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ABSTRACT OF THE THESIS 

ON SOME TEST STATISTICS FOR TESTING THE POPULATION SKEWNESS 

AND KURTOSIS: AN EMPIRICAL STUDY 

by 

Yawen Guo 

Florida International University, 2016 

Miami, Florida 

Professor B.M. Golam Kibria, Major Professor 

The purpose of this thesis is to propose some test statistics for testing the 

skewness and kurtosis parameters of a distribution, not limited to a normal distribution. 

Since a theoretical comparison is not possible, a simulation study has been conducted to 

compare the performance of the test statistics. We have compared both parametric 

methods (classical method with normality assumption) and non-parametric methods 

(bootstrap in Bias Corrected Standard Method, Efron’s Percentile Method, Hall’s 

Percentile Method and Bias Corrected Percentile Method). Our simulation results for 

testing the skewness parameter indicate that the power of the tests differs significantly 

across sample sizes, the choice of alternative hypotheses and methods we chose. For 

testing the kurtosis parameter, the simulation results suggested that the classical method 

performs well when the data are from both normal and beta distributions and bootstrap 

methods are useful for uniform distribution especially when the sample size is large.  
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CHAPTER I 
INTRODUCTION 

 

Shape parameters are useful in testing normality and robustness studies and widely used 

by researchers in many disciplines. Joanes and Gill (1998) suggested that skewness and 

kurtosis are popular as shape parameters and they could easily be estimated by using higher 

moments. Skewness is a measure of the symmetry of a distribution, and it could be either 

positive or negative. When the coefficient of skewness is equal to zero, it means that the 

distribution is symmetric. If the coefficient is positive, the tail on the right side is longer than 

the left side, and if the coefficient is negative, the tail on the left side is longer than the right 

side (Groeneveld and Meeden, 1984).  

Kurtosis is another important estimator of the shape parameter, which is measuring the 

tailedness of a probability distribution. Balanda and MacGillivray (1988) concluded that 

kurtosis could be vaguely viewed as a location-free and scale-free movement of the 

probability from the tails to its center. It is the same as skewness that the main objective is to 

work as a descriptor of the shape, but it uses different ways to quantify and corresponding 

ways to estimate. In this thesis, we are using the standard measure of kurtosis, which is 

defined by Karl Pearson (1895), who uses the 4th moment of the sample or population dataset 

to measure the heavy tails.  It also should be mentioned that there is another version of 

Pearson’s kurtosis, named excess kurtosis, which is the kurtosis value minus 3. This version 

could be used to compare with a normal distribution.  



	   	  2 

Perez-Meloand and Kibria (2016) considers several confidence intervals and proposed 

some bootstrap version of the existing interval estimators for estimating the skewness 

parameter of a distribution and compared them using a simulation study for a large sample 

size. In addition Ankarali (2009) mentioned that the distribution shape of the variable plays 

an important role in selecting appropriate test statistics among all criteria, in particular in 

small samples with a normal distribution. Another interesting result obtained from them is 

that skewness coefficient follows a normal distribution and the kurtosis coefficient follows a 

skewed distribution.  

Since there are several studies that already have compared the confidence interval of the 

skewness and kurtosis parameters, the literature on the hypothesis testing of skewness and 

kurtosis parameters are limited. In this thesis, we will focus on hypothesis testing of 

skewness and kurtosis parameters and compare them in the sense of nominal size and 

empirical power of the test. 

The comparison will be made on the basis of following characteristics: 

• Different sample sizes 

• Different proposed test statistics 

• Different methods including parametric and non-parametric 

The organization of the thesis is as follows. In Chapter II we review the previously 

proposed estimators and formulate the hypothesis testing for both a single parametric 

method and several non-parametric methods and their relative confidence interval. A 
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simulation study on the nominal size and power of the tests of skewness and kurtosis are 

discussed in Chapter III. As an illustration, some examples for skewness and kurtosis 

have been considered in Chapter IV. Some concluding remarks are presented in Chapter 

V.  
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CHAPTER II 
STATISTICAL METHODOLOGY 

 

In this chapter, we consider some parametric and non-parametric test statistics for 

testing the population skewness and kurtosis.  

2.1 Definitions and Background 

Skewness and kurtosis are viewed as major shape parameters for a probability 

distribution. The skewness of a random variable X is the moment coefficient of skewness. 

In probability theory and statistics, skewness is a measure of symmetry or asymmetry of 

the probability distribution. It could be represented by the third central moment and 

standard deviation as follows, 

𝛾! =
!!
!!
= 𝐸 !!!

!

!
= ! !!! !

! !!! !
!
!
,                   (2.1) 

which 𝛾! is the population skewness parameter, 𝜇! is the third central moment of the 

mean, 𝜇 is the mean, 𝜎 is the standard deviation and 𝐸 is the expectation operator. 

Kurtosis is a measure that considers the “tailedness” of a given probability 

distribution. The standard measure of kurtosis, originating by Karl Pearson, is similar to 

skewness which also employs the moment procedure, in this case the fourth moment of 

the data or population are used instead of the third moment as follows: 

𝛾! =
!!
!!
= 𝐸 !!!

!

!
= ! !!! !

! !!! ! !,                (2.2) 

where 𝛾! is the parameter of kurtosis for population, 𝜇! is the fourth central moment of 

the mean, 𝜇 is the mean, 𝜎 is the standard deviation and 𝐸 is the expectation operator.  
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However for different definitions of skewness and kurtosis, we have different ways 

to evaluate the performance. Let 𝑋!,𝑋!,… ,𝑋! be a iid random sample from a population 

with mean  𝜇 and standard deviation 𝜎. The traditional definition of skewness and excess 

kurtosis, proposed by Cramer (1946), are defined respectively as follows: 

𝑔! =
𝑚!

𝑚!
!/!  

and  

𝑔! =
𝑚!

𝑚!
! − 3, 

where the sample moments for variable X are defined as, 

𝑚! =
!
!

(𝑥! − 𝑥)!.               (2.3) 

2.2 Testing Skewness (Parametric Approach) 

Let 𝑋!,𝑋!,… ,𝑋!be a iid random sample from a population with mean 𝜇  and 

standard deviation 𝜎. Following the work by Joanes and Gill (1998), the three most 

commonly used parametric estimators for skewness from traditional measures, which has 

been developed by SAS and MINITAB are provided below: 

𝑔! =
!!

!!!/!
=

!
! (!!!!)!!

!!!

[!! (!!!!)!]!
!!!

!/! =
!
! (!!!!)!!

!!!

[!!∗ !!! ∗!!]!/!
= ( !

!!!
)!/! ∗ !

!
∗ (!!!!)!

!
!!!

!!
 , 

𝐺! =
!(!!!)
!!!

𝑔!,                          (2.4) 

𝑏! = (
𝑛 − 1
𝑛 )!/!𝑔!. 

It should be mentioned that for large sample sizes, the results do not make a huge 

differences, but for small sample sizes, the results among those three methods of 
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estimators are sometimes significant at 0.05 level. Following Perez-Meloand and Kibria 

(2016), where they constructed confidence interval estimators for the skewness parameter 

of normal, right skewed and left skewed populations; we develop some test statistics for 

testing population skewness and kurtosis. Theoretically, one will reject the null 

hypothesis if the hypothesized parameter value in not included in the confidence interval.  

For normal distribution, Fisher (1930) stated that 𝐸(𝑔!) = 0 which is unbiased, and 

we could easily find that 𝐸 𝐺! = ! !!!
!!!

𝐸 𝑔! = 0 and 𝐸 𝑏! = !!!
!

!
! 𝐸 𝑔! = 0. 

In this thesis, we perform a Z-test to make conclusions about the null hypothesis. As 

given by Cramer (1946), in normal samples the variance of the Fisher-Pearson coefficient 

of skewness (𝑔!) is  

𝑣𝑎𝑟 𝑔! = !(!!!)
(!!!)(!!!)

. 

Then the variance of 𝐺! and 𝑏! are obtained as follows: 

𝑉𝑎𝑟 𝐺! =
𝑛 𝑛 − 1
𝑛 − 2 ! 𝑉𝑎𝑟 𝑔! =

6𝑛(𝑛 − 1)(𝑛 − 2)
(𝑛 + 1)(𝑛 + 3)(𝑛 − 2)! 

𝑉𝑎𝑟 𝑏! = !!!
!

!
𝑉𝑎𝑟 𝑔! = !!!

!

! !(!!!)
(!!!)(!!!)

. 

Following Joanes and Gill (1998) and Perez-Meloand and Kibria (2016), we attempt 

to develop Z-test statistic for testing the population skewness parameter. That means, we 

will test the following null and alternative hypothesis, 

𝐻!:  𝛾! = 𝛾! 

                              𝐻!:  𝛾! ≠ 𝛾!,                  (2.5) 
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and the test statistic using the three estimators 𝑔!,𝐺!,𝑎𝑛𝑑  𝑏!  can be defined 

respectively as follows: 

𝑍!! =
𝑔! − 𝛾!
6 𝑛 − 2

𝑛 + 1 𝑛 + 3

  ,   

𝑍!! =
!!!!!
!! !!!

!!! !!! !!!

  ,                             (2.6) 

𝑍!! =
𝑏! − 𝛾!

6 𝑛 − 2
𝑛 + 1 𝑛 + 3

𝑛 − 1
𝑛

!
!
  , 

where 𝑔!,𝐺!, 𝑏! are previously defined in equation (2.4), n is the sample size, 𝛾! is 

hypothesized value of skewness parameter. We will reject 𝐻! at 𝛼 level of significance 

if the test statistics (𝑍!! ,𝑍!! ,𝑍!!) are greater than 𝑍!
!
, where 𝑍!

!
 is the upper !

!
 

percentile of the standard normal distribution.  

2.3 Testing Kurtosis (Parametric Approach) 

As we introduced kurtosis in equation 2.2 and excess kurtosis is the kurtosis minus 3, 

only one parameter will be discussed in this thesis and the parameter we are using is 

designed by excess kurtosis. For further discussion, we will refer excess kurtosis to 

kurtosis by itself. Let 𝑋!,𝑋!,… ,𝑋!be a iid random sample from a population with mean 

𝜇  and standard deviation 𝜎. On the basis of work by Joanes and Gill (1998), there are 

also three most commonly used parametric estimators for kurtosis: traditional measures, 

SAS and MINITAB, which are provided below.  
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𝑔! =
!!
!!!

− 3 =
!
! (!!!!)!!

!!!

[!! (!!!!)!]!
!!!

! − 3 , 

𝐺! =
!!!

!!! !!!
𝑛 + 1 𝑔! + 6 ,                  (2.7) 

𝑏! =
𝑛 − 1
𝑛

!

𝑔! + 3 − 3. 

For normal distribution, Fisher (1930) stated that only   𝐺!  is unbiased thus 

𝐸 𝐺! = 0 while the other two estimators are biased, 𝐸 𝑔! = − !
!!!

 and 𝐸 𝑏! =

3 (!!!)!

!!(!!!)
− 3 ≈ !!"

!!!
. 

As given by Cramer (1946), for normal population the variance of the kurtosis (𝑔!) is 

𝑣𝑎𝑟 𝑔! = !"!(!!!)(!!!)
!!! !(!!!)(!!!)

. 

Then the variance of 𝐺! and 𝑏! are obtained below, 

𝑉𝑎𝑟 𝐺! =
(𝑛 − 1)!(𝑛 + 1)!

𝑛 − 2 !(𝑛 − 3)! 𝑉𝑎𝑟 𝑔! =
24𝑛(𝑛 − 1)!

(𝑛 − 2)(𝑛 − 3)(𝑛 + 3)(𝑛 + 5)

≈ 1+
10
𝑛

24𝑛 𝑛 − 2 𝑛 − 3
𝑛 + 1 ! 𝑛 + 3 𝑛 + 5  

𝑉𝑎𝑟 𝑏! = !!!
!

!
𝑉𝑎𝑟 𝑔! = !!!

!

! !"!(!!!)(!!!)
!!! ! !!! !!!

≈ 1− !
!

!"!(!!!)(!!!)
!!! ! !!! !!!

. 

Similar to skewness, the null and alternative hypothesis for testing the kurtosis 

parameter are generated as follows: 

𝐻!:  𝛾! = 𝛾! 

𝐻!:  𝛾! ≠ 𝛾! ,                            (2.8) 

and the test statistics based on the three estimators (𝑔!,𝐺!  𝑎𝑛𝑑  𝑏!) are defined respectively 

as follows: 
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𝑍!! =
𝑔! +

6
𝑛 + 1 − 𝛾!

24𝑛 𝑛 − 2 (𝑛 − 3)
𝑛 + 1 ! 𝑛 + 3 (𝑛 + 5)

  ,   

𝑍!! =
!!!!!

24𝑛(𝑛−1)2

(𝑛−2)(𝑛−3)(𝑛+3)(𝑛+5)

  ,                           (2.9) 

𝑍!! =
𝑏! − 3

𝑛− 1 3

𝑛2 𝑛+ 1 + 3 − 𝛾!

(𝑛 − 1
𝑛 )! 24𝑛 𝑛 − 2 (𝑛 − 3)

𝑛 + 1 ! 𝑛 + 3 (𝑛 + 5)

  , 

where 𝑔!,𝐺!, 𝑏!  are previously defined as above, n is the sample size, 𝛾!  is the 

hypothesized kurtosis parameter. We will reject 𝐻! at 𝛼 level of significance if the test 

statistics of (𝑍!! ,𝑍!! ,𝑍!!) are greater than 𝑍! !, where 𝑍! ! is the upper !
!
 percentile of 

the standard normal distribution.  

2.4 Bootstrap Approach 

In this section, we will discuss the bootstrap techniques for testing the skewness and 

kurtosis parameters. The bootstrap approach can be applied in any population as it does not 

require any assumption about the distribution, and if the sample size is large enough, the 

process of bootstrap could be very accurate (Efron, 1979). Following Perez-Meloand and 

Kibria (2016) the bootstrap methods can be summarized as follows: Let 

𝑋(∗) = 𝑋!
(∗),𝑋!

(∗),… ,𝑋!
(∗), where the ith sample is denoted 𝑋(!) for i=1,2,…,B, where B is the 

number of bootstrap samples. Parametric method requires normality assumption, however, in 

reality, most of the data do not follow a normal distribution.  
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2.4.1 Bias-Corrected Standard Bootstrap Approach 

Let 𝜃  be a point estimator of 𝜃  (skewness and kurtosis parameter), then the 

bias-corrected standard bootstrap confidence interval for 𝜃 proposed by Perez-Meloand 

and Kibria (2016) as shown below, 

𝜃 − 𝐵𝑖𝑎𝑠(𝜃)± 𝑍!/!𝜎!, 

where 𝜎! =
!

!!!
(𝜃!∗ − 𝜃)!!

!!!  is the bootstrap standard deviation, 𝜃 = !
!

𝜃!∗!
!!!  is 

the bootstrap mean and 𝐵𝑖𝑎𝑠 𝜃 = 𝜃 − 𝜃 is the estimated bias. Now we attempt to 

develop a Z-test statistic for testing the hypothesis of population skewness or kurtosis. In 

this regard, the null and alternative hypothesis are defined below: 

𝐻!:  𝜃 = 𝜃! 

𝐻!:  𝜃 ≠ 𝜃!, 

Then the test statistic for testing the alternative hypothesis can be written as follows: 

𝑍!! =
𝜃 − 𝐵𝑖𝑎𝑠(𝜃)− 𝜃!

𝜎!
  ,   

where   𝐵𝑖𝑎𝑠 𝜃 , 𝜃 are previously defined as above, B is the number of bootstrap 

samples, 𝜃 is population skewness or kurtosis parameter. We will reject 𝐻! at 𝛼 level 

of significance if the test statistic 𝑍!! is greater than 𝑍!
!
, where 𝑍!

!
 is the upper !

!
 

percentile of the standard normal distribution.  

2.4.2 Efron’s Percentile Bootstrap Approach 
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Comparing with bias-corrected standard bootstrap approach, Efron’s Percentile 

method is much simpler to consider the confidence since the confidence interval will 

depend on value of upper 𝛼/2 level of bootstrap samples and lower  𝛼/2 level of 

bootstrap samples (Efron,1987). Firstly we order the sample skewness or kurtosis of each 

bootstrap sample as follows: 

𝜃(!)∗ ≤ 𝜃 !
∗ ≤ 𝜃 !

∗ ≤ ⋯ ≤ 𝜃(!)∗ . 

Following Efron’s (1987), the confidence interval will be given by 

𝐿 = 𝜃
[ !
! ∗!]

∗  and 𝑈 = 𝜃
[ !!!! ∗!]
∗ .  

And we will reject the null hypothesis 𝐻!:  𝜃 = 𝜃!  against alternative hypothesis 

𝐻!:  𝜃 ≠ 𝜃! if  

𝐿 > 𝜃!  𝑜𝑟  𝑈 < 𝜃!. 

2.4.3 Hall’s Percentile Bootstrap Approach 

This is also a non-parametric approach proposed by Hall (1992), which does not 

require the standard deviation. In Hall’s method, he ordered the errors of the estimator 

instead of estimator itself. The errors are ordered as follows: 

𝜀(!)∗ ≤ 𝜀 !
∗ ≤ 𝜀 !

∗ ≤ ⋯ ≤ 𝜀(!)∗ , 

where 𝜀!∗ = 𝜃!∗ − 𝜃. The confidence interval could be obtained in the similar manner as 

previous Efron’s Percentile approach and it is presented below: 

𝐿 = 𝜃 − 𝜀
[ !!!! ∗!]
∗  and 𝑈 = 𝜃 − 𝜀

[ !
! ∗!]

∗ .  

Following Hall (1992), the confidence interval could be simplified as: 
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𝐿 = 2𝜃 − 𝜃
[ !!!! ∗!]
∗  and 𝑈 = 2𝜃 − 𝜃

[ !
! ∗!]

∗ .  

And we will reject the null hypothesis: 𝐻!:  𝜃 = 𝜃!  against alternative hypothesis 

𝐻!:  𝜃 ≠ 𝜃! if  

𝐿 > 𝜃!  𝑜𝑟  𝑈 < 𝜃!. 

2.4.4 Bias-Corrected Percentile Bootstrap Approach 

This method was introduced by Efron (1987) and the first step is we have to find the 

proportion of times that 𝜃!∗ greater than 𝜃, that is, 

𝑃 =
#(𝜃!∗ > 𝜃)

𝐵  

and then find 𝑍!  in order to make 𝜙 𝑍! = 1− 𝑃,  where 𝜙  is the cumulative 

distribution function of standard normal random variable. 𝑍!  will be used as the 

estimator instead of 𝜃 in the following confidence interval, 

𝐿 = 𝜃[! !!!!!!!!/! ∗!]
∗  and 𝑈 = 𝜃[! !!!!!!!!/! ∗!]

∗   

And we will reject the null hypothesis𝐻!:  𝜃 = 𝜃!  against alternative hypothesis 

𝐻!:  𝜃 ≠ 𝜃! if  

𝐿 > 𝜃!  𝑜𝑟  𝑈 < 𝜃!. 

Thomas and Joseph (1998) claimed that bias-corrected percentile bootstrap 

performed better than bias-corrected standard bootstrap and other percentile bootstrap 

approaches; we will employ the simulation study to examine this statement. 
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CHAPTER III 

SIMULATION STUDY 

 

In this chapter, we will compare the performance of the proposed test statistics. We 

conducted a simulation study using through R Version 3.2.1 to compare the performance 

of the test statistics in the sense of nominal size and empirical power of the test. 

3.1 Simulation Study for Skewness 

3.1.1 Simulation Technique 

Even though the proposed test statistics are mainly developed for testing data from a 

normal (or symmetric) population, we will try to see the performance of this tests when the 

data are from a skewed distribution. The flow chart of our simulation study is pointed below: 

(1) Sample size, n=10, 20, 30, 50, 100 and 300. 

(2) 3000 simulation replications are used for each case, 1000 bootstrap samples for each 

simulation replication.  

(3) The normal, right skewed and left skewed distribution are generated below and the 

probability density function of each distribution are located thereafter: 

a) Normal distribution with mean 0 and SD 1 

b) Gamma distribution with shape parameter 4, 7.5 and 10 and scale parameter 1 

c) Beta distribution with alpha parameters 1 and beta parameters 0.35181 and 0.15470 

respectively.  
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Figure 3.1.1.1 Probability density function of N (0,1) distribution 

     

Figure 3.1.1.2 Probability density function of Gamma (4,1) distribution 
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Figure 3.1.1.3 Probability density function of Gamma (7.5,1) distribution 

 
Figure 3.1.1.4 Probability density function of Gamma (10,1) distribution 
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Figure 3.1.1.5 Probability density function of Beta (1,0.35181) distribution 

 
Figure 3.1.1.6 Probability density function of Beta (1,0.15470) distribution 
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3.1.2 Performance for Normal distribution 

 It is well known that the normal distribution is symmetric and the skewness for 

normal distribution equals 0. Under this assumption and at alpha=0.05 level of 

significance, we are expecting to get the power=0.05 from the simulation dataset. Figure 

3.1.1 shows the empirical size of the test when we are testing whether the skewness 

equals 0. It appears from Figure 3.1.1 that the classical method performs the best among 

all methods in the sense of attaining nominal size of 0.05 for different sample sizes. It 

differs only when sample size is small, that is when n=10. Among four types of bootstrap 

methods, only Efron’s Percentile method attained the nominal size of 0.05. For the Bias 

Corrected Standard Method, Hall’s Percentile Method and Bias Corrected Percentile 

Method, the empirical nominal size is beyond 0.1 when the sample size is less than 100. 

However, they attained nominal size 0.05 when the sample size is 300. In this case 

bootstrap methods cannot provide better results than the classical method, despite the 

limit of sample size and complex bootstrap method to test the skewness for normal 

distribution. It should be mentioned that for power test, we deleted the unqualified 

statistics using a 0.05 nominal size and all good test statistics will be demonstrated in the 

graph. 
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Figure 3.1.1 Empirical size of testing skewness=0 with different methods and sample size 

Figures 3.1.2 to 3.1.7 show the empirical power against different hypothesized 

values for all proposed test statistics with different sample sizes: n=10, 20, 30, 50, 100 

and 300. The X-axis represents different hypothesized values and Y-axis is the empirical 

power. We would expect to have the empirical power close to 1 when increasing the 

hypothesized value from 0 to a larger value. From these six figures it appears that 

empirical powers are close to 1 when skewness equals to 2 or less than 2.  

From Figures 3.1.2 to 3.1.7, we can also see that for small sample sizes and near the 

null hypothesis or for large sample sizes and for high skewness, the power of the tests do 

not vary greatly. However, for small sample size with moderate departure from null 

hypothesis, the power of the tests varies among the test statistics. Among all test statistics 

using the proposed estimators we examined, the classical method is more powerful when 

the sample size is small (say 10) while for sample size greater than 10, Efron’s Percentile 
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Method shows absolute advantage other than classical method. Overall, the power 

approaches 1 when the alternative hypothesis is testing for skewness=2.  

 

Figure 3.1.2 Power of testing skewness of N (0, 1) in different methods when n=10 

 

Figure 3.1.3 Power of testing skewness of N (0, 1) in different methods when n=20 

Both the classical and Efron’s Percentile methods show acceptable results. By 

changing the alternative hypothesis, the Efron’s Percentile is getting close to other 

bootstrap methods and apparently away from the classical method. The power increases 
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slightly to 1 when skewness=1.6 and 1.2 respectively for n=30 and 50.  

 

Figure 3.1.4 Power of testing skewness of N (0, 1) in different methods when n=30 

 

Figure 3.1.5 Power of testing skewness of N (0, 1) in different methods when n=50 

When we consider the larger sample size, say 100, the classical method is less 

powerful than the bootstrap methods when we are testing skewness=0.2, 0.4 or 0.6. The 

power increases sharply to 0.9 for all methods when skewness=0.8 and it goes up steadily 

to 1 from that point on. When the sample size goes up to 300, the power rises by an order 
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of magnitude from 0.05 to 0.7 when the skewness shifts from 0 to 0.4, and thereafter, it 

increases gradually until 1 when skewness=0.6. Thus, it may be concluded that the 

classical method shows a little less power than Efron’s Percentile method for moderate 

departure from null value, and when the sample size is large enough, there is no 

significant difference among bootstrap methods. However, it is noted that when the 

classical and Efron’s Percentile methods attain a nominal size 0.05, other proposed 

bootstrap methods, from data in a normal population, are not useful.  

 

Figure 3.1.6 Power of testing skewness of N (0, 1) in different methods when n=100 
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Figure 3.1.7 Power of testing skewness of N (0, 1) in different methods when n=300 

We analyzed the performance of test statistics using sample size with different 

methods separately. Figure 3.1.8 and 3.1.9 illustrates the power of testing skewness in 

different sample size with classical method and Efron’s Percentile Method only as other 

methods failed to perform. Those two figures indicate that if the sample size is large 

enough, there seems no obvious difference among those three test statistics. The 

difference is only visible when the sample size is small, say n=10. Within each test 

statistic using those three estimators, increasing the sample size could improve the power 

of test for both classical and Efron’s Percentile Method. Moreover, we find that the test 

statistic based on 𝐺! has the smallest power while the test statistic of estimator 𝑏! has 

the highest power within each sample size. 
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Figure 3.1.8 Power of testing skewness of N (0, 1) in different sample size with Classical Method 

 

Figure 3.1.9 Power of testing skewness of N (0, 1) in different sample size with Efron’s Percentile Method 
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3.1.3 Performance for Gamma distribution 

Even though the parametric methods are developed for testing the skewness 

parameter of normal distribution, we made an attempt to apply this method along with 

bootstrap methods to other asymmetric distributions, which will be discussed in the next 

section.  

The skewness of the gamma distribution depends on the scale parameter only. For 

instance, the skewness of Gamma (𝑘,𝑝) is !
!
. At alpha=0.05 level of significance, we 

are expecting the nominal size 0.05 from the simulation data when we are testing the 

skewness equal to !
!
. Figures 3.1.10 and 3.1.11 illustrate the empirical sizes for testing 

the skewness=1 of Gamma (4,1) and skewness=0.63 of Gamma (10,1) respectively. 

Unfortunately, the results are not acceptable for both parametric and bootstrap methods 

for Gamma (4,1), while the results are closer to 0.05 for Gamma (10,1). For small sample 

size n=10, as Efron’s Percentile method is under 0.05 limit, it can be chosen as a good 

test statistic. By increasing k, the shape of gamma distribution became closer to the 

bell-shaped “normal” distribution, which allowed us to find a nominal size closer to 0.05. 

We consider the following gamma distribution in simulations: Gamma (4, 1) , Gamma 

(7.5, 1) and Gamma (10, 1) and the full results could be found in the Appendix A2 to A4. 

Following Figures 3.1.10 and 3.1.11, we find that the nominal size is much closer to 0.05 

from Gamma (10, 1) than from Gamma (4, 1). Because of the imperfect results, we can 

organize a graph to see the trend of changes of power as a reference but not encourage 
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using these results as conclusive. The classical method is selected from all five methods 

as the relatively best result, which shows the trend of power changes from above 0.05 to 

1 in Gamma (10, 1). In Figure 3.1.12, we can find the test statistic based on estimator 𝐺! 

is less powerful for a small sample size, say n=10 or 20 when other conditions are the 

same. When sample size increases to 100 in the simulation, we can easily find test 

statistic of 𝐺! has lower power while that of 𝑏! has higher power. By increasing the 

sample size to 300 two results were gathered: the power increases sharply to 1 at 

skewness=2 and stays at 1 thereafter, and there is no apparent difference among the test 

statistics based on these three estimators. In the contrast, when the sample size is small, 

say n=10, the power rises gradually to 1 at skewness=3. In this thesis, we will not discuss 

more about the results deeply but they are provided in Appendix A2 to A4 as a reference.  

 

Figure 3.1.10 Empirical size of testing Gamma (4,1) skewness=1 with different methods and sample size 
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Figure 3.1.11 Empirical size of testing Gamma (10,1) skewness=0.63 with different methods and sample 

size 

 

Figure 3.1.12 Power of testing skewness of Gamma (10,1) in different sample size with Classical Method 

3.1.4 Performance for Beta distribution 

Besides gamma distribution, we also make an attempt to test beta distribution using 

the same proposed estimators defined for normal distribution. Comparing with the results 
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from gamma distribution, the beta distribution results are more convincible. The 

skewness of beta distribution Beta (𝑎, 𝑏) can be calculated by ! !!! ∗ !!!!!
(!!!!!) !∗!

. For the 

beta distribution, we used Beta (1, 0.35181) with skewness=-1 and Beta (1, 0.15470) with 

skewness=-2. Under alpha=0.05 level of significance, we are expecting to get empirical 

nominal size 0.05 from the simulation data when we are testing whether the skewness 

equal to ! !!! ∗ !!!!!
(!!!!!) !∗!

.  

Firstly we start with the simulation of Beta (1, 0.35181) and Figure 3.1.13 shows the 

results when we are testing whether the skewness equals to -1 with respect to the X-axis 

represents the different sample size and Y-axis stands for empirical power. When the 

sample size is small, especially n=10, the performance among the test statistics using the 

three proposed estimators differs a lot, only 𝑔! and 𝐺! from Classical Method and 

Efron’s Percentile Method could make it or others are more than 0.05. By increasing the 

sample size to 20 and 50, the difference is not that significant as n=10, all results could be 

acceptable except 𝑏!  from Bias Corrected Standard Method and Hall’s Percentile 

Method. And Bias Corrected Percentile Method is the most accurate method to do the 

hypothesized test when n=20. When sample size is 30, the test statistic calculated with 

the estimator 𝑏! from Hall’s Percentile Method and 𝐺! from Bias Corrected Percentile 

Method are not acceptable. While the sample size is large enough, such as n=100 and 300, 

the results from all testing are as good as what we expected. Especially when samples 

size is 300, all methods provide nominal size of approximating 0.05 except classical 
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method. Therefore, we may conclude that the larger the sample size is, the more accurate 

the bootstrap method is. The classical method is difficult to show any advantages if we 

employ the large sample size from non-normal distribution.  

Figure 3.1.13 Empirical size of testing skewness=-1 with different methods and sample size 

Figure 3.1.14 to 3.1.19 are discussing the empirical power against different 

hypothesized values for all proposed test statistics with different sample sizes: n=10, 20, 

30, 50, 100 and 300. When the sample size is small, only the classical method and the 

Bias Percentile Method are acceptable and Figure 3.1.14 shows the power for those two 

methods. The power increases steadily to 1 when testing skewness greater than 1. The 

test statistic based on estimator 𝑔! is stable no matter how the other two test statistics 

change on power. If the alternative hypothesis value is less than 0, the performance of 

test statistic based on estimator 𝐺! shows more power than that on 𝑏! while the test 

statistic based on estimator 𝑏! provides higher power than that on 𝐺! if alternative 
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hypothesis value is greater than 0.  

 

Figure 3.1.14 Power of testing skewness of Beta (1, 0.35181) in different methods when n=10 

For sample size= 20, 30, 50, the Bias Corrected Percentile Method provides more 

power than other methods. Consider testing skewness equal to -0.4 or below, when n=20, 

we could not confirm that classical tests or bootstrap method are powerful but after -0.4, 

Efron’s Percentile Method shows good power and Hall’s Percentile Method provides 

least power under same condition. The results for n=30 are quite same as n=20, the only 

difference is Hall’s Percentile Method gives the least power but after -0.2, classical 

method works as least powerful. When n=50, the classical method is less powerful than 

other methods. When the sample size is large enough to 100 and 300, there is no obvious 

difference among bootstrap methods but apparent difference between bootstrap methods 

and classical method, which provides lower power under same condition.  
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Figure 3.1.15 Power of testing skewness of Beta (1, 0.35181) in different methods when n=20 

 

Figure 3.1.16 Power of testing skewness of Beta (1, 0.35181) in different methods when n=30 
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Figure 3.1.17 Power of testing skewness of Beta (1, 0.35181) in different methods when n=50 

 

Figure 3.1.18 Power of testing skewness of Beta (1, 0.35181) in different methods when n=100 
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Figure 3.1.19 Power of testing skewness of Beta (1, 0.35181) in different methods when n=300 

We considered power changes with different sample size for each method 

respectively shown in Figure 3.1.20 to 3.1.24. Among all five methods show that with 

increase of the sample size, the power rises sharply to 1. When n=300, the power to 1 

when skewness=-0.4. For a smaller sample size of 100, the power increase to 1 at 

skewness=0 for classical method, while other methods provides early arrival at 

skewness=-0.2. When sample size is 50, the methods do not make big difference about 

gradual increase to 1. If the sample size is small, such as 10, the power rises slowly to 1 

and the performance of classical method is not consistent. When we are testing skewness 

equal to 0 or less, the test statistic derived from the estimator 𝑏! shows lower power 

while on 𝐺!  provides higher power. However, the performance of these two test 

statistics exchanges when we are testing skewness greater than 0. For large sample size 

100 and 300, the performance of different methods or test statistics are getting closer and 
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no apparent differences could be viewed. Figure 3.1.23 illustrates the power changes for 

the test statistics based on those three proposed estimators. From the classical method 

with different sample size and when n=20, 30, 50, we could get a result that the test 

statistic using the estimator 𝐺! performs better than the other two test statistics, and that 

on 𝑏! is the least powerful estimator. However, with increase about the testing skewness, 

they eventually perform as one line and the performance will be similar when we are 

testing skewness=1 or greater than 1.  

 
Figure 3.1.20 Power of testing skewness of Beta (1, 0.35181) in different sample size with Classical 

Method 
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Figure 3.1.21 Power of testing skewness of Beta (1, 0.35181) in different sample size with Bias Corrected 

Standard Method 

 
Figure 3.1.22 Power of testing skewness of Beta (1, 0.35181) in different sample size with Efron’s 

Percentile Method 
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Figure 3.1.23 Power of testing skewness of Beta (1, 0.35181) in different sample size with Hall’s Percentile 

Method 

From Figure 3.1.24, we observe that the power changes of moderate departure from 

null hypothesized value to a large value. We may conclude that when Bias Corrected 

Percentile Method is used with a Beta distribution, the power goes up rapidly to 1 for 

large sample size when testing skewness=-0.2 and -0.4 for n=100 and 300 respectively. 

Even though sample size is not that large, only little difference can be observed among 

three test statistics. However for sample size 10, the performance of the test statistics 

based on the three estimators is not stable, that will be depending on the testing 

hypothesized value.  
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Figure 3.1.24 Power of testing skewness of Beta (1, 0.35181) in different sample size with Bias Corrected 

Percentile Method 

Below Figure 3.1.25 displays the results when we are testing whether the 

skewness=-2 or not for Beta (1, 0.15470), the X-axis represents the different sample size 

and Y-axis stands for empirical power, all three proposed test statistics using the 

estimators are analyzed as what we did for Beta (1, 0.35181). When the sample size is 

small, especially n=10, we are not able to confirm which method or estimator performs 

better, only the test statistic based on 𝐺!  from Bias Corrected Percentile Method, 

Classical Method and Efron’s Percentile Method can make it or others are more than 0.05. 

With the increase of sample size to 20, only results of test statistics based on estimator 

𝑔! and 𝐺! from Efron’s Percentile Method could be acceptable. Comparing to a sample 

size of 20, we have to add the test statistics based on Efron’s 𝑏! estimator to test the 

power when n=30. For sample size 50, even though the results among three test statistics 
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of 𝑔!, 𝐺! and 𝑏! from Bias Corrected Percentile Method are a little beyond what we 

need, we still keep them, as we would like to compare it with large sample size 300. The 

test performance based on estimator 𝑔!, 𝐺! and 𝑏! from Efron’s Percentile Method 

could meet the requirement. While the sample size is large enough, such as n=100 and 

300, the results from most of the estimators are good as what we expected. Especially 

when samples size is 300, all methods provide power about 0.05 except Classical Method. 

Thus we may conclude that the bootstrap method will be more accurate with increase of 

the sample size and Classical method is not use for Beta (1, 0.15470) except small sample 

size 10.  

 

Figure 3.1.25 Empirical size of testing skewness=-2 with different methods and sample size 

When sample size equals to 10, we only have below four lines from Figure 3.1.26 

acceptable due to limitation of critical value, however, the test statistics based on Efron’s 

𝐺! could not be acceptable since the power doesn’t go up until testing skewness=-0.4. 
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We are expecting a rise with each increase in testing skewness but failed in testing the 

skewness based on this estimator. All other three test statistics show gradual increase 

about the power but we do not see a power 1 in this graph, when we test skewness=1, 

power could be near 1.  

From Figure 3.1.27 and 3.1.28, we get a gentle increase in power to 1 at 

skewness=-0.2 and skewness=0 respectively. And under same situation, the test statistic 

based on 𝐺! provides higher power than that based on 𝑔!. However there is still some 

drawback in n=20 and 30 which is at the beginning we increase the skewness, we catch a 

constant or even decrease power other than gradually increase as a whole.  

When n=50, as we expected, Figure 3.1.29 shows the power reached 1 when 

skewness=-0.6. The test statistic based on the estimator 𝐺! in Efron’s Percentile Method 

provides a higher power while on b1 in Efron’s Percentile Method shows lower power.  

By increasing sample size to 100, the results from Figure 3.1.30 seems more 

reasonable than small sample size, the power rises slightly to 1 at skewness=-0.6. 

However in this sample size, the peak and weak power changed to 𝐺! in Bias Corrected 

Percentile Method and Hall’s Percentile Method respectively.  

When the sample size is large enough, n=300, the power rises to 1 rapidly at 

skewness=-1.2 and most of the lines are overlapping thus it is not easy to identify which 

measurement performs best.  
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Figure 3.1.26 Power of testing skewness of Beta (1, 0.15470) in different methods when n=10 

 

Figure 3.1.27 Power of testing skewness of Beta (1, 0.15470) in different methods when n=20 

 

Figure 3.1.28 Power of testing skewness of Beta (1, 0.15470) in different methods when n=30 
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Figure 3.1.29 Power of testing skewness of Beta (1, 0.15470) in different methods when n=50 

 

Figure 3.1.30 Power of testing skewness of Beta (1, 0.15470) in different methods when n=100 

 
Figure 3.1.31 Power of testing skewness of Beta (1, 0.15470) in different methods when n=300 
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Since Efron’s Percentile Method was employed through all kinds of sample size 

from 10 to 300, we could conclude that higher sample size can make higher power under 

same alternative hypothesis. However the performance of different test statistics based on 

those proposed estimators vary greatly with changes of sample size. And we may 

conclude that for a large sample size with Efron’s Percentile Method, the test statistics 

based on estimator 𝐺! performs best whereas the test statistics based on estimator 𝑏! 

performs worst, but if sample size is greater than 300, no obvious differences among 

those test statistics can be observed.  

 
Figure 3.1.32 Power of testing skewness of Beta (1, 0.15470) in different sample size with Efron’s 

Percentile Method 
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Figure 3.1.33 Power of testing skewness of Beta (1, 0.15470) in different sample size with Bias Corrected 

Percentile Method 

 
Figure 3.1.34 Power of testing skewness of Beta (1, 0.15470) in different sample size with Hall’s Percentile 

Method 
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Figure 3.1.35 Power of testing skewness of Beta (1, 0.15470) in different sample size with Bias Corrected 

Percentile Method 

3.2 Simulation Study for Kurtosis 

3.2.1 Simulation Technique 

Since a theoretical comparison among the proposed test statistics is not possible, a 

simulation study has been conducted to compare the performance of the test statistics in the 

sense of attaining the nominal size and empirical power. Even the proposed test statistics are 

mainly developed for testing data from a normal (or symmetric) population, we will try to see 

the performance of this tests when the data are other than normal, say long tailed distribution. 

The flow chart of our simulation study are (not limited) given below and the probability 

density function of each distribution are located thereafter: 

(4) Sample size, n=10, 20, 30, 50, 100 and 300. 

(5) 3000 simulation replications are used for each case, 1000 bootstrap samples for each 

simulation replication.  
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(6) The normal and non-normal distributions are generated as following: 

d) Normal distribution with mean 0 and SD 1 

e) Beta distribution with shape parameter 2 and scale parameter 5 

f) Uniform distribution with shape parameters 0 and scale parameters 1. 

 
Figure 3.2.1.1 Probability density function of N (0,1) distribution 
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Figure 3.2.1.2 Probability density function of Beta (2, 5) distribution 

 

Figure 3.2.1.3 Probability density function of Uniform (0, 1) distribution 
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3.2.2 Performance for Normal distribution 

As we defined before, the test statistic is based on excess kurtosis, which is kurtosis 

minus 3, and for later discussion all about excess kurtosis refers to kurtosis.  

Normal distribution is a prominent mesokurtic distribution, which has zero excess 

kurtosis. Under this assumption and at alpha=0.05 level of significance, we are expecting 

to get the power=0.05 from the simulation data. Figure 3.2.1 shows the empirical size of 

the test when we are testing the kurtosis equals to 0. It is obvious to see that the classical 

method performing the best among all methods in order to attain nominal size 0.05 for 

different sample size. It should be mentioned that the test statistic from Efron’s 𝐺! 

estimator performs perfectly when n=30, otherwise the bootstrap methods cannot provide 

any good results than classical method.  

 

Figure 3.2.1 Empirical size of testing kurtosis=0 for different methods and sample size 
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Figure 3.2.2 to 3.2.7 are discussing the empirical power against different 

hypothesized values for all proposed test statistics with different sample sizes: n=10, 20, 

30, 50, 100 and 300. The X-axis represents different hypothesized values and Y-axis 

stands for empirical power and we are expecting the empirical power close to 1 with 

increasing the hypothesized value from 0 to a large value. From these 6 figures, the 

empirical power appears to reach 1 when kurtosis equals to 3 or above.  

It is not difficult to find from Figures 3.2.2 to 3.2.7 that for small sample size, say 10, 

with moderate departure from null hypothesis the power of the tests differs among the 

test statistics. Among all sample sizes near the null hypothesis, the power of the test does 

not vary greatly. Overall, the power approaches 1 when the alternative hypothesis is 

testing for kurtosis=3 except when sample size is 10.  

 

Figure 3.2.2 Power of testing kurtosis of N (0, 1) in different methods when n=10 



	   	  48 

 

Figure 3.2.3 Power of testing kurtosis of N (0, 1) in different methods when n=20 

From Figure 3.2.4 and 3.2.5, only test statistics from classical methods and Efron’s 

𝐺! show acceptable results. With changing the alternative hypothesis, three estimators of 

the classical method are getting closer to each other and apparently away from Efron’s 

Percentile Method. The power goes up moderately to 1 when kurtosis =3 and 2.6 

respectively for n=30 and 50.  

 

Figure 3.2.4 Power of testing kurtosis of N (0, 1) in different methods when n=30 
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Figure 3.2.5 Power of testing kurtosis of N (0, 1) in different methods when n=50 

When we consider the larger sample size, even though the bootstrap method is more 

powerful than classical method, bootstrap methods are still not useful when data are 

coming from a normal population as they cannot make the nominal size 0.05 of testing 

kurtosis=0. Thus classical method is employed as the most appropriate method for testing 

the power.  

When sample size is 100, the power increases sharply to 0.9 for classical methods 

when kurtosis =1.4 and it goes up steadily to 1 from that point on. When the sample size 

goes up to 300, the power rises significantly from 0.05 to 0.8 when the kurtosis shifts 

from 0 to 0.8 and thereafter it increases gradually until 1 when kurtosis =1.2. Thus it may 

be concluded that with increase of the moderate departure from null value, the difference 

among three proposed estimators are not significant, especially when n=300, three test 

statistics are getting almost same. 
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Figure 3.2.6 Power of testing kurtosis of N (0, 1) in different methods when n=100 

 

Figure 3.2.7 Power of testing kurtosis of N (0, 1) in different methods when n=300 

Since only classical method works for testing kurtosis=0 when distribution is normal, 

we are discussing the trend from Figure 3.2.8. However, we are not able to confirm the 

relationship between sample size and test statistics when the sample size is 100 and under. 

However, we could conclude that if the sample size is large enough, the power is almost 
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same for all test statistics based on those proposed estimators and if the sample size is 

small enough, the test statistic of 𝐺!  performs least power among those three test 

statistics.  

 

Figure 3.2.8 Power of testing kurtosis of N (0, 1) in different sample size with Classical Method 

3.2.3 Performance for Beta distribution 

We employ Beta (2, 5) in this section to test performance of test statistics based on 

those three proposed estimators for the kurtosis. Without normality assumption and at 

alpha=0.05 level of significance, we are still expecting to get the power=0.05 from the 

simulation data. Figure 3.2.9 shows the empirical size of the test when we are testing the 

kurtosis equals to -0.12 for Beta (2, 5). It is obvious to see that the classical method 

performing the best among all methods in order to attain nominal size 0.05 for different 

sample size. It should be mentioned that the test statistic from Efron’s 𝐺! performs 
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perfectly when n=30 and Bias Corrected Percentile Method is approaching to 0.05 with 

increasing the sample size, otherwise the other bootstrap methods cannot provide any 

good results than classical method.  

 

Figure 3.2.9 Empirical size of testing kurtosis=-0.12 for different methods and sample size 

When sample is small, say 10, Figure 3.2.10 provides the measures which can get 

nominal size 0.05 while testing kurtosis =-0.12. And we are expecting the power increase 

gradually to 1 but 𝐺! from Bias Corrected Percentile Method does not show rise to 1. As 

the increase is slow, 𝑔! from Classical Method is approaching to 1 at testing kurtosis 

=-0.12. Similar to the results when sample size is 10, Figure 3.2.11 shows slow increase 

to 1 for both test statistics and under same condition the test statistics based on estimator 

𝑏! performs better. Following Figure 3.2.12, 𝐺! from Classical Method and Efron’s 

Percentile Method are selected as good performance. The Efron’s Percentile Method 

provides higher power than Classical method while after testing kurtosis equals 1 the 

Classical Methods tends to perform better instead.  
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Figure 3.2.10 Power of testing kurtosis of Beta (2, 5) in different methods when n=10 

 

Figure 3.2.11 Power of testing kurtosis of Beta (2, 5) in different methods when n=20 
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Figure 3.2.12 Power of testing kurtosis of Beta (2, 5) in different methods when n=30 

When the sample size is large, the changes of power do not vary among three test 

statistics greatly from samples size equal to 50. The power of the test increase gradually 

to 1 at testing kurtosis =1.8 or above. However for sample size 300, the power rises 

rapidly when we are testing kurtosis =1.2. It also should be mentioned that, we include 

the test statistics based on the estimators from Bias Corrected Percentile Method when 

n=100 and 300, but this bootstrap method show lower power than Classical Method. 

Thus we may conclude that both Classical Method and Bias Corrected Percentile Method 

are working for this distribution but the latter method only presents good results when the 

sample size is large. However, Classical Method is appropriate for all sample size and 

more accurate for large sample size.  
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Figure 3.2.13 Power of testing kurtosis of Beta (2, 5) in different methods when n=50 

 

Figure 3.2.14 Power of testing kurtosis of Beta (2, 5) in different methods when n=100 
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Figure 3.2.15 Power of testing kurtosis of Beta (2, 5) in different methods when n=300 

As we discussed above, the classical method is more appropriate than bootstrap 

methods in testing kurtosis of Beta (2, 5). Figure 3.2.16 shows the changes about the 

power in different sample size for three proposed estimators and it appears that large 

sample size are more sensitive about increase to 1 and under same testing value, large 

sample size could provide higher power. For sample size other than 100 and 300, it is 

difficult to identify which test statistic performs well. 



	   	  57 

 

Figure 3.2.16 Power of testing kurtosis of Beta (2, 5) in different sample size with Classical Method 

3.2.4 Performance for Uniform distribution 

Uniform distribution is a typical type of platykurtic distribution, which has a 

negative excess kurtosis value and thinner tails. Without normality assumption, we are 

still expecting nominal size 0.05 from the simulation data. We employed continuous 

uniform distribution Uniform (0, 1) and the excess kurtosis is -1.2 for any parameter. 

Figure 3.2.17 shows the empirical size of the test when we are testing the kurtosis equals 

to -1.2. It is apparent that the classical method does not perform well at any sample sizes 

in the sense of attaining nominal size 0.05. The results from Bias Corrected Percentile 

Method do not vary greatly for different sample size and keep stable around 0.05. It also 

should be mentioned that when the sample size is large, say 100 or above, all bootstrap 

methods are performing well except b1 from Hall’s Percentile Method. The test statistic 
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based on estimator b1 from Hall’s Percentile Method is significant for all sample sizes, 

even though the nominal size decrease nearly to 0.05, the result is about 0.1. For Bias 

Corrected Standard Method, Efron’s Percentile Method, Hall’s Percentile Method, the 

empirical nominal size is far less than 0.05 when sample size is less than 50. However, 

they attained nominal size 0.05 when sample size is large, that is 100 and 300. In this 

case bootstrap methods can provide better results than the classical method, despite the 

limit of sample size.  

 

Figure 3.2.17 Empirical size of testing kurtosis=-1.2 for different methods and sample size 

Figure 3.2.18 to 3.2.23 are discussing the empirical power against different 

hypothesized values for all proposed test statistics with different sample size: n=10, 20, 

30, 50, 100 and 300. The X-axis represents different hypothesized values and Y-axis 

stands for empirical power. We deleted the test statistics that are not performing good and 

the empirical power approaches close to 1 with increasing the hypothesized value from 

-1.2 to a large value. From these 4 figures, it appears that the empirical powers are close 
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to 1 when kurtosis equals to 1.8 or above except for small sample size 10. When we are 

doing the simulation with small sample size, the power of the test statistic based on 

estimator 𝐺!  from classical method decreases with increasing the departure to null 

hypothesized value. After the sample size goes up to 20, we include testing kurtosis 

parameter based on 𝑏! from classical method and Bias Corrected Standard Method 

besides Bias Corrected Percentile Method. However, these two methods both show a 

decrease when we increase the hypothesized value which is not reasonable. Moreover, we 

can see that for Bias Corrected Percentile Method, the power of the tests do not vary 

greatly for near the null hypothesized value or for high kurtosis.  

 

Figure 3.2.18 Power of testing kurtosis of Uniform (0, 1) in different methods when n=10 
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Figure 3.2.19 Power of testing kurtosis of Uniform (0, 1) in different methods when n=20 

For sample size 30 and 50, only Bias Corrected Percentile Method shows acceptable 

results. The power rises slightly to 1 when kurtosis=1.2 and 0.2 respectively for n=30 and 

50. When we consider the larger sample size, say 100 and 300, all bootstrap methods are 

performing good except the test statistic based on estimator 𝑏! from Hall’s Percentile 

Method. The power of the tests increase rapidly to 1 when testing the kurtosis= 0.4 and 

0.8 for n=100 and 300 respectively. However, it is noted that since the classical method 

do not work, the proposed bootstrap methods are useful when data are not coming from a 

normal population especially when sample size is large and Bias Corrected Percentile 

Method is the most appropriate method in both small and large sample size.  
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Figure 3.2.20 Power of testing kurtosis of Uniform (0, 1) in different methods when n=30 

 

Figure 3.2.21 Power of testing kurtosis of Uniform (0, 1) in different methods when n=50 

 

Figure 3.2.22 Power of testing kurtosis of Uniform (0, 1) in different methods when n=100 
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Figure 3.2.23 Power of testing kurtosis of Uniform (0, 1) in different methods when n=300 

As Bias Corrected Percentile Method is viewed as the most appropriate method for 

testing kurtosis in uniform distribution, Figure 3.2.24 is discussing the changes of the 

power under same methods but different sample sizes. It is obvious that under same 

hypothesized value, the large sample size provide higher power. And the test statistic 

based on estimator 𝐺! provides lower power while that based on 𝑏! supports higher 

power under same testing hypothesized value and sample size.  

 
Figure 3.2.24 Power of testing kurtosis of Uniform (0, 1) in different sample size with Bias Corrected 

Percentile Method 
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CHAPTER IV 
APPLICATIONS 

 

In this chapter we will discuss four examples to illustrate the performance of the test 

statistics based on the three estimators. In the following two sections we consider normal 

and non-normal distribution data for testing the skewness and kurtosis respectively.  

4.1 Examples for skewness 

We got a dataset in regards to 48 SIDS (Sudden Infant Death Syndrome) cases 

observed in King County, Washington during the years 1974 and 1975 (Belle at el., 

2004). However, we used only one variable, birth weights (in grams) of these 48 cases in 

our study. Using this data the results of test statistics for testing the skewness for various 

alternative hypothesis are presented in Table 4.1.1. Before testing the hypothesis, we 

would like to confirm that whether the data follow normal distribution or not. The Q-Q 

plot of the data is presented in Figure 4.1.1, which supported the assumption of normality. 

Moreover we have performed the Shapiro test (test statistic, W=0.9832, p-value=0.7168), 

which also confirmed that the data follow normal distribution. We can easily find from 

Table 4.1.1, the classical method could correctly reject the null hypothesis when we 

departed the skewness from hypothesized value, say skewness=0.7. From that on, the 

classical method performs very well, however, the Bias Corrected Standard methods 

shows unusual results which even reject the hypothesis when hypothesized value is close 

to null hypothesis. The Efron’s Percentile method could make good decision at same 
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point of classical method does, and other bootstrap method shows positive function when 

the distance keep increasing. 

 
Figure 4.1.1 Normal Q-Q plot for SIDS data in Example 1 

 
Table 4.1.1 Testing skewness for n=48 normal distribution data 

 

Another example, which is used to test the skewness, is also related to SIDS. We 

obtain a dataset consists of 78 cases of SIDS occurring in King County between 1976 and 
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1977 (Morris et al, 1993). Then they recorded the age at deaths (in Days) of 78 cases of 

SIDS and finally classify them into 11 different age intervals. For each age interval, the 

number of deaths was recorded and eventually the number of deaths is employed in this 

example study. The Q-Q plot of the data is presented in Figure 4.1.2, which didn’t 

support the assumption of normality. Moreover we have performed the Shapiro test (test 

statistic, W=0.82135, p-value=0.0329), which cannot support normality assumption as 

well. By using classical method, the results of testing the statistics based on 𝑔! and 𝑏! 

could reject the null hypothesis when testing skewness=2.0 while Bias Corrected 

Standard method does not perform correctly in this test. For bootstrap method, only when 

the testing hypothesized value is large enough, say skewness=1.9 and above, the results 

from the test statistics based on estimator 𝑏!  from Efron’s Percentile and Hall’s 

Percentile method can provide a good solution to make a correct decision, otherwise the 

other methods can not.  
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Figure 4.1.2 Normal Q-Q plot for number of death in Example 2 

Table 4.1.2 Testing skewness for n=11 non-normal distribution data 

 

4.2 Examples for kurtosis 

We acquire a small dataset from the paper by Robertson et al (1976), which 

discusses the level of plasma prostaglandin E (iPGE) in patients with cancer with and 

without hypercalcemia. The dataset consists of 21 objects and 2 variables, which are, 
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mean plasma iPGE and mean Serum Calcium. In this example study we only consider the 

variable mean plasma iPGE with hypercalcemia, which consists of 11 objects. The Q-Q 

plot of the data is depicted in Figure 4.2.1, which supported the assumption of normality. 

Moreover, the Shapiro test (test statistic, W=0.8432, p-value=0.132) also supported 

normality assumption. Using this dataset the results of the test statistics for testing 

various alternative hypothesis are displayed in Table 4.2.1. Table 4.2.1 shows that both 

classical and Bias Corrected Standard method provide good solution of testing the 

alternative hypothesis when we departed the skewness from null hypothesized value. The 

test statistic based on estimator 𝑔! from Bias Corrected Standard method could correctly 

reject null hypothesis when alternative hypothesis is: kurtosis= 1.5 with p-value equals to 

0.045 while all other methods cannot make a decision of rejecting. When departed from 

the null hypothesis to test kurtosis=2.0, classical, Bias Corrected Standard and Hall’s 

Percentile method show good performance of rejecting the null hypothesis while Efron’s 

Percentile and Bias Corrected Percentile method only could reject the null hypothesis 

when testing kurtosis=3 or above. Overall, the classical and Bias Corrected Standard 

performs better when the sample size is small and distribution follows normality 

assumption.  
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Figure 4.2.1 Normal Q-Q plot for plasma data in Example 3 

 
Table 4.2.1 Testing kurtosis for n=11 normal distribution data 

 

Besides normal distribution, a non-normal distribution example study has been 

conducted in this section. We obtain the dataset, which are courtesy of Dr John Schorling, 

Depoartment of Medicine, University of Virginia School of Medicine. The dataset 
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consists of 403 subjects and 19 variables from 1046 subjects who were studied to 

understand the popularity of obesity, diabetes and other cardiovascular risk factors in 

central Virginia for African Americans. However, we only consider one, total cholesterol 

from this dataset. The Normal Q-Q plot is depicted in Figure 4.2.2, which didn’t support 

normality assumption. Moreover we performed the Shapiro test (test statistic, W=0.95987, 

p-value=0), which also supported the normality assumption. Table 4.2.2 shows a slow 

decrease about the p-value from about 1 to below 0.05 against with increase of the 

distance from null hypothesized value. Overall, these results do not reply quickly with the 

changes of alternative hypothesized value. For classical and Bias Corrected Standard 

method, we reject the null hypothesis when testing kurtosis=5.0 which is far from null 

hypothesized value. Besides, the other bootstrap methods provide a wide confidence 

interval, which sometimes cannot reject the null hypothesis when it is false such as 

testing kurtosis=1.0, 3.0, or 4.0 and for other testing values there is at least one method 

can correctly reject the null hypothesis.  
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Figure 4.2.2 Normal Q-Q plot for cholesterol data in Example 4 

Table 4.2.2 Testing kurtosis for n=403 non-normal distribution data 
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CHAPTER V 
CONCLUSIONS 

 

This thesis proposed several test statistics for testing the skewness and kurtosis 

parameters of a distribution, not limited to normal distribution. Since a theoretical 

comparison is not possible, a simulation study has been conducted to compare the 

performance of the test statistics.  

We have compared both parametric method (Classical method with normality 

assumption) and non-parametric methods (bootstrap in Bias Corrected Standard Method, 

Efron’s Percentile Method, Hall’s Percentile Method and Bias Corrected Percentile 

Method) in the hypothesis testing of skewness, where the data are generated from normal, 

gamma and beta distributions. Table 5.1 illustrates the performance of the tests and our 

simulation results indicate that the power of the tests differs significantly across sample 

sizes, the choice of alternative hypotheses and methods we chose. When the data are 

generated from normal distribution, both classical method and Efron’s Percentile Method 

can attain a nominal size 0.05 while other bootstrap methods cannot provide good results 

in this situation. However, for skewed distribution, say beta distribution, bootstrap 

methods show higher power with increasing the sample size whereas the classical method 

only performs well in small sample size. The results in Bias Percentile Method are 

approaching to other bootstrap methods, which is obviously away from classical method. 

Moreover, for testing different hypotheses among all distributions, larger sample size 
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always provide with higher empirical power.  

 
Table 5.1 Performance of hypothesis test of skewness 

 

Kurtosis parameter has also been tested based the methods mentioned above, 

however, the data are generated from normal, beta and uniform distributions due to 

different shape parameters. Table 5.2 shows the performance of hypothesis test of 

kurtosis. Only classical method performs well when the data are generated from normal 

distribution throughout all sample sizes in the simulation, whereas the bootstrap methods 

are not useful in this case. Similarly, the results from beta distribution show that the Bias 

Corrected Percentile Method can obtain a nominal size 0.05 for a large sample size 

besides classical method. Bootstrap methods can provide better solution than classical 

method for testing kurtosis parameter especially when the data are from uniform 
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distribution.  

 
Table 5.2 Performance of hypothesis test of kurtosis 

 

A limitation of this study is that the test statistics used in this thesis are based on the 

assumption of normal distribution. However, the results suggested that these statistics can 

be used for some non-normal distributions too. It is noted that the performance of gamma 

distribution needs further investigation since the bootstrap methods cannot work for the 

data coming from this distribution. We would suggest continuing to explore the test of 

skewness of gamma distribution and some other distributions with specific kurtosis 

features.  

 

 

 

 

 

 

��) ')%�&���' ��-('+!�*"*���*+�' ��,)+'*"*
�"*+)"�,+"'& ��+!'� &��� &��� &�	� &�
� &���� &�	��
�������� $�**"��$ �''� �''� �''� �''� �''� �''�

�"�*�'))��+����+�&��)���''+*+)�( �''� ���# ���# ���# ���# ��")
� )'&�*���)��&+"$���''+*+)�( ��") ��") ��") ��") ���# ���#
��$$�*���)��&+"$���''+*+)�( ���# ��") ���# ���# ���# ���#
�"�*�'))��+�����)��&+"$���''+*+)�( ��") ���# ���# ���# ���# ��")

��+�����
� $�**"��$ ��") �''� �''� �''� �''� �''�
�"�*�'))��+����+�&��)���''+*+)�( �''� ���# ���# ���# ���# ��")
� )'&�*���)��&+"$���''+*+)�( �''� ��") ��") ��") ��") ��")
��$$�*���)��&+"$���''+*+)�( ���# ��") ���# ���# ���# ��")
�"�*�'))��+�����)��&+"$���''+*+)�( ���# ���# ���# ���# ��") �''�

�&" ')%������ $�**"��$ ��") �''� �''� ���# ���# ���#
�"�*�'))��+����+�&��)���''+*+)�( ��") �''� �''� �''� �''� �''�
� )'&�*���)��&+"$���''+*+)�( ���# �''� �''� �''� �''� �''�
��$$�*���)��&+"$���''+*+)�( ��") ��") ��") ��") ��") ��")
�"�*�'))��+�����)��&+"$���''+*+)�( �''� �''� �''� �''� �''� �''�



	   	  74 

LIST OF REFERENCES 

Ankarali, H., & ANKARALI, S. (2009). A bootstrap confidence interval for skewness 
and kurtosis and properties of t-test in small samples from normal distribution. Balkan 
Medical Journal, 2009(4). 

 

Balanda, K. P., & MacGillivray, H. L. (1988). Kurtosis: a critical review. The American 
Statistician, 42(2), 111-119. 

 

Cramér, H. (1946). A contribution to the theory of statistical estimation. Scandinavian 
Actuarial Journal, 1946(1), 85-94. 

 

DiCiccio, T. J., & Romano, J. P. (1988). A review of bootstrap confidence intervals. 
Journal of the Royal Statistical Society. Series B (Methodological), 338-354. 

 

Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American 
statistical Association, 82(397), 171-185. 

 

Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in 
Statistics (pp. 569-593). Springer New York. 

 

Fisher, R. A. (1930). Moments and product moments of sampling distributions. 
Proceedings of the London Mathematical Society, 2(1), 199-238. 

 

Groeneveld, R. A., & Meeden, G. (1984). Measuring skewness and kurtosis. The 
Statistician, 391-399. 

 

Hall, P. (2013). The bootstrap and Edgeworth expansion. Springer Science & Business 
Media. 

 

 



	   	  75 

Joanes, D. N., & Gill, C. A. (1998). Comparing measures of sample skewness and 
kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician), 47(1), 
183-189. 

 

Morris, J. C., Edland, S., Clark, C., Galasko, D., Koss, E., Mohs, R., ... & Heyman, A. 
(1993). The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Part 
IV. Rates of cognitive change in the longitudinal assessment of probable Alzheimer's 
disease. Neurology, 43(12), 2457-2457. 

 

Pearson, K. (1894). Mathematical Contributions to the Theory of Evolution. II. Skew 
Variation in Homogeneous Material. Proceedings of the Royal Society of London, 
57(340-346), 257-260. 

 

Robertson, S. E., & Jones, K. S. (1976). Relevance weighting of search terms. Journal of 
the American Society for Information science, 27(3), 129-146. 

 

Sergio Perez-Meloand, & Kibria, B. M. G. (2016). Comparison of Some Confidence 
Intervals for Estimating the Skewness Parameter of a Distribution. Thailand Statistician, 
14(1), 93-115. 

 

Van Belle, G., Fisher, L. D., Heagerty, P. J., & Lumley, T. (2004). Biostatistics: a 
methodology for the health sciences (Vol. 519). John Wiley & Sons. 

 

 

 

 

 

 



	   	  76 

APPENDIX A 

Table A1: Power for N(0,1) with skewness= 0 against with other value for different sample sizes 
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Table A1 (Continued) 
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Table A2: Power for Gamma(4,1) with skewness=1 against with other value for different sample size 
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Table A2 (Continued) 
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Table A3: Power for Gamma(7.5,1) with skewness=0.73 against with other value for different sample size 
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Table A3 (Continued) 
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Table A4: Power for Gamma(10,1) with skewness=0.63 against with other value for different sample size 
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Table A4 (Continued) 
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Table A5: Power for Beta (1,0.35181) with skewness=-1 against with other value for different sample size 
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Table A5 (Continued) 
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Table A6: Power for Beta(1,0.15470) with skewness=-2 against with other value for different sample size 
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Table A6 (Continued) 
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Table A7: Power for N(0,1) with kurtosis=0 against with other value for different sample size 
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Table A7 (Continued) 
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Table A8: Power for Beta(2,5) with kurtosis=-0.12 against with other value for different sample size 
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Table A8 (Continued) 
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Table A9: Power for Uniform(0,1) with kurtosis=-1.2 against with other value for different sample size 
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Table A9 (Continued) 
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Table A10: The abbreviation of test statistics in the figures 
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