopic analysis of the tree-rings can be used as an alternative to the traditional method of 

measuring ring widths along multiple radii and can provide additional information about climate 

and disturbance events that cannot be inferred from ring width alone. 

 

It has been well-established that the AMO and ENSO have influences over the timing of South 

Florida precipitation; however, the previous dendrochronology studies have been unable to find 

correlations between patterns in ring width and the climate drivers. The carbon isotope records of 

the individual trees were compared to several large-scale climate oscillations and localized 

precipitation measurements on a subannual level. A four-year dendrochronology study showed that 

the P. elliottii var. densa in the lower Florida Keys have an immediate and opportunistic response 

to precipitation. The δ13C values of the earlywood were inversely correlated to April rainfall and 

the δ13C values of the latewood are directly correlated with November precipitation. The same 

counter-intuitive relationship was shown as a relative enrichment of latewood δ13C values during 

El Niño winters when there is an increase in rainfall. The additional precipitation may encourage 
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tree growth, but subsequent dry periods may slow growth and cause the tree to employ water-

conservation strategies. There is a distinct relationship between ENSO and the carbon isotope 

record; however, the prevailing phase of the AMO temporally controls whether the correlation is 

positive or negative. El Niño winters occurring during the cool phase of the AMO leads to more 

enriched δ13C values in latewood cellulose. The complexity in the relationship between tree growth 

and the major drivers of South Florida climate may have prevented previous studies from finding 

correlations between tree growth and ENSO. In addition, the location of the tree along the proposed 

hydrologic transect had a secondary effect on the growth of the tree. The tree located on the distal 

(coastal) edge of the hydrologic gradient was consistently more stressed (δ13C values were overall 

more enriched) when compared to the other three trees. 

 

The oxygen and carbon isotopes in the latewood and the carbon isotopes in the earlywood of the 

following season were compared to tropical cyclone activity occurring within 100km around Big 

Pine Key. Tropical storms and depressions appeared as anomalously depleted values in the δ18O 

residual record, reflecting large amounts of tropical rain, but there was no effect in the δ13C values 

of either the earlywood or latewood rings. The effects of hurricanes varied by storm. The minor 

hurricanes (categories 1-2) left little impact in the δ18O record; however, the earlywood season 

following the passage of Hurricane Wilma is highly enrichened, reflecting the lasting results of the 

storm surge.  Many of the major hurricanes (category 3-5), especially the storms passing within 

25km of the sampling site, were preserved as depletions in the latewood δ18O records and 

enrichments in the δ13C value of the subsequent season. The damage to the slash pine caused by 

sustained high winds during a hurricane can persist well into the next season and could explain the 

enriched earlywood δ13C values. The carbon isotope value of the 1936 earlywood is the most 

enriched value in the entire δ13C chronology and it may be attributed to the high winds 

accompanying the category 5 Labor Day Hurricane of 1935 as it passed to the north of the island. 
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The δ18O records of the cellulose may also capture the signature of depleted rains in the rain bands 

from hurricanes off the eastern coast of Mexico and in the Caribbean. 

 

At the landscape level, all four trees showed responses to changes in localized hydrology relating 

to the phases of ENSO and, indirectly, to the phases of the AMO. The trees concurrently 

documented the isotopically depleted rainfall from tropical cyclone sources and site-wide 

disturbance events, such as the storm surge from Hurricane Wilma. On an individual level, the trees 

had differing responses in their carbon records to the passage of the hurricanes. For example, one 

tree may have been more susceptible to wind damage, resulting in the most enriched δ13C values in 

the time series. Also, the tree on the distal edge of the hydrologic transect had stronger responses 

to incoming precipitation, yet had the fewest occurrences of IADFs. Tree growth is primarily 

influenced by the major climate drivers and the control they exert over the timing of the 

precipitation; however, growth is ultimately controlled by the microenvironment and hydrological 

conditions surrounding the individual trees. 
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APPENDICES  

 

APPENDIX 1 

Tree-ring sample processing and cellulose extraction method 

 The tree-ring samples were separated into individual earlywood and latewood components 

under 15x magnifications using a size 11 blade X-Acto knife. Individual samples were ground to a 

fibrous powder using a stainless steel vial and ball set in a Spex 8000M Mixer/Mill. The period of 

time necessary to powder the wood varied for each individual sample; the heartwood samples were 

consistently denser and, consequently, required at least double the time in the Mixer/Mill than their 

less-dense sapwood counterparts. On average, the P. elliottii var. densa samples spent 25-30 

minutes in the ball mill.  The powdered samples underwent a chemical extraction process to isolate 

the α-cellulose component of the wood using a method modified for processing the samples in test 

tubes after Green (1963). The extraction process removes the mobile resin component and other 

constituents that can jeopardize the integrity of the climate signal of the isotope analysis by 

introducing unnecessary noise among samples (Cullen and Grierson 2006, and Loader et al. 2007). 

 Depending on the amount of available sample, 30-80 mg was placed in fritted test tubes 

and seated in groups of 30 into Teflon holders. The test tube holders were submersed into 1 L 

beakers filled with 600 ml of each solution, covered with a Teflon watch glass, and left in a fume 

hood or a heated water bath for the duration of each step in the extraction process. The samples 

were sonicated in the beakers for 5 minutes each time the solution was changed. Additionally, the 

samples were rinsed in 600 ml of deionized water and sonicated between each of the five stages of 

the extraction process. The rinsing procedure was repeated 3 times, except after the two beaching 

steps, when the rinse was repeated until the pH of the post-sonicated beaker water was equal to the 

pH of the original deionized water. The extraction process takes seven days with an additional 1-2 

days for sample desiccation in a 55-60°C oven. 
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 For the first 48 hours of the extraction process, the samples soaked in 600 ml of a 2:1 

chloroform/methanol mixture. The solution was replaced and sonicated for 3-4 times during this 

48 hour period. The samples were rinsed three times in deionized water following the procedure 

described above. The samples were then soaked in 600 ml of 100% ethanol for a 24-hour period 

and rinsed in preparation of the bleaching steps. During the first bleaching, the samples soaked in 

a solution of 3 g of NaClO2 dissolved in 600 ml of deionized water and 0.9 ml of glacial acetic acid 

for 48 hours in a covered 70°C water bath. The solution was changed and sonicated 5-6 times; this 

step was extended with an additional bleaching for 12 hours if the samples did not appear white at 

the end of the 48-hour period. The samples were rinsed in deionized water until the pH of the post-

sonicated beaker water was neutralized. For the second bleaching step, the samples were submersed 

in a solution of 24 g of NaOH dissolved in 600 ml of deionized water for 24 hours in a closed 70°C 

water bath. Finally, the samples were rinsed in deionized water until neutralized and left to soak in 

deionized water for 24 hours in the fume hood.  Finally, the test tubes were drained and the samples 

were rinsed into wide-mouth 16 ml glass vials using a squeeze wash bottle of deionized water. The 

samples were dried in a 55-60°C oven for 24-48 hours and a small stainless steel spatula was used 

to scrape the dried sample from the bottom of the vials before isotope analysis. 
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APPENDIX 2 

 

Appendix 2 Sample name, corresponding growth year, ring width, δ13C V-PDB, δ13C V-PDB 

corrected to changing historical atmospheric carbon, δ18O V-SMOW and the error (1 sigma ±) for 

δ18O for all samples analyzed in the dissertation research. Sample names are presented in the 

following format: Tree – Ring Number, Ring Type (D - dark or latewood; L – light or earlywood). 

 

 



175 

 

APPENDIX 2 continued 

 

 



176 

 

APPENDIX 2 continued 

 

 



177 

 

APPENDIX 2 continued 

 

 



178 

 

APPENDIX 2 continued 

 

 



179 

 

APPENDIX 2 continued 

 

 



180 

 

APPENDIX 2 continued 

 

 



181 

 

APPENDIX 2 continued 

 

 



182 

 

APPENDIX 2 continued 

 

 



183 

 

APPENDIX 2 continued 

 

 



184 

 

APPENDIX 2 continued 

 

 



185 

 

APPENDIX 2 continued 

 

 



186 

 

APPENDIX 2 continued 

 

 



187 

 

APPENDIX 2 continued 

 

 



188 

 

APPENDIX 2 continued 

 

 



189 

 

APPENDIX 2 continued 

 

 



190 

 

APPENDIX 2 continued 

 

 



191 

 

APPENDIX 2 continued 

 

 
 

 

 

  

6-84L 1928.0 0.30 -24.85 -24.50

6-85D 1927.5 0.25 -24.79 -24.44 31.82 0.10

6-85L 1927.0 0.82 -23.06 -22.71

6-86D 1926.5 0.61 -23.78 -23.44 30.36 0.20

6-86L 1926.0 0.93 -23.61 -23.27

6-87D 1925.5 0.55 -24.24 -23.90 30.56 0.40

6-87L 1925.0 1.54 -24.43 -24.09

6-88D 1924.5 0.94 -24.48 -24.14 30.74 0.06

6-88L 1924.0 1.76 -24.79 -24.45

6-89D 1923.5 0.40 -24.58 -24.25 31.16 0.19

6-89L 1923.0 1.47 -25.02 -24.69

6-90D 1922.5 0.49 -24.47 -24.14 30.90 0.17

6-90L 1922.0 1.54 -24.92 -24.59

δ
18

O  (‰) δ
18

O Error (‰)Sample Year Width  (mm) δ
13

C (‰) δ
13

Ccorr  (‰)      
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APPENDIX 3 

 

Appendix 3: First and second global Empirical Orthogonal Function graphs for data used in Chapter 

3. The data is for the period 1950-2005 and it has been divided into earlywood (EW) and latewood 

(LW) components, representing climate from May - October and November – following April, 

respectively. DBH1, DBH2, DBH3 RW, and DBH6 are the δ13C values for each of the four P. 

elliottii var. densa trees. DBH1 RW, DBH2 RW, DBH3 RW, and DBH6 RW are the ring width 

measurements for each individual tree. KW is the precipitation data for the Key West weather 

station. ENSO and AMO are the El Niño – Southern Oscillation and the Atlantic Multidecadal 

Oscillation. DUST is the African aerosol dust record for Barbados. ACE is the Accumulated 

Cyclone Energy for the Atlantic Basin. 
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