
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

9-26-2016

Facilitators for Software Development Agility
Shekhar Rathor
Florida International University, srath004@fiu.edu

DOI: 10.25148/etd.FIDC001175
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Management Information Systems Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Rathor, Shekhar, "Facilitators for Software Development Agility" (2016). FIU Electronic Theses and Dissertations. 3059.
https://digitalcommons.fiu.edu/etd/3059

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.fiu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3059?utm_source=digitalcommons.fiu.edu%2Fetd%2F3059&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

FACILITATORS FOR SOFTWARE DEVELOPMENT AGILITY

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

BUSINESS ADMINISTRATION

by

Shekhar Rathor

2016

ii

To: Acting Dean Jose M. Aldrich
 College of Business

This dissertation, written by Shekhar Rathor, and entitled Facilitators for Software

Development Agility, having been approved in respect to style and intellectual

content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Weidong Xia

Monica Chiarini Tremblay

Mido Chang

Dinesh Batra, Major Professor

Date of Defense: September 26, 2016

The dissertation of Shekhar Rathor is approved.

Acting Dean Jose M. Aldrich

College of Business

Andrés G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2016

iii

© Copyright 2016 by Shekhar Rathor

All rights reserved.

iv

DEDICATION

I dedicate this dissertation to my parents, Vijay Rathor and Swarna Rathor.

Without their sacrifices, understanding, support, and love, the completion of this

dissertation would not have been possible.

v

ACKNOWLEDGMENTS

Many people have guided and helped me during my Ph.D. program. First and

foremost, I am thankful to Dr. Dinesh Batra for his mentorship during dissertation

and help in data collection. He has guided me throughout the writing of my

dissertation. I would like to express my deepest gratitude toward Dr. Weidong Xia

for his continuous guidance, encouragement, and support from the very first day

of the Ph.D. program until its completion. His passion and dedication for his

Ph.D. students kept me motivated to continuously work hard. This dissertation

would not have been possible without the guidance and inspiration from Dr.

Dinesh Batra and Dr. Weidong Xia.

I am grateful to Dr. Monica Chiarini Tremblay for her unconditional support and

help in data collection. She was always there to help me in getting this

dissertation done successfully. I would like to thank Dr. Mido Chang for her

support and feedback on data analysis. Her feedback helped me in improving my

dissertation.

My sincere thanks to all my Ph.D. classmates, Mingyu, Peng, Arturo, Alfred,

Inkyoung and John, for their support and cooperation. They were always there to

help me. My deepest gratitude to all the faculty members of the Department of

Information Systems and Business Analytics (ISBA) for teaching and guiding me

during the Ph.D. program. I have learned a lot from them during my journey. I

am thankful to the ISBA staff members. They were always so supportive.

vi

I am particularly indebted to the Department of Information Systems and

Business Analytics at the Florida International University for providing the

financial support for the Ph.D. program. Thank you.

vii

ABSTRACT OF THE DISSERTATION

FACILITATORS FOR SOFTWARE DEVELOPMENT AGILITY

by

Shekhar Rathor

Florida International University, 2016

Miami, Florida

Professor Dinesh Batra, Major Professor

Software development methodologies provide guidelines and practices for

developing information systems. They have evolved over time from traditional

plan-driven methodologies to incremental and iterative software development

methodologies. The Agile Manifesto was released in 2001, which provides values

and principles for agile software development. Over the last few years, agile

software development has become popular because its values and principles

focus on addressing the needs of contemporary software development. IT and

Business teams need agility to deal with changes that can emerge during

software development due to changing business needs. Agile software

development practices claim to provide the ability to deal with such changes.

Various research studies have identified many factors/variables that are

important for agile software development such as team autonomy,

communication, and organizational culture. Most of these empirical studies on

viii

agile software development focus on just a few variables. The relationships

among the variables is still not understood. The dimensions of agility and the

relationship between agility and other variables have not been studied

quantitatively in the literature. Also, there is no comprehensive framework to

explain agile software development. This research study addresses these

research gaps.

This study analyzed a comprehensive research model that included antecedent

variables (team autonomy, team competence), process variables (collaborative

decision making, iterative development, communication), delivery capability,

agility, and project outcomes (change satisfaction, customer satisfaction). It

presents key dimensions of agility and quantitatively analyzes the relationship

between agility and other variables. The PLS analysis of one hundred and sixty

survey responses show that process variables mediate the relationship between

antecedent variables and delivery capability and agility. The findings show that

the delivery capability of the teams contributes to agility, antecedents and

process variables contribute to agility, and delivery capability for better customer

satisfaction. These results will help IS practitioners to understand the variables

that are necessary to achieve agility for better project outcomes. Also, these

quantitative findings provide better conceptual clarity about the relationship

between various key variables related to agile software development.

ix

TABLE OF CONTENTS

CHAPTER

PAGE

I INTRODUCTION…………………………………………………... 1

 Background………………………………………………………… 1

 Problem Statement and Research Questions………………….. 4

II LITERATURE REVIEW…………………………………………… 8

 Agile Software Development……………………………….......... 8

 Traditional and Agile Methodologies…………………………….. 11

 Key Variables in Agile Software Development…………………. 14

 Delivery Capability………………………………………………… 15

 Agility………………………………………………………….......... 17

 Process Variables…………………………………………………. 21

 Collaborative Decision Making…………………………….......... 21

 Communication……………………………………………………. 25

 Iterative Development……………………………………………. 28

 Antecedent Variables……………………………………………… 30

 Team Autonomy…………………………………………….......... 30

 Team Competence………………………………………….......... 32

 Project Outcomes………………………………………………….. 33

III RESEARCH MODEL AND HYPOTHESIS DEVELOPMENT 37

 Research Model…………………………………………………… 37

 Hypothesis Development…………………………………………. 38

 Team Autonomy and Process variables……………………….. 38

 Team Competence and Process Variables…………………… 39

 Collaborative Decision Making, Delivery Capability and Agility 41

 Communication, Delivery Capability and Agility………………. 42

 Iterative Development, Delivery Capability and Agility………. 44

 Delivery Capability, Agility and Project Outcomes……………. 46

IV RESEARCH METHODOLOGY………………………………….. 49

 Conceptual Development and Measures Identification……….. 49

x

 Conceptual Refinement and Measure Modification……………. 50

 Data Collection…………………………………………………….. 54

 Data Analysis and Measurement Validation…………………… 54

V DATA ANALYSIS AND REPORTING…………………….......... 56

 Descriptive Statistics……………………………………………… 56

 Reliability and Validity……………………………………………. 59

 Formative Indicators……………………………………………… 61

 Discriminant Validity………………………………………………. 66

 Structural Model Assessment……………………………………. 68

 Path Coefficients………………………………………………….. 69

 Coefficient of Determination (R2)……………………………….. 72

 Effect Size (F2)……………………………………………………. 73

 Indirect Effects……………………………………………………. 75

VI DISCUSSION…………………………………………………….. 81

 Discussion and Implications…………………………………….. 81

 Limitations and Future Research………………………………. 92

 Contributions……………………………………………………… 93

 REFERENCES…………………………………………….......... 96

 APPENDIX……………………………………………………….. 111

 VITA……………………………………………………………….. 128

xi

LIST OF TABLES

TABLE PAGE

1 Improvements from implementing Agile Methods 11

2 Key differences between Agile methodologies and
traditional methodologies

13

3 Agility Definitions 18

4 Changes Types and their Descriptions 20

5 Communication related studies from Agile Literature 28

6 Variables, their definitions and key references 36

7 Construct types and their measurement items

53

8 Research Methodology Phases 55

9 Country/Region of the Respondents 57

10 Respondent Role 57

11 Agile Methods used by Respondents 58

12 Industry Type 58

13 Internal Consistency and Convergent Validity 60

14 Weights, Loadings and VIF of Formative indicators
(First Order)

64

15 Weights, Loadings and VIF of Formative indicators
(Second Order)

65

16 Discriminant Validity- Fornell-Larcker Criterion 67

17 Discriminant Validity- Heterotrait-Monotrait Ratio
(HTMT)

68

18 Path Coefficients and their significance 71

19 R-Square and R-Square adjusted values 73

20 F-Square Values 74

21.1 Individual Indirect Effects and their significance 78

21.2 Total Indirect Effects and their significance 80

22 Hypothesis Testing Results 82

1

CHAPTER I

INTRODUCTION

Background

In the contemporary business environment, information systems have become

indispensable to each organization. Information systems are not used just as

work automation tools, but also as tools for competitive advantage. Organizations

use information systems to provide new products and services, to manage

customer relationship, and to manage business processes effectively and

efficiently. Information systems are critical for organizations because they can

help them achieve a competitive edge over their competitors. Organizations need

information systems that can adapt to their changing business needs. The

process of defining, planning, developing, managing, and implementing these

information systems is a complex process (Schmidt, Lyytinen, & Mark Keil, 2001;

Xia & Lee, 2003).

Software development methodologies provide procedural guidelines and

framework to define, plan, and develop information systems. Software

development methodologies are constantly evolving due to changes in user

needs and technologies (Nerur, Mahapatra, & Mangalaraj, 2005). These software

development methodologies have evolved over time from traditional plan-driven

methodologies to incremental and iterative software development methodologies.

Software development is inherently complex due to the various kinds of

complexities (technical and organizational complexities) involved (Xia & Lee,

2

2003). Due to the complexities of IT projects, it is difficult to anticipate and plan

everything before starting a project. Thus, many IT projects fail due to the

uncertainties involved. According to a research study conducted by McKinsey &

Company in collaboration with the University of Oxford, about half of all large IT

projects with initial price tags exceeding $15 million fail to meet their budgets,

and on the average, these large IT projects run 45 percent over budget and

seven percent over time, while delivering 56 percent less value than predicted

(McKinsey&Company, 2012).

In the contemporary business world, organizations work in a very dynamic

business environment, and they need to adapt their structures, strategies, and

policies continuously to suit the new environment. Thus, organizations need

information systems which can adapt to their changing environment (Nerur et al.,

2005). While developing information systems for such dynamic business

environments, it is difficult to anticipate all the requirements at the beginning of

the software development. Over the years, the nature of software development

has changed from implementing pre-defined business requirements to accepting

emerging requirement changes from changing business needs. The business

needs are continuously changing because of the frequent changes in user

needs. The plan-driven methodologies lack the flexibility to adapt to the

development process to embrace the changing requirements during the project.

The need for adapting to changing business needs has resulted in shifting from

plan-driven traditional software development methodologies to incremental and

3

iterative development methodologies such as agile software development

methodologies. The agile software development projects are often three times

more successful than projects based on traditional methodologies (Bakalova,

2014; StandishGroup, 2015). In the last few years, the use of agile methods such

as Scrum has increased in software development projects (Hossain, Babar, &

Paik, 2009). In the surveys conducted by Versionone, 84% of the respondents in

2006, 90% of the respondents in 2010 and 94% of the respondents in 2015 said

that their organizations were using some agile practices (VersionOne, 2015).

In 2001, the Agile Manifesto was announced by a group of leading information

systems (IS) practitioners. Since then, it has become popular because its values

and principles focus on addressing the needs of contemporary software

development. Many methods that are termed agile like Scrum, Dynamic Systems

Development Method (DSDM), Crystal Clear and Extreme Programming were

known before 2001. These methods recommend various types of practices and

guidelines for software development, some of which are contradictory (Tripp,

2012), but largely they have the same essence. In essence, all agile methods

mainly focus on individuals and their interactions, iterative and incremental

development, customer collaboration, and responding to changes. The agile

practices recommended by various agile methods claim to make activities in the

project more effective and efficient to embrace changes during the project. These

practices not only claim to provide the capability to deliver solutions to the given

4

planned requirements but also the agility to deal with changes during the project.

The ability of the team to deliver given requirements is the basic necessity for

any software development project. In additional to basic ability (e.g. delivery

capability), teams need agility to deal with various kinds of changes in agile

software development projects. Agile software development purports to facilitate

both delivery capability to implement given requirements and agility to manage

project changes. It is characterized as incremental, cooperative, straightforward,

and adaptive (Abrahamsson, Warsta, Siponen, & Ronkainen, 2003).

Problem Statement and Research Questions

In the last few years, agile methodologies have become popular among IS

practitioners and IS researchers (Baskerville, Pries-Heje, & Madsen, 2011).

Many studies have been done to understand the theoretical and practical aspects

related to agile software development. These studies have identified many

important factors related to agile software development such as communication

(Fontana, Fontana, da Rosa Garbuio, Reinehr, & Malucelli, 2014; Korkala &

Abrahamsson, 2007), customer collaboration (Chow & Cao, 2008; Hoda, Noble,

& Marshall, 2011), delivery strategy (Chow & Cao, 2008), management support

(Chow & Cao, 2008; Senapathi & Srinivasan, 2012), iterative approach (Abbas,

Gravell, & Wills, 2010; Batra, Xia, & Rathor, 2016), and team autonomy (Batra et

al., 2016; Lee & Xia, 2010).

All these factors are important for agile software development and the interaction

between these factors can affect project outcomes. Individually, a given

5

empirical study has focused on only a few factors/variables. Thus, the

interactions among the variables are not well understood. Consequently, there is

no comprehensive framework to enable a better theoretical understanding of

agile software development and present generalizable findings (Abrahamsson,

Conboy, & Wang, 2009; Goh, Pan, & Zuo, 2013). To address this concern,

Convoy (2009) developed a definition and taxonomy for agility to provide better

conceptual clarity about agility, which is treated as a multidimensional concept

but few studies have focused on developing measures for agility (Lee & Xia,

2010; Sheffield & Lemétayer, 2013). The understanding of agility is lacking in

clarity, particularly about its underlying dimensions (Balijepally, DeHondt,

Sugumaran, & Nerur, 2014). There is no common understanding of what

constitutes agility (Wendler, 2013). There is a lack of empirical studies focusing

on software development agility (Sheffield & Lemétayer, 2013). It is important to

investigate what constitutes agility and identify rigorous ways by which agility can

be measured and assessed (Conboy, 2009). There is a need for further research

to create indicators of software development agility (Sheffield & Lemétayer,

2013). Because of the lack of such studies, it is challenging for IT managers to

identify important factors that facilitate agility and understand their impact on

project outcomes.

In this study, the factors related to the various project activities that are needed in

achieving agility and delivery capability are termed as process variables. The

factors that are responsible for creating a conducive environment for agility and

6

delivery capability are termed as antecedent factors. Antecedent variables are

necessary but not sufficient to explain the agility of a project. Without process

variables, antecedent variables cannot contribute to agility and project success.

For example, team autonomy is necessary to provide a conducive environment

for agile development so it may have an indirect effect on agility. In contrast,

communication is necessary for various activities during the development

process so it may have a direct effect on agility and delivery capability. Based on

the agile literature, four key research gaps are identified. First, agility dimensions

are not well understood due to the lack of empirical measures. Empirical

measures are required to study agility quantitatively and are need to further

develop a clearer understanding of agility and its relationship with other

variables. Second, there is a lack of studies that quantitatively investigate the

relationships between the antecedent and process factors, and agility. Third,

there is no study that distinguishes between delivery capability and agility, and

studies relationship between these two abilities. Lastly, how delivery capability

and agility affect project outcomes have not been studied.

This research attempts to fill these research gaps. The specific research

questions for this research are (a) What are the dimensions and empirical

measures for agility? (b) What process factors affect agility and what are the

antecedents to these process factors? (c) What is the relationship between agility

and delivery capability and, (d) What kinds of relationships exist between agility,

delivery capability and project outcomes? The empirical investigation of these

7

research questions is important to bring new insights for IS researchers and IS

practitioners. This study contributes to IS literature by developing new empirical

measures for the key variables related to software development agility. It

identifies key dimensions of agility and their empirical measures. It quantitatively

explains the relationship between antecedent variables, process variables,

delivery capability, agility and customer satisfaction in agile software

development. The understanding of these relationships is important in identifying

mediating variables for a better conceptual clarity about agile software

development. The interactions between these variables have not been studied in

agile literature. The findings of this study imply that IS practitioners need to focus

on these antecedents and process factor for achieving delivery capability and

agility which in turn leads to better customer satisfaction.

8

CHAPTER II

LITERATURE REVIEW

Agile Software Development

Agile Software Development is an umbrella term used to define a set of methods

and practices based on the values and principles expressed in the Agile

Manifesto (AgileAlliance, 2016). The Agile Manifesto recommends four values

and twelve principles to present the philosophy of agile software development.

Agile Values

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

Agile Principles

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the

project.

9

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to, and

within, a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances

agility.

10. Simplicity – the art of maximizing the amount of work not done – is essential.

11. The best architectures, requirements, and designs emerge from self-

organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

Various methods have been used to implement the agile values and principles.

The most popular agile methods include Scrum, Extreme Programming (XP),

Crystal, Kanban, Dynamic Systems Development Method (DSDM), Lean

Development, and Feature-Driven Development (FDD). According to the ninth

state of agile report by Versionone, nearly 70% of respondents said that they use

some Scrum practices (VersionOne, 2015).

Agile software development is a term used for many iterative and incremental

software development methodologies. It provides a lightweight framework for IT

teams to develop systems based on continually evolving technical and business

10

requirements to maximize the business value and to minimize the risks

associated with the project. Ambler (2009) defined agile software development

as, “an evolutionary (iterative and incremental) approach which regularly

produces high quality software in a cost effective and timely manner via a value

driven lifecycle. It is performed in a highly collaborative, disciplined, and self-

organizing manner with active stakeholder participation to ensure that the team

understands and addresses the changing needs of its stakeholders. Agile

software development teams provide repeatable results by adopting just the right

amount of ceremony for the situation they face” (p. 6). Agile development

practices focus on delivering business value through a process of continuous

planning and customer feedback cycles to ensure that business values increase

during the development process. The use of agile practices has become very

popular because of the benefits perceived by many organizations. Table 1 shows

the perceived benefits of the agile methods based on a survey conducted by

VersionOne (VersionOne, 2015).

11

Improvements from implementing agile % of respondent (out of 3925)

Ability to manage changing priorities 87%

Increased team productivity 84%

Improved project visibility 82%

Increased team morale/motivation 79%

Better delivery predictability 79%

Enhanced software quality 78%

Faster time to market 77%

Reduced project risk 76%

Improved business/IT alignment 75%

Improved engineering discipline 72%

Enhanced software maintainability 68%

Better manage distributed teams 59%

Table 1: Improvements from implementing Agile Methods (9th State of agile survey,
Versionone)

Traditional and Agile Methodologies

The failure of traditional plan-driven methodologies to take into consideration of

emerging user requirement changes has prompted the adoption of agile

methodologies in software projects. Agile methodologies and traditional

methodologies differ in many aspects. Table 2 presents some key differences

between agile methodologies and traditional methodologies. IT organizations see

the use of agile methodologies as promising alternative methods to develop

12

quality software systems, which can create business value for their customers.

Agile software development is the defining factor for future businesses because

there is a need for innovation to survive the intense competition (Kar, 2006). It is

not just a set of principles and values; it provides the capability to respond to

change, to innovate, and to balance structure and flexibility (Highsmith, 2002). It

helps development teams to deal with an unpredictable environment (Beck,

2000; Maruping, Venkatesh, & Agarwal, 2009). It is characterized as iterative and

incremental (Abrahamsson, 2002; Lindvall et al., 2002), flexible to frequent

requirement changes (Boehm, 2002; Highsmith & Cockburn, 2001), cooperative

(Abrahamsson, 2002), collaborative (Highsmith, 2002), and adaptive

(Abrahamsson, 2002). It is most suitable for complex and high-requirement

change projects and operates best in a people-centered, collaborative

organizational culture (Cockburn & Highsmith, 2001). In agile projects, business

requirements can emerge because business and IT teams work closely to

understand changing business needs and generate new ideas for creating

business value. The plan-driven methodologies are efficient in projects where not

much requirement changes are expected. The primary goal of plan-driven

methods is predictability, stability and high assurance whereas the primary goal

of the agile methods is rapid value and responsiveness to change (Boehm &

Turner, 2003a).

Agile methodologies are not suitable for every kind of software project and

organizations. There is not enough evidence to show that agile methodologies

work in large projects. Agile principles and practices are likely to fail if imposed

13

on process-centric, non-collaborative, and optimizing organizations (Cockburn &

Highsmith, 2001).

 Traditional Methodologies Agile Methodologies

Fundamental
Assumptions

Systems are fully specifiable,
predictable, and can be built
through meticulous and extensive
planning.

High quality, adaptive software
can be developed by small teams
using the principles of continuous
design improvement and testing
based on rapid feedback and
change

Requirements Knowable early; largely stable Largely emergent; rapid change

Control Process-centric People-centric

Customers Access to knowledgeable,
collaborative, representative and
empowered customers

Dedicated, knowledgeable,
collocated, collaborative,
representative and empowered
customers

Management Style Command-and-control Leadership-and-collaboration

Knowledge
Management

Explicit Implicit

Communication Formal Informal

Customer’s Role Important Critical

Project Cycle Guided by tasks or activities Guided by product features

Development
Model

Life cycle model (Waterfall,
Spiral or some variation)

The evolutionary-delivery model

Desired
Organizational
Form/Structure

Mechanistic (bureaucratic
with high formalization)

Organic (flexible and participative
encouraging cooperative social
action)

Technology No restriction Favors object-oriented technology

Communicating
with customer

Less frequent More frequent

Feedback from
customer

After few months After few weeks

Documentation Heavy Minimal

Primary Objective High assurance Rapid business value

Architecture Designed for current and
foreseeable requirements

Designed for current
requirements but adaptable

Table 2: Key differences between Agile methodologies and traditional methodologies*

*adapted from (Nerur et al., 2005), (Dyba & Dingsoyr, 2008), and (Boehm, 2002)

14

IT organizations that are considering the use of the agile approach need to

understand the key issues and challenges in adopting agile practices

(Mangalaraj, Mahapatra, & Nerur, 2009). Agile methodologies have become a

topic of interest for academic research after the release of the Agile Manifesto in

2001. Abrahamsson (2002) mentioned that there is anecdotal evidence to show

that agile methods are effective and suitable for specific situations and

environments creating a need for more empirical studies. The meaning and

practice of agile methodologies have evolved in the last decade and will continue

to evolve (Baskerville et al., 2011). Agile methodologies can be seen as a

philosophy rather than just a set of principles and values. To present the true

meaning of the agile development Highsmith stated that “Agile development

defines a strategic capability, a capability to create and respond to change, a

capability to balance flexibility and structure, a capability to draw creativity and

innovation out of a development team, and a capability to lead organizations

through turbulence and uncertainty” (Highsmith, 2002) (p. 8).

Key Variables in Agile Software Development

Over the years, studies have explored various aspects related to agile

methodologies and have identified key factors for success in agile projects. Many

empirical studies have been conducted on agile methodology (Chow & Cao,

2008; Maruping et al., 2009; Senapathi & Srinivasan, 2012). Nerur et al. (2005)

identified key management, organizational, people, process, and technological

issues related to adoption of agile methodologies. A literature study presented 12

15

possible critical success factors for agile projects and consolidated them into five

different categories: organizational, people, process, technical, and project

(Chow & Cao, 2008). Using a survey method, Sheffield et al. (2013) identified

critical agility factors that addressed process design issues in agile projects and

environmental factors. These studies have reported many important factors such

as team autonomy, team competence, communication, customer collaboration

and iterative development. What is missing in the literature is how these factors

interact and affect project outcomes. The factors that relate to practices followed

in agile projects and are directly responsible for agility are termed as process

factors (communication, collaborative decision-making, and iterative

development). The factors that are important for creating a suitable environment

for achieving agility are termed as antecedent factors (team autonomy and team

competence). In the next section of this chapter, these key antecedent and

process variables, delivery capability, agility and project outcomes variables are

presented.

Delivery Capability

Agile practices capitalize on each individual and each team’s unique capability

(Cockburn & Highsmith, 2001). Team capability is one of the critical success

factors for agile software development projects (Chow & Cao, 2008) and affects

software project quality (Vinod, Dhanalakshmi, & Sahadev, 2009). IT and

business team members should have the capability to deliver the task given to

them. In this study, two capabilities are considered. First is the delivery capability,

16

which refers to the ability of the project team to effectively and efficiently apply

their skills (technical, business, interpersonal, problem-solving and management

skills) for successfully implementing the given requirements in software

development project. It refers to the project team’s routine or essential ability to

deliver a solution to a given set of requirements in the project. Second is agility,

which is the ability to deal with various changes that can occur during the project,

in addition to the given requirements. Delivery capability is the ability of the team

to deliver the planned tasks. In the software development literature, competency

and capability terms are used to refer to the skills of the team members. In this

research, there is a differentiation between competency and capability.

Competency refers to the individual skills of the project team members.

Capability is the ability to effectively use the competencies for various tasks in

the project. A competent team may not be a capable team if they are not able to

use their skills properly to complete successfully the given tasks. To understand

the capability of the software development team requires insight into the team's

collective skills (Misra, Kumar, & Kumar, 2009). Usually, in software development

projects, technical and business skills are considered as key skills, but task skills

(know how) is also important for project success along with business and

technical skills (Chan & Thong, 2009). Specialized skills of the project team

members alone are insufficient to produce high-quality work output, and these

skills need to be managed and coordinated properly to leverage its potential

(Faraj & Sproull, 2000). Task skills are practical skills that are required to

understand how to work effectively in a project team and how to do the project

17

tasks effectively and efficiently (Chan, Jiang, & Klein, 2008). The appropriate use

of team member’s skills is required to create team capability to achieve success

in a software development project. A project needs process factors that can

bridge the gap between competencies and capability.

Agility

The practices and values recommend by agile methodologies help in providing

agility in contemporary software development; and agile methods provide a

platform to achieve agility (Sarker & Sarker, 2009). Agility is not a prior

characteristic of agile software development, but an emergent property due to

use of agile methods (Iivari & Iivari, 2011; Vidgen & Wang, 2009). In the

literature, agility has been defined as a multidimensional concept (Conboy, 2009;

Sheffield & Lemétayer, 2013). According to a study by Vial et al. flexibility,

cooperation, learning and leanness are key facets of agility (Vial & Rivard, 2015).

Conboy (2009) derived a comprehensive definition of agility. Agility is “the

continual readiness of an ISD method to rapidly or inherently create change, pro-

actively or reactively embrace change, and learn from change while contributing

to perceived customer value (economy, quality, and simplicity), through its

collective components and relationships with its environment” (Conboy, 2009) (p.

340).

Agility has been conceptualized in many different ways (Cockburn, 2006;

Conboy, 2009; Highsmith, 2004b; Lee & Xia, 2010; Lyytinen & Rose, 2006;

Sarker & Sarker, 2009; Sheffield & Lemétayer, 2013). Table 3 shows the agility

18

Agility Definitions References

Agility is the ability to balance flexibility and stability. It is the
ability to both create and respond to change in order to profit in a
turbulent business environment.

(Highsmith, 2004b),
(Highsmith, 2009)

Agility is defined as the continual readiness of an entity to rapidly
or inherently, proactively or reactively embrace change through
high-quality, simplistic, economical components and relationships
within its environment

(Conboy & Fitzgerald,
2004)

Agility applies memory and history to adjust to new environments,
react and adapt, take advantage of unexpected opportunities and
update the experience base for the future

(Boehm & Turner, 2003b)

Agility is rapid and flexible response to change (Larman, 2004)

Agility is often associated with such related concepts as
nimbleness, suppleness, quickness, dexterity, liveliness or
alertness. At its core, agility means to take out as much of the
heaviness, commonly associated with traditional software-
development methodologies, to promote quick response to
changing environments, changes in user requirements and
accelerated project deadlines.

(Erickson, Lyytinen, &
Siau, 2005),
(Dyba & Dingsoyr, 2008)

Agility refers to readiness for action or change. It has two
dimensions: (1) the ability to adapt to various changes and (2) the
ability to fine-tune and reengineer software development
processes when needed.

(Henderson-Sellers &
Serour, 2005)

Agility is defined as the ability to sense and respond swiftly to
technical changes and new business opportunities; it is enacted
by exploration-based learning and exploitation-based learning.

(Lyytinen & Rose, 2006)

Agility is being light, barely sufficient, and maneuverable (Cockburn, 2006)

Agility is a persistent behavior or ability of an entity that exhibits
flexibility to accommodate expected or unexpected changes
rapidly, follows the shortest time span, and uses economical,
simple and quality instruments in a dynamic environment. Agility
can be evaluated by flexibility, speed, leanness, learning and
responsiveness.

(Qumer & Henderson-
Sellers, 2006),
(Qumer & Henderson-
Sellers, 2008)

Agility in a distributed information systems development (ISD)
setting is the capability of a distributed team to speedily
accomplish ISD tasks and to adapt and reconfigure itself to the
changing conditions in a rapid manner by (a) drawing on
appropriate IS personnel and technological resources; (b)
utilizing appropriate ISD methodologies, mechanisms for bridging
temporal distances and routines to anticipate, sense and react to
changes in the distributed team’s project environment; and (c)
forging and maintaining linkages across communicative and
cultural barriers existing among the distributed team members.

(Sarker & Sarker, 2009)

Agility is the software team’s capability to efficiently and
effectively respond to and incorporate user requirement
changes during the project life cycle.

(Lee & Xia, 2010)

Agility is a multidimensional concept. (Sheffield & Lemétayer,
2013)

Table 3: Agility Definitions (adapted from (Lee & Xia, 2010) and (Vial & Rivard, 2015))

19

definitions from the agile methodology literature. To demonstrated the effect of

agility on software project performance parameters, Lee and Xia presented agility

as the software team’s ability to respond to changes and measured it in terms of

the software team’s response extensiveness and response efficiency (Lee & Xia,

2010).

A survey study presented agility in terms of agile values mentioned in the Agile

Manifesto and revealed that the project environment factor (organizational

culture) and a project factor (empowerment of the project team) are the indicators

of software development agility (Sheffield & Lemétayer, 2013). Balijepally et al.

defined stakeholder collaboration, system validation, reflective improvement and

self-organization as four dimensions of agility and found that these dimensions

have positive impacts on creating business value (Balijepally et al., 2014).

In this study, three key dimensions of agility are conceptualized: sense changes

(Conboy, 2009; Henderson-Sellers & Serour, 2005; Li, Chang, Chen, & Jiang,

2010; Lyytinen & Rose, 2006), respond to changes (Conboy, 2009; Larman,

2004; Lyytinen & Rose, 2006; Sarker & Sarker, 2009) and learn from changes

(Conboy, 2009; Henderson-Sellers & Serour, 2005). According to adaptive

software development approach, speculate, collaborate and learn cycles help

when teams need to deliver fast and changes are high (Highsmith, 2000). These

cycles provide agility to the development process. Agility reflects the ability to

manage the changes that can come up during the project.

20

A software development project may have many types of changes such as

human and IT resource (hardware/software) changes, but user requirement

changes are the most common and important. Table 4 shows various types of

changes that can emerge in agile software development projects.

Types of Changes Description Key References

Technical
Requirement
Changes

Changes in technical attributes of the system, such
as performance, scalability, reliability, and availability
attributes

(Conboy, 2009),
(Li et al., 2010)

Business
Requirement
Changes

Changes in functionalities or features of the software
systems that can bring more business value to the
customer

(Conboy, 2009),
(Li et al., 2010)

Technological
Resource
Requirement
Changes

Changes (addition or removal) in hardware and
software resources that help IT and Business team
members to make system development more
effective and efficient during the project.

(Conboy, 2009),
(Li et al., 2010)

Human Resource
Requirement
Changes

Changes in human resources with necessary skills
which are required to make system development
more effective and efficient. i.e. a member left or
joined the team

(Boehm & Turner,
2005),
(Conboy, 2009)

Budget and
Schedule Changes

Changes in resources (time and budget) required to
deliver the given requirements. i.e. priority of the
requirement changed so need to deliver early

(Conboy, 2009),
(Vidgen & Wang,
2009)

Table 4: Changes Types and their Descriptions*

*adapted from (Rathor, Batra, Xia, & Zhang, 2016)

Frequent interactions between the IT-business team and between the IT team

members help create a better understanding of the client’s needs and help

anticipate future requirements. Project teams implement the requirements to

create business values for the customer. These teams learn from their

experience to become more effective and efficient in future. The definitions and

research on agility indicate that agility is closely related to sensing and

21

responding to changes, learning from changes, and creating business value for

customers.

Process Variables

The process variables refer to the factors related to the various project activities

that are helpful in achieving delivery capability and agility. Based on the literature

review and a qualitative study on agility facilitators (Batra et al., 2016), the most

important process variables were identified. In this research, communication,

collaborative decision-making, and iterative development are key process

variables that facilitate agility and delivery capability. The role of process

variables in facilitating agility and delivery capability can be seen from a dynamic

capability perspective. According to the dynamic capability theory, organizations

use, configure, build and integrate their competencies to develop dynamic

capabilities to deal with changing business environments (Eisenhardt & Martin,

2000; Teece, Pisano, & Shuen, 1997). In the context of agile software

development, team autonomy and team competencies are key resources. These

process variables are the ways by which IT and Business teams can use their

competencies in an autonomous environment to develop agility and delivery

capability to deal with changes during the software development process.

Collaborative Decision Making

Agile software development is collaborative in nature and promotes collaboration

among team members and the client (Highsmith, 2002). The collaboration among

various stakeholders is an important aspect of agile methodology. According to

22

Moe, Aurum, & Dyba (2012), agile methodology has not changed any

fundamental knowledge requirements for software development, but it has

changed the nature of coordination and collaboration among various

stakeholders. Collaboration and collaborative/shared decision-making have been

used interchangeably in agile methodology literature. Coordination and

collaboration activities in an agile team are highly inter-related (Sharp &

Robinson, 2008). Collaboration is defined as working together to accomplish a

task and discussing with other people in solving difficult problems; whereas

coordination is defined as the harmonious adjustment or interaction of different

people or things to achieve a goal or effect (Misra et al., 2009). Collaboration is a

complex and multidimensional process described by constructs such as

coordination, communication, relationship, trust, and aims to achieve some

specific outputs through team efforts (Kotlarsky & Oshri, 2005). It is an act of

creating together and is based on trust and respect (Orr, 2011). In a software

development project, coordination leads to many benefits like shorter

development cycles, cost savings, and better-integrated products (Espinosa,

Slaughter, Kraut, & Herbsleb, 2007).

 Agile projects involve anticipating and implementing frequent requirement

changes and thus, need a collaborative approach (Moe et al., 2012).

Collaborative decision-making among various stakeholders is required for

creating a shared vision for the project’s success. Collaborative decision-making

is an interactive process that involves multiple stakeholders with diverse

backgrounds and goals (Moe et al., 2012; Nerur et al., 2005). IT and Business

23

teams are the key stakeholders in decision-making in agile projects. In agile

software development projects, collaborative decision-making is challenging and

requires effort, time and patience (Hoda, Noble, & Marshall, 2013). A few factors

such as team distribution, resource drain, lack or delay in customer involvement,

estimation process, level of experience, time constraints and influence of experts

can negatively affect decision-making in agile project teams (Drury & McHugh,

2011). A multiple case study identified the main challenges in shared decision-

making and recommended that the alignment of decisions on the strategic,

tactical, and operational levels is important to overcome these challenges.

Collaborative decision-making at the operational level is essential for the success

of agile development (Moe et al., 2012). The decision-making process includes

taking operational, tactical, and strategic decision and can occur between various

stakeholders. In agile project, collaborative decision-making happens between

IT-business teams and within IT teams. In agile teams, decisions are made

through an interactive process involving team members (Moe et al., 2012; Moe,

Dingsoyr, & Dyba, 2009). The knowledge about each other’s work and overall

project progress helps in collaboration between agile team members (Sharp &

Robinson, 2008). Some problems, like group-think or the Abilene paradox can

negatively affect the efficacy of decision-making by agile teams (McAvoy &

Butler, 2009).

Customer involvement is one of the key success factors for agile (Chow & Cao,

2008; Hoda et al., 2011). IT team and customers or customer representatives

(business team) co-create business values as they interact continuously during

24

the development stages (Babb & Keith, 2011). The customer is actively involved

in various activities such as discussing and prioritizing requirements,

clarifications and providing feedback (Bosch & Bosch-Sijtsema, 2011). Usually,

business teams are the representatives of the customer in agile projects.

Collaborative decision-making between business and IT teams refers to the

collaborative process in which business and IT team members participate in

making decisions about project activities such as defining project goals and risks,

defining and prioritizing requirements, and setting up project schedule and

budget. The agile projects are more likely to succeed if there is more

collaboration with the customer (Mishra & Mishra, 2009). Agile projects are

based on close interactions with the customer and assume that the customer will

be available for the quickest possible feedback because customer feedback is

viewed as a critical success factor (Lindvall et al., 2002). The lack of customer

collaboration can lead to adverse effects on a project’s success (Hoda et al.,

2011).

Agile practices enable collaborative decision-making among IT teams and

business teams (Yu & Petter, 2014). In small projects, collaboration between

teams is easy because team members work physically close to each other.

However, in large projects where teams are globally distributed, collaboration can

be a challenge. The large projects may need additional mechanisms or tools for

collaboration. The constant collaboration between IT and Business teams is

important to explore new ideas for business value.

25

Communication

Communication is the “imparting or interchanging of thoughts, opinions, or

information by speech, writing, or signs” (Mishra, Mishra, & Ostrovska, 2012). It

is a dialogue that attempts to balance creativity and constraints (Eisenberg &

Goodall, 2004). Many studies have been conducted on the importance of

communication in the agile projects. Table 5 shows the findings from a few

important studies on communication from agile methodology literature. Some

contradictions can be seen in these studies (Hummel, 2013). Whereas most

studies have mentioned communication as an important factor for the agile

projects (Koskela & Abrahamsson, 2004; Xiaohu, Bin, Zhijun, & Maddineni,

2004), a few studies state that communication has not contributed to the agile

project success (Abbas et al., 2010; Mishra & Mishra, 2009). A study states that

while developing complex systems, verbal communication is prone to memory

lapses so it may be difficult to recall why certain choices were made (Nawrocki,

Jasiñski, Walter, & Wojciechowski, 2002). Whereas, another study states that, for

a complex project, understanding comes more from a face-to-face interaction

than from documentation (Highsmith, 2002). These contradictions show that

communication approaches are contextual. Hummel et al. conducted structured

and systematic literature reviews to provide an integrated view of the role of

communication in agile software development (M. Hummel, C. Rosenkranz, & R.

Holten, 2013). It presented the impacts of communication mechanism on agile

teams, and identified research gaps based on 333 studies on communication

from agile methodology literature. Another study identified the challenges of

26

communications in agile projects in seven categories: people, distance, team,

technology, architectural, process, and customer communication (Alzoubi & Gill,

2014).

Regardless of the software development approach being used, communication is

an important factor for project success (Beck, 2000; Korkala & Abrahamsson,

2007). In agile software development projects, communication is a key factor (M.

Hummel et al., 2013; Karhatsu, Ikonen, Kettunen, Fagerholm, & Abrahamsson,

2010; Mishra et al., 2012). Agile development is people-centric and emphasizes

frequent communication among people (Nerur et al., 2005). It is characterized by

extensive communication and collaboration for collective action (Cockburn &

Highsmith, 2001; Nerur et al., 2005). Communication in agile projects can have

varying levels of information transfer between various parties involved in the

communication process. It ranges from simple information exchange, where one

party sends any information to another (i.e. email) to a dialogue, where there are

negotiations and clarifications among multiple parties. Communication means

that interactions between various IT and Business teams result in creating a

shared understanding of the project scope, project tasks and activities, project

milestones and future goals. It is important for better coordination, building

trusted relationships, and knowledge sharing. Agile principles and values

emphasize collaboration between IT and Business teams, for which,

communication between IT and Business teams is necessary. Communication

between IT and Business teams is important for clarification, feedback and for

having a common understanding of the project scope and goals. Existing studies

27

Reference Key points

Agile manifesto The most efficient and effective method of conveying information to,
and within, a development team is face-to-face conversation.

(Melnik & Maurer,
2004)

Verbal face-to-face interactions facilitate achieving higher productivity
by software development teams.

(Xiaohu et al., 2004) Extreme programming practices reduce the communication issues and
improve communication quality for global software development
efforts.

(Layman et al., 2006) The XP development methodology requires informal communication
between customer and developer. Even with barriers of time,
language, and distance, the use of informal communication-centric
practices can be used to produce successful projects.

(Korkala,
Abrahamsson, &
Kyllonen, 2006)

Face-to-face communication is the most efficient means of
communication between participants.

(Korkala &
Abrahamsson, 2007)

Recommendations for communication in distributed agile software
development are made.

(Sutherland, Viktorov,
Blount, & Puntikov,
2007)

In distributed agile projects, communication problems can be caused
due to differences in working styles.

(Pikkarainen,
Haikara, Salo,
Abrahamsson, & Still,
2008)

Agile practices had positive effects on the communication within the
development teams, external communication and facilitates
dependencies between the tasks – subtasks, feature – requirements
between software development teams and stakeholders.

(Summers, 2008) Cultural difference can lead to miscommunication in distributed agile
projects

(Mishra & Mishra,
2009)

Physical environment and the effective use of tools like whiteboards,
status-boards, and so forth, played an important role in communication

(Hossain et al., 2009) Communication related issues are the major challenges when using
Scrum in distributed software development projects.

(Mishra et al., 2012) Communication plays a major role in improving coordination and
collaboration and open physical environment helps in communication
among team members.

(Dorairaj, Noble, &
Malik, 2012)

To promote effective team interaction in distributed Agile teams use

these six strategies: ‘one team’ mindset, personal touch, open
communication, team collocation, team ambassadors, and coach
travels.

(Hummel, 2013) Highlights the role of communication within the project team as a
critical success factor and develop measurement instruments

(Markus Hummel,
Christoph
Rosenkranz, &
Roland Holten, 2013)

This study developed a research model to explain relationship the
impact of agile practices and communication in agile ISD teams. The
exact nature of the relationship between agile practices and
communication is less understood within the ISD domain.

(Ryan & O’Connor,
2013)

Face-to-face social interaction helps in acquiring and sharing team
tacit knowledge

28

(M. Hummel et al.,
2013)

The results on the precise role of communication in agile projects are
scattered, inconclusive as well as contradictory. No rigorous studies to
show relationships between agile practices, improved communication
and project success. Most studies are qualitative and exploratory in
nature, and there is lack of confirmatory and explanatory studies.

(Alzoubi & Gill, 2014) Challenges of communication in agile projects is categorized in seven
categories: people, distance, team, technology, architectural, process
and customer communication.

(Hummel, 2014) Defined the role of social agile practices for direct and indirect
communication in information systems development teams

Table 5: Communication-related studies from Agile Literature

have discussed the importance of communication between IT and Business

teams (Abbas et al., 2010; Fontana et al., 2014; Xiaohu et al., 2004). In

distributed agile projects, communication is more challenging because teams are

not co-located (Korkala & Abrahamsson, 2007; Layman, Williams, Damian, &

Bures, 2006). It is crucial in distributed agile software development, where team

members are scattered across different geographic locations and are often

across several time zones (Dorairaj, Noble, & Malik, 2011). Inefficient

communication combined with volatile requirements can lead to severe issues,

even in very small-scale agile projects (Korkala & Abrahamsson, 2007).

Iterative Development

The agile manifesto recommends to the customer continuous delivery of working

software in short iterations (i.e. 2-4 weeks in Scrum). For each iteration, the IT

team plans to work on a few requirements that are prioritized by the business

team in a time bound manner (Cockburn, 2006). A working version of the

software system is delivered to the customer at the end of every iteration. This

29

approach of developing a software system in short iterations of a few weeks is

termed as an iterative development approach. In traditional projects, the

customer has to wait for months to see working software and an IT team has to

wait for months to get feedback from the customer. The iterative development

approach of delivering the system in short iteration reduces the wait time for

customer feedback and helps in responding to requirement changes quickly

(Cockburn, 2006; Highsmith, 2004b). Chow et al. (2008) state that the delivery

strategy is a critical success factor for agile software development projects.

Continuous integration (CI) and testing are key processes in agile methods. For

example, one of the values mentioned in extreme programming is “testing.” At

the end of each iteration, the new code is merged with existing code and system

can be deployed. CI is the process of integrating the entire code base in an

automated fashion as often as possible (Tripp, 2012). Automated testing

and test-driven development are the core of agile development processes

(Cockburn, 2006). According to a study by Fontana et al. (2014), development

practices like continuous delivery of software and test driven development

defines agile software development maturity (Fontana et al., 2014). Continuous

integration and testing help in ensuring quality by early identification of quality

issues. An iterative approach is associated with higher project success rate

(Abbas et al., 2010).

30

Antecedent Variables

The antecedent variables refer to the factors that are responsible for creating a

conducive environment for agility and delivery capability. These variables are

helpful in creating a suitable environment for the IT and Business teams in agile

software development projects. Based on literature review and a qualitative study

on agility facilitators (Batra et al., 2016), a few key antecedent variables were

identified that are important in agile software development. A qualitative study

identified that team autonomy and team competence as key antecedent variables

that facilitate agility and delivery capability (Batra et al., 2016). A few other

factors such as organizational culture and facilitative management were not

found to be much important so they were not included in the research model.

Team Autonomy

The effectiveness of software development practices depends on the

environment in which they are used (Barki & Suzanne Rivard, 2001). The Agile

Manifesto and agile studies emphasize many environment factors that are

required for the success of agile methodology. One such factor is team

autonomy. In agile literature, self-organizing and autonomous attributes are used

interchangeably to characterize agile teams. Agile software development

emphasizes the importance of self-organizing and autonomous teams (Lee &

Xia, 2010). Self-organizing teams are essential for agile development (Sharp &

Robinson, 2004) and are considered the heart of agile software development

(Hoda et al., 2013). Agile teams are self-organizing (Cockburn & Highsmith,

2001) and are composed of members that plan their own work based on need

31

and best fit (Highsmith, 2009; Hoda et al., 2013). A self-organizing agile team is

capable of making collaborative decisions at the operational and tactical levels,

whereas strategic level decisions are made by senior management, for example,

product owner (Moe et al., 2012). In agile projects, IT team is empowered to

make decisions, whereas decision-making in traditional software development

projects lies with the project manager (McAvoy & Butler, 2009). Such teams

require autonomy to plan and manage their work.

Team autonomy refers to the degree of discretion and independence granted to

the team in scheduling the work, determining the procedures and methods to be

used, selecting and deploying resources, hiring and firing team members,

assigning tasks to team members, and carrying out assigned tasks (Breaugh,

1985; Lee & Xia, 2010). The autonomous teams collaborate, improvise according

to problem context and use their collective mindfulness to solve problems (Nerur

& Balijepally, 2007). In order to overcome the new challenges during software

development process, autonomous teams must have mutual trust, common

focus, collaboration and prompt decision-making (Cockburn & Highsmith, 2001).

Team autonomy is required to provide the team with authority and control over

what they want to do and how they want to do it because they are the best

decision makers to solve project problems, for example, managing changing

requirements. The members of autonomous teams collaborate to use their

collective knowledge and skills to find a solution to the given problems (Nerur &

Balijepally, 2007). It increases the speed and effectiveness of the problem-

32

solving by shifting decision-making control to the people who actually face the

problems (Larman, 2004). Team autonomy decentralizes the decision-making

process and provides control of the decision-making to project team members (IT

and Business teams) and positively affects team’s efficiency for responding to

changes in the project (Lee & Xia, 2010).

Team Competence

The software development process is inherently a complex process (Xia & Lee,

2003), so it requires specific skills. The skills of team members significantly affect

software product development and software project management (Vinod et al.,

2009). Individual competence of each team member is important for the success

of the project (Cockburn & Highsmith, 2001). A study found that both technical

and non-technical skills are important for IS professionals (Gallagher, Kaiser,

Simon, Beath, & Goles, 2010). Information system professionals should have

multi-dimensional skills (Lee, Trauth, & Farwell, 1995). Team competence refers

to the various types of skills possessed by project team members that are

required for a software development project. Software development and agile

methodology literature states that technical skills (Chow & Cao, 2008; Fontana et

al., 2014; McLeod & MacDonell, 2011; Senapathi & Srinivasan, 2012), business

skills (Chow & Cao, 2008; McLeod & MacDonell, 2011; Senapathi & Srinivasan,

2012), communication and inter-personal skills (Fontana et al., 2014; Siau, Tan,

& Sheng, 2010), and analytical and problem-solving skills (McLeod & MacDonell,

2011) are important for the success of software development projects. Business

33

skills are required for identifying the requirements that can create business value

for the customer. Technical skills (programming knowledge, applications and

hardware skills, etc.) and problem-solving skills are needed to develop solutions

for business requirements in an efficient and effective way. Interpersonal skills

are necessary for collaboration and coordination among project team members

to create a shared understanding of the project. These skills are fundamental in

any software development project.

Project Outcomes

Information system development (ISD) is a complex process, which involves

many interconnected resources, stakeholders, and outcomes (Siau, Long, &

Ling, 2010). The success of the project depends on the way the project

outcomes can satisfy the expectations of various stakeholders. An information

system is successful if the stakeholders perceive it to be successful (Myers,

1995). The success of IT projects is an elusive concept and depends on the

perspectives of the stakeholders (Thomas & Fernández, 2008). Project success

is a multi-dimensional concept that can be measured using many subjective and

objective output parameters. The Project Management Institute (PMI) has

defined project success in terms of three constraints: on Time, on Budget, and on

Target. These constraints are also called as Triple constraints. For agile projects,

Time, Cost, Quality, and Scope are the success attributes (Chow & Cao, 2008).

Lee and Xia (2010) presented the project success in an agile project in terms of

on-time completion, on-budget completion and software functionality.

34

Traditionally, project success is measured in terms of time, budget and scope. It

refers to achieving a fixed project scope within a fixed time and a fixed budget. It

is possible that a project meets these triple constraints, but does not satisfy the

customers or return any business benefits to them. A software development

project is of little value for the customer if it is within schedule and budget, but

lacks the features and functionalities the customer thought they were paying for

(Wallace, Keil, & Rai, 2004). A study defined the success of an IT project and

categorized it into three categories: project management (on-time, on budget,

customer satisfaction and team satisfaction), technical (system quality and

meeting requirements) and business (business value and benefits) (Thomas &

Fernández, 2008). Another study measured agile project success with three

parameters: project management success, project quality, and perceived project

impacts (Tripp, 2012). Senapathi and Srinivasan (2012) analyzed the

effectiveness of agile practices using three main factors: improved quality of the

development process, improved productivity during the development process,

and customer satisfaction.

In agile projects, scope is not clearly defined at the beginning of the project

because requirements keep evolving during the project. In such cases, where the

project scope is not clearly defined, traditional measures of project success may

not represent a holistic view of project success. Agile principles explicitly

emphasize business values (Abrahamsson, 2002; Racheva, Daneva, & Sikkel,

2009) and customer satisfaction making these parameters relevant for measuring

35

project success. According to a survey conducted by VersionOne, project quality,

customer satisfaction and business value are the top indicators mentioned by

respondents from agile projects for measuring project success in agile software

development projects (VersionOne, 2015).

In this study, project success parameters were presented from an effectiveness

perspective. The traditional project success indicators: time, budget and scope

are project efficiency parameters. Customer satisfaction is a parameter for

project effectiveness. Effectiveness refers to the extent to which the project

achieved its intended goals. It includes measuring the success of the new system

in terms of its benefits such as organizational benefits (Atkinson, 1999), business

value and customer satisfaction. Customer satisfaction is an important criterion to

measure the effectiveness of the project. It indicates the level of customer’s

expectations about system functionalities, system quality, business value from

the system and overall working conditions of the project. The agile software

development projects with greater customer satisfaction are more likely to

succeed (Misra et al., 2009). In this study, it is argued that antecedents, process,

delivery capability and agility contribute to the effectiveness of agile practices.

Table 6 summarizes all the variables used in this study.

Variables Definitions Key References

Team
Autonomy

It refers to the degree of discretion and
independence granted to the team in scheduling
the work, determining the procedures and methods
to be used, selecting and deploying resources,
hiring and firing team members, assigning tasks to
team members, and carrying out assigned tasks.

(Breaugh, 1985),
(Cockburn &
Highsmith, 2001),
(Lee & Xia, 2010),
(Batra et al., 2016)

36

Team
Competence

It refers to the various types of skills (technical,
business, interpersonal and problem-solving)
possessed by project team members that are
required for a software development project.

(Chow & Cao, 2008),
(McLeod & MacDonell,
2011),
(Fontana et al., 2014),
(Batra et al., 2016)

Collaborative
Decision
Making

It refers to the collaborative process in which
business and IT team members participate to make
decisions about project activities such as defining
projects goals, iteration planning, defining and
prioritizing requirements, the project schedule, and
budget.

(Chow & Cao, 2008),
(Hoda et al., 2011),
(Drury, Conboy, &
Power, 2012),
(Rathor, Batra, Xia, et
al., 2016)

Iterative
Development
Approach

It refers to the development software system in
short iterations of two to eight weeks with continual
testing and integration.

(Chow & Cao, 2008),
(Fontana et al., 2014),
(Batra et al., 2016),
(Rathor, Batra, Xia, et
al., 2016)

Communication It means that interaction among various IT and
Business teams resulting in creating a shared
understanding of project scope, project tasks and
activities, project milestones, and future goals.

(Dorairaj et al., 2011),
(M. Hummel et al.,
2013),
(Batra et al., 2016)

Agility It is the ability of the software development process
to sense changes, respond to changes and learn
from changes during the project to improve
customer satisfaction due to effective
communication, collaborative decision-making and
iterative development process.

(Highsmith, 2004a;
Lyytinen & Rose,
2006),
(Conboy, 2009),
(Sarker & Sarker,
2009), (Sheffield &
Lemetayer, 2013),
(Batra et al., 2016)

Delivery
Capability

It refers to the ability of the project team to apply
their skills effectively and efficiently (technical,
business, interpersonal, problem-solving, and
management skills) for successfully implementing
the given requirements in software development
projects.

(Chow & Cao, 2008),
(Chan et al., 2008),
(Rathor, Batra, Xia, et
al., 2016)

Customer
Satisfaction

It is an indicator of meeting customer expectations
about the time and budget of the project, system
functionalities, system quality, business value from
the system, and change management during the
project.

(Sheffield &
Lemetayer, 2013),
(Serrador & Pinto,
2015),
(Rathor, Batra, Xia, et
al., 2016)

Change
Satisfaction

It indicates how satisfied the customer feels with
the way various types of changes (business,
technical, human resources, etc.) were handled by
IT and Business teams during the project.

(Sheffield &
Lemetayer, 2013),
(Serrador & Pinto,
2015),
(Rathor, Batra, Xia, et
al., 2016)

Table 6: Variables, their definitions and key references

37

CHAPTER III

RESEARCH MODEL AND HYPOTHESIS DEVELOPMENT

Research Model

The research model for this study consists of different types of variables such as

antecedent variables (team autonomy, team competence), process variables

(collaborative decision-making, communication, iterative development), agility

(sense, respond, learn), delivery capability and outcome variables (customer

satisfaction, change satisfaction). Agility is conceptualized as a second-order

variable with sensing, responding and learning as three first-order factors. Figure

1 shows the research model for this study. Each arrow represents a hypothesis.

Figure 1: Research Model

38

Hypothesis Development

Team Autonomy and Process variables

 Team autonomy is an important aspect of agile methodology (Larman, 2004;

Lee & Xia, 2010). Team autonomy helps in moving the decision-making control

to team members who face the business problems, which increases the speed

and effectiveness of decision-making (Larman, 2004; Lee & Xia, 2010). Such

teams have the authority to estimate, plan and coordinate their work (Batra et al.,

2016), which helps to achieve successful delivery of work in small iterations. In

agile projects, team members need to communicate frequently and decide

collectively on the best solution for the business problems. If someone from

outside the team decides to solve the problems, then team members may not be

able to find the best solution for the unpredictable business problems they

encounter during the software development project. Teams with high autonomy

levels can make decisions on the spot without going through formal procedures

for approvals from higher management. This enables the teams to complete

given tasks in small iterations. Teams then have a locus of decision-making at

the team level, which would enable them to be more proactive and engaging.

The peer-driven coordination and control helps in planning and managing work

because team members can optimize the resources to deliver given work in each

iteration. Team autonomy positively affects the shared decision-making in the

team (Hoegl & Parboteeah, 2006) because ownership of the decision is shared

by all members instead of by any external member (i.e. higher management). In

autonomous teams, team members freely express their opinions about problem-

39

solving and required implementation because all the team members collectively

own the responsibility of work. They have more freedom to voice their opinions in

planning and executing various project activities, which facilitates

communication. Free and open exchange of opinions enables effective

communications among project team members. In the absence of autonomy,

when some external members (i.e. higher management) influence the team

members then the collaborative process within the team decreases because it

leads to more focus on communication vertically (with external member) rather

than horizontally (within the team) (Hoegl & Parboteeah, 2006). Therefore, it is

hypothesized that autonomy effects iterative development, communication and

collaborative decision-making.

H1: Team autonomy positively correlates with communication

H2: Team autonomy positively correlates with collaborative decision-making

H3: Team autonomy positively correlates with iterative development

Team Competence and Process Variables

A software development project requires professionals with multiple skills

because of the complexities involved (Lee et al., 1995). A highly competent team

is an important success factor for agile software development projects (Chow &

Cao, 2008). A team with the right skills is more likely to be effective and efficient

in information system development (Siau, et al., 2010). Good technical expertise

of the team members is required to find the best technical solutions to the given

40

business problems. Good business expertise is necessary to identify the

requirements, which can add value to the customer’s business. In addition to

good technical and business skills, the members with higher analytical and

problem-solving skills are more likely to make better decisions to implement the

requirements. Better decision-making has a positive effect on the project

success. Team members’ communication and interpersonal skills are helpful for

better coordination and collaboration in the project. Team members working

together with good communication skills can work at noticeably higher levels than

when they work independently (Cockburn & Highsmith, 2001). Good

communication skills facilitate effective communication to create shared

understanding of project activities and help in collaboration between IT and

Business team members. The competencies of team members help a team to

successfully plan and execute tasks for each iteration. A competent team can

develop solutions to given business problems successfully in shorter iterations

more easily as compared to a less competent team. In other words, good skills of

the team members make various development processes (i.e. communication,

collaborative decision- making and iterative development) more effective and

efficient. Therefore, it is hypothesized that:

H4: Team competence positively correlates with communication.

H5: Team competence positively correlates with collaborative decision-making.

H6: Team competence positively correlates with iterative development.

41

Collaborative Decision Making, Delivery Capability and Agility

Communication and collaboration are at the core of agile software development

(M. Hummel et al., 2013; Karhatsu et al., 2010). In agile projects, customer or

customer representatives (e.g. business teams) are not only available for just

clarifications, but actively engaged in various other activities (Hoda et al., 2011;

Nerur et al., 2005). The decisions are made after an exchange of ideas among IT

team, project managers, and customer or business team (Highsmith, 2009).

During the agile software development process, the IT and the Business teams

collaborate to achieve common defined goals. Collaborative decision-making

between the business and the IT teams refers to the collaborative process in

which the business and IT team members participate to make decisions about

project activities, such as defining project goals and risks, defining and prioritizing

requirements, defining project schedule and budget. Such approaches help in

collectively using competencies for finding solutions to the given requirements

and to accomplish various project tasks successfully. A team’s collaborative

approach to implementing the given requirements increases their productivity,

which enhances delivery capability. Therefore, it is hypothesized that:

H7: Collaborative decision making positively correlates with delivery capability.

In agile projects, various stakeholders (IT and Business teams) need to

collaborate to share information and clarifications to develop a common

understanding of the various types of changes in various stages of the project. If

IT and Business teams don’t collaborate regularly during the project, then it is

difficult to identify and manage the various types of changes (i.e. requirement

42

changes) that can occur during the project. Effective collaboration is important

when there are changes in the project (Maruping et al., 2009). A weak IT-

Business collaboration is an agility inhibitor in software development (Vidgen &

Wang, 2009). This collaborative decision making approach among various

stakeholders is necessary for anticipating and responding to frequent

requirement changes, which is important for having agility in the project. A

collaborative environment helps IT teams learn about business changes and

helps the customer (e.g., business teams) learn about technology (Vidgen &

Wang, 2009). Therefore, it is hypothesized that:

H8: Collaborative decision making positively correlates with agility.

Communication, Delivery Capability and Agility

Effective communication between development team members is important to

improve the software development processes (Korkala & Maurer, 2014).

Communication means that interactions between various IT and Business teams

result in creating a shared understanding about project scope, project tasks and

activities, project milestones and future goals. Communication helps in

managing, planning and executing team tasks in the project, which is necessary

for delivery capability. Due to communication in the team, team members have

knowledge about other team members’ work and shared understanding of team

goals. This leads to better team productivity, coordination and contributes to the

higher delivery capability. Therefore, it is hypothesized that:

H9: Communication positively correlates with delivery capability.

43

Communication between IT and Business teams is important for clarification,

feedback and having a common understanding of the project scope and goals. In

distributed agile software development, it becomes more crucial because IT and

Business team members are scattered across different geographic locations and

are often across several time zones (Dorairaj et al., 2011). Unlike in traditional

development projects, communication is very important in agile projects. This is

because in agile projects requirements keep changing so stakeholders (e.g. IT

and business teams) need to communicate frequently for clarifications and

discussing future ideas and requirements. Even in small projects, communication

issues combined with frequent requirement changes can lead to severe problems

for the success of the project (Korkala & Abrahamsson, 2007). Communication

between IT and Business teams helps anticipate various types of changes,

mainly requirement changes, which contribute to agility. IT and Business teams

communicate continuously to respond to various changes whenever there are

new changes in the software development project. By responding to changes,

communication helps in facilitating agility. Also, communication is important for

learning in the agile projects. The Agile Manifesto emphasizes regular learning

from experience in order to become more effective and efficient. In agile projects,

there is just enough documentation (Ramesh, Cao, Mohan, & Xu, 2006) so there

is less explicit knowledge transfer as compared to tacit knowledge transfer

(Chau, Maurer, & Melnik, 2003). Tacit knowledge transfer mainly happens

through verbal communication. Therefore, it is hypothesized that:

H10: Communication positively correlates with agility.

44

Iterative Development, Delivery Capability and Agility

The Agile Manifesto recommends delivering working software in short iterations

(two to eight weeks) to the customer. Iterative development with continuous

integration and testing are key features of agile development process. The

approach of developing software systems in short iterations of a few weeks is

termed as an iterative development approach. In an iteration, IT teams

implement a small part of the requirements that are prioritized by the customer.

Then a working version of the software system is delivered to the customer for

their feedback. For IT team members, it is easy to estimate and reconfigure

resources, plan executions and identify issues when they are working on

delivering a small portion of the work. The team members can use their

resources effectively and efficiently when the amount of deliverable work is small.

This enhances the delivery capability of the team members. Therefore, it is

hypothesized that:

H11: Iterative development process positively correlates with delivery capability.

In agile projects, user requirement changes are often expected. These changes

are prioritized by the customers or customer representatives (e.g. Business

teams) based on their business value. IT team members implement a few high-

priority requirement changes and deliver them to the customers for their

feedback. Due to small iteration time, IT team members are able to respond to

high-priority changes quickly. The iterative approach with short cycles enables

quick customer feedback and helps the IT team to quickly identify requirement

changes (Cockburn, 2006; Highsmith, 2004b). Due to a small delivery time,

45

customers can have a look at the implemented changes and in turn are able

identify further changes that can bring them more business value. Because of the

iterative approach, new requirement changes are anticipated and implemented

early in the project, which contributes to agility.

At the end of each iteration, team members meet to review and reflect on their

work. For example, in Scrum, each iteration ends with a review and retrospective

meeting (Schwaber, 2004; Schwaber & Sutherland, 2014). In these meetings,

team members discuss if they have achieved their goal for the current iteration

and how they can improve in the future (Cockburn, 2006; Schwaber, 2004). Such

activities help in learning from experiences so that teams can be more efficient

and effective in the future. Learning from previous iterations increases team

productivity and contributes to agility. The iterative development approach also

helps team members become more effective and efficient because it provides

early feedback for their work. If the iteration is long (e.g. a few months), then the

implementation of the requirement changes will be slow and late. The delayed

implementation of requirement changes can have a negative effect on the

customer’s business. An iterative approach contributes to agility because it helps

to anticipate and implement changes early and to get customer feedback quickly

for learning purposes. Therefore, it is hypothesized that:

H12: Iterative development process positively correlates with agility.

46

Delivery Capability, Agility and Project Outcomes

Delivery capability as defined above refers to the routine or essential software

development ability of the team to deliver results as per the given requirements.

It is a fundamental necessity for any software development project. This means

that team members can effectively use all the required skills to accomplish given

tasks. Agility, as defined above, refers to the team’s ability to sense, respond

and learn from changes that were not in the given set of requirements. In an agile

project, there are many changes that come up during the project, especially user

requirement changes. In this study, it is argued that agile processes facilitate

both delivery capability and agility in the software development process. If team

members do not have the delivery capability, they can’t deal with the changes

that come up during the software development project (Rathor, Batra, & Xia,

2016). When team members have a higher delivery capability, they are more

likely to have the agility that is needed to deal with the changes they face during

the project. Therefore:

H13: Delivery capability positively correlates with agility.

Customer satisfaction is the main focus of agile values and principles (Serrador &

Pinto, 2015). One of the agile principles states that “our highest priority is to

satisfy the customer through early and continuous delivery of valuable software”.

Early delivery of working software to customers help improve the systems so

customers feel satisfied because they can actually see the system and provide

feedback. Agile methods increase customer satisfaction by frequently delivering

value (Fontana et al., 2014; Melo et al., 2013). Agile software development

47

emphasizes creating business value so the requirements are prioritized based on

their business value to the customer. IT teams implement a prioritized set of

requirements and deliver working software to the customer in a few weeks.

Before the end of each iteration, new code is integrated into existing code and

then testing is done. The continuous integration and testing help early detection

of defects and improves quality. Agile methods have quality practices integrated

into their development processes which ensure software quality (Huo, Verner,

Zhu, & Babar, 2004). System quality is one of the important perceived outcomes

from agile practices (Melo et al., 2013). The team with a higher delivery capability

is more likely to develop, test and integrate the given requirements efficiently and

effectively to deliver better quality and functionalities. At the end of each

iteration, the customer gets to see the working software and can provide quick

feedback to the IT team. The continuous collaboration between IT and Business

teams during the project help in learning about the customer’s needs. Such

agility practices lead to shared understanding and transparency in the project

activities, which contribute to customer satisfaction. A team may be very good at

doing known or planned tasks, but they may not be able to perform equally well

where there are unexpected changes during the project. Agility helps in

anticipating and managing changes in the project in an efficient and effective

manner. Customer change satisfaction refers to the perceptions and evaluations

of the project team’s handling of changes during the project (Rathor, Batra, Xia,

et al., 2016). How IT and Business team members deal with various types of

changes contributes to customer change satisfaction. If team members have

48

higher levels of delivery capability and agility, the project team can anticipate and

implement changes in a more effective and efficient manner. This results in

better quality, functionalities and business value and hence, enhanced customer

satisfaction from changes. If the change satisfaction is high, it will also enhance

overall customer satisfaction. Therefore, it is hypothesized that:

H14: Delivery capability positively correlates with customer satisfaction.

H15: Delivery capability positively correlates with change satisfaction.

H16: Agility positively influences correlates with satisfaction.

H17: Agility positively correlates with change satisfaction.

H18: Change satisfaction positively correlates with customer satisfaction.

49

CHAPTER IV

RESEARCH METHODOLOGY

A quantitative methodology was used to study relationships among the various

variables of interest. The methodology for this study includes four key phases.

These steps are explained below in detail. Table 8 contains the different phases

of research methodology used in this study.

Conceptual Development and Measures Identification

For this study, a comprehensive literature review was conducted to understand

key aspects of agile software development. It helped to identify research gaps

and hypothesize relationships between the various constructs. The literature

review is important to understand the dimensions of the constructs and helps in

the operationalization of the constructs of interest (Bhattacherjee, 2012). In

addition to the literature review, interviews with thirteen agile project

professionals were conducted to understand the key constructs, their dimensions

and relationship between constructs. These interviews were conducted with agile

professionals working in software companies located in the northern part of India.

All the interviews were done in the English. These interviews were audio

recorded and transcribed for qualitative analysis. A coding technique was used to

analyze interview transcripts (Charmaz, 2006; Corbin & Strauss, 1990; Locke,

1996; Urquhart, 2007). The qualitative analysis of the interviews helped to

identify key facilitators of agility and delivery capability.

50

Conceptual Refinement and Measure Modification

In this study, whenever appropriate, existing measures were used or adapted

from the agile and software development literature. For example, measures for

team autonomy were adapted from Lee and Xia (2010). New measures were

created for a few variables (e.g., agility, delivery capability) based on the

literature and a qualitative analysis of interviews with thirteen agile project

professionals. A list of measures for each construct was created after literature

and qualitative analysis of the interviews were done with agile project

professionals. Q-Sorting procedures were conducted with five experts for face

and construct validity of the measures (Straub, Boudreau, & Gefen, 2004).

Construct validity is important to find the extent to which a measure adequately

represents the underlying construct that it is supposed to measure

(Bhattacherjee, 2012). Q-Sorting helped to identify issues that could hinder a

survey respondent’s ability to relate items to the corresponding construct. After a

sorting process, a few survey items were changed or rephrased. After Q-Sorting,

a pilot test was done with eighteen agile software professionals for content

validation of the survey. The pre-testing of the survey instrument was important

to make sure that the survey was effective in getting the required information

(Converse & Presser, 1986). It helped in early detection of potential problems in

the research design and survey instruments (Bhattacherjee, 2012). A few items

were dropped or merged with other items after the pilot test was completed. In

this study, both reflective and formative constructs were used. Agility is

conceptualized as a second-order formative construct with three first-order

51

factors or dimensions. Sense changes, respond to changes, and learn from

changes are three key dimensions of agility. These three dimensions are

conceptualized as first-order formative constructs for agility. Table 7 shows

measures, their types, items and key references. The final items of all the

measures are given in the Appendix (Table A3.1, A3.2, A3.3, A3.4).

Variables Items Key References

Team
autonomy
(Reflective)

Project team members were allowed to choose tools
and technologies. (1)

(Lee & Xia, 2010),
(Batra et al., 2016)

Project team members had control over their tasks.
(2)

Project team members had the discretion on how to
handle user requirement changes. (3)

Project team members were free to self-organize as
needed (4)

Team
Competence
(Formative)

Project team members possess required technical
skills. (1)

(Batra et al., 2016)

Project team members possess required business
skills. (2)

Project team members possess required
interpersonal skills. (3)

Project team members possess required problem-
solving skills. (4)

Iterative
development
process
(Formative)

The software system was developed in smaller
iterations of few weeks (two-eight weeks). (1)

(Hummel,
Rosenkranz, &
Holten, 2015),
(Batra et al., 2016)

The software system was tested as it was being
developed. (2)

Each iteration provided working software that could
be demonstrated. (3)

The software system was continually integrated as it
was being developed. (4)

52

Communication
(Reflective)

IT and Business team members had sufficient
interactions during the project. (1)

(Markus Hummel et
al., 2013), (Batra et
al., 2016)

IT and Business team members developed a shared
understanding about the project. (2)

IT and Business team members did not have
communication problems during the project. (3)

IT and Business team members effectively
communicated their thoughts and opinions to others.
(4)

Collaborative
Decision
Making
(Reflective)

IT and Business teams worked jointly for deciding
features for each iteration. (1)

(Hoegl & Wagner,
2005), (Batra et al.,
2016)

IT and Business teams worked jointly for deciding the
scope of the requirements for each iteration. (2)

IT and Business teams worked jointly for prioritizing
the requirements for each iteration. (3)

IT and Business teams worked jointly for deciding
changes in the requirements. (4)

Agility-Sense
(Formative)

During the project, project team(s) were able to
sense changes in business requirements. (1)

(Conboy, 2009),
(Batra et al., 2016)

During the project, project team(s) were able to
sense changes in technical requirements. (2)

During the project, project team(s) were able to
sense changes in human resource requirements. (3)

During the project, project team(s) were able to
sense changes in schedule. (4)

Agility-
Respond
(Formative)

During the project, project team(s) were able to
respond to changes in business requirements. (1)

(Conboy, 2009),
(Batra et al., 2016)

During the project, project team(s) were able to
respond to changes in technical requirements. (2)

During the project, project team(s) were able to
respond to changes in human resource requirements.
(3)

During the project, project team(s) were able to
respond to changes in schedule. (4)

Agility-Learn
(Formative)

As the project progressed, project team member(s)
were able to learn and enhance their ability to sense
and respond to changes in business requirements.
(1)

(Conboy, 2009),
(Batra et al., 2016)

53

As the project progressed, project team member(s)
were able to learn and enhance their ability to sense
and respond to changes in technical requirements.
(2)

As the project progressed, project team member(s)
were able to learn and enhance their ability to sense
and respond to changes in human resource
requirements. (3)

As the project progressed, project team member(s)
were able to learn and enhance their ability to sense
and respond to changes in schedule (4)

Delivery
Capability
(Formative)

Project team(s) were able to deliver solutions that
met business requirements. (1)

(Chow & Cao,
2008), (Chan &
Thong, 2009)

Project team(s) were able to deliver solutions that
met technical requirements. (2)

Project team(s) were able to deliver solutions that
met functional requirements. (3)

Project team(s) were able to deliver solutions that
met non-functional requirements. (4)

Customer
Satisfaction
(Formative)

The customer is satisfied with the functionalities of
the new system. (1)

(Wallace et al.,
2004), (Palvia, King,
Xia, & Palvia, 2010)

The customer is satisfied with the quality of the new
system. (2)

The customer is satisfied with the delivery time of the
system. (3)

The customer is satisfied with the cost of the new
system. (4)

The customer is satisfied with the benefits/value from
the new system. (5)

Change
Satisfaction
(Formative)

The customer is satisfied with the way changes in
business requirements were managed in the project.
(1)

(Rathor, Batra, Xia,
et al., 2016)

The customer is satisfied with the way changes in
technical requirements were managed in the project.
(2)

The customer is satisfied with the way changes in
human resource requirements were managed in the
project. (3)

The customer is satisfied with the way changes in
schedule was managed in the project. (4)

Table 7: Construct types and their measurement items

54

Data Collection

An online survey was used to collect the data for this research. Quantitative

surveys are suitable for test relationships among various constructs of interest

(Creswell, 2013). Quantitative surveys help to quantify information about the

constructs, which can be later used for statistical analysis. The online survey was

developed using Qualtrics. Online surveys are easy to distribute across different

locations and help collect data faster (Cooper & Schindler, 2011). Data collection

was done from multiple sources to get responses from diverse projects. The

online survey was sent to respondents (developers, business analysts,

managers) working on agile software development projects by contacting IT

companies located mainly in India and US. Also, respondents were randomly

approached through online professional communities on social networking sites

(LinkedIn, Facebook) and using snowball sampling.

Data Analysis and Measurement Validation

The final phase of methodology includes analyzing the survey data. In this

phase, data screening, descriptive data analysis, measurement and structural

validation with result reporting was provided. The next chapter provides a

complete description of data analysis steps.

55

Phase 1-Conceptual Development and Measure Identification

Literature Review To understand existing relevant research
models, key factors and existing measures of the
factors

Field Interviews For new measures and insights about the factors

Qualitative Data Analysis To generate new factors, their dimensions and
sub-dimensions

Phase 2-Conceptual Refinement and Measure Modification

Item Selection/Creation

Creating new items or adapting existing items

Q-Sorting Procedure For qualitative assessment of face and construct
validity

Pilot test For assessment of content validity

Finalizing items Final items for the measures

Phase 3-Data Collection

Online survey Data collection using online survey

Phase 4-Data Analysis and Measurement Validation

Data Screening and Descriptive
Analysis

Removing incomplete survey responses

Validation Reliability, Discriminant and Convergent Validity

Result Reporting Path coefficients, R2, F2, Indirect Effects

Table 8: Research Methodology Phases (adapted from (Xia & Lee, 2003))

56

CHAPTER V

DATA ANALYSIS AND REPORTING

Data Analysis

Structural equation modeling (SEM) techniques help to understand the complex

relationship between latent variables (Kline, 2015). It is used to evaluate how well

the sample data supports the theoretical research model hypothesized by the

researcher (Lomax & Schumacker, 2012). It not only assesses the structural

model (causation between independent and dependent variables) but also

evaluates measurement model (loadings of the measurement items) in the same

analysis (Gefen, Straub, & Boudreau, 2000). For this research, the partial least

square-structure equation modeling (PLS-SEM) was used for data analysis using

SmartPLS3 software. The use of PLS-SEM is appropriate when there are

formative variables (i.e. agility, delivery capability) in the model (F. Hair Jr,

Sarstedt, Hopkins, & G. Kuppelwieser, 2014; Lowry & Gaskin, 2014; Straub et

al., 2004). PLS-SEM is a non-parametric method that estimates coefficients to

maximize the explained variance (R2 value) of endogenous variables (Hair Jr,

Hult, Ringle, & Sarstedt, 2016).

Descriptive Statistics

The data analysis were conducted using 160 complete survey responses after

thirty-four responses that had more than 15% of missing values were removed

from the initial sample (Hair Jr et al., 2016). The tables given in the appendix

show the descriptive statistics of the survey items (See table A1.1, A1.2, A1.3,

57

A1.4). The respondents included different stakeholders from agile software

development projects such as software developers, business analysts, project

managers. The majority of the respondents were from IT teams (i.e. developers,

scrum masters). Tables 9 and 10 show the countries and roles of the survey

respondents respectively.

 Country/Region Frequency Percent

India 73 45.6

US/Canada 55 34.4

Europe 24 15.0

Others (China, Latin
America)

8 5.0

Total 160 100.0

Table 9: Country/Region of the respondents

Respondent Role Frequency Percent

Software Developer 51 31.9

Project Manager 17 10.6

Senior Management (Technical) 10 6.3

Business Analyst 5 3.1

Senior Management (Business) 5 3.1

Scrum Master 26 16.3

Product Owner 9 5.6

Tester 30 18.8

Others 7 4.4

Total 160 100.0

Table 10: Respondent Role

These survey respondents used different agile methods in their projects. Table

13 shows the agile methods used by respondents. Most of the respondents used

58

the Scrum method. Some software teams or companies modified practices

recommended by an agile method or combined practices suggested by more

than one method (i.e. Scrum +Kanban) to fit their project and team needs. Such

methods are termed as modified agile methods and hybrid agile method,

respectively. The survey respondents were working on software projects for a

variety of industries. Tables 11 and 12 show agile methods used by respondents

and industry type, respectively.

Agile Method Frequency Percent

Scrum 84 52.5

Extreme Programming 3 1.9

Lean 1 .6

Modified Agile Method 32 20.0

Hybrid (Multiple Agile Methods) 24 15.0

Others 16 10.0

Total 160 100.0

Table 11: Agile Methods used by Respondents

Industry Type Frequency Percent

Banking, Insurance, or Financial Services 51 31.9

Telecom 13 8.1

Education, Research 4 2.5

Healthcare, Medical 15 9.4

Aviation, Transportation, or Travel Industry 14 8.8

Manufacturing 11 6.9

Media and Entertainment 8 5.0

Other 44 27.5

Total 160 100.0

Table 12: Industry Type

59

Reliability and Validity

Adequate construct validity is important to know whether the measures behave

as expected and to check if the measure of same constructs correlate (Churchill

Jr, 1979). In PLS, it is important to know the strength of relationships between

latent constructs with their indicators (measurement model) and the relationship

between various constructs (structural model) (Hair Jr et al., 2016). It is important

to check the reliability and validity of constructs for model estimation. In PLS-

SEM, measurement model assessment is done before the structural model

estimation. The structural model assessment is not done until the reliability and

validity of measurement model are established.

The research model for this study included both reflective and formative

constructs. For the measurement model estimation of reflective constructs,

internal consistency reliability (Cronbach’s alpha, composite reliability),

convergent validity (average variance extracted) and discriminant validity are

checked (Hair Jr et al., 2016). Internal consistency reliability (ICR) indicates how

well the indicators of a reflective construct measure that construct. It is measured

by the correlation between the indicators of the reflective measures. The

Cronbach’s alpha has traditionally been used as the criterion to estimate the

internal consistency reliability (MacKenzie, Podsakoff, & Podsakoff, 2011). It is

sensitive to the number of indicators and shows a conservative value for

measuring reliability, as compared to composite reliability (Hair Jr et al., 2016).

Composite reliability shows a little higher value for reliability as compared to

Cronbach’s alpha.

60

Convergent validity refers to the extent to which an indicator correlates with the

other indicators of the same construct (Hair Jr et al., 2016). It represents how

well the indicators of a construct are actually measuring that construct (Teo,

Srivastava, & Jiang, 2008). In SmartPLS, outer loading value indicates how

much common an indicator has with its construct (Hair Jr et al., 2016). It shows

how well an indicator converges to its construct. The average variance extracted

(AVE) is the average amount of variance in indicators that is explained by the

focal construct. It is used as a measure to establish convergent validity (Hair Jr et

al., 2016).

 Constructs

 Convergent Validity Internal Consistency

Reflective
Indicators

Outer
Loadings

Average
Variance
Extracted
(AVE)

Cronbach's
Alpha

Composite
Reliability

Collaborative
Decision
Making

Q14_CDM1 0.763
0.680

0.841

0.894

Q14_CDM2 0.899

Q14_CDM3 0.769

Q14_CDM4 0.859

Communication

Q13_Comm1 0.772
0.654

0.818

0.882

Q13_Comm2 0.886

Q13_Comm3 0.659

Q13_Comm4 0.895

Team
Autonomy

Q18_Atny1 0.687

0.650 0.819 0.881
Q18_Atny2 0.863

Q18_Atny3 0.805

Q18_Atny4 0.858

Table 13: Internal Consistency and Convergent Validity

61

The AVE value for each construct can be obtained by averaging the squared

completely standardized factor loadings of the indicators, or by averaging the

squared multiple correlations for the indicators (Fornell & Larcker, 1981;

MacKenzie et al., 2011).

The Cronbach’s alpha and composite reliability values should be more than 0.7

to have good internal consistency for reflective indicators (MacKenzie et al.,

2011). All the reflective constructs of this research had Cronbach’s alphas and

composite reliability values more than the recommended value (0.7) (See Table

13). The average variance extracted (AVE) should be more than 0.5 (Fornell &

Larcker, 1981; MacKenzie et al., 2011) and outer loadings value of indicators

should be more than 0.7 for achieving convergent validity of reflective indicators

(Hair Jr et al., 2016). In this study, the AVE values of all the reflective constructs

were more than 0.5. Two reflective indicators (i.e. Comm3, Atny1) had outer

loadings just below 0.7 and they were kept in the analysis. Table 13 shows the

internal consistency and convergent validity values of the reflective constructs

used in this study.

Formative Indicators

For the assessment of the formative constructs, it is important to check

collinearity between indicators (variance inflation factor) and significance of the

indicator weights (Cenfetelli & Bassellier, 2009). The indicators of a formative

construct represent different dimensions of that construct (Petter, Straub, & Rai,

2007). Unlike reflective indicators, a high correlation between indicators is

62

undesirable for formative constructs because indicators with high correlation

imply that they represent the same dimension of the construct. A high correlation

between formative indicators leads to the problem of multi-collinearity

(MacKenzie et al., 2011). It can be problematic because it is difficult to determine

how each indicator influences the latent construct when multi-collinearity is high

(Bollen, 1989). It impacts the estimation of weights and their significance (Hair Jr

et al., 2016). The level of collinearity can be assessed by estimating tolerance,

which represents the amount of variance of one formative indicator not explained

by other indicators (Hair Jr et al., 2016). In IS research, variance inflation factor

(VIF) statistics is used to check multi-collinearity problems in constructs with

formative indicators (Gefen et al., 2000; Petter et al., 2007).

VIF is used as an indicator of multicollinearity in multiple regression analysis. It

measures the comparative increase in the variances of the estimated regression

coefficients as compared to when the predictor variables that are not linearly

related (Kutner, Nachtsheim, Neter, & Li, 2005). It is always greater than or equal

to 1. Statistically, it is calculated as the reciprocal of tolerance: 1 / (1 - R2)

(O’brien, 2007). Here, R2 represents the multiple correlation coefficient and

indicates how well the data fits a statistical model. A value of VIF greater than 10

indicates there is problem of multicollinearity (MacKenzie et al., 2011; Petter et

al., 2007). Some authors suggest a more conservative value of VIF greater than

3.3 to conclude that multi collinearity is present or not (Diamantopoulos &

Siguaw, 2006; Petter et al., 2007). In PLS, a VIF value of 5 or higher indicates

63

that there is problem of multi-collinearity (Hair Jr et al., 2016). Multi-collinearity is

not an issue for the indicators of this study. A formative construct is formed by

the linear combination of its formative indicators. The presence of insignificant

weights doesn’t mean that model had poor measurement quality (Hair Jr et al.,

2016).

 Formative
Indicators

VIF
Outer
Loadings

Outer
Weights

T-Statistics P-Values

Q10_Sense1 1.470 0.862 0.660 3.469 0.001

Q10_Sense2 1.726 0.610 -0.042 0.249 0.804

Q10_Sense3 1.499 0.640 0.182 0.819 0.413

Q10_Sense4 1.346 0.734 0.464 2.445 0.015

Q11_Respond1 2.113 0.776 0.278 1.607 0.109

Q11_Respond2 2.141 0.731 0.111 0.561 0.575

Q11_Respond3 1.810 0.824 0.316 2.661 0.008

Q11_Respond4 1.924 0.899 0.492 3.312 0.001

Q12_Learn1 1.368 0.641 0.330 1.486 0.138

Q12_Learn2 1.607 0.577 -0.026 0.114 0.909

Q12_Learn3 1.532 0.675 0.165 0.906 0.365

Q12_Learn4 1.694 0.939 0.738 4.892 0.000

Q15_ItrDev1 1.377 0.613 0.143 0.812 0.417

Q15_ItrDev2 1.440 0.631 0.127 0.760 0.448

Q15_ItrDev3 2.006 0.963 0.693 3.771 0.000

Q15_ItrDev4 1.646 0.750 0.220 1.176 0.240

Q16_Cmpt1 1.648 0.745 0.422 2.665 0.008

Q16_Cmpt2 1.802 0.852 0.442 2.626 0.009

Q16_Cmpt3 2.210 0.856 0.522 2.988 0.003

Q16_Cmpt4 2.071 0.569 -0.242 1.312 0.190

Q7_CustSatf1 1.850 0.468 -0.051 0.181 0.856

Q7_CustSatf2 1.708 0.297 -0.351 1.469 0.143

Q7_CustSatf3 1.652 0.816 0.629 2.054 0.041

Q7_CustSatf4 1.666 0.767 0.493 2.232 0.026

Q7_CustSatf5 1.352 0.678 0.349 1.153 0.249

64

Q8_CngSatf1 1.749 0.727 0.157 0.947 0.344

Q8_CngSatf2 1.586 0.672 0.149 0.822 0.412

Q8_CngSatf3 1.558 0.765 0.340 2.284 0.023

Q8_CngSatf4 1.567 0.897 0.586 3.774 0.000

Q9_DvlCap1 1.961 0.826 0.442 2.772 0.006

Q9_DvlCap2 1.596 0.759 0.277 1.681 0.093

Q9_DvlCap3 2.184 0.761 0.079 0.510 0.610

Q9_DvlCap4 1.458 0.801 0.455 2.934 0.004

 Table 14: Weights, Loadings and VIF of formative indicators (First Order)

 Formative
Indicators

VIF
Outer
Loadings

Outer
Weights

T-
Statistics

P-Values

Q7_CustSatf1 1.850 0.486 -0.046 0.181 0.857

Q7_CustSatf2 1.708 0.331 -0.313 1.358 0.175

Q7_CustSatf3 1.652 0.856 0.687 3.163 0.002

Q7_CustSatf4 1.666 0.756 0.455 2.870 0.004

Q7_CustSatf5 1.352 0.650 0.298 1.245 0.214

Q8_CngSatf1 1.749 0.728 0.156 1.033 0.302

Q8_CngSatf2 1.586 0.681 0.164 0.974 0.331

Q8_CngSatf3 1.558 0.767 0.341 3.046 0.002

Q8_CngSatf4 1.567 0.893 0.575 4.339 0.000

Q9_DvlCap1 1.961 0.820 0.377 2.649 0.008

Q9_DvlCap2 1.596 0.734 0.218 1.641 0.101

Q9_DvlCap3 2.184 0.822 0.230 1.604 0.109

Q9_DvlCap4 1.458 0.799 0.428 3.183 0.002

Q15_ItrDev1 1.377 0.646 0.181 1.024 0.306

Q15_ItrDev2 1.440 0.690 0.216 1.317 0.189

Q15_ItrDev3 2.006 0.950 0.651 3.578 0.000

Q15_ItrDev4 1.646 0.716 0.161 0.839 0.402

Q16_Cmpt1 1.648 0.753 0.431 2.620 0.009

Q16_Cmpt2 1.802 0.850 0.439 2.470 0.014

Q16_Cmpt3 2.210 0.854 0.512 2.942 0.003

65

Q16_Cmpt4 2.071 0.574 -0.235 1.276 0.203

Respond 1.530 0.923 0.645 3.691 0.000

Sense 1.550 0.728 0.234 1.535 0.125

Learn 1.521 0.756 0.310 2.327 0.020

 Table 15: Weights, Loadings and VIF of formative indicators (Second Order)

The insignificant weight of an indicator shows that its contribution to the construct

is relatively insignificant as compared to other indicators. In SmartPLS, outer

loadings show the absolute importance of an indicator. Outer weights show the

relative importance of an indicator in defining a formative construct. Usually, an

indicator with insignificant weight, but with an outer loading greater than 0.5 is

included in the measurement model (Hair Jr et al., 2016). When the outer weight

is insignificant and the outer loading is low, then the researcher can decide to

include or exclude that indicator based on its theoretical importance (Cenfetelli &

Bassellier, 2009; Hair Jr et al., 2016). In this research, formative indicators with

non-significant weights and low loadings (CustSatf1, CustSatf2) were included for

data analysis because they are important for defining the construct. CustSatf1

represents customer satisfaction from functionality of the new systems and

CustSatf2 represents customer satisfaction from the quality of the new systems.

Both these items represent important aspects of customer satisfaction so they

can’t be excluded. Tables 14 and 15 shows the first and second order outer

loadings, outer weights and their significance and VIF of the formative indicators.

66

Discriminant Validity

Discriminant validity means that the indicators of a construct are distinct from the

indicators of other constructs. The indicators of a variable should only influence

the variance of the construct to which they are theoretically or conceptually

related to. When discriminant validity is not established, the indicators can

influence the variance of other variables, which are not theoretically related. In

such cases, it is difficult to conclude whether the results confirming hypothesized

structural paths are real or whether they are a result of statistical discrepancies

(Farrell, 2010). The Fornell-Larcker criterion, examining the cross loadings and

Heterotrait-monotrait ratio (HTMT) are used to establish discriminant validity

(Hair Jr et al., 2016; MacKenzie et al., 2011).

The Fornell-Larcker criterion states that the square root of AVE of any variable

should be more than its correlation with other variables (Fornell & Larcker, 1981).

It indicates that a variable shares more variance with its indicators than with other

variables. The Fornell-Larcker criterion and cross loadings examination do not

reliably detect the lack of discriminant validity (Henseler, Ringle, & Sarstedt,

2015). “Cross loadings fail to indicate a lack of discriminant validity when two

constructs are perfectly correlated, which renders this criterion ineffective for

empirical research. Similarly, the Fornell-Larcker criterion performs poorly,

especially when indicator loadings of the construct under consideration differed

only slightly (e.g., all indicators loadings varied between 0.60 and 0.80)” (Hair Jr

et al., 2016) p118. Table 16 shows the Fornell-Larcker criterion values of the

constructs used in this study. The square root of the AVE of the reflective

67

constructs is less than their correlation will other constructs. All the indicators

load more strongly with indicators of the same construct than with the others, so

there is no issue of cross loading. The cross loadings of the indicators are shown

in appendix (See table A4).

 Constructs
1 2 3 4 5 6 7 8 9 10 11

1
Change Satisfaction NA

2
Collaborative Decision Making 0.465 0.825

3
Communication 0.587 0.708 0.809

4
Customer Satisfaction 0.591 0.334 0.430 NA

5
Delivery Capability 0.480 0.486 0.525 0.510 NA

6
Iterative Development 0.369 0.463 0.444 0.386 0.463 NA

7
Learn 0.516 0.383 0.487 0.404 0.397 0.356 NA

8
Respond 0.605 0.610 0.571 0.410 0.515 0.358 0.505 NA

9
Sense 0.462 0.386 0.389 0.366 0.490 0.400 0.515 0.519 NA

10
Team Autonomy 0.416 0.547 0.460 0.337 0.464 0.417 0.339 0.498 0.332 0.806

11
Team Competence 0.413 0.446 0.397 0.326 0.512 0.375 0.353 0.664 0.369 0.511 NA

Table 16: Discriminant Validity- Fornell-Larcker Criterion*

* Square root of AVE in the diagonal for reflective constructs

Heterotrait-monotrait ratio (HTMT) is a new approach for discriminant validity of

constructs with reflective indicators (Henseler et al., 2015). It represents the

mean of all correlations of the indicators across constructs measuring different

68

constructs relative to the geometric mean of the average correlations of

indicators measuring the same constructs (Hair Jr et al., 2016). A HTMT value

lower than the threshold value suggests that discriminant validity is established.

The threshold value suggested for HTMT is 0.90 (Gold & Arvind Malhotra, 2001;

Teo et al., 2008) or 0.85 (Clark & Watson, 1995; Kline, 2015). Table 17 shows

that the Heterotrait-Monotrait Ratio (HTMT) values of the reflective constructs

used in this study are all below the suggested threshold, suggesting adequate

discriminant validity of these reflect constructs.

 Reflective Constructs
Collaborative
Decision Making

Communication Team Autonomy

Collaborative Decision
Making

Communication 0.847

Team Autonomy 0.651 0.563

Table 17: Discriminant Validity- Heterotrait-Monotrait Ratio (HTMT) ratio

Structural Model Assessment

The structural model assessment was done after the measurement model was

validated. It tells the relationships between constructs and the overall model’s

predictive capabilities. Unlike covariance-based structural equation modeling,

goodness-of-fit measures like chi-square are not applicable in PLS-SEM (Hair Jr

et al., 2016). In this research model, agility is a second-order hierarchal construct

with first-order formative indicators and second-order formative indicators. The

two-stage approach was used for estimating latent hierarchal variables. This

69

approach is appropriate when the research model has a formative hierarchal

variable at the endogenous position (Ringle, Sarstedt, & Straub, 2012; Becker,

Klein, & Wetzels, 2012). In the two-stage approach, model estimation is done in

two steps. In the first step, latent scores of the lower order constructs are

estimated, which are used as indicators for the higher order construct in the

second step. The latent scores of sense, respond and learn changes were used

as indicators for agility. Structural model assessment includes assessing path

coefficients and their significance, assessment of variance explained (R2 value)

and assessment of effect size (F2 value) (Hair Jr et al., 2016).

Path Coefficients

The path coefficients show the strength of the relationships between various

latent variables. It represents the hypothesized relationships and how latent

variables are related to each other. The standardized scores of path coefficients

lie between -1 and +1. In PLS, a non-parametric bootstrapping procedure is used

to check the significance levels of the path coefficients (Davison & Hinkley, 1997;

Efron & Tibshirani, 1994; Hair Jr et al., 2016). It is helpful when general

assumptions about data such as small sample size and non-normal data are not

met (Davison & Hinkley, 1997). Bootstrapping uses a given sample to make

inference about the population characteristics and doesn’t make any

assumptions about the distribution of the parameters (Sharma & Kim, 2013). In

this procedure, a large number of samples are taken from the original data with a

replacement for estimating parameters (Hair Jr et al., 2016).

70

Figure 2: Path Coefficients and their significance (P-value)

The PLS bootstrap procedure is more accurate and efficient for estimating

parameters than other bootstrap procedures (e.g. Maximum Likelihood) for

smaller sample sizes (e.g. less than 200) (Sharma & Kim, 2013). The

bootstrapping procedure provides a good approximation of the sampling

distribution of the parameters when sample data is a good representation of the

actual population. The number of samples used for bootstrapping should be

more than the number of observations in the given sample (e.g. 160) (Hair Jr et

al., 2016). In this study, the bootstrapping procedure was done with 500 samples.

71

Paths
Original
Sample
(O)

Sample
Mean
(M)

Standard
Deviation
(STDEV)

T-Statistics
(|O/STDEV|)

P-Values

Agility -> Change
Satisfaction

0.579 0.573 0.090 6.441 0.000

Agility -> Customer
Satisfaction

0.006 0.037 0.142 0.039 0.969

Change Satisfaction ->
Customer Satisfaction

0.471 0.488 0.151 3.120 0.002

Collaborative
DecisionMaking -> Agility

0.248 0.239 0.106 2.348 0.019

Collaborative
DecisionMaking ->
DeliveryCapability

0.152 0.145 0.111 1.371 0.171

Communication -> Agility 0.244 0.242 0.107 2.293 0.022

Communication ->
DeliveryCapability

0.307 0.321 0.113 2.722 0.007

DeliveryCapability ->
Agility

0.308 0.306 0.089 3.474 0.001

DeliveryCapability ->
Change Satisfaction

0.136 0.167 0.113 1.198 0.232

DeliveryCapability ->
Customer Satisfaction

0.262 0.237 0.149 1.760 0.079

Iterative Development ->
Agility

0.065 0.089 0.094 0.693 0.489

Iterative Development ->
DeliveryCapability

0.259 0.261 0.089 2.923 0.004

TeamAutonomy ->
Collaborative
DecisionMaking

0.433 0.431 0.072 5.985 0.000

TeamAutonomy ->
Communication

0.348 0.343 0.082 4.228 0.000

TeamAutonomy -> Iterative
Development

0.310 0.305 0.088 3.543 0.000

TeamCompetence ->
Collaborative
DecisionMaking

0.224 0.235 0.078 2.885 0.004

TeamCompetence ->
Communication

0.218 0.239 0.096 2.274 0.023

TeamCompetence ->
Iterative Development

0.226 0.257 0.095 2.384 0.017

Table 18: Path Coefficients and their significance

The estimates obtained by using each sample is used to create an approximation

of the sampling distribution of the parameters (Hair Jr et al., 2016; Sharma &

Kim, 2013). This sampling distribution is then used to determine the standard

errors and the standard deviations of the estimated coefficients. The t-statistics

72

and p-values are then obtained using these standard errors. The path

coefficients with p-values below 0.05 are considered significant. For example,

path coefficient between agility and change satisfaction is significant, which

indicates that agility has a significant relationship with change satisfaction. Table

18 and figure 2 show the path coefficients between the various latent variables

and their significance levels. The table shows path coefficient values from the

original sample (O), the mean value of path coefficients from a bootstrap sample

(M), their standard deviations (STDEV), t- statistics, and p-values.

Coefficient of Determination (R2)

The coefficient of determination (R2) is used as a measure to evaluate the

structural model and represents the predictive strength of the model. It shows the

exogenous latent construct’s total effects on the endogenous latent construct and

the amount of variance in the endogenous constructs that is explained by all

exogenous constructs (Hair Jr et al., 2016). It is “squared correlation between a

specific endogenous construct’s actual and predicted values” (Hair Jr et al.,

2016, p198). R2 can have a value from 0 to 1. PLS- SEM focuses on maximizing

the variance explained (R2 Value) of the endogenous variable by the exogenous

variables. R2 Value of 0.25, 0.50 and 0.75 are considered as weak, moderate

and substantial respectively (Hair Jr et al., 2016; Henseler, Ringle, & Sinkovics,

2009). A higher value indicates that the independent variables can explain the

dependent variables with a greater level of accuracy. Higher R2 values shouldn’t

be considered as the key parameter to select the structural model. In complex

73

models, the addition of more independent variables (insignificant) can inflate the

R2 value of the model, but it is not good for the parsimony of the structural model

(Hair Jr et al., 2016). R2 adjusted value can be used to avoid this issue in

complex structural models. It adjusts the value of R2 based on sample size and

the number of independent variables to reduce the effect of insignificant

independent variables on the model (Hair Jr et al., 2016).Table 19 shows the R-

square and R-square adjusted values of the structural models.

 Endogenous Constructs R-Square R-Square Adjusted

Agility 0.507 0.494

Change Satisfaction 0.446 0.439

Collaborative Decision Making 0.337 0.329

Communication 0.247 0.237

Customer Satisfaction 0.413 0.402

Delivery Capability 0.356 0.344

Iterative Development 0.219 0.209

Table 19: R-Square and R-Square adjusted values

Effect Size (F2)

The effect size (F2) estimates the effect of any exogenous construct in explaining

the endogenous variable. More specifically, it allows the estimation of the

contribution of an exogenous variable in explaining the variance (R2 value) of an

endogenous variable. It indicates the impact on the R2 value of an endogenous

variable if a specific exogenous construct is removed (Hair Jr et al., 2016). For

example, the first row (Agility -> Change Satisfaction) of Table 20 indicates the

impact of removing agility on change satisfaction.

74

 F Square T Statistics P Values

Agility -> Change Satisfaction 0.396 2.417 0.016

Agility -> Customer Satisfaction 0.000 0.001 0.999

Change Satisfaction -> Customer Satisfaction 0.209 1.182 0.238

Collaborative DecisionMaking -> Agility 0.057 0.906 0.365

Collaborative DecisionMaking -> DeliveryCapability 0.017 0.586 0.558

Communication -> Agility 0.055 1.025 0.306

Communication -> DeliveryCapability 0.071 1.219 0.223

DeliveryCapability -> Agility 0.123 1.427 0.154

DeliveryCapability -> Change Satisfaction 0.022 0.372 0.710

DeliveryCapability -> Customer Satisfaction 0.075 0.687 0.493

Iterative Development -> Agility 0.006 0.197 0.844

Iterative Development -> DeliveryCapability 0.079 1.251 0.211

TeamAutonomy -> Collaborative DecisionMaking 0.209 2.484 0.013

TeamAutonomy -> Communication 0.119 1.641 0.101

TeamAutonomy -> Iterative Development 0.091 1.564 0.118

TeamCompetence -> Collaborative DecisionMaking 0.056 1.214 0.226

TeamCompetence -> Communication 0.047 0.834 0.405

TeamCompetence -> Iterative Development 0.048 0.893 0.372

Table 20: F-Square Values

F2 values of 0.02, 0.15 and 0.35 are considered as small, medium, and large

respectively (Cohen, 1988). F2 values of less than 0.02 indicates that there is no

effect of exogenous variable on endogenous variable.

F2 = (R2
included - R2

excluded) / (1- R2
included)

R2
included = R2 value when an exogenous variable is included

R2
excluded = R2 value when an exogenous variable is excluded

75

Indirect Effects

 The PLS-SEM technique is used to understand the cause and effect relationship

among independent and dependent variables. In some cases, the relationship

between an independent variable and a dependent variable depends on other

variables that cause intervention between the independent variable and the

dependent variable. Such variables are referred to as mediator variables. The

relationships of a mediator variable with the independent and the dependent

variables determine the relationship between independent and dependent

variables, so it is important to check the mediating effects in PLS path models.

Traditionally, Sobel test is used to check mediating effects. The Sobel test is not

suitable for testing mediating effects in PLS-SEM because it assumes normality

of data, so it is not appropriate for non-parametric methods like PLS-SEM

(Preacher & Hayes, 2004; Sattler, Völckner, Riediger, & Ringle, 2010). If indirect

effects are significant, then there is mediation effect in PLS (Hair Jr et al., 2016;

Hayes, 2013). In PLS-SEM, the bootstrapping procedure can be used to check

the significance of indirect effects. For this study, bootstrapping was done with

five hundred samples to check the significance of indirect effects. Table 21.1

shows the complete details about the individual indirect effects and their

significance between the various variables of this study. The table shows the

individual mediation paths between variables. For example, the first row shows

the mediation effect of Communication on the relationship between Team

autonomy and Delivery capability. The Original sample (O) value shows the

indirect effect value from the original data sample, whereas, Sample mean (M)

76

value shows the average of the indirect effect obtained from five hundred

bootstrap data samples. The standard error represents the standard deviation of

the indirect effects obtained from the bootstrap samples. These standard errors

are used to calculate T-statistics and P-values. The indirect effects with P-values

less than 0.05 are considered significant. The individual indirect effect shows an

interesting relationship between variables. These results of mediation of process

variables on the relationship between team autonomy and agility show that

various process variables have different mediating effects. Between team

autonomy and agility, the mediation effect of collaborative decision making

(0.107, p< 0.05) is significant, communication (0.085, p=0.06) is marginally

significant, and iterative development is not significant. Similarly, between team

autonomy and delivery capability, the mediation effects of communication (0.107,

p< 0.05) and iterative development (0.080, p<0.05 are significant, but the

mediation effect of collaborative decision making is insignificant. Table 21.2

shows the total effects of all the mediators and their significance levels between

variables. For example, the first row presents the total effects of two mediators

(e.g. agility and deliver capability) between collaborative decision making and

change satisfaction. These total effects bring very interesting insights about the

relationships between these variables in agile software development. In this

study, the effects of antecedent variables on delivery capability and agility are

mediated by process variables. Both the antecedent variables team autonomy

(0.291, p<0.01) and team competence (0.173, p<0.01) have significant indirect

effects on agility.

77

Individual Indirect
Paths

Original
Sample (O)

Sample
Mean (M)

Standard
Error
(STERR)

T Statistics
(|O/STERR|) P Values

TeamAutonomy ->
Communication->
DeliveryCapability 0.107 0.110 0.046 2.314 0.021

TeamAutonomy ->
Collaborative
DecisionMaking ->
DeliveryCapability 0.066 0.063 0.051 1.308 0.191

TeamAutonomy ->
Iterative Development ->
DeliveryCapability 0.080 0.080 0.036 2.221 0.027

TeamAutonomy ->
Communication-> Agility

0.085 0.084 0.046 1.838 0.067

TeamAutonomy ->
Collaborative
DecisionMaking ->
Agility 0.107 0.103 0.050 2.144 0.032

TeamAutonomy ->
Iterative Development ->
Agility 0.020 0.025 0.030 0.679 0.498

TeamCompetence ->
Communication->
DeliveryCapability 0.067 0.082 0.049 1.354 0.176

TeamCompetence ->
Collaborative
DecisionMaking ->
DeliveryCapability 0.034 0.034 0.030 1.134 0.257

TeamCompetence ->
Iterative Development ->
DeliveryCapability 0.080 0.071 0.041 1.962 0.050

TeamCompetence ->
Communication-> Agility

0.053 0.060 0.039 1.356 0.176

TeamCompetence ->
Collaborative
DecisionMaking ->
Agility 0.056 0.058 0.036 1.537 0.125

TeamCompetence ->
Iterative Development ->
Agility 0.015 0.026 0.028 0.517 0.605

Communication ->
DeliveryCapability->
CustomerSatisfaction 0.080 0.078 0.061 1.310 0.191

Communication ->
DeliveryCapability->
ChangeSatisfaction 0.042 0.058 0.046 0.908 0.364

Communication ->
Agility->
CustomerSatisfaction 0.001 0.009 0.036 0.037 0.970

78

Communication ->
Agility->
ChangeSatisfaction 0.142 0.140 0.069 2.053 0.041

Collaborative
DecisionMaking ->
DeliveryCapability->
CustomerSatisfaction

0.040

0.030 0.030 1.311 0.190

Collaborative
DecisionMaking ->
DeliveryCapability->
ChangeSatisfaction 0.021 0.021 0.026 0.807 0.420

Collaborative
DecisionMaking ->
Agility-
>CustomerSatisfaction 0.001 0.007 0.036 0.038 0.969

Collaborative
DecisionMaking ->
Agility->
ChangeSatisfaction 0.143 0.138 0.069 2.092 0.037

Iterative Development ->
DeliveryCapability-
>CustomerSatisfaction 0.068 0.068 0.055 1.238 0.216

Iterative Development ->
DeliveryCapability-
>ChangeSatisfaction 0.035 0.045 0.037 0.948 0.344

Iterative Development ->
Agility->
CustomerSatisfaction 0.000 0.006 0.020 0.018 0.986

Iterative Development ->
Agility->
ChangeSatisfaction 0.038 0.050 0.054 0.700 0.484

DeliveryCapability ->
Agility->
ChangeSatisfaction 0.178 0.175 0.058 3.097 0.002

Agility->
ChangeSatisfaction->
CustomerSatisfaction 0.273 0.285 0.111 2.461 0.014

Table 21.1: Individual Indirect Effects and their significance

It implies that process variables mediate the relationships between the

antecedent variables on agility. Also the indirect effect of delivery capability on

change satisfaction through agility is significant (0.178, p<0.01), suggesting that

agility mediates the relationship between delivery capability+ and change

satisfaction. It implies that delivery capability will not affect change satisfaction if

the team does not have high agility.

79

Original
Sample
(O)

Sample
Mean
(M)

Standard
Deviation
(STDEV)

T Statistics
(|O/STDEV|)

P Values

Collaborative
DecisionMaking -> Change
Satisfaction

0.191 0.185 0.073 2.631 0.009

Collaborative
DecisionMaking ->
Customer Satisfaction

0.132 0.132 0.068 1.949 0.052

Communication -> Agility 0.094 0.097 0.044 2.142 0.033

Communication -> Change
Satisfaction

0.238 0.253 0.074 3.214 0.001

Communication ->
Customer Satisfaction

0.194 0.213 0.078 2.497 0.013

DeliveryCapability ->
Change Satisfaction

0.178 0.175 0.057 3.100 0.002

DeliveryCapability ->
Customer Satisfaction

0.150 0.172 0.060 2.494 0.013

Iterative Development ->
Agility

0.080 0.078 0.033 2.434 0.015

Iterative Development ->
Change Satisfaction

0.119 0.140 0.065 1.832 0.068

Iterative Development ->
Customer Satisfaction

0.125 0.142 0.071 1.761 0.079

TeamAutonomy -> Agility 0.291 0.289 0.054 5.376 0.000

TeamAutonomy -> Change
Satisfaction

0.203 0.209 0.045 4.513 0.000

TeamAutonomy ->
Customer Satisfaction

0.164 0.174 0.055 2.986 0.003

TeamAutonomy ->
DeliveryCapability

0.253 0.253 0.053 4.765 0.000

TeamCompetence -> Agility 0.173 0.199 0.055 3.111 0.002

TeamCompetence ->
Change Satisfaction

0.122 0.147 0.045 2.711 0.007

80

TeamCompetence ->
Customer Satisfaction

0.100 0.125 0.048 2.069 0.039

TeamCompetence ->
DeliveryCapability

0.160 0.187 0.053 3.028 0.003

Agility -> Customer
Satisfaction

0.273 0.285 0.111 2.464 0.014

Collaborative
DecisionMaking -> Agility

0.047 0.045 0.039 1.200 0.231

Table 21.2: Total Indirect Effects and their significance

81

CHAPTER 6

DISCUSSION

Discussion and Implications

One of the key objectives of this study was to test empirically the complex

relationships among key variables related to agile software development. This

study identified the relationships between antecedent variables (team autonomy,

team competence), process variables (iterative development, communication,

collaborative decision-making), delivery capability, agility and project outcomes

(change satisfaction, customer satisfaction). This model explained 24.7%

variance in communication, 33.7% in collaborative decision making, 21.9% in

iterative development, 35% in delivery capability, 50% in agility, 44% in change

satisfaction and 41% in customer satisfaction. The survey data analysis showed

support for thirteen of the eighteen hypotheses. Table 22 shows the hypothesis

testing results.

As hypothesized, both antecedent variables significantly affect process variables.

This implies that antecedent factors like team autonomy affect key processes in

agile software development, such as collaborative decision-making,

communication and iterative development which in turn are important facilitators

for achieving agility and delivery capability. Team autonomy is an important

factor for agile software development (Maruping et al., 2009) and the results of

this study support that. It decentralizes the decision-making process and

provides control of the decision-making to project team members (IT and

82

Business teams) (Lee & Xia, 2010). The empowerment of teams is related to

software development agility (Sheffield & Lemétayer, 2013).

Hypothesis Results

H1: Team autonomy positively influences communication. Supported

H2: Team autonomy positively influences collaborative decision-making. Supported

H3: Team autonomy positively influences iterative development. Supported

H4: Team competence positively influences communication. Supported

H5: Team competence positively influences collaborative decision-making. Supported

H6: Team competence positively influences iterative development. Supported

H7: Collaborative decision making positively influences delivery capability. Not Supported

H8: Collaborative decision making positively influences agility. Supported

H9: Communication positively influences delivery capability. Supported

H10: Communication positively influences agility. Supported

H11: Iterative development process positively influences delivery capability. Supported

H12: Iterative development process positively influences agility. Not Supported

H13: Delivery capability positively influences agility. Supported

H14: Delivery capability positively influences customer satisfaction. Marginally

Supported

H15: Delivery capability positively influences change satisfaction. Not Supported

H16: Agility positively influences customer satisfaction. Not Supported

H17: Agility positively influences change satisfaction. Supported

H18: Change satisfaction positively influences customer satisfaction. Supported

Table 22: Hypothesis Testing Results

83

The decision-making in agile team is impacted by the empowerment of team

members (Drury-Grogan & O'dwyer, 2013). The results of this study are

consistent with existing studies which state that team autonomy contributes to

agility (Lee & Xia, 2010; Sheffield & Lemétayer, 2013; Vidgen & Wang, 2009).

Existing studies have conceptualized team autonomy as a factor that directly

affects agility. In this study, team autonomy is hypothesized as an antecedent

factor that doesn’t affect agility and delivery capability directly, but directly affects

the agile processes that facilitates agility and delivery capability. The PLS results

show that the indirect effect of team autonomy on delivery capability through

process variables is significant (0.253, p<0.01). Also, the indirect effect of team

autonomy on agility through process variables is significant (0.291, p<0.01). It

indicates that the effects of team autonomy on delivery capability and agility are

mediated by agile processes such as communication, collaborative decision-

making and iterative development. The reason for these mediation effects are

that team autonomy is necessary for creating a suitable environment for agile

software development. It alone can’t facilitate delivery capability and agility. In

autonomous teams, members collaborate to use their collective knowledge and

skills to find solutions to given problems (Nerur & Balijepally, 2007; Vidgen &

Wang, 2009). They have more freedom to voice their opinions in planning and

executing various project activities that facilitate communication. Such teams

have authority to estimate, plan and coordinate their work (Batra et al., 2016),

which helps in the successful delivery of work in small iterations. Based on the

84

status of ongoing work, team members can coordinate to deliver on time. Team

autonomy empowers the team to make decisions related to their work in order to

get the best results. It helps in building an environment, where IT and Business

team members can carry out agile processes in an effective and efficient manner

with high levels of delivery capability and agility.

One other important environment or antecedent factor is team competence. The

analysis results show that team competence (technical competence, business

competence, interpersonal skills and problem-solving skills) is significantly

related to communication (0.218, p<0.05), collaborative decision-making (0.310,

p<0.01), and iterative development (0.226, p<0.05). In the software development

literature, these skills are considered to be important and fundamental for a

software development project (McLeod & MacDonell, 2011; Siau, Long, et al.,

2010). Without these competencies, it would not be possible for team members

to deliver solutions to meet the customer’s requirements. In the literature,

competencies are conceptualized as a direct enabler of agility (Eshlaghy,

Mashayekhi, Rajabzadeh, & Razavian, 2010). In this study, it is argued that

competence doesn’t enable agility directly, but it enables agile processes

(communication, collaborative decision-making, iterative development) which in

turn facilitate agility. The results support this. The indirect effects of team

competence, through process variables, on delivery capability (0.160, p<0.01)

and agility (0.173, p<0.01) are significant. The reason for this mediation effect is

that team competence provides skills that are necessary for the project. IT and

85

Business team members need to use their skills effectively in these agile

processes for project success. If IT and Business team members have

appropriate skills, but they are not able to use them effectively then merely

having competence will be of no real value for the project success. For example,

communication skills can’t contribute to delivery capability or agility, if team

members don’t use these skills to communicate effectively during the project to

create a shared understanding among stakeholders about the project activities.

Similarly, technical and business skills need to be used properly to make better

decisions during the project. Li et. al (2010) state that business and technical

skills and experiences of stakeholders (e.g. developers, users/ customers) help

in making right decisions in reacting to new situations. Team members’

capabilities and skills help in making better decisions related to estimating task in

the project (Drury & McHugh, 2011). These results provide a better

conceptualization of the relationship between competency and agility. Similar to

team autonomy, team competency is necessary, but not sufficient to have

delivery capability and agility.

A close collaboration between IT and Business teams is necessary to understand

requirements and enhance agility (Sarker & Sarker, 2009). This study’s results

show that collaborative decision-making significantly affects (0.248, p<0.05)

agility, but not delivery capability. This relationship implies that IT-business

collaboration is required when agility is needed to deal with various changes in

the project. It may not be required when team members are working on delivering

86

planned requirements because they already have planned tasks. Effective

collaboration is important when there are changes in the project (Maruping et al.,

2009). The IT and Business team members need to collaborate to develop a

shared understanding of planning and executing various changes during the

project. User (e.g. customer) involvement helps in anticipating technical and

business changes (Barki & Hartwick, 1989; Li et al., 2010), which is an important

dimension of agility. The practices for IT-Business collaboration such as having

customers onsite helps in achieving agility (Conboy, 2009). The results of this

study are consistent with the literature findings that collaborative decision-making

contributes to agility. Customer collaboration is critical in agile projects (Chow &

Cao, 2008). The findings of this research provide quantitative support that

collaboration is important. Interestingly, communication is related more strongly

to agility and delivery capability than to collaborative decision-making. It implies

that the interplay between these agile processes leads to delivery capability and

agility and hence project success.

Communication has significant effects on delivery capability (0.307, p<0.01) and

agility (0.244, p<0.05). It implies that IT and Business teams need to

communicate effectively to deliver on time and to deal with various changes in an

effective and efficient manner. Communication helps in creating a shared

understanding about user requirements, planning and execution of various

project activities and about the resources required for the success of the project.

Conboy (2009) mentioned that communication mechanisms like stand-up

87

meetings contribute to agility when used effectively. Communication with

stakeholders helps team members anticipate technical and business changes

(Barki & Hartwick, 1989; Li et al., 2010), which is an important dimension of

agility. Communication can be a challenge in distributed agile teams and can

hinder the success of the project (Hossain et al., 2009). In a distributed

environment, seamless communication among team members helps in achieving

agility (Sarker & Sarker, 2009). A qualitative study found that the maturity of agile

teams depends on communication and collaboration (Fontana et al., 2014). The

results of this research provide quantitative support to these findings. Existing

studies have qualitatively examined the role of communication and claimed that

communication helps in achieving agility. The results of this study quantitatively

affirm that communication helps in achieving agility and delivery capability.

Frequent and short releases help in accommodating constantly changing

requirements (Meso & Jain, 2006), so it facilitates agility. A few studies from the

literature state that delivering in short iteration helps in having agility in

information systems development (Lyytinen & Rose, 2006; Vidgen & Wang,

2009). Interestingly, the results of this study present new insights about the

relationship between iterative development and agility in software development.

These results show that iterative development has a significant effect (0.259,

p<0.01) on delivery capability, but not on agility; and delivery capability has a

significant effect (0.308, p<0.01) on agility. Also, the indirect effect of iterative

development on agility through delivery capability is significant (0.08, p<0.5). This

88

means that delivery capability mediates the relationship between iterative

development and agility. Iterative development contributes to delivery capability,

which in turn contributes to agility. This implies delivery capability complements

agility (Rathor, Batra, & Xia, 2016). If team members don’t have delivery

capabilities, then they can’t have agility to deal with various changes during the

project. A delivery strategy and team capability are critical for a project’s success

in agile projects (Chow & Cao, 2008). While the results of this study support

these findings in the literature, they provide additional insights that delivery

strategy doesn’t affect project outcomes directly. The effect of delivery strategy

(e.g. iterative delivery) on project success (e.g. customer satisfaction) is

mediated by delivery capability. It implies that delivery strategy contributes to

delivery capability, which further contributes to project success.

The results of this study help in quantitatively understanding the distinction

between delivery capability and agility, which are two types of capabilities that

have not been well studied in the literature. As hypothesized, delivery capability

has a significant (0.308, p< 0.01) effect on agility, which shows that delivery

capability complements agility. It implies that the routine capability of the team

helps team members develop the capability in dealing with changes. Delivery

capability has a significant effect (0.262, p=0.07) on customer satisfaction, but

doesn’t have a significant effect on change satisfaction. The indirect effect of

delivery capability on change satisfaction through agility is significant (0.178,

p<0.01). It implies that the routine capabilities of the team (e.g. delivery

89

capability) have a direct relationship with customer satisfaction. A capable team

can deliver given requirements as per customer’s expectations that enhance

customer satisfaction. If team members don’t have this basic capability to deliver

given tasks, then they will not be able to fulfill the customer’s expectations about

the new system. The result shows that agility mediates the relationship between

delivery capability and change satisfaction. This mediation relationship suggests

that agility and delivery capability are distinct capabilities. Delivery capability is

not associated with dealing with changes. Unlike delivery capability, agility is the

ability to sense, respond and learn from changes, so it is directly related to

change satisfaction.

 Customer satisfaction and value are the main focus of agile software

development. A quantitative study showed that use of agile practices/ processes

impacts customer satisfaction (Serrador & Pinto, 2015). The results of this study

support the results from earlier studies that agile practices impact customer

satisfaction with some additional conceptual insights. This study’s results show

that agile processes don’t directly affect project outcomes, rather, they enable

emergent capabilities (e.g. delivery capability and agility), which in turn impact

customer satisfaction. Agility significantly (0.579, p<0.01) affects change

satisfaction, and its indirect effect on customer satisfaction through change

satisfaction is also significant (0.273, p<0.05). Also, change satisfaction is

significantly (0.471, p<0.05) related to customer satisfaction. These results show

that the effect of agility on customer satisfaction is mediated by change

90

satisfaction. This mediation effect occurs because agility is the ability to deal with

changes so it has a direct relationship with change satisfaction. Overall customer

satisfaction doesn’t just represent customer’s expectations about the way

changes were taken care of during the project, but also the way other given

requirements were delivered. Because of this reason, agility doesn’t have a

significant relationship with overall customer satisfaction. Agile projects can have

many changes, especially user requirement changes. The way these changes

were managed during the project contributed to overall customer satisfaction.

In this study, agility is conceptualized as a second-order variable with three first-

order factors or dimensions. The results show that all three dimensions are

important for defining agility. Communication and collaborative decision-making

significantly affect agility, which implies that agility is a dynamic capability

resulted from effective collaboration and communication between the IT and the

Business teams. It shows that agility is the outcome of these agile processes and

validates the dynamic nature of agility. Without focusing on these processes,

teams can’t have agility that is required to deal with changes occurred during the

project.

For agile practices, context and environment factors are important, so practices

need to be tailored accordingly (Fitzgerald, Hartnett, & Conboy, 2006). The

results of this study support that premise that contextual factors such as team

autonomy, and process factors such as communication and collaborative

decision-making, are important for project success. IT practitioners need to focus

91

on these factors in their project context to have agility and delivery capability for

better project outcomes. According to a study by Fitzgerald et al. (2006),

technical factors such as competence and iterative development are important

for agile projects. The results of this study are consistent with Fitzgerald et al.

(2006) and provide additional insights. The results show that technical factors are

important, but organizational factors (e.g. team autonomy) and behavioral factors

(e.g. communication and collaborative decision making) are also important.

Usually, team members and managers focus more on technical factors, and non-

technical factors are not considered as important. The results of this study imply

that IT practitioners should focus on non-technical factors as well as technical

factors in order to enhance delivery capability and agility in the agile projects.

Another contextual factor that is important for agile project is the size of the

project. Agile methods are considered to be more suitable for small software

development projects than for large software projects (Cohen, Lindvall, & Costa,

2004; Dyba & Dingsoyr, 2008). The total number of IT and Business team

members is a good indicator of project size. Team size can influence the project

outcomes (McLeod & MacDonell, 2011). In this study, more than 33% of the

survey respondents were working on projects that have a total of members more

than twenty people; such projects can’t be considered small projects. The results

of this study show that these factors are generic regardless of the project size.

This study statistically tested a comprehensive model of key variables related to

agile software development to unearth the complex relationship among these

92

variables. The results of this study show that antecedent variables (team

competence, team autonomy) are necessary for creating a conducive

environment for agile software development, but they are not sufficient to have

agility and delivery capability in the project. The IT and Business team members

need to also focus on process variables (communication, collaborative decision-

making, iterative development) for having agility in the project. The delivery

capability of the team is necessary for agility. If IT and Business teams don’t

have delivery capability, then they may not have the bases for having agility

which is a higher order capability than delivery capability. These results explain

the intricacies of the relationships among these key variables and provide a

theoretical rationale behind using agile practices in projects where changes are

expected. The PLS analysis results of this study show interesting results and

present a better conceptual clarity about the agile software development. The

conceptual insights drawn from these results in this study will help IT

practitioners have a better understanding of agile processes and their

relationship with project outcomes.

Limitations and Future Research

This research had a few limitations. First, in this study the project outcomes were

considered in terms of customer satisfaction only. It represented just one aspect

of project outcomes. Future studies may consider software quality, business

value, project time and cost as additional outcome variables.

93

Second, most of the respondents of the survey were from IT teams. The

responses about project outcomes (e.g., customer satisfaction, change

satisfaction) were collected mainly from an IT team’s perspective. Survey

responses represent IT team members’ perceptions about project outcomes.

Actual users or customers didn’t provide assessment for project outcomes.

Third, the research model for this study is complex, so some of the important

antecedent variables such as organizational culture was not included in this

model. Future studies may include other antecedent variables such as

organizational and team culture. It is important to investigate how these variables

facilitate or inhibit the adoption and utilization of agile processes.

Future studies can study agility from other perspectives and find out its

relationship with other outcome variables such as business value, quality. Also,

future studies can examine the tradeoffs between team delivery capability and

agility, and their effects on project efficiency (time, cost) and project effectiveness

(customer satisfaction, business value).

Contributions

This research makes several contributions relevant to both IS research and IS

practice. First, this study explained the agile environment and agile processes

that facilitate agility and delivery capability in the agile projects. For IS

practitioners, it is important to focus on these antecedent and process factors in

order to enhance agility in their projects, because they need agility to deal with

various kinds of changes in the project. This study will guide them in focusing on

94

tailoring the processes so that they can have agility in their software development

process.

Second, this study contributes to IS literature by developing new empirical

measures for a few key variables (e.g. agility) related to agile software

development methodology. Previous studies have called for developing

measures for important variables like agility (Abrahamsson et al., 2009; Conboy,

2009) and empirically understanding what constitutes agility (Wendler, 2013).

Empirical indicators are important for quantitatively studying the relationships

between agility and other variables. Without empirical measures, it is difficult to

understand the multi-facet nature of agility and its relationships with other

variables.

Third, this study quantitatively analyzed a comprehensive model that includes

key antecedent variables, process variables, agility and outcome variables. It

covers most of the key aspects of agile principles and values. A literature search

could not identify a study that has presented important variables of agile

methodology in such a comprehensive way. A comprehensive model provides a

better conceptual clarity about the various variables and their relationships.

Fourth, this research quantitatively studied the relationships among constructs

which are shown to be mediated by other constructs. Thus, the results suggest

that the relationships among key agile variables are more complex than the direct

effects that have been portrayed in the literature. Specifically, process variables

mediated the relationships between antecedent variables and delivery capability

95

and agility. Also, agility mediated the relationship between delivery capability and

change satisfaction.

Fifth, in the agile literature, there are not enough empirical studies to show that

agile methodologies work well in large software development projects. More than

thirty-three percent of the survey respondents were working on software projects

involving teams of more than twenty members; such projects can be considered

fairly large. This research shows that agile methods also work well in large

software development projects.

Finally, the empirical investigation of the relationships among these variables

helps in having a better conceptual understanding of the practices in agile

projects. Better conceptual understanding helps in understanding the theoretical

rationale behind agile software development. The lack of theoretical glue behind

agile practices is a key shortcoming (Abrahamsson et al., 2009; Conboy, 2009).

This study represents one step forward towards understanding the theoretical

underpinnings of agile software development.

96

REFERENCES

Abbas, N., Gravell, A. M., & Wills, G. B. (2010). Using factor analysis to generate
clusters of agile practices (a guide for agile process improvement). Paper
presented at the Agile Conference (AGILE).

Abrahamsson, P. (2002). Agile Software Development Methods: Review and

Analysis. Oulu, Finland: Booksurge Publishing.

Abrahamsson, P., Conboy, K., & Wang, X. (2009). “Lots done, more to do”: the

current state of agile systems development research. European Journal of
Information Systems, 281-284.

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New

directions on agile methods: a comparative analysis. Paper presented at
the 25th International Conference on Software Engineering, Portland, OR,
USA

AgileAlliance. (2016). What is Agile?, from

https://www.agilealliance.org/agile101/what-is-agile/

Alzoubi, Y. I., & Gill, A. Q. (2014). Agile global software development

communication challenges: A systematic review. Paper presented at the
Pacific Asia Conference on Information Systems (PACIS), Chengdu,
China.

Atkinson, R. (1999). Project management: cost, time and quality, two best

guesses and a phenomenon, its time to accept other success criteria.
International Journal of Project Management, 17(6), 337-342.

Babb, J., & Keith, M. (2011). Co-creating value in systems development: A shift

towards service-dominant logic. Paper presented at the Conference for
Information Systems Applied Research (CONISAR), Wilmington North
Carolina, USA.

Bakalova, Z. G. (2014). Towards understanding the value-creation in agile

projects. Enschede. Retrieved from http://doc.utwente.nl/89650/

Balijepally, V., DeHondt, J., Sugumaran, V., & Nerur, S. (2014). Value

Proposition of Agility in Software Development–An Empirical Investigation.
Paper presented at the 20th Americas Conference on Information
Systems, Savannah, Georgia, USA.

https://www.agilealliance.org/agile101/what-is-agile/
http://doc.utwente.nl/89650/

97

Barki, H., & Hartwick, J. (1989). Rethinking the concept of user involvement. MIS
quarterly, 53-63.

Barki, H., & Suzanne Rivard, J. T. (2001). An integrative contingency model of

software project risk management. Journal of Management Information
Systems, 17(4), 37-69.

Baskerville, R., Pries-Heje, J., & Madsen, S. (2011). Post-agility: What follows a

decade of agility? Information and Software Technology, 53(5), 543-555.

Batra, D., Xia, W., & Rathor, S. (2016). Agility Facilitators for Contemporary

Software Development. Journal of Database Management (JDM), 27(1),
1-28.

Beck, K. (2000). Extreme programming explained: embrace change. Boston,

USA: Addison-Wesley Professional.

Becker, J.-M., Klein, K., & Wetzels, M. (2012). Hierarchical latent variable models

in PLS-SEM: guidelines for using reflective-formative type models. Long
Range Planning, 45(5), 359-394.

Bhattacherjee, A. (2012). Social science research: principles, methods, and

practices.

Boehm, B. (2002). Get ready for agile methods, with care. IEEE Computer, 35(1),

64-69.

Boehm, B., & Turner, R. (2003a). Balancing Agility and Discipline: A Guide for

the Perplexed. Boston, USA: Addison-Wesley Professional.

Boehm, B., & Turner, R. (2003b). Using risk to balance agile and plan-driven

methods. Computer, 36(6), 57-66.

Boehm, B., & Turner, R. (2005). Management challenges to implementing agile

processes in traditional development organizations. Software, IEEE, 22(5),
30-39.

Bollen, K. (1989). Structural equations with latent variables. New York: John

Wiley.

Bosch, J., & Bosch-Sijtsema, P. M. (2011). Introducing agile customer-centered

development in a legacy software product line. Software-Practice &
Experience, 41(8), 871-882. doi: Doi 10.1002/Spe.1063

98

Breaugh, J. A. (1985). The measurement of work autonomy. Human relations,
38(6), 551-570.

Cenfetelli, R. T., & Bassellier, G. (2009). Interpretation of formative measurement

in information systems research. MIS quarterly, 689-707.

Chan, C.-L., Jiang, J. J., & Klein, G. (2008). Team task skills as a facilitator for

application and development skills. Ieee Transactions on Engineering
Management, 55(3), 434-441.

Chan, F. K., & Thong, J. Y. (2009). Acceptance of agile methodologies: A critical

review and conceptual framework. Decision Support Systems, 46(4), 803-
814.

Charmaz, K. (2006). Constructing grounded theory: A practical guide through

qualitative research: London: Sage.

Chau, T., Maurer, F., & Melnik, G. (2003). Knowledge sharing: Agile methods vs.

tayloristic methods. Paper presented at the 21st International Workshop
on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE’03), Linz, Austria.

Chow, T., & Cao, D.-B. (2008). A survey study of critical success factors in agile

software projects. Journal of Systems and Software, 81(6), 961-971. doi:
http://dx.doi.org/10.1016/j.jss.2007.08.020

Churchill Jr, G. A. (1979). A paradigm for developing better measures of

marketing constructs. Journal of marketing research, 64-73.

Clark, L. A., & Watson, D. (1995). Constructing validity: Basic issues in objective

scale development. Psychological assessment, 7(3), 309.

Cockburn, A. (2006). Agile software development: the cooperative game (2nd

ed.). Upper Saddle River, NJ: Pearson Education, Inc.

Cockburn, A., & Highsmith, J. (2001). Agile software development, the people

factor. Computer, 34(11), 131-133.

Cohen, D., Lindvall, M., & Costa, P. (2004). An introduction to agile methods.

Advances in computers, 62, 1-66.

Cohen, J. (1988). Statistical power analysis for the behavior science (2nd ed.).

Hillsdale, New Jersey: Lawrance Eribaum

http://dx.doi.org/10.1016/j.jss.2007.08.020

99

Conboy, K. (2009). Agility from First Principles: Reconstructing the Concept of
Agility in Information Systems Development. Information Systems
Research, 20(3), 329-354. doi: 10.1287/isre.1090.0236

Conboy, K., & Fitzgerald, B. (2004). Toward a conceptual framework of agile

methods. Extreme Programming and Agile Methods - Xp/ Agile Universe
2004, Proceedings, 3134, 105-116.

Converse, J. M., & Presser, S. (1986). Survey questions: Handcrafting the

standardized questionnaire. Thousand Oaks, California: Sage
Publications, Inc.

Cooper, D. R., & Schindler, P. S. (2011). Business Research Methods (Eleventh

ed.): McGraw-hill education.

Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures,

canons, and evaluative criteria. Qualitative sociology, 13(1), 3-21.

Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed

methods approaches. Thousand Oaks, California: Sage Publications, Inc.

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application

(Vol. 1): Cambridge university press.

Diamantopoulos, A., & Siguaw, J. A. (2006). Formative versus reflective

indicators in organizational measure development: A comparison and
empirical illustration. British Journal of Management, 17(4), 263-282.

Dorairaj, S., Noble, J., & Malik, P. (2011). Effective communication in distributed

Agile software development teams. Paper presented at the 13th
International Conference on Agile Software Development, Malmö,
Sweden.

Dorairaj, S., Noble, J., & Malik, P. (2012). Understanding team dynamics in

distributed Agile software development Agile Processes in Software
Engineering and Extreme Programming (pp. 47-61): Springer.

Drury-Grogan, M. L., & O'dwyer, O. (2013). An Investigation Of The Decision-

Making Process In Agile Teams. International Journal of Information
Technology & Decision Making, 12(06), 1097-1120.

Drury, M., Conboy, K., & Power, K. (2012). Obstacles to decision making in Agile

software development teams. Journal of Systems and Software, 85(6),
1239-1254. doi: DOI 10.1016/j.jss.2012.01.058

100

Drury, M., & McHugh, O. (2011). Factors that influence the decision-making
process in agile project teams using scrum practices. Paper presented at
the 6th International Research Workshop on Information Technology
Project Management (IRWITPM), Shanghai, China.

Dyba, T., & Dingsoyr, T. (2008). Empirical studies of agile software development:

A systematic review. Information and Software Technology, 50(9-10), 833-
859.

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. New York:

Chapman and Hall/CRC.

Eisenberg, E. M., & Goodall, H. L. (2004). Organizational communication:

Balancing creativity and constraint: Bedford/St. Martin's Boston.

Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic capabilities: what are they?

Strategic Management Journal, 21(10-11), 1105-1121.

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile modeling, agile software

development, and extreme programming: The state of research. Journal of
Database Management, 16(4), 88-100.

Eshlaghy, A. T., Mashayekhi, A. N., Rajabzadeh, A., & Razavian, M. M. (2010).

Applying path analysis method in defining effective factors in organisation
agility. International Journal of Production Research, 48(6), 1765-1786.

Espinosa, J. A., Slaughter, S. A., Kraut, R. E., & Herbsleb, J. D. (2007). Team

knowledge and coordination in geographically distributed software
development. Journal of Management Information Systems, 24(1), 135-
169.

F. Hair Jr, J., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial

least squares structural equation modeling (PLS-SEM) An emerging tool
in business research. European Business Review, 26(2), 106-121.

Faraj, S., & Sproull, L. (2000). Coordinating expertise in software development

teams. Management Science, 46(12), 1554-1568.

Farrell, A. M. (2010). Insufficient discriminant validity: A comment on Bove,

Pervan, Beatty, and Shiu (2009). Journal of Business Research, 63(3),
324-327.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to

software practices at Intel Shannon. European Journal of Information
Systems, 15(2), 200-213. doi: DOI 10.1027/palgrave.ejis.300605

101

Fontana, R. M., Fontana, I. M., da Rosa Garbuio, P. A., Reinehr, S., & Malucelli,

A. (2014). Processes versus people: How should agile software
development maturity be defined? Journal of Systems and Software, 97,
140-155.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with

unobservable variables and measurement error. Journal of marketing
research, 39-50.

Gallagher, K. P., Kaiser, K. M., Simon, J. C., Beath, C. M., & Goles, T. (2010).

The requisite variety of skills for IT professionals. Communications of the
ACM, 53(6), 144-148.

Gefen, D., Straub, D. W., & Boudreau, M.-C. (2000). Structural equation

modeling and regression: Guidelines for research practice.
Communications of the Association for Information Systems, 4 (1).

Goh, J. C. L., Pan, S. L., & Zuo, M. Y. (2013). Developing the Agile IS

Development Practices in Large-Scale IT Projects: The Trust-Mediated
Organizational Controls and IT Project Team Capabilities Perspectives.
Journal of the Association for Information Systems, 14(12).

Gold, A. H., & Arvind Malhotra, A. H. S. (2001). Knowledge management: An

organizational capabilities perspective. Journal of management
information systems, 18(1), 185-214.

Hair Jr, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial

least squares structural equation modeling (PLS-SEM) (Second Ed.). Los
Angeles: SAGE Publications, Inc.

Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional

process analysis: A regression-based approach. Newyork, USA: The
Guilford Press.

Henderson-Sellers, B., & Serour, M. (2005). Creating a dual-agility method: The

value of method engineering. Journal of Database Management (JDM),
16(4), 1-24.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing

discriminant validity in variance-based structural equation modeling.
Journal of the academy of marketing science, 43(1), 115-135.

102

Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least
squares path modeling in international marketing. Advances in
international marketing, 20(1), 277-319.

Highsmith, J. (2004a). Agile Project Management. Boston: Addison-Wesley.

Highsmith, J. (2004b). Agile Project Management. Boston, MA: Addison-

Wesley.

Highsmith, J. (2009). Agile project management: creating innovative products

(2nd ed.). Boston, USA: Addison Wesley Professional.

Highsmith, J., & Cockburn, A. (2001). Agile software development: the business

of innovation. IEEE Computer Society, 34(9), 120-127. doi:
10.1109/2.947100

Highsmith, J. A. (2000). Adaptive software development: a collaborative

approach to managing complex systems. New York, USA: Dorset House
Publishing Co., Inc.

Highsmith, J. A. (2002). What is Agile Software Development? . The Journal of

Defense Software Engineering, 15, 4-9.

Hoda, R., Noble, J., & Marshall, S. (2011). The impact of inadequate customer

collaboration on self-organizing Agile teams. Information and Software
Technology, 53(5), 521-534.

Hoda, R., Noble, J., & Marshall, S. (2013). Self-Organizing Roles on Agile

Software Development Teams. Ieee Transactions on Software
Engineering, 39(3), 422-444. doi: Doi 10.1109/Tse.2012.30

Hoegl, M., & Parboteeah, P. (2006). Autonomy and teamwork in innovative

projects. Human Resource Management, 45(1), 67-79.

Hoegl, M., & Wagner, S. M. (2005). Buyer-supplier collaboration in product

development projects. Journal of Management, 31(4), 530-548.

Hossain, E., Babar, M. A., & Paik, H. (2009). Using scrum in global software

development: a systematic literature review. Paper presented at the 4th
IEEE International Conference on Global Software Engineering, Limerick,
Ireland.

Hummel, M. (2013). Measuring the impact of communication in agile

development: A research model and pilot test. Paper presented at the 9th
Americas Conference on Information Systems (AMCIS), Chicago, Illinois.

103

Hummel, M. (2014). State-of-the-art: A systematic literature review on agile

information systems development. Paper presented at the 47th Hawaii
International Conference on System Sciences (HICSS).

Hummel, M., Rosenkranz, C., & Holten, R. (2013). Explaining The Changing

Communication Paradigm Of Agile Information Systems Development: A
Research Model, Measurement Development And Pretest. Paper
presented at the European Conference on Information Systems (ECIS),
Utrecht, Netherlands.

Hummel, M., Rosenkranz, C., & Holten, R. (2013). The Role of Communication in

Agile Systems Development An Analysis of the State of the Art. Business
& Information Systems Engineering, 5(5), 338-350. doi: DOI
10.1007/s12599-013-0282-4

Hummel, M., Rosenkranz, C., & Holten, R. (2015). The Role of Social Agile

Practices for Direct and Indirect Communication in Information Systems
Development Teams. Communications of the Association for Information
Systems, 36(1), 273-300.

Huo, M., Verner, J., Zhu, L., & Babar, M. A. (2004). Software quality and agile

methods. Paper presented at the 28th Annual International Computer
Software and Applications Conference (COMPSAC’04), Hong Kong,
China.

Iivari, J., & Iivari, N. (2011). The relationship between organizational culture and

the deployment of agile methods. Information and Software Technology,
53(5), 509-520.

Kar, N. J. (2006). Adopting Agile Methodologies of Software Development.

SETLabs Briefings, 4(1), 1-8.

Karhatsu, H., Ikonen, M., Kettunen, P., Fagerholm, F., & Abrahamsson, P.

(2010). Building blocks for self-organizing software development teams a
framework model and empirical pilot study. Paper presented at the 2nd
International Conference on Software Technology and Engineering
(ICSTE) San Juan, Puerto Rico, USA.

Kline, R. B. (2015). Principles and practice of structural equation modeling:

Guilford publications.

Korkala, M., & Abrahamsson, P. (2007). Communication in distributed agile

development: A case study. Paper presented at the 33rd EUROMICRO

104

Conference on Software Engineering and Advanced Applications (SEAA
2007), Lubeck, Germany.

Korkala, M., Abrahamsson, P., & Kyllonen, P. (2006). A case study on the impact

of customer communication on defects in agile software development.
Paper presented at the Agile Conference, 2006.

Korkala, M., & Maurer, F. (2014). Waste identification as the means for improving

communication in globally distributed agile software development. Journal
of Systems and Software, 95, 122-140.

Koskela, J., & Abrahamsson, P. (2004). On-site customer in an XP project:

empirical results from a case study Software Process Improvement (pp. 1-
11). Berlin Heidelberg: Springer.

Kotlarsky, J., & Oshri, I. (2005). Social ties, knowledge sharing and successful

collaboration in globally distributed system development projects.
European Journal of Information Systems, 14(1), 37-48.

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear

statistical models (5th ed.). Chicago, IL: McGraw-Hill/Irwin.

Larman, C. (2004). Agile and iterative development: a manager's guide. Boston,

USA: Addison-Wesley Professional.

Layman, L., Williams, L., Damian, D., & Bures, H. (2006). Essential

communication practices for Extreme Programming in a global software
development team. Information and Software Technology, 48(9), 781-794.

Lee, D. M., Trauth, E. M., & Farwell, D. (1995). Critical skills and knowledge

requirements of IS professionals: a joint academic/industry investigation.
MIS Quarterly, 19(3), 313-340.

Lee, G., & Xia, W. (2010). Toward agile: an integrated analysis of quantitative

and qualitative field data on software development agility. MIS Quarterly,
34(1), 87-114.

Li, Y., Chang, K.-C., Chen, H.-G., & Jiang, J. J. (2010). Software development

team flexibility antecedents. Journal of Systems and Software, 83(10),
1726-1734.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., . . . Zelkowitz,

M. (2002). Empirical findings in agile methods. Paper presented at the
Extreme Programming and Agile Methods—XP/Agile Universe Chicago,
IL, USA.

105

Locke, K. (1996). Rewriting the discovery of grounded theory after 25 years?

Journal of Management Inquiry, 5(3), 239-245.

Lomax, R. G., & Schumacker, R. E. (2012). A beginner's guide to structural

equation modeling (Third ed.). New Jersey: Routledge Academic New
York, NY.

Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation

modeling (SEM) for building and testing behavioral causal theory: When to
choose it and how to use it. Professional Communication, IEEE
Transactions on, 57(2), 123-146.

Lyytinen, K., & Rose, G. M. (2006). Information system development agility as

organizational learning. European Journal of Information Systems, 15(2),
183-199. doi: http://dx.doi.org/10.1057/palgrave.ejis.3000604

MacKenzie, S. B., Podsakoff, P. M., & Podsakoff, N. P. (2011). Construct

measurement and validation procedures in MIS and behavioral research:
Integrating new and existing techniques. MIS quarterly, 35(2), 293-334.

Mangalaraj, G., Mahapatra, R., & Nerur, S. (2009). Acceptance of software

process innovations–the case of extreme programming. European Journal
of Information Systems, 18(4), 344-354.

Maruping, L. M., Venkatesh, V., & Agarwal, R. (2009). A control theory

perspective on agile methodology use and changing user requirements.
Information Systems Research, 20(3), 377-399.

McAvoy, J., & Butler, T. (2009). The role of project management in ineffective

decision making within Agile software development projects. European
Journal of Information Systems, 18(4), 372-383.

McKinsey&Company. (2012). Delivering large-scale IT projects on time, on

budget, and on value.

McLeod, L., & MacDonell, S. G. (2011). Factors that affect software systems

development project outcomes: A survey of research. ACM Computing
Surveys (CSUR), 43(4), 24.

Melnik, G., & Maurer, F. (2004). Direct verbal communication as a catalyst of

agile knowledge sharing. Paper presented at the Agile Development
Conference, 2004.

http://dx.doi.org/10.1057/palgrave.ejis.3000604

106

Melo, C. d. O., Santos, V., Katayama, E., Corbucci, H., Prikladnicki, R.,
Goldman, A., & Kon, F. (2013). The evolution of agile software
development in Brazil. Journal of the Brazilian Computer Society, 19(4),
523-552.

Meso, P., & Jain, R. (2006). Agile software development: adaptive systems

principles and best practices. Information Systems Management, 23(3),
19-30.

Mishra, D., & Mishra, A. (2009). Effective communication, collaboration, and

coordination in eXtreme Programming: Human‐centric perspective in a
small organization. Human Factors and Ergonomics in Manufacturing &
Service Industries, 19(5), 438-456.

Mishra, D., Mishra, A., & Ostrovska, S. (2012). Impact of physical ambiance on

communication, collaboration and coordination in agile software
development: An empirical evaluation. Information and Software
Technology, 54(10), 1067-1078.

Misra, S. C., Kumar, V., & Kumar, U. (2009). Identifying some important success

factors in adopting agile software development practices. Journal of
Systems and Software, 82(11), 1869-1890.

Moe, N. B., Aurum, A., & Dyba, T. (2012). Challenges of shared decision-making:

A multiple case study of agile software development. Information and
Software Technology, 54(8), 853-865.

Moe, N. B., Dingsoyr, T., & Dyba, T. (2009). Overcoming barriers to self-

management in software teams. Software, IEEE, 26(6), 20-26.

Myers, M. D. (1995). Dialectical hermeneutics: a theoretical framework for the

implementation of information systems. Information Systems Journal, 5(1),
51-70.

Nawrocki, J., Jasiñski, M., Walter, B., & Wojciechowski, A. (2002, 9-13 Sept.

2002). Extreme programming modified: embrace requirements
engineering practices. Paper presented at the IEEE Joint International
Conference on Requirements Engineering (RE’02), Essen, Germany.

Nerur, S., & Balijepally, V. (2007). Theoretical reflections on agile development

methodologies. Communications of the ACM, 50(3), 79-83. doi:
10.1145/1226736.1226739

Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to

agile methodologies. Communications of the ACM, 48(5), 72-78.

107

O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation

factors. Quality & Quantity, 41(5), 673-690.

Orr, K. (2011). Adaptive Software Development. Cutter Consortium Summit, 173-

179.

Palvia, P. C., King, R. C., Xia, W., & Palvia, S. C. J. (2010). Capability, quality,

and performance of offshore IS vendors: a theoretical framework and
empirical investigation. Decision Sciences, 41(2), 231-270.

Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in

information systems research. MIS quarterly, 623-656.

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., & Still, J. (2008). The

impact of agile practices on communication in software development.
Empirical Software Engineering, 13(3), 303-337.

Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating

indirect effects in simple mediation models. Behavior research methods,
instruments, & computers, 36(4), 717-731.

Qumer, A., & Henderson-Sellers, B. (2006). Crystallization of agility back to

basics. Paper presented at the International Conference on Software and
Data Technologies (ICSOFT), Setúbal, Portugal.

Qumer, A., & Henderson-Sellers, B. (2008). An evaluation of the degree of agility

in six agile methods and its applicability for method engineering.
Information and Software Technology, 50(4), 280-295.

Racheva, Z., Daneva, M., & Sikkel, K. (2009). Value creation by agile projects:

methodology or mystery? Product-Focused Software Process
Improvement (pp. 141-155): Springer.

Ramesh, B., Cao, L., Mohan, K., & Xu, P. (2006). Can distributed software

development be agile? Communications of the ACM, 49(10), 41-46.

Rathor, S., Batra, D., & Xia, W. (2016). Tradeoffs between Delivery Capability

and Agility in Software Development. Paper presented at the 15th AIS
SIGSAND Symposium, Lubbock, TX, USA.

Rathor, S., Batra, D., Xia, W., & Zhang, M. (2016). What constitutes Software

Development Agility? Paper presented at the Americas Conference on
Information Systems (AMCIS), San Diego, USA.

108

Ringle, C. M., Sarstedt, M., & Straub, D. (2012). A critical look at the use of PLS-
SEM in MIS Quarterly. MIS quarterly, 36(1).

Ryan, S., & O’Connor, R. V. (2013). Acquiring and sharing tacit knowledge in

software development teams: An empirical study. Information and
Software Technology, 55(9), 1614-1624.

Sarker, S., & Sarker, S. (2009). Exploring Agility in Distributed Information

Systems Development Teams: An Interpretive Study in an Offshoring
Context. Information Systems Research, 20(3), 440-461. doi:
10.1287/isre.1090.0241

Sattler, H., Völckner, F., Riediger, C., & Ringle, C. M. (2010). The impact of

brand extension success drivers on brand extension price premiums.
International Journal of research in Marketing, 27(4), 319-328.

Schmidt, R., Lyytinen, K., & Mark Keil, P. C. (2001). Identifying software project

risks: an international Delphi study. Journal of Management Information
Systems, 17(4), 5-36.

Schwaber, K. (2004). Agile project management with Scrum. Redmond, WA,

USA: Microsoft Press.

Schwaber, K., & Sutherland, J. (2014). The Scrum Guide (pp. 1-16): Scrum.Org

and ScrumInc.

Senapathi, M., & Srinivasan, A. (2012). Understanding post-adoptive agile

usage: An exploratory cross-case analysis. Journal of Systems and
Software, 85(6), 1255-1268. doi: DOI 10.1016/j.jss.2012.02.025

Serrador, P., & Pinto, J. K. (2015). Does Agile work?—A quantitative analysis of

agile project success. International Journal of Project Management, 33(5),
1040-1051.

Sharma, P. N., & Kim, K. H. (2013). A comparison of PLS and ML bootstrapping

techniques in SEM: A Monte Carlo study New perspectives in partial least
squares and related methods (pp. 201-208). New York: Springer.

Sharp, H., & Robinson, H. (2004). An ethnographic study of XP practice.

Empirical Software Engineering, 9(4), 353-375.

Sharp, H., & Robinson, H. (2008). Collaboration and co-ordination in mature

eXtreme programming teams. International Journal of Human-Computer
Studies, 66(7), 506-518.

109

Sheffield, J., & Lemetayer, J. (2013). Factors associated with the software
development agility of successful projects. International Journal of Project
Management, 31(3), 459-472. doi: DOI 10.1016/j.ijproman.2012.09.011

Sheffield, J., & Lemétayer, J. (2013). Factors associated with the software

development agility of successful projects. International Journal of Project
Management, 31(3), 459-472.

Siau, K., Long, Y., & Ling, M. (2010). Toward a unified model of information

systems development success. Journal of Database Management (JDM),
21(1), 80-101.

Siau, K., Tan, X., & Sheng, H. (2010). Important characteristics of software

development team members: an empirical investigation using Repertory
Grid. Information Systems Journal, 20(6), 563-580.

StandishGroup. (2015). CHAOS Report 2015.

Straub, D., Boudreau, M.-C., & Gefen, D. (2004). Validation guidelines for IS

positivist research. Communications of the Association for Information
Systems, 13(24), 380-427.

Summers, M. (2008). Insights into an agile adventure with offshore partners.

Paper presented at the AGILE'08 Conference, Toronto, Canada.

Sutherland, J., Viktorov, A., Blount, J., & Puntikov, N. (2007). Distributed scrum:

Agile project management with outsourced development teams. Paper
presented at the 40th Annual Hawaii International Conference on System
Sciences (HICSS)

Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic

management. Strategic Management Journal, 509-533.

Teo, T. S., Srivastava, S. C., & Jiang, L. (2008). Trust and electronic government

success: An empirical study. Journal of management information systems,
25(3), 99-132.

Thomas, G., & Fernández, W. (2008). Success in IT projects: A matter of

definition? International Journal of Project Management, 26(7), 733-742.

Tripp, J. F. (2012). The impacts of agile development methodology use on

project success: A contingency view. (3523854 Ph.D.), Michigan State
University, Ann Arbor. ProQuest Dissertations & Theses A&I; ProQuest
Dissertations & Theses Global database.

110

Urquhart, C. (2007). The evolving nature of grounded theory method: The case
of the information systems discipline. The Sage handbook of grounded
theory, 339-359.

VersionOne, I. (2015). 9th Annual State of agile survey (pp. 16).

Vial, G., & Rivard, S. (2015). Understanding Agility in ISD Projects. Paper

presented at the 36th International Conference on Information Systems
(ICIS), Fort Worth, Texas, USA.

Vidgen, R., & Wang, X. (2009). Coevolving systems and the organization of agile

software development. Information Systems Research, 20(3), 355-376.

Vinod, V., Dhanalakshmi, J., & Sahadev, S. (2009). Software team skills on

software product quality. Asian Journal of Information Technology, 8(1), 8-
13.

Wallace, L., Keil, M., & Rai, A. (2004). Understanding software project risk: a

cluster analysis. Information & Management, 42(1), 115-125.

Wendler, R. (2013, 8 - 11 September, 2013). The Structure of Agility from

Different Perspectives. Paper presented at the Federated Conference on
Computer Science and Information Systems (FedCSIS), Kraków, Poland.

Xia, W., & Lee, G. (2003). Complexity of information systems development

projects: conceptualization and measurement development. Journal of
Management Information Systems, 22(1), 45-83.

Xiaohu, Y., Bin, X., Zhijun, H., & Maddineni, S. (2004). Extreme programming in

global software development. Paper presented at the Canadian
Conference on Electrical and Computer Engineering.

Yu, X., & Petter, S. (2014). Understanding agile software development practices

using shared mental models theory. Information and Software
Technology, 56(8), 911-921.

111

Appendix

Descriptive Statistics

Descriptive Statistics: Project Outcomes

Customer Satisfaction N Minimum Maximum Mean Std. Deviation

Q7_CustSatf1 160 1 7 6.05 1.069

Q7_CustSatf2 160 1 7 5.94 1.056

Q7_CustSatf3 160 1 7 5.68 1.348

Q7_CustSatf5 160 1 7 6.05 .937

Q7_CustSatf4 160 1 7 5.56 1.248

Change Satisfaction

Q8_CngSatf1 160 2 7 5.81 1.071

Q8_CngSatf2 160 3 7 5.89 .945

Q8_CngSatf3 160 1 7 5.41 1.210

Q8_CngSatf4 160 1 7 5.68 1.325

Table A1.1: Descriptive Statistics of Project Outcomes Variables

Descriptive Statistics: Delivery Capability and Agility

Delivery Capability N Minimum Maximum Mean Std. Deviation

Q9_DvlCap1 160 1 7 6.18 .889

Q9_DvlCap2 160 1 7 6.21 .855

Q9_DvlCap3 160 1 7 6.08 .883

Q9_DvlCap4 160 1 7 5.67 1.056

Agility-Sense

Q10_Sense1 160 2 7 5.79 1.036

Q10_Sense2 160 1 7 5.83 1.193

Q10_Sense3 160 1 7 5.32 1.329

Q10_Sense4 160 2 7 5.79 1.101

Agility-Respond

Q11_Respond1 160 2 7 5.86 .987

Q11_Respond2 160 1 7 5.95 .944

Q11_Respond3 160 1 7 5.46 1.253

112

Q11_Respond4 160 2 7 5.69 1.116

Agility-Learn

Q12_Learn1 160 2 7 5.94 .927

Q12_Learn2 160 1 7 6.03 1.018

Q12_Learn3 160 1 7 5.55 1.120

Q12_Learn4 160 1 7 5.78 1.108

Table A1.2: Descriptive Statistics of Agility

Descriptive Statistics: Process Variables

Communication N Minimum Maximum Mean Std. Deviation

Q13_Comm2 160 1 7 5.63 1.297

Q13_Comm1 160 2 7 5.82 1.045

Q13_Comm3 160 1 7 5.26 1.450

Q13_Comm4 160 1 7 5.69 1.224

Collaborative

Decision Making

Q14_CDM1 160 1 7 5.51 1.327

Q14_CDM2 160 1 7 5.50 1.308

Q14_CDM3 160 2 7 5.63 1.227

Q14_CDM4 160 1 7 5.59 1.275

Q14_CDM5 160 1 7 5.51 1.432

Iterative

Development

Q15_ItrDev1 160 1 7 6.07 1.100

Q15_ItrDev2 160 2 7 6.02 1.130

Q15_ItrDev4 160 1 7 5.84 1.248

113

Q15_ItrDev3 160 1 7 5.94 1.260

Table A1.3: Descriptive Statistics of Process Variables

Descriptive Statistics: Antecedent Variables

Team Competence N Minimum Maximum Mean Std. Deviation

Q16_Cmpt1 160 1 7 6.26 .935

Q16_Cmpt2 160 1 7 5.81 1.124

Q16_Cmpt3 160 1 7 5.91 1.018

Q16_Cmpt4 160 2 7 6.21 .891

Team Autonomy

Q18_Atny1 160 1 7 5.09 1.751

Q18_Atny2 160 1 7 5.77 1.117

Q18_Atny3 160 1 7 5.36 1.411

Q18_Atny4 160 1 7 5.69 1.419

Table A1.4: Descriptive Statistics of Antecedent Variables

Total Members Frequency Percent

No Response 2 1.3

1-10 66 41.3

11-20 38 23.8

21-50 37 23.1

51-100 11 6.9

101+ 6 3.8

Total 160 100.0

Table A2: Total Number of members in IT and Business teams

114

Graphs

Composite Reliability

Figure A1: Composite Reliability

115

Cronbach’s Alpha

Figure A2: Cronbach’s Alpha

116

Average Variance Explained (AVE)

Figure A3: Average Variance Explained

117

Heterotrait-Monotraits Ration (MTMT)

Figure A4: Heterotrait-Monotraits Ration (HTMT)

118

Path Coefficients

Figure A5: Path Coefficients

119

R-Square

Figure A6: R-Square

120

R-Square Adjusted

Figure A7: R-Square Adjusted

121

F-Square

Figure A8: F-Square

122

Survey Questionnaire

Process Variables

Communication Item ID

IT and Business team members had sufficient interactions during the project (1)
Q13_Comm
1

IT and Business team members developed a shared understanding about the
project (2)

Q13_Comm
3

IT and Business team members did not have communication problems during
the project (3)

Q13_Comm
2

IT and Business team members effectively communicated their thoughts and
opinions to others (4)

Q13_Comm
4

Collaborative Decision Making

IT and Business teams worked jointly:

for deciding features for each iteration (1) Q14_CDM1

for deciding the scope of the requirements for each iteration (2) Q14_CDM2

for prioritizing the requirements for each iteration (3) Q14_CDM3

for deciding changes in the requirements (4) Q14_CDM4

Iterative Development

The software system was developed in smaller iterations of few weeks (2-8
weeks) (1)

Q15_ItrDev
1

The software system was tested as it was being developed (2)
Q15_ItrDev
2

Each iteration provided working software that could be demonstrated (3)
Q15_ItrDev
3

The software system was continually integrated as it was being developed (4)
Q15_ItrDev
4

Table A3.1: Survey Items for Process Variables

123

Antecedents Variables

Team Autonomy
Item ID

Project team members:

were allowed to choose tools and technologies (1) Q18_Atny1

had control over their tasks (2) Q18_Atny2

had the discretion on how to handle user requirement changes (3) Q18_Atny3

were free to self-organize as needed (4) Q18_Atny4

Team Competence

Project team members possess required:

technical skills (1) Q16_Cmpt1

business skills (2) Q16_Cmpt2

interpersonal skills (3) Q16_Cmpt3

problem solving skills (4) Q16_Cmpt4

Table A3.2: Survey Items for Antecedent Variables

Agility and Delivery Capability

Delivery Capability
Item ID

Project team(s) were able to deliver solutions that met:

business requirements (1) Q9_DvlCap1

technical requirements (2) Q9_DvlCap2

functional requirements (3) Q9_DvlCap3

non-functional requirements (4) Q9_DvlCap4

124

Agility and its Dimensions

Sense Change
Item ID

During the project, project team(s) were able to sense changes in:

business requirements (1) Q10_Sense1

technical requirements (2) Q10_Sense2

human resource requirements (3) Q10_Sense3

schedule (4) Q10_Sense4

Respond to Change Item ID

During the project, project team(s) were able to respond to changes in:

business requirements (1) Q11_Respond1

technical requirements (2) Q11_Respond2

human resource requirements (3) Q11_Respond3

schedule (4) Q11_Respond4

Learn from Change Item ID

As the project progressed, project team member(s) were able to learn
and enhance their ability to sense and respond to changes in:

business requirements (1) Q12_Learn1

technical requirements (2) Q12_Learn2

human resource requirements (3) Q12_Learn3

schedule (4) Q12_Learn4

Table A3.3: Survey Items for Delivery Capability and Agility

125

Project Outcomes

Customer Satisfaction
Item ID

The customer is satisfied with:

the functionalities of the new system (1) Q7_CustSatf1

the quality of the new system (2) Q7_CustSatf2

the delivery time of the system (3) Q7_CustSatf3

the cost of the new system (4) Q7_CustSatf4

the benefits/value from the new system (5) Q7_CustSatf5

Change Satisfaction
Item ID

The customer is satisfied with the way changes in:

business requirements were managed in the project (1) Q8_CngSatf1

technical requirements were managed in the project (2) Q8_CngSatf2

human resource requirements were managed in the project (3) Q8_CngSatf3

schedule was managed in the project (4) Q8_CngSatf4

Table A3.4: Survey Items for Project Outcome Variables

126

Cross Loadings

Change
Satisfact
i-on

Collabor
ati-ve
Decision
Making

Comm-
unicati-
on

Custom
er
Satisfact
i-on

Delivery
Capabili
-ty

Iterative
Develop
-ment

Learn
Respo-
nd

Sense
Team
Autono-
my

Team
Compet
e-nce

Q10_Sense1 0.348 0.385 0.366 0.320 0.428 0.379 0.368 0.462 0.862 0.285 0.354

Q10_Sense2 0.264 0.239 0.242 0.251 0.278 0.231 0.414 0.330 0.610 0.281 0.236

Q10_Sense3 0.362 0.242 0.240 0.186 0.277 0.213 0.467 0.308 0.640 0.344 0.236

Q10_Sense4 0.382 0.211 0.246 0.284 0.365 0.260 0.440 0.371 0.734 0.202 0.221

Q11_Respond1 0.464 0.511 0.421 0.304 0.459 0.268 0.338 0.776 0.445 0.373 0.527

Q11_Respond2 0.442 0.482 0.395 0.280 0.501 0.250 0.249 0.731 0.394 0.382 0.599

Q11_Respond3 0.519 0.482 0.485 0.323 0.407 0.264 0.422 0.824 0.412 0.405 0.543

Q11_Respond4 0.533 0.532 0.520 0.391 0.412 0.350 0.508 0.899 0.449 0.454 0.567

Q12_Learn1 0.297 0.285 0.345 0.262 0.319 0.242 0.641 0.401 0.350 0.182 0.264

Q12_Learn2 0.295 0.199 0.237 0.287 0.365 0.190 0.577 0.275 0.489 0.162 0.254

Q12_Learn3 0.346 0.285 0.388 0.272 0.288 0.110 0.675 0.352 0.419 0.237 0.219

Q12_Learn4 0.500 0.335 0.427 0.380 0.344 0.357 0.939 0.437 0.465 0.331 0.321

Q13_Comm1 0.395 0.520 0.772 0.247 0.413 0.376 0.339 0.385 0.269 0.314 0.276

Q13_Comm2 0.532 0.609 0.886 0.400 0.432 0.333 0.448 0.538 0.304 0.398 0.362

Q13_Comm3 0.416 0.451 0.659 0.259 0.339 0.265 0.292 0.396 0.279 0.328 0.317

Q13_Comm4 0.537 0.682 0.895 0.449 0.499 0.450 0.469 0.508 0.395 0.434 0.328

Q14_CDM1 0.324 0.763 0.519 0.183 0.358 0.375 0.235 0.466 0.215 0.472 0.339

Q14_CDM2 0.424 0.899 0.577 0.308 0.454 0.375 0.292 0.598 0.319 0.463 0.396

Q14_CDM3 0.320 0.769 0.554 0.270 0.406 0.423 0.313 0.408 0.401 0.369 0.355

Q14_CDM4 0.453 0.859 0.677 0.328 0.381 0.362 0.413 0.528 0.335 0.500 0.380

Q15_ItrDev1 0.133 0.373 0.251 0.193 0.302 0.613 0.109 0.216 0.276 0.303 0.255

Q15_ItrDev2 0.272 0.331 0.184 0.247 0.303 0.631 0.115 0.279 0.198 0.323 0.321

Q15_ItrDev3 0.365 0.427 0.454 0.380 0.450 0.963 0.376 0.336 0.373 0.398 0.341

127

Q15_ItrDev4 0.282 0.324 0.319 0.291 0.319 0.750 0.299 0.267 0.349 0.257 0.280

Q16_Cmpt1 0.257 0.314 0.254 0.215 0.470 0.346 0.287 0.472 0.294 0.321 0.745

Q16_Cmpt2 0.374 0.391 0.342 0.298 0.410 0.303 0.336 0.572 0.355 0.497 0.852

Q16_Cmpt3 0.370 0.363 0.356 0.295 0.455 0.328 0.254 0.545 0.317 0.509 0.856

Q16_Cmpt4 0.222 0.200 0.195 0.206 0.436 0.311 0.201 0.299 0.318 0.454 0.569

Q18_Atny1 0.250 0.299 0.370 0.132 0.200 0.209 0.211 0.233 0.198 0.687 0.157

Q18_Atny2 0.387 0.489 0.358 0.349 0.473 0.402 0.258 0.461 0.323 0.863 0.496

Q18_Atny3 0.300 0.460 0.349 0.281 0.365 0.311 0.322 0.384 0.237 0.805 0.442

Q18_Atny4 0.386 0.489 0.415 0.292 0.418 0.391 0.297 0.485 0.298 0.858 0.490

Q7_CustSatf1 0.266 0.170 0.182 0.468 0.269 0.133 0.211 0.318 0.159 0.166 0.234

Q7_CustSatf2 0.235 0.175 0.180 0.297 0.096 0.102 0.046 0.186 0.041 0.163 0.060

Q7_CustSatf3 0.566 0.265 0.321 0.816 0.332 0.305 0.205 0.351 0.297 0.255 0.182

Q7_CustSatf4 0.431 0.295 0.372 0.767 0.415 0.267 0.364 0.357 0.181 0.346 0.349

Q7_CustSatf5 0.339 0.262 0.336 0.678 0.412 0.301 0.351 0.273 0.321 0.206 0.207

Q8_CngSatf1 0.727 0.378 0.458 0.387 0.438 0.224 0.351 0.481 0.351 0.300 0.285

Q8_CngSatf2 0.672 0.318 0.434 0.360 0.348 0.237 0.330 0.451 0.386 0.367 0.326

Q8_CngSatf3 0.765 0.367 0.411 0.433 0.355 0.226 0.406 0.483 0.395 0.401 0.320

Q8_CngSatf4 0.897 0.399 0.530 0.562 0.407 0.377 0.467 0.508 0.367 0.304 0.359

Q9_DvlCap1 0.392 0.383 0.417 0.423 0.826 0.417 0.344 0.432 0.366 0.435 0.473

Q9_DvlCap2 0.382 0.376 0.346 0.408 0.759 0.333 0.290 0.332 0.362 0.305 0.364

Q9_DvlCap3 0.359 0.420 0.415 0.365 0.761 0.362 0.304 0.554 0.462 0.405 0.469

Q9_DvlCap4 0.379 0.393 0.465 0.398 0.801 0.348 0.309 0.414 0.421 0.342 0.362

Table A4: Cross Loadings of the items

128

VITA

SHEKHAR RATHOR

2003 Bachelor of Science (B.Sc.)

Himachal Pradesh University

Shimla, India

2008 Master of Computer Applications (MCA)

Panjab University

Chandigarh, India

2011 Specializing Master in E-Business and ICT for Management

Politecnico di Torino

Torino, Italy

2016 Ph.D., Business Administration

Florida International University

Miami, USA

PUBLICATIONS AND PRESENTATIONS

Batra, D., Xia, W., & Rathor, S. (2016). Agility Facilitators for Contemporary
Software Development. Journal of Database Management (JDM), 27(1), 1-28.

Rathor, S., Batra, D., & Xia, W. (2016). Tradeoffs between Delivery Capability
and Agility in Software Development. Paper presented at the 15th AIS SIGSAND
Symposium, Lubbock, TX, USA.

Rathor, S., Batra, D., Xia, W., & Zhang, M. (2016). What constitutes Software
Development Agility? Paper presented at the Americas Conference on
Information Systems (AMCIS), San Diego, USA.

Zhang, M., Xia, W., Batra, D., & Rathor, S. (2016). Contextual Influences on IS
Offshoring Client-Vendor Collaboration. Paper presented at the TREO Talks,
Americas Conference on Information Systems (AMCIS), San Diego, USA.

	Florida International University
	FIU Digital Commons
	9-26-2016

	Facilitators for Software Development Agility
	Shekhar Rathor
	Recommended Citation

	Facilitators for Software Development Agility

