
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

4-2-2001

Management, retrieval, and visualization of spatial
data from airborne light detection and ranging
system (LIDAR) survey
Zheng Cui
Florida International University

DOI: 10.25148/etd.FI14061561
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer Sciences Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Cui, Zheng, "Management, retrieval, and visualization of spatial data from airborne light detection and ranging system (LIDAR)
survey" (2001). FIU Electronic Theses and Dissertations. 2685.
https://digitalcommons.fiu.edu/etd/2685

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F2685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2685&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F2685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/2685?utm_source=digitalcommons.fiu.edu%2Fetd%2F2685&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

MANAGEMENT, RETRIEVAL, AND

VISUALIZATION OF SPATIAL DATA FROM

AIRBORNE LIGHT DETECTION AND RANGING

SYSTEM (LIDAR) SURVEY

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Zheng Cui

2001

To: Dean Arthur W. Herriott
College of Arts and Sciences

This thesis, written by Zheng Cui, and entitled Management, Retrieval, and
Visualization of Spatial Data from Airborne Light Detection and Ranging System
(LIDAR) Survey, having been approved in respect to style and intellectual content, is
referred to you for judgment.

We have read this thesis and recommend that it be approved.

Keqi Zhang

Wei Sun

Shu-Ching Chen, Major Professor

Date of Defense: April 2, 2001

The thesis of Zheng Gui is approved.

Dean Arthur W. Herriott
College of Arts and Sciences

Dean Douglas Wartzok
Graduate School

Florida International University, 2001

ii

DEDICATION

I dedicate this thesis to my parents. Without their understanding, support, and

all of love, the completion of this work would not have been possible.

iii

ACKNOWLEDGMENTS

I wish to thank Dr. Shu-Ching Chen, my major professor, who gives me not

only the proper academic guide but also much personal help through my master

studies. From whom, I learned how to make a proper attitude at the research, how to

explore my potential and how to fulfill the goals I have made. No exact words can

express my appreciation to Dr. Chen. I wish to thank Dr. Wei Sun for taking the time

reviewing my thesis and for his helpful comments. I would like to thank Dr. Keqi

Zhang for the efforts to evaluate my thesis and for providing the excellent opportunity

to work in the International Hurricane Center.

I am grateful to my wife, Yue, who gives me her entire support, dedication,

and love. I personally thank Mr. Lixin Huang for providing me with very helpful

comments. Also, I would like to take this opportunity to thank cordially everyone who

supported me throughout the years at Florida International University.

iv

ABSTRACT OF THE THESIS

MANAGEMENT, RETRIEVAL, AND

VISUALIZATION OF SPATIAL DATA FROM

AIRBORNE LIGHT DETECTION AND RANGING

SYSTEM (LIDAR) SURVEY

by

Zheng Cui

Florida International University, 2001

Miami, Florida

Professor Shu-Ching Chen, Major Professor

The primary purpose of this research was to develop new methodologies to

process and analyze large amount of topographic data from airborne LIDAR (light

detection and ranging) survey.

This research developed a suite of algorithms to resample dense clouds of

point data from LIDAR survey, cut the large data set into smaller tiles, and filtered

data to remove points from non-ground surface features such as vegetations,

buildings, and vehicles. These algorithms were implemented on the PC platform using

C++. The test results showed that the developed application software package based

on these algorithms worked well. This application software package provided users an

efficient way to retrieve, analyze, and display large volumes of LIDAR survey data,

and to extract topographic information.

V

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION 1
1.1 INTRODUCTION OF AIRBORNE LASER MAPPING 1

1.1.1 WHAT IS AIRBORNE LIDAR 1
1.1.2 AIRBORNE LASER MAPPING 2

1.2 APLLICATION OF AIRBORNE LASER MAPPING 5
1.3 ALTM 9

2. AIRBORNE LIDAR SYSTEM 11
2.1 OPTECH SYSTEM 11
2.2 DATA ACQUISITION 12
2.3 DATA STORAGE AND PROCESSING 13

3. RESAMPLING METHOD 15
3.1 SPARSE DATA 15

3.1.1 ALGORITHM OF SPARSE DATA 18
3.1.2 TIME COMPLEXITY 21
3.1.3 RESULT TEST AND ANALYSIS FOR SPARSE 22

3.2 DATA RETRIEVAL FROM CERTAIN SHAPE OF AREA 24
3.2.1 ALGORITHM OF DATA RETRIEVAL FROM POLYGON 26
3.2.2 RESULT TEST AND ANALYSIS FOR POLYGON RETRIEVAL 31

3.3 DISCUSSION 35

4. TILING METHOD 36
4.1 SINGLE SOURCE TILE WITHOUT BUFFER 37

4.1.1 ALGORITHM OF SINGLE SOURCE TILE WITHOUT BUFFER 39
4.1.2 RESULT TEST AND ANALYSIS FOR SINGLE SOURCE TILE 42
WITHOUT BUFFER

4.2 SINGLE SOURCE TILE WITH BUFFER 44
4.2.1 ALGORITHM OF SINGLE SOURCE TILE WITH BUFFER 45
4.2.2 TIME COMPLEXITY 52
4.2.3 RESULT TEST AND ANALYSIS FOR SINGLE SOURCE TILE 52
WITH BUFFER

4.3 MULTIPLE SOURCE TILE WITH BUFFER 54
4.3.1 ALGORITHM OF MULTIPLE SOURCE TILE WITH BUFFER 55
4.3.2 RESULT TEST AND ANALYSIS FOR MULTIPLE SOURCE 59
TILE WITH BUFFER

4.4 SORTED TILING METHOD 63
4.4.1 ALGORITHM OF SINGLE SOURCE SORTED TILING WITH 66
BUFFER
4.4.2 TIME COMPLEXITY 74
4.4.3 RESULT TEST AND ANALYSIS FOR SORTED TILING 76

4.5 DISCUSSION 77

5. FILTERING METHOD 79

vi

5.1 TILE FILTERING METHOD 80
5.1.1 ALGORITHM OF TILE FILTERING METHOD 82
5.1.2 TIME COMPLEXITY 94
5.1.3 RESULT TEST AND ANALYSIS FOR TILE FILTERING 95

5.2 SORTED FILTERING METHOD 97
5.2.1 ALGORITHM OF SORTED FILTERING METHOD 98
5.2.2 TIME COMPLEXITY 109
5.2.3 RESULT TEST AND ANALYSIS FOR SORTED FILTERING 109

6. CONCLUSION AND FUTURE WORK 111

LIST OF REFERENCES 113

vii

LIST OF TABLES

TABLE PAGE

1. FORMAT OF ALTM DATA IN ASCII FILE 14

2. VERTEX SAMPLE 1 FOR POLYGON RETRIEVAL 32

3. VERTEX SAMPLE 2 FOR POLYGON RETRIEVAL 34

4. EIGHT POSSIBLE MOVING DIRECTIONS 51

5. CONTRAST OF THE RESULT OF SINGLE SOURCE FILE TILE AND 60

MULTIPLE SOURCE FILE TILE

6. RESULTS OF TWO TILING METHODS 77

viii

LIST OF FIGURES

FIGURE PAGE

1. OPTECH MODEL 1210 ALTM SYSTEM 11

2. CESSNA 337 TWIN-ENGINE LIGHT AIRCRAFT OWNED JOINTLY 12

BY FIU AND UF

3. LIDAR DATA COLLECTED IN EASTERN BROWARD COUNTY 13

4. METHOD FOR SPARSE DATA 17

5. SPARSE ORIGINAL DATA 23

6. SPARSE RESULT 24

7. JORDAN ARC THEOREM 25

8. POLYGON RESULT OF SAMPLE 1 33

9. POLYGON RESULT OF SAMPLE 2 35

10. METHOD FOR TILE DATA 38

11. TILE ORIGINAL DATA 42

12. TILE RESULT OF SINGLE SOURCE WITHOUT BUFFER 43

13. TILE WITH BUFFER 44

14. SINGLE SOURCE TILE WITH BUFFER 53

15. OVERLAPS IN MULTIPLE SOURCE FILES 54

16. TILE FILES FROM MULTIPLE SOURCE FILES 63

17. ROWS PARTITION OF SORTED TILING 64

18. COLUMNS PARTITION OF SORTED TILING METHOD 65

19. SORTED TILING WITH BUFFER 66

20. TILE FILTERING METHOD 81

21. PARTITION SAMPLE 88

ix

22. RESULT OF FILTERING ONE TIME 88

23. THE ORIGINAL DATA 89

24. RESULT OF FILTERING ONE TIME 89

25. RESULT OF REFILTERING 96

26. RESULT OF SORTED FILTERING METHOD 110

x

1. Introduction

1.1 Introduction of Airborne Laser Mapping

1.1.1 What is Airborne LIDAR

Light is scattered and attenuated by molecules, aerosols (dust), and cloud (water

or ice) particles in the atmosphere. The sky can be clear and blue or hazy and white. Red

sunsets are a beautiful manifestation of the scattering and attenuation of sunlight. Clouds

can appear white, gray, or dark depending on conditions. The rainbow and ice-particle

displays like sundogs and light pillars are less frequent. Light scattering and attenuation

can be used to investigate the atmosphere using a remote-sensing instrument called a

LIDAR (Light Detection and Ranging System).

A LIDAR system uses laser pulses to measure atmospheric constituents such as

aerosol particles, ice crystals, water vapor, or trace gases (e.g. ozone). Profiles of these

atmospheric components as a function of altitude or location are necessary for weather

forecasting, climate modeling, and environmental monitoring.

Light Detection and Ranging System (LIDAR) uses a laser beam to bounce

between the aircraft and the ground, assessing distance from the camera to the ground at

set points. The laser beams pierce vegetation, allowing measurement to be conducted

during previously prohibitive times of the year when vegetation is thick. However,

besides possibly expanding the flying season in some areas, the accuracy of ground

measurement increases tremendously with the use of this new technology. LIDAR will

help to support many of the topographic mapping needs of our diverse client base.

1

LIDAR technology allows year-round aerial mapping, and unlike traditional

requirements of perfect weather, an aircraft equipped with LIDAR can operate in less

than ideal weather conditions including night flights. This can have a significant effect

on turnaround time for a project. Less than perfect weather grounds traditional aerial

photography crews because of the need of strong overhead sunshine.

1.1.2 Airborne laser mapping

Airborne laser mapping is an emerging technology in the field of remote sensing

that is capable of rapidly generating high-density, geo-referenced digital elevation data

with an accuracy equivalent to traditional land surveys but significantly faster than

traditional airborne surveys.

Airborne laser mapping offers lower field operation costs and post-processing

costs compared to traditional survey methods. Point for point, the cost to produce the

data is significantly less than other forms of traditional topographic data collection

making it an attractive technology for a variety of survey applications and data end-users

requiring low cost, high-density, high accuracy geo-referenced digital elevation data.

Airborne laser mapping use a combination of three mature technologies: Light Detection

and Ranging (LIDAR), highly accurate inertial reference systems (IRS) and the global

positioning satellite system (UPS). By integrating these subsystems into a single

instrument mounted in a small airplane or helicopter, it is possible to rapidly produce

accurate digital topographic maps of the terrain beneath the flight path of the aircraft.

The absolute accuracy of the elevation data is 15 cm; relative accuracy can be less than 5

cm. Absolute accuracy of the XY data is dependent on operating parameters such as

flight altitude but is usually 10's of cm to 1 m.

2

The elevation data is generated at 1000s of points per second, resulting in

elevation point densities far greater than traditional ground survey methods. One hour of

data collection can result in over 10,000,000 individually geo-referenced elevation points.

With these high sampling rates, it is possible to rapidly complete a large topographic

survey and still generate DTMs with grid spacing of 1 m or less.

The technology allows for extremely rapid rates of topographic data collection. With

current commercial systems it is possible to survey one thousand square kilometers in

less than 12 hours and have the geo-referenced DTM data available within 24 hours of

the flight. A 500-kilometer linear corridor, such as a section of coastline or a

transmission line corridor, can be surveyed in the course of a morning, with results

available the next day.

Airborne laser mapping instruments are active sensor systems, as opposed to

passive imagery such as cameras. Consequently, they offer advantages and unique

capabilities when compared to traditional photogrammetry. For example, airborne laser

mapping systems can penetrate forest canopy to map the floor beneath the treetops,

accurately map the sag of electrical power lines between transmission towers or provide

accurate elevation data in areas of low relief and contrast such as beaches.

Airborne laser mapping is a non-intrusive method of obtaining detailed and

accurate elevation information. It can be used in situations where ground access is

limited, prohibited or risky to field crews.

Commercial airborne laser mapping systems are now available from several

instrument manufacturers while various survey companies have designed and built

custom systems. Similar to aerial cameras, the instruments can be installed in small

3

single or twin-engine planes or helicopters. Since the instruments are less sensitive to

environmental conditions such as weather, sun angle or leaf onloff conditions, the

envelope for survey operations is increased. In addition, airborne laser mapping can be

conducted at night with no degradation in performance.

A number of service providers are operating these instruments around the world,

either for dedicated survey needs or for hire on a project basis. Some organizations are

starting to survey areas on speculation and then offering the laser-generated data sets for

resale similar to the satellite data market.

While the core technologies for airborne laser mapping have been in development

for the past 25 years, the commercial market for these instruments has only developed

significantly within the last five years. This commercial development has been driven by

the availability of rugged, low-cost solutions for each of the core subsystems and the

growing demand for cheap, accurate, timely, digital elevation data.

In operation, a pulsed laser rangefinder mounted in the aircraft accurately

measures the distance to the ground by recording the time it takes a laser pulse to reflect

back to the aircraft from the ground or from objects such as buildings, trees or power

lines. Since the speed of light is known, the elapsed time is converted to an accurate

distance or slant range. Some instruments record multiple returns from a single laser

pulse to capture a vertical profile along the slant range. A scanning or rotating mirror is

used to provide coverage across the path of the aircraft with swath widths dependent on

scan angle and operating altitude. Simultaneously the IRS subsystem records the roll,

pitch and heading of the aircraft to determine its orientation in space, while the GPS

subsystem provides the precise location of the aircraft through a differential kinematic

4

solution. During post-processing the IRS orientation and GPS position solutions are

combined with the laser slant ranges to calculate accurate XYZ coordinates for each laser

return.

The technology does not provide a real-time solution; it requires additional post-

processing after the field operations and data collection are completed to generate the

final XYZ data points. Post-processing is based on proprietary software developed by

each instrument manufacturer but has significantly faster turn-around times than

conventional survey techniques, on the order of 10's of hours compared to 10's days for

traditional methods.

In addition to directly generating digital XYZ data points, post-processing

software modules for the automatic analysis and classification of various features are

being developed. Software modules already exist for such activities as vegetation

classification and removal while other modules are being developed for automatic feature

extraction, building recognition or automatic power wire detection and modeling.

1.2 Application of Airborne laser mapping

Depending on the application, airborne laser mapping technology is either a

complementary or a competitive technology when compared to existing survey methods.

For many survey applications airborne laser technology is currently deployed in

conjunction with other more traditional sensors including standard aerial cameras, digital

cameras, multi-spectral scanners or thermal imagers. However, in certain applications,

such as forestry or coastal engineering, it offers capabilities not achievable with any other

technology.

5

The most active application areas are:

1. DTM Generation for a Variety of GIS/Mapping Related Products.

Airborne laser mapping is a rapid, cost-effective source of high-accuracy, high-

density elevation data for many conventional topographic mapping applications.

Comparing with conventional survey methods, this technology has large area topographic

surveys to be accomplished significantly faster and at a lower cost.

2. Forestry.

Airborne laser mapping in the forestry industry was one of the first utilizations for the

commercial purpose. Accurate information on the terrain and topography beneath the

tree canopy is very helpful to both the forestry industry and natural resource managers.

Accurate information on tree heights and densities is also extremely important

information that is hard to acquire by using traditional techniques. Airborne laser

technology, different from radar or satellite imaging, can simultaneously map the ground

beneath the tree canopy as well as the tree heights. Post-processing of the data allows the

individual laser returns to be analyzed and classified as vegetation or ground returns

allowing DTMs of the bare ground to be generated or accurate representative tree heights

to be calculated. Therefore, airborne laser mapping is a very effective technique for

forestry industry when compared to photogrammetry or extensive ground surveys.

3. Coastal Engineering.

This is another area where airborne laser technology provides state-of-the-art type

performance with significant advantages over other survey techniques. Since

conventional photogrammetry is difficult to use in areas of limited contrast, such as

beaches and coastal zones, an active sensing technique such as airborne laser mapping

6

provides the ability to complete surveys that would be too expensive to utilize other

methods. Furthermore, highly dynamic environments such as coastal zones often need

constant updating of baseline survey data. Airborne laser mapping provides a cost-

effective method to do this on a routine basis. It is also used for mapping and monitoring

of shore belts, dunes, dikes and coastal forests.

4. Corridor or Right-of-Way Mapping.

Airborne laser mapping allows rapid, cost-effective, accurate mapping of linear

corridors such as power utility right-of-ways, gas pipelines, or highways. A major

market is mapping power line corridors to allow for proper modeling of conductor

catenary curves, sag, ground clearance, encroachment and accurate determination of

tower locations. For example the use of data acquired through airborne laser surveys can

be combined with simultaneous measurements of air and conductor temperature and load

currents to establish admissible increases in load-carrying capacity of power lines.

5. Construction.

Timely and accurate digital, geo-referenced elevation data is useful in a variety of

construction and engineering activities. Examples include highway corridors, open-pit

mines or daily surveying of large construction sites.

6. Flood Plain Mapping.

Accurate and updated modeling of flood plains is critical both for disaster planning

and insurance purposes. Airborne laser mapping offers a cost-effective method of

acquiring the topographic data required as input for various flood plain modeling

programs.

7

7. Urban Modeling.

Accurate digital models of urban environments are required for a variety of

applications including telecommunications, wireless communications, law enforcement

and disaster planning. An active remote sensing system such as a laser offers the ability

to accurately map urban environments without shadowing.

8. Disaster Response and Damage Assessment.

Major natural disasters such as hurricanes or earthquakes stress an emergency

response organization's abilities to plan and respond. Airborne laser mapping allows

timely, accurate survey data to be rapidly incorporated directly in to on going disaster

management efforts and allows rapid post-disaster damage assessments. It is particularly

useful in areas prone to major topographic changes during natural disasters; areas such as

beaches, river estuaries or flood plains.

9. Wetlands and Other Restricted Access Areas.

Many environmentally sensitive areas such as wetlands offer limited ground access

and due to vegetation cover are difficult to asses with traditional photogrammetry.

Airborne laser mapping offers the capability to survey these areas. The technology can

also be deployed to survey toxic waste sites or industrial waste dumps.

Since airborne laser mapping is a relatively new technology, applications are still

being identified and developed as end-users start to work with the data. There are on

going efforts to identify areas where this technology allows value-added products to be

generated or where it offers significant cost reduction over traditional methods.

8

1.3 ALTM

The Airborne Laser Terrain Mapper (ALTM) is an airborne sensor that uses

Airborne Laser Mapping technology to collect thousands of spot elevations per second as

the aircraft flies over a land surface. Two Global positioning System (GPS) receivers are

used to locate the aircraft with accuracy better than 1 meter. One receiver is installed in

the aircraft, while the other is situated at a known ground location. The ground receiver

identifies and corrects errors in the aircraft's position. A high accuracy laser rangefinder

scans beneath the aircraft to produce a wide swath over which the distance from the

aircraft to the ground is measured. The laser angles are also measured and corrections are

applied to eliminate motions of the aircraft. Once gathered, the angles and distance

determine the position of points on the Earth's surface. The ALTM provides data similar

to that of a conventional ground surveying technology but at a much faster speed and

with both day and night operations.

About two-thirds of all Airborne Laser Terrain Mappers in use worldwide are

Optech ALTMs. They have been designing specialized laser ranging systems for more

than twenty years, often for airborne platforms.

The Florida International University (FU) International Hurricane Center and the

University of Florida (UP) Geomatics program have recently purchased an Optech model

1210 ALTM system, at a cost exceeding one million dollars. The system is mounted in a

Cessna 337 twin-engine light aircraft owned jointly by FIU and UF.

The Optech 1210 ALTM utilizes a 10 kHz pulsed laser range finder (LIDAR)

which returns vertical ranges to the ground on a swath beneath the flight path. When

9

combined with advanced inertial navigation and kinematic GPS positioning, this system

can return absolute elevations of the ground surface accurate to 6 inches (15cm). For a

typical aircraft deployment (120 miles per hour ground speed, 3000 foot altitude), we are

able to map a 2000-foot-wide, over 500-mile-long swath of ground surface elevations

spaced 5 feet apart in just a few hours and at a fraction of the cost of conventional

surveying.

10

2. Airborne LIDAR system

2.1 OPTECH System

Recent advances in microcomputers, laser ranging technology (LIDAR) and

Global Position System (GPS) have resulted in the development of a compact and

lightweight airborne laser terrain mapping system (ALTM) that can inexpensively

acquire topographic data of unprecedented detail and accuracy. The Florida

International University (FIU) International Hurricane Center and the University of

Florida (UF) Geomatics program have recently purchased an OPTECH Model 1210

ALTM system (Figure 2.1.1) at a cost exceeding one million dollars. The system is

mounted in a Cessna 337 twin-engine light aircraft owned jointly by FIU and UF.

Figure. 2.1.1 Optech Model 1210 ALTM system

11

Figure. 2.1.2 Cessna 337 twin-engine light aircraft owned jointly by FIU and UF

2.2 Data acquisition

For testing of our method in this study, the major LIDAR data was collected in

eastern Broward County over 4 days in December 1999 to March 2000. Over 240 km of

the county were surveyed with an average point spacing of 2.5 meters. The survey

consisted of 25 N-S trending 600-m-wide swaths spaced every 500 m and 2 E-W trending

cross lines (Figure 2.2.1). Data was measured from elevations ranging from 700 - 1200

m. Over 140 million irregularly spaced ground surface elevations were measured.

Ground control was provided by two Ashtech Z-12 GPS receivers positioned over

National Geodetic Survey (NGS) benchmarks.

12

Airborne Laser Terraine Mapping
of Broward County Florida

20 cm
Differential Verical

Navigation Acrc

300 Scan
10l kHz Laser

P.ulse Rate 1 mwd
Laser Footprint

1100~- rnF1gh

600 m Wide
Scan Swath

Figure. 2.2.1 LJDAR data collected in Eastern Broward County

2.3 Data storage and processing

After each flight, LIDAR and GPS data are downloaded to a computer and

processed by proprietary Optech software to produce UTM X, Y coordinates and

ellipsoidal heights of each laser return. Positional accuracy was improved by calculating

a precise aircraft trajectory using the KARS software provided by Dr. Gerry Mader of

NGS (Mader, 1986; 1992). Elevations were converted from GPS ellipsoidal heights to

NAVD88 orthometric heights with the NGS GEOID99 model. Data from overlapping

swaths were checked for internal consistency, combined and subdivided into over 300 1-

km tiles. Each tile was then gridded using the nearest neighboring interpolation to

produce 2m resolution DEMs.

13

ALTM data are stored in ASCII files (Table 2.1), each line in the file represents a

point that consists of four elements: three-dimensional coordinates and the laser

reflection intensity of the object at this point. Normally, there are millions of points for a

study area. For example, 140 million points are surveyed for Broward hurricane flood

venerable area (140 km 2). It is difficult to process them together based on the capacity

of current workstations. Thus, we needed to divide the data set into pieces for further

processing. After processing each piece of data, we have to merge the results together to

have the final outcome.

X Y Z Intensity

573200.00 2891200.00 -19.21 96

573400.00 2891250.20 -23.57 75

573600.28 2891200.00 -23.02 72

573500.25 2891050.96 -23.40 13

573300.52 2891050.88 -19.57 119

Table 2.1 Format of ALTM data in ASCII file

14

3. Resampling Method

Since there were huge amounts of data that contained useful and unuseful

information for the user's requirement, our first job was to resample the data. In other

words, we had to shrink the data and get some representative points in a certain area or

retrieve a certain amount of data from a certain area.

3.1 Sparse method

Since the average space of contiguous points in this survey project was about 2.5

meters, we were able to select a representative point to represent a certain piece of the

area; The size of the certain piece of area can be acquired from the given length and

width, which is what we called sparse data.

For acquiring sparse data, we first have to acquire the boundary of the survey area

from the data points file, then split the original data into grids. The size of the grid can be

decided according to the terrain character of the surveyed area. If there is no significant

difference of terrain character in the surveyed area, the size of grid can be large;

otherwise, it can be relatively small.

Specifically, we can process the original data into sparse data by following steps

below:

1) Scan all the data in the source file, acquire the amount of the data points in the

file, which is decided by how many lines are in the file; each line in the file

represents a point.

15

2) Get the boundary of the survey area by computing the minimum and maximum

values of both X and Y among the data, and create a rectangular boundary.

3) Split the whole area into grid with given width and length inside the rectangular

boundary. While each point belongs to one grid.

4) Scan each data point, and check which grid it belongs to, choose the one with the

lowest elevation (Z value) as the representative point of each grid, and add them

into an array.

5) Output the representative point array.

The method is illustrated in the Figure 3.1.1. We can split the whole area into

grids. The coordinate of the left-bottom point is made by the minimum X, Y values; the

coordinate of the right-top point is made by the maximum X, Y values. The direction of

X is horizontal in the figure, and the direction of Y is vertical. We split the area in a

number of columns along the X direction, and a number of rows along the Y direction.

Thus, each grid in the figure can be indexed according to its index of column and row.

The index of a grid can be counted as follows:

Index of Grid = IndexY * Columns + IndexX

IndexY refers to the index of Y's direction; IndexX refers to the index of X's direction.

By using the index of the grid and the X and Y directions, we can collect all the data

points in each grid in a point array. The index of the array is the index of the grid, and

the one with the lowest elevation to be the representative point of that grid should be

chosen.

The purpose of terrain mapping in this project is to acquire the data that can

represent the real terrain character. Since those points that represent the building,

16

vegetation, vehicles, etc., can be scanned into the data file, so we have to choose the point

that approaches the real terrain character when the representative point in each of grid is

retrieved. In this sense, we can choose the point with the lowest elevation as the

representative point of the grid. That is based on the reasonable selection of the grid size

because the size of grid should fit a certain area without significant variation in the terrain

character. Accordingly, we can use a point to represent that particular area.

L

Figure 3.11 Method for Sparse data

17

Selection of the grid size is very important; it will determine the discrepancy

between the sparse data and the real terrain character. After selecting a reasonable grid

size, we generally can choose the point with the lowest elevation to be the representative

point because it is the most likely one to approach the real terrain character.

3.1.1 Algorithm of sparse data

The Pseudo-code of Sparse method is indicated below:

Procedure Sparse

01 Read the data file, get the size of data set;

02 Read file into altnArray a;

03 a.getMin axXYZ (min~x, min-y, min-z, max-x,

maxy, max-z); // Get the minimum and maximum

values of x, y, z among all the points;

04 getNumOfRowCol (min~x, miny, max-x, max~y,

width-x, lengthy, Cols, Rows); // Compute the

Columns and Rows of all the points area based

on the given width on X direction and length on

Y direction;

05 altmArray aTile[Cols*Rows]; // Create a ALTM

point array with the size of Columns*Rows.

06 For (k=O; k<size; k++) // Go through each point

of the Array

0 7 l l n d e x X = (a k] g e t X () - m i n-x) / w i d t h _ x ; /

18

Count the X Index of each point based on

the Columns and Rows Coordinate;

08 lIndexY = (a[k].getY() - miny)/lengthy;

// Count the Y Index of each point based on

the Columns and Rows Coordinate;

09 If aTile[lIndexY*cols+lIndexX] == NULL Then

10 aTile[llndexY*cols+lIndexX] = a[k];

11 Else

12 If (a[k].getZ()<

aTile [llndexY*cols+llndexX] .getZ ())

Then

13 aTile[llndexY*cols+lIndexX] = a[k];

14 Else If ((a[k].getZ()==

aTile[llndexY*cols+llndexX] .getZ()) &&

(a[k].getX() <

aTile[llndexY*cols+llndexX] .getX()))

15 aTile[llndexY*cols+llndexX] a[k]

16 End if;

17 End if;

18 End if;

19 End for;

20 Output the aTile[Cols*Rows} to file.

19

Line 01 is used to read the data from the file, after we have scanned the whole

file, we can acquire the amount of the data points in the file, which is decided by how

many lines in the file, because each line in the file represents a point.

After getting the number of the point set, through Line 02, we can create an

altmArray with the number, and load all the data points in the file into the altmArray.

Next, we need to compute the minimum and maximum value of X, Y, which are

used to determine the boundary of the data points in the file. Line 03 is functioning for it.

In Line 04, we compute the number of columns and rows of all the point areas

through the given parameter -- width and length. Width is used on the X direction, and

length is used on the Y direction. Accordingly, columns can be computed based on the

width, because it reflects how many strips can be divided on the direction of X; on the

other hand, rows can be computed based on the length, because it reflects how many

strips can be divided on the direction of Y. After that, we can split the whole area into

tiles. Each point must fall into one tile.

Based on the number of columns and rows, we can create an array which points to

altmArray with the size of columns x rows for collecting data points in each tile.

Actually, all the points in each tile can be stored in one element of the array, because

each element of the array points to an altmArray which is used to store a bunch of data

points. The index of the array represents each tile, because we can use the unique index

(columns, rows) to represent a tile.

Lines 06 to 19 are functioning as a main procedure for acquiring the sparse data.

We can scan each point; first, we can count the column and row indexes of each point, in

another words, we can decide which tile the point belongs to (Line 07 and 08 perform

20

this job). For computing the index of a tile in the aTile array, we can use the index of the

column from Line 08 multiplied by the number of column, plus the index of the row from

Line 07. If the corresponding element in aTile array is null, we just store the point in it;

if it has the data point already, we can compare the Z value of the new point with the

point stored in the aTile array. This process is used for acquiring the point with lower

elevation. If the Z value is the same, continue to compare the X value, and get the point

with the smaller X value. That can guarantee the unique result of sparse data. Lines 09 -

18 will perform this job.

After scanning the whole data set one time, we can get the sparse data in the aTile

array. Each element in the array represents the data in each tile with the lowest elevation

point. Finally, we can output the aTile array into a file (Line 20).

3.1.2 Time Complexity

In the Procedure Sparse, we read the source file, loaded all the data into the

altmArray, and computed the mininum and maximum X, Y value. These three steps have

the same time complexity, because they all have to scan the whole data set one time.

Hence, the time complexity for these steps is O(N), if there are N points in the whole data

set.

After that, we scanned the whole data set once to get the representative point of

each grid. The time complexity for this step is O(N). Finally, we output the link list for

each tile into a file. The time complexity for output is also O(N). Thus, we know the

time complexity for the Procedure Sparse is O(N).

21

3.1.3 Result test and analysis for sparse

We chose the original source data from the survey in eastern Broward County.

They are stored in a text file with the capacity of 8,568KB. There are 213,974 points in

the file (Figure 3.1.2 Original data for sparse). We chose the size of the tile with 5m in

width and 5m in length. So the square of the tile is 25m 2. Since the average space of

contiguous points in this survey project is about 2.5 meters, there are no more than three

points along any side of the tile. Consequently, there are no more than nine points in the

tile. This size is reasonable for processing sparse data, because according to the terrain

character in Florida, there is no significant difference in a relatively small area. A 25m 2

area is small enough and will not compromise the terrain character. Based on this width

and length, we can split the area into 22,000 tiles. After processing the sparse procedure,

there are only 18,839 points left. We can infer that there are some tiles without any point

in them, so the number of sparse points is less than the number of tiles. The sparse result

shows us (Figure 3.1.3 Sparse result) that it keeps the terrain character, but the data

capacity shrinks more than ten times.

In the image (Figure 3.1.2) of the original data and sparse data, the color of point

reflects the elevation of the points. After the sparse procedure, the shape of a certain area

with a different elevation remains unchanged. That is what we want, to keep the terrain

character for further processing.

The elapsed time on this original data file for the main function of sparse

procedure on an Intel Pentium III 933MHZ CPU and 256M RAM is 4.718 seconds

including the time for reading and writing the file.

22

Since loading the data into a point array needs to read file twice, the first time is

for counting the amount of data points, the second time is for importing the data into

array. Moreover writing the sparse result into a file, the total processing time includes

reading and writing the file on the same computer. This time is concerned with the other

performance of the computer, such as the hard drive.

x 106
2.8914 - - -- 18

2.8914 -

2.8913 -. - -19

2.8912
- - -21

2.8912

tr F ' . f +.-22
2.8912-

2.8911 -23

2.891 -- - -T -.. .

t ' ' -24
2.891 -

2.891 -2a
5.728 5.73 5.732 5.734 5.736 5.738 5.74 5 742

x 105

Figure 3.1.2 Sparse Original data (213,974 points, 8,568KB ASCII file)

23

2.8914 -106 ----..: -

2.8914 --
- .19

-20
2.8913 Y

- ;, - -

2.8912 - - -21

. J-22
2.8912 - -y .-i..

2.8911-' -23

- - -y. * -2 3
2.891 .- --

2.891 -25
5.728 5.73 5.732 5.734 5.736 5.738 5.74 5.742

X 105

Figure 3.1.2 Sparse Result (Grid size: 5m in width, 5m in length)
(18,839 points, 773KB ASCII file)

3.2 Data retrieval from a certain shape of area

From the users' perspective, they may want to acquire the data in a certain area

with different shapes. For this purpose, we have to find out a way to extract the data

from a certain shape of the area. Generally, we use the polygon for the shape of the

selection. Accordingly, we have to find out an algorithm to extract the data from the

polygon. There are many algorithms for testing whether or not a point falls within a

24

polygon. Many of the algorithms utilize area computations, and many others work only

for convex polygons or polygons without concavities.

The simplest algorithm for point-in-polygon testing is the Jordan Arc Theorem

(Figure 3.2.1 Jordan Arc Theorem). This simply states that a line between a point known

to be outside a polygon will cross the polygon boundary an even number of times if the

point is outside the polygon, and an odd number of times if the point is inside the

polygon.

T ng point side polygon

T oin i in p

Figure 3.2.1 Jordan Arc Theorem

This theorem provides solutions in all cases except when the lines either touch a

vertex or run parallel to an edge. The parallel problem is often significant, because the

25

outside point can simply be chosen as vertically above or below any given test point, and

because many map lines run parallel to the axes.

Thus, in our cases, we can process the polygon retrieval according to the

following steps:

1) Scan the vertex file, and acquire the number of vertexes in the file, which is

decided by how many lines are in the file, because each of the lines in the file

represents a vertex.

2) Scan the whole data file, and acquire the amount of the data points in the file,

which is decided by how many lines are in the file, because each of line in the file

represents a point.

3) Get the boundary of the survey area by computing the minimum and maximum X,

Y value among all the data. Create a reference point outside the boundary.

4) Check each point in the data file, and state whether or not it is inside the polygon

created by the vertex loaded in Step 1 by using the Jordan Arc Theorem. If it falls

into the polygon, add it into a link list.

5) Output the link list to a file.

3.2.1 Algorithm of data retrieval from polygon

The Pseudo-code of retrieving data from a polygon is indicated below:

Procedure altmPolygonFilter (char *inputFileName,

char *outputFileName, char *vertexFileName)

26

01 Read vertex from file vertexFileName;

02 Extract vertex into altmArray vertex;

03 Call procedure altmInPolygon (vertex,

inputFileName, outputFileName);

This procedure is to load the vertex of a polygon in a file into an altmArray. The

sequence of the vertex of a polygon should be stored in the order along the edge of the

polygon. That can guarantee the shape of the polygon. Then call the procedure

altmlnPolygon to retrieve the data point in the polygon.

Procedure altmInPolygon (altmArray& vertex, char

*inputFileName, char *outputFileName)

01 Read data from file inputFileName;

02 Extract data points into altmrray a;

03 Compute minx, miny, max-x, maxy; // Get the

minimum and maximum value of x, y.

04 outside_x = minx -1, outsidey = min-y -1; /

Get the point out side of any polygon in the

survey area.

05 std::list<altmPoint> 1st; // Create a list

that stores altmPoint for gathering the points

in the given polygon area.

06 For All points in the altmArray a // Check

27

whether or not each point falls in the polygon

07 Bool bInside = altmChecklnPolygon (vertex,

a[i], outsidex, outside-y); //Call the

procedure altmChecklnPolygon(vertex, a[i],

outside-x, outside_y) to test.

08 If bInside is TRUE Then

09 Add the point to the 1st;

10 End if ;

11 End for;

12 Output the 1st to the file outputFileName;

This procedure is functioning as retrieving the data points in the polygon. First,

we import the data points into the altmArray a (Line 01 ~ 02). After that, we compute

the minimum and maximum value of X and Y. Then we can lower the minimum X and

Y value for creating the point out of the polygon (Line 04). Based on the Jordan Arc

Theorem, we know we have to find a point outside the point for testing. Consequently,

we can guarantee the point is out of the polygon by lowering the minimum X, Y value.

From Lines 06 to 11, we can test whether or not each point falls into the polygon

by calling the procedure altmChecklnPolygon, and add the points inside the polygon in a

link list. After the loop, we can collect all the points in the polygon in the link list.

Finally, we can output the link list into a file (Line 12).

Procedure altmChecknPolygon (altmrray& vertex,

28

altmPoint& point, double dOutside-x, double

dOutside y)

01 Check whether or not the testing point is the

vertex;

02 If the testing point is one of the vertex Then

03 Return TRUE;

04 End if;

05 For (i=O; i<vertex. getSize () ; i++) // For all

vertex points

06 If i < vertex.getSize()-l Then

07 Bool bIntersec =

altmIntersection(vertex[i], vertex[i+l],

point, dOutsidex, dOutside-y); // Call

procedure altmIntersection to check

whether or not the line created by the

testing point and outside-polygon point

intersects with edge of polygon.

08 Else // the last edge is created by the

last point and the first point in the

vertex array.

09 Bool bIntersec =

altmIntersection(vertex[i], vertex[0],

point, dOutsidex, dOutsidey);

10 End if;

11 If bintersec is TRUE Then

12 count++;

29

13 End if;

14 End for;

15 If count is an even number Then

16 Return FALSE;

17 Else

18 Return TRUE;

19 End if;

This procedure is to check whether or not the point falls into the polygon. The

first step is to check whether or not the point is one of the vertexes. Lines 01 - 04

perform this job. If the point is the vertex, return TRUE, otherwise go on checking.

Lines 05 to 14 are used to count the number of intersections between the line from the

point outside the polygon to the testing point and each edge of the polygon. The

procedure altmlntersection will be called, it is for testing whether or not the two lines

intersect. Finally, we can tell whether or not the point falls into the polygon by checking

the number of the intersection is even or odd. If it is an even number, return FALSE, that

means the testing point is outside the polygon; if it is an odd number, return TRUE, that

means it is inside the polygon. Lines 15 - 19 perform this job.

Procedure altmIntersection (altmPoint& vertexl,

altmPoint& vertex2, altmPoint& point, double

dOutsidex, double dOutsidey)

* Linel is created by testing point and outside-

30

polygon point, Line2 is the edge of polygon created by

the continuous vertex;

01 If Linel is not parallel with Line2 Then

02 Compute the intersection of Linel and Line2;

03 If the intersection is between the two end

points on both Linel and Line2, Then

04 Return TRUE;

05 Else

06 Return FALSE;

07 End if;

08 Else

09 Return FALSE;

10 End if;

This procedure is used to check the two lines that are made by four points. One is

made by the point outside the polygon and the testing point, the other is made by the two

vertexes, in other words, it is one edge of the polygon.

First, we have to check whether or not the two lines are parallel. If they are

parallel, there is no intersection, return FALSE; if not, continue to check whether or not

they have an intersection. If they have, return TRUE, otherwise, return FALSE.

3.2.2 Result test and analysis for polygon retrieval

We tested our method through the original data in sparse part (Figure 3.1.1). We

chose the vertex indicated below:

31

X Y Z Intensity

1 573200.00 2891200.00 -19.21 96

2 573400.00 2891250.20 -23.57 75

3 573600.28 2891200.00 -23.02 72

4 573500.25 2891050.96 -23.40 13

5 573300.52 2891050.88 -19.57 119

Table 3.2.1 Vertex sample 1 for polygon retrieval

There are 5 vertexes with the order of 1 to 5. They could be selected from the

original data file. But it does not matter whether or not the point is chosen exactly from

the original data file, as long as the point we choose is inside the boundary of the survey

area, in another words, as long as the X, Y value of the points are inside the boundary.

Thus, we have to guarantee the points fall into the survey area and can make a polygon in

the order they are stored. Since with the same set of points, we can create different

shapes of the polygon, so the sequence of the vertex is very important, that will decide

the shape of the polygon.

There are 213,974 points in the original data file with 8,568KB. According to the

polygon we created, we can retrieve the polygon with 25,198 points with 1,034KB

(Figure 3.2.2).

32

2.8912 x106 -18

* -19
A A" t. ity

-20

- <z-"i-.' -. -21

2.8912 c

<~K -223
2.8911 ..

-

7 .4 ra
4

,.- -24

2.891 - -25
5.732 5.7325 5.733 5.7335 5.734 5.7345 5.735 5.7355 5.736

x 10

Figure 3.2.2 Polygon Result of Sample 1 (25,198 points, 1,034KB ASCII file)

The Figure 3.2.2 illustrates we can retrieve the data completely. It shows the

shape of the polygon we created. It matches perfectly the vertex we selected.

The elapsed time on this original data file for retrieval procedure on an Intel

Pentium III 933MHZ CPU and 256M RAM is 5.109 seconds including the time for

reading and writing file.

33

array. Plus, writing the processing result into a file, the total processing time is involved

with other performances of the computer, such as memory and hard drive.

With this method, we can process any irregular polygon. Whatever the shape of

the polygon and how many edges it has, this method can handle it. Below is another test

on the same original data file with different polygon selection.

X Y Z Intensity

1 573200.0 2891200.00 N/A N/A

2 573400.00 2891250.20 N/A N/A

3 573800.28 2891180.00 N/A N/A

4 573650.25 2891120.96 N/A N/A

5 573450.25 2891220.96 N/A N/A

6 573300.52 2891150.88 N/A N/A

Table 3.2.2 Vertex sample 2 for polygon retrieval

34

2.8913 x~ 1 .'8. . -18

2891 -19

2.6912 ,'r l........ Y........ -21

2.8912 .. 73 . -2

2~~........................ :"2

2.6911....: .. ,.-2

2. 8911-2
5.732 5.733 5.734 5.735 5.736 5.737 5.738

x 105

Figure 3.2.3 Polygon Result of Sample 2 (13,357 points, 548 KB ASCII file)

3.3 Discussion

In this chapter, methods of making sparse data and retrieving data from any shape

of a polygon area are presented to facilitate the shrinking of huge amounts of ALTM data

and retrieval of data in specific area. The test results based on the LIDAR data collected

in eastern Broward County show that the proposed methods are effective and promising

in resampling the terrain data.

Since our current work is focused on initial processing of terrain data for further

research, we have not proposed more complicated models for resampling data. There are

still some aspects of resampling data, such as adding some other parameters (Intensity) to

analyze and process the original data according to different terrain characters.

35

4. Tiling Method

Since the ALTM data are very large, we have to split it into smaller tiles to

process separately. For further comparison, analysis, and research, we may add a buffer

zone for each tile, and collect more data into it at the boundary of each tile. Whatever,

with or without the buffer zone, we have to put all the data in the same coordinate and

partition the whole area into tiles. That is the main idea of our method.

Sometimes there are some data files in a certain area, which are overlapped.

Consequently, we need to consider them together. First, we have to decide the common

boundary for all the files. Then, partition the data set in the boundary according to the

given size of the tile we want to partition. Finally, we store the data for each tile in

different files.

For processing multiple overlapped data files, we have to get the common

boundary for all the data files. First, we can get the minimum and maximum X, Y value

in each file, then compare with each other, finally we can get the minimum and

maximum X, Y value in all the data files. Based on these minimum and maximum

values, we can draw the common boundary of multiple overlapped data files, and put

them in the same coordinate.

After putting multiple files in one coordinate, we can partition all the data into

pieces of tiles based on the given length and width of the tile. The next step is to collect

data that belongs to each tile. For the further analysis and research on the data, we need

to collect some data points geographically outside the partitioned tile. It will be helpful

for the analysis of any adjacent tiles. Consequently, we are going to add a buffer for each

36

tile. In other words, we collect the data points in the buffer that belong to adjacent tiles

into each tile, and output together as one tile data for the final result. Accordingly, we

have to check whether or not each point falls into the buffer of any possible tile.

4.1 Single source tile without buffer

The purpose of the tile method is to split huge data files into small files. That will

be very helpful for further processing and storage.

For splitting the original data file, first of all, we have to acquire the boundary of

the survey area from the original file. Then, we have to split the original data into a tile

with given width and length. Each point belongs to one tile. The size of the grid can be

decided according to how large we want each piece of tile. How to choose the size of tile

depends on the use, ability and efficiency of further processing and storage. It will be

distinct due to different cases. The ability and efficiency for further processing and

storage should be considered, and sometimes they may be easily ignored. For example,

to choose small size of tile would create too many small tile files, and would not be

efficient for processing and storage.

Specifically, we can split the original data file into separate small files through

steps below:

1) Scan all the data in the original data file, acquire the amount of the data points in

the file, which is decided by how many lines are in the file, because each line in

the file represents a point.

2) Get the boundary of the survey area by computing the minimum and maximum X,

Y value among all the data. Create a rectangular boundary.

37

3) Inside the rectangular boundary, split the whole area into a tile with the given

width and length. Each point belongs to one tile.

4) Scan each data point in the original data file, check which tile it belongs to, and

add it to the corresponding tile point list.

5) Output each tile point list into separate files.

z ~ r

Figure 4.1.1 Method for Tile data

38

4.1.1 Algorithm of single source tile without buffer

The pseudo-code for the tile Program (Single source file, no buffer) is as below:

Procedure TileSingleFileWithoutBuffer

01 Read the data file, get the size of data set;

02 Read file into altmArray a;

03 a . getMinMaxXYZ (minx, miny, min-z, maxx,

maxy, max-z); // Get the minimum and maximum

values of x, y, z among all the points;

04 getNumOfRowCol (min-x, miny, max-x, maxy,

width-x, lengthy, Cols, Rows); // Count the

Columns and Rows of all the points area based

on the given width on X direction and length

on Y direction;

05 lst = new std::list<altmPoint> [Columns*Rows];

// Create a ALTM point list array with the

size of Columns*Rows.

06 For (k=O; k<size; k++) // Go through each

point of the Array

07 lIndexX = (a [k].getX() - min-x)/widthx;

// Count the X Index of each point based

on the Columns and Rows Coordinate.

08 lIndexY = (a[k].getY() - miny)/length y;

// Count the Y Index of each point based

39

on the Columns and Rows Coordinate.

09 lst[llndexY*cols+lIndexX] .push_back(a[k]);

//Add the point to the list array

according to which tile it belongs.

10 End for;

11 Output each list in the list array into file;

Line 01 is used to read the data from the file. After scanning the whole file, we

can acquire the amount of the data points in the file, which is decided by how many lines

in the file, because each line in the file represents a point.

After getting the number of the point set through Line 02, we can create an

altmArray with the number and load all the data points in the file into the altmArray.

Next, we need to compute the minimum and maximum value of X, Y, which are

used to decide the boundary of the data points in the file. Line 03 is functioning for it.

In Line 04, we compute the number of columns and rows of all the point areas

through the given parameter -- width and length. Width is used on the X direction, and

length is used on the Y direction. Accordingly, columns can be computed based on the

width, because they reflect how many strips can be divided on the direction of X; on the

other hand, rows can be computed based on the length, because they reflect how many

strips can be divided on the direction of Y. After that, we can split the whole area into

tiles. Each point must fall into one tile.

Based on the number of columns and rows, we can create an array which points to

altmArray with the size of columns x rows for collecting data points in each tile.

40

Actually, all the points in each tile can be stored in one element of the array, because

each element of the array points to an altmArray which is used to store a set of data

points. The index of the array represents each tile, because we can use the unique index

(columns, rows) to represent a tile.

Lines 06 to Line 10 are functioning for collecting the tile data. We can scan each

point; first, we can count the column and row indexes of each point, in another words, we

can determine to which tile the point belongs (Lines 07 and 08 perform this job). For

computing the index of a tile in the aTile array, we can use the index of the column got

from Line 08 multiplied the number of columns plus the index of the row got from Line

07. Then, add the point to the end of the point list in the list array. In this way, we can

collect all the data points into the list array according to which tile it belongs.

After scanning the whole data set one time, we can collect all the data in the list

array. Each element in the array represents a list of data in each tile. Finally, we can

output the list array into a separate file (Line 11). When outputting the data into files, we

have to use different file names to identify each tile. Thus, we use some parameters to

create the file name, including the X, Y coordinate of the left-bottom point of each tile,

the width and length of tile. That can guarantee each tile file has a unique and clear file

name. For example, the coordinates of the left-bottom point are 573000, 2891000, and

the width and length of the tile are 30 and 50, then the output tile file name should be

"573000_2891000_30_50."

41

4.1.2 Result test and analysis for single source tile without buffer

We still chose the original source data from the survey in eastern Broward

County. They are stored in a text file with the capacity of 8,568KB. There are 213,974

points in the file (Figure 4.1.2). We chose the size of the tile with 400m in width and

250m in length. It splits the survey area into three strips along the X direction and two

strips along Y direction, so that makes six tiles. Finally it will be stored in six files.

x 10a
2.8914 - - - -18

2.8914 -. -.. .
-19

2.8914 - -.

2.8913 -20

2.8912 - 21

2.8912

2.8912-
2

2.8911 23

2.891

-24
2.891 -

2.891 -25
5.728 5.73 5.732 5.734 5.736 5.738 5.74 5 742

x 106

Figure 4.1.2 Tile Original data (213,974 points, 8,568KB ASCII file)

42

We can compare the figure of original data with the figures of output tiles. It

shows us, we separate the source data into six parts without loss of any data. The

boundary of each tile matches well.

The elapsed time on this original data file for the main function of the tiling

procedure on an Intel Pentium III 933MHZ CPU and 256M RAM is 12.906 seconds

including the time for reading and writing the file. This time is involved with other

performances of the computer, such as memory and hard drive.

28 4 - -- - - - -8 ...21 - -- - 289141---- . 1B

-19 19 - -9
28914 - 28914 - - - 28914

-' r -28913 --

28914 - 21 28914 f. .. 1 28913 I 2

72 289131

28913 -- 2891 2912-

22 2 28913 .23
2 89Q2 2912 2.8912

24 -24 24
28912-

57295 5 73 5 731 7315 5732 573255.73357335 5733588345734557 587355 5735857 375 87288 5 730 583 5735 58t6 54 58435

100 .1 10

2812 ' .18 28912- 14 289121 . - 18

-19 19 .19

2912 28912 2.8912 -

.20 -28 I 20

28911 -21 2811 -2

2891..2 289 -- - 21

2@91 -8 - . 2891

0-24

28129 67 531573 5716 732 735673533 -2 5336735745536 73557 5L6537637 2 7375 5738 57385 5739 57395 574 57405 2

Figure 4.1.3 Tile result of single source without buffer

43

4.2 Single source tile with buffer

We break down the huge original data into pieces of tile and store them in the

separate files. Thus, there are many data points that belong to one of the tiles in each file.

For comparison and analysis of the boundary points in each tile, we need to make a

buffer around each tile. That can put more points that belong to an adjacent tile into each

file. That will make some redundant points in each file. From the figure, we can see it

makes the adjacent tiles overlap. Figure 4.2.1 illustrates the overlapping of the adjacent

tiles with a buffer. We can adjust our result through comparing the buffer area of each

tile.

4 23

width {X)

-Buffer Size Y Siz

Figure 4.2.1 Tile with Buffer.

44

Since we will collect the data points from the adjacent tiles, we have to modify

our algorithm a little bit. For the previous method, we just collect the data from where it

belongs. So far, we have to collect those data that fall into the buffer of each tile into

each tile file. In other words, each set of data may be stored in more than one file. For

each point, it can possibly fall into eight adjacent tiles (Figure 4.2.1 Tile with Buffer). So

what we need to do is to check whether or not each point falls into the buffer of eight

possible adjacent tiles. If it does, put it into the tile file whose buffer it falls into.

4.2.1 Algorithm of tile single source tile with buffer

Thus, we modify the algorithm as indicated in the next procedure. The additional

entry is at line 10.

The pseudo-code for the single source tile with buffer is indicated in the following

procedure:

Procedure Tile_SingleFile_With_Buffer

01 Read the data file, get the size of data set;

02 Read file into altmArray a;

03 a.getMinMaxXYZ(minx, min-y, min-z, max-x,

max_y, max-z); // Get the minimum and maximum

values of x, y, z among all the points;

04 getNumOfRowCol(minx, miny, max-x, maxy,

width-x, lengthy, Cols, Rows); // Count the

Columns and Rows of all the point areas based

on the given width on X direction and length on

45

Y direction;

05 1st = new std::list<altmPoint> [Columns*Rows];

// Create a ALTN point list array with the size

of Columns*Rows.

06 For (k=O; k<size; k++) /I Go through each point

of the Array

07 lIndexX = (a [k] . getX () - min-x) /width-x; //

Count the X Index of each point based on the

Columns and Rows Coordinate.

08 lIndexY = (a [k] .getY () - miny) /lengthy; /

Count the Y Index of each point based on the

Columns and Rows Coordinate.

09 lst[llndexY*cols+lIndexX] .push_back(a[k]);

//Add the point to the list array according

to which tile it belongs to.

10 Procedure BufferRetrieval;

11 End for;

12 Output each list in the list array into file;

The pseudo-code for Procedure Buffer Retrieval is as followings:

46

Procedure BufferRetrieval

01 //Direction 1

//Move X coordinate (+buffersize), keep Y

unchanged

llndexXnew = (a[k].getX() + buffersize -

minx)/width-x;

If ((llndexXnew != llndexX) && (lIndexXnew <

cols)) Then

lst[llndexY*cols+llndexXnew] .pushback(a[k]);

End if;

02 //Direction 2

//Move X coordinate (+buffersize), move Y

coordinate (+buffersize)

llndexXnew = (a[k].getX() + buffersize -

min-x) /width-x;

llndexYnew = (a[k] .getY() + buffersize -

miny) /lengthy;

If ((llndexXnew != lindexX) && (llndexYnew

llndexY)

&& (lIndexXnew < cols) && (llndexYnew < rows))

Then

lst[llndexYnew*cols+llndexXnew .push_back(a[k]

End if;

03 //Direction 3

47

//Move Y coordinate (+buffer_size), keep X

unchanged

llndexYnew = (a[k].getY() + buffersize -

min_y)/lengthy;

If ((llndexYnew != llndexY) && (llndexYnew <

rows)) Then

lst[llndexYnew*cols+llndexX] .push_back(a[k]);

End if;

04 I/Direction 4

//Move X coordinate (-buffer-size), move Y

coordinate (+buffer-size)

If (a[k].getX() >= min _x + buffer-size) Then

llndexXnew = (a[k].getX() - buffer-size -

min-x) /width-x;

lIndexYnew = (a[k].getY() + buffersize -

miny) /lengthy;

If ((llndexXnew != llndexX) && (llndexYnew !=

llndexY)

&& (llndexXnew < cols) && (llndexYnew < rows))

Then

1st [llndexYnew*cols+llndexXnew] .push_back(

a[k]);End if;

End if;

05 //Direction 5

//Move X coordinate (-buffer-size), keep Y

unchanged

48

If (a[k].getX()>= min_x + buffersize) Then

llndexXnew = (a[k].getX() - buffersize -

min-x) /widthx;

If ((llndexXnew != lIndexX)) Then

lst[llndexY*cols+lIndexXnew].pushback(a[k

End ;

End if;

06 //Direction 6

//Move X coordinate (-buffersize), move Y

coordinate (-buffersize)

If ((a[k].getX() >= min_x + buffer-size) &&

(a[k].getY() >= miny + buffer-size)) Then

lIndexXnew = (a[k].getX() - buffersize -

min-x) /width-x;

llndexYnew = (a [k] . getY () - buffersize -

min-y) /length-y;

If ((llndexXnew ! llndexX) && (llndexYnew !=

lIndexY) Then

&& (llndexXnew <= cols) && (llndexYnew <=

rows)

&& (llndexXnew >= 0) && (llndexYnew >= 0))

1st [llndexYnew*cols+llndexXnew] .push_back(

a [k]) ;

End if;

End if;

49

07 //Direction 7

//Move Y coordinate (-buffersize), keep X

unchanged

If (a[k].getY()>= miny + buffer-size) Then

llndexYnew = (a[k].getY() - buffersize -

min®y) /lengthy;

If ((llndexYnew != lIndexY)) Then

lst[llndexYnew*cols+llndexX].push_back(a[k

End ;

End if;

08 //Direction 8

//Move X coordinate (+buffersize), move Y

coordinate (-buffersize)

If (a[k].getY() >= min-y + buffersize) Then

llndexXnew = (a[k].getX() + buffersize -

minx)/width_x;

llndexYnew = (a[k].getY() - buffersize -

miny) /lengthy;

If ((llndexXnew != llndexX) && (llndexYnew =

llndexY)

&& (llndexXnew <= cols) && (llndexYnew <=

rows)

&& (lIndexYnew >= 0)) Then

1st [llndexYnew*cols+llndexXnew] .pushback(

a[k]);

50

End if ;

End if ;

In the BufferRetrieval Procedure, the main idea is to move the coordinate of the

data point either by X direction or Y direction, or both, then check the new coordinates

whether or not they fall into other tiles. If it falls into other tiles, put it into the point list

of that tile. The distance of the coordinate move is up to the buffer size of X and Y. As

indicated in Figure 4.2.1, each point has eight possible moving directions (Table 4.2.1).

Moving Direction X(+O) X(+Buffer_SizeX) X(-BufferSizeX)

Y(+0) N/A 1 5

Y(+Buffer _Size_Y) 3 2 4

Y(-BufferSize_Y) 7 8 6

Table. 4.2.1 Eight Possible Moving Directions
In the Table, there are three possible moves for both X and Y directions. The

"+0" means to keep the corresponding coordinate unchanged. The "+BufferSize" or the

"-BufferSize" refers to moving along or against the corresponding coordinate directions.

The label of moving direction in Table 4.2.1 is according to the Figure 4.2.1.

After the coordinate moving, we can get a new set of coordinates for each point.

Subsequently, we can compute the new index of the point through the process we did

previously. Then we can compare the new index of X and Y with the old one. Since

each tile can be decided by the unique pair of X and Y index, if either of them changes,

51

we can put it into another tile point list. After checking all eight directions, we can put

each point into all possible tile lists. Through this Buffer-Retrieval Procedure, we make

each output tile file bigger than without a buffer retrieval. How many points are added

depends on the size of the buffer. The buffer size should not be too large, because that

will make too much redundant storage.

4.2.2 Time Complexity

In the Procedure TileSingleFile_With_Buffer, we read the source file, load all

the data into the altmArray, and compute the mininum and maximum X, Y value. These

three steps have the same time complexity, because they all have to scan the whole data

set one time. Hence, the time complexity for these steps is 0(N).

After that, we scan the whole data set once to collect data into the tile file. The

time complexity for this step is 0(N). Finally, we output the link list for each tile into a

file. The time complexity for output is also 0(N). Thus, we know the time complexity

for the Procedure TileSingleFileWithBuffer is 0(N).

4.2.3 Result test and analysis for single source data tile with buffer

We still use the data source file in the previous section - the survey in eastern

Broward County. It is stored in a text file with the capacity of 8,568KB. There are

213,974 points in the file (Figure 4.2.2). We still chose the size of the tile with 400m in

width and 250m in length. It splits the survey area into six tiles. Also, we chose the

buffer size with 20m in both X and Y directions.

52

213,974 points in the file (Figure 4.2.2). We still chose the size of the tile with 400m in

width and 250m in length. It splits the survey area into six tiles. Also, we chose the

buffer size with 20m in both X and Y directions.

The elapsed time on the main function of the tile procedure with buffer is

supposed to be slightly longer than the elapsed time of the procedure without the buffer.

The increased elapsed time is caused by the running time of the BufferRetrieval

procedure and more data writing time. There are still six output files, but the size of each

file increased. This is because there are some data collected into the file from the buffer

of each tile.

The image of the result is illustrated in Figure 4.2.2 Single Source Tile with

Buffer. We can see from the six images, each image overlaps with adjacent images. The

result shows us that our method effectively split the survey area into tiles with buffers.

2891 2.8912 -1 2 914 -

2891- -14 -924 28914 - -

289 73 73 263 7 26 2.89153 7 73 57 3713 2891237 17 7 1 553 .35 54 570

.~4 4 ..

1x 10 1y 20 1
28912 - - - 1 28912 - 2 12- -

-2912 291-

2891 24 2.891 2891 -
.92 3 12 3 5323 232 3139 7 6 7 G 3 -25 2 9323 1737 893 3 40328912 18 2.0912 lB 8912 . lB

. 18' 10

28912 1 - 18 28912 v 19- 26912v8 -I

2893g .422 Sge 2Te 1w

23 1® 2
2.8311 26911 2.8911

28142031 28l913

2891 . y .22 2091 :+ .2 2891 1--
2891

2.09 243.,A -51 bi~ F -4 289
57 57 .71 5 3 733 A5.734 23133 3934 5333 38 633 338 333 3333 3389 338 39 3 3 98

Figure. 4.2.2 Single Source Tile with Buffer

53

Since loading the data into a point array needs to read the file twice, the first time

is for counting the amount of data points, the second time is for importing the data into an

array. Furthermore, writing the sparse result into a file, the total elapsed time including

reading and writing the file on the same computer is about 12.734 seconds. This time is

involved with other performances of the computer, such as memory and hard drive.

4.3 Multiple source tiling with buffer

Since the flight will scan the area in different directions, it might collect the data

from the survey area with overlaps (Figure 4.3.1 Overlaps in Multiple Source Files). We

need to combine multiple source files for a certain area, because it will reflect the terrain

character more exactly. Thus, when we split the source file into tiles, we have to

combine the overlap files of a certain area first, and collect data into the tile separately.

5ur data area I Source data a

Boundary of the survey &rea

Figure. 4.3.1 Overlaps in Multiple Source Files

54

In Figure 4.3.1 Overlaps in Multiple Source Files, it illustrates the overlaps of

multiple source data files. Actually, each source data file may cover any geographic

shape of a surveyed area. Whatever the shape of each source data file covers, we can

process the data retrieval through our method.

The main idea of tiling multiple source files is that, first, we have to put multiple

source files into the same coordinate, get the boundary of all the data in all the source

files; second, we can split them into tiles through the previous method; third, we scan all

the data in each file, and collect them into corresponding tiles; and finally, we can output

each tile into separate files.

4.3.1 Algorithm of multiple source tiling with buffer

We have to modify the pseudo-code of a single file with the buffer for multiple

files.

Procedure TileMultipleFile_With_Buffer

01 Read the source data file names from a file

list;

02 For all the file names in the file list;

03 Get the minimum and maximum value of X, Y

(min-x, miny, max-x, maxy) in the source

data file;

04 If it is the first file in the list Then

55

05 min_x_all = minx, min_y_all = min-y,

max_x_all = max-x, max_y_all = maxy;

06 Else

07 If (min-x < min_x-all) min_x_all

minx;

08 If (min y < min _yall) min_y_all =

miny;

09 If (max-x > maxx~all) max_xall =

max-x;

10 If (maxy > max_yall) maxryall =

maxy;

11 End if;

12 End for;

13 getNumOfRowCol(min_x_all, minyall, max_x-all,

maxyall, widthx, heighty, Cols, Rows); //

Count the Columns and Rows of all the points

area based on the given width on X direction

and height on Y direction;

14 1st = new std::list<altmPoint> [Columns*Rows];

// Create a ALTM point list array with the size

of Columns*Rows.

15 For all the file names in the file list;

16 Read the data file, get the size of data

set;

17 Read file into altrArray a;

18 1st = new std::list<altmPoint> [Cols*Rows];

56

// Create a ALTM point list array with the

size of Columns*Rows.

19 lIndexX = (a[k].getX() -

min_x_all)/widthx; / Count the X Index of

each point based on the Columns and Rows

Coordinate.

20 lIndexY = (a[k).getY() -

miny-all) /heighty; / Count the Y Index

of each point based on the Columns and Rows

Coordinate.

21 lst[llndexY*cols+llndexX].push-back(a[k]);

//Add the point to the list array according

to which tile it belongs to.

22 Call Procedure BufferRetrieval;

23 For all the list in the list array;

24 If the output tile file does not exist

Then

25 Create a new tile file, and output

the list into the file;

26 Else

27 Append the list into the existing

tile file;

28 End if;

29 End for;

30 End for;

57

When we implement this method according to the pseudo-code, we can store a

bunch of source data file names in a file. Subsequently, we can get each file according to

this file name list. Since we have to know the minimum and maximum X, Y value

among all the source data, we have to check each source file, get the minimum and

maximum X, Y value, and compare with that of other files. Finally, we can get the

minimum and maximum X, Y value among all the data in all source files. After getting

this job done, we can setup a general coordinate for all the source files. The next step is

to split the whole area that all the source files cover into columns and rows based on the

minimum and maximum X, Y values, which we get in the first step. Actually, the

minimum and maximum X, Y value give the boundary of the survey area in which all the

source files are involved. After we split the data into tiles in this boundary based on the

width in X direction and length in Y direction, we can collect data for each tile from the

source files one by one.

The way we collect data into a separate tile is the same as before. When we scan

each data point in the source files, first, we have to count the column and row indexes of

each point, and we ow to which tile it belongs; finally, we put it into the point list of

that tile. If we need to embed the BufferRetrieval procedure for buffer points retrieval,

we have to process the buffer retrieval during the data collecting. After scanning each

source file, we can put the data into corresponding tile files.

However, there is some difference from the previous method on storing results

into files. After we finish processing the first source file, we will create all the tile files.

When we finish processing the rest of the source files, we have to append the result into

each existing file rather than overwriting it. Thus, when we output the data list into the

58

tile file, we have to check whether or not it is the first time to output the data. If it is the

first time to output, we create all the tile files and store the data into them; otherwise,

append the data into files. Lines 23 to 29 in the pseudo-code show this function.

4.3.2 Result test and analysis for multiple source tiling

We still use the data source file in the previous section -- the survey in eastern

Broward County. It is stored in a text file with the capacity of 8,568KB. There are

213,974 points in the file (Figure 4.1.2). We still chose the size of the tile with 400m in

width and 250m in length. It splits the survey area into six tiles. Also, we chose the

buffer size with 20m in both X and Y directions.

Before we test our method, we have to make some changes on our source data

file. We must compare and prove the correctness of our method for further analysis. We

can separate the source data file into two or more files randomly. That is for satisfying

multiple data sources. Since they are separated randomly, we can get multiple source

files that represent random geographic shape. That can prove our method stronger. The

reason why we choose the same parameter as in the previous section is that we can

compare the result of these two cases, because theoretically the tile results should be the

same. Since there is no difference between the whole set of data, in this case, it is just

stored in separate files. Thus, when we count the minimum and maximum X, Y value,

we should get the same result. And when we use the same width, length and buffer size

as the parameter, we are supposed to get the same tile split. Finally, when we collect data

into corresponding tiles, we should also get the same result, because the points do not

change, they will be collected into the tile as in the previous result.

59

Our test result does prove the correctness of this method. As the result we got six

tile files. Then we can compare the data of these six files. First we can compare the size

of the files and the amount of points in each file (Table 4.3.1 Contrast of the result of

Single Source File Tile and Multiple Source File Tile).

Tile Files List Single Multiple

Source Source

572950_2890950_400_250_20 File Size (KB) 2,080 2,080

Number of Points 50709 50709

573350_2890950_400_250_20 File Size (KB) 2,384 2,384

Number of Points 58123 58123

572950_2891200_400_250_20 File Size (KB) 1,583 1,583

Number of Points 38583 38583

573350_2891200_400_250_20 File Size (KB) 1,630 1,630

Number of Points 39721 39721

573750_2890950_400_250_20 File Size (KB) 1,496 1,496

Number of Points 36465 36465

573750_2891200_400_250_20 File Size (KB) 1,134 1,134

Number of Points 27648 27648

Table. 4.3.1 Contrast of the result of Single Source File Tile and Multiple Source File
Tile

60

We know from the previous table, we must collect the right amount of points into

the tile files. Furthermore, we have to contrast the data between these two sets of results

in detail. We utilize the software called TextPad to get this job done. The version of this

software is 4.1.01: 32-bit Edition (Copyright @ 1992-1999 Helios Software Solutions).

TextPad is designed to provide the power and functionality to satisfy the most demanding

text editing requirements. The 32-bit edition can edit files up to the limits of virtual

memory, and will work with MS Windows TM 9x, Windows NT and Windows 2000. We

can use this software to open each tile file, and sort each file according to X, Y, Z, and

Intensity value. Our rule is when X value is the same, sort by Y value; when Y value is

the same, sort by Z value; when Z value is the same, sort by Intensity value. Since there

are not any two points with the same X, Y, Z, and Intensity value completely, we can get

a unique sort order of the file. Also, we can use the functionality of the software to

compare two output tile files. It can tell whether or not two files are the same. Through

this processing, we know our two sets of result are the same. That also proves our

method's correctness. We can also see it from the image (Figure 4.3.1 Tile Files from

Multiple Source Files) of tile files from multiple source files. It is the same as the result

from a single source file.

The elapsed time on processing multiple source files is much different from a

single source file, because between two tile data retrieve cycles, we have to output the

data into files. Rather than in a single source file retrieval, we only need to process one

cycle of data retrieval and then output the result into files. Thus, the elapsed time of a

single source does not count the time of the output tile result into files. However, the

main function of multiple source tile retrieve has to include the time of output result at

61

each retrieval cycle. That makes the elapsed time appear much longer than in the single

source. But it counts the output procedure time in. Thus, the elapsed time on this test is

16.734 seconds including reading and writing files on a workstation with an Intel

Pentium HI 933MHZ CPU and 256M RAM.

62

28914 -- re .. . 18 2831 vxU qt-18 28911x 0 ---. 2 . 8

2 .9 1 0 1I t1 1

28911 - 1 289121

28913 28923 2.8912 -

24

28912 -5 200. 2912
Figu re 243 T FM

.u13 201 10 20010

229922 0291

20080912 ,, 20912 l f 2012 '

2001 21 07 4020l2 2 0 1

2000 ,2i0 28912 28911

4. 'rtd i'ngmeho
22Z 289 _2 2289

2001 9 .24 200 .69.11.. 4.

1 31

Figure. 4.3.1 Tile Files from Multiple Source Files

4.4 Sorted tiling method

The main idea of sorted tiling method is also to partition the survey into tiles, but

the algorithm is different. It needs two steps to retrieve tile data. First, we partition the

area along the Y direction. That can split the area into rows. After we retrieve each row

of data, we can continue to the next step. The next step is to partition each row of data

into strips along the X direction, in another words, it splits each row into columns. That

makes the whole area a bunch of tiles. Since we need to partition the data along X or Y

direction in this method, we have to sort the data along the corresponding direction, that

is the reason why we called this method sorted tiling method.

63

4

Figure. 4.4.1 Rows Partition of Sorted Tiling

We can see from the Figure 4.4.1 Rows Partition of Sorted Tiling, we sort the data

set along Y direction. Then we can split it into rows according to the given length. We

retrieve each row of data separately and proceed to the second procedure. In the Figure

4.4.2 Columns Partition of Sorted Tiling Method, it shows that after we sorted each row

by X value, we partition each row along the X direction. That splits the row into

columns. We can see from the figure that these two steps partition the area into tiles.

Our algorithm is based on these two steps. If we consider the buffer size for the

boundary, we just need to add some buffer size parameters on the given length and width

when partitioning the data set into tiles. This is illustrated in the Figure Sorted Tiling

64

with Buffer. When we collect data for each tile, we just need to extend the boundary of

row or columns with Y buffer size or X buffer size like the dotted line in the figure. If

the buffer size is zero, that will be the case without the buffer.

1 2 3 4 5 6 7

x Di r tOn (Col)

Figure. 4.4.2 Columns Partition of Sorted Tiling Method

65

4
Y Buffer -I K

2 ! " _ .K

1 2 3 4

Figure. 4.4.3 Sorted Tiling with Buffer

4.4.1 Algorithm of single source sorted tiling with buffer

The pseudo-code for single source sorted tiling with buffer is as following:

Procedure altmTileOneFile

01 Read the data file, get the size of data set;

02 Read file into altmArray a;

66

03 a.getMinMaxXYZ(minx, min-y, minz, max-x,

maxy, max-z); // Get the minimum and maximum

values of x, y, z among all the points;

04 getNumOfRowCol(minx, miny, max-x, max~y,

width-x, lengthy, Cols, Rows); // Count the

Columns and Rows of all the points area based

on the given width on X direction and length

on Y direction;

05 Call Procedure altmTileYData (OutputFileDir,

a, minx, miny, widthx, lengthy,

buffersize, rows, cols);

Line 01 is used to read the data from the file, after scanning the whole file, we can

acquire the amount of the data points in the file, which is decided by how many lines are

in the file, because each of line in the file represents a point.

After getting the number of the point set, through Line 02, we can create an

altmArray with the number, and load all the data points in the file into the altmArray.

Next, we need to compute the minimum and maximum value of X, Y, which are

used to decide the boundary of the data points in the file. Line 03 is functioning for it.

In Line 04, we compute the number of columns and rows of all the survey area

through the given parameter - width and length. Width is used on the X direction, and

length is used on the Y direction. Accordingly, columns can be computed based on the

width, because it reflects how many strips can be divided on the direction of X; on the

67

other hand, rows can be computed based on the length, because it reflects how many

strips can be divided on the direction of Y. After that, we can split the whole area into

tiles. Each point must fall into one tile. In Line 05, it calls the Procedure altmTileYData

for tiling.

Procedure altmTileYData

01 long int i=0, j=0, count=0, restart=0;

02 double lowy = min-y;

03 double high-y = miny + lengthy;

04 long int startindex = 0;

05 long int endindex = 0;

06 bool bFirstTime = true;

07 a.sortByY(); // Sort altmArray a by the Y

value.

08 For (i=0; i<rows; i++)

09 bFirstTime = true;

10 restart = 0;

11 While (j < a getSize() && (a[j]1getY() >

lowly - buffer-size) && (a[j] .getY() < high-y

+ buffer-size))

12 If ((a[j].getY() >= highy - buffersize)

&& bFirstTime) Then

13 bFirstTime = false;

14 restart = j;

68

15 End if;

16 count++;

17 j++;

18 End while;

19 If (count > 0) Then

20 altmArray row(count); //Allocate memory for

the row.

21 endindex = j-1;

22 long int m;

23 For (m=startindex; m<=endindex; m++)

24 row [m-startindex] = a [m] ;

25 End for;

26 Call Procedure

altmTileRowData (OutputFileDir, row, minx,

low_y, widthx, lengthy, buf fer-size,

cols) ;

27 count = 0;

28 If (!bFirstTime) Then

29 j = restart;

30 startindex = restart;

31 Else

32 startindex = endindex + I;

33 End if;

34 End if;

35 low y highy;

36 high y = highy + lengthy;

69

This procedure is used to split the survey area into strips along the Y directions.

That can partition the all area into rows according to the given length of each tile.

First, we need to sort the data set by the Y value (in Line 07). Next, we will

retrieve each row for further processing. Lines 08 to 37 are a For loop for each row. In

Line 09, we set the Boolean variable bFirstTime as True. It is used to check whether or

not we have retrieved any data located in the buffer of the next row. Long it variable j is

functioning as the index of the data set array. Double variable low-y stores the low

boundary of each row; double variable high-y stores the high boundary of each row.

Since we start from the minimum Y value point, we set the initial low-y as min-y, and

the initial high-y as min -y plus lengthy. After one loop, we have to modify the lowy

and high.y' s value, because we change another row to retrieve data.

We retrieve data for each row from Lines 11 to 18. In the condition of the while

loop, we can see that we involve the buffer size. That will collect data in the buffer zone.

If the buffer size is zero, that will be the case without the buffer. Long int variable count

is used to count how many points are retrieved into each row. In Line 12, we check

whether or not we have retrieved any data located in the buffer of the next row. If so, we

have to record the index of the starting point located in the buffer zone in the variable

restart that is used to modify the variable startindex. If there are some points retrieved

into the row, we can give further process (from Lines 19 to 34). We copy the data

located in the row into a new altmArray row with the size that is stored in the variable

count. Long int variable startindex and endindex refer to the index of the starting point

70

and ending point in the whole data set altmArray a. The new created altmArray row

stores all the data in each row. Then we call Procedure altmTileRowData to process each

row data for tiling.

After finishing Procedure altmTileRowData, we have to reset the variable count

to zero. As we know that the Boolean variable bFirstTime is used to check whether or

not we have retrieved any data located in the buffer of next row. Thus, if it is False, it

means we collect some data located in the buffer of the next row. So we have to adjust

the index j and start-index to the index of starting point located in the buffer of next row,

which is stored in the variable restart. If there is no data collected from the buffer of next

row, we have to set the startindex as endindex plus 1. Finally, we have to adjust the

low-y and high-y to the next row's boundary (Lines 35 - 36).

Procedure altmTileRowData

01 long int i=0, j=0, k=0, count=0, restart=0;

02 double low_x = startx; // Initial value of

start_x is the minimum X value

03 double high-x = start_x + widthx;

04 long int startindex = 0;

05 long int endindex = 0;

06 bool bFirstTime = True;

07 a .sortByX(); /I Sort altmArray a by the X

value.

08 For (i=0; i<cols; i++)

71

09 bFirstTime = True;

10 restart = 0;

11 While (j < a.getSize() && (a[j].getX() >=

lowx - buffer-size) && (a[j] .getX() < high-x

+ buffersize))

12 If ((a[j] .getX () >= highx - buffer-size)

&& bFirstTime) Then

13 bFirstTime = false;

14 restart = j;

15 End if;

16 count++;

17 ++

18 End while;

19 If (count > 0) Then

20 altmArray tile(count); /I Allocate memory

for the row.

21 endindex = j-1;

22 long int m;

23 For (m=start-index; m<=endindex; m++)

24 tile [m-start_index] = a[m];

25 End for;

26 Output altmArray tile;

27 count = 0;

28 If (!bFirstTime) Then

29 j = restart;

30 start-index = restart;

72

31 Else

32 startindex = end_index + 1;

33 End if;

34 End if;

35 lowx = highx;

36 high-x = high_x + widthx;

37 End for;

This procedure is used to split the row data retrieved from Procedure

altmTileRowData into strips along the X directions. That can partition the row data into

columns according to the given width of each tile.

First, we need to sort the data set by the X value (in Line 07). Next, we will

retrieve each column in the row. Lines 08 to Line 37 are a For loop for each column. In

Line 09, we set the Boolean variable bFirstTime as True. It is used to check whether or

not we have retrieved any data located in the buffer of the next column. Long int variable

j is functioning as the index of the row data set array. Double variable lowx stores the

low boundary of each column; double variable highjx stores the high boundary of each

column. Since we start from the rinimum X value point, we set the initial lowx as

startx whose initial value is the minimum X value, and the initial high-x as start-x plus

widthx. After one loop, we have to modify the lowx and highx's value, because we

change another column to retrieve the data.

From Lines 11 to 18, we retrieve data for each column in the row. In the

condition of the while loop, we can see that we involve the buffer size. That will collect

the data in the buffer zone. If the buffer size is zero, that will be the case without the

73

buffer. Long it variable count is used to count how many points are retrieved into each

column. In Line 12, we check whether or not we have retrieved any data located in the

buffer of the next column. If so, we have to record the index of the starting point located

in the buffer zone in the variable restart that is used to modify the variable startindex. If

there are some points retrieved into the column, we can give further process (from Lines

19 to 34). We copy the data located in the column into a new altmArray tile with the size

that is stored in the variable count. Long int variable startindex and endindex refer to

the index of the starting and ending points in the row data set altmArray a. The new

altmArray tile created stores all the data in each column. Then we output the altmArray

tile and save it in the file.

After finishing the output of each tile data, we have to reset the variable count to

zero. As we know that the Boolean variable bFirstTime is used to check whether or not

we have retrieved any data located in the buffer of the next column. Thus, if it is False, it

means we have collected some data located in the buffer of next column. So we have to

adjust the index j and startindex to the index of the starting point located in the buffer of

the next column, which is stored in the variable restart. If there are no data collected

from the buffer of next column, we have to set the startindex as endindex plus one.

Finally, we have to adjust the lowx and highx to the next column's boundary (Lines 35

- 36).

4.4.2 Time Complexity

In the Procedure altmTileOneFile, we read the source file, load all the data into

the altmArray, and compute the mininum and maximum X, Y value. These three steps

74

have the same time complexity, because they all have to scan the whole data set one time.

Hence, the time complexity for these steps is 0(N).

In Procedure altmTileYData, we need to sort the whole data set first. Thus, the

time complexity for the sorting procedure is O(NlogN). Then we have to retrieve the row

data from the original data set. The number of rows depends on the given length of the

tile. The range for the number of row is from 1 to N. Thus, we build up a For loop for

processing each row data. In each loop, we call Procedure altmTileRowData. In

Procedure altmTileRowData, it is the same in that we have to sort the row data first.

Let's suppose the number of the row is k. Thus, the time complexity for sorting each row

data is 0(NklogNk). Thus, the time complexity for Procedure altmTileYData should be

O(Nk log Nk

Since, logNk logN, so

k k

N log N k < Nk log N
i=] a=2

Also,

Nk = N
i=3

So,

N k log N N log N

Thus, the worst case time complexity of Procedure altmTileYData should be

0(NlogN).

Hence, we know the time complexity of Procedure altmTile neFile is 0(NlogN).

75

4.4.3 Result test and analysis for sorted tiling

We still use the data source file in the previous section -- the survey in eastern

Broward County. It is stored in a text file with the capacity of 8,568KB. There are

213,974 points in the file (Figure 4.1.2). We still choose the size of the tile with 400m in

width and 250m in length. It splits the survey area into six tiles. Also we choose the

buffer size with 20m in both X and Y directions.

Output File Name Sorted Tiling Non-Sorted Tiling

Number of Points Number of Points

572950_2890950_400_250_20.txt 50,709 50,709

572950_2891200_400_250_20.txt 38,583 38,583

573350_2890950_400_250_20.txt 58,123 58,123

573350_2891200_400_250_20.txt 39,721 39,721

573750_289950_400_250_20.txt 36,456 36,456

573750_2891200_400_250_20.txt 27,648 27,648

Table. 4.4.1 Results of Two Tiling Methods

76

We know from the Table Two Tiling Method Result, we get the same amount of

points in each tile file through two different tiling methods. We can utilize the software

called TextPad (The version of this software is 4.1.01: 32-bit Edition Copyright 1992-

1999 Helios Software Solutions) to compare the two sets of files. First, we have to sort

the two sets of files in the same way, it can guarantee all the data in both sets of files are

in the same order. Then we use the function of TextPad to compare two files of each set.

The result shows that the corresponding files in each set contain the same data. That

shows these two different methods can get the same result.

The elapsed time on this original data file for the whole procedure including input

and output on an Intel Pentium m 933MHZ CPU and 256M RAM is 12.328 seconds.

Comparing with the non-sorted tiling method on the perspective of time

complexity, sorted tiling method has a greater time complexity, because it takes more

time to sort the data set. However, the actual elapsed time of the sorted tiling method is

shorter than the non-sorted tiling method. The cause of this result is that we use different

data structures in these two methods. In the non-sorted tiling method, we use link list to

store the data rather than array. It takes more time than array to handle. Therefore, it

counteracts the advantage on the time complexity of the non-sorted tiling method.

4.5 Discussion

In this chapter, methods of making tile data on a single source data and multiple

source data with or without buffers are presented to facilitate the breaking down of huge

amounts of ALTM data and storing them into separate files. The test results based on the

77

LIDAR data collected in eastern Broward County show that the proposed methods are

effective and promising in tiling the terrain data.

Since our current work is focused on initial processing of terrain data for further

research, we have not proposed a more complicated model for tiling data. There are still

some aspects of tiling data, such as adding some other parameters (Intensity) to analyze

and process the original data according to different terrain characters.

78

5. Filtering method

After we have acquired the huge original ALTM data, we can use sparse or

tile methods to shrink the data set for further processing. One kind of methodology

will be addressed in this chapter. That is called the filtering method.

In order to gain more accurate terrain data, we have to remove those data

points that do not describe the terrain character, such as building, transportation

construction, and vegetation, because they do not reflect the real terrain character.

According to the terrain character of Florida, the landscape is relatively flat. Hence,

we can apply the following method to remove non-terrain information.

First, we have to partition the original data set into relatively small area and

retrieve each area data for further processing. This can guarantee that there are no

significant differences on the terrain character in each area. In each piece of area, we

sort the data points by the height of the points (the z values of the points). Then we

compare the height differences of the points, one after another, in the sorted list.

When it comes across a sharp jump of the height difference according to the criterion

given, the points in the list after that are removed. Finally, we can output the rest of

the points into file. This is what we want to achieve.

The purpose of the filtering method is to remove those data points that do not

reflect the terrain character, such as building, transportation construction, and

vegetation. In another words, we only want to get those points on the ground. Thus,

our job is to find a good way to remove the unuseful points as much as we can.

79

5.1 Tile filtering method

The tile filtering method is to filter the data set by splitting it into tiles. For

filtering the original data file, first of all, we have to acquire the boundary of the

survey area from the original file. Then, split the original data into tiles with given

width and length. Each point belongs to one tile. The size of tile can be decided

according to how large we want each tile. How to choose the size of tile depends on

the terrain character of the survey area. It will be distinct due to different cases. The

selection of size will cause a significant difference on the result. We will discuss how

to choose the size of the tile in detail later in this chapter.

Specifically, we can filter the original data through the steps below:

1) Scan all the data in the original data file, acquire the amount of the data points

in the file, which is decided by how many lines are in the file, because each of

the lines in the file represents a point.

2) Get the boundary of the survey area by computing the minimum and

maximum X, Y value among all the data. Create a rectangular boundary.

3) Inside the rectangular boundary, partition the whole area into tiles with given

width and length. Each point belongs to one tile.

4) Scan each data point in the original data file, check whether or not the Z value

of each point is within the given range. If it is in the range, continue to

compute which tile it belongs to, and add it into corresponding tile point list.

5) Sort each list in ascending sequence according to the Z value of each point.

6) Scan each tile point list, compare the Z value of each point one after another,

and check the difference of the Z value between two continuous points in each

list. Specifically, use the Z value of the latter point minus that of the previous

80

point. If it is greater than or equal to the given threshold, remove the second

point and the points behind it in the list.

7) Output each tile point list into file.

Our main idea for the filtering method is illustrated in Figure 5.1.1. The

vertical coordinate represents the Z value of each point. The horizontal coordinate

refers to each point in the sorted list by Z value. Since the Z value reflects the height

of each point, when we go through the list, we check the height difference of each

point with its previous point. When we come across a sharp jump that is greater than

or equal to the given threshold, we can remove the points from it to the end of the list.

Since we chose a relatively small area, there is no significant difference on the terrain

character, if we find a big jump on the height of the point in the sorted list, we can

infer that the point is not on the ground, it may be a building, transportation,

construction, vegetation or something like that, which does not reflect the terrain

character of that area. Hence, we can remove that point and the points beyond it.

S(Height}

Im Points

Figure. 5.1.1 Tile Filtering Method

81

5.1.1 Algorithm of tile filtering method

The Pseudo-code for the tile filtering method is as following:

Procedure TileFiltering

01 Read the data file, get the size of data set;

02 Read file into altmArray a;

03 a.getMin axXYZ(min x, min y, min z, max-x,

maxjy, maxz); // Get the minimum and maximum

values of x, y, z among all the points;

04 getNumOfRowCol (minx, miny, max-x, max-y,

width-x, lengthy, Cols, Rows); // Count the

Columns and Rows of all the points area based

on the given width on X direction and length

on Y direction;

05 1st = new std::list<altmPoint> [Cols*Rows]; /

Create an ALTM point list array with the size

of Columns*Rows.

06 For (k=O; k<size; k++) // Go through each

point of the Array

07 If ((a[k].getZ() > floor) && (a[k].getZ() <

ceiling)) Then

08 llndexX = (a[k].getX() - minx)/width x;

// Count the X Index of each point based

on the Columns and Rows Coordinate.

09 lIndexY = (a[k].getY() - miny)/lengthy;

// Count the Y Index of each point based

82

on the Columns and Rows Coordinate.

10 lst[llndexY*cols+llndexX] .pushback(a[k])

; // Add the point to the list array

according to which tile it belongs.

11 End if;

12 End for;

13 For (i=0; i< Cols*Rows; i++) // Go through

each point list

14 Sort lst[i] by Z value;

15 std::list<altmPoint>::iterator p =

lst[i].begin(); // begin() returns an

iterator that designates the first element.

16 bFilter = false; // bFilter is a Boolean

variable for checking whether or not to

filter the data.

17 dPreZ = p getZ () ;

18 While (p != lst[i}.end())

19 If (!bFilter) Then

20 dCurrZ = p getZ();

21 dDiffZ = dCurrZ - dPreZ;

22 If (dDiffZ >= threshold) Then

23 bFilter = true;

24 End if ;

25 End if ;

26 If (bFilter) Then

27 p = lst[i].erase(p); // erase() Both

returns an iterator that designates

the first element remaining beyond any

83

elements removed, or end() if no such

element exists.

28 Else

29 dPreZ = dCurrZ;

30 p++;

31 End if;

32 End while;

33 End for;

34 Output each list in the list array into file;

Line 01 is used to read the data from the file, after having scanned the whole

file, we can acquire the amount of the data points in the file, which is decided by how

many lines are in the file, because each of line in the file represents a point.

After getting the number of the point set, through Line 02, we can create an

altmArray with the number, and load all the data points in the file into the altmArray.

Next, we need to compute the minimum and maximum value of X, Y, which

are used to decide the boundary of the data points in the file. Line 03 is functioning

for it.

In Line 04, we compute the number of columns and rows of all the point areas

through the given parameter -- width and length. Width is used on the X direction,

and length is used on the Y direction. Accordingly, columns can be computed based

on the width, because they reflect how many strips can be divided on the direction of

X; on the other hand, rows can be computed based on the length, because it reflects

how many strips can be divided on the direction of Y. After that, we can split the

whole area into tiles. Each point must fall into one tile.

84

Based on the number of columns and rows, we can create an array which

points to altmArray with the size of columns x rows for collecting data points in each

tile. Actually, all the points in each tile can be stored in one element of the array,

because each element of the array points to an altmArray which is used to store a

bunch of data points. The index of the array represents each tile, because we can use

the unique indexes (columns, rows) to represent a tile.

Lines 06 to 12 are functioning for collecting the tile data. We can scan each

point, if the height of the point is in the given range which is between the variable

floor and variable ceiling, then we can compute the column and row index of each

point, in another words, we can determine to which tile the point belongs (Lines 08

and 09 perform this job). For computing the index of a tile in the aTile array, we can

use the index of the column from Line 09 multiplied by the number of columns plus

the index of the row from Line 08. Then add the point to the end of the point list in

the list array. In this way, we can collect all the data points into the list array

according to which tile it belongs.

Lines 13 to 33 are the main part of the Filtering algorithm. We will go

through each point list to process the filtering job. For each point list, first we have to

sort the point list by the Z value of each point in an ascending sequence (in Line 16).

In Line 15, we create an iterator p that can refer to every point object for checking

each point in the list. The Boolean variable "bFilter" is used to check whether or not

we need to remove the data. We start the checking procedure from the first element

in the list. Hence, we give the Z value of that element to the variable "dPreZ" in Line

17. It is used to store the Z value of the previous point. Then we check the

continuous adjacent points, compute the difference of the Z value between the latter

point and the previous one. When the difference is greater than or equal to the given

85

threshold, we can set the Boolean variable "bFilter" as True, that means we need to

remove the data points beyond the latter point and itself from the list. If the

difference is less than the threshold, store the Z value of the latter point in the variable

"dPrez," in other words, we can treat it as the previous point, and continue to check

and compare the one beyond it. Lines 18 to 32 are functioning for that. After we go

through all the lists, we can output them into one file that is the result of the filtering

(Line 34).

When we output the data into files, we have to use different file names to

distinguish them. Thus, we use some parameters to create the file name, including the

original file name, and the width and length of tile and the threshold value. That can

guarantee each tile file has unique and clear file name. For example, the original file

name is "573000_2891000," and the width and length of the tile are 5 and 10, the

threshold value is 2, then the output tile file name should be

"573000_2891000_5_10_2."

We use this method to do a test on the original source data from the survey in

eastern Broward County. It is stored in a text file with the capacity of 8,568KB.

There are 213,974 points in the file (Figure 5.1.4). We chose both the width and

length of the tile as 5m, and the threshold as 0.5m. We got the result showed in

Figure 5.1.5 Result of Filtering One Time. We can see from the figure, there are still

some points with a relatively greater height. They are illustrated by the red color.

The reason why we can't remove those points through one time filtering is because of

the partition of the area. We can know that from how our method works. Let us

suppose a piece of area we partitioned in the survey area is like the Figure 5.1.2. The

black area represents the area with greater height and no significant difference on the

height. Those points with lower height are located in the white area. According to

86

our filtering method, after we partition the area, we have to filter the data from each

tile. Our method is to sort the tile by the height of point, find out the point that has a

significant height difference with its previous point, and remove the points behind it.

Thus, if there are lower points and much higher points in one tile, it will be easier to

find out the point with the height difference beyond the given threshold. Also, the

relative higher points in such tile will be removed. However, if the tile contains

points with no big difference on the height, our method can hardly remove any point

from it. The black area in the figure shows this case. If in that area, all the points

with close height were those points on the ground, they would be what we want to

keep. Otherwise, if they are the points with great height, we can hardly remove those

points through our method, because those points have little difference on the height.

We can know that from the result in Figure 5.1.3 Sample of Filtering One Time. We

can see from the figure, the higher points in three tiles are removed, but the rest of the

higher points are left in one tile. Thus, if we can partition those higher points into

some tile with much lower points, we can remove those higher points. For example,

suppose the black area represents the roof of the building. If part of the roof filled out

the tile we partitioned, those points would not be removed. We can only remove such

parts of the roof that are partitioned into tiles with some relative lower points like the

tiles with white and black areas in the figure. Therefore, we can modify our method

to partition the area with different parameters to let points with different combinations

in each tile. That will be a great help for removing those higher points.

87

Figure. 5.1.2 Partition Sample

Fiue 5.1. Sampl ofFleigOeTm

~8

2.8914 x 10 -18

2.8914

2.8914

2.8913"x - -...20

2.8912 -.-.- 21f # -21
2.8912 --

2.8912 -22

2.8911 23

2.891 -

-24
2.891 -

2.891 -255.728 5,73 5.732 5.734 5.736 5.738 5.74 5.742

x 10

Figure 5 1 4 The Original data (213,974 points, 8,568KB ASCII file)

x 106
2.8914 -- -0 - :-.- - -18

2.8914 - -
-19

2.8914 --- -

2 8913 - -. -. - 20

2.8912

2 91 -- 22

2 8911 -- 2?-F- -

2.891

-24
2.891

2.891 --- f-25
5.728 5.73 5.732 5.734 5.736 5.738 5.74 5.742

x 106

Figure. 5.1.5 Result of Filtering One Time (Width, Length, Threshold: 5, 5, 0.5 m)

89

We can modify the algorithm in such way that we change the parameter of the

partition and threshold after each filtering and refilter the data resulted from the last

filtering.

How to change the parameter is the key issue for modifying the method. The

main idea is to partition the area into tiles with as many as possible combinations of

points. That can make new groups of points to compare the height of points.

We can change the parameter of the partition in two ways. One is to change

the size of the tile, in another words, change the width and length of the tile. If we

change the size of the tile, we will make new points group in each tile. The other way

is to shift the coordinate. We can do that through changing the minimum X, Y value

of the data set. That will set up a new coordinate to partition the data set. That also

can make new combination of points in each tile. Therefore, we can repartition the

data set through shifting coordinate and enlarging the size of tile.

After we modify the parameter for the partition, we have to think about the

parameter of the threshold. After we enlarge the size of tile, each tile will cover more

area and data points. Accordingly, we have to enlarge the threshold correspondingly,

because if the tile covers more area, it will make a significant difference on the height

of terrain. Thus, we can enlarge the threshold with a parameter that is up to the

terrain character of the survey area. If the there is no significant difference on the

terrain character, we can choose a lower enlarged parameter; otherwise, we should

choose a larger one.

Through this modified method, we can figure out the problem caused by one

time filtering. After enlarging the size of the tile and shifting the coordinate, we can

repartition the tile filled with black color in Figure Result of Filtering One Time.

90

Those points reflected by the black color will be partitioned into tiles with some lower

points reflected by the white area. Then it will be removed.

The pseudo-code for modified method is as below:

Procedure Tile_Filtering

01 Read the data file, get the size of data set;

02 Read file into altmArray a;

03 a.getMinDaxXYZ(minx, min y, minz, max-x,

maxy, max-z); // Get the minimum and maximum

values of x, y, z among all the points;

04 For (m=l; m<=3; m++)

05 getNumOfRowCol(min-x, min-y, max-x, maxy,

widthx, lengthy, Cols, Rows); // Count the

Columns and Rows of all the points area

based on the given width on X direction and

length on Y direction;

06 1st = new std::list<altmPoint> [Cols*Rows];

// Create an ALTM point list array with the

size of Columns*Rows.

07 For (k=0; k<size; k++) // Go through each

point of the Array

08 If ((a [k] .getZ () > floor) && (a [k] .getZ ()

< ceiling)) Then

09 llndexX = (a[k].getX() -

min-x) /width-x; // Count the X Index

of each point based on the Columns and

Rows Coordinate.

91

10 lIndexY = (a[k].getY() -

miny)/lengthy; // Count the Y Index

of each point based on the Columns and

Rows Coordinate.

11 lst[lIndexY*cols+llndexX] .pushback(a[

k]); // Add the point to the list

array according to which tile it

belongs.

12 End if;

13 End for;

14 For (i=O; i< Cols*Rows; i++) // Go through

each point list

15 Sort lst[i] by Z value;

16 std::list<altmPoint>::iterator p =

lst[i].begin(); // begin() returns an

iterator that designates the first

element.

17 bFilter = false; // bFilter is a Boolean

variable for checking whether or not

filter the data.

18 dPreZ = p getZ();

19 While (p != lst [i] .end))

20 If (!bFilter) Then

21 dCurrZ = p getZ() ;

22 dDiffZ = dCurrZ - dPreZ;

23 If (dDiffZ >= threshold) Then

24 bFilter = true;

25 End if;

92

26 End if ;

27 If (bFilter) Then

28 p = lst[i].erase(p); // erase() Both

returns an iterator that designates

the first element remaining beyond

any elements removed, or end() if no

such element exists.

29 Else

30 dPreZ = dCurrZ;

31 p++;

32 End if;

33 End while;

34 End for;

35 Load the 1st into altmArray b;

36 delete [H 1st; // Free the memory allocated

for 1st.

37 a=b;

38 If (m<3) Then // Modify the parameter of

partition and threshold

39 minx = minx - width x/2;

40 miny = miny - lengthy/2;

41 widthx = widthx + 1;

42 lengthy = lengthy + 50;

43 threshold = threshold * 1.2;

44 End if;

45 End for;

46 Output altmArray a into file;

93

In the modified algorithm, we add a For loop in Line 04, for refiltering the

data set. After filtering the data set one time, we have to load the result to an

aitmArray for refiltering (Lines 35 to 37). Next, we modify the parameter of the

partition and threshold. In Lines 39 and 40, we change the minimum X, Y value for

shifting the coordinate. In Lines 41 and 42, we enlarge the size of tile on the width

and length. Finally, we enlarge the threshold in Line 43. We process the filtering

three times. The times of filtering can be set according to the requirement. After

filtering the data set for a couple of times, we can output the altmArray into a file.

5.1.2 Time Complexity

In the Procedure TileFiltering, we first read the source file, load all the data

into the altmArray, and compute the mininum and maximum X, Y value. These three

steps have the same time complexity, because they all have to scan the whole data set

one time. Hence, the time complexity for these steps is 0(N).

After that, we scan the whole data set once to collect data into the tile file,

The time complexity for this step is 0(N).

Finally, we filter the link list of each tile since we have to sort each list

element by Z value. Let's suppose the number of the link list is k. The time

complexity for sorting each list data is 0(NklogNk). Thus, the time complexity for

k

sorting all the lists should be 0(Nk log Nk .

Since, logNk logN, so

k k

SNk log Nk Nk log N
i=1 i=1

Also,

94

ZN, =N
i=I

So,

Nk log Nk N log N

Thus, the worst case time complexity of sorting all the lists should be

O(NlogN). Since searching for the start index of the filtered point needs to have

linear time, the time complexity of this algorithm depends on the time complexity of

sorting all the link list data. Therefore, the worst case time complexity of this

algorithm is O(NlogN).

5.1.3 Result test and analysis for tile filtering method

We still chose the original source data from the survey in eastern Broward

County. We chose both the initial width and length of the tile as 5m, and the initial

threshold as 0.5m. The result is indicated in Figure 5.1.6 Result of Refiltering

Method. We can see from the figure, the higher points have been removed.

The elapsed time on filtering this original data file on an Intel Pentium IIl

933MHZ CPU and 256M RAM is 10.765 seconds, including the time for reading and

writing the file.

95

x 100
2 .89 14 -- 1.

2.8914 - . -1

47 -19
2.8914 -...-

2.8913 -- -20

2.8912 -
-21

2.8912

2.8912 - -22

2.8911 -2 .Y.: -23

2.891 : ..

-24
2.691 --.. -

2.891 5 5-25
5.728 5.73 5.732 6.734 5.736 6.738 5.74 5.742

x 10

Figure. 5.1.6 Result of Refiltering

96

5.2 Sorted Filtering method

The main idea of the sorted filtering method is also to partition the survey into

tiles, then filter the data from each tile. However, the algorithm is different from the tile

filtering method. The difference is how we retrieve the data from the tile. In the tile

filtering method, we retrieve the data by computing the coordinate of each point, and

indicating to which tile it belongs. However, in the sorted filtering method, we collect

tile data through sorting the data set in X and Y directions. It needs three steps to filter

data. First, we partition the area along the Y direction. That can split the area into rows.

After we retrieve each row of data, we can continue to the next step. The next step is to

partition each row of data into strips along the X direction, in other words, split each row

into columns. Actually, each column in a row is a tile we want. That makes the whole

area a bunch of tiles. After we retrieve the column data, we can go through the third step

that is to filter the data from tile. In the third step, we have to sort the data by the Z value

first. In other words, we should sort the data in an ascending order according to height.

After that, we scan each data in the tile, and filter those data with the height out of range.

The range is decided by the given boundary value of height. Those data with the height

that are beyond the high boundary or below the low boundary will be removed. At the

same time, we compare the height of each data point with their previous ones. If the

height difference is greater than or equal to the given threshold, we can remove the data

behind it including itself. Since we need to partition the data along X or Y direction in

this method, we have to sort the data along the corresponding direction, that is the reason

why we called this method the Sorted Filtering method.

97

The process of collecting data in the tile is the same as in the Sorted Tiling

method. After we filter the data set one time, we need to do refiltering work through

shifting the coordinate of the data set, modifying the size of the tile, and changing the

value of the threshold. The main idea of it is to partition the data set in different tiles. It

can make different combinations of the data; thus it will be very useful to filter data.

5.2.1 Algorithm of tile filtering method

The Pseudo-code for sorted filtering method is as below:

Procedure FilterOneFile

01 Read the data file, get the size of data set;

02 Read file into altmArray arrPts;

03 arrPts. getMin axXYZ (min-x, min-y, min-z, max-x,

max-y, max-z); // Get the minimum and maximum

values of x, y, z among all the points;

04 getNumOfRowCol(min-x, min-y, max-x, max-y,

widthx, length-y, Cols, Rows); // Count the

Columns and Rows of all the points area based on

the given width on X direction and length on Y

direction;

05 double shiftDist = 0;

06 Call Procedure filterYX (arrPts, minx, miny,

strip-width, strip-height, shiftDist,

diffCriteria, heightFloor, heightCeiling,

98

numRows, numCols, errMsg);

07 If Procedure filterYX Return -1 Then

08 Return -1;

09 End if;

10 For (i=1; i<3; i++)

11 shiftDist = i*10;

12 strip-width = strip-width+1;

13 strip height = strip-height+50;

14 diffCriteria = diffCriteria*(i+1)*1.2;

15 Call Procedure removeNullData(arrPts);

16 Call Procedure filterYX(arrPts, minx,

miny, stripwidth, stripheight,

shiftDist, diffCriteria, heightFloor,

heightCeiling, numRows, numCols, errMsg);

17 If Procedure filterYX Return -1 Then

18 Return -1;

19 End if;

20 End for;

21 arrPts.sortByZ(); // Sort the altmArray arrPts

data by Z value.

22 Output altmArray arrPts into file;

23 Return 1;

99

Procedure FilterOneFile is functioning to filter one data file. Line 01 is used to

read the data from the file, after having scanned the whole file, we can acquire the

amount of the data points in the file, which is determined by how many lines are in the

file, because each of line in the file represents a point.

After getting the number of the point set, through Line 02, we can create an

altmArray with the number, and load all the data points in the file into the altmArray.

Next, we need to compute the minimum and maximum value of X, Y, which are

used to decide the boundary of the data points in the file. Line 03 is functioning for it.

In Line 04, we compute the number of columns and rows of all the surveyed areas

through the given parameter -- width and length. Width is used on the X direction, and

length is used on the Y direction. Accordingly, columns can be computed based on the

width, because they reflect how many strips can be divided on the direction of X; on the

other hand, rows can be computed based on the length, because they reflect how many

strips can be divided on the direction of Y. After that, we can split the whole area into

tiles. Each point must fall into one tile. In Line 05, it calls the Procedure filterYXData

for filtering.

In Line 06, we filter the whole data set one time by calling Procedure

filterYXData. The filtering result will record in the original altmArray arrPts. If there

are no data renMoved, Procedure filterOneFile will return -1.

Then we have to do some refiltering work. The main idea is to shift the

coordinates of the data set, modify the size of the tile, and change the value of threshold.

From Lines 10 to 20, we refilter the data set three times with different parameters of

coordinates, size of tiles, and threshold.

100

Procedure filterYX

01 starty = start-y - strip_height;

02 Call Procedure filterRowCol (a, start_x,

start-y+shiftDist, stripwidth, strip height,

diffCriteria, heightFloor, heightCeiling,

numRows, numCols, errMsg)

03 If Procedure filterRowCol Return -1 Then

04 Return -1;

05 End if;

06 Call Procedure removeNullData(a);

07 If Procedure removeNullData Return True Then

08 double end-x, end-y, min-z, max-z;

09 a.getMinMaxXYZ(startx, start_y, min z,

end-x, end.y, max-z);

10 getNumOfRowCol(start-x, start_y, end-x,

endy, strip-height, stripwidth, numRows,

numCols);

11 End if;

12 start_x = startx-stripjheight;

13 Call Procedure filterRowCol(a,

start_x+shiftDist, start-y, strip height,

stripwidth, diffCriteria, heightFloor,

heightCeiling, numRows, numCols, errMsg);

14 If Procedure filterRowCol Return -1 Then

101

15 Return -1;

16 End if;

17 Return 1;

Procedure filterYX is functioning to filter the data set. In Line 01, we modify the

starty for shifting the coordinate. Then we call Procedure filterRowCol for filtering one

time. During the process of filtering, we will set the Z value of points that should be

removed as Null. After we filter the data set one time, we can call Procedure

removeNullData to remove those points with Null Z value. If we indeed remove data

after the first time filtering, we have to compute the minimum and maximum X, Y value

again. According to those values, we can compute the number of rows and columns. In

Line 12, we set the start_x for shifting the coordinate, and filtering the new data set

again.

Procedure filterRowCol

01 long int i=0, j=0, count=0;

02 double lowy = start y;

03 double highy = starty + stripheight;

04 long int startindex = 0;

05 long int endindex = 0;

06 unsigned long int size = a.getSize();

07 a.sortByY(); 1/ Sort altmArray a by the Y

value.

102

08 For (i=0; i<=numRows; i++)

09 While ((j < size) && (a[j].getY() >= lowy)

&& (a[j].getY()<high-y))

10 count++;

11 j++;

12 End while;

13 If (count > 0) Then

14 altnArray rowPts(count); / Create

altmArray for storing row data points

15 endindex = j-1;

16 getRowPoint(a, startindex, end-index,

rowPts); // Store row data into

altrArray rowPts.

17 Call Procedure filterRow (rowPts,

start_x, strip-width, diffCriteria,

heightFloor, heightCeiling, numCols, i,

errMsg) ;

18 If Procedure filterRow Return -1 Then

19 Return -1;

20 End if;

21 Call Procedure writePointBackToArray (a,

startindex, endindex, rowPts);

22 count = 0;

23 start index = endindex + 1;

24 End if;

103

25 low__y = high-y;

26 highy = high-y + strip-height;

27 End for;

28 Return 1;

This procedure is used to split the data set into strips along the Y directions,

retrieve the data in each strip, call Procedure filterRow to filter each row of data, and

write the result back to the original row data set.

First, we need to sort the data set by the Y value (in Line 07). Next, we will

retrieve each row of data for further processing. Lines 08 to Line 27 are a For loop for

each row. Long it variable j is functioning as the index for the data set array. Double

variable lowy stores the low boundary of each row; double variable high y stores the

high boundary of each row. Since we start from the minimum Y value point, we set the

initial low-y as min-y, and the initial highy as min-y plus strip_ eight. After one loop,

we have to modify the low-y and high-y's value, because we change another row to

retrieve data.

Procedure filterRow

01 unsigned long imt i=0, j 0;

02 unsigned long int k = 0, count=0;

03 double low_x = min x;

104

04 double high-x = minx + strip width;

05 unsigned long int startindex = 0;

06 unsigned long int endjindex = 0;

07 unsigned long int size = a.getSize();

08 a.sortByX(); // Sort altrArray a by the X value.

09 For (i=0; i<=numCols; i++)

10 While ((j < size) && (a [j . getX () >=lowx) &&

(a[j .getX() < high x))

11 count++;

12 j++;

13 End while;

14 If (count>0)

15 altmArray colPts(count);

16 end-index = j-1;

17 getRowPoint(a,start_index,

end-index, colPts);

18 Call Procedure filterStrip (colPts,

diffCriteria, heightFloor, heightCeiling,

errMsg) ;

19 If Procedure filterStrip Return -1 Then

20 Return -1;

21 End if;

22 Call Procedure writePointBackToArray

(a,start_index, end-index, colPts);

23 count = 0;

105

24 start-index = endindex + 1;

25 End if;

26 low-x = high-x;

27 highx = highx + stripwidth;

28 End for;

29 Return 1;

This procedure is used to split the row of data retrieved from Procedure

filterRowCol into columns along the X directions, call Procedure filterStrip to filter each

column data, and write the result back to the original column data set. That can partition

the row data into columns according to the given width of each tile.

First, we need to sort the data set by the X value (in Line 08). Next, we will

retrieve each column data for further processing. Lines 09 to 28 are a For loop for each

column. Long int variable j is functioning as the index of the data set array. Double

variable lowx stores the low boundary of each row; double variable high_x stores the

high boundary of each row. Since we start from the minimum Y value point, we set the

initial lowx as min-x, and the initial highjx as min _x plus stripheight. After one loop,

we have to modify the low-x and high x's value, because we change another column to

retrieve the data.

Procedure filterStrip

01 unsigned long int size = a.getSize () ;

02 If (size>l) Then

106

03 For (i=O; i<size; i++)

04 If ((a[i].getZ()>heightCeiling)

(a[i] .getZ()<heightFloor))

05 a[i] .setZ (CALTM_NULL_Z); // Filter

the point with the height beyond

heightCeiling or below heightFloor.

06 End if;

07 End for;

08 a.sortByZ();

09 unsigned long int start_index =

getCriticalStartlndex (a, diffCriteria,

errMsg);

10 If (start-index == -1) Then//if startindex

is incorrect

11 Return -1;

12 End if;

13 If (start-index < size) Then

14 For (i=startindex i<size; i++)

15 a [i] . setZ (CALTMNULLZ) ;

16 End for;

17 End if;

18 Else

19 a [] . setZ (CALTMNULLZ) ;

20 End if;

21 Return 1;

107

Procedure filterStrip is the main part of the Filtering algorithm. After we retrieve

the data from the column of each row, we can use this procedure to filter the data.

Actually, each column in any row is the tile we partitioned based on the given width and

length. First, we have to get the size of the tile data set (Line 01). If the data set contains

more than one point, we go through each point; otherwise, remove the data by setting the

Z value as Null. Next, we have to check the Z value (height) of each point, if it is out of

the range, we need to remove the point by setting the Z value of the point as Null. Then,

we sort the data set by Z value. In Line 09, we have to check from which point we need

to remove the point in the data set. Since the data set has been sorted according to the Z

value, we can check the height difference between each point and its previous point. If

the height difference is beyond the given threshold, we can remove it from the checked

point to the end of the data set. Variable diffCriteria is used to store the value of

threshold. After we get the index of the starting point that should be removed, we can set

the Z value of those points from the starting point to the end of the data set as Null.

Procedure writePointBackToArray

01 unsigned long int i = 0;

02 For (i=start index; i<=endindex; i++)

03 a[i] = rowPts[i-startindex];

04 End for;

108

Procedure writePointBackToArray is used to write the processed data back to the

original array.

5.2.2 Time Complexity

In sorted filtering algorithm, we also first read the source file, load all the data

into the altmArray, and compute the mininum and maximum X, Y value. These three

steps have the same time complexity, because they all have to scan the whole data set one

time. Hence, the time complexity for these steps is O(N).

After that, we have to retrieve some strip data for filtering process. Before we

retrieve any strip data along X or Y direction, we have to sort the data along the

corresponding direction, that decides the time complexity of this algorithm. In the

procedure filterRowCol, we have to sort the whole data set by Y value, thus, the time

complexity should be 0(NlogN). However, in other procedures, we do not need to sort

the whole data set, but only part of it, so the worse case time complexity for those sorted

procedures is 0(NlogN). Furthermore, other procedures without the sorting job only

need linear time, so the time complexity for the sorted filtering method is 0(NlogN).

5.2.3 Result test and analysis for sorted filtering

We still chose the original source data from the survey in eastern Broward

County. We chose both the initial width and length of the tile as 5m, and the initial

threshold as .5mn The result is indicated in Figure 5.2.1 Result of Sorted Filtering

Method. We can see from the figure, the higher points have been removed. The elapsed

time for processing all the jobs is 11.25 seconds.

109

x 100
2.8914 -18

2 814-; - -1

2.8914 -4 - -

28912 --- ' -21

2.8912

-22

28911 -- -23

2.891 -

-242.891 -4

2.891 -25
5.728 5.73 5 732 5.734 5.736 5.736 5.74 5.742

x 105

Figure. 5.2.1 Result of Sorted Filtering Method

110

6. Conclusion and future works

In this study, three methods for processing ALTM data have been addressed.

They are used to figure out three aspects of the problem of ALTM data, however, they

are related tightly. Result test and analysis of our techniques are carried out to verify the

correctness and performance.

For the resampling method, we concentrate on how to rebuild or retrieve the data

set. Therefore, we propose two kinds of methods. One is to shrink the huge data set; the

other is to retrieve data set in any polygon. Through these two methods, we can simplify

our survey object effectively. The simplification is based on two aspects: capacity and

shape. The first method called the Sparse method is used to reduce the amount of ALTM

points, but it keeps the terrain character at the mean time. This is sort of a simplification

on the capacity. It will be of great help on further processing and storage. Furthermore,

the retrieving method is working as the simplification on the shape, because we can

exploit it to cut any data set in a polygon shape according to our requirement. Based on

our present work, we can suggest some new research content in these two aspects in the

future. For the sparse method, we can design more sophisticated and accurate methods to

shrink the data set and match the terrain character. We can introduce more parameters

such as intensity of the ALTM point or some new criteria to get the representative point

of each partitioned area. On the other hand, for retrieving data from a certain area, we

can design new algorithms to retrieve data from some more complicated geometrical

shapes, in order to satisfy more requirements of visualization.

111

The second method we discussed in the study is the Tiling method. That is used

to partition the huge data set into small pieces. It is very helpful for storage and further

processing. We implemented the tiling method through two different ways. One is non-

sorted tiling, the other is sorted. The non-sorted method has a simpler algorithm and less

time complexity, and is easier to implement. However, the Sorted method has better

performance on processing huge amounts of data. Based on our present research, the

speed and efficiency of processing and storage should be increased by improving the

algorithm and data structure in future work.

The third part of this study is focusing on the filtering method. That is the key

part of processing ALTM data. Two different methods were addressed in the study. As a

matter of fact, the main idea of these two methods has no significant difference. They

both filter the data in the area with given size through checking the starting point index of

the sharp jump on the height difference. After that, we can change the size and refilter.

From the test result, we know this kind of method can effectively handle the survey area

without too much undulation. Since the filtering criteria for this kind of method is linear,

it cannot work well on the terrain with massive undulation. Therefore, we can do a lot

more work on designing a non-linear filtering criteria function for different terrain

character in future work. It will make a big breakthrough for the filtering method.

112

List of References

[Bruce2000] Bruce Eckel, "Thinking in C++"Prentice Hall, 2nd edition, Published
March 2000.

[Brunol998] Bruno R. Preiss, John Wiley, "Data Structures and Algorithms: With
Object-Oriented Design Patterns in C++," Published August 1998.

[Carterl999] W E Carter, R L Shrestha, S P Leatherman, "Airborne Laser Swath
Mapping: Applications to Shoreline Mapping", 1999.

[Clarke1995] Clarke, Keith C., "Analytical and Computer Cartography 2 n Edition",
pp. 207-208, 1995.

[Carterl997] Carter, W. E, R. L. Shrestha, P.Y. Thompson, and R. G. Dean; "Project
LASER: Final Report to FDEP," Department of Civil Engineering,
University of Florida, Gainesville, FL 32611, pp 27, April 4, 1997.

[Estep 1994] Estep, L.L., Lillycrop, W.J., and Parson, L.E., "Estimation of
Maximum Depth of Penetration of a Bathymetric Lidar System Using a
Secchi Depth Database,"_Marine Technology Society Journal, Vol. 28,
No. 2, pp. 31-36, 1994.

[Everett2000] Everett McKay, Mike Woodring, "Debugging Windows Programs:
Strategies, Tools, and Techniques for Visual C++ Programmers,"
Addison-Wesley, Published August 2000.

[Hawgl998] Hawg, P.A., Walsh, E.J., Krabill, W.B., Swift, R.N., Manizade, S.S.,
Scott, J.F., Earle, M.D., "Airborne Remote Sensing Applications to
Coastal Wave Reasearch," Journal of Geophysical Research, Vol. 103,
No. C9, pp. 18,791-18,800, 1998.

[Herbert1998] Herbert Schildt, McGraw Hill, "C++: The Complete Reference, 3rd
Edition" 3rd edition, Published June 1998

[Irish1999] Irish, J.L., W.J.Lillycrop, "Scanning Laser Mapping of the Coastal
Zone: The SHOALS System," ISPRS Journal of Photogra metry &
Remote Sensing , Vol. 54, Nos. 2-3, pp. 123-129, 1999.

[Ivor1998] Ivor Horton, "Beginning Visual C++ 6," Wrox Press, Published
September 1998

[Krabill1995] Krabill, W.B., R.H. Thomas, C.F. Martin, R.N. Swift, and E.B.
Frederick; "Accuracy of Airborne Laser Altimetry Over the Greenland
Ice Sheet," International Journal Remote Sensing, Vol. 16, No. 7, pp
1211-1222, 1995a.

113

[Mike1999] Mike Blaszczak, "Professional MFC With Visual C++ 6," Wrox Press,
Published August 1999.

[Milbertl991} Milbert, D.S.; Computing GPS-Derived Orthometric Heights with
Geoid90 Height Model, Presented at ACSM Fall Meeting, GIS/LIS,
Atlanta, GA, 1991.

[Nicolai 19991 Nicolai M. Josuttis, "The C++ Standard Library: A Tutorial and
Reference," Addison-Wesley, Published August 1999.

[Parson1996] Parson, L.E., Lillycrop, W.J., and Irish, JL, "Surveying Florida Bay
Using Airborne Lidar Technology," Proceedings, 2nd International
Airborne Remote Sensing Conference and Exhibition, Environmental
Research Institute of Michigan, June 24-27, San Francisco, CA, pp.
1996.

[Robert1998 Robert Sedgewick, "Algorithms in C++, Third Edition," Addison-
Wesley, 3rd edition, Published December 1998.

[Smith1999] Smith, R.A., West, G.R., "Airborne Lidar: A Surveying Tool for the
New Millennium," Proceedings, Oceans '99 MTSIIEEE, 13-16
September, Seattle, WA, 1999.

[Thomas19901 Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest,
"Introduction to Algorithm," MiT Press, Hardcover, Published July
1990.

[Whitman2000] Whitman D., K. Zhang, S.P. Leatherman, W. Robertson, and Baig S,
2000. An Airborne Laser Topographic Mapping Study of Eastern
Broward County, Florida with Applications to Hurricane Storm Surge
Hazard, American Geophysical Union Spring Meeting, Washington
DC.

[West1999] West, G.R., and W.J. Lillycrop, "Feature Detection and Classification
with Airborne Lidar - Practical Experience," Proc. Shallow Survey 99
October 18-20, Sydney, Australia, 1999.

[Zhang2000] Zhang K., D. Whitman, S.P. Leatherman, W. Huang, W. Robertson, R
Shrestha, and W. Carter, 2000. Airborne Laser Mapping of the Erosio

Caused by Hurricane Floyd near Vero Beach, Florida, American

Geophysical Union Spring Meeting, Washington DC.

114

	Florida International University
	FIU Digital Commons
	4-2-2001

	Management, retrieval, and visualization of spatial data from airborne light detection and ranging system (LIDAR) survey
	Zheng Cui
	Recommended Citation

	tmp.1481302217.pdf.BGevG

