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ABSTRACT OF THE DISSERTATION

LARGE SCALE DATA MINING FOR IT SERVICE MANAGEMENT

by

Chunqiu Zeng

Florida International University, 2016

Miami, Florida

Professor Tao Li, Co-Major Professor

Professor Shu-Ching Chen, Co-Major Professor

More than ever, businesses heavily rely on IT service delivery to meet their current

and frequently changing business requirements. Optimizing the quality of service de-

livery improves customer satisfaction and continues to be a critical driver for business

growth. The routine maintenance procedure plays a key function in IT service man-

agement, which typically involves problem detection, determination and resolution

for the service infrastructure.

Many IT Service Providers adopt partial automation for incident diagnosis and

resolution where the operation of the system administrators and automation opera-

tion are intertwined. Often the system administrators’ roles are limited to helping

triage tickets to the processing teams for problem resolving. The processing teams

are responsible to perform a complex root cause analysis, providing the system statis-

tics, event and ticket data. A large scale of system statistics, event and ticket data

aggravate the burden of problem diagnosis on both the system administrators and

the processing teams during routine maintenance procedures.

Alleviating human efforts involved in IT service management dictates intelligent

and efficient solutions to maximize the automation of routine maintenance proce-

dures. Three research directions are identified and considered to be helpful for IT

service management optimization: (1) Automatically determine problem categories

vii



according to the symptom description in a ticket; (2) Intelligently discover interesting

temporal patterns from system events; (3) Instantly identify temporal dependencies

among system performance statistics data. Provided with ticket, event, and system

performance statistics data, the three directions can be effectively addressed with a

data-driven solution. The quality of IT service delivery can be improved in an efficient

and effective way.

The dissertation addresses the research topics outlined above. Concretely, we

design and develop data-driven solutions to help system administrators better man-

age the system and alleviate the human efforts involved in IT Service management,

including (1) a knowledge guided hierarchical multi-label classification method for

IT problem category determination based on both the symptom description in a

ticket and the domain knowledge from the system administrators; (2) an efficient

expectation maximization approach for temporal event pattern discovery based on

a parametric model; (3) an online inference on time-varying temporal dependency

discovery from large-scale time series data.
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CHAPTER 1

INTRODUCTION

1.1 Background

More than ever, businesses heavily rely on IT service delivery to meet their cur-

rent and frequently changing business requirements. Optimizing the quality of ser-

vice delivery improves customer satisfaction and continues to be a critical driver

for business growth. In order to optimize service quality, Service Providers seek to

employ business intelligent solutions that provide deep analytical and automation

capabilities for large scale IT service management [Log16b]. An efficient routine

maintenance procedure plays a key function in service management, which typically

involves problem detection, determination and resolution for the service infrastruc-

ture [MSGL09] [ZLSG14a] [ABD+07] [ZTL+14]. One of the ultimate goals in IT

service management is to maximize the automation of its routine IT maintenance

procedure.

The routine IT maintenance procedure for IT service providers, defining the IT

activities such as problem detection, determination, diagnosis, and resolution, are

prescribed by the Information Technology Infrastructure Library (ITIL) specifica-

tion [Log16b]. A typical workflow of the IT routine maintenance is illustrated in

Figure 1.1, where four stages are involved.

At the first stage, problem detection in the IT environment is realized by system

monitoring. System monitoring, one important component in IT service manage-

ment, is capable of tracking the states of a system by collecting system statistics

information such as the CPU utilization, the memory usage, the number of data

bytes written and read on the disk, the amount of data received and sent through the

network, the sequence of requests and responses processed on an application server,
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Figure 1.1: A typical IT routine maintenance procedure involves four stages.

etc. An example for the monitored data is illustrated in Figure 1.2, where perfor-

mance information about both hardware and software is presented. Some popular

system monitoring softwares are available on the market, encompassing IBM Tivoli

Monitoring [IBM16], HP Open View [HPO], LogicMonitor [log16a], Zenoss [zen16],

ManageEngine [Man16], and so on. The system monitoring computes metrics based

on the regularly gathered system data and compares those metrics with some prede-

fined acceptable thresholds, referred to as monitoring situations as well. Any violation

after comparison raises an alert. If the alert persists beyond a certain duration spec-

ified in the situation, the monitoring emits an event.
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System Monitoring

Figure 1.2: The system monitoring tracks the states of system. It presents perfor-
mance information about both hardware (e.g., CPU, memory) and software (e.g., web
server).

At the second stage, the generated events from the entire IT environment are

consolidated in an enterprise console and archived in an event database. A snippet

of event data set is shown in Figure 1.3, where each event is represented with its

event type, occurring time stamp and description. The console employs rule, case or

knowledge based engine to analyze the events and decide whether to report problems

with a service ticket in the Incident, Problem, Change (IPC) system.

At the third stage, the reported tickets are stored in the ticket database of IPC

system. A ticket example is illustrated in Figure 1.4. The information accumulated

in the ticket describes the symptoms of the underlying problem and provides evidence

for problem diagnosis, determination and resolution.

At the fourth stage, as a new ticket arrives, the system administrators inspect the

ticket description, and infer the possible categories of the underlying IT problem based

on their domain knowledge. The problem category inference further directs the ticket
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DB_Down [16/Sep/2015 14:01:39 +1000] xxxxxxxxxxxxxx

Service_Unvailable [16/Sep/2015 14:01:42 +1000] xxxxxxxxxxxxxx

Server_Restart [16/Sep/2015 14:31:02 +1000] xxxxxxxxxxxxxx

SVC_TEC_HEATBEAT [16/Sep/2015 14:32:00 +1000] xxxxxxxxxxxxxx

...

...

...

Event Type Time Stamp Description

Figure 1.3: The event examples are presented. Each event is described with its event
type, time stamp and description.

Figure 1.4: An ticket is taken as an example. The description of a ticket indicates
the symptom of the underlying IT problem.

being assigned to proper processing teams for problem resolution, where different

processing teams typically specialize in diverse IT problem categories. In general, the

system administrators’ role is limited to help triage tickets to the processing teams

for problem resolving, while the processing teams are responsible to perform complex

root cause analysis with respect to the related system performance statistics, event

and ticket data. Finally, the service returns to be normal after problem resolving.

To sum up, the IT service management relies on partial automation of the IT

routine maintenance procedure, where the operation of the system administrators and

automation operation are intertwined. Among all the stages of the entire maintenance

4



procedure, most of human efforts are invested during the fourth stage, where a labor-

intensive and error-prone process for problem determination, diagnosis and resolution

is conducted by both system administrators and processing teams.

1.2 Motivation and Problem Statement

Maximal automation of the IT routine maintenance procedure can alleviate the hu-

man effort investment, and thereby reduce the risk of human mistakes. The goal of

IT service management optimization, effective and efficient delivery of IT service, can

be achieved by maximizing the automation of the IT routine maintenance procedure.

IT service management optimization is urgently dictated in practice. Large and

complex systems often aggravate the difficulty of service management, and increase

the human labor involvement in the routine maintenance procedures. This proce-

dure turns out to be extremely expensive, especially for those complex systems with

changing environment. It has been reported that, in medium and large companies

, anywhere from 30% to 70% of their information technology resources are used as

maintenance cost [LPP+10]. High maintenance cost is attributed to several challenges

summarized as below.

• The heterogeneous nature of the computing system requires more experts spe-

cializing in diverse domains. As a result, it makes the management task more

complex and complicated. A typical computing system contains different de-

vices (e.g., routers, CPU, GPU, and disks) with different software components

(e.g., operating system, file system, databases, and user applications), possibly

from different providers (e.g., Cisco, IBM, Google, and Microsoft). The het-

erogeneity increases the likelihood of unexpected interactions and poorly un-
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derstood dependencies, and incurs more coordination cost for multiple experts

with different domain knowledge.

• The scale and complexity of these systems probably causes a large number of

unexpected behaviors during failures, system perturbations and even normal op-

erations. A big number of complicated system behaviors greatly surpass what

can be understood as to the system at the level of detail necessary for manage-

ment, and are far beyond the processing capability for both the administrators

and the processing teams.

• Current computing systems are undergoing a dynamic and rapid change with a

growing number of software and hardware components. The fast rate of change

worsens system dependability and exacerbates the difficulty of understanding

system behaviors. It is extremely expensive, if not impossible, to instantly keep

up with the current state of systems.

Driven by the challenges above, automatic and efficient solutions for complex system

monitoring and management are pressingly demanded. Alleviating human efforts

involved in IT service management dictates more intelligent and efficient solutions to

maximize the automation of the routine maintenance procedures.

In recent years, data mining and machine learning techniques have acquired great

interest to address the issues in system and service management [MSGL09, ABD+07,

DJL09, LPG02, ABCM09, KWI+11, BO07, HMP02, LLMP05, MH01, TLS12]. These

techniques are employed for efficiently extracting valuable knowledge from historical

data produced during the entire IT maintenance procedure. In service management,

the historical data includes the gathered system performance statistics, monitoring

events and reported incident tickets, shown in Figure 1.5. Our work focuses on

designing and implementing an integrated solution to extract valuable knowledge from
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Figure 1.5: Valuable knowledge, extracted from the historical data including incident
tickets, monitoring events and system statistics data, facilitates problem determina-
tion, diagnosis and resolution.

the historical data and leverage the knowledge to facilitate the problem determination,

diagnosis and resolution.

From the perspective of data mining, three research directions are identified and

considered to be helpful for IT service management optimization.

1. Automatically determine problem categories according to the symp-

tom description in a ticket. The symptom description of an IT problem

is typically accumulated as a short text message, which is a combination of

human and machine generated text with a very domain-specific vocabulary. In

traditional IT maintenance procedure, the system administrators utilize their

domain knowledge to identify the problem categories according to the short

message in a ticket. This task is often recognized as addressing a text classifi-

cation problem. Some existing work has been proposed to utilize data mining

methods for automatic problem category determination, including support vec-
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tor machine, classification and regression tree, k-nearest neighbors, rule-based

classification, logistic regression [LPG02, DJL09, MBW14, KWI+11]. However,

an IT problem described in a ticket typically gets involved with multiple cate-

gories, where the categories are not independent from each other, but organized

in a hierarchical relationship. Furthermore, the domain knowledge from the sys-

tem administrators is valuable. Efficiently integrating the domain knowledge

becomes increasingly important for problem category determination. All the

issues pose new challenges on automatic ticket classification.

2. Intelligently discover interesting temporal patterns from system events.

The generated events are consolidated in an enterprise console. An IT problem

is reported with a service ticket in the IPC system after analyzing its relat-

ed events. Arriving with a service ticket, One critical task of the processing

team is to identify the root cause of the potential IT problem. There has

been a great deal of effort spent on developing methodologies for root cause

analysis in IT Service Management. One fruitful line of research has involved

the development of techniques for traversing graphs dependencies of applica-

tion configuration [ABCM09]. Although these methods have been successful

in understanding the system’s failures, they have had a limited impact due

to overhead associated with constructing such graphs and keeping them up-

to-date. Another approach has focused on the mining temporal event pat-

terns [BO07, HMP02, LLMP05, LM04, MH01, TLS12]. The temporal event

patterns are characterized with time lag, plays an important role in discovering

the evolving trends of the upcoming events and helping with root cause analy-

sis. However, mining temporal event patterns with fluctuating time lag among

interleaving events is still a difficult task.
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3. Instantly identify temporal dependencies among system performance

statistics data. In order to instantly track the state of system, the system

monitoring collects system statistics information such as CPU utilization, the

memory usage, the number of data bytes written to and read from the disk,

etc. The temporal dependencies among those system performance statistics are

useful for problem diagnosis and root cause analysis. The discovered tempo-

ral dependencies are strong indicators that a fault of a particular component

is highly correlated with the failure of its dependent components. The system

performance statistics are time series data. To identify the latent temporal

dependencies among the system performance statistics, existing methods on

discovering Granger Causality [Gra80, ALA07] among time series can be ap-

plied. Most of existing work discovers Granger Causality from off-line data and

assumes that the hidden Granger Casuality is stationary. However, in system

management, instantly tracking the latent dependency among system perfor-

mance statistics is critical and the stationary assumption rarely holds in prac-

tice. Therefore, online inference for time varying temporal dependency among

system performance statistics is still a challenging problem.

Figure 1.5 summarizes the three research directions based on different types of his-

torical data during the IT routine maintenance procedure, aiming at IT service man-

agement optimization. In the next section, the contributions of my dissertation along

these research directions are briefly presented.

1.3 Contributions

My dissertation addresses the challenges relevant to the research topics outlined

above, by designing and developing data-driven approaches, with the purpose of
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helping system administrators better manage the system and alleviate the human

efforts involved in IT service management. Especially, the main outcomes of my

dissertation are highlighted as follows: (1) a general knowledge guided hierarchical

multi-label classification method for IT problem category determination, utilizing

both the symptom description in a ticket and the domain knowledge from the system

administrators; (2) a parametric model proposed for modeling temporal event pat-

terns and an efficient expectation-maximization-based approach developed for model

inference; (3) an online inference method for discovering the time varying temporal

dependencies from the large-scale system statistics data. The detailed contributions

for three research directions are provided in the reminder of Section 1.3.

1.3.1 Automatic IT Problem Category Determination

In light of the ticket description, system administrators determine the categories of the

IT problem and triage the ticket to the corresponding processing teams for problem

resolving. Automatic IT problem category determination acts as a critical part during

the routine IT maintenance procedures. Our contributions related to this research

direction are summarized as below.

1. In the real IT environment, IT problem categories are naturally organized in a

hierarchy by specialization. Utilizing the category hierarchy, we come up with a

hierarchical multi-label classification method to classify the monitoring tickets.

2. In order to find the most effective classification and minimize the cost caused

by mistaken assignment, a novel contextual hierarchy (CH) loss is introduced

in accordance with the problem hierarchy.
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3. Consequently, an arising optimization problem is solved by a new greedy al-

gorithm named GLabel. An extensive empirical study over ticket data was

conducted to validate the effectiveness and efficiency of our method.

4. In practice, as well as the ticket instance itself, the knowledge from the do-

main experts, which partially indicates some categories the given ticket may or

may not belong to, can also be leveraged to guide the hierarchical multi-label

classification. Accordingly, in our dissertation, a multi-label inference with the

domain expert knowledge is conducted on the basis of the given label hierarchy.

5. The experiment over the real ticket data demonstrates the great performance

improvement, after incorporating the domain knowledge during the hierarchical

multi-label classification.

1.3.2 Temporal Pattern Mining from Fluctuating Events

The significance of mining hidden temporal patterns from sequential event data is

highlighted in many domains including system management, stock market analysis,

climate monitoring, and more. Time lags, important features of temporal dependent

patterns (i.e., temporal dependencies), characterize the temporal order among event

occurrences. Mining time lags of temporal dependencies provides useful insights into

the understanding of sequential data and predicting its evolving trend. Traditional

methods mainly utilize the predefined time window to analyze the sequential items, or

employ statistical techniques to identify the temporal dependencies from the sequen-

tial data. However, it is still a challenging task for existing methods to find the time

lag of temporal dependencies in the real world, where time lags are fluctuating, noisy,

and interleaved with each other. Our contributions along this research direction are

summarized in the following.
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1. In order to identify temporal dependencies with time lags in this setting, we

come up with an integrated framework from both system and algorithm per-

spectives.

2. Specifically, a novel parametric model is introduced to model the noisy time

lags for temporal dependencies discovery between events.

3. Based on the parametric model, an efficient expectation-maximization-based

approach is proposed for time lag discovery with maximum likelihood.

4. Furthermore, we also contributes an approximation method for learning time lag

to improve the scalability in terms of the number of events, without incurring

significant loss of accuracy.

5. We have conducted extensive experiments on both synthetic and real data to

illustrate the efficiency and effectiveness of the proposed approaches. The tem-

poral dependency graph among events are demonstrated in the integrated sys-

tem.

1.3.3 Temporal Dependency Discovery among Time Series

Large-scale time series data are prevalent across various application domains such

as system management, biomedical informatics, social networks, finance. Temporal

dependency discovery among time series performs an essential role in revealing the

hidden interactions among components and provides a better understanding of com-

plex systems. It has been explored in many applications such as neuroscience [SKX09],

economics [ALA07], climate science [LLNM+09], and microbiology [LALR09]. The

inference of temporal dependencies among time series are typically categorized into

two different frameworks: dynamic Bayesian network [Jen96, Mur02, SKX09] and
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Granger causality [Gra69, Gra80, Gew82, ALA07]. My research is based on the

Granger causality framework and the related contributions are listed as below.

1. Considering the sparsity of the temporal dependency structure among large-

scale time series in real practice, we first formulate the problem from a Bayesian

perspective.

2. Further, in order to capture dynamical temporal dependency typically occurring

with real-world problems, we explicitly model the dynamical change as a random

walk, resulting in time varying temporal dependency model.

3. Taking advantage of the Bayesian modeling, we develop an effective online in-

ference algorithm using particle learning.

4. Extensive empirical studies on both the synthetic and real application time

series data are conducted to demonstrate the effectiveness and the efficiency of

the proposed method. A case study from real scenario shows the usefulness of

our proposed method in practice.

1.4 Summary and Roadmap

Large and complex systems with a large number of heterogeneous components are

difficult to monitor, manage and maintain. Traditional approaches to system man-

agement mainly rely on the knowledge from the domain experts, where the domain

knowledge is used for composing operational rules, policies, and dependency models.

However, those routine maintenance procedures are well known and experienced as a

cumbersome, labor intensive, and error prone processes. In the dissertation, focusing

on alleviating human effort involvement, we design and implement several data-driven

approaches to optimize the IT service management.
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To facilitate the reading and understanding the research problems, the organiza-

tion of this dissertation is outlined as follows. First, we briefly presents the prelimi-

naries and related work of the aforementioned three research directions in Chapter 2.

To be continue, we study the problems related to these research directions in Chap-

ter 3, Chapter 4 and Chapter 5, respectively. Particularly, in Chapter 3, the IT

problem category determination is studied, where both the category hierarchy and

domain knowledge are utilized. In Chapter 4, we focus on the temporal pattern dis-

covery from fluctuating system events, where those patterns facilitate the root cause

analysis for IT problems. In Chapter 5, we study the problem about how to instantly

infer the time varying temporal dependencies among time series. Those temporal de-

pendencies among time series help to tracking the states of complex system. Finally,

in Chapter 6, we conclude the work of this dissertation and discuss the future work

along our research.
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CHAPTER 2

PRELIMINARIES AND RELATED WORK

This dissertation studies the concrete problems along the aforementioned three

research directions in IT service management and the corresponding solutions are ex-

haustively discussed as well. In this chapter, we highlight existing literature studies

that are related to our work in this dissertation. In particular, Section 2.1 reviews the

existing work related to the problem determination as well as the relevant techniques

such as text classification, multi-label classification, hierarchical multi-label classifica-

tion. Section 2.2 introduces diverse types of temporal patterns used for representing

knowledge from events, and further describes the corresponding methodologies to

extracting these patterns. Section 2.3 presents existing literature of temporal depen-

dency discovery among the time series, and surveys both offline and online techniques

for inferring the underlying temporal relations from the observed time series.

2.1 Related Work of IT Incident Ticket Classification

The IT problem categories are determined by inspecting the corresponding ticket,

where the symptom information is accumulated during the IT routine maintenance

procedures. Therefore, the IT problem determination is typically achieved by clas-

sifying the IT incident ticket into different problem categories. Our work as to IT

incident ticket classification is related to text classification, multi-label classification

and hierarchical multi-label classification.

2.1.1 Text Classification

Text classification techniques are commonly applied to address problems in a wide va-

riety of application domains [AZ12]. Popular relevant applications include news filter

and organization [Lan95], document organization and retrieval [CDAR97], opinion
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Figure 2.1: The problem determination is referred to as a text classification problem
based on the text content of a ticket.

mining [LZ12], email categorization and email spam filtering [CC05, CCM04, LK97,

SDHH98], etc. In the scenario of IT service management, the symptom of the under-

lying IT problem is described by the text description of a ticket as shown in Figure 2.1.

Accordingly, the problem determination adopts text classification techniques for IT

problem categorization with respect to the ticket description [DJL09].

Text is characterized by its words, where the word attributes are typically sparse,

high dimensional, and with low frequencies on most of the words. Therefore, one

critical task is to represent text with appropriate features, which are most relevant

to the classification process. For the purpose of classification, it is reasonable to u-

tilize supervised feature selection methods, which take the class labels into account,

to identify the most relevant features. Numerous feature selection methods for text

categorization like Gini Index, Information Gain, Mutual Information, χ2-Statistic

are exhaustively discussed in [YP97, Yan95, AZ12]. As well as the feature selection

methods, feature transformation approaches are also utilized for text classification

improvement. The difference between them consists in that the former methods

reduces the dimensionality of the data by picking some features from the original

feature set, while the latter ones attempt to create a new set of features as a function
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of the original feature set. Popular feature transformation methods include Princi-

pal Component Analysis (abbr., PCA) [Jol02], Singular Value Decomposition (abbr.,

SVD) [HJP03, HP04], Latent Semantic Indexing (abbr., LSI) [DDF+90], Probabilistic

Latent Semantic Analysis (abbr., PLSI) [Hof99], Latent Dirichlet Allocation(abbr.,

LDA) [BNJ03], and so forth.

Provided with feature construction, another critical task is to design classification

methods which effectively account for the characteristics of text. Various classification

methods can be used for text classification. Classifiers based on decision tree utilize

a condition on an attribute value to obtain a hierarchical decomposition of the entire

data space. Typically, in the context of text data, the conditions indicate the presence

or absence of one or more words in a document. The class label of the given text

is predicted by traversing the decision tree from the root to a leaf node [Qui86].

A rule-based classifier employs a set of rules, generated from the training data, to

model the mapping from the features to the class labels [Ma98]. The naive bayes

classifier models the distribution of the documents in each class using a probabilistic

model, assuming that the distribution of the features are independent from each

other. The naive bayes classifiers are typically referred to as the most straightforward

and commonly used generative classifiers [AZ12]. The linear classifiers separate the

instances from different classes with a linear hyperplane, which are leant from the text

data. Many linear classifiers can be used for text categorization, like Support Vector

Machines (abbr., SVM) [CV95, Joa98, Vap13], Logistic Regression [Jor02], Neural

Networks [LL99, RS99, WWP99, YL99], etc. The main idea of proximity-based

classifiers is that the documents belonging to the same class are likely to be close

to one another in terms of similarity measures [SM86]. K-Nearest Neighbors method

is a proximity-based classifiers, where the class label of an instance is determined

by the majority class of its K neighbors [CH98, HKK01, YC94]. In the past years,

17



Meta-Algorithms have obtained much attention for classification strategies because

of their ability to improve the performance of existing classification algorithms by

combining them. Bagging, Stacking and Boosting belong to the category of meta-

algorithms [BDH02, DHS12, HPS96, LL01, LC96, LJ98, YAP00].

2.1.2 Multi-Label Classification

Figure 2.2: Considering the fact that an IT problem may be associated with multiple
labels, the problem determination is referred as a multi-label classification problem.
The labels with

√
are the categories of the underlying IT problem of the given ticket.

Traditional classification problems assume that each instance is associated with a

single label. However, this assumption is not always true in practice. In the scenario

of IT service management, a ticket may associate with multiple categories such as

database problem, file system problem, networking problem as shown in Figure 2.2.

The purpose of multi-label classification methods is to learn a mapping function which

is capable of associating each instance with multiple class labels simultaneously [ZZ14,

TK06].

The main challenge of the multi-label classification lies in the overwhelming size

of output space, where the number of label sets grows exponentially as the number of

class labels increases. To address the challenge, the correlation of labels is exploited
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to facilitate the classification process. Three strategies to capture the label correlation

are explored in the literature. The simplest strategy takes each label independently

and obtains a binary classification task per label [BLSB04, CK01, ZZ07]. Although

it is straightforward to apply many existing binary classification algorithms in this

strategy, it might not be optimal because of the ignorance of the label correlation. The

second strategy accounts for the pairwise relations among labels, where the relations

describe the ranking between relevant label and irrelevant label [EW01, FHMB08,

ZZ06] and interaction between any two labels [GM05, QHR+07, US02, ZJXG05].

The second strategy acquires a better generalization performance than the first one.

The third strategy conducts multi-label classification by considering the relationship

among all the labels, particularly by either imposing the influence of all other labels

on each label [CH09, GS04, JTYY08, YTS07], or making use of the connections

among a random subsets of labels [RPH08, RPHF11, TV07]. The third strategy is

more capable of modeling the label correlations, while its related methods are more

complex and less scalable than the methods related to the other two strategies.

The algorithms for learning the multi-label classification model are categorized in-

to two groups, i.e., problem transformation methods and algorithm adaptation meth-

ods [ZZ14]. The former category of algorithms deal with the multi-label classification

problems by transforming the original problems into the existing well-studied prob-

lems. Binary Relevance [BLSB04] and Classifier Chains [RPHF11, RPHF09] are pro-

posed, where the multi-label classification task is converted into a set of binary clas-

sification tasks. In [FHMB08], the Calibrated Label Ranking method is developed by

transforming the multi-label classification problem into a label ranking task. Random

k-label sets [TV07] tackles the multi-label classification problems after transforming

them into the multi-class classification problems. Some other existing methods of

this category include Label Powerset [TKV09], a triple random ensemble multi-label
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classification [NKT10], constructing ensembles of pruned sets [RPH08], etc. The lat-

ter category of algorithms adapt the existing classification algorithms to address the

multi-label classification problem directly. Based on the K Nearest Neighbor (abbr.,

KNN) algorithm, ML-kNN [ZZ07, WDH10, YADS11], as a lazy learning method is

proposed. In [CK01], the ML-DT algorithm is acquired by adapting the decision

tree technique. In light of the popular SVM algorithm, Rank-SVM [EW01, GS11]

makes use of the kernel technique to address the multi-label classification problems.

Utilizing the information theory, CML [GM05] is developed to handle the multi-label

classification task directly.

Besides the algorithms as mentioned above, evaluation metrics act as inevitable

parts in multi-label classification task. Performance evaluation in multi-label clas-

sification is more complicated than traditional classification problem. In [ZZ14],

the evaluation metrics of multi-labels fall into two categories, i.e., example-based

metrics and label-based metrics. Example-based metrics include Subset Accura-

cy, Hamming Loss, One-Error, Coverage, Ranking Loss, Average Precision, and so

on [GM05, GS04, SS00, DWCH10, DWCH12, DKH12], while Macro-Averaging and

Micro-Averaging belong to label-based metrics [TV07].

2.1.3 Hierarchical Multi-Label Classification

In the scenario of IT service management, the labels of IT problems are usually

organized in a hierarchy as shown in Figure 2.3. Taking the hierarchy of labels

into account, the problem determination is referred to as a hierarchical multi-label

classification problem.

The hierarchical multi-label classification problem is a special multi-label classi-

fication problem, where all the labels are correlated and organized in a hierarchical

structure. The hierarchical structure is a directed acyclic graph (abbr., DAG), where
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Figure 2.3: Accounting for the hierarchical relations among labels, the problem deter-
mination is referred to as a hierarchical multi-label classification problem. The labels
corresponding to the green nodes in the hierarchy are related to the underlying IT
problem.

a node represents a label and the directed edge typically denotes an Part-Of relation

between two labels [Vat12, BST06]. The hierarchical structure can be classified into

two groups: hierarchical tree and DAG structure. As a matter of fact, hierarchical

tree is a special DAG structure. Each node of the hierarchical tree has one parent

node at most, while the node in DAG may have more than one parent nodes. Hierar-

chical tree structure gains great popularity in the literature due to its simplicity. In

hierarchical multi-label classification, Mandatory Leaf Node Problem (abbr., MLNP)

is referred to the case where every instance is required to be associated with classes

at the leaf nodes, otherwise the problem is called Non-Mandatory Leaf Node Prob-

lem (abbr., NMLNP) [BK12]. The hierarchical multi-label classification is generally

defined as a task to label an instance with nodes belonging to more than one paths

which may not end on leaf nodes in the hierarchy [ZLSG14a].

The hierarchical classification problem has been extensively investigated in the

past decades [CBGZ06a, DC00, DKS05, DKS04, Gra03, HCC03, RS02, SL01]. The

algorithms for hierarchical multi-label classification are summarized in [SJF11] and

fall into three categories including flat classification approaches, global classification
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approaches and local classification approaches. The flat classification approaches ig-

nore the class hierarchy and treat the original problem as a multi-label classification

problem or a set of binary classification problems, where only the labels on the leaves

are taken into account. As a result, the original problem can be solved by traditional

classification methods such as neural network [JGB+02, WL04], decision tree, SVM,

etc. However, this category of approaches can only handle MLNP classification prob-

lems, lacking in capability of addressing NMLMP classification problems [Vat12]. The

global classification approaches take the entire hierarchy as input and learn a single

classifier for all labels in the hierarchy. This category of approaches are usually devel-

oped by adapt existing classification algorithms (e.g., decision tree) and can capture

all the dependencies of labels in the hierarchy, but the complexity of algorithms is

increased [CK03, BSS+06, VSS+08, SVS+10]. The local classification approaches are

the most common approaches for hierarchical multi-label classification problems be-

cause of their simplicity, efficiency. In this category, one of more classifier are learnt

for every label node in the hierarchy and a post-process is applied to guarantee the

hierarchical consistency [CBGZ06b, CBV10, BK11, WJ12]. We focus on the local

classification approaches in the dissertation.

When considering hierarchical multi-label classification problem, adoption of a

proper performance measure for a specific application domain is of the most im-

portance. Zero-one loss and Hamming loss that were one of the first loss functions

proposed for multi-label classification, are also commonly used in hierarchical multi-

label classification problem [HZMVV10, CH04]. Taking hierarchy information into

account, hierarchical loss (H-loss) has been proposed in [CBGZ06b]. The main idea

is that any mistake occurring in a subtree does not matter if the subtree is rooted

with a mistake as well. The HMC-loss [WJ12] loss function is proposed by weighting

the misclassification with the hierarchy information while avoiding the deficiencies of
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the H-loss. It also differentiates the misclassification between the false negative (i.e.,

FN) and the false positive (i.e., FP) with different penalty costs.

Cesa-Bianchi et al. [CBGZ06b] introduce an incremental algorithm to apply a

linear-threshold classifier for each node of the hierarchy with performance evaluation

in terms of H-loss. Moreover, the Bayes-optimal decision rules are developed by Wei

in [CBGZ06a]. And Cesa-Bianchi et al. [CBV10] extend the decision rules to the cost-

sensitive learning setting by weighting false positive and false negative differently. Wei

and James [WJ12] propose the HIROM algorithm to obtain the optimal decision rules

with respect to HMC-loss by extending the CSSA algorithm in [BK11], which has a

strong assumption that the number of classes related to each instance is known.

2.2 Related Work of Temporal Pattern Mining from Event

Data

With the rapid development in data collection and storage technologies during last

two decades, the discovery of hidden information from temporal data has gained great

interest. Temporal data is a collection of data items associated with time stamps,

describing the discrete or continual state changes, or evolving trends over time. In

light of the types of item values, temporal data is categorized into two types. If the

value of each item is continuous, the temporal data is referred to as time series data.

By contrast, the temporal data is called event data if the item value is categorical.

This section mainly studies the temporal pattern discovery from event data.

2.2.1 Temporal Data

Temporal data is collected and analyzed across widespread application domains. A

typical application of temporal data collection and analysis is in system managemen-
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t [urla]. System monitoring, one of the important components in system management,

periodically assesses the state of a system by collecting system information such as

CPU utilization, memory usage, network connection status, file transfer and data

transmission status, etc. All system information is collected with a fixed frequency,

and each data item is recorded with its time stamp. Some preliminary temporal data

analysis in system management is included in the event dependence analysis and in

the root cause analysis. The prevalence in social network applications such as Twit-

ter, Facebook and Linkedin also leads to a large scale of temporal data generated

by millions of active users everyday. Examples from this domain are posts and ar-

ticles related to certain events such as car accidents, earthquakes, national election

campaigns and sport games. Time stamps are attached to those posts and articles.

Besides the aforementioned two domains, temporal data can also be found in other

application domains such as health care, stock market and climate.

A considerable amount of literature has been published on temporal pattern min-

ing. Based on the type of targeted temporal pattern, we can roughly group those

preliminary research studies into the following categories: sequential pattern mining,

dependent pattern mining, temporal correlation analysis and others [ZL15]. Our work

here falls into the category of dependent pattern mining.

2.2.2 Sequential Pattern Mining

The sequential pattern mining problem is first introduced by Agrawal and Srikant

in [AS95], with the purpose of discovering frequent subsequences as patterns from a

sequence database. It focuses on the patterns across different transactions by consid-

ering their sequential order. This differs from frequent pattern mining [AIS93] which is

aiming at finding frequent item sets within each transaction. Two classes of approach-

es have been proposed to solve sequential pattern mining. They are Apriori-Based

24



Algorithms [IA12, SA96a, GRS99, Zak01, AFGY02a] and Pattern-Growth-Based Al-

gorithms [HPMA+00a, PHMAZ00, PHMA+01a]. Apriori-Based Algorithms borrow

the core ideas from classical Apriori algorithms and often require multiple scans of

the sequence database with a high I/O cost. On the other hand, Pattern-growth-based

Algorithms are capable of efficient memory management [IA12] since they utilize a

data structure, usually a tree, to partition search space.

2.2.3 Dependent Pattern Mining

Mining temporal dependencies among events has been proven to provide essential

improvement to enterprise system management as the discovered temporal dependen-

cies used for tuning monitoring system configurations [MHPG02], [PTG+03]. Prior

works in the temporal dependency discovery use transactional data and algorithm-

s such as GSP [SA96b], FreeSpan [HPMA+00b], PrefixSpan [PHMA+01b], and S-

PAM [AFGY02b]. In our scenario no information is given to show what items belong

to the same transaction; only the time stamp of items could be utilized as a basis for

discovering the temporal dependencies from sequential data (items with time stamps

and events are used interchangeably here). Several types of dependent pattern mining

tasks have been induced from practical problems and carefully studied, such as Fully

Dependent Pattern [LMH02], Partially Periodic Dependent Pattern [MH01], Mutual-

ly Dependent Pattern [MH01] and T-Pattern [HMP02, HCF95, LLMP05]. Based on

the fact that potentially related items tend to happen within a certain time interval,

some previous work of temporal mining focuses on frequent itemsets given a prede-

fined time window [HHAI95]. However, it’s difficult to determine a proper window

size. A fixed time window fails to discover the temporal relationship longer than the

window size. Setting the size of time window to a large number makes the problem
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intractable, due to the exponential complexity of finding frequent itemsets on the

maximal number of items per transaction.

A temporal relationship is typically represented as a pair of items within a specific

time lag, commonly denoted as A →[t1,t2] B. It means that an event B will happen

within time interval [t1, t2] after an event A occurs. A lot of work was devoted to

finding such temporal dependencies characterized with time lag [MH01], [LLMP05],

[LM04] and [TLS12]. However, their efficiencies will be compromised if time lag L

is random. In this dissertation we successfully mine temporal dependency under the

condition that the time lag L is random. We extract the probability distribution

of L along with the dependent items. The lag probability distribution allows for

more insights and flexibility than just a fixed interval. In our previous work, we

encountered a challenge of checking a large number of possible time lags due to the

complexity of combinatorial explosion (even though we used an optimized algorithm

with pruning techniques [TLS12]). In the dissertation, we propose an EM-based

approximation method to efficiently learn the distribution of time lag in temporal

dependency discovery.

2.2.4 Temporal Correlation Analysis

Existing work in correlation analysis between continuous temporal data and discrete

temporal data, i.e., event data, could be classified into three categories: correla-

tion between two events, correlation between two time series and correlation between

time series and event. Most aforementioned pattern mining studies belong to the

correlation analysis between discrete temporal data. In [ALA07], A. Arnold and Y.

Liu conducted an interesting work to construct a causal graph from multiple contin-

ues temporal data series using graphical modeling with concept of Granger causal-

ity [Gra69]. In [LLL+14], a novel approach is proposed to identify the correlation
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between two different types of temporal data in three aspects: (a) determining the

existence of correlation between the time series and events, (b) finding the time delay

of the correlation, (c) identifying the monotonic effect describing whether the corre-

lation is positive or negative. All of these works give profound insight and provide

efficient approaches for correlation analysis.

Some other related works on temporal data analysis still have been excluded from

the aforementioned categories, such as Frequent Episode Mining [MTV97], Event

Burst Detection [Kle03] and Rare Event Detection [VM02]. Some works have ex-

plored complex event processing in [CM12, Luc08, WDR06, AC06, ZU99]. However,

my dissertation focuses on the analysis of the temporal information associated with

events.

2.3 RelatedWork of Temporal Dependency Discovery among

Time Series

Time series data contain a series of continuous values associated with time stamps.

Large scale time series data are prevalent across diverse application domains including

system management, biomedical informatics, social networks, finance, climate, etc.

In recent years, applying data mining techniques for time series analysis becomes

increasingly popular and has been received more and more attention. In this section,

we highlight existing literature studies that are related to our proposed approach for

online temporal dependency inference from time series.

2.3.1 Temporal Causality Analysis

One of the major data mining tasks for time series data is to reveal the underlying

temporal causal relationship among the time series. Currently, two popular approach-
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es prevail in the literature for causal relationship inference from time series data. One

is the Bayesian network inference approach [Hec98][Mur02][JYG+03][SKX09], while

the other approach is the Granger Causality [Gra69][Gra80][ALA07]. Comparing with

Bayesian network, Granger Causality is more straightforward, robust and extendable.

Our proposed method is more related to the approach based on Granger Causality.

Since Granger causality is originally defined for a pair of time series, the causal re-

lationship identification among multivariate time series can not be addressed directly

until the appearance of some pioneering work on combining the notion of Granger

causality with graphical model [Eic06]. The Granger causality inference among multi-

variate time series is typically developed by two techniques, i.e., statistical significance

test and Lasso-Granger [ALA07]. Lasso-Granger is more preferable due to its robust

performance even in high dimensions [BL12]. Our method takes the advantage of

Lasso-Granger, but conducts the inference from the Bayesian perspective in a se-

quential online mode, borrowing the idea of Bayesian Lasso [PC08]. However, most

of these methods assume a constant dependency structure among time series.

In order to capture the dynamic temporal dependency typically happening in

real practice, a hidden Markov model regression [LKJ09] and time-varying dynamic

Bayesian network [SKX09] have been proposed. However, the number of hidden states

in [LKJ09] and the decaying weights in [SKX09] are difficult to determine without

any domain knowledge. Furthermore, both methods infer the underlying dependency

structure in an off-line mode. In this dissertation, we explicitly model the dynamic

changes of the underlying temporal dependencies and infer the model in an online

manner.
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2.3.2 Online Inference

Our proposed model makes use of sequential online inference to infer the latent state

and learn unknown parameters simultaneously. Popular sequential learning methods

include sequential monte carlo sampling [Hal62], and particle learning [CJLP10].

Sequential Monte Carlo (SMC) methods consist of a set of Monte Carlo method-

ologies to solve the filtering problem [DGA00]. It provides a set of simulation based

methods for computing the posterior distribution. These methods allow inference of

full posterior distributions in general state space models, which may be both nonlinear

and non-Gaussian.

Particle learning provides state filtering, sequential parameter learning and s-

moothing in a general class of state space models [CJLP10]. Particle learning is for

approximating the sequence of filtering and smoothing distributions in light of pa-

rameter uncertainty for a wide class of state space models. The central idea behind

particle learning is the creation of a particle algorithm that directly samples from

the particle approximation to the joint posterior distribution of states and condition-

al sufficient statistics for fixed parameters in a fully-adapted resample-propagate

framework. We borrow the idea of particle learning for both latent state inference

and parameter learning.

2.4 Summary

This chapter highlights the existing works in the literature, which are highly related to

the three research directions of my dissertation, i.e., IT problem determination with

ticket classification, temporal pattern mining from events and temporal dependency

discovery from time series. For each research direction, both the related approaches

and evaluation metrics are exhaustively surveyed.
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CHAPTER 3

AUTOMATIC INCIDENT TICKET CLASSIFICATION

Maximal automation of routine IT maintenance procedures is an ultimate goal of

IT service management. System monitoring, an effective and reliable means for IT

problem detection, generates monitoring ticket. In light of the ticket description,

system administrators determine the categories of the IT problem and triage the ticket

to the corresponding processing teams for problem resolving. Automatic IT problem

category determination acts as a critical part during the routine IT maintenance

procedures. In practice, IT problem categories are naturally organized in a hierarchy

by specialization.

Utilizing the category hierarchy, this chapter comes up with a hierarchical multi-

label classification method to classify the monitoring tickets. In order to find the

most effective classification, a novel contextual hierarchy (CH) loss is introduced

in accordance with the problem hierarchy. Consequently, an arising optimization

problem is solved by a new greedy algorithm named GLabel. An extensive empirical

study over ticket data was conducted to validate the effectiveness and efficiency of

our method.

Furthermore, as well as the ticket instance itself, the knowledge from the domain

experts, which partially indicates some categories the given ticket may or may not

belong to, can also be leveraged to guide the hierarchical multi-label classification.

Accordingly, in this chapter, a multi-label inference with the domain expert knowledge

is conducted on the basis of the given label hierarchy. The experiment demonstrates

the great performance improvement by incorporating the domain knowledge during

the hierarchical multi-label classification over the ticket data.
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3.1 Introduction

3.1.1 Background

Changes in the economic environment force companies to constantly evaluate their

competitive position in the market and implement innovative approaches to gain

competitive advantages. Without solid and continuous delivery of IT services, no

value-creating activities can be executed. Complexity of IT environments dictates

usage of analytical approaches combined with automation to enable fast and efficient

delivery of IT services. Incident management, one of the most critical processes in IT

Service Management [urlb], aims at resolving the incident and quickly restoring the

provision of services while relying on monitoring or human intervention to detect the

malfunction of a component. Thus, it is essential to provide an efficient architecture

for the IT routine maintenance.

A typical architecture of the IT routine maintenance is illustrated in Figure. 3.1,

where four components are involved.

1. In the case of detection provided by a monitoring agent on a server, alerts are

generated and, if the alert persists beyond a predefined delay, the monitor emits

an event.

2. Events coming from an entire account IT environment are consolidated in an en-

terprise console, which analyzes the monitoring events and determines whether

to create an incident ticket for IT problem reporting.

3. Tickets are collected by IPC (abbr. Incident, Problem and Change) system and

stored in the ticket database [TLS+13].

4. A ticket accumulates the symptom description of an IT problem with a short

text message and a time stamp provided. According to the description of a tick-
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Figure 3.1: The overview of the IT routine maintenance procedure.

et, the system administrators (i.e., sysAdmins) perform the problem category

determination and assign the ticket to its corresponding processing teams for

problem diagnosis and resolution.

The last component gets involved with much labor-intensive effort to resolve each

ticket.

The efficiency of these transient resources is critical for the provisioning of the

services [JPLC12]. Many IT Service Providers rely on a partial automation for inci-

dent diagnosis and resolution, with an intertwined operation of the sysAdmins and

an automation script. Often the sysAdmins’ role is limited to executing a known

remediation script, while in some scenarios the sysAdmin performs a complex root

cause analysis. Removing the sysAdmin from the process completely, if it was feasi-

ble, would reduce human error and speed up restoration of service. The move from
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partially to fully automated problem remediation would elevate service delivery to a

new qualitative level where automation is a complete and independent process, and

where it is not fragmented due to the need for adapting to human-driven process-

es. However, the sysAdmin involvement is required due to the ambiguity of service

incident description in a highly variable service delivery environment.

3.1.2 Motivation

In order to enhance the efficiency of the routine IT maintenance procedure, our work

focuses on the labor-intensive component and tries to reduce human involvement by

maximizing the automation of the problem category determination. In this chapter,

we come up with a domain knowledge guided hierarchical multi-label classification

method to facilitate the problem determination with both problem hierarchy preser-

vation and domain knowledge integration from system administrators.

As shown in Figure 3.2.(a), a sample ticket describes a failure of an application

to write data to NAS (Network-Attached Storage) [WIK16] file system. To identi-

fy a root cause of the problem, it is rational to limit a search space by classifying

the incident tickets with their related class labels. Based on the message in Fig-

ure 3.2.(a) the ticket presents a problem related to FileSystem, NAS, Networking and

Misconfiguration. Therefore, root cause analysis should be limited to four classes.

Moreover, the collection of class labels is hierarchically organized according to the

relationship among them. For example, as shown in Figure 3.2.(b), because NAS

is a type of FileSystem, the label FileSystem is the parent of the label NAS in the

hierarchy. This taxonomy could be built automatically ([DKFH12, LSLW12]) or

it could be created with the help of domain experts [LL13]. In IT environments,

hierarchical multi-label classification could be used not only for the problem diag-

nosis ([DKS04, CBGZ06b, CBV10, BK11]), but also for recommending resolutions
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Figure 3.2: A hierarchical multi-label classification problem in the IT environment.
A ticket instance is shown in (a). (b) presents the ground truth for the ticket with
multiple class labels. (c), (d), (e) and (f) are four cases with misclassification. As-
suming the cost of each wrong class label is 1, Zero-one loss, Hamming loss, H-loss,
HMC-loss are given for misclassification. Notably, to calculate the HMC-loss, the
cost weights for FN and FP are a and b respectively. The misclassified nodes are
marked with a red square. The contextual misclassification information is indicated
by the green rectangle.
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([TLSG13]) or auto-check scripts. The ticket in our example could have a solution

that addresses FileSystem, NAS, Networking and/or Misconfiguration - a highly di-

versitified action recommendation. Furthermore, based on the hierarchical multi-label

classification, actions with different levels in the hierarchy are recommended, where

the actions from NAS category are more specific than the ones from FileSystem.

In real practice, as well as the text description of a given ticket, the prior knowl-

edge from the domain experts is involved into the ticket classification by additional

check (shown in Figure 3.1). For example, in Figure 3.3, given a ticket with its text

description, the domain expert, based on his expertise in the system management,

claims that the problem presented in the ticket is probably (e.g., with 60% confidence)

a MisConfiguration problem, and definitely not a Database problem. Intuitively, the

prior knowledge from the domain experts should also contribute to the ticket hierar-

chical multi-label classification for performance improvement. It is abrupt to employ

the traditional hierarchical multi-label classification algorithms to deal with the ticket

classification problem without taking any prior knowledge into account. However, the

prior knowledge integration is not a trivial task in the hierarchical multi-label classifi-
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cation problem. The prior knowledge, about the likelihood that a given ticket should

be assigned with a particular label, also contributes to the decision on whether the

ticket belong to those class labels which are highly correlated to the particular label.

For example, in Figure 3.3, given the ticket description, each label in the hierarchy

is assigned with a probability to be positive. After inspecting the ticket description,

the domain expert further confirm that this ticket is not MisConfiguration problem.

Then the probabilities for labels DNS and IP Address being positive become 0, and

the probability to be a Networking problem changes accordingly. It’s challenging

to determine the probability change for each label in the hierarchy, provided with

the prior knowledge. To incorporate the prior knowledge, Kilo (Knowledge guided

hierarchical mutli-label classification), a sum-product based algorithm, is proposed

for hierarchical multi-label inference. Existing work in [CH07], takes the known hi-

erarchical relationship between categories as knowledge and integrates the hierarchy

for multi-label classification, where the knowledge is different from the one discussed

in this chapter. The work of this chapter makes use of the prior knowledge, which

partially indicates some categories that a given ticket may or may not belongs to. To

the best of our knowledge, this is first work to utilize such prior knowledge to guide

the hierarchical multi-label classification.

The Kilo algorithm is not only capable of fully exploring both domain knowledge

and the data itself, but also provides an effective way for interactive hierarchical multi-

label learning. Concretely, based on the current hierarchical multi-label classification

result, the experts provide expertise to hint Kilo for further refinement. Kilo takes the

hints from the experts as an input to refine the hierarchical multi-label inference. This

iterative process continues until the domain experts are satisfied with the hierarchical

multi-label classification result.
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In this chapter we first define a new loss function, which takes the contextual

misclassification information for each label into consideration and is a generalization

of Hamming-loss, H-loss and HMC-loss function [WJ12]. Second, using Bayes decision

theory, we develop the optimal prediction rule by minimizing the conditional risk in

terms of proposed loss function. Next, knowledge from the experts are applied for

hierarchical multi-label inference. Finally, we propose an efficient algorithm to search

the optimal hierarchical multi-labels for each data instance.

The rest of this chapter is organized as follows. In Section 3.2, new loss function

for better evaluation of the performance of the hierarchical multi-label classification

is proposed and the knowledge from domain experts is formulated. In Section 3.3,

the optimal prediction rule is derived with respect to our loss function. Section 3.4

describes the algorithm for hierarchical multi-label classification. Section 3.5 illus-

trates the empirical performance of our method. The last section is devoted to the

conclusion of this chapter.

3.2 Hierarchical Multi-Label Classification

3.2.1 Problem Description

Let x = (x0, x1, ..., xd−1) be an instance from the d-dimensional input feature space

χ, and y = (y0, y1, ..., yN−1) be the N -dimensional output class label vector where

yi ∈ {0, 1}. A multi-label classification assigns to a given instance x a multi-label

vector y, where yi = 1 if x belongs to the ith class, and yi = 0 otherwise. We denote

the logical compliment of yi by ỹi = 1− yi.

The hierarchical multi-label classification is a special type of multi-label classifi-

cation when a hierarchical relation H is predefined on all class labels. The hierarchy
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H can be a tree, or an arbitrary DAG (directed acyclic graph). For simplicity, we

focus on H being the tree structure leaving the case of the DAG to future work.

In the label hierarchy H, each node i has a label yi ∈ y. Without loss of generality,

we denote root node by 0, and its label by y0. For each node i, let pa(i) and ch(i) be

the parent and children nodes respectively of the node i . An indicator function Ie of

a boolean expression e is defined as

Ie =


1, e is true;

0, e is false.

(3.1)

A hierarchical multi-label classification assigns an instance x an appropriate multi-

label vector ŷ ∈ {0, 1}N satisfying the Hierarchy Constraint below.

Definition 3.2.1 (Hierarchy Constraint) Any node i in the hierarchy H is labeled

positive (i.e., 1) if it is either the root node or its parent labeled positive. In other

words,

yi = 1⇒ {i = 0 ∨ ypa(i) = 1}. (3.2)

Figure 3.4: An example is given to illustrate the hierarchy constraint. Green and
white nodes denote positive and negative, respective.

The hierarchy constraint is illustrated in Figure 3.4, where the labeled hierarchy

at left satisfies the hierarchy constraint. The labeled hierarchy at right violates the
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hierarchy constraint since the DNS node is positive while its parent node Networking

is negative.

Definition 3.2.2 (Knowledge) Given an instance x, the knowledge about the N -

dimensional output class label vector y from the domain experts is represented by a

N-dimensional vector k. According to the domain knowledge, the ith component of k

can be assigned with 0, 1 and −1 for negative, positive and unknown respectively.

Therefore, the knowledge guided hierarchical multi-label classification takes x and

k as inputs, and outputs the class label vector y.

3.2.2 Hierarchical Loss Function

When considering hierarchical multi-label classification problem, adoption of a prop-

er performance measure for a specific application domain is of the most importance.

Zero-one loss and Hamming loss, two of the first loss functions proposed for multi-label

classification, are also commonly used in hierarchical multi-label classification prob-

lem [HZMVV10, CH04]. As shown in Figure 3.2, it is abrupt to adopt the zero-one

loss measurement since all the imperfect predictions suffer the same penalty without

any distinction. Although much more informative than zero-one loss, Hamming loss

suffers a major deficiency since it does not incorporate hierarchy information. Com-

paring (c) and (d) in Figure 3.2, which both fail to label the ticket with NAS. The

only difference between them is that, except the label NAS, (c) has a misclassification

error with label MisConfiguration, while (d) gets a mistake with label FileSystem. In-

tuitively, the prediction in (d) should incur more penalty than one in (c) because a

label FileSystem is at a higher level than label MisConfiguration in the hierarchy.

However, the Hamming loss can not differentiate the two cases.
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Taking hierarchy information into account, hierarchical loss (H-loss) has been

proposed in [CBGZ06b]. The main idea is that any mistake occurring in a subtree

does not matter if the subtree is rooted with a mistake as well. As illustrated in (f) of

Figure 3.2, the H-loss only counts once for the label Database even though a mistake

also takes place in label DB2 and Down (i.e., db2 is down). This idea is consistent

with the scenario of problem diagnosis, since there is no need for further diagnosis in

the successive children labels if the reason for the problem has already been excluded

in the parent label. However, H-loss could be misleading. Considering the example

(f) in Figure 3.2, after the solution related to Database is wrongly recommended, it

is bad to refer the solutions belonging to the successive categories, such as DB2 and

DOWN.

The HMC-loss [WJ12] function is proposed by weighting the misclassification with

the hierarchy information while avoiding the deficiencies of the H-loss. It also dif-

ferentiates the misclassification between the false negative (i.e., FN) and the false

positive (i.e., FP) with different penalty costs. In Figure 3.2, assuming a and b are

the misclassification penalties for FN and FP respectively, (c) and (d) have 2 FN

misclassification errors, so both of them incur 2a HMC-loss. Moreover, (e) and (f)

suffer 3b HMC-loss since they get 3 FP misclassification errors. However, HMC-loss

fails to show the distinction between (c) and (d). In the scenario of the resolution

recommendation, based on (c), more diverse solutions are recommended since the

ticket is related to both FileSystem and Networking, while only the solutions related

to Networking are considered as the solution candidates in (d). Moreover, HMC-loss

can not differentiate predictions in (e) and (f). In the scenario of problem diagnosis,

intuitively, we prefer (e) to (f) because the minor mistakes in multiple branches are

not worse than the major mistakes in a single branch. Based on the discussion above,

the main problem of HMC-loss is that it does not hierarchically consider the con-
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textual information for each misclassification label (the contextual misclassification

information is indicated with a green rectangle in Figure 3.2). Hence, we come up

with a concept of the contextual information for each misclassified label.

We denote the prediction vector by ŷ and the ground truth by y. To account for

Hierarchy Constraint 3.2.1 as well as consider finding optimal prediction, we define

Contextual Misclassification Information as follows.

Definition 3.2.3 (Contextual Misclassification Information) Given a node i

in hierarchy H, the contextual misclassification information depends on whether the

parent node of i is misclassified when a misclassification error occurs in node i.

There are four cases of misclassification of node i using Contextual Misclassifica-

tion Information as shown in Figure 3.5.

(a) (b)

(c) (d)

ypa(i)=1 ypa(i)=1

ypa(i)=1 ypa(i)=0

yi=1 yi=1

yi=0 yi=0

pa(i)=1

pa(i)=1 pa(i)=1

pa(i)=0

i=1 i=1

i=0i=0

Figure 3.5: Four cases of contextual misclassification are shown in (a-d) for node i.
Here the left pair is the ground truth; the right pair is the prediction. The misclassified
nodes are marked with a red square.

We incorporate the following four cases of the contextual misclassification infor-

mation into the loss function to solve the optimization problem, i.e. the best predicted

value compatible with the hierarchy H.

• case (a): False negative error occurs in node i, while the parent node pa(i) is

correctly predicted.
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• case (b): False negative error occurs in both node i and pa(i).

• case (c): False positive error occurs in node i, while the parent node pa(i) is

correctly labeled with positive.

• case (d): Both node i and pa(i) are labeled with false positive.

Referring to [WJ12],[CBV10], a misclassification cost Ci is given according to the

position information of node i in the hierarchy H. And {wi|1 ≤ i ≤ 4} are the different

penalty costs for the above four cases, respectively. Accordingly, a new flexible loss

function named CH-loss (Contextual Hierarchical loss) is defined as follows:

ℓ(ŷ,y) = w1

N−1∑
i>0

yiypa(i)˜̂yiŷpa(i)Ci + w2

N−1∑
i>0

yiypa(i)˜̂yi˜̂ypa(i)Ci + w3

N−1∑
i>0

ỹiypa(i)ŷiŷpa(i)Ci + w4

N−1∑
i>0

ỹiỹpa(i)ŷiŷpa(i)Ci.

(3.3)

Next we show that the popular loss functions, such as HMC-loss, Hamming-loss

and H-loss, are special cases of CH-loss function. We formulate the exact results

below.

By setting α and β to be the penalty costs for false negative (FN) and false

positive (FP) respectively, and noting that root node, indicating all categories, is

always correctly labelled, the HMC-loss function defined in [WJ12] can be expressed

as

ℓHMC(ŷ,y) = α

N−1∑
i>0

yi˜̂yiCi + β

N−1∑
i>0

ỹiŷiCi. (3.4)

Proposition 3.2.4 The HMC-loss function is the special case of CH-loss function

when w1 = w2 = α and w3 = w4 = β.
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Proof. The HMC-loss function can be rewritten as follows.

ℓHMC(ŷ,y) = α
N−1∑
i>0

yiypa(i)˜̂yiŷpa(i)Ci + α
N−1∑
i>0

yiỹpa(i)˜̂yiŷpa(i)Ci

+α

N−1∑
i>0

yiypa(i)˜̂yi˜̂ypa(i)Ci + α

N−1∑
i>0

yiỹpa(i)˜̂yi˜̂ypa(i)Ci

+β
N−1∑
i>0

ỹiypa(i)˜̂yiŷpa(i)Ci + β
N−1∑
i>0

ỹiỹpa(i)ŷiŷpa(i)Ci

+β
N−1∑
i>0

ỹiypa(i)ŷi˜̂ypa(i)Ci + β
N−1∑
i>0

ỹiỹpa(i)ŷi˜̂ypa(i)Ci.

Based on expression (3.2), we can derive the following expression of HMC-loss by

removing the terms that violate the Hierarchy Constraint.

ℓHMC(ŷ,y) = α

N−1∑
i>0

yiypa(i)˜̂yiŷpa(i)Ci + α

N−1∑
i>0

yiypa(i)˜̂yi˜̂ypa(i)Ci

+β
N−1∑
i>0

ỹiypa(i)ŷiŷpa(i)Ci + β
N−1∑
i>0

ỹiỹpa(i)ŷiŷpa(i)Ci.

The equation above is the exact one when w1,w2,w3 and w4 in equation (3.3) are

substituted with α, α, β and β respectively.

Proposition 3.2.5 The Hamming-loss function is the special case of CH-loss func-

tion when w1 = w2 = w3 = w4 = 1 and Ci = 1.

It is established in [WJ12] that the Hamming-loss function is a special case of

HMC-loss when α = β = 1 and Ci = 1. Combining the result with the Proposi-

tion 3.2.4, the Proposition 3.2.5 is obvious.

The H-loss function (see [WJ12]) cannot be reduced to HMC-loss function, while

H-loss is a special case of CH-loss function. Remember that the H-loss function is

defined in [CBGZ06b] as follows:

ℓH(ŷ,y) =
N−1∑
i>0

Iŷi ̸=yiIŷpa(i)=ypa(i)Ci. (3.5)
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Proposition 3.2.6 The H-loss function is the special case of CH-loss function when

w1 = 1, w2 = 0, w3 = 1 and w4 = 0.

Proof. H-loss defined in (3.5) is equivalent to the following equation:

ℓH(ŷ,y) =
N−1∑
i>0

yiypa(i)˜̂yiŷpa(i)Ci +
N−1∑
i>0

ỹiypa(i)ŷiŷpa(i)Ci

+
N−1∑
i>0

yiỹpa(i)˜̂yi˜̂ypa(i)Ci +
N−1∑
i>0

ỹiỹpa(i)ŷi˜̂ypa(i)Ci.

Based on expression (3.2), the following expression of H-loss is derived by removing

the terms which violate the Hierarchy Constraint:

ℓH(ŷ,y) =
N−1∑
i>0

yiypa(i)˜̂yiŷpa(i)Ci +
N−1∑
i>0

ỹiypa(i)ŷiŷpa(i)Ci.

The equation above is the exact equation (3.3) when w1 = 1, w2 = 0, w3 = 1 and

w4 = 0.

We summarize special cases of CH-loss in the Table 3.1.

Goal CH-loss parameter settings

Minimize Hamming loss w1 = w2 = w3 = w4 = 1, Ci = 1

Minimize HMC-loss
w1 = w2 = α, w3 = w4 = β,

Ci is defined by user

Minimize H-loss w1 = w3 = 1, w2 = w4 = 0, Ci = 1

Increase recall w1 and w2 are larger than w3 and w4

Increase precision w3 and w4 are larger than w1 and w2

Minimize misclassification errors

occur in both parent and children nodes
w2 > w1 and w4 > w3

Table 3.1: special cases of CH-loss
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3.3 Expected Loss Minimization

In this section we use the previously defined CH-loss function to predict ŷ given

instance x by minimizing expected CH-loss. Let y be the true multi-label vector of

x, and P (y|x) be the conditional probability that y holds given x. The expected loss

of labeling x with ŷ is defined by the following equation:

LE(ŷ,x) =
∑

y∈{0,1}N
ℓ(ŷ,y)P (y|x). (3.6)

Let ŷ∗ be (one of ) the optimal multi-label vector(s) that minimizes expected CH-loss.

Based on Bayesian decision theory, the problem is described as follows:

ŷ∗ = argmin
ŷ∈{0,1}N

LE(ŷ,x)

s.t. ŷ satisfies the hierarchy constraint 3.2.1.

(3.7)

The key step in solving the problem (3.7) consists in how to estimate P (y|x) in

equation (3.6) from the training data. By following the work in [CBGZ06b, CBV10,

WJ12], in order to simplify the problem, we assume that all the labels in the hierarchy

are conditionally independent from each other given the labels of their parents. Since

all the data instances are labeled positive at root node 0, we assume that P (y0 =

1|x) = 1 and P (y0 = 0|x) = 0. Due to an independency assumption we have:

P (y|x) =
N−1∏
i=1

P (yi|ypa(i),x). (3.8)

Thus to estimate P (y|x), we need to estimate P (yi|ypa(i) for each node i. The node-

wise estimation may be done by utilizing binary classification algorithms, such as

logistic regression or support vector machine. To deal with a significant computational

load of the node-wise estimation, we parallelize the calculation. The details of the

parallelization step are discussed in the next section.
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The hierarchy constraint implies that P (yi = 1|ypa(i) = 0) = 0 and P (yi = 1|x) =

P (yi = 1, ypa(i) = 1|x). In order to simplify the notation, we denote:

pi = P (yi = 1|x) = P (yi = 1, ypa(i) = 1|x). (3.9)

Then pi can be computed based on P (yi = 1|ypa(i) = 1,x) as:

pi = P (yi = 1|x) = P (yi = 1|ypa(i) = 1,x)ppa(i). (3.10)

By combining the definition of CH-loss with equations (3.6) and (3.9), the computa-

tion of loss expectation LE(ŷ,x) can be rewritten using pi notation as follows:

Proposition 3.3.1 (Expected Loss)

LE(ŷ,x) = w1

N−1∑
i>0

˜̂yiŷpa(i)Cipi + w2

N−1∑
i>0

˜̂yi˜̂ypa(i)Cipi+

w3

N−1∑
i>0

ŷiŷpa(i)Ci(ppa(i) − pi) + w4

N−1∑
i>0

ŷiŷpa(i)Ci(1− ppa(i)).

(3.11)

Proof. Combining both equation (3.3) and equation (3.6), we get:

LE(ŷ,x) = T1 + T2 + T3 + T4,

where

T1 =
∑
y

(w1

N−1∑
i>0

yiypa(i)˜̂yiŷpa(i)Ci)P (y|x),

T2 =
∑
y

(w2

N−1∑
i>0

yiypa(i)˜̂yi˜̂ypa(i)Ci)P (y|x),

T3 =
∑
y

(w3

N−1∑
i>0

ỹiypa(i)ŷiŷpa(i)Ci)P (y|x),

T4 =
∑
y

(w4

N−1∑
i>0

ỹiỹpa(i)ŷiŷpa(i)Ci)P (y|x).
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we split the proof into four parts:

(a) T1 can be written as

T1 = w1

N−1∑
i>0

˜̂yiŷpa(i)Ci

∑
y

P (yi = 1, ypa(i) = 1,y|x).

Easily, we get:

T1 = w1

N−1∑
i>0

˜̂yiŷpa(i)CiP (yi = 1, ypa(i) = 1|x).

∴ T1 = w1

N−1∑
i>0

˜̂yiŷpa(i)Cipi.

(b) Following (a), we can obtain:

T2 = w2

N−1∑
i>0

˜̂yi˜̂ypa(i)Cipi.

(c) Following (a), we have:

T3 = w3

N−1∑
i>0

ŷiŷpa(i)CiP (yi = 0, ypa(i) = 1|x).

Since P (yi = 0, ypa(i) = 1|x) = P (ypa(i) = 1|x)

− P (yi = 1, ypa(i) = 1|x) = ppa(i) − pi, then

T3 = w3

N−1∑
i>0

ŷiŷpa(i)Ci(ppa(i) − pi).

(d) Following (c),

T4 = w4

N−1∑
i>0

ŷiŷpa(i)CiP (yi = 0, ypa(i) = 0|x).

Since P (yi = 0, ypa(i) = 0|x) = 1− P (ypa(i) = 1|x)

= 1− ppa(i), then:

T4 = w4

N−1∑
i>0

ŷiŷpa(i)Ci(1− ppa(i)).

After substituting T1, T2, T3, T4 into LE(ŷ,y), it is the exact equation (3.11).
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Based on the Expected Loss described in equation (3.11), the problem (3.7) is

re-formulated as follows:

Proposition 3.3.2 The minimization problem (3.7) is equivalent to the maximiza-

tion problem below.

ŷ∗ = argmax
ŷ∈{0,1}N

LEδ(ŷ,x)

s.t. ŷ satisfies the hierarchy constraint.

(3.12)

where

LEδ(ŷ,x) =
N−1∑
i>0

ŷpa(i)(w2 − w1)Cipi+

N−1∑
i>0

ŷi[w1Cipi − w3Ci(ppa(i) − pi)− w4Ci(1− ppa(i))].

Proof. Equation (3.11) is equivalent to:

LE(ŷ,x) = w1

N−1∑
i>0

(ŷpa(i) − ŷi)Cipi + w2

N−1∑
i>0

(1− ŷpa(i))Cipi

+w3

N−1∑
i>0

ŷiCi(ppa(i) − pi) + w4

N−1∑
i>0

ŷiCi(1− ppa(i))

⇒ LE(ŷ,x) =
N−1∑
i>0

w2Cipi − (
N−1∑
i>0

ypa(i)(w2 − w1)Cipi+

N−1∑
i>0

yi[w1Cipi − w3Ci(ppa(i) − pi)− w4Ci(1− ppa(i))]).

∴ LE(ŷ,x) =
N−1∑
i>0

w2Cipi − LEδ(ŷ,x).

So, the solution to minimize LE(ŷ,x) is equivalent to the one to maximize LEδ(ŷ,x).
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The problem (3.12) is still challenging since it contains two free variables yi and

ypa(i) under the hierarchy constraint.

To simplify the problem further, we introduce notations σ1(i) and σ2(i) as follows:

σ1(i) =
∑

j∈child(i)

(w2 − w1)Cjpj. (3.13)

Particularly, if ch(i) = ∅, σ1(i) = 0, and

σ2(i) = w1Cipi − w3Ci(ppa(i) − pi)− w4Ci(1− ppa(i)). (3.14)

Let σ(i) be a function of node i defined as

σ(i) =


σ1(i), i = 0;

σ1(i) + σ2(i), i > 0.

(3.15)

The equation (3.15) implies:

Proposition 3.3.3

LEδ(ŷ,x) =
∑
i

ŷiσ(i). (3.16)

Proof. Let T =
∑

i yiσ(i). Our goal is to prove LEδ(ŷ,x) = T . According to

equation(3.15), we have:

T =
∑
i

σ1(i) +
∑
i>0

σ2(i).

Let T1 =
∑

i σ1(i) and T2 =
∑

i>0 σ2(i). Then,

(a)

T1 =
∑
i

yi
∑

j∈child(i)

(w2 − w1)Cjpj

⇔ T1 =
∑
i

∑
j∈child(i)

ypa(j)(w2 − w1)Cjpj.
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Since j is a child of node i, j > 0,

∴ T1 =
∑
j>0

ypa(j)(w2 − w1)Cjpj.

(b)T2 =
∑
i>0

yi(w1Cipi − w3Ci(ppa(i) − pi)− w4Ci(1− ppa(i))).

(c) Combining both T1 and T2, we prove T = LEδ(ŷ,x).

Based on the equation (3.16), the solution to the problem (3.12) is equivalent to

the one of problem (3.17).

ŷ∗ = argmax
ŷ∈{0,1}N

∑
i

yiσ(i)

s.t. ŷ satisfies the hierarchy constraint.

(3.17)

The solution of the problem (3.17) by a greedy algorithm is described in the next

section.

3.4 Algorithms and Solutions

As discussed in previous sections, there are three key steps to obtain the hierarchical

multi-labeling of the instances having minimal CH-loss.

1. Estimate the probability pi for each node i based on the training data.

2. Incorporate the domain knowledge k and adjust the probability pi for each node

i accordingly.

3. Use pis to compute the σ(i) defined by the equation (3.15).

4. Obtain the optimal predictor ŷ∗ as a solution of the problem (3.17).
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3.4.1 Estimating Probability pi

According to the equation (3.10), pi can be computed by estimating the probability

P (yi = 1|ypa(i) = 1,x). For each node i with positively labeled the parent node,

a binary classifier is built based on existing methods, such as logistic regression or

support vector machine. Given an instance x, we apply thresholding described in

[P+99] to convert the real output of the classifier to estimate P (yi = 1|ypa(i) = 1,x).

The task of building classifiers for all the nodes is a significant load. Since the

building process of the classifier on each node only relies on the related training data

and all the classifiers are mutually independent, we parallelize the task to improve

the performance [ZJZ+13b].

Then, the values of pis are computed by applying formula 3.9 while traversing the

nodes in the hierarchy. Figure 3.6(b) illustrates the marginal probabilities by consider

the hierarchical label tree in Figure 3.6(a). The time complexity of pi computation is

O(N), where N is the number of nodes in the hierarchy.

3.4.2 Incorporating Prior Knowledge k

In a probabilistic graphical model, each node represents a random variable and the

link between two nodes expresses the probabilistic relationship between them [B+06].

The graph captures the way in which the joint distribution over all of the random

variables can be decomposed into a product of factors each depending only on a sub-

set of the variables. Accordingly, it is straightforward to interpret the hierarchical

tree H as a probabilistic graphical model where each label node yi corresponds to a

random variable taking value either 0 or 1 and each link from parent to child repre-

sents the hierarchical constraint 3.2.1. The label inference on a tree-structured graph

can be efficiently addressed by the sum-product algorithm [B+06]. In this section,

Kilo (Knowledge guided hierarchical mutli-label classification), a sum-product based
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algorithm, is proposed to adjust the marginal probability pi for knowledge incorpo-

ration.

Assuming yi and yj to be two label nodes in H where a link occurs between them,

µyi→yj(ŷj) denotes the message passed from node yi to node yj, when the random

variable yj takes the value ŷj.

Definition 3.4.1 (Accumulated Message) Given a node yj and a node set U

where any node yt ∈ U is a neighbour of yj, ProdU→yj(ŷj) is referred as the mes-

sage accumulated on node yj from U when yj = ŷj. It is defined as follows:

ProdU→yj(ŷj) =
∏
yt∈U

µyt→yj(ŷj). (3.18)

Especially, when U = ∅, ProdU→yj(ŷj) = 1.

Definition 3.4.2 (Passed Message) Given a node yj and its neighbour yi, let Ui/j

denote a set containing all the neighbours of yi except yj. The message passed from

yi to yj when yj = ŷj is defined as follows:

µyi→yj(ŷj) =
∑

yi
p(yi|yj = ŷj)ProdUi/j→yi(yi), yi is child of yj;∑

yi
p(yj = ŷj|yi)ProdUi/j→yi(yi), yj is child of yi.

(3.19)

Proposition 3.4.3 Let U be the node set containing all the neighbours of yj, then

the marginal probability

p(yj = ŷj) = ProdU→yj(ŷj). (3.20)

This proposition can be simply verified by an example in Figure 3.6. Accord-

ing to the D-separation property of probabilistic graphical model [B+06], the joint

probability of the label vector in the example is given by

p(y0, y1, y2, y3, y4) = p(y0)p(y1|y0)p(y2|y0)p(y3|y1)p(y4|y1).
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Therefore, the marginal probability p(y1) can be computed as follows:

p(y1) =
∑
y0

∑
y2

∑
y3

∑
y4

p(y0)p(y1|y0)p(y2|y0)p(y3|y1)p(y4|y1). (3.21)

According to the definition of accumulated message, ProdU→y1(y1) can be computed

in the following.

ProdU→y1(y1) = µy0→y1(y1)µy3→y1(y1)µy4→y1(y1)

=
∑
y0

p(y1|y0)µy2→y0(y0) ·
∑
y3

p(y3|y1) ·
∑
y4

p(y4|y1)

=
∑
y0

(p(y1|y0) ·
∑
y2

p(y2|y0)) ·
∑
y3

p(y3|y1) ·
∑
y4

p(y4|y1)

=
∑
y0

∑
y2

∑
y3

∑
y4

p(y1|y0)p(y2|y0)p(y3|y1)p(y4|y1). (3.22)

Since p(y0 = 1) = 1.0, p(y0 = 0) = 0.0, p(y1|y0 = 0) = 0.0 and p(y2|y0 = 0) = 0.0, we

get p(y1) = ProdU→y1(y1) based on Equation (3.21) and (3.22).

Algorithm 1 Kilo

1: procedure Kilo(H,k)
◃H is the label hierarchy tree, with P (yi = 1|ypa(i) = 1,x) on its corresponding
link.
◃k is the knowledge vector.

2: Initialize a 3-dimensional array T with size N×N×2, where N is the number
of labels. Tijk corresponds to the passed message µyi→yj(yj = k), where k is either
0 or 1.
◃compute µyi→yj(yj = k) from bottom to top.

3: Starting from leaf nodes along the links between their parents, compute
µyi→yj(yj = k) and fill it in the Tijk.
◃compute µyi→yj(yj = k) from top to bottom.

4: Starting from root node along the links between their children, compute
µyi→yj(yj = k) and fill it in the Tijk.

5: Compute the marginal probability for each label according to Equation (3.20).
6: Normalize all the marginal probability with the marginal probability of root

label.
7: return a vector containing all the marginal probabilities for all the labels.
8: end procedure

53



y0

y1 y2
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P(y0=1)=1.0

P(y1=1|y0=1)=0.3 P(y2=1|y0=1)=0.8

P(y3=1|y1=1)=0.2 P(y4=1|y1=1)=0.4
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y1 y2
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P(y0=1)=1.0

P(y1=1)=0.3

P(y2=1)=0.8

P(y3=1)=0.06 P(y4=1)=0.12

(a) (b)

Prior Knowledge:
{y0:positive, y1:negative,y2:unknown,y3:unknown,y4:unknown}

P(y0=1) = 100% and P(y1=1) = 0%

(d)

(c)

y0

y1 y2

y3 y4

P(y0=1)=1.0

P(y1=1)=0.3 0.0

P(y2=1)=0.8

P(y3=1)=0.06 0.0

P(y4=1)=0.12 0.0

Figure 3.6: This figure illustrates the marginal probability by incorporating the do-
main knowledge.The label nodes in black circle are observed. (b) can be inferred by
marginalization from (a), while (d) can be inferred by considering both (a) and prior
knowledge in (c). The prior knowledge in (c) can be represented with a likelihood
vector about being positive.

So far, we have considered the label inference without any knowledge. According

to Definition 3.2.2, the knowledge is represented as a vector k (shown in Figure 3.6

(c)). If ki = 0 or ki = 1, it indicates that the ith label is observed as negative or

positive. While ki = −1, it means the ith label is hidden as unknown. In order to

incorporate the knowledge vector k, an indicator function is defined as follows:

I(yi, ki) =


1, if ki = −1 ∨ yi = ki;

0, otherwise.

(3.23)

The knowledge incorporation can be implemented by multiplying the joint proba-

bility p(y) with
∏

i I(yi, ki). The product corresponds to the joint probability with

some observed labels, which is an un-normalized version of posterior probability giv-
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en the observable labels. Hence, we can get p(y|k) by normalization. Figure 3.6(d)

shows the final marginal probabilities inferred by incorporating knowledge vector in

Figure 3.6(c).

According to the above formulation, Kilo algorithm is given in Algorithm 1.

The Kilo algorithm takes the hierarchical tree and the knowledge vector as the

inputs and return the marginal probability vector after knowledge incorporation. It

traverses the tree along the links twice in both bottom-to-top and top-to-bottom

directions. It needs to normalize the marginal probability for each node. Therefore,

the overall time complexity is O(N + E), where N and E are the number of nodes

and number of links respectively.

0

1 2 3

4 5 6 7

8

(0)>0

(1)>0 (2)<0
(3)>0

(4)<0 (5)<0 (6)>0 (7)<0

(8)>0

( (2)+ (6))/2<0

( (4)+ (8))/2<0

Figure 3.7: Figure illustrates hierarchy with 9 nodes and steps of Algorithm 2. Nodes
labeled positive are green. A dotted ellipse marks a super node composed of the nodes
in it.

3.4.3 Computing Variable σ(i)

With pi available, σ can be computed based on equation (3.15) by recursively travers-

ing each node of the hierarchy. Since each node in hierarchy needs to be accessed

twice, one for computing σ1 and the other for computing σ2. Therefore, time com-

plexity of σ(i) evaluation is also O(N) .
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3.4.4 Obtaining Label ŷ∗

Algorithm 2 GLabel

1: procedure GLabel(H)
◃H is the label hierarchy, with σ available

2: define L as a set, and initialize L = {0}
3: define U as a set, and initialize U = H\{0}
4: while TRUE do
5: if all the nodes in H are labeled then
6: return L
7: end if
8: find the node i with maximum σ(i)
9: if σ(i) < 0 then
10: return L
11: end if
12: if all the parents of i are labeled then
13: put i into L, and remove it from U
14: else
15: merge i with its parent as a super node i∗

16: σ(i∗) =average σ values of the two nodes
17: put the i∗ into U
18: end if
19: end while
20: end procedure

The value ŷ∗ is obtained by solving the maximization problem (3.17). [BK11] pro-

posed the greedy algorithm CSSA, based on the work in [BJ94] that allows for solving

the problem (3.17) efficiently. However, CSSA only works under an assumption that

the number of labels to be associated with a predicted instance is known. That

assumption rarely holds in practice. In [WJ12], the HIROM algorithm is proposed

to avoid the deficiency of CSSA by giving the maximum number of labels related

to a predicting instance. During the process of finding maximum number of labels,

HIROM gets the optimal ŷ∗ by comparing all possible ŷs with different numbers of

labels related to a predicting instance.

We suggest a novel greedy labeling algorithm GLabel(Algorithm 2) to solve the

problem (3.17). This algorithm finds the optimal ŷ∗ without knowing the maximum
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number of labels for the predicting instance. It labels the node (or super node) i

with maximum σ(i) to be positive by searching in the hierarchy. If the parent node

of i is negative, then i and its parent are merged into a super node whose σ value is

the average σ value of all the nodes contained in the super node (Figure 3.7). The

labeling procedure stops when the maximum σ value is negative or all nodes are

labeled positive.

Since the labeling procedure for each node may involve a merging procedure, the

time complexity is no worse than O(Nlog(N)), the same as HIROM. However, as

shown in the experimentation section below, GLabel performs more efficiently than

HIROM while not requiring knowledge of the maximum number of labels.

3.5 Experiments

3.5.1 Setup

We perform the experiment over the ticket data set generated by monitoring of the IT

environments of a large IT service provider. The number of tickets in the experiment

amounts to about 23,000 in total. The experiment is executed 10 times and we use the

mean value of the corresponding metric to evaluate the performance of our proposed

method. At each time, 3000 tickets are sampled randomly from the whole ticket data

set to build the testing data set, while the rest of the tickets are used to build the

training data set. The class labels come from the predefined catalog information for

problems occurring during maintenance procedures. The whole catalog information

of problems is organized in a hierarchy, where each node refers to a class label. The

catalog contains 98 class labels; hence there are 98 nodes in the hierarchy. In addition,

the tickets are associated with 3 labels on average and the height of the hierarchy is

3 as well.
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Figure 3.8: The lowest Hamming loss: CSSA gets 0.8876 at # 3; HIROM gets 0.8534
at # 4; GLabel gets 0.8534.

The features for each ticket are built from the short text message describing the

symptoms of the problem. First, Natural language processing techniques are applied

to remove the stop words and build Part-Of-Speech tags for the words in the text.

The nouns, adjectives and verbs in the text are extracted for each ticket. Second, we

compute the TF-IDF [MRS08] scores of all words extracted from the text of tickets.

And the words with the top 900 TF-IDF score are kept as the features for the tickets.

Third, the feature vector of each ticket has 900 components, where value of each

feature is the frequency of the feature word occurring in the text of the ticket.

Based on the features and labels of the tickets, we build a binary classifier for each

node in the hierarchy with the SVM algorithm by using library libSVM [url15]. The

training data for each node i are the tickets with a positive parent label. To speed up

evaluation of the 98 SVM classifiers, we parallelize the process of training classifiers,

using the fact that all the classifiers are independent.
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Figure 3.9: Varying precision during minimizing the Hamming loss
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Figure 3.10: Varying recall during minimizing the Hamming loss
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Figure 3.11: Varying FMeasure score during minimizing the Hamming loss

The experiments are mainly conducted by comparing the proposed GLabel algo-

rithm with state-of-the-art algorithms such as CSSA and HIROM. Note, that in the

end, we also show benefits of hierarchical classification in comparison to the “Flat”

classification.

3.5.2 Hamming Loss

The GLabel algorithm can obtain optimal ŷ∗ with minimum Hamming loss by setting

the parameters for Hamming loss, since Hamming loss is a special case of CH-loss.

Given w1 = w2 = w3 = w4 = 1 for GLabel, α = β = 1 for HIROM and Ci = 1

for both of them, empirical results are displayed in Figure 3.8 - 3.11. Sub-figure

(a) shows that the GLabel algorithm can automatically find the optimal ŷ∗ with

minimum Hamming loss, while both CSSA and HIROM require the number of class

labels and the maximum number of class labels, respectively, to get the optimal ŷ∗.

With the increasing number of class labels, HIROM gets lower Hamming loss until
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it reaches the optimal ŷ∗ with minimum Hamming loss by choosing large enough

number of class labels. However, CSSA may get larger Hamming loss as the number

of class labels increases. The sub-figure (b)-(d) show as in comparison to Hamming

loss, Glabel algorithm shows good performance in Precision, Recall and FMeasure

score.

3.5.3 HMC-Loss

The HMC-loss considers loss with respect to the node position in the hierarchy. Fol-

lowing [WJ12], we define the Ci as follows.

Ci =


1, i = 0;

Cpa(i)

# of i’s siblings
, i > 0.

(3.24)

To simplify, we set w1 = w2 = w3 = w4 = 1 for GLabel and α = β = 1 for HIROM as

well. The Figure 3.12 shows that GLabel algorithm obtains the same lowest HMC-loss

as HIROM algorithm does, with the HIROM tuned for minimizing the HMC-loss.

3.5.4 H-Loss

In order to get the minimum H-loss, we set w1 = w3 = 1,w2 = w4 = 0 for GLabel and

α = β = 1 for HIROM, Ci = 1 for all the three algorithms. The Figure 3.13 shows

that GLabel gets the lowest H-loss in comparison to HIROM and CSSA minimums.

HIROM and CSSA algorithms cannot get the optimal ŷ∗ with minimal H-loss.
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Figure 3.12: The lowest HMC-Loss: CSSA gets 0.0227 at # 3; HIROM gets 0.0219
at # 4; GLabel gets 0.0219.

3.5.5 Misclassifications Occur in Both Parent and Child La-

bels

The worse error from the loss point of view is the misclassification of both parent

and child nodes. We call such misclassification a parent-child error. In terms of

CH-loss, GLabel can minimize the number of such cases by setting w1 = w3 = 1,

w2 = w4 = 10 with more penalties in parent-child errors. To compare, we set in CSSA

and HIROM α = β = 1, and Ci according to the equation (3.24). In Figure 3.14,

GLabel reaches the minimum average number of parent-child errors, while CSSA and

HIROM algorithms do not minimize the parent-child errors since they do not consider

the contextual misclassification information in their loss function.
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Figure 3.13: The lowest H-Loss: CSSA gets 0.0176 at # 3; HIROM gets 0.0168 at #
3; GLabel gets 0.0167.
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Figure 3.14: The lowest AVG. parent-child error: CSSA gets 0.237 at # 2; HIROM
gets 0.2440 at #2; Glabel gets 0.2304.
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Figure 3.15: Time complexity with respect to the number of classes related to each
predicting ticket.

3.5.6 Time Complexity

In order to evaluate the time complexity, we fix the same parameters but increase

the number of classes labels, see Figure 3.15. We run three algorithms for 40 rounds

and get the average time consumed. Figure 3.15 shows that run time of GLabel is

independent from the number of labels, while other algorithms require more time as

the number of labels increases. Hence, the GLabel algorithm is more efficient than

other two algorithms, especially in the cases with large number of class labels.

3.5.7 Comparison Study With Flat Classifier

To set up a “Flat” classification, a classifier is built for each label independently

without considering the hierarchy constraint. The SVM algorithm is one of the best

performing algorithms used to classify the ticket data with each binary class label.

In order to decrease the parent-child error, we set w1 = w3 = 1, w2 = w4 = 10, and
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Ci as the equation (3.24). In addition, we define the hierarchy error as the average

number of violated hierarchy constraints.

Metric SVM GLabel

CH-loss 4.2601 2.6889

Parent-child error 0.3788 0.1729

Hierarchy error 0.0102 0.0

Table 3.2: Comparison with “Flat” classification

The table 3.2 shows that GLabel algorithm has better performance in terms of

CH-loss and parent-child error. Furthermore, the “Flat” SVM classifiction suffers

on average 0.0102 hierarchy errors with each ticket, while GLabel complies with the

hierarchy constraint and does not have hierarchy errors.

3.5.8 Experiment With Prior Knowledge

Setup for Knowledge Incorporation

In order to demonstrate the effectiveness of the proposed Kilo algorithm for knowledge

guided hierarchical multi-label classification, we perform the experiments over the

same real ticket data set described in section 3.5.1. The only difference lies in the

additional knowledge construction. Each ticket instance in the test data set are

associated with a knowledge vector k, where the ith component are exposed with its

ground true value randomly according to a predefined prior knowledge ratio γ ∈ [0, 1].

The prior knowledge ratio γ is the probability that true labels are observed as either

postive or negative, while 1 − γ denotes the probability that the label can not be

observed before classification. Figure 3.16 - 3.23 show the performances in terms of

different metrics in comparing GLabel algorithm without prior knowledge and the

one with prior knowledge incorporated by Kilo algorithm.
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Figure 3.16: Experiment with prior knowledge is conducted over the ticket data in
terms of Hamming Loss. Hamming Loss decreases as more prior knowledge provid-
ed. “prior knowledge” denotes the hierarchical multi-label classification with knowl-
edge incorporation. “None” denotes the hierarchical multi-label classification without
knowledge incorporation.

Hamming Loss with Changing Prior Knowledge Ratio

Similar to previous configuration, we obtain Hamming loss by setting the CH-loss

parameters w1 = w2 = w3 = w4 = 1, Ci = 1. As illustrated in Figure 3.16, Hamming

loss drops as the prior knowledge ratio increases and reaches to zero as prior knowledge

ratio achieves one. Figure 3.17 - 3.19 illustrate the performance in terms of Precision,

Recall and F-Measure, and it shows that the knowledge guided algorithm gets better

performance as prior knowledge ratio increases.

HMC-Loss

The HMC-Loss is obtained by the same settings as provided in section 3.5.3. As

expected, HMC-Loss decreases as more prior knowledge is provided, shown in Fig-

ure 3.20.
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Figure 3.17: Experiment with prior knowledge is conducted over the ticket data
in terms of precision. Precision increases as more prior knowledge provided. “prior
knowledge” denotes the hierarchical multi-label classification with knowledge incorpo-
ration. “None” denotes the hierarchical multi-label classification without knowledge
incorporation.
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Figure 3.18: Experiment with prior knowledge is conducted over the ticket data in
terms of recall. Recall increases as more prior knowledge provided. “prior knowl-
edge” denotes the hierarchical multi-label classification with knowledge incorpora-
tion. “None” denotes the hierarchical multi-label classification without knowledge
incorporation.
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Figure 3.19: Experiment with prior knowledge is conducted over the ticket data in
terms of F-Measure. F-Measure increases as more prior knowledge provided. “prior
knowledge” denotes the hierarchical multi-label classification with knowledge incorpo-
ration. “None” denotes the hierarchical multi-label classification without knowledge
incorporation.

H-Loss

The H-Loss is obtained by the same parameter settings as provided in section 3.5.4.

By increasing the prior knowledge ratio, H-Loss caused by knowledge guided algo-

rithm decreases, shown in Figure 3.21.

Parent-Child Error

The Parent-Child Error is obtained by the same parameter settings as presented in

Section 3.5.5. By increasing the prior knowledge ratio, Parent-Child errors caused by

knowledge guided algorithm decreases, shown in Figure 3.22.
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Figure 3.20: Varying HMC-Loss with changing prior knowledge ratio.Experiment
with prior knowledge is conducted over the ticket data in terms of HMC-Loss. HMC-
Loss decreases as more prior knowledge is provided. “prior knowledge” denotes the
hierarchical multi-label classification with knowledge incorporation. “None” denotes
the hierarchical multi-label classification without knowledge incorporation.

CH-Loss

The CH-Loss is obtained by the same parameter settings as given in Section 3.5.5. By

increasing the prior knowledge ratio, CH-Loss caused by knowledge guided algorithm

decreases, shown in Figure 3.23.

3.6 Summary

In this chapter, we employ hierarchical multi-label classification over ticket data to

facilitate the problem diagnosis, determination and an automated action, such as

auto-resolution or auto-check for enriching or resolving the ticket in the complex IT

environments. CH-loss is proposed by considering the contextual misclassification

information to support different scenarios in IT environments. In terms of CH-loss,

an optimal prediction rule is developed based on Bayes decision theory. This chapter
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Figure 3.21: Experiment with prior knowledge is conducted over the ticket data in
terms of H-Loss. H-Loss decreases as more prior knowledge is provided. “prior knowl-
edge” denotes the hierarchical multi-label classification with knowledge incorporation.
“None” denotes the hierarchical multi-label classification without knowledge incorpo-
ration.
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Figure 3.22: Experiment with prior knowledge is conducted over the ticket data in
terms of Parent-Child Error. Parent-Child Error decreases as more prior knowledge
is provided. “prior knowledge” denotes the hierarchical multi-label classification with
knowledge incorporation. “None” denotes the hierarchical multi-label classification
without knowledge incorporation.
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Figure 3.23: Experiment with prior knowledge is conducted over the ticket data in
terms of CH Loss. CH Loss decreases as more prior knowledge is provided. “prior
knowledge” denotes the hierarchical multi-label classification with knowledge incorpo-
ration. “None” denotes the hierarchical multi-label classification without knowledge
incorporation.

comes up with a greedy algorithm GLabel by extending the HIROM algorithm to

label the predicting ticket without knowing the number or the maximum number of

class labels related to the ticket. Additionally, taking the real scenario in practice

into account, KILO algorithm is proposed to utilize the knowledge from the domain

expert during routine IT maintenance procedure to effectively improve the IT problem

category determination.
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CHAPTER 4

TEMPORAL PATTERN MINING FROM SYSTEM EVENTS

The importance of mining time lags of hidden temporal dependencies from se-

quential data is highlighted in many domains including system management, stock

market analysis, climate monitoring, and more. Mining time lags of temporal de-

pendencies provides useful insights into the understanding of sequential data and

predicting its evolving trend. Traditional methods mainly utilize the predefined time

window to analyze the sequential items, or employ statistical techniques to identi-

fy the temporal dependencies from a sequential data. However, it is a challenging

task for existing methods to find the time lag of temporal dependencies in the real

world, where time lags are fluctuating, noisy, and interleaved with each other. In

order to identify temporal dependencies with time lags in this setting, this chapter

comes up with an integrated framework from both system and algorithm perspectives.

Specifically, a novel parametric model is introduced to model the noisy time lags for

temporal dependencies discovery between events. Based on the parametric model, an

efficient expectation maximization approach is proposed for time lag discovery with

maximum likelihood. Furthermore, this chapter also contributes an approximation

method for learning time lag to improve the scalability in terms of the number of

events, without incurring significant loss of accuracy.

4.1 Introduction

The operational cost of IT service delivery is believed to continue to decrease while

the quality of IT service delivery is expected to increase.

Service Providers seek to employ intelligent solutions that provide deep analyti-

cal and automation capabilities for optimizing problem detection, root cause analysis

and automated resolution [urlb],[ZLSG14b]. Detection is usually realised by an au-

72



tomated monitoring system. This system provides an effective and reliable means of

ensuring that degradation of vital signs is flagged as a problem candidate (monitoring

event), and sent to the service delivery teams as an incident ticket. When correlated,

monitoring events, discrete in nature, could also provide effective and reliable means

for problem determination.

There has been a great deal of effort spent on developing methodologies for event

correlation and, subsequently, root cause analysis in IT Service Management. One

fruitful line of research has involved the development of techniques for traversing

graphs dependencies of application configuration. Although these methods have been

successful in understanding the systems’ failures, they have had a limited impact due

to overhead associated with constructing such graphs and keeping them up-to-date.

Another approach has focused on the mining temporal properties of events. The

essence of this approach is to rely mostly on temporal data from event management

systems rather than external data.

DatabaseApplication Server

Monitoring agent Monitoring agent

Event DB

Enterprise

Console

!
DB_DownAPP_SERVER_ERR

3 seconds

Data Access

Figure 4.1: A scenario from IT service management demonstrates the event depen-
dency.
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Time lag, one of the key features in temporal dependencies, plays an important

role in discovering the evolving trends of the upcoming events and predicting future

behavior. Take the scenario shown in Figure 4.1 for instance. Applications are de-

ployed on the application server. The availability of services provided by applications

relies on access to database. To monitor the statuses of both the application server

and database server, two monitoring agents are deployed to the two servers. The

enterprise console collects the monitoring events from both monitoring agents, and

all the events are stored in the event database. In this scenario, the database goes

down, this leads to generation of DB Down event by its corresponding monitoring

agent. After approximately 3 seconds, the monitoring agent on the application serv-

er generates a APP SERV ER ERR event suffering several unsuccessful retries for

communication to the database server. The APP SERV ER ERR event is tempo-

rally dependent on the DB Down event, with a time lag of about 3 seconds.

The temporal dependencies among events are characterized by the time lags. Time

lags provide temporal information for building a fault-error-failure chain [ALR01]

which is useful for root cause analysis. In addition, events triggered by a single issue

can be correlated, given the appropriate time lags. Merging those correlated events

in one ticket reduces an administrative effort for problem diagnosis and incident

resolution. Thus, the discovery of time lag is a very important task during temporal

dependency mining.

The situation in real-world systems becomes complicated due to the limitation of

sequential data collecting methods and the inherent complexity of the systems. How-

ever, events detected by monitoring systems are typically studied with the assumption

that the time lag between correlated events is constant, and fluctuations are limited

and can be ignored [TLS12]. Although such an approach is undoubtedly applicable

to a wide range of systems, fluctuations can render the deterministic classical picture
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qualitatively incorrect, especially when correlating events are limited. Taking the

randomness of the time lag into account makes the detection of the hidden time lags

between interleaved events a challenging task.

B

A

b1 b4b2 b3 b5 b6

a1 a2 a3 a4 a6a5 a7

1 5 10 15 20 25 28 Time

Figure 4.2: The temporal dependencies between A and B are denoted as direct edges,
where A and B correspond to DB Down and APP SERV ER ERR.

First, the fluctuating interleaved temporal dependencies pose a challenging prob-

lem when attempting to discover the correct hidden time lag between two events. For

example, two eventsA andB, corresponding toDB Down andAPP SERV ER ERR

events, respectively, are shown in Figure 4.2. Both A and B occur with multiple in-

stances in the sequential data set. The ith instance of A and the jth instance of B are

associated with their time stamps ai and bj. Because the true temporal dependencies

are interleaved, it is difficult to determine which bj is implied by a given ai. The

different mapping relationships between ai and bj lead to varying time lags. In this

example, a1 can be mapped to any bj. Therefore, the time lag ranges from b1− a1 to

b6 − a1 time units. It is infeasible to find the time lag with exhaustive search from

large scale sequential event data.

Second, due to the clocks being out of sync and the limitations of the data collect-

ing method, the time lags presented in the sequential data may oscillate with noise.

In Figure 4.2, a6 does not correspond to any instance of event B for several possible

reasons: (1) its corresponding instance of B is missing from the sequential data set,

(2) the database returns to normality in such a short time that there is no need to
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eject an instance of B since the application successfully continues to work after only

one try, and (3) even though the correct instance mapping relations between A and B

are provided, time lags are still observed with different values due to recording errors

brought about by system monitoring.

The above difficulties pose a big challenge for time lag mining. The work in [TLS12]

applies a non-parametric method to identify the correlation between events with high

time complexity. It’s not easy to further improve the efficiency of the non-parametric

method. This chapter proposes a parametric model to identify the time lag of the

temporal dependencies. With the help of the parametric model, an approximation

method is applied to improve the efficiency, without losing much accuracy, for time

lag mining.

In summary, our contribution includes:

1. A novel parametric model used tomodel noisy time lags for temporal dependen-

cies’ discovery between events.

2. an efficient expectation maximization (abbr., EM) approach for time lag dis-

covery with maximum likelihood.

3. an approximation method for learning time lag to improve the scalability in

terms of the number of events without incurring significant loss of accuracy.

4. algorithms and design of a system named TDMS (Temporal Data Mining Sys-

tem) that has the capability of handling a large number of event types and

presenting users with a complete solution for temporal lag mining

5. extensive experiments on both synthetic and real data to illustrate the efficiency

and effectiveness of the proposed approaches.

The remainder of the chapter is organized as follows: In Section 4.2, the overview

of our system is described. In Section 4.3 we formulate the problem for finding time
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lag with a parametric model. In Section 4.4, an EM-based solution is proposed to

solve the formulated problem. Extensive experiments are conducted in Section 4.5.

The running system is demonstrated in Section 4.6. Section 4.7 provides a conclusion

of our work and discussion of our future work.

4.2 System Architecture

Before diving into the detail of the temporal dependency mining algorithm, we first

present the architecture of our integrated system framework.

This chapter mainly focuses on mining temporal dependency with time lag be-

tween a pair of event types. The pairwise temporal dependency can be discovered

in parallel without interacting with other pairs of events. Accordingly, it is neces-

sary to build a system on distributed computing environment for mining temporal

dependencies among large number of event type pairs.

A temporal dependency mining system named TDMS is proposed based on dis-

tributed environment. There are two external components shown in the left part

of Figure 4.3, working with TDMS. Users as one external component interact with

TDMS by issuing HTTP requests for both events query and temporal dependencies

discovery. The other external component is composed of a large number of monitored

customer servers, where all the alerts and events generated by hosted applications are

collected and stored in TDMS.

TDMS has three layers displayed in the right part of Figure 4.3. The bottom

layer depicts the storage for event data. To leverage the computing power of the

distributed environment for temporal dependency discovery, the whole event data are

available to all the computing nodes by placing it on distributed file system such as

HDFS (Hadoop Distributed File System).
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Figure 4.3: The overview of temporal dependency mining system (TDMS).

The middle layers is the distributed computing layer containing three compo-

nents: Job Cache, Distributed Job Scheduler and Mining Algorithm Library. Job

Cache component is used to alleviate the computing burden of the system. The min-

ing results are indexed by its parameters and dataset names, and stored in the cache.

As a result, the mining result of the requested job can be retrieved directly from

the cache without redundant computation if the same job has been computed before.

Distributed Job Scheduler is responsible for scheduling the requested jobs in the dis-

tributed environment by considering the resource balance. Distributed Job Scheduler

is implemented by FIU-Miner, a Fast, Integrated, and User-Friendly System for Data

Mining in Distributed Environment [ZJZ+13a]. The third component in this layer is

the algorithm library. The detailed algorithms for temporal dependency mining are

given in the subsequent sections.

The top layer is the User Access Layes serving for user interaction with TDMS.

Users are able to access all the stored events and query the discovered temporal

dependencies in two ways including Temporal Dependency Service and Web-based
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Temporal Dependencies Visualization. Moreover, users can customize the parameters

of the mining algorithms and specify the event data set to discover the temporal

dependencies for the interests of users. The temporal dependencies are demonstrated

in Section 4.6.

4.3 Problem Formulation

4.3.1 Problem Description

In temporal pattern mining, the input data is a sequence of events. Given the event

spaceΩ of all possible events, an event sequence S is defined as ordered finite sequence

S =< e1, e2, ..., ei, ..., ek >, where ei is an instance of an event. We consider temporal

events, i.e., each ei is a tuple ei = (Ei, ti) of event Ei ∈ Ω and a time stamp ti of

event occurrence.

Let A and B be two types of events from the event space Ω. We define SA =<

(A, a1), ..., (A, am) > to be a subsequence from S, where only the instances of A are

kept and ai is the time stamp of ith event A. Since all the instances happening in

the sequence SA belong to the same type of event A, SA can be simply denoted

as a sequence of time stamps, i.e., SA =< a1, ..., am >. Similarly, SB is denoted

as SB =< b1, ..., bn >. Discovering the temporal dependency between A and B is

equivalent to finding the temporal relation between SA and SB.

Specifically, if the jth instance of event B is associated with the ith instance of

event A after a time lag (µ+ ϵ), it indicates

bj = ai + µ+ ϵ, (4.1)

where bj and ai are the time stamps of two instances of B and A respectively, µ is

the true time lag to describe the temporal relationship between A and B, and ϵ is a
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Table 4.1: Notations.

Notation Description

Ω the event space containing all the event types.

S an event sequence.

SA,SB the event sequence with a specific event type.

A , B the event type.

ai , bi the time stamps of the ith instances of event A, B.

µ the true time lag between two events.

ϵ the noise associated with the time lag.

ξ
the probability sum of the components is neglected

in the approximation algorithm.

L a random variable denoting the time lag.

Θ the parameters to model the time lag.

zij
an indicator variable to determine

whether the ith event A implies the jth event B.

πij, rij the probability of zij = 1.

σ2 the variance of time lag distribution.

m the number of event A.

n the number of event B.

random variable used to represent the noise during data collection. Because of the

noise, the observed time lag between ai and bj is not constant. Since µ is a constant,

the time lag L = µ+ ϵ is a random variable.

Definition 4.3.1 The temporal dependency between A and B is denoted as A→L B,

which means that the occurrence of A is followed by the occurrence of B with a time

lag L. Here L is a random variable.
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In order to discover the temporal dependency rule A→L B, we need to learn the

distribution of random variable L.

We assume that the distribution of L is determined by the parameters Θ, which

is independent from the occurrence of A. The occurrence of an event B is defined by

the time lag L and the occurrence of A. Thus, the problem is equivalent to learning

the parameter Θ for the distribution of L. The intuitive idea to solve this problem

is to find maximal likelihood parameter Θ given both sequences SA and SB. It is

expressed formally by the following Equation (4.2).

Θ̂ = argmax
Θ

P (Θ|SA,SB). (4.2)

The value of P (Θ|SA,SB) in Equation (4.2) can be obtained with the Bayes

Theory.

P (Θ|SA,SB) =
P (SB|SA,Θ)× P (Θ)× P (SA)

P (SA,SB)
. (4.3)

Applying ln to both sides of Equation (4.3), we get:

lnP (Θ|SA,SB) = lnP (SB|SA,Θ) + lnP (Θ)

+ lnP (SA)− lnP (SA,SB).

(4.4)

In Equation (4.4), only lnP (SB|SA,Θ) and lnP (Θ) are related toΘ. A large number

of small factors contribute to the time lag L and we do not have prior knowledge

about the distribution of Θ. Thus, given a non-informative prior distribution for Θ,

we mainly focus on the likelihood defined in the first term. As a result, the problem

is reduced to maximizing the likelihood defined by

Θ̂ = argmax
Θ

lnP (SB|SA,Θ). (4.5)

Therefore, the temporal dependency A →L B can be found by solving Equation

(4.5).
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4.3.2 Computing Log-likelihood

To solve Equation (4.5) we need to compute the log-likelihood lnP (SB|SA,Θ).

Given the sequence SA and value of parameters Θ, we assume that time stamps

bj in SB are mutually independent if event B is caused by A. This assumption allows

us to advance our calculation while thorough tests of the final results are described

in latter sections.

Therefore,

P (SB|SA,Θ) =
n∏

j=1

P (bj|SA,Θ). (4.6)

B

A

b1 b2 bj bn

a1 a2 ai
ai+1 am-1 am

Event

Time

... bn-1...

... ...

bj+1

zij=1z1j=0 zmj=0......

Figure 4.4: The jth event B occurring at bj can be implied by any event A. Variable
zij = 1 if the jth event B is associated with ith event A, and 0 otherwise.

Given the sequence of time stamps SA of event A, the instance of eventB occurring

at bj is identified by possible instances of A happening at a specific time stamp ai in

the sequence SA as shown in Figure 4.4. In order to model the relation between ai

and bj, we introduce a latent variable zij defined as follows

zij =


1, the ith event A implies the jth event B;

0, otherwise.

(4.7)

Thus, given the sequence SA, each bj is associated with a binary vector z•j, where

each component is either 1 or 0 and only one component of z•j is 1. For instance
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in Figure 4.4, only the ith component zij is 1 since ai implies bj, and the remaining

components are 0s. We apply the latent matrix Z = {zij}m×n to denote the relation

mapping between two sequences SA and SB.

Using Z we obtain the following equations:

P (bj|z•j,SA,Θ) =
m∏
i=1

P (bj|ai,Θ)zij . (4.8)

P (z•j) =
m∏
i=1

P (zij = 1)zij . (4.9)

Combining Equations (4.8) and (4.9), we rewrite P (bj|SA,Θ) as follows:

P (bj, z•j|SA,Θ) =
m∏
i=1

(P (bj|ai,Θ)× P (zij = 1))zij . (4.10)

Furthermore, the joint probability P (bj|SA,Θ) in Equation (4.10) is described by

Proposition 4.3.2.

Proposition 4.3.2 (marginal probability) Given SA and Θ, the marginal prob-

ability of bj is as follows

P (bj|SA,Θ) =
m∑
i=1

P (zij = 1)× P (bj|ai,Θ). (4.11)

Proof. (Proposition 4.3.2). The marginal probability is acquired by summing up the

joint probability over all the z•j, i.e.,

P (bj|SA,Θ) =
∑
z•j

m∏
i=1

(P (bj|ai,Θ)× P (zij = 1))zij .

Among all m components in vector z•j, there is only one component with value 1.

Without any loss of generality, let zij = 1 given z•j. Then,

m∏
i=1

(P (bj|ai,Θ)× P (zij = 1))zij = P (bj|ai,Θ)× P (zij = 1).
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Thus,

P (bj|SA,Θ) =
∑
z•j

P (bj|ai,Θ)× P (zij = 1).

There are m different z•j with zij = 1 where i ranges from 1 to m. Thus,

P (bj|SA,Θ) =
m∑
i=1

P (zij = 1)× P (bj|ai,Θ).

Based on Equation (4.5),(4.6) and (4.11), the log-likelihood is:

lnP (SB|SA,Θ) =
n∑

j=1

ln
m∑
i=1

P (zij = 1)× P (bj|ai,Θ). (4.12)

According to Equation (4.12), the evaluation of log-likelihood relies on the de-

scription of P (bj|ai,Θ). The explicit form of P (bj|ai,Θ) expressed in terms of time

lag model is presented in the following section.

4.3.3 Modeling Time Lag

According to the discussion regarding Equation (4.1), the time lag L is a random

variable that is the sum of the true time lag µ and the noise ϵ. The noise contributed

to the true lag is as a result of diverse factors, such as missing records, incorrect

values, recording delay and so forth that happen during log collecting. To illustrate

the noise of the time lags, a set of event instances with a single event type (i.e.,

SVC TEC HEARTBEAT) are collected from the real IT environment by IBM Tivoli

monitoring system [urla]. The event SVC TEC HEARTBEAT is periodically trig-

gered to monitor the status of service every ten minutes. The time lags between all

close pairs are computed and the time lag distribution are given in Figure 4.5. As it

is shown, a sharp spike in the number of occurrences happens at the time lag around

600 seconds, and much less frequent occurrences at other time lags.
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According to the time lag distribution from the real event data and in light of

the Central Limit Theorem, it is reasonable to assume that the noise ϵ follows the

normal distribution with zero-mean value, since we can always move the mean of the

distribution to the constant µ. Let σ2 be the variance of the lags distribution. Then,

ϵ ∼ N (0, σ2). (4.13)
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Figure 4.5: It shows the time lag distribution of event SVC TEC HEARTBEAT
from the real data collected by IBM Tivoli monitoring system [urla]. The time lag
distribution is fitted with a normal distribution N (600.01, 24.602). The spikes on
counts diagram for large deviation from average are typical for log scale when counting
function is fitted by normal distribution.

Since L = µ+ ϵ where µ is a constant, the distribution of L can be expressed as

L ∼ N (µ, σ2). (4.14)
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ParametersΘ determines the distribution of L. Based on the model of L described

in Equation (4.14), apparently Θ = (µ, σ2). Thus, the discovery of time lag L is

reduced to learning the parameters µ and σ2.

B

A

b1 b2 bj bn

a1 a2 ai ai+1 am-1 am

Time

�... bn-1�...

�... �...

bj+1

zij=1z1j=0 zmj=0�...�...

u

P(bj|ai,ɵ) N(u,σ
2
)L=bj - ai

ε

Figure 4.6: A →L B, where L ∼ N (µ, σ2). An event A that occurred at time ai is
associated to an event B that occured at bj with probability N (bj − ai|µ, σ2). Here µ
is the expected time lag of an occurrence of B after ai.

Assume that the event A is followed by the event B with a time lag L, here

L ∼ N (µ, σ2). Specifically, as shown in Figure 4.6, the ith event A is associated to

the jth event B where the time lag (bj − ai) between the two events is a random

variable L distributed as N (bj − ai|µ, σ2). Thus,

P (bj|ai,Θ) = P (bj|ai, µ, σ2)

= N (bj − ai|µ, σ2).

(4.15)

Hence, by replacing P (bj|ai,Θ) based on Equation (4.15), the log-likelihood in

equation (4.12) is expressed as:

lnP (SB|SA,Θ) =
n∑

j=1

ln
m∑
i=1

P (zij = 1)×N (bj − ai|µ, σ2). (4.16)

Here P (zij = 1) denotes the probability that the jth event B is implied by the ith

event A. Assume that there are m events A, so we assume that

m∑
i=1

P (zij = 1) = 1.

86



To simplify the description, let

πij = P (zij = 1).

Based on the expression of log-likelihood in Equation (4.16), the Equation (4.5)

is equivalent to the following

(µ̂, σ̂2) = argmax
µ,σ2

n∑
j=1

ln
m∑
i=1

πij ×N (bj − ai|µ, σ2).

s.t.
m∑
i=1

πij = 1

(4.17)

We describe the algorithms to maximize the log-likelihood of parameters µ and σ2 in

the following section.

4.4 Algorithm and Solution

4.4.1 Maximize Log-likelihood

Equation (4.17) is an optimization problem. Gradient ascent method is supposed to be

used to solve it. However, this method is not applicable here since we cannot directly

derive the closed-form partial derivatives with respect to the unknown parameters µ

and σ2. The problem described by Equation (4.17) is a typical mixture model. It can

be solved by using iterative expectation maximization i.e., EM-based method [B+06].

Given SA and Θ, by the Equation (4.10), the expectation of lnP (SB,Z|SA,Θ)

with respect to P (zij|SB,SA,Θ
′) is as follows:

E(lnP (SB,Z|SA,Θ)) =

n∑
j=1

m∑
i=1

E(zij|SB,SA,Θ
′)× (ln πij + lnN (bj − ai|µ, σ2)),

(4.18)

where Θ′ is the parameter estimated on the previous iteration.
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Since zij is an indicator variable,

E(zij|SB,SA,Θ
′) = P (zij = 1|SB,SA,Θ

′).

Let

rij = E(zij|SB,SA,Θ
′).

Then,

rij =
π′
ij ×N (bj − ai|µ′, σ′2)∑m

i π′
ij ×N (bj − ai|µ′, σ′2)

. (4.19)

The new parameters πij as well as µ and σ2 can be learned by maximizing

E(lnP (SB,Z|SA,Θ))

µ =
1

n

n∑
j=1

m∑
i=1

rij(bj − ai), (4.20)

σ2 =
1

n

n∑
j=1

m∑
i=1

rij(bj − ai − µ)2, (4.21)

πij = rij. (4.22)

Based on Equation (4.22), Equation (4.19) is equivalent to the following:

rij =
r′ij ×N (bj − ai|µ′, σ′2)∑m
i r′ij ×N (bj − ai|µ′, σ′2)

. (4.23)

To find maximum likelihood estimates of parameters, we use EM-based algorithm

lagEM (described in Algorithm 3). In Algorithm 3, the parameters are initialized by

the code from line 2 to line 5. Since there are m× n entries r′ij, the time complexity

for initialization is O(mn). The optimized parameters are acquired by an iterative

procedure from line 6 to line 14, which involves expectation and maximization. The

iterative procedure is not terminated until the parameters converge. Let r be the

total number of iterations executed. The expectation is implemented by line 7. The

time cost of expectation is O(mn) because of m × n entries rij to evaluated. The
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Algorithm 3 LagEM

1: procedure LagEM(SA,SB)
◃Input: two event sequences SA and SB with length m and n respectively.
◃Output: the estimated parameters µ and σ2.

2: define r′ij, µ
′ and σ′2 as parameters of previous iteration

3: define rij, µ and σ2 as the parameters of current iteration
◃ initialization

4: initialize r′ij =
1
m

5: initialize µ′ and σ′2 randomly
6: while true do

◃ expectation
7: evaluate the rij following Equation (4.23)

◃ maximization
8: update µ following Equation (4.20)
9: update σ2 following Equation (4.21)

◃test convergence
10: if parameters converge then
11: return µ and σ2

12: end if
13: end while
14: end procedure

maximization part is shown from line 8 to line 10. It takes the time cost of O(mn) to

update parameters of current iteration according to Equation (4.20),(4.21). Therefore,

the time complexity of iterative procedure is O(rmn). The time cost of Algorithm

lagEM is O(rmn), where m and n are the number of events A and B, respectively,

and r is the number of iterations needed for parameters to stabilize. As the time span

of event sequence grows, more events will be collected. Since m and n are the counts

of two types of events, it is reasonable to assume that m and n have the same order

of magnitude. Therefore, the time cost of Algorithm lagEM is a quadratic function

of events count.
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Figure 4.7: Approximate estimation for new parameters µ and σ2.

4.4.2 Approximate Inference

Observation 1 During each iteration of Algorithm lagEM , the probability rij de-

scribing the likelihood that the jth event B is implied by the ith event A, becomes

smaller when the deviation of bj − ai from the estimated time lag µ increases.

Thus, as |bj − ai − µ| becomes larger, rij approaches 0, as shown in Figure 4.7.

Further, if rij is small enough, the contribution by bj and ai to estimate the new pa-

rameters µ and σ2 according to Equation (4.20) and (4.21) is negligible. As a matter

of fact, the time span of the sequence of events is very long. Hence, most of rij are

small. Therefore, we can estimate new parameters µ and σ2 without significant loss

of accuracy by ignoring terms rij(bj − ai) and rij(bj − ai − µ) with small rij in both

Equation (4.20) and (4.21). The ignoring parts are illustrated with shadow in Fig-

ure 4.7. During each iteration of Algorithm lagEM , given bj, we can boost Algorithm

lagEM by not summing up all the m components for parameters estimation.

90



Given bj, let ξj be the sum of the probabilities rij whose component is neglected

during the iteration. That is,

ξj =
∑

{i|ai is neglected}

rij.

Let ξ be the largest one among all the ξj, i.e., ξ = max1≤j≤n {ξj}. Let µδ and σ2
δ be

neglected parts in the estimate µ and σ2 during each iteration. Formally, we get,

µδ =
1

n

n∑
j=1

∑
{i|ai is neglected}

rij(bj − ai),

σ2
δ =

1

n

n∑
j=1

∑
{i|ai is neglected}

rij(bj − ai)
2.

The following lemma allows to bound the neglected part µδ and σ2
δ .

Lemma 4.4.1 Let b̄ be the mean of all the time stamps of event B, i.e.

b̄ =
1

n

n∑
j=1

bj.

Let b̄2 be the second moment of the time stamps of event B, i.e.,

b̄2 =
1

n

n∑
j=1

b2j

Then we get:

µδ ∈ [ξ(b̄− am), ξ(b̄− a1)]. (4.24)

Let ϕ = max {b̄2 − 2b̄a1 + a21, b̄
2 − 2b̄a1 + a2m}, then

σ2
δ ∈ [0, ξϕ]. (4.25)

The proof of Lemma 4.4.1 is provided as follows.
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Proof. (Lemma 4.4.1.) Given a time sequence

< a1, a2, ..., am >,

it is reasonable to assume that

a1 ≤ a2 ≤ ... ≤ am.

Thus,

bj − ai ∈ [bj − am, bj − a1].

Moreover,

ξj =
∑

i|ai is neglected

rij,

where ξj ≤ ξ. Therefore,

1

n

n∑
j=1

ξ(bj − am) ≤ µδ ≤
1

n

n∑
j=1

ξ(bj − a1).

Then, we get

µδ ∈ [ξ(b̄− am), ξ(b̄− a1)].

In addition,

(bj − ai)
2 ≤ max{(bj − a1)

2, (bj − am)
2}.

Thus,

σ2
δ ≤

1

n
ξ

n∑
j=1

max{(b2j − 2bja1 + a21, b
2
j − 2bjam + a2m)}.

Then, we get

σ2
δ ≤ ξmax{b̄2 − 2b̄a1 + a21, b̄

2 − 2b̄a1 + a2m}.

So,

σ2
δ ∈ [0, ξϕ].
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Lemma 4.4.1 shows that if the ξ is small enough, |µδ| and σ2
δ approach 0 then the

parameters µ and σ2 are close to the ones without ignoring components.

Given a time stamp bj, there are m possible corresponding time stamps of event

A. Our problem is to choose a subset Cj of time stamps of event A in order to

estimate the parameters during each iteration. To guarantee that the probability of

the neglected part is less than ξ, the probability for the subset Cj should be greater

than 1− ξ. In order to optimize the time complexity, we minimize the size of Cj. We

solve it efficiently by applying a greedy algorithm, which adds ai to Cj with its rij in

decreasing order until summation of rij is greater than 1− ξ.

Based on Observation 1 and the fact that all the time stamps of event A are in

increasing order, the index i for time stamps of event A in Cj should be consecutive.

Given bj, the minimum and maximum indexes of ai in Cj can be found by Algorithm

greedyBound listed in Algorithm 4.

The time cost of greedyBound is O(logm + K) where K = |Cj| and m is the

number of events A. In Algorithm greedyBound, line 3 uses binary searching algo-

rithm to locate the nearest ai. It takes O(logm) time cost. The loop between line 6

and line 16 consumes |Cj| time units. Let K = |Cj|. Then the total time complexity

is O(logm+K).

Based on Lemma 4.4.1 and Algorithm greedyBound, we propose an approximation

algorithm appLagEM . The detail of Algorithm appLagEM is given in Algorithm 5.

We highlight the key differences between Algorithm 3 and Algorithm 5 by underlining.

In appLagEM , let K be the average size of all Cj. Then the time complexity of

line 8 is O(logm+K) and it takes O(K) for line 9. Thus, from line 7 to line 10, the

complexity is O(n(logm+K)). Both line 11 and line 12 consume O(nK).

The total time cost of Algorithm appLagEM is O(rn(logm + K)) where r is

the number of iterations, and K is the average size of all Cj. Typically, in the event
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Algorithm 4 greedyBound

1: procedure greedyBound(SA,bj,µ, ξ)
◃Input: SA contains all the possible time stamps of event A. bj is the time
stamp of the jth event B. µ is the mean of time lags estimated in the previous
iteration. ξ is the probability that the time stamps of event A not in Cj.
◃Output: minj and maxj are the minimum and maximum indexes in Cj.

2: t = bj − µ
3: Locate the ai to which t is closed using binary search.
4: minj = i and maxj = i
5: prob = 0.0
6: while prob < 1− ξ do
7: if r(minj−1)j ≥ r(maxj+1)j then
8: i = minj − 1
9: minj = i
10: else
11: i = maxj + 1
12: maxj = i
13: end if
14: add ai to Cj

15: prob = prob+ rij
16: end while
17: return minj and maxj.
18: end procedure

sequence,K << n and logm << n. Therefore, the time cost of algorithm appLagEM

is close to a linear function of n in each iteration.

4.5 Experiments

4.5.1 Setup

The performance of proposed algorithms is evaluated by using both synthetic and

real event data. The importance of an experiment conducted over synthetic data lies

in the fact that the ground truth can be provided in advance. To generate synthetic

data, we can fix time lag between dependent events and add noise into synthetic data.
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Algorithm 5 appLagEM

1: procedure appLagEM(SA,SB,ξ)
◃Input: two event sequences SA and SB with length m and n respectively. ξ is
the probability of the neglected part for estimating parameters.
◃Output: the estimated parameters µ and σ2.

2: define r′ij, µ
′ and σ′2 as parameters of previous iteration

3: define rij, µ and σ2 as the parameters of current iteration
◃ initialization

4: initialize r′ij =
1
m

5: initialize µ′ and σ′2 randomly
6: while true do
7: for each bj do

◃find the index bound of a for each bj
8: Get minj and maxj by greedyBound

◃ expectation
9: evaluate the rij where i ∈ [minj,maxj]
10: end for

◃ maximization
11: update µ by Equation (4.20) within the bound
12: update σ2 by Equation (4.21) within the bound

◃test convergence
13: if parameters converge then
14: return µ and σ2

15: end if
16: end while
17: end procedure

The empirical study over the synthetic data allows us to demonstrate the effectiveness

and efficiency of proposed algorithms.

The experiments over the real data collected from real production environments

shows that temporal dependencies with time lags can be discovered by running our

proposed algorithm, providing additional support for our assumptions and conclud-

ing formulas. Detailed analysis of discovered temporal dependencies allows us to

demonstrate the effectiveness and usefulness of our algorithm in practice.

All algorithms are implemented using Java 1.7. All experiments are conducted on

the experimental environment running Linux 2.6.32. The computer is equipped with
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Intel(R) Xeon(R) CPU with 24 cores running at speed of 2.50GHZ. The total volume

of memory is 158 Gb.

4.5.2 Synthetic Data

Synthetic data generation

In this part we describe experiments conducted on six synthetic data sets. The

synthetic data generation is defined by the parameters shown in Table 5.2.

Table 4.2: Parameters for synthetic data generation.

Name Description

βmin

Describes the minimum value for choosing

the average inter-arrival time β.

βmax

Describes the maximum value for choosing

the average inter-arrival time β.

N
The number of events in the synthetic event

sequence.

µmin

Describes the minimum value for the true

time lag µ.

µmax

Describes the maximum value for the true

time lag µ.

σ2
min

Describes the minimum value for the

variance of time lag.

σ2
max

Describes the maximum value for the

variance of time lag.

We employ the exponential distribution to simulate the inter-arrival time between

two adjacent events [LLMP05]. The average inter-arrival time β is randomly gener-

ated in the range [βmin, βmax]. The true lag µ is randomly generated in the range
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[µmin, µmax]. And the variance of time lag σ2 is generated between σ2
mix and σ2

max

randomly.

With chosen parameters β, µ and σ2, the procedure of generating synthetic data

for the temporal dependency A→µ B is given below.

• Generate N time stamps for event A, where the inter-arrival time between two

adjacent events follows the exponential distribution with parameter β.

• For each time stamp ai for event A, the time lag is randomly generated according

to normal distribution with parameters µ and σ2.

• Combine all the time stamps associated with their types to build a synthetic

data set.

We set βmin = 5, βmax = 50, µmin = 25, µmax = 100, σ2
min = 5 and σ2

max = 400

to synthesize the six data sets with different parameters N . The numbers of events

for the synthetic data sets are 200, 1k, 2k, 10k, 20k and 40k, respectively. Recall

that the number of events only describes the number of events of two types we are

interested in. In practice, a real data set typically gets more than hundreds of events

types in addition to the two considered types of events. Thus 40k events of two types

compare with a real data set containing 2 million events of 100 types.

Synthetic data evaluation

Since the EM based approach cannot guarantee the global optimum [B+06], we define

a batch as running the experiments 20 rounds with different initial parameters chosen

at random, where we empirically find out 20 rounds are reasonable for our problem,

shown in Figure 4.10.

We choose the one with the maximum likelihood among 20 rounds as the solution

of a batch. Ten such batches are conducted over each data set. With 10 pairs of
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Figure 4.8: The number of events is 2k. The maximum log likelihood improves as the
number of rounds increases. It becomes stable when the number of rounds reaches
20.

parameters µ and σ2 learnt from 10 batches, µ̄ and σ̄2 are calculated as an average

values of µ and σ2, respectively. Furthermore, 95% confidence intervals of µ and σ2 are

provided assuming both µ and σ2 follow the normal distribution as the prior [B+06].

Additionally, LLopt denotes the maximum log-likelihood value learnt by our proposed

algorithms. Results of experiments running lagEM and appLagEM are presented in

Table 4.3.

Each algorithm stops searching as it converges or the number of iterations exceeds

500. Algorithm appLagEM takes one more parameter ξ as its input, where ξ deter-

mines the proportion of the neglected components during the parameter estimation

of each iteration. Herein, ξ has been set to 0.001, 0.05 and 0.1. For all data sets

listed in Table 4.3, time lags µs learnt by lagEM and appLagEM are quite close to

the ground truth. In addition, the smaller ξ is, the more probable that Algorithm

appLagEM will get a larger log likelihood.
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Figure 4.9: The number of events is 20k. The maximum log likelihood improves as
the number of rounds increases. It becomes stable when the number of rounds reaches
20.
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Figure 4.10: The number of events is 40k. The maximum log likelihood improves
as the number of rounds increases. It becomes stable when the number of rounds
reaches 20.
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Table 4.3: The experimental result for synthetic data. The size of data ranges from
200 to 40k; µ̄ and σ̄2 are the average values of µ and σ2; LLopt is the maximum
log-likelihood. Assuming µ and σ2 follow normal distribution, µ̄ and σ̄2 are provided
with their 95% confidence interval for each algorithm over every data set. Entries
with “N/A” are not available since it takes more than 1 day to get corresponding
parameters.

Ground

Truth
lagEM

appLagEM

ξ = 0.001

appLagEM

ξ = 0.05

appLagEM

ξ = 0.1

N µ σ2 µ̄ σ̄2 LLopt µ̄ σ̄2 LLopt µ̄ σ̄2 LLopt µ̄ σ̄2 LLopt

200 77.01 44.41

77.41

[73.46,

81.36]

20.74

[18.75,

22.73]

-292.47

77.85

[73.52,

82.18]

24.68

[20.64,

28.72]

-290.99

78.21

[74.38,

82.03]

24.79

[20.62,

28.96]

-299.89

78.135

[74.16,

82.11]

25.02

[21.24,

28.80]

-300.05

1k 25.35 12.51

25.5

[25.0,

25.98]

8.66

[8.52,

8.80]

-1275.5

25.45

[25.12,

25.78]

8.62

[8.52,

8.72]

-1247.01

25.94

[24.39,

27.49]

9.296

[5.83,

12.77]

-1248.34

25.97

[24.35,

27.59]

9.36

[5.71,

13.0]

-1248.35

2k 38.54 30.88

38.68

[38.19,

39.17]

16.57

[16.38,

16.75]

-2847.0

38.81

[38.42,

39.40]

16.51

[16.45,

16.57]

-2820.6

39.78

[37.76,

41.78]

17.82

[14.17,

21.47]

-2822.60

39.32

[37.49,

41.14]

17.26

[14.36,

20.16]

-2822.57

10k 54.92 13.51

55.07

[54.60,

55.54]

8.84

[8.68,

9.0]

-12525.0

55.82

[53.97,

57.66]

10.92

[5.24,

16.60]

-12523.68

55.29

[54.23,

56.34]

9.40

[7.28,

11.52]

-12526.0

55.80

[53.99,

57.60]

10.85

[5.17,

16.53]

-12526.04

20k 59.35 17.22

59.42

[59.27,

59.57]

11.35

[11.32,

11.40]

-26554.2

59.67

[58.86,

60.50]

11.7

[10.35,

13.05]

-26332.68

59.38

[59.1,

59.70]

11.38

[11.30,

11.5]

-26332.06

59.34

[58.96,

59.72]

11.42

[11.2,

11.63]

-26336.39

40k 80.18 8.48 N/A N/A N/A

82.51

[77.76,

87.25]

5.26

[0.3,

10.3]

-40024.01

81.7

[78.15,

85.25]

4.45

[0.86,

8.04]

-40187.73

81.59

[77.9,

85.3]

4.4

[0.85,

7.94]

-40185.64

Further, we employ the Kullback-Leibler(KL) divergence as the metric to measure

the difference between the distribution of time lag given by the ground truth and

the discovered results [KL51]. Since each algorithm with a different initial setting

of parameters runs for 10 batches over a given data set, we take the average KL

divergence of 10 batches to evaluate the experimental result. As shown in Figure 4.11,

the KL divergence caused by appLagEM is almost as small as the one produced by

lagEM . Since the formulated problem for time lag is not convex. It may end with

a local optimal value, partially depending on the randomly initialized parameters.

Therefore, it may get a little bit high KL divergence when ξ is small. However, the

result shows that the accuracy does not lose much when ξ gets large. It leads us to

100



draw the conclusion that it is reasonable to apply the approximation algorithm for

time lag discovery. Besides, as ξ increases, the KL divergence of appLagEM becomes

larger.
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Figure 4.11: The KL distance between the ground truth and the one learnt by each
algorithm. Note that lagEM is missing for over 40k events since it takes more than
one day to evaluate, see also Table 2.

Figure 4.12 presents the comparison of time cost over the synthetic data sets.

It shows that the approximation algorithm appLagEM is much more efficient than

lagEM . It also shows that the larger the ξ is, the less time appLagEM takes to find

the optimal distribution of the time lags. Algorithm appLagEM even with ξ = 0.001

is about two orders of magnitude faster than Algorithm lagEM . It also demonstrates

the efficiency of our approximation algorithm comparing with the algorithm for min-

ing TPattern [LM04] and the STScan[TLS12] algorithm for time lag discovery. In

order to find the time lag for rule A → B, TPattern only considers the time lags

between the given instance of event A and its K closest instances of event B. In
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this experiment, K is set to be 300. Therefore, the TPattern mining algorithm is

more efficient than lagEM , appLagEM with small ξ = 0.001 and STScan algorithm.

However, as ξ increases, appLagEM turns to be more efficient than TPattern mining

algorithm. STScan algorithm considers all time lags between all possible events. It

leverages sorted table [TLS12] to boost the speed for time lag discovery. Therefore,

it is faster than LagEM and appLagEM with ξ = 0.001. But it is slower than

appLagEM with larger parameter ξ.

In conclusion, based on the comparative discussion of both lagEM and appLagEM ,

it is possible to achieve a good balance in terms of accuracy and efficiency.
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Figure 4.12: Time cost comparison. ξ of appLagEM is set with 0.001, 0.05, 0.1, 0.2,
0.4, 0.8. The existing algorithm for mining TPattern and the algorithm STScan for
mining time intervals are from [LM04] and [TLS12] respectively. The size of data set
ranges from 200 to 40k.
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Table 4.4: The snippet of discovered time lags.

Dependency µ σ2 Signal-to-noise ratio

dataset1

TEC Error →L Ticket Retry 0.34059 0.107178 1.04

AIX HW ERROR→L AIX HW ERROR 10.92 0.98 11.03

AIX HW ERROR→L NV 390MSG MV S 33.89 1.95 24.27

AIX HW ERROR→L Nvserverd Event 64.75 2.99 37.45

AIX HW ERROR→L generic postemsg 137.17 18.81 31.63

generic postemsg →L TSM SERV ER EV ENT 205.301 39.36 32.72

generic postemsg →L Sentry2 0 diskusedpct 134.51 71.61 15.90

MQ CONN NOT AUTHORIZED →L TSM SERV ER EV ENT 1167.06 142.54 97.75

dataset2
MSG Plat APP →L Linux Process 18.53 2053.46 0.408

SV C TEC HEARTBEAT →L SV C TEC HEARTBEAT 587.6 7238.5 6.90

4.5.3 Real Data

We perform the experiment over two real event data sets collected from several IT

outsourcing centers by IBM Tivoli monitoring system [urla][TLP+12]. These events

are generated by the automatic monitoring system with software agents running on

the servers of an enterprise customer, which computes metrics for the hardware and

software performance at regular intervals. The metrics are then compared to accept-

able thresholds, known as monitoring situations, and any violation results in an alert.

If the alert persists beyond a certain delay specified in the situation, the monitor

emits an event. Therefore, a monitoring event corresponds to one type of system

alert and one monitoring situation configured in the IBM Tivoli monitoring system.

Each real event set is collected from one IT environment of an enterprise customer.

The number of events and types are listed in Table 4.5. The dataset1 consists of a

sequence of events including 104 distinct event types, which are collected within the

time span of 32 days. There are 136 types of events in dataset2 and 1000k events

occurring within 54 days. In both data sets, hundreds of types of events result in tens

of thousands of pairs of event types. Since our algorithm takes a pair of events as the

input, it would be time-consuming to consider all the pairs. In order to efficiently
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find the time lag of most possible dependent events, we filter out the types of events

that appear less than 100 times in a corresponding data set.

Table 4.5: Real event data set.

Name # of events # of types Time span

dataset1 100k 104 32 days

dataset2 1000k 136 54 days

We employ the appLagEM with ξ = 0.001 to mine the time lag of temporal

dependency between two events. To increase the probability of getting the global

optimal value, we run the algorithm in a batch of 50 rounds by feeding in random

initial parameters every round. The snippet of some interesting time lags discovered

is shown as Table 4.4. The metric signal-to-noise ratio [Sch99], a concept in signal

processing, is used to measure the impact of noise relative to the expected time lag.

Signal-to-noise is given as below:

SNR =
µ

σ
.

The larger the SNR, the less relative impact of noise to the expected time lags.

TEC Error →L Ticket Retry is a temporal dependency discovered from dataset1,

where time lag L follows the normal distribution with µ = 0.34 and the variance

σ2 = 0.107178. The small expected time lag µ less than 0.1 seconds indicates that

the two events appear almost at the same time. And the small variance shows that

most of time lags between the two event types are around the expected time lag µ.

In fact, TEC Error is caused whenever the monitoring system fails to generate an

incident ticket to the ticket system. And Ticket Retry is raised when the monitoring

system tries to generate the ticket again.

AIX HW Error →L AIX HW Error in dataset1 describes a pattern related to

the eventAIX HW Error. With the discovered µ and σ2, the eventAIX HW Error
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happens with an expected period about 10 seconds with small variance less than 1

seconds. In a real production environment, the event AIX HW Error is raised when

monitoring system polls an AIX server which is down. The failure to respond to the

monitoring system leads to an event AIX HW Error almost every 10 seconds.

In dataset2, the expected time lag between MSG Plat APP and Linux Process

is 18.53 seconds. However, the variance of the time lags is quite large relative to

the expected time lag with SNR = 0.4. It leads to a weak confidence in temporal

dependency between these two events because the discovered time lags get involved

in too much noise. In practice, MSG Plat APP is a periodic event which is the

heartbeat signal sent by the applications. However, the event Linux Process is

related to the different processes running on the Linux. So it is reasonable to assume

a weak dependency between them.

The event SV C TEC HEARTBEAT is used to record the heartbeat signal for

reporting the status of service instantly. The temporal dependency discovered from

the dataset2 shows that SV C TEC HEARTBEAT is a periodic event with an ex-

pected period of 10 minutes. Although the variance seems large, the standard de-

viation is relatively small compared with the expected period µ. Therefore, it still

strongly indicates the periodic temporal dependency.

4.5.4 Time Lag Discovery Comparison

This section, the temporal patterns discovered from the real data are used for the time

lag discovery comparison among some existing temporal pattern mining methods.

In [LM04], the inter-arrival pattern, known as TPattern as well, can also be em-

ployed to find the time lag between events such as TEC Error →[t−δ,t+δ] Ticket Retry

where t and δ is very small. However, it fails to find the temporal pattern such as

MQ CONN NOT AUTHORIZED →L TSM SERV ER EV ENT with a large
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Figure 4.13: Temporal dependencies is discovered by setting the SNR threshold and
are displayed in a table. The number of temporal dependencies depends on the SNR
setting.

expected time lag about of 20 minutes. The reason is that inter-arrival pattern is

discovered by only considering the inter-arrival time lag, and the inter-arrival time

lags are exactly the small time lags.

In [TLS12], Algorithm STScan based on the support and the χ2 test is pro-

posed to find the interleaved time lags between events. Algorithm STScan can

find the temporal pattern such as AIX HW Error →[25,25] AIX HW Error and

AIX HW Error →[8,9] AIX HW Error by setting the support threshold and the

confidence level of χ2 test. In our algorithm, we describe temporal patterns through

expected time lag and its variance.
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Figure 4.14: Temporal dependencies are shown in a graph where each node denotes
an event and an edge between two nodes indicates the corresponding two events are
dependent.

4.6 System Demonstration

With the help of the time lag mining method, TDMS is able to extract temporal

dependencies between events. The representation of temporal dependencies acts an

essential part to the users in pattern interpretation.

Several user interfaces for TDMS are demonstrated in Figure 4.13 and Figure 4.14,

which are generated by running the appLagEM algorithm over two real data sets from

some IT outsourcing centers by IBM Tivoli monitoring system. In Figure 4.13, the

discovered temporal dependencies are displayed in a table, where each row corre-

sponds to a temporal dependency rule. From each row, it can tell both the expected

value and variance of the time lag between two dependent events. Text box at the

107



top of Figure 4.13 allows to provide SNR, which is able to measure the strength of

the temporal dependency.

The temporal dependency graph is constructed in Figure 4.14 according to the

dependency rules. In the temporal dependency graph, the nodes represent the events,

and the edge between two events indicates an existing temporal dependency. The

number of edges in the graph decreases with the growth of SNR’s threshold. For the

convenience of exploration, all related events are provided in the table on the left.

4.7 Summary

In this chapter, we propose a novel parametric model to discover the distribution

of interleaved time lags of the fluctuating events based on an EM-based algorithm.

In order to find the distribution of time lag for a large scale event set, a near lin-

ear approximation algorithm is proposed. Extensive experiments conducted on both

synthetic and real data show its efficiency and effectiveness.
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CHAPTER 5

TEMPORAL DEPENDENCY INFERENCE FROM SYSTEM

STATISTICS

Large-scale time series data are prevalent across diverse application domains in-

cluding system management, biomedical informatics, social networks, finance, etc.

Temporal dependency discovery performs an essential part to identify the hidden in-

teractions among the observed time series and helps to gain more insight into the

behavior of the applications. However, the time-varying sparsity of the interactions

among time series often poses a big challenge to temporal dependency discovery in

practice.

This chapter formulates the temporal dependency problem with a novel Bayesian

model allowing for both the sparsity and evolution of the hidden interactions among

the observed time series. Taking advantage of the Bayesian modeling, an online infer-

ence method is proposed for time-varying temporal dependency discovery. Extensive

empirical studies on both the synthetic and real application time series data are con-

ducted to demonstrate the effectiveness and the efficiency of the proposed method.

5.1 Introduction

Large-scale multivariate time series data are prevalent across diverse application

domains including system management, biomedical informatics, social networks, fi-

nance, etc. Temporal dependency discovery from multivariate time series has been

recognized as one of the key tasks in time series analysis. Taking system management

as an example, the time series data (e.g., CPU utilization, memory usage) are col-

lected by monitoring the internal components of a large-scale distributed information

system, where a great variety of involved components work together in a highly com-

plex and coordinated manner. Temporal dependency discovered from the monitoring
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time series reveals important dependency relationships among components and has

established its significance in system anomaly detection [JZXL14], root cause analysis

for system faults [ZTL+14], etc.

Mining temporal dependency structure among time series has been extensively

studied in the past decades. The inference of temporal dependencies can be broadly

categorized into two different frameworks: dynamic Bayesian Network [Mur02][JYG+03]

and Granger Causality [Gra69][Gra80][ALA07]. An extensive comparison study be-

tween these two types of frameworks is presented in [ZF09]. The Granger Causality

framework is famous for its simplicity, robustness and extendability, and becomes

increasingly popular in practice [CBL14]. Taking these advantages into account, this

chapter mainly focuses on the the Granger Causality framework.

The intuitive idea of Granger Causality is that if the time series A Granger causes

the time series B, the future value prediction of B can be improved by giving the value

of A. The prediction is typically attained by inferring the distribution of time series.

Since modeling the distribution for multivariate time series is extremely difficult while

linear regression model is a simple and robust approach, regression model has evolved

to be one of the principal approaches for Granger Causality. Specifically, to predict

the future value of B, one regression model built only on the past values of B should

be statistically significantly less accurate than the regression model inferred by giving

the past values of both A and B.

Based on the regression model, two major approaches have been developed to

discover the Granger Causal relationship for multivariate time series. The first ap-

proach employs the statistical significance test to identify the possible interactions

among time series, where the nonzero coefficients of the regression model have been

verified by hypothesis test. The second method, named Lasso-Granger, determines

the Granger Causality from the time series by inferring the regression model with
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Lasso regularization. The main idea of Lasso-Granger is to impose a L1 regulariza-

tion penalty on the regression coefficients, so that it can effectively identify the sparse

Granger Causality especially in high dimensions. It has been shown that both two

approaches are consistent in low dimensions, while only Lasso-Granger is consistent

in high dimensions [BL13]. Our work is mainly based on the Lasso-Granger approach.

Most existing works related to Lasso-Granger method have been developed for

Granger Causality inference by assuming that the latent causal relationships for mul-

tivariate time series are fixed yet unknown. However, this assumption rarely holds

in practice, since real-world problems often involve underlying processes that are dy-

namically evolving over time. A scenario of system management, shown in Figure 5.1,

is taken as an example. In this example, multiple instances of memory intensive ap-

plications are running on a server. At the early stage, the memory of this server is

sufficient for supporting running application instances. However, if the number of

application instances keeps increasing and the required memory exceeds the capacity

of the server, then the server has to take advantage of its virtual memory (the virtual

memory is built on the disk storage) to support the running application instances. As

a result, an dynamic dependency relationship exists between the number of running

application instances and the disk I/O (the number of bytes read from or written

to the disk): at the beginning, no obvious relationship occurs between them, while

strong relationship is indicated after the number of running application instances in-

creases beyond a threshold related to the memory capacity. It turns out to be critical

if the dynamically changing behaviors of the temporal dependency for time series can

be identified instantly.

In this chapter, to capture the dynamical change of casual relationships among the

time series, we propose a time-varying temporal dependency model based on Lasso-

Granger Casuality and develop effective online inference algorithms using particle
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Figure 5.1: The correlation between the number of memory intensive applications
and the disk I/O changes dynamically over time in the system management.

learning. The dynamical change behaviors of the temporal dependency is explicitly

modeled as a set of random walk particles. The fully adaptive inference strategy of

particle learning allows our model to effectively capture the varying dependency and

learn the latent parameters simultaneously. We conduct empirical studies on both

synthetic and real dataset. The experimental result demonstrate the effectiveness of

our proposed approach.

The remainder of this chapter is organized as follows. We formulate the problem

for identifying time-varying temporal dependency in Section 5.2. The solution based

on particle learning for online model inference is presented in Section 5.3. Extensive

empirical evaluation results are reported in Section 5.4. Finally, we conclude our work

and the future work in Section 5.5.

5.2 Problem Formulation

In this section, we formally define the Granger Causality problem from a Bayesian

perspective first, and then model the time-varying temporal dependency problem.

Some important notations mentioned in this chapter are summarized in Table 5.1.
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Table 5.1: Important Notations

Notation Description

Y a set of time series.

K the number of time series in Y.

T the length of time series.

yi the ith time series.

yj,t the value of jth time series at time t.

y�,t a column vector containing the values of all time series at time t.

xt a column vector built from all time series with time lag L at time t.

Pj,t the set of particles for predicting yj,t at time t and P(i)
j,t is the ith particle of Pj,t.

Wl the coefficient matrix for time lag l in VAR model.

wj the coefficient vector used to predict jth time series value in Bayesian Lasso model.

wj,t

the coefficient vector used to predict jth time series value at time t in time-varying

Bayesian Lasso model.

cwj
the constant part of wj,t.

δwj,t
the drifting part of wj,t.

ηj,t the standard Gaussian random walk at time t, given ηj,t−1.

θj the scale parameters used to compute δwj,t
.

σ2
j the variance of value prediction for the jth time series.

α, β the hyper parameters determine the distribution of σ2
j .

µw the hyper parameters determine the distribution of wj in Bayesian Lasso model.

µc the hyper parameters determine the distribution of cwj
.

µθ the hyper parameters determine the distribution of θj.

γ2
p the augmented random variable for wj, with λ.

γ2
c,p the augmented random variable for cwj

, with λ1.

γ2
θ,p the augmented random variable for θj, with λ2.

λ, λ1, λ2 the Lasso penalty parameters for wj, cwj
and θj, respectively.

5.2.1 Basic Concepts and Terminologies

Let Y be a set of time series, denoted as Y = {yi|1 ≤ i ≤ K}, where K is the number

of time series in Y and yi is the ith time series. Assume yi,t ∈ R to be the value of

the ith time series at time t, where 0 ≤ t ≤ T . The time series yj is supposed to be

caused by another time series yi in terms of Granger Causality, denoted as yi →g yj,
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if and only if the regression for yj using the past values of both yj and yi gains

statistically significant improvement in terms of accuracy comparing with doing so

with past values of yj only. The Granger causal relationship among the set of time

series Y is formulated as a directed graph G, where each vertex of G corresponds to

a time series, and an edge exists directed from yi to yj if yi →g yj.

In practice, the inference of Ganger causality is usually achieved by fitting the time

series data Y with a Vector Auto-Regression (VAR) model. Let y�,t = (y1,t, ...,yK,t)
⊺,

a column vector containing the values of K time series at time t. Given the maximum

time lag L, the VAR model is expressed as follows,

y�,t =
L∑
l=1

(Wl)
⊺
y�,t−l + ϵ, (5.1)

where Wl is K × K coefficient matrix for time lag l, and ϵ is a K × 1 vector, de-

scribing the random noise. The nonzero value of Wl
ij indicates yi →g yj. A statistics

test [ALA07] method is applied to determine the nonzero values in Wl, based on the

VAR model shown in Equation 5.1. However, the combinational explosion for the

statistics test on time series pairs brings about its inefficiency for Granger causality

inference, especially analyzing time series data with high dimension.

Lasso-Granger provides a more efficient and consistent way to infer the Granger

causal relation among time series, where L1 regularization is imposed for address-

ing sparsity issue in high dimensional time series data [ALA07]. Specifically, the

coefficient matrix Wl is obtained by minimizing the following objective function,

min
{Wl}

T∑
t=L+1

∥ y�,t −
L∑
l=1

(Wl)
⊺
y�,t−l ∥22 +λ

L∑
l=1

∥Wl ∥1, (5.2)

where λ is the penalty parameter, which determines the sparsity of the coefficient

matrix Wl.

In Equation 5.2, Lasso-Granger provides regression for K variables, where each

variable is expressed as a linear function of its own past values and past values of all
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Figure 5.2: Bayesian Lasso model is expressed in Graphical representations for
Granger Causality. Random variable is denoted as a circle. The circle with gray
color filled means the corresponding random variable is observed. Red dot represents
a hyper parameter.
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Figure 5.3: Time-varying Bayesian Lasso model is expressed in Graphical represen-
tations for Granger Causality. Random variable is denoted as a circle. The circle
with gray color filled means the corresponding random variable is observed. Red dot
represents a hyper parameter.

other variables with L1 regularization. To be simplified, we focus on the regression for

one arbitrarily given variable yj, and the regression of other variables can be derived

in a similar way.

Let xt = vec([y�,t−1,y�,t−2, ...,y�,t−L]), where vec(�) is an operator to convert a

matrix into a vector by stacking column vectors. The Lasso regression for the variable
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yj is expressed as follows,

min
wj

T∑
t=L+1

(yj,t −w⊺
jxt)

2 + λ ∥ wj ∥1, (5.3)

where wj is the coefficient vector of the regression for the variable yj. Assuming

P = K ∗ L, both xt and wj are column vectors with the dimension P × 1. However,

Equation 5.3 tends to be addressed as an optimization problem, and it is not suitable

for online inference.

5.2.2 Bayesian Modeling

In order to track the temporal dependencies among time series instantly, the prob-

lem described in Equation 5.3 is reformulated from a Bayesian perspective. Bayesian

method provides a natural and principled way of combining prior information with

data, within a solid decision theoretical framework. The past information about

parameters can be incorporated and formed as prior knowledge for future analysis.

When new observations become available at current time t, the previous posterior

distribution of parameters at time t− 1 can be used as a prior for current parameter

inference. The parameter estimate for linear regression with Lasso penalty can be

interpreted as a Bayesian posterior mode estimate when the priors on the regression

parameters are independent Laplace distributions [PC08]. The regression for yj,t is

implemented by a linear combination of xt with coefficient vector wj. From Bayesian

perspective, given the coefficient vector (i.e., wj) and the variance of random ob-

servation noise (i.e., σ2
j ), it is assumed that yj,t follows a Gaussian distribution as

below,

yj,t|wj, σ
2
j ∼ N (w⊺

jxt, σ
2
j ). (5.4)

In this setting, a graphical representation for Bayesian Lasso model is illustrated in

Figure 5.2, where the predicted value yj,t depends on random variable xt, wj and σ2
j .
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To obtain a Bayesian model equivalent to the Lasso regression in Equation 5.3 and

simplify the computation, the conjugate prior distributions for all the coefficients in

wj are assumed as the independent Laplace distributions. Therefore,

π(wj|σ2
j ) =

P∏
p=1

λ

2
√
σ2

e−λ|wj,p|/
√
σ2
, (5.5)

where π(�) denotes the probability density function. The distribution in Equation 5.5

can be equivalently expressed as a scale mixture of normals with an exponential

mixing density. The augmented latent variables γ2
1 , ..., γ

2
P , following independent

exponential distributions, are introduced to build the mixture of normals. The full

Bayesian Lasso model is developed in the following hierarchical representation.

wj|σ2
j , γ

2
1 , ..., γ

2
P ∼ N (µw, σ

2
jRwj

),

σ2
j ∼ IG(α, β),

γ2
p ∼ Exp(λ2/2), 1 ≤ p ≤ P,

(5.6)

where Rwj
= diag(γ2

1 , ..., γ
2
P ). The prior of σ2

j follows Inverse Gamma (abbr., IG)

distribution with hyper parameters α and β. The prior of γ2
p is given by the expo-

nential distribution (denoted as Exp) with the hyper parameter λ2/2, where λ is the

Lasso regularization parameter defined in Equation 5.3. Given σ2
j and γ2

1 , ..., γ
2
P , the

prior of the coefficient vector wj follows a Gaussian distribution with µw and σ2
jRwj

as the mean and the variance, respectively. Typically, µw is set to be 0.

The full hierarchical representation in Equation 5.6 can be reduced to the joint

distribution of independent Laplace priors in Equation 5.5 after integrating out all the

augmented latent variables γ2
1 , ..., γ

2
P . With the help of the Bayesian Lasso model, the

temporal dependency in terms of Granger Causality can be determined by inferring

the posterior distribution of wj instantly.
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5.2.3 Dynamic Causal Relationship Modeling

In real practice, the underlying causal relationship among time series tends to evolve

over time. As illustrated in Figure 5.4, From the time t−1 to t, the dynamic changes

of the causal relationship among time series consist of three types: new dependency

occurring, dependency fading away, and the strength of dependency varying.

y1,t-L ... y1,t-2 y1,t-1 y1,t

y2,t-L ... y2,t-2 y2,t-1 y2,t

yK,t-L ... yK,t-2 yK,t-1 yK,t
.
.
.

.
.
.

.
.
.

.
.
.

y1,t-1-L

y2,t-1-L

yK,t-1-L

.
.
.

WL
11,[t-1]

W1
11,[t]

W2
21,[t]

WL
2k,[t-1]

G[t]G[t-1]

WL
2k,[t-1]

W1
11,[t-1]

Figure 5.4: L is the maximum time lag for VAR model. Temporal dependency among
time series changes from G[t− 1] at time t− 1 to G[t] at time t. The nonzero coeffi-
cients are indicated by the directed edges. Red lines is used to denote the temporal
dependencies in G[t − 1], while the green lines represent the temporal dependencies
in G[t]. The thicker lines mean stronger dependencies existing.

As shown in Equation 5.3, the value prediction for yj at time t is conducted by a

linear combination of its own past values and the past values of other variables, using

coefficient vector wj with L1 regularization penalty. Each element in the coefficient

vector wj indicates the contribution of the past value of the corresponding variable

for predicting yj,t. The aforementioned model is based on the assumption that wj is

unknown but fixed, which does not work well with the scenario where the temporal

dependency dynamically changes over time. To account for the dynamics, our goal is

to come up with a model having the capability of capturing the drift of wj over time
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so as to track the time-varying temporal dependency among the time series instantly.

Let wj,t denote the coefficient vector for predicting yj,t at time t. Taking the drift of

wj into account, wj,t is formulated as follows:

wj,t = cwj
+ δwj,t

, (5.7)

where wj,t is decomposed into two components including both the stationary compo-

nent cwj
and the drift component δwj,t

. Both components are P -dimensional vectors.

Similar to modeling wj in Figure 5.2, a conjugate prior distribution below is assumed

to generate the stationary component cwj
.

cwj
∼ N (µc, σ

2
jRcj), (5.8)

where µc is the hyper parameter, and Rcj = diag(γ2
c,1, ..., γ

2
c,P ). The latent variables

γ2
c,1, ..., γ

2
c,P follow independent exponential distributions ruled by the hyper parameter

λ2
1/2, as shown in Figure 5.3.

However, it’s not straightforward to model the drift component with a single

function due to the diverse changing behaviors of the regression coefficients. First,

some coefficients change frequently, while some coefficients keep relatively stable.

Moreover, the coefficients for different variables can change with diverse scales. To

simplify the inference , we assume that each element of δwj,t
drifts independently. Due

to the uncertainty of drifting, we formulate δwj,t
by combining a standard Gaussian

random walk ηj,t and a scale variable θj using the following Equation:

δwj,t
= θj ⊙ ηj,t, (5.9)

where ηj,t ∈ RP is the drift value at time t caused by the standard random walk and

θj ∈ RP contains the changing scales for all the elements of δwj,t
. The operator ⊙

is used to denote the element-wise product. The standard Gaussian random walk is

defined with a Markov process as shown in Equation 5.10.

ηj,t = ηj,t−1 + v, (5.10)
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where v is a standard Gaussian random variable defined by v ∼ N (0, IP ), and IP is

a P × P -dimensional identity matrix. It is equivalent that ηj,t is sampled from the

Gaussian distribution

ηj,t ∼ N (ηj,t−1, IP ). (5.11)

Similarly, the scale random variable θj is generated with a conjugate prior distri-

bution

θj ∼ N (µθ, σ
2
jRθj), (5.12)

where µθ is predefined hyper parameter, and Rθj = diag(γ2
θ,1, ..., γ

2
θ,P ). The latent

variables γ2
θ,1, ..., γ

2
θ,P , following the independent exponential distributions governed

by the hyper parameter λ2
2/2, are used to construct Rθj . The random variable σ2

j

of the time-varying Bayesian Lasso model in Figure 5.3 is drawn from the Inverse

Gamma distribution, which is the same as the one described in Equation 5.6.

Combining Equation 5.7 and Equation 5.9, we obtain:

wj,t = cwj
+ θj ⊙ ηj,t, (5.13)

Accordingly, the value xt
j is modeled to be drawn from the following a Gaussian

distribution as below,

yj,t|cwj
, θj, ηj,t, σ

2
j ∼ N ((cwj

+ θj ⊙ ηj,t)
⊺xt, σ

2
j ). (5.14)

The time-varying Bayesian Lasso model is presented with a graphical model repre-

sentation in Figure 5.3. Compared with the model in Figure 5.2, a standard Gaussian

random walk ηj,t and the corresponding scale θj for j
th time series are introduced in

the new model. The new model explicitly formulates the coefficients in Lasso regres-

sion, considering the time-varying temporal dependency in real-world application.

From the new model, each element value of cwj
indicates the contribution of the past

values of each variable in predicting the value yj,t, while the element values of θj show
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the drift scales of their contributions to the prediction of yj,t. A large element value

of θj signifies a great change occurring to the strength of the corresponding causal

relationship over time.

Lemma 5.2.1 (Equivalent Optimization) The time-varying Bayesian Lasso mod-

el is equivalent to the optimization problem as follows:

min
{wj,t}

T∑
t=L+1

(yj,t − (cwj
+ θj ⊙ ηj,t)

⊺xt)
2+

λ1 ∥ cwj
∥1 +λ2 ∥ θj ∥1,

(5.15)

where λ1 and λ2 are penalty parameters, determining the sparsity of both stationary

component and drift component.

Based on the idea of Bayesian Lasso, Lemma 5.2.1 is straightforward. Thus, its proof

is not provided.

According to Lemma 5.2.1, λ1 is set to determine the sparsity of stationary com-

ponent and λ2 is used for controlling the variance of drift component. It is difficult to

infer the coefficient vectors {wj,t} instantly directly from Equation 5.15, since ηj,t is

the latent variables. We develop our solution to infer the time-varying Bayesian Las-

so model from a Bayesian perspective and the solution is presented in the following

section.

5.3 Methodology and Solution

In this section, we present the methodology for online inference of the time-varying

Bayesian Lasso model.

The posterior distribution inference involves the latent random variables σ2
j , cwj

,

θj, Rcj , Rθj , and ηj,t. According to the graphical model in Figure 5.3, all the latent
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random variables are grouped into three categories: parameter random variable, aug-

mented random variable and latent state random variable. σ2
j , cwj

, θj, are parameter

random variables since they are assumed to be fixed and unknown, and their values

do not depend on the time. Rcj , Rθj are regarded as augmented random variables

where these variables are introduced for equivalent Lasso derivation but their specific

values are not very interesting for the problem. Instead, ηj,t is referred to as a latent

state random variable since it is not observable and its value is time dependent ac-

cording to Equation 5.10. On the other hand, xt and yj,t are referred to as observed

random variables.

Our goal is to infer both latent parameters and latent state variables. Howev-

er, since the inference partially depends on the random walk which generates the

latent state variables, we use the sequential sampling based inference strategy that

are widely used in sequential monte carlo sampling [DDFG01] [SDdFG13], particle

filtering [DKZ+03], and particle learning [CJLP10] to learn the distribution of both

parameters and the state random variables.

Since state ηj,t−1 changes over time with a standard Gaussian random walk, it

follows a Gaussian distribution after accumulating t − 1 standard Gaussian random

walks. Assume ηj,t−1 ∼ N (µηj ,Σηj), a particle is defined as follows.

Definition 5.3.1 (Particle) A particle for predicting yj,t is a container which main-

tains the current status information for value prediction. The status information

comprises of random variables such as σ2
j , cwj

, θj, Rcj , Rθj , and ηj,t, and the hyper

parameters of their corresponding distributions such as α and β, µc, µθ, λ1, λ2, µηk

and Σηk .
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5.3.1 Re-sample Particles with Weights

At time t − 1, a fixed-size set of particles are maintained for the value prediction

of the jth time series, where the particle set is denoted as Pj,t−1 and the number of

particles in Pj,t−1 is B. Let P(i)
j,t−1 be the ith particle in the particle set Pj,t−1 at time

t− 1, where 1 ≤ i ≤ B. Each particle P(i)
j,t−1 has a weight, denoted as ρ(i), indicating

its fitness for the new observed data at time t. Note that
∑B

i=1 ρ
(i) = 1. The fitness

of each particle P(i)
j,t−1 is defined as the likelihood of the observed data xt and yj,t.

Therefore,

ρ(i) ∝ P (xt,yj,t|P(i)
j,t−1). (5.16)

Further, according to Equation 5.14, the distribution of yj,t is determined by the

random variables cwj
, θj, σ

2
j and ηj,t.

Therefore, we can compute ρ(i) in proportional to the density value at yj,t. Thus,

ρ(i) ∝
∫∫

ηj,t,ηj,t−1

{N (yj,t|(cwj
+ θj ⊙ ηj,t)

⊺xt, σ
2
j )

N (ηj,t|ηj,t−1, IP )N (ηj,t−1|µηj ,Σηj)}

dηj,t dηj,t−1,

where state variables ηj,t and ηj,t−1 are integrated out due to their change over time,

and cwj
, θj, σ

2
j are from P(i)

j,t−1. Then we obtain

ρ(i) ∝ N (mj,Qj), (5.17)

where

mj = (cwj
+ θj ⊙ ηj,t)

⊺xt

Qj = σ2
j + (xt ⊙ θj)

⊺(IP +Σηj)(xt ⊙ θj).

(5.18)

Before updating any parameters, a re-sampling process is conducted. We replace the

particle set Pj,t−1 with a new set Pj,t, where Pj,t is generated from Pj,t−1 using sam-

pling with replacement based on the weights of particles. Then sequential parameter

updating is based on Pj,t.
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5.3.2 Latent State Inference

At time t− 1, the sufficient statistics for state ηj,t−1 are the mean (i.e., µηj) and the

covariance (i.e., Σηj). Provided with the new observation data xt and yj,t at time t,

the sufficient statistics for state ηj,t need to be re-computed. We apply the Kalman

filtering [Har90] method to recursively update the sufficient statistics for ηj,t based

on the new observation and the sufficient statistics at time t − 1. Let µ′
ηj

and Σ′
ηj

be the new sufficient statistics of state ηj,t at time t. Then,

µ′
ηj

= µηj +Gj(yj,t − (cwj
+ θj ⊙ ηj,t)

⊺xt))︸ ︷︷ ︸
Correction by Kalman Gain

,

Σ′
ηj = Σηj + IP − GjQjG

⊺
j︸ ︷︷ ︸

Correction by Kalman Gain

,

(5.19)

where Qj is defined in Equation 5.18 and Gj is Kalman Gain [Har90] defined as

Gj = (IP +Σηj)(xt ⊙ θj)Q
−1
j .

As shown in Equation 5.19, both µ′
ηj

and Σ′
ηj are estimated with a correction using

Kalman Gain Gj(i.e., the last term in both two formulas). With the help of the

sufficient statistics for the state random variable, ηj,t can be drawn from the Gaussian

distribution

ηj,t ∼ N (µ′
ηj
,Σ′

ηj). (5.20)

5.3.3 Augmented Variable Inference

The augmented variablesRcj andRθj are diagonal matrices composed of independent

random variables γ2
c,1, ..., γ

2
c,P and γ2

θ,1, ..., γ
2
θ,P , respectively. The independent random

variables are drawn from exponential distribution as follows,

γc,p ∼ Exp(λ2
1/2),

γθ,p ∼ Exp(λ2
2/2),

(5.21)
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where 1 ≤ p ≤ P . At each time stamp, those augmented random variables are sam-

pled independently. Assume Rj =


Rcj 0

0 Rθj

 , where Rj is a 2P × 2P -dimensional

matrix.

5.3.4 Parameter Inference

At time t−1, the sufficient statistics for the parameter random variables (σ2
j , cwj

, θj)

are (α, β, µc, µθ). Let zt = (xt
⊺, (xt ⊙ ηj,t)

⊺)⊺, µj = (µc
⊺, µθ

⊺)⊺, and νj = (cwj

⊺, θj
⊺)⊺

where zt, µj, and νj are 2P -dimensional vector.

Therefore, the inference of cwj
and θj is equivalent to infer νj with its distribution

νj ∼ N (µj, σ
2
jR

1
2
j ΣjR

1
2
j ), where Σj is initialized with an identity matrix time 0.

Assume Σ′
j, µ

′
j, α

′, and β′ be the sufficient statistics at time t which are updated

based on the sufficient statistics at time t − 1 and the new observation data. The

sufficient statistics for parameters are updated as follows:

Σ′
j = (Σ−1

j +R
1
2
j ztz

⊺
tR

1
2
j )

−1,

µ′
j = R

1
2
j Σ

′
jR

1
2
j ztyj,t +R

1
2
j Σ

′
jΣjR

1
2
j µj),

α′ = α +
1

2
,

β′ = β +
1

2
(µ⊺

jR
− 1

2
j Σ−1

j R
− 1

2
j µj + y2

j,t − µ′⊺
j R

− 1
2

j Σ′−1
j R

− 1
2

j µ′
j).

(5.22)

At time t, the sampling process for σ2
j and νj is summarized as follows:

σ2
j ∼ IG(α′, β′),

νj ∼ N (µ′
j, σ

2
jR

1
2
j Σ

′
jR

1
2
j ).

(5.23)

5.3.5 Algorithm

Putting all the aforementioned things together, an algorithm based on the proposed

time-varying Bayesian Lasso model is provided below.
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Online inference for time-varying Bayesian Lasso model starts with MAIN proce-

dure, as presented in Algorithm 6. The parameters B, L, α, β, λ1 and λ2 are given

as the input of MAIN procedure. The initialization is executed from line 2 to line

6. As new observation y�,t arrives at time t, xt is built using the time lag, then wj,t

is inferred by calling UPDATE procedure. Especially in the UPDATE procedure,

we use the resample-propagate strategy in particle learning [CJLP10] rather than

the propagate-resample strategy in particle filtering [DKZ+03]. With the resample-

propagate strategy, the particles are re-sampled by taking ρ(i) as the ith particle’s

weight, where the ρ(i) indicates the occurring probability of the observation at time

t given the particle at time t− 1. The resample-propagate strategy is considered as

an optimal and fully adapted strategy, avoiding an importance sampling step.

5.4 Empirical Study

With the purpose of demonstrating the performance of the proposed algorithm, we

conduct the experiments over both synthetic and real data sets, and illustrate a

real case study from the system management. Before diving into the discussion of

the evaluation in detail, we first outline the general implementation of the baseline

algorithms for comparison, then verify the proposed algorithm using every data set

one by one. The evaluation on each data set is started with a brief description of

the data and the corresponding evaluation methods, and followed by the presentation

of the comparative experimental results between the proposed algorithm and the

baseline algorithms.

126



Algorithm 6 The algorithm for time-varying Bayesian Lasso model

1: procedure main(B, L, α, β, λ1, λ2) ◃ main entry
2: Initialize µc = 0, µθ = 0.
3: for j ← 1, K do
4: Initialize regression for yj with B particles.
5: Initialize Σj with identity matrix.
6: end for
7: for t← 1, T do
8: Get xt using time lag L.
9: for j ← 1, K do
10: UPDATE(xt, yj,t).
11: Output wj,t according to Eq. 5.13.
12: end for
13: end for
14: end procedure

15: procedure update(xt, yj,t) ◃ update the inference.
16: for i← 1, B do ◃ Compute weights for each particle.
17: Compute weight ρ(i) of particle P(i)

j,t−1 by Eq. 5.17.
18: end for
19: Re-sample Pj,t from Pj,t−1 according to ρ(i)s.
20: for i← 1, B do ◃ Update statistics for each particle.
21: Update the sufficient statistics for ηj,t by Eq. 5.19.
22: Sample ηj,t according to Eq. 5.20.
23: Construct augmented variables Rj with Eq. 5.21.
24: Update the statistics for σ2

j , cwj
, θj by Eq. 5.22.

25: Sample σ2
j , cwj

, θj according to Eq. 5.23.
26: end for
27: end procedure

5.4.1 Baseline Algorithms

In the empirical study, we demonstrate the performance of our method by comparing

with the following baseline algorithms including:

• BLR(q0): It infers the temporal dependencies among time series using Bayesian

Linear Regression with prior distribution N (0, q−1
0 Id). It has been shown that

the setting of the penalty parameter λ in ridge regression can be achieved by

tuning q0 accordingly [B+06].
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• BLasso(λ): It applies Bayesian Lasso to learn the temporal dependencies, where

λ is the L1 penalty parameter. It presents an online inference for Lasso regres-

sion from Bayesian perspective [PC08].

• TVLR(q): It makes use of the Time-Varying Linear Regression from Bayesian

perspective, which is capable of capturing the dynamics of dependency without

regularization. The parameter q specifies the prior distribution N (0, q−1I2d) for

both constant and varying components of the coefficients [ZWML16].

One the other hand, we denote our proposed method as TVLasso(λ1,λ2), where the

Time-Varying Bayesian Lasso regression algorithm is used to infer the time-varying

temporal dependency among time series. The penalty parameters λ1 and λ2 are

presented in Equation 5.15, determining the sparsity of both stationary component

and drift component, respectively. Note that the algorithms in [SKX09] and [LKJ09]

are not included as baseline algorithms in our experiment, since both are off-line

algorithms, while the work of this chapter mainly focuses on online inference of time-

varying temporal dependency. During our experiments, we extract small subset of

data with early time stamps and employ grid search to find the optimal parameters

for all the algorithm. The parameter settings are verified by cross validation in terms

of the prediction errors over the extracted data subset.

5.4.2 Evaluation Measures

AUC Score: In order to further verify the efficacy of the proposed method for tem-

poral dependency identification, AUC, the Area Under the ROC [Bra97], is applied

for performance evaluation due to its independence of priors, costs, and operating

points [LD06]. The value of AUC is the probability that the algorithm will assign a

higher value to a randomly chosen existing edge than a randomly chosen non-existing

edge in the temporal dependency structure. As we have mentioned in Section 5.2.1,
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nonzero value of Wl
ij indicates yi →g yj. It is reasonable to suppose that a higher

absolute value of Wl
ij implies a larger likelihood of existing a temporal dependency

yi →g yj. At each time t, an AUC score of the algorithm is obtained by comparing its

inferred temporal dependency structure with the ground truth at t.

Prediction Error: Let Wt be the true coefficient matrix and Ŵt be the estimat-

ed coefficient matrix. We define the prediction error at time t as ∆ = ||Wt − Ŵt||F ,

where || • ||F is the Frobenius Norm [CDG00]. A smaller prediction error indicates a

better inference of dynamic temporal structure.

In order to give a clear illustration, we segment the time line into time buckets

with the same predefined size and illustrate the performance with an average value

of the corresponding measure for every time bucket.

5.4.3 Synthetic Data

The main advantage of using synthetic data sets is that the detailed dependency

structures are known and hence we can systematically evaluate the performance of

our proposed method with different factors such as noise and sparsity levels and

quantitatively compare with other alternative solutions using various performance

measures.

Synthetic Data Generation: The synthetic data generation is governed by the

parameters shown in Table 5.2. The time series data are generated with the VAR

model, where the coefficient valueWl
ij indicates the strength of dependency yi →g yj.

To simulate the time-varying temporal dependencies among time series, five types of

dynamics are randomly injected into the VAR model, depicting the dynamic changes

of the coefficients, including:

129



0 5 10 15 20
Time Bucket Index

0.75

0.80

0.85

0.90

0.95

1.00

A
U
C

AUC Over Time (K=30)

BL

BLasso

TVLR

TVLasso

Figure 5.5: The temporal dependency identification performance is evaluated in
terms of AUC by comparing algorithms such as BLR(1.0), BLasso(1k), TVLR(1.0),
TVLasso(2k,2k). The bucket size is 200. The number of time series is 30.

(1) Zero Value The coefficient holds a zero value, indicating no temporal depen-

dency existing. The number of coefficient with zero value is determined by the

sparsity s.

(2) Constant Value The coefficient holds a constant nonzero value, which is ran-

domly generated from the standard Gaussian distribution.

(3) Piecewise Constant The time line is randomly segmented into multiple in-

tervals. The number of intervals is uniformly sampled in (0, I]. During each

interval, the coefficient value is constant. The constant values are generated

from the standard Gaussian distribution.

(4) Periodic Change The coefficient value varies periodically as time evolves,

where the periodic change of the coefficient is simulated by sin curve whose

period is uniformly sampled from the range (0, T ).
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Figure 5.6: The temporal dependency identification performance is evaluated in
terms of AUC by comparing algorithms such as BLR(1.0), BLasso(1k), TVLR(1.0),
TVLasso(1k,2k). The bucket size is 200. The number of time series is 40.
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Figure 5.7: The temporal dependency identification performance is evaluated in
terms of AUC by comparing algorithms such as BLR(1.0), BLasso(1k), TVLR(1.0),
TVLasso(1k,2k). The bucket size is 200. The number of time series is 50.
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Figure 5.8: The temporal dependency identification performance is evaluated in terms
of prediction error by comparing algorithms such as BLR(1.0), BLasso(1k), TVLR(1.0),
TVLasso(2k,2k). The bucket size is 200. The number of time series is 30.
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Figure 5.9: The temporal dependency identification performance is evaluated in terms
of prediction error by comparing algorithms such as BLR(1.0), BLasso(1k), TVLR(1.0),
TVLasso(1k,2k). The bucket size is 200. The number of time series is 40.
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Figure 5.10: The temporal dependency identification performance is evaluated in
terms of prediction error by comparing algorithms such as BLR(1.0), BLasso(1k),
TVLR(1.0), TVLasso(1k,2k). The bucket size is 200. The number of time series is 50.

(5) Random Walk The coefficient value at time t is determined by a standard

Gaussian random walk from the value at time t− 1.

The sparsity of the temporal dependencies is regulated by s, indicating that a coeffi-

cient has the probability s to be generated by type (1). Accordingly, the other four

types (2)-(5) uniformly share the probability 1− s for simulating the coefficient.

Dynamic Temporal Dependency Tracking: In order to show the capability

in capturing the dynamic temporal dependency with a visualized straightforward ex-

ample, we start with a simulation where K = 20, T = 3000, L = 1, I = 10, s = 0.9,

µ = 0 and σ2 = 1. Both the baseline algorithms and our proposed algorithm infer

the temporal dependency in an online mode. The performance of all the algorithm-

s depends on the parameter setting. Therefore, we first conduct the performance

comparison for each algorithm with diverse parameter settings. Then the one with

best performance is selected for comparison study. Eight coefficients are selected and
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Table 5.2: Parameters for Synthetic Data Generation

Name Description

K The number of time series.

T The length of time series.

L The maximum time lag for VAR model.

I
The maximum number of intervals used to segmented

the time line.

s
The sparsity of the temporal dependency, denoted as

the ratio of coefficients with zero value to K.

µ The mean of the noise introduced during regression.

σ2 The variance of the noise introduced during regression.
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Figure 5.12: The time cost of TVLasso with different number of particles.

displayed in Figure 5.11. It shows our proposed algorithm TVLasso can effectively

capture the time-varying temporal dependency with different types of dynamics. The
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Figure 5.13: The system resource monitoring time series collected every 5 seconds.

BLasso algorithm shows more robustness than BL for zero-value coefficient inference,

and is more suitable for inference with high sparsity. The algorithm TVLR captures

the dynamic change of the coefficients better than both BLasso and BL, but it is less

stable when comparing with TVLasso.

Performance Evaluation: We continue to conduct the evaluation in terms of

AUC and prediction error over a simulation data set with higher dimension, where

K = (30, 40, 50), T = 5000, L = 1, I = 10, s = 0.9, µ = 0 and σ2 = 1. The

evaluations with different Ks in terms of AUC are depicted in Figure 5.5, Figure 5.6

and Figure 5.7, respectively. The performance of TVLasso is comparable with TVLR

in low dimensions, while TVLasso quickly catches up with other baseline algorithms

at the beginning and keeps outperforming them in high dimensions. Comparing with

other two baseline algorithms, TVLR shows a relatively good performance since it

models the dynamic change explicitly.
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In terms of prediction error, TVLasso incurs lowest prediction error consistently,

shown in Figure 5.8, Figure 5.9 and Figure 5.10. When in high dimension, TVLR gets

the highest prediction error even though it obtains relatively high AUC score, where

the reason is that the AUC is computed based on the absolute value of the coefficient.

The conclusion is that our proposed algorithm TVLasso is consistent in the coefficient

prediction while TVLR may suffer coefficient prediction with opposite sign of the truth,

especially in high dimensions.

Time Cost: The time cost increases linearly as the number of particles shown in

Figure 5.12.

5.4.4 Case Study

System Management

We conduct the case study in a real system FIU-Miner [ZJZ+13a], which is a fast,

integrated and user-friendly system for data mining in distributed system. FIU-Miner

composes every job as a workflow where a set of computing tasks are organized in a

dependency graph. A job of FIU-Miner can be scheduled in different ways, such as

one-time execution at a particular time, periodic execution every one predefined time

interval. To help FIU-Miner make decisions on job scheduling, the system monitoring

agents are deployed to all the computing nodes in the distributed environment, and

periodically collect the information about both resource usage and running process-

es. The resource usage information includes CPU utilization, memory usage, disk

I/O, networking I/O, etc. The running process information describes the status, the

number of running instances aggregated by the program, running time, and so forth.

An alert is raised if the predefined monitoring situation persists violated beyond a

particular duration. We deploy our algorithm with FIU-Miner to instantly infer the

causal dependency among the collected monitoring information.
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To illustrate the efficacy of our method, we inspect an alert raised at the time

stamp 2016-07-06 01:30:39,852, when a persistent high system load occurred. The pro-

cess information is aggregated by the executable program. The number of instances

for a matrix computation program is identified with strong dependencies between

other system resource monitoring time series. The system monitoring time series as

well as the number of instances for the identified program are displayed in Fig 5.13.

Here cpu(%), svmem(%), sswap(%), dskread(m), dskwrite(100m) and tasknum rep-

resent the CPU utilization, virtual memory usage, swap memory usage, the number of

bytes reading from the disk, the number of bytes writing to the disk, and the number

of instances for a matrix computation program, respectively. cpu(%), svmem(%) and

sswap(%) share the Percent axis, and dskread(m), dskwrite(100m) and tasknum

share the Quantity axis. Each computing node in the distributed environment has

31G memory in total. The causal dependencies discovered by multiple algorithms are

shown in Figure 5.14. The tasknum increases linearly to 52 at the beginning, and

then decreases to 0 abruptly.

After meticulously inspecting the source code of the matrix computation program,

each instance allocates 1G memory for holding the matrix data, but does not explic-

itly recycle the used memory after computation. FIU-Miner schedules the program

periodically as a sub-process but does not reap the completed sub-processes until

all the sub-processes have been scheduled. It ends in a number of zombie processes

during scheduling and causes a resource leak.

As illustrated by the algorithm TVLasso in Figure 5.14, at the early stage, tasknum

strongly infers cpu, svmem, and sswap. After the consumed memory exceeds the

total available memory of the computing node, tasknum has strong causal relations

with dskread and dskwrite. Finally, the temporal dependencies disappear after all

the sub-processes are reaped by the schedule process of FIU-Miner. However, the
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baseline algorithms can not effectively react with the dynamic changes of temporal

dependencies.

5.5 Summary

In this chapter, we take the dynamic change of the underlying temporal dependen-

cies among time series into account and explicitly model the dynamic change as a

random walk. In order conduct online inference which is often required especially in

system management scenarios, we propose a method based on the particle learning

to efficiently infer both parameters and latent variables simultaneously. The empir-

ical study is conducted on both synthetic and real data to verify the efficiency and

efficacy of our proposed method. The experimental result shows that our method can

effectively track the time-varying temporal dependencies among time series and out-

performs the existing methods especially when tackling the data with high dimension

and sparsity.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Optimizing the quality of service delivery improves customer satisfaction and sharp-

ens the competitive edge of business. The routine IT maintenance procedure plays

an essential part in IT service management optimization. However, as we discussed

in previous chapters, the entire routine IT maintenance procedure gets involved with

large amount of human efforts since the complete automation is not feasible (shown

in Figure 6.1). Therefore, maximal automation of routine IT maintenance procedure

is one of ultimate goals of IT service management optimization. After meticulously

studying the entire IT maintenance procedure and inspecting the data (i.e., IT inci-

dent tickets, system monitoring events, time series for system performance statistics),

three research directions are identified from data mining perspective, with the pur-

pose of providing an integrated and intelligent solution to facilitate the IT activities

such as problem determination, diagnosis and resolution.

Figure 6.1: The summary of my dissertation research on IT service management
optimization.
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The three research directions are highlighted as below:

1. automatically determining problem categories according to the symptom de-

scription in a ticket;

2. intelligently discovering interesting temporal patterns from system events;

3. instantly identify temporal dependencies among system performance statistics

data.

To follow up with the work in my dissertation, some future work along the three

directions are provided.

• We focus on tree-based hierarchy in the dissertation, which can be extended to

DAG-based hierarchy in future work. In addition, more domain expert knowl-

edge can be automatically incorporated into the framework to reduce the system

administrators’ involvement in the overall system proposed in this dissertation.

Based on KILO algorithm, another direction is to propose an framework which is

capable of refining the category determination interactively with further knowl-

edge.

• In the future, we will extend our model to discover temporal patterns with

more complicated distributions of time lags. This includes patterns with po-

tential multiple time lags between two events that satisfy more complicated

distribution laws. The next challenging step is to move from the discovery

of pairwise dependencies to the discovery of multi-event dependencies. These

realistic conditions will be considered in our future work.

• To discover the time-varying temporal dependency among time series, the choice

of penalty parameters is very essential. One possible future work is to come up

with online method to automatically identify the proper parameters. The time-

varying temporal dependency discovery among time series unveils the dynamic
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change of the system structure over time. Another possible direction is to apply

the discovered time-varying temporal dependency for anomaly detection.

• The system administrators act as inevitable roles during the routine IT mainte-

nance procedure of IT service management. The reason is that a great amount

of domain expertise has been accumulated, which implicitly, efficiently and ef-

fectively facilitate the IT activities. Therefore, one of the future work is to

come up with a way to explicitly model and store those domain knowledge, and

integrate those domain knowledge with our works in the dissertation. It will

further optimize the IT service management and alleviate the human efforts.
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