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by 
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Professor Jeffrey Wells, Major Professor 

A very unique compound eye in dipterans is found in males of the 

forensically important blow fly, Chrysomya megacephala (Diptera: Calliphoridae). 

This compound eye is characterized by an area of enlarged dorsal facets that, 

unlike almost all other regional changes in dipteran ommatidia size, is not 

accompanied by a change in resolution. This region is believed to play a role in 

mate tracking and allow for increased light capture, though no behavioral studies 

have tested these claims. An initial goal of the dissertation was to examine the 

function of this compound eye. Using allometric measurements coupled with 

behavioral tests, I found larger males had larger eyes and proportionally more 

dorsally enlarged facets. This finding suggested that larger individuals would 

move at lower light levels. When comparing similar sized male and females, 

however, body size and not the specialized male dorsal region dictated the light 

level at which movement occurred.   
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A second focus of this dissertation was the development of tools to 

understand how the male compound eye is genetically regulated. The male-

specific enlarged dorsal ommatidia offer a model for understanding how a gross 

morphological difference of a feature present in both sexes can arise when much 

of the same genetic content is shared. Since the genes regulating compound eye 

development are mainly expressed during stages when sex cannot be efficiently 

determined, I first designed a molecular test for identifying sex by amplifying a 

region of the transformer gene differentially spliced by sex in blow flies from other 

genera. Then, I was able to compare temporal patterns of gene expression for 

rhodopsin genes in separate sexes for the first time in blow flies, which allowed 

for an initial investigation into the expression patterns influencing the 

development of the male compound eye.  

Apart from the biological significance regarding a unique compound eye, 

the forensic importance of C. megacephala means that information obtained in 

this dissertation can be utilized by forensic investigators. The work on low light 

level movement adds to the understanding of nocturnal oviposition patterns and 

the ability to sex immature specimens allows for the determination of sex specific 

development rates.  
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CHAPTER I: Introduction 

 

The insect compound eye is characterized by a variable number of 

ommatidia, similar in appearance, that cover its surface (Nilsson and Kelber 

2007). The way in which the compound eye interprets information is predicated in 

part by the type of visual system it employs (Land and Nilsson 2002). A common 

visual system found in insect is the apposition compound eye. Within each 

ommatidium of the apposition compound eye is a fused rhabdom, which is 

composed of eight parts (reviewed in Agi 2014). Each of these eight parts 

receives input from the same point source, and in most apposition compound 

eyes, there is no overlap between the field of view for each ommatidium (Land 

and Nilsson 2002).     

The visual system in found in higher flies (Muscomorpha) is a variation of 

the normal apposition compound eye type (Land and Nilsson 2002, reviewed in 

Agi 2014). Instead of having a fused rhabdom, these flies have an open rhabdom 

consisting of separate rhabdomeres (also called photoreceptors) (reviewed in Agi 

2014). The advantage to this overall separation is that rhabdomeres within a 

single ommatidium all have slightly different field of view angles, with the angle of 

one rhabdomere being the same as a different rhabdomere in adjacent 

ommatidia (reviewed in Agi 2014). The signal from the rhabdomeres projects to 

the same portion of the brain, resulting in the signal being interpreted as a single 

source that is seven times as bright as would be seen in the same eye that 
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employs an apposition visual system (van Hateren 1987). This sub-type of 

apposition eye is known as a neural superposition eye (Land and Nilsson 2002). 

The model organism for compound eye structure and development in 

dipterans is Drosophila melanogaster. The organization of the D. melanogaster 

compound eye is highly regular, with approximately uniform hexagonal 

ommatidia covering the surface of the eye (Tomlinson and Ready 1987). The 

regularity is also present internally, as each ommatidium contains the eight 

photoreceptors in the same arrangement (Ready et al. 1976). This repetitive 

consistency is the result of a highly ordered pattern of events that begins with 

differential levels of gene expression as early as the first larval instar to establish 

polarity within the eye-antennal imaginal disc (Singh et al. 2012). The 

differentiation of the cells that will become the compound eye begins during the 

mid-third larval instar period as a wave of mitotic divisions, referred to as the 

morphogenetic furrow (Ready et al. 1976), sweeps across the eye-antennal 

imaginal disc. A precise pattern of cell signaling and sequential gene expression 

is carried on throughout the intrapuparial period (Cagan and Ready 1989), 

leading to the adult emerging with the completed compound eye.   

Much of what is known about the genetic timeline of events in D. 

melanogaster compound eye development is based on the investigation of the 

genetic underpinnings of an abnormal phenotype, as external deficiencies are 

often associated with internal abnormalities. For example, the rough gene is 

characterized phenotypically by ommatidia that lack the smooth surface seen in 

the wild type (Tomlinson et al. 1988). The external appearance of the abnormal 
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phenotype is internally characterized by a decreased amount of photoreceptors 

(Tomlinson et al. 1988).  

While D. melanogaster provides a basic blueprint for dipteran eye 

structure and development because of the wealth of morphological and genetic 

data available, there are dipterans that deviate from this basic plan. A driver of 

some of these deviations is sexually dimorphic behaviors such as searching for 

mates (Hardie et al. 1981, O’Grady and McIver 1987). Males of the house fly 

Musca domestica, for example, have a region in the dorsal portion of their eye 

containing enlarged facets referred to as the “love spot” (Hardie et al. 1981). 

Whereas the two central photoreceptors within each ommatidium typically 

express genes used in color discrimination, the distal most central photoreceptor 

in this region, R7, instead expresses a gene known to play a role in motion 

detection (Hardie et al. 1981), leading to speculation that the function of this area 

is to track potential mates. A different example of how motion detection can be 

increased for a male dipteran is present in the black fly Simulium vittatum 

(O’Grady and McIver 1987). Males of this species have a dorsal area that is 

characterized by facets nearly twice as large as the ventral facets, but these 

ommatidia lack the R7 photoreceptor used to help color discrimination (O’Grady 

and McIver 1987). This indicates that color detection is less important in this 

region believed to be specialized for mate tracking (O’Grady and McIver 1987).  

Deviations from the regular structure of ommatidium seen in D. 

melanogaster are interesting from two perspectives. Morphologically, structural 

differences can be representative of different functional properties of the eye 
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design. Genetically, deviations can lead to insights as to how different features 

develop. Investigations into finer genetic differences are more feasible now as 

more draft genomes and transcriptomes of non-model dipterans are becoming 

available (Sze et al. 2012, Gilchrist et al. 2014, Scott et al. 2014a, Wang et al. 

2015, Anstead et al. 2015).            

A compound eye that provides an interesting model to study both visual 

morphological adaptation and genetic regulation is the male compound eye of 

the blow fly Chrysomya megacephala (F.). Morphologically, this eye is relatively 

unique as males have dorsal ommatidia that are upwards of four times as large 

as their female counterparts (Kurahashi 1982, van Hateren et al. 1989). This 

change in size is not accompanied by a change in resolution, as is common in 

external facet size changes, resulting in facets that only seem to increase 

sensitivity through increased light capture (van Hateren et al. 1989). This type of 

region has only been described in one other dipteran, the hoverfly Eristalis tenax 

(Straw et al. 2006). Some Chrysomya that are closely related to C. megacephala 

show varying degrees of this same dimorphism (Singh 2011), though their 

internal morphology has not been investigated, probably because each has a 

more limited distribution and less economic importance compared to C. 

megacephala (Wells et al. 1994). The adaptive value of this unusual compound 

eye has not been demonstrated, however plausible advantages are: 1) increase 

light capture, which would increase movement at lower light levels; and 2) to see 

further in areas of higher luminance (van Hateren et al. 1989). 
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Another interesting morphological question is whether the dorsally 

enlarged facets of male C. megacephala provide an example of a trait that grows 

disproportionate to body size. Investigations regarding how a trait scales in 

relation to body size are important for understanding the level of phenotypic 

plasticity that exists for the trait (Shingleton et al. 2007). In particular, traits that 

increase the ability to find and capture mates can often scale in a non-isometric 

fashion (Emlen and Nijhout 2000). It is not known how the specialized dorsal 

facets of the male C. megacephala compound eye grow in proportion to body 

size, as previous studies did not consider body size when measuring compound 

eye features (van Hateren et al. 1989, Stavenga et al. 1990, Sukontsaon et al. 

2008). For C. megacephala, a holometabolous species dependent on carrion for 

larval development, the prospect of food running out is a very real possibility that 

leads to size variation in adults. This lifestyle makes the study of how traits scale 

in relation to body size particularly relevant for this species. 

 From a genetic standpoint, this eye is interesting because it is a gross 

morphological difference between the very recently diverged sister species C. 

megacephala and C. pacifica (Singh and Wells 2011). This difference was first 

thought to be evidence for the recent and rapid evolution of this eye dimorphism 

(along with adaptation to human-altered environments), because C. pacifica has 

the uniform facet size characteristic of most higher flies (Kurahashi 1982, 1991). 

Subsequent phylogenetic analysis, however, supports the hypothesis that 

relative to the C. megacephala lineage of the genus Chrysomya, it is the C. 

pacifica eye that most recently evolved (Singh and Wells 2011). While the eye 
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represents a gross morphological difference, the two species can interbreed in 

the lab, and resulting offspring had an intermediate eye phenotype (J. Wells, 

personal communication). This ability to interbreed suggests that much of the 

genetic material in these species is shared, and the morphological differences in 

the male eye are relatively new events that led to their speciation from one 

another. 

 Apart from investigating differences between two different species, the 

compound eye of C. megacephala also provides a model for understanding how 

sexually dimorphic differences can arise within the same species. An example of 

a sexually selected trait in Dipterans is the sex comb found in some male species 

of Drosophila, which can show great phenotypic variance between closely related 

species and is absent in females  (Tanaka et al. 2011). It is proposed that 

differences in sex comb morphology are associated with differential levels of 

expression for genes in the sex determination pathway (Tanaka et al. 2011). As 

the male compound eye in C. megacephala is believed to play a role in mate 

tracking, it is very likely this feature is under sexual selection and genes involved 

in the sex determination pathway undoubtedly have a role to play in the genetic 

regulation of the compound eye. 

In addition to being an interesting model for studying the morphology and 

function of a unique eye type and the genetic regulation of a sexually dimorphic 

trait that is grossly different between two closely related species the carrion 

feeding behavior of C. megacephala makes it important to forensic entomologists 

(Wells and Kurahashi 1994). Chrysomya megacephala is widespread (Wells 
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1991), so in many areas it can be of forensic utility to investigators attempting to 

estimate the minimum time since death by aging immature entomological 

specimens developing on a corpse (Catts and Goff 1992).  

 The purpose of this doctoral dissertation is to investigate how the male 

eye morphology observed in C. megacephala influences low light level behavior 

and to develop tools that could be used to help determine how the derived eye 

phenotype is genetically regulated. Also, the role of C. megacephala as an insect 

of forensic importance allows for portions of this work to have direct applications 

in the field of forensic entomology.              

 Chapter II (published as Smith et al. 2015) determines how the eye 

changes as a function of body size. Since the enlarged dorsal eye morphology is 

only found in males, it is believed to play a role in mating. It is not unusual that 

morphological traits can scale disproportionately when associated with sexual 

selection (Emlen 1994). This chapter compared how different eye features scale 

with body size, and used this information to devise a hypothesis concerning the 

relationship between eye function and size. The hypothesis was tested using a 

custom built motion detector that enabled recording low light level walking 

movement. On a basic level, this chapter reveals how a relatively unique sexually 

dimorphic trait changes with body size and how size changes can alter behavior. 

On a more applied level, a better understanding of how a carrion fly responds to 

a corpse during low light conditions is of interest to forensic entomologists. 

 Chapter III (published as Smith et al. 2016) investigates the role the male 

C. megacephala compound eye morphology plays in low light level flight, a factor 
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not considered in Chapter II. By using a more elaborate custom built sensor, low 

light level walking and flying were directly compared as were differences in 

movement based on sex. A rotten meat source was also incorporated, giving the 

flies an external stimulus to prompt movement that was absent in previous work 

(Smith et al. 2015). On a basic level this tested whether the male specific eye 

morphology would allow for low light level flight. This work has direct applications 

to the field of forensic entomology, as the likelihood of oviposition under 

nocturnal light levels is a factor that is debated (for example compare results in 

Greenberg 1990, Singh and Bharti 2001, to those in Stamper and Debry 2007, 

Amendt et al. 2008, Stamper et al. 2009) and influences estimates of the 

minimum time since death. 

 Chapter IV (Smith and Wells In press) describes the first molecular tool for 

determining sex in the larval and intrapuparial stages of C. megacephala, 

developmental periods when many of the genes involved in patterning and retinal 

development are expressed. Apart from karyotyping (Azeredo-Espin and Pavan 

1983, Parise-Maltempi et al. 2001), which is known to be difficult in insects 

(Popescu and Dutrillaux 2001), there was no way to identify sex in C. 

megacephala during these stages. With recently acquired next generation 

sequencing data, the male specific transformer exon for C. megacephala was 

isolated as has been done for blow flies in other genera (Scott et al. 2014b) and 

a RT-PCR based test was developed for immature specimen sex identification. 

On a basic level, this work demonstrates a certain level of conservation exists in 

the sex determination system across three different genera of blow flies. An 
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application of this work is that sexually specific differences in development rate 

and gene expression can now be explored in C. megacephala.  

 In Chapter V, the sexually dimorphic expression of rhodopsin 1 (rh1) and 3 

(rh3) is investigated. These later expressing intrapuparial period genes have 

been tied to either specialized areas of enlarged male facets in other species 

(Hardie et al. 1981) or to increases in dorsal ommatidial size in adults (Posnien et 

al. 2012). The expression level of rh1 for males and females during the later 

stages of C. megacephala intrapuparial development was investigated separately 

in an effort to determine if sexually dimorphic differences in the timing of 

expression for this gene may play a role in the unique male compound eye 

phenotype. Similarly, the expression level of rh3 was compared in adult males 

and females to determine if previous correlations of increased rh3 expression 

and dorsal enlargement remained consistent for C. megacephala. In addition to 

an exploration of genes that may contribute to the male compound eye 

phenotype, on a more applied level this work represents the first investigation of 

sex specific blow fly intrapuparial gene expression. Previous work has shown sex 

can alter growth rates (Picard et al. 2013), and gene expression is used to 

estimate the age of blow fly intrapuparial specimens (Tarone and Foran 2011, 

Boehme et al. 2013), so understanding how gene expression can vary by sex at 

different times can aid forensic entomologists in constructing more accurate 

models of the specimen age used to estimate the time since death.               
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CHAPTER II: Body size, rather than male eye allometry, explains 

Chrysomya megacephala (Diptera: Calliphoridae) activity in low light 

 

Abstract 

Male Chrysomya megacephala (F.) blow fly compound eyes contain an 

unusual area of enlarged dorsal facets believed to allow for increased light 

capture. This region is absent in females and has been hypothesized to aid in 

mate tracking in low light conditions and/or at greater distances. Many traits used 

in the attraction and capture of mates are allometric, growing at different rates 

relative to body size. Previous reports concerning C. megacephala eye 

properties did not include measurements of body size, making the relationship 

between the specialized eye region and body size unclear. We examined 

different morphological features of the eye among individuals of varying sizes. 

We found total eye size scaled proportionately to body size, but the number of 

enlarged dorsal facets increased as body size increased. This demonstrated that 

larger males have an eye that is morphologically different than smaller males. 

Based on external morphology, we hypothesized that since larger males have 

larger and a greater number of dorsally enlarged facets, and these facets are 

believed to allow for increased light capture, larger males would be active in 

lower light levels than smaller males and females of equal size. In a laboratory 

setting, larger males were observed to become active earlier in the morning than 

smaller males, although they did not remain active later in the evening. However, 

females followed the same pattern at similar light levels suggesting that overall 



15 
 

body size rather than specialized male eye morphology is responsible for 

increased activity under low light conditions. 

Introduction 

Traits that aid in the capture or attraction of mates can often grow 

disproportionately in relation to body size among holometabolous insects 

(reviewed in Emlen and Nijhout 2000). The size of these traits is generally 

nutrition dependent, as the exaggerated features are not necessary to complete 

development and can be notably absent in smaller individuals (Emlen 1994). 

Since the adult size of holometabolous insects is determined by larval feeding 

(Shingleton et al. 2007), to develop a larger trait as an adult, a larva must feed 

beyond the minimum requirement to complete metamorphosis (Emlen et al. 

2007). This presents a life history trade off in that achieving larger size requires 

individuals to remain for longer in what may be a relatively vulnerable larval stage 

(Hanski 1987). 

Blow flies are examples of holometabolous insects whose adult size is 

dependent on larval feeding. Many blow flies feed on carrion (Norris 1965, 

Hanski 1987, Erzinҫlioglu 1996). The use of such a temporary and finite food 

source leads to the possibility that individuals will not be able to feed long enough 

to complete development due to intense competition that results in the loss of the 

food source (Norris 1965, Hanski 1987). Furthermore, blow fly larvae are 

relatively defenseless against direct predation (Faria et al. 1999) and vertebrate 

scavenging (Reeves 2009). Once a blow fly has obtained enough nutrition it can 

move off the food source, pupate, and become a relatively small adult, or stay on 
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the food and continue feeding, risking predation while possibly becoming a larger 

adult. A size increase that elevates the performance of a trait used to find mates 

might generate selection to stay on a food source for longer.    

An example of a sexually dimorphic trait that has been hypothesized to 

help locate mates in a blow fly is the male compound eye of Chrysomya 

megacephala (F.). Adult males possess a dorsal area of ommatidia that are 

drastically larger than the facets in the ventral region (Kurahashi 1982; Figure 

2.1a). Females of the same species do not have this area of dorsal enlargement 

(Sukontason et al. 2008; Figure 2.1a). While a compound insect eye containing 

distinct regions of facet size is not uncommon (reviewed in Land 1997), it is very 

rare in muscomorph flies, and even more unusual is that the increase in facet 

size is not accompanied by a change in resolution (van Hateren et al. 1989). This 

has led to the dorsal area being referred to as the “bright zone” since the 

enlarged facets are believed to be used for increased light capture, perhaps 

allowing males to either search for females at lower light levels or from greater 

distances in higher light levels (van Hateren et al. 1989).  

Previous morphological publications concerning the C. megacephala male 

eye (van Hateren et al. 1989, Stavenga et al. 1990, Sukontason et al. 2008) did 

not investigate the relationship between body size and eye shape. Our first 

objective was to determine how eye morphology scales with body size in male C. 

megacephala. Our second objective was to analyze the behavioral implications 

of any variation in eye morphology in order to gain insight from a visual 
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perspective as to why a blow fly might prolong the risky larval phase of its life 

cycle in order to increase its adult body size. 

Methods 

Study Groups for Eye Morphology.  Chrysomya megacephala with four 

sampling histories were used: 1) adult flies caught at a decayed meat bait near 

the Florida International University campus (referred to as “FIU wild”; 2) adult 

flies collected in a similar manner in the Florida Keys (“Keys wild”); 3) the adult 

offspring from a single egg clutch obtained from a laboratory colony originating 

from Florida International University (“FIU colony”); and 4) the adult offspring 

from a single egg clutch from a single female captured in Marathon, FL 

(“Marathon female”). The wild caught flies were all placed in laboratory cages 

and provided water and sugar for a period of four days after capture. At the end 

of the four day period, the flies were killed by freezing. From the two groups of 

the single egg clutches, some larvae were manipulated to generate a range of 

adult sizes. In order to generate small flies, between 25-30 larvae from each 

group were removed from the meat during the early third instar period and placed 

directly into sawdust where they could pupate. The remaining larvae were 

provided with chicken liver until each ceased feeding on its own and then 

pupated in sawdust. Following pupation, the newly emerged adults were allowed 

four days to fully mature before being killed by freezing.  

Adult males from all four groups were pinned and assigned a specimen 

number. We generated a random permutation of the specimen numbers, and 

made measurements of the first 30 specimens on that list. If less than 30 
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individuals were present, then all individuals were used. If damaged, individuals 

were omitted from that measurement. As a control for body size independent of 

male eye morphology, we also pinned adult females from the single egg clutch 

obtained from Marathon, Florida. We chose 20 females in the same manner as 

the males. 

Measuring Fly Size and Eye Morphology. Crossvein length (dm-cu) was 

used as an indicator of body size (Ireland and Turner 2006). We mounted wings 

on microscope slides and photographed them at 25x magnification. 

Measurements were taken by analyzing photos in Image J (version 1.47; 

National Institutes of Health; Bethesda, MD, USA). The suitability of crossvein 

length as an indicator of body size was determined by measuring thorax length 

(Jander and Jander 2002, Kelber et al. 2006) using a caliper in a subset of males 

from all four groups. Linear regression was used to characterize the relationship 

between thorax length and crossvein length.     

Eye size was defined as the distance from top of the medial area of the 

eye to the bottom of the distal area (black lines in Fig. 2.1a). Eyes were 

photographed at 60x magnification and the images were viewed and measured 

using Image J software.      

To measure various aspects of eye morphology, casts were made of the 

eyes using clear nail polish and flattened onto a slide as described in Ribi et al. 

(1989). We viewed the slides under 100x magnification and photographed the 

areas of interest. The photos were viewed and measured using Image J 

software. 



19 
 

 We designated morphological references points to define the facets that 

were measured across different individuals (Figs. 2.1b-c). For males, one 

morphological landmark was the boundary separating the enlarged dorsal 

ommatidia from the smaller ventral ommatidia. This boundary consists of two 

rows containing predominantly non-hexagonal shaped ommatidia near the 

medial portion of the face. Within the ventral most of these two rows, we located 

the tenth ommatidium from the edge (Fig. 2.1b) and then measured three 

consecutive facets beginning with the third row distant from that point in the 

ventral direction (small triangles in Fig. 2.1b). From the same reference point, 

three consecutive facets were counted beginning with the fifth row distant in the 

dorsal direction (small circles in Fig. 2.1b). 

 For the female adults, there is not a sharp change in facet shape so an 

approximate reference point was determined using the medial boundary of the 

compound eye. The medial portion of the compound eye runs perpendicular to 

the longitudinal axis of the body, and then curves in the ventral half of the eye. 

The point approximately above this transition was used a reference (black arrow 

in Fig. 2.1a). From this point, we counted over three ommatidia and measured 

the width of two consecutive facets (triangles in Fig. 2.1c).  

 For the adult males, we were interested in the number of enlarged dorsal 

ommatidia that spanned the dorsal region. Starting with the most medial enlarged 

dorsal facet near the line of demarcation, the number of consecutive ommatidia 

in a row were counted up the dorsal area until another line of non-hexagonal 

shaped facets were met (dotted line in Fig. 2.1d). We used linear regression to 
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characterize the relationship between the various eye features and crossvein 

length for both males and females.   

 We also performed a logarithmic transformation on the data for eye size, 

facet size, and facet number (not shown). By modelling allometry (as reviewed in 

Shingleton et al. 2007) using the formula y=axb, (where x is body size, y is the 

size of the trait of interest, and both a and b are constants), a logarithmic 

transformation yields a linear equation (Log(y) = Log(a)+bLog(x)) where the 

slope of the line, b, quantitatively describes change in trait size relative to body 

size. We calculated the value of b to determine the rate of growth for each eye 

feature relative to body size for eye size, facet size, and facet number using this 

equation. 

 Histology. Individuals used for histological work were obtained from a C. 

megacephala laboratory colony established from individuals captured in Miami, 

FL, in June 2013. Longitudinal cross-sections of compound eyes from a single 

male and female of approximately equal size were obtained following the 

methodology described in Meyer-Rochow and Lau (2008). Histological sections 

were photographed and measurements of the ommatidial lengths were taken 

using ImageJ software. In order to get a range of ommatidial lengths, 

measurements for the female compound eye were taken from the upper, middle, 

and lower area of the histological sections. Measurements for the male 

compound eye were taken from upper region of the dorsal area, from near the 

equator in the dorsal area, from near the equator in the ventral area, and in the 
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lower portion of the ventral area of the histological sections. Body size for these 

individuals was measured using crossvein length as previously described. 

Behavior. Mate detection and capture under low light conditions requires 

general movement. To determine fly activity during a simulated light/dark cycle 

incorporating low light conditions, we used an interruption of an infrared beam 

caused by a moving fly within a confined space (Joshi 1999). Single flies were 

isolated in a translucent plastic tube lined with foam to limit the range of motion 

for the fly to the area with the infrared beam. Inside the tube, a moistened cotton 

ball was placed on one side and sugar was placed on the other (Fig. 2.3a). The 

apparatus included a pair of these confinement tubes, each placed between an 

infrared emitter and receiver. Black poster board visually separated the two tubes 

so that flies simultaneously placed individually in each tube could not see each 

other. A custom python script recorded the time, number, and photocell reading 

of each beam interruption.   

 The movement sensors were placed in a DigiTherm Incubator (Tritech 

Research Inc., Los Angeles, CA, USA) outfitted with a strip of LED lights. The 

lights were controlled by a microcontroller (Arduino UNO, Italy) programmed to 

simulate a light cycle with natural, gradual transitions. The simulated day cycle 

consisted of a period of 12 hours of darkness, followed by a 2 hour increase to a 

maximum level, a hold at the maximum level for 8 hours, followed by a 2 hour 

decrease until the lights went off.     

 Subjects were from what appeared to be a single egg clutch (based on 

egg number and arrangement, Wells and Kurahashi 1994). This was done to 
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reduce genetic (Williams and Kokkinn 2005) and eliminate age related (Gibbert 

et al. 2001, Koh et al. 2006) effects on behavior, as only sibling pairs of equal 

age were used in the behavior experiments. Individuals within the clutch were 

reared under the same conditions, except some feeding larvae were removed 

early to generate smaller individuals. Large and small C. megacephala males 

from the same egg clutch were placed in the incubator to entrain for at least three 

days at the simulated day light cycle. After entrainment, a pair consisting of one 

large and one small male were simultaneously placed in separate tubes of the 

movement sensor and observed for two mornings and two evenings. We rotated 

the different size groups (either “large” or “small” males) between the two 

sensors to eliminate any bias of one sensor over the other. A total of 10 pairs 

consisting of a large and small male were used. For a control of the effect of 

body size independent of the specialized male eye morphology, this work was 

repeated with 10 pairs of large and small C. megacephala females.   

 Analyses were based on the time that elapsed between 1) the lights 

turning on and first movement of the individual, and 2) the final movement of an 

individual before the lights turned off. Paired t-tests were performed to determine 

if the differences in time were significant between body sizes. A two-sample t-

test, assuming equal variance, was performed comparing the differences in time 

obtained on both sensors to check for any sensor bias.    

The average photocell reading at first crossing after the lights came on for 

both days was recorded for each fly. Similarly, the average photocell reading at 

the last crossing in the evening before the lights went off for both days was also 
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recorded for each fly. We converted the photocell readings into light levels by 

measuring the light level inside the incubator using a light meter (Starlite 2, 

Gossen, Nürnberg, Germany) at five step increments for the light program. We 

plotted these values against the average photocell reading across a 5000 

millisecond integration time (one reading per millisecond) at the same five step 

increments, and used piece wise interpolation for values not directly measured. 

We used linear regression to characterize the relationship between the average 

light level and crossvein length. 

Determination of Ocellus Size. For the first five pairs from both the male 

and female behavior experiments, we determined the width of the median and 

lateral ocelli by taking photos and measuring using Image J. We used linear 

regression to characterize the relationship between both median ocelli and lateral 

ocelli width with respect to crossvein length.   

Results 

Crossvein Length a Suitable Indicator of Body Size. As shown in Fig. 

2a, there is a significant positive linear relationship between crossvein and thorax 

length (Table 2.1). From these data it was determined that crossvein length is a 

suitable indicator of body size.   

Eye Morphology Changes Based on Size. As shown in Fig. 2.2b, as 

body size increased so did the overall size of the eye in males (Table 2.1) and 

females (Table 2.1). Based on the results of the logarithmic regression analysis, 

this change is nearly isometric (b = 0.8788 for all males, b = 1.1115 for females). 

Similarly, individual facet width also increased as body size did for the male 
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dorsal (Table 2.1), male ventral (Table 2.1), and female facets (Table 2.1) (Fig. 

2.2c). This rate of increase, however, was less for each of the male dorsal (b = 

0.4697), male ventral (b = 0.5192), and female (b = 0.5327) facets compared to 

overall eye size. The male dorsal facets were the widest while the male ventral 

facets were the narrowest (Fig. 2.2c). The facet widths from the female eye, 

lacking a distinct size difference in dorsal and ventral facets, fell in between those 

of the dorsal and ventral male eye (Fig. 2.2c). For males, the ratio of the dorsal to 

ventral facet width was between 2.1 and 2.7 (Fig. 2.2d) and we found no 

significant relationship between this ratio and body size (Table 2.1).   

That eye size is increasing at a higher rate than facet size increases 

implies that the number of ommatidia should also increase as body size does. 

Our observations support this as Fig. 2e shows that the number of enlarged 

facets in the dorsal region increased as body size increased (Table 2.1). The 

number of ommatidia increases at a rate similar to that of facet size (b = 0.5393 

for all males). These results showed that eye morphology changes as individuals 

change in size, with larger individuals having not only larger but more facets.   

Based on the observed increase in ommatidia, we proposed the following 

hypothesis: if larger males have larger and an increased number of dorsally 

enlarged facets, and if these facets are used to increase light capture, then larger 

males should be better equipped to visually process their environment in 

conditions of low light than smaller males. Therefore larger males should show 

movement when light levels are too low for movement by smaller males. A 

second behavioral hypothesis was that males should be able to move in lower 
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light levels than females of equal size due to the presence of the specialized 

region of enlarged dorsal facets. 

 Male Eye Properties and Population. We used four groups of males: 

two from different single egg clutches; and two wild caught from separate 

locations. Concerning total eye size, the slope for each individual group line was 

significantly different from zero (Table 2.1; Fig. 2.2b). The two cohorts originating 

from the same egg clutch had higher correlations than the wild caught individuals 

(Table 2.1). None of the groups were significantly different from zero for the 

dorsal to ventral facet width ratio. Similar to eye size, the slope for each 

individual group regression line did differ significantly from zero in regards to the 

number of ommatidia in the dorsal region (Table 2.1; Fig. 2.2e). Again a higher 

correlation existed among the two cohorts from single egg clutches in 

comparison to the wild population (Table 2.1).     

 Ommatidium Length. As can be seen in Table 2.2, the ranges of 

ommatidial lengths were similar in the male dorsal region and the female. The 

male ventral region had the largest maximum ommatidial length. 

Behavior. To test the hypothesis of large males moving earlier in the day 

than small males, we measured activity at different light levels through a 

simulated day. As shown in Fig. 2.3b, larger males moved significantly earlier in 

the morning than smaller males did (t = 4.1778, df = 9, P = 0.002384). Out of the 

twenty mornings, on only two occasions was the smaller male the first to move. 

In the evening, however, there was not a significant difference in movement 

times based on body size (t = -0.0654, df = 9, P = 0.9493). A similar pattern was 
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seen in the females, with larger individuals moving earlier in the morning (t = 

3.8333, df = 9, P = 0.004008, Fig. 3b). For the females, on only four occasions 

out of the 20 mornings did the smaller female move before the larger one. For 

female movement in the morning, there was an outlier more than two and a half 

times the upper quartile. When removed, the difference in movement was still 

significant (t = 5.5835, df = 8, P < 0.001) in the morning. There was not a 

significant difference in time during the evening (t = -0.2290, df = 9, P = 0.8240). 

There was no significant difference in times between the two sensors (t = -

0.6920, df = 38, P = 0.4931), showing no effect of the sensor. 

 The relationship between the average light level at first movement and 

body size revealed an inverse relationship in both males (Table 2.3) and females 

(Table 2.3, Fig. 2.3c). For both sexes, larger individuals moved at lower light 

levels. Comparison of males and females of similar size showed that females 

moved at lower average light levels (Fig. 2.3c). For the evening, however, we did 

not find a significant relationship between body size and light level at last 

movement for both males (Table 2.3) and females (Table 2.3, Fig. 2.3d).   

 Ocellus Size. As can be seen in Fig. 2.2f, the width of the median ocellus 

increased as body size increased for both males and females (Table 2.1). 

Similarly, the width of the lateral ocellus also increased. For both types, males 

have wider ocelli than females.  

Discussion 

C. megacephala Males of Different Sizes have Morphologically 

Different Eyes.  By taking into account body size, a factor absent in previous 
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work on C. megacephala male eye morphology (van Hateren et al. 1989, 

Stavenga et al. 1990, Sukontason et al. 2008), we demonstrated that not only do 

eye size and ommatidium widths increase as the individual gets larger, but the 

number of dorsally enlarged ommatidia also increases. For an insect, enlarged 

facets lead to the possible undersampling of an image, since large facets use up 

the finite surface area of the compound eye. van Hateren et al. (1989) described 

two possible solutions for undersampling in C. megacephala: increasing the 

number of ommatidia or increasing the rhabdomere diameter. They found C. 

megacephala increased the rhabdomere diameter (van Hateren et al. 1989). The 

observations made in our current work show that larger males may also address 

the issue of undersampling with a larger number of ommatidia in the dorsal area.   

We did not find a significant difference in dorsal to ventral facet width as 

body size increases. The range in dorsal to ventral facet width we observed 

(~2.1- 2.7) is rather less than the previous report of the dorsal facets being four 

times larger than the ventral facets (van Hateren et al. 1989). A reason for this 

may be that we measured facet widths from a different area than van Hateren et 

al. (1989), who did not specify exact facet location, and that facet size changes 

based on location. In the blow fly Calliphora vicina (=C. erythrocephala), for 

example, there is a change in facet size across different regions related to spatial 

acuity (Land and Eckhart 1985).   

The relative rates of growth observed in male C. megacephala between 

body size and eye size, facet size, and ommatidia number are similar to the 

values reported across 15 different species of bees (Jander and Jander 2002) 
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and within individuals of varying size for the same bee species (Spaethe and 

Chittka 2003). The similarity in results is particularly interesting considering that 

the previously described bee species have compound eyes containing facets 

with gradual changes in size, while male C. megacephala has a specialized 

region of enlarged facets sharply differentiated from those on the rest of the eye. 

Whether these properties would be similar in compound eyes with and without 

regionalization was discussed in Jander and Jander (2002), and here we provide 

one example where they are. Since C. megacephala does not experience a 

change in resolution between the enlarged dorsal facets and the smaller ventral 

facets, however, comparisons between our results and a compound eye with 

regionalization that is associated with a change in resolution should be 

considered.          

Higher Correlation Within a Population. We found a higher correlation 

between body size and morphological features for the two groups originating 

from a single egg clutch as opposed to the two wild caught populations. This was 

expected as the two single egg clutch groups had similar genetic backgrounds 

and were reared under known environmental conditions. For the wild caught 

populations, however, both the genetic background and environmental conditions 

during development were unknown. This may explain why the female correlation 

values were higher than the males, since the females used in this work all came 

from the same egg clutch while the males consisted of both individuals from the 

same egg clutch and wild caught ones. These findings support the idea that 

studies measuring the relationship between a certain trait and body size in 
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insects should use genetically similar individuals in order to observe the entire 

range of trait morphologies one genotype can produce when faced with different 

developmental environments (discussed in Emlen and Nijhout 2000).   

Another factor that likely influenced the higher correlation for the groups 

originating from a single egg clutch is that there was less overall size variation. 

While in the single egg groups we were able to generate a greater size range 

including individuals smaller than we found in our wild caught populations, these 

single egg groups consisted of either very small or very large individuals. This 

was in contrast with the wild groups that had an overall narrower size range but 

more individuals that would be considered intermediate in size. Future work 

should consider trying to generate a gradient of sizes for the single egg groups to 

see if the higher correlation is still evident in comparison to a wild population.   

Total Body Size, Not Specialized Male Eye Morphology, is Important 

for Being Active in Low Light Conditions. Our hypothesis that larger males 

would be able to move at lower light levels than smaller males was supported in 

the morning, but not in the evening.  However, this same pattern of behavior was 

exhibited in females, who do not have the specialized dorsal region of facets. In 

fact, females actually moved at lower light levels than males of similar size 

despite having smaller overall eye sizes. For this reason, we cannot attribute the 

early movement in larger males to their specialized eye morphology. The 

difference in movement appears to be attributed to being a larger individual, and 

may be the result of larger individuals simply having larger eyes that capture 

more light (Jander and Jander 2002, Kelber et al. 2006).   
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Previous work in the blow fly Calliphora vicina (=C. erythrocephala) found 

it took longer for activity to increase as light levels increased than it did for activity 

to be reduced as light levels decreased (Digby 1958). This is consistent with our 

current work as we observed crosses at lower light levels as the lights were 

decreasing in comparison to when they were increasing.       

Blow flies are generally considered to be diurnal (Anderson 2001).  A blow 

fly relies on carrion as a place to oviposit, feed, and find mates (Norris 1965, 

Erzinҫlioglu 1996), so movement earlier in the day may confer an individual 

advantage because arriving first on carrion that has died during the night might 

help a blow fly avoid significant competition that would arise later in the day. 

Furthermore, by arriving early, a blow fly would have earlier access to potential 

mates. In the evening, however, blow flies of all sizes have had all day to visit 

carrion and search for mates, so staying out later is not as crucial. This suggests 

that being a larger blow fly is advantageous as it allows for early morning 

movement.     

Internal Compound Eye Factors Affecting Sensitivity. Previously, van 

Hateren et al. (1989) found the dramatic size change in the external facet widths 

of the dorsal male eye compared to the facet widths in the ventral portion also 

occurred in the photoreceptors. Specifically, rhabdomere widths in the dorsal 

region could be in upwards of two and a half times larger than those found in the 

ventral region (van Hateren et al. 1989). Despite this change, we did not observe 

a difference in sensitivity as measured by movement at lower light levels 

between males and females. While diameter is considered one of the most 
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important factors affecting sensitivity, the length of the receptor can also play a 

role (Land and Nilsson 2012). One possible explanation for why the sensitivities 

are similar is that the male dorsal area, while containing larger diameters, has a 

shorter ommatidial length. We found, however, that ommatidial lengths were 

approximately equal in the female compound eye and the dorsal region of male 

compound eye, and actually longer in the male ventral region.    

While in the male ventral portion of the eye the rhabdomeres extend 

nearly to the basal membrane, the rhabdomeres in the dorsal region taper well 

before reaching the basal membrane (van Hateren et al. 1989). This in turn 

makes it difficult to obtain the rhabdomere length in this region. As such, we were 

unable to measure rhabdomere length in the present study. Future work should 

investigate rhabdomere length in the male dorsal region as a wider but shorter 

rhabdomere length may be similar in sensitivity to a narrower but longer 

rhabdomere.   

Other External Factors Affecting Sensitivity. Previous work has 

indicated that the ocelli can play a role in the onset of activity in response to light 

changes (Wunderer and De Kramer 1989). That males have larger median and 

dorsal ocelli than their female counterparts, however, provides support that the 

lack of difference in onset of activity cannot be attributed to the ocelli. 

Future Behavioral Research. Because we confined flies to small spaces, 

the movement we measured here was walking. Future studies should investigate 

designs that allow for flight, as we hypothesize that there may be different light 

thresholds for walking movement versus flying movement. Walking flies have the 
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advantage of having tactile stimulation to help their movement and location. In 

flight, however, flies must largely rely on visual information (Theobald et al. 

2007). It may very well be there are two separate light level thresholds, one for 

walking and the other for flight. 

 Furthermore, we used an artificial light cycle created by LEDs. While this 

allowed for complete control over the light cycle values, it may not accurately 

reflect natural lighting conditions. The LEDs used were poorer in long wavelength 

light than shorter wavelength light. van Hateren et al. (1989) described the wider 

dorsal rhabdomeres were capable of higher modes of longer wavelength, so 

possibly the ability of the dorsal facets to receive light was reduced. Now that the 

pattern of early movement for larger individuals has been established in a 

laboratory setting, future work should utilize an experimental design outdoors to 

incorporate more natural lighting conditions.  

Narrowing Down the Functionality of the “Bright Zone”.  Previously, 

van Hateren et al. (1989) hypothesized that the “bright zone” was used to either 

track females in low light levels or to search for them at further distances in 

higher light levels. The observations from this work seem to support the latter, as 

C. megacephala males were not more active in lower light levels than females of 

similar size. These findings suggest that male eye morphology is not used in 

moving at lower levels of light, as would be required for low light level mate 

tracking. Although it remains possible that the specialized male eye morphology 

could be used to track females in low light conditions, without moving earlier to 

sites with active females they are unlikely to take advantage of it. Future work 
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should investigate the possibility that this eye morphology is used to track 

females at higher levels of luminance at further distances, as also hypothesized 

by van Hateren et al. (1989). 

Overall Conclusions. There are a number of reasons a blow fly would 

benefit from a larger adult size. For example, larger males are capable of mating 

with a wider size variety of females (Stoffolano et al. 2000), and can make the 

females they mate with less receptive to other mates in comparison to smaller 

males (Cook 1992). Similarly, larger females have been shown to be able to 

produce more eggs (Wall 1993). Here we have shown another reason why it is 

beneficial to be a larger blow fly based on visual properties, as larger individuals 

can move earlier in the morning than their smaller counter parts.  Additionally, we 

have described a new aspect of the behavioral ecology of C. megacephala.  C. 

megacephala is a fly of forensic importance and it is acknowledged that little is 

known about the behavior of forensically important blow flies, especially away 

from a corpse (Tomberlin et al. 2011).    
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Fig 2.1. The compound eye areas morphological measurements were taken from 
in Chrysomya megacephala. (a) Photo of male (left) and female (right) heads 
from C. megacephala. The black dotted circle on the male eye is the area shown 
in Fig. 2.1b. The black arrow on the female eye points to area shown in Fig. 2.1c. 
The black lines show the distance measured to determine eye size. (b) Tracing of 
a male eye replica from the area inside the circle in Fig. 2.1a. The row used to 
determine the central facet from which the dorsal and ventral ommatidia were 
measured is marked with a dashed line. The ventral facets measured are 
indicated by the 3 small triangles. The dorsal facets measured are indicated by 
the 3 small circles. (c) Tracing of a female eye replica. The two triangles 
represent the two facets that were measured. The arrow is similar in placement 
to Fig. 2.1a. (d) Tracing of a male eye replica. Ommatidia were counted to 
indicate the height of the enlarged area. The dashed line indicates the 
consecutive rows that were counted. 
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Fig 2.2. The relationship between body size and different eye morphological 
features. (a) The relationship between thorax length and crossvein length. Each 
group is represented by a different symbol (males: squares for “FIU colony”, 
n=21; triangles for “FIU wild”, n=19; plus signs for “Keys wild”, n=16; x’s for 
“Marathon Female”, n=18). The black regression line is for all groups. (b) The 
relationship between body size and eye size. Each group is represented by a 
different symbol (males: squares for “FIU colony”, n=16; triangles for “FIU wild”, 
n=20; plus signs for “Keys wild”, n=18; x’s for “Marathon Female”, n=19; females: 
diamonds, n=19). The dotted black regression line is for the entire group of 
males. The gray regression lines are for the two groups originating from a single 
egg clutch. The black regression lines (with the exception of the dotted one) are 
for the wild caught groups. The solid line indicates an origin on the FIU campus. 
A long dashed line indicates an origin from the Florida Keys. The dot-dash line is 
for females. (c) The relationship between body size and facet width. The squares 
are male dorsal facets (n=91). The triangles are male ventral facets (n=91).  The 
plus signs are female facets (n=17). (d) Dorsal to ventral ratio versus crossvein 
size for male individuals. Each group is represented by a different symbol (males: 
squares for “FIU colony”, n=23; triangles for “FIU wild”, n=22; plus signs for “Keys 
wild”, n=24; x’s for “Marathon Female”, n=22). (e)  The relationship between body 
size and height of the dorsal area in ommatidial rows. Each group is represented 
by a different symbol (males: squares for “FIU colony”, n=11; triangles for “FIU 
wild”, n=10; plus signs for “Keys wild”, n=9; x’s for “Marathon Female”, n=11). 
The dotted regression line is for the entire group of males. The gray regression 
lines are for the two groups originating from a single egg clutch. The black 
regression lines (with the exception of the dotted one) are for the wild caught 
groups. The solid line indicates an origin on the FIU campus. A dashed line 
indicates an origin from the Florida Keys. (f) The relationship between body size 
and ocellus width. The squares are for males, the triangles are for females. 
Empty shapes correspond to median ocellus, filled in shapes correspond to 
lateral ocellus. The solid regression line is for the median male ocellus. The 
dotted line is for lateral male ocellus. The dashed solid regression line is for the 
median female ocellus. The dot-dash regression line is for the lateral female 
ocellus.         
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Fig. 2.3.  Behavioral analysis of C. megacephala daily movement. (a) Drawing of 
one infrared sensor used. For the final experimental design, two of these were 
present on the same base to allow for simultaneous measurements from two 
different flies. (b) Comparison of the time differences between first (in the 
morning) or last (in the evening) movement between smaller and larger 
individuals (n=10 pairings, two replicates per pairing). The thick bar represents 
the median. (c) The average light value at the time of the initial cross in the 
morning after the lights came on. The squares represent the males (n=20); 
triangles represent the females (n=20). The solid line is the regression for males. 
The dashed line is the regression for females. (d) The average light value at the 
time of the last cross in the evening before the lights turned off. The squares 
represent the males (n=20); triangles represent the females (n=20). The solid line 
is the regression for males. The dashed line is the regression for females. 
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Table 2.1. Results of regression analysis for various morphological features (± SE) when compared to crossvein length. 
 

 Feature   Group   R2  Intercept  Slope   P-value 

Thorax Length   All Males  0.71  0.94(0.27)  2.38(0.18)  <0.001   
Eye Size   Females  0.95  -0.20(0.13)  1.71(0.09)  <0.001 
    All Males  0.78  0.45(0.15)  1.62(0.10)  <0.001 
    FIU Colony  0.89  -0.15(0.28)  1.89(0.18)  <0.001 
    FIU Wild  0.82  0.25(0.29)  1.78(0.20)  <0.001 
    Marathon Female 0.97  0.11(0.13)  1.98(0.08)  <0.001 
    Keys Wild  0.75  0.57(0.32)  1.60(0.23)  <0.001 
Facet Width   Male Dorsal  0.55  38.91(3.22)  22.37(2.17)  <0.001 
    Male Ventral  0.55  14.84(1.52)  10.65(1.02)  <0.001 
    Female  0.75  16.48(3.19)  14.82(2.19)  <0.001 
D-V Facet Ratio  All Males  0.019  2.50(0.11)  -0.09(0.071)  0.19 
Ommatidia Row No.  All Males  0.80  11.19(1.09)  9.27(0.74)  <0.001 
    FIU Colony  0.88  9.81(1.78)  9.83(1.20)  <0.001 
    FIU Wild  0.61  14.00(3.11)  7.44(2.12)  <0.001 
    Marathon Female 0.91  9.96(1.64)  10.82(1.09)  0.038 
    Keys Wild  0.48  16.42(3.20)  5.77(2.26)  0.008 
Median Ocellus Width  Males   0.71  0.0013(0.034)  0.11(0.025)  0.002 
    Females  0.66  -0.021(0.031)  0.10(0.025)  0.004 
Lateral Ocellus Width  Males   0.79  -0.025(0.030)  0.12(0.022)  <0.001 
    Females  0.76  -0.025(0.022)  0.09(0.018)  <0.001
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Table 2.2. Ommatidial length ranges (minimum to maximum) for the compound eyes in 
a female and a male C. megacephala of similar size. 
 

Sex  Eye Region Ommatidial Length Range (um)     Crossvein Length (mm) 

Female -------   238.29 - 257.26   1.50  
Male  Dorsal   242.90 - 252.96   1.48 
Male  Ventral   237.94 - 265.98   1.48 
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Table 2.3. Results of regression analysis for light level at first movement after lights came on or last movement before lights 
turned off (± SE) compared to crossvein length. 
 

Time Light Level Taken   Group  R2  Intercept  Slope   P-value 

First Movement in Light  Female 0.65  339.9(42.43)  -194.6(33.11)  <0.001 
     Male  0.34  301.28(65.01)  -139.96(46.10) 0.007 
Last Movement in Light  Female 0.001  29.55(26.30)  -3.35(20.53)  0.872 
     Male  0.003  24.10(18.95)  -3.02(13.44)  0.825
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CHAPTER III: The forensically important blow fly, Chrysomya megacephala 

(Diptera: Calliphoridae), is more likely to walk than fly to carrion at low light 

levels 

 

Abstract 

One factor that influences estimates of time since death using 

entomological evidence is whether or not blow flies nocturnally oviposit. Field 

studies focusing on egg laying have found it occurs on an inconsistent basis. A 

key but poorly understood factor in nocturnal oviposition is a blow fly’s ability to 

locate carrion under low light levels. It has been speculated that blow flies are 

more likely to walk than fly to carrion during the night, but this has not been 

empirically tested. We directly compared guided walking versus flying using 

infrared sensors under low light levels in laboratory conditions for Chrysomya 

megacephala (F.) (Diptera: Calliphoridae), a blow fly previously described to be 

nocturnal. We found C. megacephala is more likely to walk than fly towards 

carrion under low light levels (p=0.016). We did not, however, find differences 

between males and females for walking (p=0.48) or flying (p=0.42) despite male 

C. megacephala possessing eyes better suited for increased light capture. These 

results demonstrate the need to better understand where blow flies go at night, 

as bodies found within a fly’s walking distance are more likely to be colonized.       

Introduction 

The age of an immature carrion insect thought to have developed on a 

corpse provides an estimate of the minimum time since death [1]. Carrion fly 
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adults are relatively inactive at night [2], and if a death investigator assumes that 

oviposition or larviposition could not have occurred on the victim at night, this 

may substantially influence a forensic entomology analysis [3]. 

The circumstances under which that assumption is justified have been the 

subject of debate. Certainly oviposition can occur in darkness under laboratory 

conditions [4] and outdoors when flies are enclosed with carrion [5]. Oviposition 

has also been observed during some field studies at night, both when flies could 

walk to carrion [3] and when walking to carrion was prevented [6]. At other field 

sites, however, it was never observed when allowing for both walking and flying 

to carrion [4, 7-8], when walking was prevented [5], or when walking was 

impeded by elevating carrion on a platform [9] or hanging it [10]. One possible 

reason for this inconsistency is that it is unclear how likely it is an adult female 

will fly to a corpse at night, or if eggs laid at night are more likely if  the 

oviposition medium is close enough for a female to walk to. Furthermore, some 

authors have not specified the sex of adult flies that flew to bait at night [11], so 

the relevance concerning nocturnal oviposition was also not obvious. 

Because of this uncertainty, it would be useful to distinguish between 

nocturnal movement of a carrion fly toward decayed meat by walking compared 

to by flying and also according to the sex of the individual fly. We attempted to 

make these distinctions by recording the guided walking and flying behavior of 

Chrysomya megacephala (F.) (Diptera: Calliphoridae) towards a rotting meat 

source under a range of very low light levels. C. megacephala is unusual for a 

muscomorph fly in that males have dorsal compound eye ommatidia and ocelli 
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that are much larger than those of females [12-13]. Proportionally larger eyes 

and ocelli are often found in other insects that are active in low light conditions 

(reviewed in [14]), and the optical properties of the enlarged dorsal eye facets in 

male C. megacephala include increased light capture [12]. Furthermore, C. 

megacephala adults have been captured at a meat bait in higher numbers than 

other carrion insects between the periods of sunset and sunrise, though no 

information regarding the sex of the individuals was provided [11]. 

We hypothesized both male and female C. megacephala are more likely 

to walk towards carrion than fly at lower light levels, since walking has the benefit 

of tactile stimulation. We also hypothesized that male C. megacephala would 

move more often at lower light levels than their female counterparts, due to their 

specialized eye and ocellus morphology. 

Methods 

Study Groups  

In order to reduce the influence of differing genotype on fly behavior [15], 

for all trials we used C. megacephala from an inbred laboratory colony originating 

from wild caught individuals at Florida International University. The colony was 

maintained for 15 months prior to the beginning of the experiment without the 

addition of wild flies. In order to reduce age related effects on behavior [16-17], 

individuals compared in a given experiment were from eggs collected from the 

colony during a 3-hour interval. Larvae developed at 27°C and were provided 

meat until pupation. Upon emergence, adults were separated by sex within 18 

hours and entrained at room temperature (range from 20-22°C) at a low light 
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simulated day cycle for at least three days, a time period previously applied prior 

to experimental manipulation in behavioral assays involving both C. 

megacephala [13] and other dipterans [18-20]. Groups of flies were entrained in 

separate containers outside the experimental chamber utilizing the same light 

source and provided water and sugar during this period. The total number of 

individuals separated was dependent upon the number of flies that emerged. The 

light cycle was generated by 3 LEDs and a microcontroller (Arduino, Italy). The 

light cycle consisted of a period of 12 hours of lights off, a two hour period of light 

increase to a maximum level of approximately 7 lux, followed by an eight hour 

hold at the maximum level, and finally a two hour decrease back to darkness. A 

maximum light level of 7 lux was chosen as previously there was not a difference 

in walking movement between males and females at a minimum light level of 

approximately 9 lux [13]. We therefore wanted to incorporate lower light levels to 

determine if the previous lack of difference was due to initial light levels being too 

high. Additionally, C. megacephala oviposition observations have been made at 

light levels less than 1 lux [6] so we wanted to ensure we included a slow 

increase around the lower threshold of light levels.      

Experimental Chamber 

 After entrainment for each trial, a group of 12 same sex individuals from 

the same age cohort were separated from the larger group and split into groups 

of six. In all trials, comparisons were always from the same age cohort. The age 

of the individuals being compared for a specific trial was always the same, 

though the age could be different between trials. Individuals were separated by 
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sex in order to compare sexual specific behavioral differences. These groups of 

six were released into separate sides of the experimental chamber (Fig. 3.1) 

which was illuminated by the previously described light cycle, before the lights 

turned off. These released individuals spent the night in the chamber. Individuals 

were not able to move between the two sides due to a piece of white poster 

board that split the chamber into two equal parts. The chamber was a 24.5cm x 

24.5cm x 24.5cm cube. The top, bottom, and side containing the infrared sensors 

were made of clear Plexiglas. The other three sides were made from mosquito 

netting. Opposite each entrance opening was a 46mm by 26mm passageway 

located either at the bottom of the chamber or 108mm above the bottom. Insect-

a-slip (Bioquip, Rancho Dominguez, CA) was placed around the passageway 

located 108mm above the bottom to prevent access by walking. Two sets of 

infrared emitters and receivers (Jameco Electronics, Belmont, CA) spanned the 

opening of each passageway. On the other side of the sensors, each 

passageway was connected to its own smaller chamber which was a 100mL 

clear plastic cup with a 45mm diameter opening. The bottom of the cup was 

removed and replaced with a mesh opening at the end. Thus, one side of the 

chamber recorded only flight through the exit hole, while the other side recorded 

either walking or flying. 

Behavioral Observations 

A total of 20 female and 17 male trials were completed. These numbers 

are uneven because we had a greater number of females than males in our 

experimental cohorts. The chamber was placed in a room that blocked all outside 
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light sources. The temperature was recorded after the introduction of the flies in 

the cage and again after the trial had finished using a thermometer placed next to 

the set-up and ranged from 20-22°C. The walking and flying passageways were 

blocked until at least 90 minutes before the lights came back on. At this time, 

approximately 100 grams of ground beef that had been sealed and placed in a 

26°C incubator for two days and at room temperature for one additional day were 

placed in the middle of the end with the motion sensors (Fig. 3.1). The choice of 

three day old beef was consistent with previous work investigating adult 

movement to carrion in low light conditions [21] and personal experience having 

greater success attracting adult C. megacephala with aged rather than fresh 

beef. The beef was sealed to prevent odor from escaping until required for a trial. 

The distance from the passageways and the meat was approximately 45cm. 

After placement of the meat, the covering of each passageway was removed, 

allowing flies to pass through the infrared sensors and into that half of the 

screened second chamber near the beef. The experiment was stopped when the 

maximum light level was reached, so each trial lasted at least 3.5 hours. Any 

cross into either chamber (walking or flying) near the meat before the end of the 

trial was recorded using a custom python script which recorded the side, number, 

and time of the cross. The infrared motion sensors were calibrated prior to each 

trial and a blockage of more than 60% of the light on either of the two sensors 

was recorded as a cross.  

On 11 occasions during the 37 trials, there was a “cross” that was not 

caused by blow fly activity. Seven of these “crosses” occurred during times when 
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the sensor was blocked, so no blow fly would physically be able to cross. The 

other 4 occurred during the observation period. Part of the data collected when a 

cross occurred was the reading from a pin on the Arduino that was not connected 

to any output (values could range from 0-1023). For all 11 of these crosses, this 

value ranged from 1-5. We passed both a pen and a tethered dead fly through 

the sensors over 1000 times each on both the walking and flying side (over 4000 

times total) and never obtained a single digit number (0-9) for this value (data not 

shown). As this was a custom built apparatus, the large number of crosses with 

inanimate objects was done to determine what values were associated with a 

real known cross to distinguish real crosses from false crosses that could be 

considered “noise”. The 11 “crosses” where a single digit was recorded for this 

value were not considered for analysis. In contrast, values consistent with those 

from the known crosses (40-530) were considered for analysis.     

Starting just after the initial placement of the flies and ending after the 

experiment finished, the light level was recorded every 30 seconds using a 

photocell (Jameco Electronics, Belmont, CA). The light was incrementally 

increased every minute so the thirty second time period allowed for a reading 

during every increment. If a cross occurred within the 30 second period between 

light level readings, the average light level was determined using the readings 

directly before and after the cross. To convert the photocell readings into lux 

values, the light levels were recorded at 10 step increments using a light meter 

(Gossen Starlite 2, Nurnberg, Germany). These values were plotted against the 

photocell values associated with the same 10 step increments and piecewise 
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interpolation was used to estimate light levels not directly recorded as described 

in [13].     

Statistical Analysis 

 For all statistical tests, an alpha value of 0.05 was used as the threshold 

for significance. A one-tailed Fisher’s exact test was used to determine whether 

the number of trials with walking crosses was significantly greater than the 

number of trials with flying crosses for the following three groups: all combined 

(male and female trials together) trials; female trials; and male trials. A one-tailed 

Fisher’s exact test was also used to determine whether the number of trials in 

which walking occurred for males was significantly larger than the number of 

trials in which walking crosses occurred for females. Similarly, to determine 

whether the number of trials in which flying males occurred was significantly 

larger than the number of trials in which flying females occurred.  

In addition, we used a one-tailed paired t-test to determine if the light level 

at the time of the first walking cross was significantly less than the light level at 

the time of the first cross for flying. If one type of movement occurred (i.e., 

walking or flying) but the other did not, we used the maximum light level reached 

following the two hour light increase that day as the light level for no movement 

to compute the difference. While the data for the light comparisons did not exhibit 

a normal distribution, the distribution was unimodal, symmetrical, and had a 

limited variance allowing us to feel justified in using a paired t-test [22].   
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Results 

 Flies were recorded both walking and flying, but crosses on the walking 

side were significantly more common (Fig. 3.2a; p=0.016). This relative 

difference was observed for each sex, although not statistically significant when 

each sex was compared separately (females: p=0.064, males: p=0.13). While 

males both walked (41.8% to 35%) and flew (17.6% to 10%) on a larger 

percentage of trials than females (Fig. 3.2a), this difference was not significantly 

greater for walking (p=0.48) or flying (p=0.42).    

 There were very few instances of fly movement recorded during complete 

darkness (Fig. 3.2b). These consisted of two female and one male walking cross, 

and two male flying crosses.  

Figure 3.2c shows a direct comparison of the light levels that walking and 

flying movement occurred for each trial. A value of zero indicates no difference in 

light level between walking and flying, a positive value indicates walking at a 

lower light level than flying, and a negative value indicates flying at a lower light 

level than walking. As can be seen in Fig. 3.2c, compared to flying flies generally 

walked at significantly lower average light levels (t=1.83, df=36, p=0.038). This 

trend was the same for females, who also walked at significantly lower light 

levels than they flew (t=1.74, df=19, p=0.049). Males, however, did not walk at 

significantly lower light levels than they flew (t=0.87, df=16, p=0.20). 

Discussion 

 It has been speculated that a blow fly is more likely to walk than fly to 

carrion at low light levels [6], but here we provide the first supporting evidence for 
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this opinion. We demonstrated that C. megacephala is more likely to walk 

towards carrion than fly under low light level conditions. While acknowledging 

flies could have also flown through the “walking” side, we believe they more than 

likely walked. Both low light and fast optic flow increase photon noise (reducing 

reliability) in vision [23]. Fast optic flow is induced by flying near the ground [24], 

so these conditions together make it less likely blow flies flew through the low 

opening on the “walking” side. That there was a significant difference between 

the number of trials of walking versus flying overall, but not one for each sex 

individually, probably reflects the lower sample size for the individual sexes. 

Previous laboratory work evaluating low light level flight to carrion included a 

meat source inside the same cage flies were placed in, opening up the possibility 

that flies captured just randomly came in contact with the meat [21]. By placing 

the carrion outside of the chamber rather than inside, we were able to 

demonstrate a more stringent test of guided movement as we required the flies to 

navigate through an opening to get closer to the beef.  

Despite the fact that male C. megacephala have both compound eyes and 

ocelli that appear to be better adapted to low light levels than those of females, in 

this experiment and in previous work [13] there was no evidence males are more 

active than females at lower light levels. While previous work limited movement 

to walking by confining flies to tubes [13], we did not see a difference while 

allowing for flying that would rely more on visual information in the absence of 

tactile stimulation.  
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 On only five occasions was a cross detected with the lights off. While 

Nanzi et al. [11] characterized C. megacephala as “nocturnal”, a characterization 

of C. megacephala engaging in crepuscular activity may be more appropriate. It 

is possible that a large number of the individuals captured by Nanzi et al. [11] 

were caught in the periods of dawn and dusk. We found that on the campus of 

Florida International University on a clear half-moon day, light levels at sunrise 

and sunset can be over 550 lux. For this reason, information regarding the light 

level rather than the time of day is better suited for determining the possibility of 

flight. Flight at low light levels consistent with dawn and dusk have previously 

been reported for female C. megacephala, as Singh and Bharti [6] reported three 

separate observations of nocturnal oviposition on a medium that could not be 

accessed by crawling. The reported light levels for these days were between 0.7-

0.8 lux [6]. The lowest light level we observed for female flight in our current work 

was not much greater at 1.63 lux. We did, however, observe two occurrences of 

male flights with the lights off. This is surprising as previously it was suggested 

that blow flies were not capable of oriented flight in darkness [25]. The low 

number of observations means these results should be taken with some 

reservations. 

The small overall average difference in the light levels between walking 

and flying (about 1 lux) can probably be attributed to the low light cycle. Since we 

were targeting low light level movement, the range of light differences was very 

small with a maximum light difference of 7 lux. This could explain why the 

differences seen in Fig. 3.2c were so small. Light and dark cycles are known to 
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be one of the largest contributors to circadian rhythm [20], so entrainment at the 

same low light level the experiment was conducted at ensured all flies were set 

to the same conditions prior to experimentation. Incorporating a similar set-up in 

an outdoor environment should be considered in the future, as it would allow for 

a more realistic range of light values.  

Another factor to consider is whether or not the circadian rhythm is linked 

to oviposition behavior. Previous work in another blow fly, Calliphora vicina 

(Diptera: Calliphoridae), showed that eggs are more likely to be laid during light 

than in darkness [26]. Future work should not only investigate whether a pattern 

exists for C. megacephala, but also focus on determining a finer range of times. 

For example, here we focused on the transitional period from dark to light, 

simulating early mornings. If it is found that flies are more likely to lay eggs in the 

later stages of the day, then future experiments can focus on observing behavior 

during these times.        

Additionally, we used individuals from the same inbred colony in order to 

reduce the influence that genetics can have on behavior [15]. Now that this 

pattern has been established in our inbred population, future work should see if 

the same differences are present when a natural population more representative 

of what would be found in a forensic case is used.  

One potential issue that may have impacted the results for female C. 

megacephala was whether or not the individuals were gravid. It was highly 

unlikely that the females used were gravid given the relatively short time after 

eclosion females could have been used (as little as three days post emergence), 
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limited time for mating, and lack of a protein meal for egg development. While 

there is incentive for both a non-gravid and a gravid female to locate carrion, it is 

possible that the different motivations for doing so would result in changes in 

behavior. Previously it has been described that behavior can change in insects 

when searching for a protein meal in contrast with searching for an oviposition 

site (reviewed in [27]). Future work should use females known to be gravid to 

determine how this may influence movement under low light levels.    

 Future work should also investigate where blow flies go at night, as bodies 

located in close proximity to these locations would be more susceptible to 

nocturnal oviposition. Furthermore, we only tested movement across a small 

distance, meaning these results would only be applicable to cases where C. 

megacephala was in close proximity to carrion. An investigation into distance 

thresholds for walking movements would further aid in understanding situations 

where blow flies are more likely to colonize a corpse. Another factor related to 

distance that might have affected our results is whether C. megacephala males 

were less likely to cross because they were already relatively close to the meat. 

Male C. megacephala can often be observed around but not on carrion, 

presumably searching for females. It may be that the short distance used here 

actually had them at a distance they would generally be at around carrion, 

making them less likely to move. Future work should increase the distance, 

which would in turn lower the odor concentration, possibly prompting more 

movement by the males to carrion to position themselves to find females. 
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 In conclusion, C. megacephala movement increased at low light levels 

when adults are able to walk to carrion versus when carrion could only be 

accessed by flying. That there was not a statistically significant difference in 

movement based on sex, despite male C. megacephala having compound eyes 

and ocelli that appear to be designed for increased light capture, show that more 

experiments are needed to determine the function of this unique eye design.         
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Figure 3.1: Diagram of the experimental chamber. The space within the cube 
was split into equal halves by an opaque divider (dotted rectangle). Each side 
had entrance holes (dark ovals) through which flies were introduced before the 
hole was sealed. A fly in the chamber could move close to, but not touch, a 
decayed meat bait (ground beef) by entering a screened compartment through a 
second hole (black squares) that did or did not require flight. The elevated exit 
hole was surrounded by Insect-a-slip so that no fly could climb that wall of the 
chamber. An infrared sensor recorded the movement of any fly through the hole 
to the meat. A box containing three LEDs (gray cube) provided illumination from 
above. See the text for additional details.  
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Figure 3.2: Plots of activity patterns during the experiment. (a) The number of 
trials either walking or flying occurred across all trials (n=37); just trials with 
females (n=20); and just trials with males (n=17). (b) The number of trials either 
walking or flying occurred during only the period of darkness (n=20 for females; 
n=17 for males). (c) The average light level difference (in lux) between walking 
and flying for males and females. A positive number indicates walking occurred 
at a lower light level than flying.    
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CHAPTER IV: Isolation of the male-specific transformer exon as a method 

for immature specimen sex identification in Chrysomya megacephala 

(Diptera: Calliphoridae)   

 

ABSTRACT 

 Being able to efficiently differentiate between male and female individuals 

in the immature forms of insects allows for investigations into sexually dimorphic 

patterns of growth rates and gene expression. For species lacking sex specific 

morphological characteristics during these periods, alternative methods must be 

devised. Commonly, isolation of sex determination genes reveals sex specific 

band patterns and allow for markers that can be used in insect control. For blow 

flies, a family that includes flies of medical and forensic importance, sex has 

previously been identified in some members using the male specific exon in the 

transformer gene. This gene is relatively conserved between members of the 

genera Cochliomyia and Lucilia (Diptera: Calliphoridae), and we isolated a 

portion of this gene in an additional forensically and medically important blow fly 

genus using the widespread Chrysomya megacephala (F.). We found a relatively 

high level of conservation between exons 1 and 2 of transformer and were able 

to amplify a region containing the male specific exon in C. megacephala. A sex 

specific molecular diagnostic test based on the presence of sexually dimorphic 

PCR product bands showed the expected genotype for adults and intrapuparial 

period specimens of known sex. The same result could be obtained from single 

third instar larval specimens, opening up the possibility to not only to determine if 
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development rates are sex dependent, but also to investigate the development of 

sexually dimorphic traits of interest in C. megacephala.     

Introduction 

The ability to identify sex and isolate sex determination genes in the 

immature forms of blow flies has multiple applications. Some species are 

livestock pests, leading to programs focused on their sterilization, which utilize 

sex determination genes as potential markers for control (Scott 2014). Many 

species of blow flies are forensically important, as the age of an immature 

specimen found on a corpse is used to estimate the minimum time since death 

(Catts and Goff 1992) assuming the eggs were laid on the victim after death. This 

estimate requires a model of larval development rate, which varies as a result of 

different factors (Wells and LaMotte 2001). Sex, a factor influencing larval 

development rates in many insects (Teder 2014), has recently been shown to 

influence development in a blow fly species (Picard et al. 2013). Finally, for an 

increasing number of blow flies, there are genomes and transcriptomes available 

(Sze et al. 2012, Wang et al. 2015, Anstead et al. 2015). These tools allow for 

investigations into genes of interest, many of which likely have sexually 

dimorphic patterns of gene expression during the larval stages. An issue that 

hampers the identification of sex in the immature stages, however, is the lack of 

sexually specific morphological characteristics.  

Alternative methods for sex determination in blow flies exist. Karyotyping 

reveals sex in species for which males have a Y chromosome (Boyes and 

Shewell 1975). Finding suitable mitotic cells is possible (Azeredo-Espin and 
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Pavan 1983, Parise-Maltempi and Avancini 2001), though the efficiency is 

unclear as insect karyotyping is generally plagued by a limited amount of cells 

(Popescu and Dutrillaux 2000). Another method is the estimation of genome size 

that varied between the sexes in some, but not all, of the 10 blow fly species 

tested (Picard et al. 2012). Finally, a region with one or two male specific exons 

found in the gene transformer has been used to determine sex in four blow fly 

species: Lucilia cuprina (Concha and Scott 2009), L. sericata, Cochliomyia 

hominivorax, and Co. macellaria (Diptera: Calliphoridae) (Li et al. 2013). 

Transformer is alternatively spliced and only females produce the full length 

Transformer (TRA) protein that shifts sexual fate toward female (reviewed in 

Scott et al. 2014). The male specific exon (or exons for L. cuprina, which can 

have two) is located between the first two exons and contains stop codons, 

preventing the full length protein in males (reviewed in Scott et al. 2014). The 

male exon is less conserved than its flanking exons; though portions, including a 

splice site for TRA and the RNA binding protein Transformer 2 (TRA2), are highly 

similar between species (reviewed in Scott et al. 2014).  

Chrysomya megacephala (F.) is a blow fly of forensic and public health 

importance (Wells and Kurahashi 1994). Genome size does not differ between 

the sexes (Picard et al. 2012). Males possess a Y chromosome (Parise-Maltempi 

and Avancini 2001), but we believe that a method to identify sex in the larval 

stages of C. megacephala that could be efficiently performed using only a single 

specimen would be more useful than doing karyotyping.  
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The objective of this work was to identify the male specific exon in the 

transformer gene of C. megacephala and design a molecular method to allow for 

the identification of sex in the immature stages of this species.  

Methods 

Finding Transformer in C. megacephala. C. megacephala genomic 

DNA from individuals captured in south Florida was extracted, sequenced on the 

MiSeq (Illumina, San Diego, CA), and assembled into contigs as described in 

Evenstone (2015). CLC Genomics Workbench (QIAGEN, Valencia, CA) was 

used to create a local BLAST database from the contigs which was searched 

against transformer exons 1 and 2 from Co. hominivorax, which flank the male 

specific exon (Li et al. 2013). These DNA sequences were translated to proteins 

and conserved amino acid sequences aligned to Co. hominivorax, Co. 

macellaria, L. cuprina, and L. sericata.  Primers were designed using Primer 3 

(Untergrasser et al. 2012) to include the forward primer in exon 1 and the reverse 

primer in exon 2. The primer sequences used were: 

forward: 5'- CCTCATGCTATTGTCCGTGC -3';  

reverse: 5'- CGATTTGTTTTGCATTTACCCGT-3'. 

RNA Extraction and RT-PCR. Individuals for RNA extraction were either 

from a C. megacephala colony started in June 2014 from wild individuals and 

extracted in January 2016 or the direct offspring, second, or fifth generation from 

a C. megacephala colony originated from wild individuals in March 2016. All 

founding members were captured in Miami-Dade County, Florida and no wild 

adults were added once a colony was initiated. RNA was isolated using 
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individuals from the following groups: six samples consisting of the heads of two 

adults (three pairs of males and three pairs of females), six samples consisting of 

the heads of two intrapuparial period (Martin-Vega et al. 2016) individuals (three 

pairs of males and three pairs of females; sex known based on our observation 

that enlarged dorsal ommatidia present in the adult compound eye, Kurahashi 

1982, are visible in the later intrapuparial period), 40 whole intrapuparial period 

individuals from the same egg clutch extracted in 12 hour intervals across 48 

hours (sex known for 20); five larval samples of unknown sex reared at 27°C for 

68.67 hours, and two egg clutches laid within three hours of extraction at room 

temperature (20-22°C). For all specimens, individuals were killed and 

immediately macerated using a sterile plastic pestle. For the adult, intrapuparial 

period head, and egg specimens, RNA was isolated using the RNeasy Plus Kit 

(QIAGEN, Valencia, CA) after running the lysate through a QIAShredder column 

(QIAGEN, Valencia, CA). RNA for these groups was eluted into a final volume of 

40 uL. For the larval and whole intrapuparial specimens, a single individual was 

extracted using the Direct-zol RNA Mini-Prep Plus kit (Zymo Research, Irvine, 

CA) into a final elution volume of 100uL and 60uL, respectively. All extracts were 

quantified using a NanoDrop (Thermo Scientific, Wilmington, DE). 

A total of 1ug of RNA was reverse transcribed for each sample using the 

iScript gDNA Clear cDNA Synthesis Kit (Bio-Rad, Hercules, CA). No-RT controls 

were included to detect for any possible genomic DNA contamination. The 

DNase treatment was omitted for the larval samples because a DNase step was 

included during RNA extraction. The cDNA was amplified with Promega 2x 
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Master Mix (Promega, Madison, WI) and the primer sequences previously listed. 

The thermal cycling parameters were 94°C for 5 min; 34 cycles of 94°C for 1 min, 

52°C for 1 min, and 72°C for 1.5 min; and a final extension at 72°C for 10 min. 

PCR product was run on a ~1.5% agarose gel stained with SYBR Safe (Thermo 

Fisher, Waltham, MA) and visualized using a UV transilluminator.     

Sequencing the Male Exon. The PCR product for the three adult males 

was purified using EXO-SAP IT (Affymetrix, Santa Clara, CA) and sequenced 

directly using the same PCR primers and separation detection with an 

ABI3730XL analyzer (Applied Biosystems, Foster City, CA). Sequence data were 

analyzed using Sequencher (Gene Codes, Ann Arbor, MI).  

Results 

Conservation Level among Blow Flies. A comparison between the 

amino acids in exons 1 and 2 of transformer in C. megacephala and other blow 

flies showed consistent levels of conservation (Fig. 1). For exons 1 and 2 (Fig. 

1A), C. megacephala has a 65.0% amino acid sequence identity to Co. 

macellaria, a 64.0% sequence identity to Co. hominivorax, a 68.0% sequence 

identity to L. cuprina, and a 67.0% sequence identity to L. sericata.  

 The length of the male exon in C. megacephala is 305 bp (Fig. A.6). The 

3’ end of this exon includes the highly conserved TRA/TRA2 binding motif 

previously described for other blow flies (Li et al. 2013) (Fig. 1B).    

Male and Female Specific DNA Amplification Patterns.  As can be 

seen in Figs. 2A and 2B, we generated the expected amplification pattern (male 

exon amplified or not) for adult and intrapuparial period individuals of known sex. 
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For the larval specimens where sex was not known, an individual yielded either a 

male or female pattern (Fig. 2C). For the eggs, only the female specific pattern 

was observed (Fig. 2D). In some cases we observed a smaller and less bright 

band in males (Fig. 2E). This band was not always present in males and was 

never observed in females.   

Discussion 

 Here we have described for the first time a molecular test to identify sex 

for C. megacephala. By using a portion of the transformer gene, as has been 

previously done in other blow flies (Concha and Scott 2009; Li et al. 2013), we 

were able to isolate the male specific exon in C. megacephala, allowing for sex 

identification in the larval forms.    

 Conservation Extends to a New Genus. This molecular test is 

dependent upon the level of conservation previously observed in other species 

extending to a new genus. Overall the relatively high level of conservation is not 

surprising based on previous comparisons between two genera (Li et al. 2013). 

That combined exons 1 and 2 are more similar to the Lucilia species than the 

Cochliomyia species, however, is unexpected given the genus Chrysomya is 

more closely related to Cochliomyia (Singh and Wells 2013). As only a partial 

region of C. megacephala transformer is reported, sequencing the entire gene in 

the future may show the expected levels of similarity. Furthermore, the length of 

exon 2 could be confirmed as we used similar sequences obtained in 

comparisons with Co. hominivorax but did not sequence further in the 3’ 

direction.               



70 
 

The TRA/TRA2 binding site previously found in the male exon of other 

blow flies (Li et al., 2013) is highly conserved, but does differ slightly from both 

Lucilia and Cochliomyia in different areas. This is not surprising as this 

represents the description of the male exon in a new genus, and previously small 

differences existed between across genera comparisons (Li et al. 2013).      

Immature Sexing Results Similar to Previously Described Blow Fly 

Species. While we were able to obtain either male or female patterns of 

expression in the larval specimens, we found eggs exhibited only the female 

band pattern. The eggs used were extracted within three hours of oviposition at 

room temperature (20-22°C). Small amounts of male product have been 

observed after 2-3 hours in L sericata at room temperature (Li et al. 2013), but 

not until the first instar in L. cuprina at 21°C (Concha and Scott 2009). Future 

work should investigate when the male product can first be seen for C. 

megacephala. 

A benefit to identifying sex in the immature stages is the expression of 

sexually dimorphic genes can be investigated early in development. For example 

in C. megacephala, a defining sexually dimorphic characteristic is eye 

morphology (Kurahashi 1982). A major event in eye pattern formation and 

differentiation in dipterans occurs during the third instar, as the morphogenetic 

furrow moves across the eye-antennal imaginal disc (Ready et al. 1976). Being 

able  to identify sex in the larval stages, means differences between the sexes in 

genes being expressed during this time period for C. megacephala can now be 

investigated.  



71 
 

Future Work and Conclusions. Future work should attempt to isolate 

regions of genomic DNA to serve as molecular markers for sex identification, a 

more cost effective alternative than RNA isolation and reverse transcription. One 

target area could be the Y-chromosome, present in C. megacephala (Parise-

Maltempi and Avancini 2001), as previously a genetic marker for a male specific 

diagnostic test was designed using a repetitive element found in the Y- 

chromosome of the Mediterranean fly, Ceratitis capitata (Zhou et al. 2000).  

Concha and Scott (2009) and Li et al. (2013) thoroughly investigated the 

transformer gene in blow flies with an aim of producing male only strains to 

manage populations in areas where the flies cause myiasis. Here we focused on 

using this information solely to devise a marker for sex identification for C. 

megacephala in the immature stages, a tool for investigators interested in sex 

specific development or sexually dimorphic genes. Given the level of 

conservation observed here, we suspect that a similar sex identification method 

could be developed for many blow fly species. 
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Fig. 4.1. Sequence comparisons for all five blow flies for which a portion of 
transformer has been described. Sequence data for L. cuprina are from Concha 
and Scott (2009), while sequence data for L. sericata, Co. hominivorax, and Co. 
macellaria are from Li et al. (2013). A) Comparison of the amino acid sequences 
for exons 1 and 2. The dotted circle represents the amino acid that is encoded by 
nucleotides in both exons. The arrows indicate the position of the forward and 
reverse primers. A triangle underneath the consensus sequence indicates an 
amino acid that is not present in all species. B) Comparison of the TRA/TRA2 
binding site (13 nucleotides long) found in the male specific exon, including the 
five nucleotide motif adjacent to this region (3’ direction).    
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Fig. 4.2. PCR yield gel images showing a male or female band pattern for (A) 
adults of known sex, (B) intrapuparial period specimens of known sex, (C) 
unknown larval specimens, and (D) egg clutches. (E) An example of a male 
intrapuparial period individual showing a second, shorter, and less bright band 
below the band present in all males. This smaller band is not always present in 
males, but is never present in females. The ladder used in all images had the 
following sized fragments (from top to bottom): 766bp, 500bp, 300bp, 150bp, 
50bp. A “M” designates male and a “F” designates female specific band 
patterning. 
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CHAPTER V: Expression of rhodopsin 1 and 3 in Chrysomya megacephala 

(Diptera: Calliphoridae): a preliminary search for candidate genes 

responsible for the male eye phenotype 

 

Abstract 

 Sexually dimorphic differences in compound eye morphology occur in 

many dipteran species. As much of the same genetic content is shared between 

males and females, these dimorphic differences can arise as a result of 

increased expression levels, different locations of expression, or differences in 

the timing of expression for the same gene. Whereas earlier investigations into 

sexually specific patterns of gene expression and their influences on sexually 

dimorphic traits were limited to model organisms, improvements in sequencing 

technology have given researchers access to genomes and transcriptomes of 

non-model organisms, allowing similar studies to be conducted in a large number 

of species. Here, we investigated the pattern of expression in each sex for two 

genes of interest, rhodopsin 1 (rh1) and 3 (rh3), which may play a role in the 

unique compound eye morphology seen in males of the blow fly Chrysomya 

megacephala (Diptera: Calliphoridae). For rh1, we investigated its temporal 

pattern of expression during the later stages of intrapuparial development. We 

found males express rh1earlier in development than females, though the mean 

differences at these time points were not statistically significant. For rh3, we 

compared gene expression in adults as previous reports had associated 

increased rh3 expression with dorsal facet enlargement in other dipterans. In 
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contrast to those reports, we observed higher gene expression in females than 

males. While this work is preliminary, it provides a basis for future research while 

representing the first work of comparing sex specific differences in gene 

expression during the intrapuparial period of blow flies.             

Introduction 

Drosophila melanogaster has served as the model organism for dipteran 

compound eye development. Among the more regular features of the dipteran 

eye are the eight photoreceptors (Ready et al. 1976). The arrangement of the 

photoreceptors is relatively uniform, with R1 through R6 forming the outer 

photoreceptors and the more distal R7 located on top of R8 centrally (Tomlinson 

and Ready 1987a). The function of each of the photoreceptors is linked to the 

type of rhodopsin gene it expresses. The six outer photoreceptors are used in 

motion detection and all express rhodopsin 1 (rh1); the two central 

photoreceptors, R7 and R8, are used for color discrimination and the rhodopsin 

genes show specific pairwise expression patterns (reviewed in Wernet and 

Desplan 2004). R7 expresses either rh3 or rh4, paired with R8 expressing either 

rh5 or rh6, respectively (reviewed in Wernet and Desplan 2004). The sequence 

in which these rhodopsin genes are expressed is known and is confined to the 

later portions of the intrapuparial period (Earl and Britt 2006). 

Differences in the amount of relative rhodopsin expression from the 

pattern present in D. melanogaster have been linked to morphological changes in 

the compound eye of other dipterans. For example, an increase in the expression 

of rh3 among adult members of D. mauritiana in comparison with other 
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Drosophila species has been linked to enlarged facet size (Posnien et al. 2012). 

Functional specialization in other dipterans has also been associated with 

differences in the location of rhodopsin expression. For example, in a region of 

enlarged facets believed to help track females, male Musca domestica have R7 

cells that do not express the typical rhodopsin genes for color discrimination, but 

instead express the motion detecting rh1 that is normally found in the outer 

photoreceptors (Hardie 1981).     

A fly that exhibits enlarged dorsal facets believed to be involved in mate 

tracking, and therefore may have patterns of rhodopsin expression different from 

D. melanogaster, is the male members of the blow fly Chrysomya megacephala 

(Diptera: Calliphoridae). A defining characteristic of the male C. megacephala 

compound eye is an area of enlarged dorsal ommatidia, clearly delineated from a 

region of smaller ventral facets (Kurahashi 1982). The size increase in the dorsal 

area is not accompanied by a subsequent change in resolution, leading to the 

area being referred to as the “bright zone” since the function appears to be 

increased light captured (van Hateren et al. 1989). Additionally, the increase in 

size seen in the dorsal area extends internally as the photoreceptors are also 

wider (van Hateren et al. 1989). The functional significance of these changes is 

hypothesized to either allow males to move in lower light levels or to track 

females from further distances under higher light levels (van Hateren et al. 1989). 

Recent work on low light level movement, however, has not shown any 

differences in movement under low light levels between male and female C. 

megacephala (Smith et al. 2015; Smith et al. 2016). These findings suggest that 
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mate tracking is the main reason for the enlarged dorsal facts of the male 

compound eye.  

A common theme among the morphological differences previously 

discussed involving the enlargement of dorsal facets and the specialization of a 

dorsal region is both involve genes that are present in individuals with and 

without the given phenotype. A manner in which more than one phenotype can 

be controlled by the same genes is a difference in the timing of expression, 

referred to as transcriptional heterochrony (Skaer et al. 2002). Between different 

blow fly species, transcriptional heterochrony has been shown to produce gross 

morphological differences in bristle formation (Skaer et al. 2002).  

The C. megacephala male compound eye provides a potential model for 

understanding how transcriptional heterochrony can lead to gross morphological 

differences not only between sexes of the same species, but also between 

closely related species. The closely related sister species of C. megacephala, C. 

pacifica, has dorsal facets that are only slightly enlarged (Kurahashi 1991). 

These two species are genetically similar enough to interbreed and produce 

offspring with intermediate enlargement of the dorsal facets (J. Wells, personal 

communication), making transcriptional heterochrony a potential mechanism for 

the differences observed in compound eye morphology. 

While the focus of this work is on the timing and overall expression of 

genes of interest in relation to compound eye development, it could produce a 

practical tool as well. C. megacephala is an insect of forensic importance, and a 

death investigator typically tries to estimate the age of a specimen associated 
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with a corpse (Wells and Kurahashi 1994). Knowledge of temporal gene 

expression could be used to age intrapuparial individuals. Intrapuparial 

specimens are typically aged by either the development of morphological 

features (Pujol-Luz and Barros-Cordeiro 2012; Defilippo et al. 2013, Proenca et 

al. 2014, Brown et al. 2015) or measuring gene expression (Tarone et al. 2011, 

Boehme et al. 2013, Boehme et al. 2014). Previous gene expression work in 

blow flies has not considered sex, a factor shown to influence development time 

for many insect species (Teder 2014), including one species of forensically 

important blow fly (Picard et al. 2013). For this reason, the investigation into 

sexually specific patterns of gene expression is also of use to forensic 

entomologists.       

 The main objective of this work was to search for sexually dimorphic eye 

development gene expression in C. megacephala to identify genes possibly 

responsible for the male compound eye phenotype. This investigation employed 

two approaches. The first approach was to measure rh1 expression according to 

sex during the later intrapuparial period to determine whether differences in the 

timing of expression for rh1 play a role in the development of the male compound 

eye morphology seen in C. megacephala. Previous reports of areas involved in 

mate tracking have shown rh1 expression in R7 (Hardie et al. 1981), the last 

photoreceptor to be differentiated. Given the hypothesized role of the C. 

megacephala dorsal facets to be involved in mate detection, we would expect 

increased rh1 expression later in males than females concurrent with when the 

rhodopsin genes typically expressed in R7 are known to be expressed.  
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The second objective was focused on determining if a previous 

association of increased gene expression observed in enlarged facets held true 

for male C. megacephala. Specifically the objective was to determine if rh3, 

previously associated with increased expression levels in adult Drosophila 

mauritiana known to have enlarged dorsal facets (Posnien et al. 2012), showed a 

similar pattern with greater expression in adult male C. megacephala in 

comparison with adult females.   

Methods 

Designing protocols for measuring expression of C. megacephala 

rhodopsin 1, rhodopsin 3, and ribosomal protein 49. Utilizing C. 

megacephala genomic information obtained from MiSeq (Illumina, San Diego, 

CA) sequence data as described in Evenstone (2015), we assembled a local 

BLAST database of C. megacephala contigs and used to it to search for 

rhodopsin 1 (rh1) sequence data from Calliphora vicina (Huber et al. 1990) with 

CLC Genomics Workbench (QIAGEN, Valencia, CA). Following alignments 

between Ca. vicina and C. megacephala, we designed primers using Primer 3 

(Untergrasser et al. 2012) that amplified partial conserved regions of rh1. In the 

same manner, we designed primers for rh3 by searching against Ca. vicina 

sequences (Schmitt et al. 2005) and ribosomal protein 49 (rp49) by searching 

against known sequences from Lucilia sericata (Tarone and Foran 2011). The 

partial portion of rp49 was used as a reference gene for this work. 

We aligned the C. megacephala partial amino acid sequences of rh1 and 

rh3 to the same sequences in Ca. vicina (J05596; AF878411) and L. cuprina 



84 
 

(KNC21061; KNC32561) to determine levels of conservation among blow flies 

using CLC Genomics Workbench.     

 RNA Extraction and RT-PCR for Samples During Intrapuparial 

Development. We collected eggs from a C. megacephala colony that was 

initiated from individuals captured in Miami-Dade County and maintained for five 

generations without the introduction of wild individuals. The eggs used were 

collected within a two hour time period and based on number and arrangement 

appeared to be a single clutch (Wells and Kurahashi 1994). Once collected, the 

eggs were allowed to develop at 27°C on chicken liver. After 168 hours at 27°C, 

all individuals that had entered the intrapuparial period (n=118) were placed 

individually into small cups and assigned a number. Eight of these individuals, 

selected using a random number generator, were extracted after each 12-hour 

interval from age 192 to 240 hours (Table 5.1). Adult emergence had occurred by 

age 252 hours. For extraction, the puparium was removed and a brief description 

of the eye (including eye color and whether or not sex could be identified based 

on eye morphology; see Table 5.1 for a summary of the composition of 

individuals extracted at each time point) was recorded. The entire individual was 

macerated using a sterile plastic pestle in Tri-Reagent. RNA was extracted from 

these individuals using the Direct-zol Mini Prep Plus Kit (Zymo Research, Irvine, 

California) and eluted in 60uL. RNA extract quantification was performed using a 

NanoDrop (Thermo Scientific, Wilmington, DE).             

A total of 1ug of RNA was reverse transcribed as described in Chapter IV. 

For each set of extractions, reactions containing RNA but without reverse 
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transcriptase were included to detect if genomic DNA contamination was present. 

Sex was determined by eye morphology in older individuals or by the genetic test 

described in Chapter IV for younger individuals. Following this, we amplified the 

cDNA for each individual using the rh1 and rp49 primers. Initially, a number of 

pilot amplifications were performed to establish conditions that represented the 

exponential phase of amplification (Marone et al. 2003). The primers and 

associated thermal cycling conditions for each are listed in Table 2. For the 

intrapuparial samples, rh1 and rp49 were amplified in duplicate.  

RNA Extraction and RT-PCR for Adults. We extracted RNA from the 

heads of adult male and female C. megacephala using the RNeasy Mini Kit 

(QIAGEN, Valencia, CA) following homogenization of the samples with 

QIAshredder columns (QIAGEN, Valencia, CA). The adults extracted were from 

a single clutch of eggs that represented the second generation from a colony 

established from wild individuals captured in Miami Dade County in March 2016. 

A total of three samples of male heads and three samples of female heads were 

extracted within 24 hours of adult emergence, with each sample consisting of a 

two heads each. Flies were decapitated live and macerated using a sterile plastic 

pestle. RNA extraction was carried out following the manufacturer’s instructions 

with a final elution volume of 40uL. 

Reverse transcription to cDNA was carried out as described for the 

intrapuparial samples. The gene of interest for the adults was rh3 instead of rh1 

(Table 2). For the adult samples, rh3 and rp49 were amplified in duplicate.      
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Semi-Quantification of Gene Expression. For the samples extracted 

during the intrapuparial period, amplified product from rh1 and rp49 for each 

member of an age group was run on the same 1.67% agarose gel stained with 

SYBR Safe (Thermo Scientific, Wilmington, DE). For the adult samples, amplified 

product from rh3 and rp49 for all individuals was run on the same 1.67% agarose 

gel.  

Gene expression was measured semi-quantitatively by analyzing the gel 

images in ImageJ (version 1.47; National Institutes of Health; Bethesda, MD, 

USA). We converted the images to black and white and used the “Gel Analysis” 

function to quantify the gel bands by measuring the area under the associated 

peak of the band. For samples in which there was not a single clear peak, the 

largest discernible peak was used for measurement. All samples were 

normalized to the 150bp band on the ladder, which was run in every gel, by 

dividing the value for each band by the value for the 150bp band. Since multiple 

gels were run to include all samples, this helped control for the variation caused 

by differences in gels. Each PCR sample for a gene of interest (either rh1 or rh3) 

was loaded directly next to the reference gene. The band intensity for a gene of 

interest was then normalized to the intensity of its paired reference gene by 

dividing the intensity of that band by the reference gene (Meadus 2003). The 

values for background signal noise were not subtracted from gene expression 

analysis, as these values would not alter the comparison between males and 

females.   
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 Statistical Analysis of Gene Expression During the Intrapuparial 

Period and Adult Stages. A one-way ANOVA was performed to determine if the 

expression of the reference gene, rp49, remained consistent across the five 

intrapuparial periods measured. For the intrapuparial period, t-tests assuming 

unequal variance were performed comparing the average amount of rh1 

expression at each individual time point between males and females. No 

correction was applied to control the familywise error rate for conducting multiple 

t-tests.   

For the adults, we compared the average gene expression for rh3 in adult 

males and females using a t-test assuming equal variance to determine if a 

difference existed in the mean expression levels for the two sexes.   

Determining Whether Sex-Specific Differences in Development Rate 

Exist. Each individual dissected from the puparium was classified as one of six 

development stages defined by compound eye pigmentation pattern (Table 5.1), 

and assigned a number (e.g. 1= unpigmented eye, the earliest stage, and 6 = red 

eye with grayish body, the final stage). A Mann-Whitney test was used to look for 

an effect of sex on development stage rank as a function of age. 

Results 

 High Level of Conservation in the rhodopsin Genes between C. 

megacephala, Ca. vicina, and L. cuprina. A large number of amino acids from 

both rh1 (Fig. 5.1A) and rh3 (Fig. 5.1B) are conserved within the Calliphoridae. 

Considering only the partial region of amino acid shared by all three species for 

rh1, C. megacephala has an 83.95% amino acid identity to L. cuprina and an 



88 
 

81.48% amino acid identity to Ca. vicina. For rh3, the level of conservation is 

even greater with C. megacephala sharing a 95.20% amino acid identity to L. 

cuprina and a 94.63% identity to Ca. vicina.     

 The Expression of rp49 is Relatively Consistent throughout the Later 

Intrapuparial Period. There was not a significant effect of sample age on mean 

expression level of rp49 (F4,35 = 0.573, P = 0.684), indicating that rp49 is a 

suitable reference gene for our purpose.   

 Expression Pattern of rhodopsin 1 during the Intrapuparial Period. 

The overall expression of rh1 increased with time across the intrapuparial period 

(Fig. 5.2A). While this general trend was expected, what is of more interest here 

is how it varied according to sex (Fig. 5.2B). Neither males nor females showed 

any expression for the initial 192 hour period. At both 204 and 216 hours, 

however, males showed an increase in gene expression with females still 

showing no appreciable level of expression. At 228 hours, females showed a 

higher expression level than males; a trend that is reversed at 240 hours when 

both sexes increased expression. At each of the time points, however, there was 

no significant difference based on sex (Table 5.3).  

 Comparison of Adult rhodopsin 3 Expression Pattern in Adult Male 

and Female C. megacephala. As can be seen in Fig. 5.3, there is a higher level 

of rh3 expression in females than in males. This difference, however, is not 

significant (t = -2.437, df = 4, P = 0.07144). 

No Sexual Difference in Development Rate Based on Compound Eye 

Morphology. During the first two time periods, the compound eye was 
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unpigmented in all individuals. It was not until 216 hours after oviposition that 

compound eye color began to appear. The results of the Mann-Whitney test 

showed no difference in development rate based on sex using eye pigmentation 

pattern (U=193.00, P=0.904).  

Discussion 

 High Conservation Levels of rhodopsin Genes in Blow Flies. The high 

level of conservation in the rhodopsin genes among blow flies is not unexpected, 

given the previous level of conservation observed between the more distantly 

related Ca. vicina and D. melanogaster (Huber et al. 1990, Schmitt et al. 2005).  

This conservation probably extends to the other rhodopsin genes in C. 

megacephala. The two rhodopsin genes expressed by R8, rh5 and rh6, should 

be targets of future work in C. megacephala male eye morphology as males 

show only a small R8 photoreceptor in the area of enlarged facets (van Hateren 

et al. 1989). R8’s function is likely solely for cell signaling in this region to 

differentiate the other photoreceptors, as R8 is the first photoreceptor to be 

differentiated (Tomlinson and Ready 1987b). This would make it a potential 

candidate for sex specific regulation, as one would expect C. megacephala 

males to have lower levels of rh5 and rh6 expression.         

The Expression of rh1 appears to be Earlier in Males. The overall 

pattern of rh1 being expressed later in intrapuparial period is consistent with 

previous patterns in D. melanogaster (Kumar and Ready 1995). Of interest here 

is whether there are differences in the timing of expression between sexes. An 

early point of interest is the 204 hour time period, where all eight individuals had 
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unpigmented compound eyes. The sex ratio at this time period was three males 

compared to five females, but the only individuals to express rh1 at this time 

point were two of the three males. While the overall mean difference was not 

significant, the absence of any unpigmented females expressing rh1 suggests 

that males may be expressing rh1 earlier. A drawback to this work is the small 

sample size (discussed in more detail later), but this pattern seems to warrant 

further investigation. 

Additionally, we also saw a spike in male rh1 expression at the 240 hour 

time point. One working hypothesis was that if males are incorporating rh1 in the 

central photoreceptor R7, then we would expect that rh1 expression would be 

increased for a longer period. Further investigation of this time period is 

warranted.        

The Expression of rh3 is Not Associated with Enlarged Facets in 

Adult C. megacephala. That the adult male C. megacephala did not have an 

increase in rh3 expression suggests developmental regulation different from the 

regulation producing dorsally enlarged facets in Drosophila (Posnien et al. 2012). 

It is worth noting, however, that Posnien et al. (2012) only compared females 

among different species for rh3 gene expression. Male D. mauritiana also seem 

to have larger dorsal facets in comparison with males of the other groups used in 

the study (Posnien et al. 2012), meaning this enlargement may not be influenced 

by genes that also determine sex. Since we are investigating a difference 

between sexes of the same species and not a difference between species, we 
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would expect a target of genes regulating the male eye morphology in C. 

megacephala to be influenced by sex determination genes.    

Determining Whether Absolute Age and Developmental Age are 

Similar Enough for Comparison. Individuals being the same age but at 

different stages of development are a known issue when looking at temporal 

gene expression (Earl and Britt 2006, Tarone and Foran 2008). In previous blow 

fly gene expression work, this issue has been addressed by defining a time of 

that individuals entered the intrapuparial period and using individuals that have 

reached that stage within a certain time window. Tarone and Foran (2008) 

utilized individuals that had entered the intrapuparial period within 24 hour 

windows of each other and calculated the overall percent of development, while 

Boehme et al. (2013) used a narrower 17 hour window and made comparisons 

based on percent of intrapuparial development. Both of these approaches 

assume the time of the earliest emerging insect as the denominator for 

calculating percent development and while reducing variation, still allow a time 

period where it could occur. We only used absolute age and not a measure of 

percent development. We tried to incorporate morphological information as a way 

of understanding how development rates could differ. Our methodology also 

allowed for some variation as can be seen by our description of compound eye 

morphology at the three later time points. Future studies could benefit by 

identifying individuals that are the same age and show the same morphological 

characteristics among more than just a single trait. Also, our specific study would 

benefit from evaluating development by studying morphology in a trait other than 
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the compound eye, as differential patterns of gene expression may be the result 

of sexually dimorphic development times for the compound eye.  

Future work evaluating intrapuparial age for blow flies would benefit by 

coupling information regarding both morphological characteristics and gene 

expression. Here, we considered both factors for the first time, though our 

morphological characteristics were limited to a subjective description of 

compound eye morphology. Recently, there has been a thorough description of 

multiple morphological characteristics to determine what combinations of 

features can be used to assess developmental age (Brown et al. 2015). As more 

descriptions of this nature become available, charting gene expression with these 

features will help in determining more precise estimates of intrapuparial age and 

development. Also, more work involving the objective quantification of 

development stage is needed. Brown et al. (2015) made strides toward this end 

by quantifying morphological features with a color chart. In the end, however, 

color was still grouped by overall discrete color categories, and a way of analysis 

based solely on quantitative values (ex: RGB values) would provide the most 

objective method for quantification. Animal color analysis in other fields provides 

guidelines (Stevens et al. 2007) that could be implemented for use in blow flies 

using digital cameras, a common element in both research and crime labs.    

Utilization of a Gene with Known Expression Patterns for Use in 

Forensics. The relatively close conservation of a number of genes between D. 

melanogaster and blow flies provides a valuable tool as many genes in D. 

melanogaster have characterized expression patterns (Arbeitman et al. 2002). 
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Here, we evaluated the expression pattern of a gene that is known to be 

expressed in the later stages of intrapuparial development and found its 

expression pattern to be similar to D. melanogaster (Kumar and Ready 1995). As 

such, rh1 could be used by forensic investigators as a marker for late 

intrapuparial development. By identifying genes that are known to be expressed 

at various time points, the creation of a set of candidate genes that are 

expressed during different intrapuparial stages (ex: early, mid, late) could help 

investigators interested in determining the age of specimens during this 

developmental period. Gene expression work with blow fly eggs (Tarone et al. 

2007) and late larval/early intrapuparial period specimens (Tarone and Foran 

2011) has utilized this approach by targeting genes with known expression 

patterns. As more genomic and transcriptomic information becomes available for 

blow flies (Sze et al. 2012, Wang et al. 2015, Anstead et al. 2015), genes 

targeting specific times in development can be more easily evaluated in multiple 

species.  

Evaluating Whether Differences in rh1 Expression are Sex-Specific 

or Species-Specific. If future work confirms the potential pattern observed here 

that rh1 has an earlier onset of expression in males than females, next it would 

be imperative to determine whether this difference is associated with the specific 

eye morphology found in C. megacephala males or if it is just a sex-specific 

response. A blow fly that does not exhibit the same male eye morphology seen in 

C. megacephala and for which larval specimen sex can be determined would be 
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the ideal candidate. One possibility is C. rufifacies, a species in the same genus 

with females that produce offspring of one sex (Ullerich, 1984). 

Limitations of the Current Work. While providing the first comparison of 

intrapuparial period gene expression between males and females in blow flies, 

the results of this study are preliminary. One reason this work is preliminary is the 

small sample size (n=8 for each sample age), which was also associated with 

unequal number of each sex for a given sample age. As this was a provisional 

attempt to identify genes of interest that may be crucial to the development of the 

derived eye phenotype, we chose to concentrate on 12 hour time periods toward 

the end of intrapuparial development when rh1 has been shown to be expressed 

in D. melanogaster (Kumar and Ready 1995). Now that time points of interest 

have been identified, future work can focus on narrower intervals around these 

time points.   

Another limitation of this work is the use of a semi-quantitative RT-PCR 

instead of real time quantitative PCR (qPCR). The semi-quantitative approach 

taken here is an older, less sensitive, and less used technique in comparison to 

qPCR (vanGuilden et al. 2008). We started with this technique in hopes of finding 

a time point where expression was present in one sex and not the other, and 

ultimately did quantify our data to have a general understanding of the relative 

amount of gene expression levels at each time point. Follow up work utilizing 

qPCR should be conducted now that general expression patterns have been 

shown. 
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Fig. 5.1. Amino acid alignments of rhodopsin genes in three species of blow fly. 
(A) Alignment of a partial region of C. megacephala rhodopsin 1 to Ca. vicina and 
L. cuprina. (B) Alignment of a partial region of C. megacephala rhodopsin 3 to 
Ca. vicina and L. cuprina. 
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Fig. 5.2. Temporal expression of rhodopsin 1 during the late intrapuparial period. 
(A) Overall expression pattern of rhodopsin 1 across the five time points. (B) Sex-
specific expression of rhodopsin 1 across the five time points. Females are 
represented by triangles and shown in red. Males are represented by squares. 
Error bars represent standard error.
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Fig. 5.3. Plot of the average relative expression level of rh3 in female and male 
adult C. megacephala (n=3 pairs of heads for each). 
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Table 5.1. Summary of the C. megacephala individuals analyzed for each time 
period, including range of eye colors observed, number of females, number of 
males, and number of individuals that could have sex determined by eye 
morphology. 
 

Time (hrs) Eye Colors Observed   Females  Males         Sex ID Eye   

192  Unpigmented          3       5      0  
204  Unpigmented          5       3      0 
216  Unpigmented, Orange        2       6      3 
228  Yellow/Orange, Orange, Red    5       3      8 
240  Orange, Orange/Red, Red        3       5      8  
  with pigmented body 
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Table 5.2. Primers and thermal cycling conditions for the amplification of partial portions of the following genes in C. 
megacephala: rhodopsin 1(rh1), rhodopsin 3 (rh3), and ribosomal protein 49 (rp49). 
 

Gene Forward Primer (5’-3’)    Thermal Cycling Conditions 
 Reverse Primer (5’-3’) 

rh1 CGATATGGCCCATTTGATTC  94°C for 5 min; 33 cycles of 94°C for 1 min, 54°C for 1 min,
 GGTGTTCGCAAAGATTTGGT  72°C for 1 min; 72°C for 10 min 
 
rh3 TCTGGAGGGCAAAATGACTC  94°C for 5 min; 33 cycles of 94°C for 1 min, 53°C for 1 min, 
 CAAATCGTCCCCAACTTTCAG  72°C for 1 min; 72°C for 10 min 
 
rp49 CGTCGCTTCAAGGGTCAATAC  94°C for 5 min; 23 cycles of 94°C for 1 min, 58°C for 1 min, 
 CAGTAGACACGGTTTTGCATC  72°C for 1 min; 72°C for 10 min 
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Table 5.3. Summary of statistics obtained from t-tests comparing mean C. 
megacephala rh1 expression levels between males and females for each of the 
five time periods. 
 

Time (hrs)  T-value Degrees of Freedom  P-value   

192   0.324   5.252   0.758         
204   1.298   2.009          0.323 
216   1.710          5.064   0.147 
228   -0.340      3.557   0.753 
240   0.752    3.058   0.506 
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CHAPTER VI. Conclusions 

  

This dissertation represents a study of the morphology, function, and 

genetics of the unique compound eye found in male Chrysomya megacephala. In 

addition to representing insights into a specialized visual system, the role of C. 

megacephala as an insect of forensic importance makes many of these findings 

relevant to forensic entomologists. 

 These results say more about what is not the function of the enlarged 

facets in the dorsal region rather than what is. van Hateren et al. (1989) 

proposed two possible reasons for this specialized region, including low light 

level movement. I did not find any difference in low light level movement between 

male and female C. megacephala when comparing only walking (Smith et al. 

2015) and comparing both walking and flying (Smith et al. 2016). Future work 

should, therefore, focus on testing the other possibility proposed by van Hateren 

et al. (1989): the enlarged dorsal regions allow for increased contrast sensitivity. 

Such an outcome has been described in the hoverfly Eristalis tenax, the only 

other fly for which the “bright zone” has been described (Straw et al. 2006). 

Electrophysiological work involving experiments testing contrast sensitivity 

between male and female C. megacephala, and between the enlarged dorsal 

facets and smaller ventral facets in male C. megacephala, would be a logical 

follow-up to the findings of this dissertation.  

 The behavior work in this dissertation demonstrated a unique way in which 

infrared sensors, long utilized for activity studies in flies (ex: Joshi 1999), could 



107 
 

be used to track movement at low light levels for insects of forensic importance. 

Previous studies involving forensically important adult insect activity at low light 

levels have relied on the recording of insect activity with expensive equipment 

(Barnes et al. 2015) or the capture of insects at traps (Nanzi et al. 2007, 

Wooldridge et al. 2007). By using custom built infrared sensors, I provide a new 

way to detect low light level insect movement in an automated and cost effective 

manner.  

A second focus of this work was to investigate the genetic regulation of 

the male compound eye. Even though the question of how the eye is genetically 

regulated is not resolved, the answer is much closer based on the results of this 

dissertation. A major hurdle in the investigation of the genes that are involved in 

C. megacephala male eye development was the inability to effectively determine 

sex in the late larval and early intrapuparial stages, when many of the genes are 

expressed. Taking advantage of recent work in other genera of blow flies 

(Concha and Scott 2009, Li et al. 2013) and newly acquired genomic information, 

I was able to isolate a region that could reliably determine sex during these 

stages. The ability to identify sex in the immature stages opens up numerous 

possibilities, as now sexually dimorphic features in C. megacephala can be 

investigated. An example is found in this work, where sexually dimorphic 

expression levels of rhodopsin 1 represents the first study to compare sex 

specific gene expression in the intrapuparial stage of blow flies. Furthermore, 

more applied questions such as whether there are differences in development 

rate based on sex, can now be answered for this species. 
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 This dissertation has provided information regarding low light level 

movement, a molecular test for sex determination, and a possible pattern of gene 

expression involved in the genetic regulation of the male compound eye in C. 

megacephala. These findings have potential applications in both forensic and 

insect pest management settings. While many questions remain regarding the 

function and genetic regulation of the male compound eye in C. megacephala, 

this dissertation has provided tools that will aid future research efforts. As more 

genomic information becomes available for non-model organisms, questions 

such as what causes the morphological differences which led to the speciation of 

closely related species is now possible. The close relationship between C. 

megacephala and C. pacifica, which are considered different species in part 

because of the male eye morphology, provides a model for understanding how 

speciation may occur and should be the aim of future research. Similarly, how 

the sexually dimorphic male compound eye develops differently than that of the 

female compound eye is closer to being understood than before this dissertation.   
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Appendices 

 

 

Fig. A.1. Plots of the logarithmic transformation of various eye features in relation 
to body size (as described in Chapter II). The slopes of these lines show the rate 
of growth relative to body size. (a) Logarithmic transformation of eye size in 
comparison to body size. (b) Logarithmic transformation of facet size in 
comparison to body size. (c) Logarithmic transformation of height of the dorsal 
area (in ommatidia) in comparison to body size.  
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Fig. A.2. Male compound eye histology photos (100x). Each photo is of the same 
cross section. (a) Section through the dorsal portion of the eye. (b) Section 
through the middle portion of the eye. The change in facet size is evident. (c) 
Section through the ventral portion of the eye. 
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Fig. A.3. Female compound eye histology photos (100x). Sections are through 
the (a) dorsal, (b) middle, and (c) ventral portion of the eye. 
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Fig. A.4. Histograms of the “photocell” readings when a pen or a tethered dead 
fly was passed through either the (a) flying or (b) walking sensor. 
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Fig. A.5. Comparison of (a) male and (b) female Chrysomya megacephala 
pharate adult compound eyes showing sexual dimorphism. The enlarged dorsal 
facets are visible in (a) allowing for sex to be determined.  
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Fig. A.6. The DNA sequence for the male specific exon in C. megacephala. The base pair corresponding to position 
one represents the portion of the sequence that is present just after exon 1. The base pair corresponding to position 
305 represents the portion of the sequence that is present just before exon 2. 
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Table A.1. Summary of gene expression as measured by band intensities for all 
40 intrapuparial samples. The values are the average of two amplifications of 
ribosomal protein 49 (rp49) and rhodopsin 1 (rh1), with the band intensity for 
each sample divided by the ladder as described in the methods for Chapter V. 
The normalized rh1 value is the average of the rh1 value divided by the average 
of the rp49 value for that same sample.  
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