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ABSTRACT OF THE THESIS

Using Genetic Algorithms to Solve Combinatorial Optimization Problems

by

Xinwei Cui

Florida International University, 1991

Miami, Florida

Professor Mark A. Weiss, Major Professor

Genetic algorithms are stochastic search techniques based on the mechanics of

natural selection and natural genetics. Genetic algorithms differ from traditional

analytical methods by using genetic operators and historic cumulative information to

prune the search space and generate plausible solutions. Recent research has shown

that genetic algorithms have a large range and growing number of applications.

The research presented in this thesis is that of using genetic algorithms to solve

some typical combinatorial optimization problems, namely the Clique, Vertex Cover

and Max Cut problems. All of these are NP-Complete problems. The empirical

results show that genetic algorithms can provide efficient search heuristics for solving

these combinatorial optimization problems.

Genetic algorithms are inherently parallel. The Connection Machine system makes

parallel implementation of these inherently parallel algorithms possible. Both sequen-

tial genetic algorithms and parallel genetic algorithms for Clique, Vertex Cover and

Max Cut problems have been developed and implemented on the SUN4 and the

Connection Machine systems respectively.
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1 Introduction

1.1 Statement of the Problems

In complexity theory, NP is the class of all decision problems that can be solved by

polynomial time nondeterministic algorithms. P is the class of all decision problems

that can be solved by polynomial time deterministic algorithms. Informally, a decision

problem L is NP-Complete if L is in NP and, for all other decision problems, L' in

NP, L' can be transformed to L in polynomial time. In short, no NP-Complete

problem is known to have a polynomial time deterministic algorithm, so if a problem

is NP-Complete, the search for an efficient, exact algorithm for the problem should

be accorded low priority [GJ79]. In practice, many problems are NP-Complete; for

these we are faced with the task of finding some usable algorithms for dealing with

them.

Although the theory of NP-Completeness restricts attention to decision problems,

we can extend the implications of the theory to optimization problems. One approach

to solve the optimization problems is that we no longer focus on finding an optimal

solution, but instead try to find a near optimal solution within an acceptable amount

of time.

The problems presented in this thesis are three basic NP-Complete problems which

are called the Clique, Vertex Cover, and Max Cut problems.

A subgraph of C = (V, E) is a graph G' = (V', E'), where V' C V, E' C E; V, V'

1



Figure 1: Graph with Maximum Clique Size 4 (v1 , v4 , vs, v9 )

are the sets of vertices, E, E' are the sets of edges.

A complete subgraph is a subgraph of given graph in which there is an edge between

any two vertices.

The optimization problem for Clique is: In a given undirected graph, find a com-

plete subgraph with maximum number of vertices. For example, there are 10 vertices

in Figure 1. v 3 , vs, and v10 is a clique with size 3. v1, v 6 , and v 7 is also a clique with

size 3. The maximum clique is v 1 , v 4 , v6 , and v9 with size 4.

The optimization problem for Vertex Cover is: In a given undirected graph, find

a subset of vertices such that for each edge in the graph, at least one of the endpoints

belongs to the subset, and the number of vertices in the subset is minimum.

Vertex Cover is a very practical problem. For example, when one wants to monitor

2



21,1

Figure 2: Graph with Minimum Vertex Cover Size 4 (v 1 , 3, vs, s)

the operation of a large network, one expects to monitor as few nodes as possible.

In Figure 2, v 1 , v 3 , v 4 , v 7 , and v9 are a vertex cover with size 5. The minimum vertex

cover is v 1 , v 3 , vs, and vs with size 4.

The optimization problem for Max Cut is: In a given undirected weighted graph,

divide the vertices into two disjoint subsets such that the sum of the weights of the

edges that have two endpoints in different subsets is maximized.

The Max Cut problem is also an NP-Complete problem which is very useful for the

network design. In Figure 3, the rax cut is 44, since clearly, Figure 3 can be redrawn

as Figure 4. The vertices are divided into two disjoint subsets V = {V1 , v 3 , v 4 , v5 }

and V2 = {v 2 ,v 6 , v, Vs, V9 }.

3
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1.2 Approach for Solving the Problems

A combinatorial optimization problem is either a minimization problem or a maxi-

mization problem and consists of the following three parts:

(1) a set of instances;

(2) for each instance, a finite set of candidate solutions; and

(3) a function that assigns to each instance and each candidate solution a positive

solution value.

If a problem is a minimization problem, then an optimal solution for an instance

is a candidate solution si such that, s1 is less than or equal to all candidate solutions.

If a problem is a maximization problem, then an optimal solution for an instance is a

candidate solution s2 such that, 52 is greater than or equal to all candidate solutions.

Clique and Max Cut are maximization problems, while Vertex Cover is a minimization

problem.

An algorithm is an approximation algorithm for a combinatorial optimization prob-

lem if, given any instance, it finds a candidate solution. If for all instances, the

algorithm always find an optimal solution, the algorithm is called an optimization

algorithm.

The Clique, Vertex Cover and Max Cut problems are NP-Complete, therefore

polynomial time optimization algorithms cannot be found unless P = NP. A reason-

able goal is that of finding approximation algorithms that run in low-order polynomial

time and have the property that, for all instances, the algorithms can find a solution

5



which is close to optimal.

Genetic algorithms are stochastic search techniques based on the mechanics of

natural selection and natural genetics. Genetic algorithms differ from traditional

analytical methods by using genetic operators and historic cumulative information to

prune the search space and generate plausible solutions. Recent research has shown

that genetic algorithms can provide efficient search heuristics for solving optimization

problems.

Genetic algorithms achieve both power and generality by demanding that prob-

lems be mapped into their own particular representation in order to be solved. If a

fairly natural mapping exists, impressive robust performance results. Clique, Vertex

Cover and Max Cut problems have very natural representations of genetic algorithms.

Therefore, the genetic algorithms are useful for solving these problems.

1.3 An Outline of the Thesis

The following is a brief outline of the thesis: Section 2 introduces genetic algorithms.

This section will discuss the historical perspective of genetic algorithms, concepts,

unique features of genetic algorithms, mathematical foundations, and genetic algo-

rithms' applications. Section 3 describes how to use genetic algorithms to solve Clique,

Vertex Cover and Max Cut problems in detail and the effects of adaptive genetic pa-

rameters. Section 4 illustrates parallel genetic algorithms for Clique, Vertex Cover

and Max Cut problems and the implementation of parallel genetic algorithms on the
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Connection Machine. Section 5 presents advanced techniques of genetic algorithms.

The conclusions are provided in Section 6. Then finally ended with Section 7 open

problems and future work.
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2 Introduction to Genetic Algorithms

2.1 Historical Perspective

John Holland is the founder of the field of genetic algorithms. His publication of the

book "Adaptation in Natural and Artificial Systems" [ Ho175] provided a summary

of the work which Holland and his students had been pursuing for some time. An

important theme in this wide ranging study of the properties of adaptive systems

was that adaptation can be usefully modeled as a form of search through a space

of structural changes which one might make to a complex system in an attempt

to "improve" its behavioral characteristics. This gave rise to a methodology for

abstracting and rigorously explaining the adaptive processes of natural systems and

designing artificial software systems that retains the important mechanisms of natural

systems. Holland described the ability of the bit string representations to encode

complicated structures, and the power of simple genetic operators to improve such

structures. Holland showed that even in a large domain, genetic algorithms would

tend to converge on solutions that were globally optimal or nearly so.

2.2 Concepts

Genetic algorithms represent a highly idealized model of a natural process and as such

can be legitimately viewed as a very high level of abstraction. Genetic algorithms are

rooted in both natural genetics and computer science. Biological systems developed
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successful strategies of behavior adaptation and synthesis to enhance the probability

of survival and propagation during their evolution. Environmental pressures requiring

these strategies have effected profound changes in biological organisms. These changes

are manifested in structural and functional organization, and internal knowledge rep-

resentations [Aus9O]. The metaphor of a genetic algorithm is that of natural evolution

and selection. In cumulative selection, each successive incremental improvement in a

solution structure becomes the basis for the next generation. The principles of natu-

ral selection and population genetics are intrinsically powerful. Algorithms inspired

by these principles have been successful when applied to the challenges of machine

learning and function optimization [Gol89].

In a natural genetic system, the chromosomes consist of genes. Each gene has a

value and position. The combination of chromosomes form the total genetic prescrip-

tion for the construction and operation of some organism [Gol89]. Corresponding to

the natural genetic system, in an artificial genetic system, we use strings and charac-

ters to simulate chromosomes and genes. When using a genetic algorithm to solve a

problem, we need to represent the problem by a string, and to define an evaluation

function. This function uses the value of the string as a parameter to evaluate the

results of the problem.

In a natural genetic system, we have populations and generations. Similar to

natural systems, in an artificial genetic system we also have populations and genera-

tions. We use a set of strings to represent the populations. We evaluate each string

9



through the evaluation function and form the new generation by using specific genetic

operators.

The behavior of genetic algorithms can be subtle, but their basic construction and

execution cycle is straightforward. A genetic algorithm is an interactive procedure

maintaining a population of strings that are candidate solutions to specific problems.

During each generation, the strings in the current population are rated for their

effectiveness as solutions, and on the basis of these evaluations, a new population of

candidate solutions is formed using genetic operators such as reproduction, crossover,

and mutation.

Reproduction is a process which determines the actual number of offspring each

individual string will receive in the next generation based on the value of the evalu-

ation function, which is called the fitness. The strings with higher fitness value have

a greater probability of contributing one or more offspring to the next generation,

while the strings with lower fitness value cannot survive in the next generation. The

initial population can be chosen heuristically or randomly.

When a string has been selected for the next generation, it is entered into a mating

pool for the operations of crossover and mutation.

Crossover is a method for sharing information between two successful individual

strings. It explores the search space by changing some of the bit values in a string.

One point crossover can be implemented by selecting a random integer position in

the string and exchanging the segments to the right of this point with another string

10



similarly partitioned. We illustrate the one point crossover operator as follows:

Suppose that A and B are two parent strings selected randomly from the mating

pool, and k is the random integer position.

A = aja ... akak+1ak+2 ... an

B= b1 b2 ... bk bk+lbk+ 2 ... b.

After crossover, the children are

A' - a1a2 .. ak bk+lbk+2 . .

B' b1 b2 . . bkak+lak+2 . an

Mutation is a simple operator which flips one or more bits of a string at random.

In an artificial genetic system, the occasional use of the mutation operator can prevent

the loss of some potentially useful genetic material.

Crossover will be affected by the crossover probability, which is the frequency

with which the crossover operator is applied. The higher the crossover probability,

the more quickly new strings are introduced to the population. When the crossover

probability is too high, the string with higher fitness is removed faster than selection

can produce improvements.

Mutation will be affected by the mutation probability, which is the frequency with

which the mutation operator is applied. A low level of mutation prevents a given

position from freezing at a single value.

The C code for the general outline of a genetic algorithm is the following:

11



GeneticAlgorithm ()

{

int generation;

encode-problem (;

initialize population (;

for (generation=1; generation<= maxgeneration; generation+ +)

selection (;

crossover;

mutation (;

evaluation (;

decode-string (;

statistics (;

report (;

}

}

If we define:

L is the string length

P is the population size

C is the number of generations

12



then the time complexity of a genetic algorithm is O(L x P x G).

Genetic algorithms are easy to implement. All the operator functions can be used

for the different problems. When we want to solve a problem, all we need to do is to

encode the problem to a string representation, input the value of the problem, define

the evaluation function, and decode the string to the problem itself.

2.3 Unique Features of Genetic Algorithms

Genetic algorithms are different from traditional analytical methods. Genetic algo-

rithms are derived from a simple model of population genetics based on the following

assumptions [DS87, Gol89]:

* The problem and its inputs and outputs can be represented as fixed length

strings having a finite number of possible values, at each position.

* At any time, the system maintains a population which contains a finite number

of strings and represents the current set of solutions to the problem.

* Each point in the search space can be uniquely represented by a string generated

from the finite number of possible values.

* Each string has a fitness, or relative ability to survive and produce offspring.

Genetic algorithms work from population points, not a single point; and use prob-

abilistic transition rules, not deterministic rules. To use a genetic algorithm to solve

a problem, we must:
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* represent the problem as a finite length string over some finite alphabet.

* choose a way to create an initial population of solutions.

* define evaluation function, and use the information of the evaluation function

to rate solutions in terms of their fitness.

* use genetic operators that alter the composition of children in the next genera-

tion.

* set the parameter values of the genetic algorithm.

2.4 Mathematical Foundations of Genetic Algorithms

Holland's genetic algorithm theory is called the Schema Theorem which describes the

actual behavior of genetic algorithms. A schema is the set of all strings having certain

"defining" values at designated positions in the string. For example, schema 0***1 is

the set of all strings of length 5 having the value 0 in the first position and the value

1 in the last position, where * is a wild card. The Schema Theorem provides a lower

bound on the expected number of representatives of a particular schema in the next

generation under various genetic operators.

For any string of length l over the binary alphabet {0, 1}, there are 3l schemata

because each of the l positions may be a 0, 1, or *. A particular string contains 2'

schemata because each position may take on its actual value or a *. A population

of size n contains somewhere between 2' and n x 2' schemata, depending upon the

14



population diversity.

The schema describes the similarities among the strings in the population. When

we consider the strings, their fitness, and their similarities simultaneously, we can

obtain a wealth of new information to help direct our search. The schemata actually

processed in each generation are affected by reproduction, crossover, and mutation

operators. To analyze the growth and decay of the many schemata contained in

a population, we need to define two schema properties: schema order and defining

length.

The order of a schema H, denoted by o(H), is simply the number of fixed positions

presented in the schema. For example, the order of schema ***1 is 2.

The defining length of a schema H, denoted by 6(H), is the distance between

its first and last fixed position. For example, the schema 01**1 has defining length

6(H) = 5 - 1 = 4. The schema **l** has defining length 0 because the first and the

last fixed positions are the same (namely the third position).

Schemata and their properties are interesting notational devices for rigorously

discussing and classifying string similarities. They provide the basic means for an-

alyzing the individual and combined effect of reproduction, crossover, and mutation

on schemata contained within the population strings.

Schema theorem can be represented by the following equation:

m(H, t + 1) ;> m(H, t) x [ - ] x [1 - --- ) o(H)Pm}
f(t) l - 1

where m(H, t) is the expected number of strings of a particular schema H in popu

15



lation P(t), f(H, t) is simply the average fitness of the strings of schema H at time

t, 7(t) denotes the average fitness of the individuals in population P(t), P, is the

crossover probability, 8(H) is the defining length of schema H , which is the distance

between the first and last specific string position, 1 is the length of each individual

string, o(H) is the order of schema H , which is simply the number of fixed positions,

Pm is the mutation probability.

The effect of reproduction on the expected number of schemata in the population

is easy to determine. Suppose at a given time step t there are m examples of a

particular schema H contained within the population P(t). During reproduction, a

string A. is copied according to its fitness with probability pi = . After picking a

nonoverlapping population of size n with replacement from the population P(t), we

expect to have m(H, t + 1) representatives of the schema H in the population at time

t+1 as given by the equation m(H,t+ 1) = m(H, t) x n x , where f(H, t) is the

average fitness of the strings representing schema H at time t. If we recognize that

the average fitness of the entire population is 7(t) = fj, then

m(H,t + 1) = m(H, t)f(Ht)
f(t)

From this equation, we know that schemata with fitness values above the popula-

tion average will receive an increasing number of samples in the next generation, while

schemata with fitness values below the population average will receive a decreasing

number of samples.

Reproduction alone does nothing to promote exploration of new regions of the

16



search space, since no new points are searched. If we only copy old strings without

change, we won't ever try anything new. This is why we need crossover.

Crossover leaves a schema unscathed if it does not cut the schema, but it may

disrupt a schema when it does. For example, consider a particular string of length 10

and two representative schemata within that string:

A=0110001000

H1 = 0 * * * * * * * 0 *

H2 = **1*0*****

String A is represented by schemata H1 and H2 , but the effect of crossover on the

schemata are different. Suppose string A has been chosen for mating and crossover,

the random crossover point is 5. We use the symbol | to mark the crossover point as

follows:

A=01100[01000

H1 =0* ***I***0*

H2 =** *01|* * ***

Unless string A's mate is identical to A at the fixed positions of schema, the schema

H1 will be destroyed because the fixed positions are on opposite of the crossover point,

while schema H2 will survive because the fixed positions will be carried intact to a

single offspring. Schema H1 has a defining length 8 which is bigger than defining

length 2 of schema H2 . It is clear that schema H1 is less likely to survive crossover

17



than schema H2 because on average the crossover point is more likely to fall between

the fixed positions. If the crossover point is chosen uniformly at random among

the l - 1 = 9 possible points, then schema H1 is destroyed with probability pdi =

L = , schema H2 is destroyed with probability pd2 = H =) . Therefore

schema H1 survives with probability pi = 1 - pdi == , schema '1 survives with

probability P,2 = 1 - pd2 = 1. Generally, the survival probability p, 1 - .

If crossover is performed with crossover probability P at a particular mating, the

survival probability will be

S = -PC X (H )

When P, = 1.0, p, > 1 - (.

Suppose that that the reproduction and crossover operations are independent.

Then the combined effect of crossover and reproduction is

f(Ht) P(6HH)m(H, t+1) > m(H, t) x ]x [1 1 x
f(t) 1 -1

The last operator is mutation. Mutation is the random change of a single position

with mutation probability Pm. In order for a schema H to survive, all of the specified

positions must themselves survive. Since a single character survives with probability

(1 - Pm), and since each of mutations is statistically independent, a particular schema

survives when each of the o(H) fixed positions within the schema survives. Multiply-

ing the survival probability (1 - Pm) by itself o(H) times, the survival probability of

mutation is (1 Pm)o(H). For small values of Pm(Pm << 1.0), the survival probability

of mutation is approximately 1 - o(H) x Pm, by the binomial theorem. Therefore the

18



combined effect of reproduction, crossover and mutation operations is the following

equation (ignoring small cross-product terms):

m(H, t + 1) >) x [ )] X [1 P,6(H) - o(H)P]
f(t) 1-1

The schema theorem tell us that schema H grows or decays depending upon a

multiplicative factor. If f(H, t) > 7(t), 8(H) is smaller, and o(H) is smaller, then

m(H, t + 1) will be bigger, i.e. the schemata which have higher fitness than average

fitness, short defining length, and low-order will receive more strings in the next

generation. [Ant89, BG87, Gol89, GB89, Hol75]

2.5 Genetic Algorithms' Applications

Genetic algorithms have a large range and growing number of applications which can

be found in scientific areas such as Biology, Chemistry, Computer Science, Engineering

and Operations Research, Image Processing and Pattern Recognition, Mathematics,

Physical Sciences, and Social Sciences, among others. Industry has used genetic

algorithms to carry out commercial optimization. The following is the brief overview

of genetic algorithms' applications in different disciplines.

* Job Shop Scheduling: Scheduling the day-to-day workings of a job shop

which is an organization composed of a number of work stations capable of

performing operations on objects. Specifying which work station is to perform

which operations on which objects from which contracts. [Dav85]
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* Communication Network: Finding low-cost sets of packet switching com-

munication network links when the network topology has been fixed. [DC87]

* Boolean Satisfiability Problem: Given an arbitrary boolean expression of

n variables, finding an assignment to those variables such that the expression is

true. [DJS89]

" Visual Recognition: Classifying distorted examples of different but similar

classes of image patterns. [Eng85]

* Traveling Salesman Problem: Finding the shortest route to be taken by a

salesman who must visit each of n cities exactly once. [FW90]

* Optimization of Pipeline Systems: Applying genetic algorithms to opti-

mization and machine learning problems in natural gas pipeline control. [Gol89]

* Chemometrics: The processing of analytical information and data in chemo-

metrics (which is a subdiscipline of analytical chemistry). [LK89]

* Multiple Objective Optimization: Handling multiple non-commensurable

objectives such factors as cost, safety and performance. [Sch85]

* Biological Development: Simulating the evolution of simple multicellular

systems. [Wil87]
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3 Genetic Algorithms for Combinatorial Optimiza-

tion Problems

3.1 Genetic Algorithm for the Clique Problem

The Clique problem is one of the basic NP-Complete problems. In this section, a

genetic approach to generating solutions for the Clique problem is described. Empir-

ical results are reported which demonstrate the effectiveness of genetic algorithms in

solving combinatorial optimization problems.

In genetic algorithms, there are some important genetic parameters such as popu-

lation size, maximum generation, crossover probability and mutation probability. We

will discuss their effect for the Clique problem in section 3.4.

3.1.1 Clique Problem

The Clique problem can be stated as follows [GJ79]:

INSTANCE: A graph G = (V, E) and a positive integer K < IVI , where V is a

set of vertices, and E is a set of edges.

QUESTION: Does C contain a clique of size K or more, that is, a subset 17' C V

such that IV'J > K and every two vertices in V' are joined by an edge in E?

The Clique problem is NP-Complete. In complexity theory, NP is the class of all

decision problems that can be solved by polynomial time nondeterministic algorithms.

Although the theory of NP-Completeness restricts attention to decision problems, we
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can extend the implications of the theory to optimization problems. The optimization

problem for the Clique problem is to find the maximum K in a graph G, where K is

the clique size.

3.1.2 Representation and Evaluation Function

First, the Clique problem is encoded as a string. In a graph G = (V E), with n

vertices, the vertices are numbered from 1 to n. Solutions to the Clique problem can

be represented by an n-bit string cic 2 ... c,;;, where ci = 0 or 1, i = 1,2,..., n. Each

bit position corresponds to the numbered vertex. ci = 1 means vertex vi E V', i.e. vi

is in the clique.

Second, the penalty method is used to define the evaluation function as follows

[RPLH89J:

evaluation function total edges which should be in the clique of size K -

penalty

penalty = ( the number of unconnected edges in V')2

When the n-bit string c1 c2 ... cn has K 1 bits (K < n), the total edges contained

in the clique is

K- K(K - 1)

1= 2

When the value of the function (fitness) is smaller than 0, the function returns 0.

If a subset V' C V is a clique, then penalty = 0.
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3.1.3 Genetic Operators

Genetic algorithms have three primary operators. They are reproduction, crossover,

and mutation.

Reproduction: Genetic algorithms process populations of strings. The string

length for the Clique problem is the number of vertices in a graph G. We use the

function flip with the probability 0.05 to randomly generate the initial population for

the Clique problem. Using a smaller probability to generate the initial population

can obtain cliques with smaller size first, and improve the result in later generations,

and can also avoid the loss of feasible solutions. The function flip returns a boolean

value 1 (true) or 0 (false) according to the given probability parameter. The C code

fragment for the function flip is the following:

# define range 2147483647.0 /* 2" - 1 */

flip ( probability)

float probability;

{

return ( ( double ) random ( ) / range <= probability );

}

Reproduction is a process which determines the actual number of offspring each

individual string will receive in the next generation based on the values of their

evaluation function. The strings with higher fitness value have a greater probability

of contributing one or more offspring to the next generation, while the strings with
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lower fitness value cannot survive to the next generation.

There are many algorithms to select offspring. Baker's sampling algorithm is used

to implement the reproduction function [Bak87]. This algorithm is more efficient

than other algorithms. The time complexity of genetic algorithms' other phases is

0(L x P) in each generation, where L is the string length, P is the population size.

It is desirable for the reproduction phase not to increase the genetic algorithms'

overall time complexity. The time complexity of Baker's algorithm is O(P), while the

complexity of other algorithms is O(PlogP).

The basic idea of the Baker's sampling algorithm is as follows: First, compute the

sum of the fitness over all strings. Second, calculate step, which is the sum of the

fitness divided by the population size. Then generate pointer randomly by using a

random integer uniformly distributed in [0, step). Finally, for each string, determine

how many copies should be put into the mating pool according to the step and random

pointer. The C code fragment for the reproduction operator is the following:

# define range 2147483647.0 /* 231 - 1 */

reproduction ( )

{

float ptr, sum=0.0, step;

int i, flag=0;

step = ( float ) sumfitness / populationsize;

ptr = random ( ) / range * step;
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for ( i = 1; i <= populationsize; i++ )

for ( sum += ( float ) fitness [ i ]; sum > ptr; ptr += step )

mating pool [ ++flag ] = i;

}

When a string has been selected for the next generation, it is entered into a mating

pool for the operations of crossover and mutation.

Crossover: Crossover is a method for sharing information between two successful

individual strings. It explores the search space by changing some of the bit values

in a string. In the algorithm, a one point crossover operator is used. The mating

schema is that two parents selected randomly from the mating pool are exchanged

to produce two children to replace them. Crossover can be implemented by selecting

a random integer position in the string and exchanging the segments to the right of

this point with another string similarly partitioned. The C code fragment for the

crossover operator is following:

crossover(j)

int j;

{

int i;

if (flip(crossprob)==1)

jcross=range-random(1, stringlength);

else
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jcross=stringlength;

for (i=1; i<=jcross; i++)

{

newstring[j][i]= mutation(oldstring[mate1 ][i);

new-string[j + 11[i] =mutation(oldastringfmate2] [i]);

}

if (jcross != stringlength)

for (i=jcross+1; i< =stringlength; i++)

{

new-string[j] [i] =mutaton(oldstring[mate2][i]);

new-stringfj + 11[i] =mutation(old~string~matelj][il);

}

Crossover will be affected by the crossover probability, which is the frequency

the crossover operator is applied. When the crossover probability is too high, the

string with higher fitness is removed faster than selection can produce improvements.

Therefore, crossover probability 0.5 is used in the experiments.

Mutation: Mutation is a simple operator which flips one or more bits at random

using some mutation probability. In an artificial genetic system, the occasional use of

the mutation operator can prevent the loss of some potentially useful genetic material.

Mutation probability 0.01 is used in the experiments. The C code fragment for the
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mutation operator is the following:

mutation(bit-string)

i t bit-string;

{

int res;

if (flip(mutation prob)==1)

{

if (bit-string==1)

res=O;

else

res=1;

}

else

res=bit string;

return(res);

3.1.4 Empirical Results

For testing purposes, the input graph G is initialized by the following method:

The total number of vertices, n, in a graph G is an input parameter, and matrix

M represents the graph.
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0 a 1 2 a 1 3 a 1 4 ... aln

0 0 a2 3 a2 4 --- a2n

0 0 0 a3 4 .-- a3n

0 0 0 0 .. an_1n

0 0 0 -- 0

where aij = 1 or 0. aij = 1 means that there is an edge between vertex v- and vertex

v1 , for i < j. ( Although the graph is undirected we adopt the following convention:

ai = 0if i;> j.)

First, use function flip with 0.5 probability and different random seed to generate

the matrix M. Second, generate m distinct random numbers between 1 and n, where

m = |V' and m < n, that is, m is the number of vertices in the clique. Then, make

the m vertices as a clique. When m is small, it is possible that there is a clique bigger

than m. However, when m is large, it is unlikely that there is a clique bigger than m.

Running the genetic algorithm, the number of unconnected edges in V' is com-

puted as follows:

(1) count the number of 1's in a string, put the corresponding position in a buffer;

(2) check whether the subset V' consists of a clique by using matrix Al.

The C code for computing the fitness of each string is the following:

evaluation function(string)
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int string[maxsting];

{

int res, count=O, i, j;

it buffer[maxstring];

penalty = 0;

for (j=1; j<=stringlength; j++)

if (string[j] == 1)

{

count +-+;

buffer[count] j;

}

res = count * (count - 1 ) / 2;

for (i=1, i<count; i++)

for (j=i+1; j<=count; j++)

if (M[buffer[i]] [buffer[j]] != 1)

penalty +-+;

res -= penalty * penalty;

return (max(res, 0));

}

In the experiment, population size = 80, maximum generation = 200, crossover

probability = 0.5, mutation probability = 0.01 are used to test the algorithm. Differ-

29



ent seed numbers and different vertex numbers in the clique are also used to generate

the initial graph G. The tests are performed separately for the total number 50, 60,

70, 80, 90, and 100 vertices in a graph G. Empirical results are reported in Tables 1

- 5.

Let us define [GJ79]:

the clique size in the resultperformance guarantee 100
the clique size in the initial graph

The results show that 77.33% tests get optimal results (the performance guar-

antee = 100.00), 22.67% tests get near optimal results and the average performance

guarantee is 98.80% which is quite high for the heuristic algorithms or approxima-

tion algorithms. The algorithm can get "good" solutions in an acceptable amount of

time. For example, the total number of vertices in a graph is 100, population size

= 80, generation = 200, the running time of the algorithm is 2 or 3 minutes. All

experiments run on the SUN 4 machine under the UNIX operating system.

For a specific clique problem, we can arrange two or three set of parameters to

run the program and get optimal or very close to optimal results.

All the operator functions and initial population, statistics and report functions

can be used for the other problems. Therefore, when solving a new problem, all we

need to do is to encode the problem to a string representation, input the values of

the problem and define the evaluation function properly.

Figures 5 - 9 show the best results in every generation for the problems which

population size = 80, maximum generation = 200, crossover probability = 0.5, mu-
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tation probability = 0.01, vertices number = 80, seed = 1, , , 5, 6, and clique size

in initial graph = 20, 25, 30, 35, and 40 separately.
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total best seed clique size clique size performance

vertices generation in initial in result guarantee

50 57 1 20 20 100.00
60 62 1 20 20 100.00
70 63 1 20 20 100.00
80 99 1 20 20 100.00
90 116 1 20 20 100.00

100 111 1 20 20 100.00
50 70 2 20 20 100.00

60 60 2 20 20 100.00
70 43 2 20 20 100.00
80 89 2 20 20 100.00
90 107 2 20 20 100.00
100 67 2 20 20 100.00
50 45 3 20 20 100.00

60 70 3 20 20 100.00
70 59 3 20 20 100.00
80 129 3 20 20 100.00
90 135 3 20 20 100.00

100 130 3 20 20 100.00

50 38 4 20 20 100.00
60 51 4 20 20 100.00
70 80 4 20 20 100.00
80 102 4 20 20 100.00

90 173 4 20 19 95.00
100 110 4 20 20 100.00

50 43 5 20 20 100.00
60 47 5 20 20 100.00
70 58 5 20 20 100.00
80 92 5 20 20 100.00
90 156 5 20 20 100.00
100 93 5 20 20 100.00

Table 1: Clique Size = 20 in Initial Graph G
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total best seed clique size clique size performance
vertices generation in initial G in result guarantee

50 67 1 25 25 100.00
60 78 1 25 25 100.00
70 96 1 25 25 100.00
80 99 1 25 25 100.00
90 56 1 25 25 100.00

100 133 1 25 25 100.00
50 68 2 25 25 100.00
60 78 2 25 25 100.00
70 69 2 25 25 100.00
80 78 2 25 25 100.00
90 85 2 25 25 100.00
100 97 2 25 25 100.00
50 64 3 25 25 100.00
60 66 3 25 25 100.00
70 120 3 25 25 100.00
80 75 3 25 25 100.00
90 176 3 25 25 100.00
50 57 4 25 25 100.00
60 60 4 25 25 100.00
70 87 4 25 25 100.00
80 73 4 25 25 100.00
90 134 4 25 25 100.00

100 135 4 25 25 100.00
50 87 5 25 25 100.00
60 67 5 25 25 100.00
70 68 5 25 25 100.00
80 83 5 25 25 100.00
90 121 5 25 25 100.00
100 65 5 25 25 100.00

Table 2: Clique size = 25 in Initial Graph G
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total best seed clique size clique size performance

vertices generation in initial in result guarantee

50 75 1 30 30 100.00
60 55 1 30 30 100.00
70 99 1 30 30 100.00
80 77 1 30 30 100.00
90 116 1 30 30 100.00
100 119 1 30 30 100.00
50 85 30 30 100.00
60 99 2 30 30 100.00
70 101 2 30 30 100.00
80 104 2 30 30 100.00
90 114 2 30 29 96.67
100 192 2 30 30 100.00

50 81 3 30 30 100.00
60 110 3 30 30 100.00
70 102 3 30 30 100.00
80 129 3 30 30 100.00
90 132 3 30 30 100.00

100 85 3 30 30 100.00
50 62 4 30 30 100.00
60 130 4 30 30 100.00
70 79 4 30 30 100.00
80 130 4 30 30 100.00

90 186 4 30 30 100.00
100 169 4 30 30 100.00
50 102 5 30 30 100.00

60 126 5 30 30 100.00
70 122 5 30 30 100.00
80 135 5 30 30 100.00
90 118 5 30 30 100.00

100 141 5 30 30 100.00

Table 3: Clique Size = 30 in Initial Graph G
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total best seed clique size clique size performance

vertices generation in initial G in result guarantee

50 149 1 35 35 100.00
60 113 1 35 35 100.00
70 154 1 35 35 100.00
80 89 1 35 34 97.14
90 103 1 35 35 100.00
100 123 1 35 34 97.14
50 103 2 35 35 100.00
60 75 2 35 35 100.00
70 133 2 35 34 97.14
80 120 2 35 35 100.00
90 189 2 35 35 100.00

100 115 2 35 34 97.14
50 136 3 35 35 100.00
60 98 3 35 35 100.00
70 156 3 35 35 100.00
80 188 3 35 35 100.00
90 189 3 35 34 97.14

100 144 3 35 35 100.00
50 100 4 35 35 100.00
60 117 4 35 35 100.00
70 86 4 35 35 100.00
80 84 4 35 35 100.00
90 129 4 35 34 97.14

100 129 4 35 34 97.14
50 160 5 35 35 100.00
60 124 5 35 35 100.00
70 118 5 35 35 100.00
80 154 5 35 35 100.00
90 97 5 35 34 97.14
100 69 5 35 33 94.29

Table 4: Clique Size = 35 in Initial Graph G
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total best seed clique size clique size performance

vertices generation in initial G in result guarantee

50 175 1 40 40 100.00
60 92 1 40 40 100.00
70 105 1 40 39 97.50
80 124 1 40 38 95.00
90 144 1 40 37 92.50

100 106 1 40 37 92.50
50 78 2 40 40 100.00
60 181 2 40 40 100.00
70 139 2 40 39 97.50
80 107 2 40 39 97.50
90 73 2 40 37 92.50
100 190 2 40 39 97.50
50 102 3 40 39 97.50
60 126 3 40 39 97.50
70 159 3 40 39 97.50
80 106 3 40 39 97.50
90 98 3 40 37 92.50

100 154 3 40 39 100.00
50 89 4 40 39 97.50
60 153 4 40 40 100.00
70 80 4 40 39 97.50
80 91 4 40 39 97.50
90 97 4 40 38 95.00
100 140 4 40 39 97.50
50 143 5 40 40 100.00
60 149 5 40 40 100.00
70 156 5 40 39 97.50
80 156 5 40 39 97.50
90 96 5 40 38 95.00
100 180 5 40 39 97.50

Table 5: Clique Size = 40 in Initial Graph G
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Figure 5: The Best Results of Generations (Clique Size = 20)

population size = 80, maximum generation = 200, crossover probability = 0.5, muta-

tion probability = 0.01, seed = 1, vertices number = 80, clique size in initial graph =

20. best generation = 99. best fitness = 20 x (20 - 1) / 2 = 190, that is, clique size

founded = 20.
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Figure 6: The Best Results of Generations (Clique Size = 25)

population size = 80, maximum generation = 200, crossover probability = 0.5, muta-

tion probability = 0.01, seed = 2, vertices number = 80, clique size in initial graph =

25. best generation = 78. best fitness = 25 x (25 - 1)/ 2 = 300, that is, clique size

founded = 25.
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Figure 7: The Best Results of Generations (Clique Size = 30)

population size = 80, maximum generation = 200, crossover probability = 0.5, muta-

tion probability = 0.01, seed = 3, vertices number = 80, clique size in initial graph =

30. best generation = 129. best fitness = 30 x (30 - 1) / 2 = 435, that is, clique size

founded = 30.
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Figure 8: The Best Results of Generations (Clique Size = 35)

population size = 80, maximum generation = 200, crossover probability = 0.5, muta-

tion probability = 0.01, seed = 5, vertices number = 80, clique size in initial graph =

35. best generation = 154. best fitness = 35 x (35 - 1) / 2 = 595, that is, clique size

founded = 35.
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Figure 9: The Best Results of Generations (Clique Size = 40)

population size = 80, maximum generation = 200, crossover probability = 0.5, muta-

tion probability = 0.01, seed -6, vertices number = 80, clique size in initial graph =

40. best generation = 121. best fitness = 40 x (40 - 1) / 2 = 780, that is, clique size

founded = 40.
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V

Figure 10: Input Graph for the Example

3.1.5 An Example

Suppose the input graph is Figure 10. The Matrix representation is

000001 1101010111

VII 111 101 1i 6

000 00 00 01 00

0000000 0011101

00000 00000 111 0

Th otpt hul b ique it maimu sorze aml

Supsn poiputo grpsiz 30,gsrin l0 Teg t i 6,rsoerrabiity0 u

0 11 0 0 0 0 0 0 4 0 1 1 1 1 1 1
0 0 0 0 0 1 1 1 0 1 0 1 01 1 1

0 0 0 1 1 1 0 1 0 1 01 1 1 0 0

0 0 0 0 1 0 1 0 10 1 1 1 1 1 0

0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

The output should be a clique with maximum size.

Using population size = 30, string length = 16, crossover probability = 0.5, mu-
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tation probability = 0.01, random seed = 2, and clique size =6, the initial population

strings, their fitnesses and reproduction strings for the next generation are shown

in Table 6. The strings with higher fitness value contribute more copies in the next

generation, while the strings with fitness value 0 cannot survive in the next generation.

After reproduction, the operations of crossover and mutation are performed. Ta-

bles 7, 8, 9 show the results of generation 1, 7, 25 respectively. Based on the mechanics

of natural selection and natural genetics, genetic algorithms get better and better re-

sults for the problem.

The best generation for this example is 25. The best fitness is 15. The represen-

tation of the best string is 0 0 1 1 1 0 0 0 1 0 1 0 1 0 0 0, i.e. vertices v3 , v4, vs, v9 , v11,

and v1 consist of a clique with size 6.

3.2 Genetic Algorithm for the Vertex Cover Problem

3.2.1 Vertex Cover Problem

The Vertex Cover problem can be stated as follows [GJ79]:

INSTANCE: A graph G = (V, E) and a positive integer K < VI , where V is a

set of vertices, and E is a set of edges.

QUESTION: Is there a vertex cover of size K or less for G, that is, a subset

V' C V such that [7'V _< K and, for each edge {u, v} E E, at least one of u and v

belongs to V'?

The Vertex Cover problem is a very practical problem. For example, when moni-
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No. string fitness R-No. reproduction string
1 0000000000000000 0 7 0000000010011000
2 0000000100000000 0 7 0000000010011000
3 0010000100000000 0 7 0000000010011000
4 0000000000000000 0 7 0000000010011000
5 0000010000000000 0 7 0000000010011000
6 0000000000000000 0 7 0000000010011000
7 0000000010011000 2 7 0000000010011000
8 0000000000000000 0 7 0000000010011000
9 0000010000000000 0 7 0000000010011000
10 0000000000000000 0 7 0000000010011000
11 0000100000000000 0 7 0000000010011000
12 0000000000000000 0 7 0000000010011000
13 0000000000000100 0 7 0000000010011000
14 0001000000000000 0 7 0000000010011000
15 0100000000000000 0 7 0000000010011000
16 0000001000001000 1 16 0000001000001000
17 0000000000000000 0 16 0000001000001000
18 0000000000000000 0 16 0000001000001000
19 0000000000000000 0 16 0000001000001000
20 0000010000000000 0 16 0000001000001000
21 0000000000000000 0 16 0000001000001000
22 0000000000001000 0 16 0000001000001000
23 0000000000000000 0 16 0000001000001000
24 0000000000000000 0 26 0000100000010000
25 0000000000000000 0 26 0000100000010000
26 0000100000010000 1 26 0000100000010000
27 0000001000000000 0 26 0000100000010000
28 0000000000000000 0 26 0000100000010000
29 0000000000001000 0 26 0000100000010000
30 0000000000000000 0 26 0000100000010000

maximum fitness 1 average fitness 0.13

Table 6: Report of Initial Generation for the Example
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No. parents pts string fitness R-No. reproduction trina
1 ( 3,15 ) 16 0000000011011000 2 1 0000000011011000
2 ( 3,15 ) 16 0000000010011000 2 2 0000000010011000
3 ( 16,10 ) 16 0000001000001000 1 3 0000001000001000
4 ( 16,10 ) 16 0000000010011000 2 4 0000000010011000
5 ( 19, 24 ) 5 0000000000010000 0 6 0000101000001000
6 ( 19, 24 ) 5 0000101000001000 3 6 0000101000001000
7 ( 17, 6 ) 16 0001001000001000 3 7 0001001000001000
8 ( 17, 6 ) 16 0000010010011000 2 7 0001001000001000
9 ( 27, 29 ) 16 0000100000010000 1 8 0000010010011000

10 ( 27, 29 ) 16 0000100000010000 1 9 0000100000010000
11 ( 26, 25 ) 16 0000100000010000 1 11 0000100000010000
12 ( 26, 25 ) 16 0000100000010000 1 12 0000100000010000
13 ( 22, 28 ) 16 0000001000001000 1 14 0000100000010000
14 ( 22, 28 ) 16 0000100000010000 1 16 0000011000001000
15 ( 18, 20 ) 10 0000001000001000 1 16 0000011000001000
16 ( 18, 20 ) 10 0000011000001000 2 17 0000000010011000
17 ( 7, 21 ) 13 0000000010011000 2 18 0000001000001000
18 ( 7, 21 ) 13 0000001000001000 1 21 0000000010011000
19 ( 23, 30 ) 16 0000001000001000 1 22 0000000010011000
20 ( 23, 30 ) 16 0000100000000000 0 22 0000000010011000
21 ( 4,1 ) 16 0000000010011000 2 23 0000000110011000
22 ( 4,1) 16 0000000010011000 2 24 0000000010011000
23 ( 2, 5 ) 4 0000000110011000 2 25 0000000010011000
24 ( 2, 5 ) 4 0000000010011000 2 26 0000000010011000
25 ( 8, 9 ) 16 0000000010011000 2 26 0000000010011000
26 ( 8, 9 ) 16 0000000010011000 2 27 0000000010011000
27 ( 12,11 ) 16 0000000010011000 2 28 0000000010011000
28 ( 12,11 ) 16 0000000010011000 2 29 0000000010011000
29 ( 13,14 ) 15 0000000010011000 2 30 0000000010011000
30 ( 13,14 ) 15 0000000010011000 2 30 0000000010011000

max fitness =3 avg fitness 1.60

Table 7: Report of Generation 1 for the Example
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No, parents pts string fitness R-No. reproduction string

1 ( 11, 28 ) 8 0000100010011000 5 1 0000100010011000
2 ( 11, 28 ) 8 0000000010001000 1 3 0001001010001000
3 (1,15 ) 1 0001001010001000 5 4 0000101010011000
4 ( 1,15 ) 1 0000101010011000 6 5 0001001000101000
5 ( 20, 29 ) 16 0001001000101000 5 6 0000100010011000
6 ( 20, 29 ) 16 0000100010011000 5 7 0001001000011000
7 ( 14, 8 ) 11 0001001000011000 6 8 0001000010001000
8 (14, 8 ) 11 0001000010001000 3 9 0010100010011000
9 ( 25, 17 ) 5 0010100010011000 6 10 0010100010011000

10 ( 25, 17 ) 5 0010100010011000 6 11 0000101010011000
11 ( 18,19 ) 16 0000101010011000 6 12 0000000010011000
12 ( 18, 19 ) 16 0000000010011000 2 13 0000100010011000
13 ( 21, 5 ) 4 0000100010011000 5 14 0010101010001000
14 ( 21, 5 ) 4 0010101010001000 9 15 0010101000101000
15 ( 9, 2 ) 16 0010101000101000 9 15 0010101000101000
16 ( 9, 2 ) 16 0000101010011000 6 16 0000101010011000
17 ( 10,16 ) 12 0010101000101000 9 17 0010101000101000
18 ( 10,16 ) 12 0010100010011000 6 17 0010101000101000
19 ( 12, 6 ) 16 0001001000101000 5 18 0010100010011000
20 ( 12, 6 ) 16 0000100010001000 3 19 0001001000101000
21 ( 3,13 ) 9 0000101010001000 5 20 0000100010001000
22 ( 3,13 ) 9 0001001010001000 5 21 0000101010001000
23 ( 27, 22 ) 6 0000101010011000 6 23 0000101010011000
24 ( 27, 22 ) 6 0000101010001000 5 23 0000101010011000
25 ( 23, 24 ) 4 0000100010011000 5 24 0000101010001000
26 ( 23, 24 ) 4 0010101010011000 6 25 0000100010011000
27 ( 26, 4 ) 16 0001001010011000 6 26 0010101010011000
28 ( 26, 4 ) 16 0000101000001000 3 27 0001001010011000
29 ( 30, 7 ) 14 0000100010011000 5 29 0000100010011000
30 ( 30, 7 ) 14 0001000010011000 5 30 0001000010011000

max fitness = 6 avg fitness 5.30

Table 8: Report of Generation 7 for the Example
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No. parents pts string fitness
1 (19,13 ) 16 0011101010101000 17
2 (19, 13 ) 16 0011101010101000 17
3 ( 8, 9 ) 8 0011101010101000 17
4 ( 8, 9 ) 8 0011101010101000 17
5 ( 3, 11 ) 16 0011001010101001 0
6 ( 3, 11) 16 0010101000101000 9
7 ( 4, 6 ) 6 0010101010101000 11
8 ( 4, 6 ) 6 0011101010101000 17
9 ( 27, 25 ) 16 0010101001101000 11

10 ( 27, 25 ) 16 0011101010001000 14
11 ( 12, 30 ) 11 0010101010101000 11
12 ( 12, 30 ) 11 0011101010101000 17
13 ( 26, 21) 16 0011100010101000 15
14 ( 26, 21) 16 0011101010101000 17
15 ( 7, 17 ) 16 0011101010101000 17
16 ( 7,17 ) 16 1011101010101000 0
17 ( 10,14 ) 14 0011101010101000 17
18 ( 10, 14 ) 14 0010101000101000 9

19 ( 1, 5 ) 16 0011101010101000 17
20 ( 1, 5 ) 16 0011101010101000 17
21 ( 15,18 ) 10 0010101001101000 11
22 ( 15, 18 ) 10 0011101010101000 17
23 ( 28,2 ) 16 0010101010100001 0
24 ( 28, 2 ) 16 0011101010101000 17
25 ( 29, 20 ) 16 0011101010101000 17
26 ( 29, 20 ) 16 0011101010101000 17

27 ( 16, 22 ) 16 0011101010101000 17
28 ( 16, 22 ) 16 0011101010101000 17
29 ( 24, 23 ) 16 0011101010101000 17
30 ( 24, 23 ) 16 0011101010101000 17

ax fitness 15 avg fitness 13.80

Table 9: Report of Generation 25 for the Example
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toring the operation of a large network, one wants to monitor as few nodes as possible.

The Vertex Cover problem is also one of the basic NP-Complete problems. The

optimization problem for the Vertex Cover problem is to find the minimum K in a

graph G that satisfies all the constraints.

3.2.2 Representation and Evaluation Function

First, the Vertex Cover problem is encoded as a string. In a graph G = (V, E), the

vertices are numbered from 1 to n, where n is the total number of the vertices in a

graph G. The Vertex Cover problem can be represented by an n-bit string c1 c2 .. cn,

where ci = 0 or 1, i = 1, 2,... , n. Each bit position corresponds to the numbered

vertex. cZ = 1 means vertex vi G V', i.e. vi is in the Vertex Cover.

Second, the penalty method is used to define the evaluation function as follows

[RPLH89]:

evaluation function = the total number of vertices - the number of l's in a

string - penalty

penalty = ( the number of uncovered edges by V') 2

When the number of uncovered edges by V' is small, the penalty is small. The

string corresponding to the evaluation function still has the opportunity to survive

in the next generation. When the number of uncovered edges by V' is bigger, the

penalty increases dramatically due to the square function. The fitness of this string

will be much smaller. The strings with higher fitness are expected to contribute more

copies to the next generation.
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When the value of the evaluation function is smaller than 0, the function returns

0.

If a subset V' C V is a vertex cover, then penalty = 0.

3.2.3 Generating Input Graph at Random

For testing purposes, the input graph G is initialized by the following method:

Given the total number of vertices, n, in a graph G as input parameter and use

matrix M to represent the graph.

0 a 12 a1 3 a1 4  ain

0 0 a2  a2 4  a2n

0 0 0 a 4  a3n

0 0 0 0 - 0

where aj = 1 or 0. aij = 1 means that there is an edge between vertex vi and vertex

vj, with the same convention as used in representing a graph for the clique problem.

First, use function flip with 0.5 probability and different random seed to gener-

ate the matrix M. The function flip returns a value 1 or 0 according to the given

probability parameter.

Second, generate k different random numbers between 1 and n, where k < n, and

k is a input parameter. Then make the k vertices a complete graph ( which is called

a clique) with size k.
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Third, compute the complement Gr of G as the input graph, where ,c = (V, E,)

with E, = {{u, v} : u,v C V and {u, v} .

By using this method to generate the input graph randomly, we know what the

optimal result should be. The best size of a vertex cover is IV - k due to the following

relationship between Clique and Vertex Cover problems:

For any graph C = (V, E) and subset V' C V:

V' is a Clique with maximum size K for G if and only if V - V' is a Vertex Cover

with minimum size K' = IVI - K in the complement Gc of G.

Running the genetic algorithm, the number of uncovered edges by V' is computed

as follows by using the matrix M:

(1) count the number of l's in a string, put the corresponding position in a buffer;

(2) check whether every edge in E has at least one endpoint in V' by using matrix

M. If aij = 1 and at least one of i and j belongs to V', set aij = 0.

(3) count the number of aij = 1 elements in matrix Al. This is the number of

uncovered edges by V'.

The C code for computing the fitness of each string is the following:

evaluation-function (string)

it string[maxstring];

{

i t i, j, res, count = 0;

imt buffer[maxstring], a[maxstring] [maxstring];
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penalty = 0;

for (i=1; i<=stringlength; i++)

if (string[i] == 1)

{

count++;

buffer[count] =i;

}

for (i=1; i<=stringlength; i++)

for (j=1; j<=stringlength; j++)

a[i] [j] = m[i][j];

for (i=1; i<=count; i++)

for (j=buffer[i]+1; j<=stringlength; j++)

if (a[buffer[i]][j] == 1)

atbuffer[i]][j = 0;

for (i=1; i<=stringlength; i++)

for (j=1; j<=count; j++)

if (a[i][buffer[j]] == 1)

a[i][buffertjj] = 0;

for (i=1; i<stringlength; i++)

for (j=i+1; j<=stringlength; j++)

if (a[i][j] == 1)
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penalty++;

res = stringlength - count - penalty * penalty;

if (res >= 0)

return (res);

else

return (0);

}

3.2.4 Empirical Results

In the experiment, the function flip with the probability 0.95 is used to generate the

initial population for the Vertex Cover problem randomly. Using larger probabilities

to generate the initial population obtains vertex covers with bigger size first, improves

the result in later generations, and also avoids the loss of feasible solutions.

For the Clique problem, the function flip with the probability 0.05 is used to

generate the initial population. The relationship between Vertex Cover and Clique is

that Vertex Cover is a minimization problem, and Clique is a maximization problem.

A larger probability for the Vertex Cover and a smaller probability for the Clique can

avoid the loss of feasible solutions for both problems.

The reproduction function is also implemented by using Baker's sampling algo-

rithm [Bak87].

In the experiment, population size = 80, maximum generation = 200, crossover
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probability = 0.5, mutation probability = 0.01 are used, and graphs drawn at random

with 50, 60, 70, and 80 vertices are considered to test the algorithm.

Let us define the performance guarantee for the Vertex Cover problem as follows:

the vertex cover size in the result
performance guarantee - 1.00

the optimal vertex cover szze

The results show that 61% of the tests get optimal results (the performance guar-

antee = 0.00), 39% of the tests get near optimal results and the average performance

guarantee is 2.65%. These percentages come from the testings. Since the evaluation

function of vertex cover differs from the evaluation function of clique, and the input

data are also different for both problems, the results are different.

Some of the empirical results are reported in Tables 10 - 13, where

best generation = the generation for which we get the best result

seed = the input parameter for generating graphs randomly

clique size = the input parameter for generating the graph

best vertex cover size = IVI- clique size

vertex cover size in result = obtained vertex cover size by running the genetic

algorithm

performance guarantee = defined performance guarantee
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best seed clique best vertex vertex cover performance
generation size cover size size in result guarantee

84 1 30 20 21 0.050
115 1 25 25 25 0.000
82 1 20 30 30 0.000
68 1 15 35 35 0.000
21 1 10 40 40 0.000

156 2 30 20 20 0.000
99 2 25 25 25 0.000
52 2 20 30 30 0.000
48 2 15 35 35 0.000
86 2 10 40 42 0.050
148 3 30 20 21 0.050
102 3 25 25 25 0.000
74 3 20 30 30 0.000
70 3 15 35 35 0.000

176 3 10 40 40 0.000
148 4 30 20 20 0.000
104 4 25 25 25 0.000
74 4 20 30 30 0.000
82 4 15 35 35 0.000
62 4 10 40 42 0.050
117 5 30 20 20 0.000
116 5 25 25 25 0.000
77 5 20 30 30 0.000
51 5 15 35 35 0.000
41 5 10 40 40 0.000
145 6 30 20 20 0.000
121 6 25 25 25 0.000
86 6 20 30 30 0.000
49 6 15 35 35 0.000
26 6 10 40 41 0.025

Table 10: Total Vertices = 50 in Initial Graph
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best seed clique best vertex vertex cover performance
generation size cover size size in result guarantee

156 1 40 20 23 0.150
109 1 35 25 25 0.000
144 1 30 30 30 0.000
96 1 25 35 35 0.000
86 1 20 40 40 0.000
84 2 40 20 23 0.150

139 2 35 25 26 0.040
130 2 30 30 30 0.000
95 2 25 35 35 0.000
87 2 20 40 40 0.000
164 3 40 20 21 0.050
196 3 35 25 25 0.000
110 3 30 30 30 0.000
118 3 25 35 35 0.000
62 3 20 40 40 0.000

188 4 40 20 23 0.150
124 4 35 25 27 0.080
129 4 30 30 31 0.033
117 4 25 35 35 0.000
88 4 20 40 40 0.000
123 5 40 20 22 0.100
142 5 35 25 26 0.040
111 5 30 30 30 0.000
122 5 25 35 35 0.000
105 5 20 40 40 0.000

114 6 40 20 24 0.200
171 6 35 25 27 0.080
149 6 30 30 30 0.000
190 6 25 35 35 0.000
46 6 20 40 40 0.000

Table 11: Total Vertices 60 in Initial Graph
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best seed clique best vertex vertex cover performance
generation size cover size size in result guarantee

158 1 40 30 32 0.067
158 1 35 35 36 0.029
111 1 30 40 42 0.050
162 1 25 45 45 0.000
111 1 20 50 50 0.000
97 2 40 30 33 0.100
161 2 35 35 35 0.000
136 2 30 40 41 0.025
163 2 25 45 45 0.000
93 2 20 50 50 0.000

122 3 40 30 32 0.067
171 3 35 35 37 0.057
193 3 30 40 40 0.000
113 3 25 45 45 0.000
85 3 20 50 50 0.000
151 4 40 30 32 0.067
168 4 35 35 36 0.029
108 4 30 40 41 0.025
101 4 25 45 45 0.000
86 4 20 50 50 0,000
139 5 40 30 31 0.333
139 5 35 35 35 0.000
162 5 30 40 40 0.000
177 5 25 45 45 0.000
92 5 20 50 50 0.000

141 6 40 30 33 0.100
187 6 35 35 37 0.057
123 6 30 40 40 0.000

126 6 25 45 45 0.000
69 6 20 50 50 0.000

Table 12: Total Vertices = 70 in Initial Graph
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best seed clique best vertex vertex cover performance

generation size cover size size in result guarantee

171 1 40 40 43 0.075
73 1 35 45 47 0.044
147 1 30 50 51 0.020
112 1 25 55 56 0.018
89 1 20 60 60 0.000

107 2 40 40 43 0.075
119 2 35 45 47 0.044
141 2 30 50 50 0.000
126 2 25 55 55 0.000
126 2 20 60 60 0.000
177 3 40 40 43 0.075
177 3 35 45 47 0.044
78 3 30 50 51 0.020

198 3 25 55 55 0.000
112 3 20 60 60 0.000
145 4 40 40 43 0.075
106 4 35 45 48 0.067
175 4 30 50 50 0.000

141 4 25 55 55 0.000
83 4 20 60 60 0.000

168 5 40 40 43 0.075
190 5 35 45 46 0.022
105 5 30 50 51 0.020

154 5 25 55 55 0.000
92 5 20 60 60 0.000

145 6 40 40 44 0.100
190 6 35 45 45 0.000

155 6 30 50 51 0.020
168 6 25 55 56 0.082
141 6 20 60 60 0.000

Table 13: Total Vertices 80 in Initial Graph
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3.3 Genetic Algorithm for the Max Cut Problem

3.3.1 Max Cut Problem

The Max Cut problem is also an NP-Complete problem which is very useful for

network design.

The Max Cut Problem can be stated as follows [GJ79]:

INSTANCE: A graph = (V, E), weight w(e) c Z+ for each e E E, and a

positive integer K, where V is the set of vertices, and E is the set of edges, and Z+

is the set of all positive integers.

QUESTION: Is there a partition of V into disjoint sets V1 and V2 such that the

sum of the weights of the edges from E that have one endpoint in V and one endpoint

in V2 is at least K?

The optimization problem for Max Cut problem is to find the maximum K that

satisfies all the constraints.

3.3,2 Representation and Evaluation Function

The Max Cut problem can be represented by a string with length JVI , where IV| is

the total number of vertices in the graph G. The value of each bit in the string is 0

or 1. The vertices in a graph G are numbered from 1 to n, where IVI= , and the

bit position of the string corresponds to the numbered vertex. All the vertices which

correspond to the bit value 1's in a string belong to the set V1. The other vertices

belong to the disjoint set V2 . For example, we have a graph with 10 vertices, and a
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string representation for this graph is 1 0 0 11 0 1 1 0 1. This means that the vertices

v1 , v4 , vs, v7 , vs, and vio belong to set 1, and vertices v2, v3 , ve, and v9 belong to set

V2 .

The evaluation function is defined as follows:

evaluation function = the sum of the weights of the edges from E that have

one endpoint in V and one endpoint in V2.

The expected result is to get the maximum value of the evaluation function.

3.3.3 Implementation

A matrix is also used to represent the graph G. A seed is chosen to generate random

numbers in range [1, 10] as the weights of the edges in the experiment. We provide

a density probability which is the probability that the non-zero elements appear in

the matrix as an input parameter. The density probability is a real number in (0, 1].

When the density probability is very small, the matrix will be sparse.

The function flip with probability 0.4 is used to generate the initial population for

the Max Cut problem randomly. Baker's sampling algorithm is used to implement

the reproduction function [Bak87].

In the experiment, population size = 500, maximum generation = 200, crossover

probability = 0.5, mutation probability = 0.01, and hundreds of graphs drawn at

random are considered to test the algorithm.
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3.3.4 Comparisons of Genetic Algorithm and Greedy Algorithm

The greedy algorithm for the Alax Cut problem works as follows:

* Initially, 17 and 2 are empty, and the variable maxcut = 0.

* Sort the edges by their weights in descending order.

* For each edge:

(1) If two endpoints of the edge are not in V1 and 2, put one endpoint in V1

and another endpoint in V2. Add the weight of the edge to maxcut.

(2) If one endpoint of the edge is in V ( or V2 ), another endpoint is not in 2

( or V ), put the another endpoint in V2 ( or Vi ). Add the weight of the edge

to maxcut.

(3) If one endpoint of the edge is in V1, another endpoint is in 2 , add the

weight of the edge to maxcut.

* The result is in maxcut.

The same input graphs are used to test the genetic algorithm and greedy algorithm

for the Max Cut problem. The empirical results show that the genetic algorithm

provides better solutions on average than the greedy algorithm. When the matrix of

the graph is very sparse ( density probability < 0.2 ), the greedy algorithm works well

in most of the cases. When the density probability is higher, the genetic algorithm

works better than greedy algorithm.
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The Tables 14 - 17 show the comparisons of genetic algorithm and greedy algo-

rithm for the Max Cut problem, where

best generation = the generation for which we get the best result by the genetic

algorithm

seed = the input parameter for generating graphs randomly

density probability = the input parameter which is the probability that the non-

zero elements should appear in the matrix

genetic algorithm = the results by running genetic algorithm

greedy algorithm the results by running greedy algorithm

performance ratio - genetz algorithm
greedy algorithm

If the performance ratio is bigger than 1, the genetic algorithm is better than the

greedy algorithm.

3.3.5 Comparisons of Genetic Algorithm Solutions and Optimal Solutions

For any weighted graph G =(, E), there is no polynomial deterministic algorithm

for Max Cut problems. In order to compare optimal solutions with genetic algorithm

solutions we have to use smaller input size, and calculate the optimal solutions by

hand. With the same input to genetic algorithm programs, Table 18 shows the

comparisons of genetic algorithm solutions and optimal solutions for the graph G =

(V, E) where VI = 10. From table 18, we can see that the genetic algorithm solutions

are identical to the optimal solutions calculated by hand for the random generated

testing data.
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3.4 Adapting Parameters

The research of adapting parameter settings is a branch of genetic algorithm theory.

The parameter settings of a genetic algorithm have a significant impact on the per-

formance of the genetic algorithm. Finding good parameter settings for a problem

is a very hard task. Parameter settings involve population size, maximum genera-

tion, crossover probability, and mutation probability. We need to consider the limited

resources for a problem when we set these parameters [Dav89, SCED89].

Two useful strategies have been employed by researchers in the genetic algorithm

field to find good parameter settings. One was contained in Kenneth De Jong's

thesis work [DJ75]; the other was described by John Grefenstette [Gre86]. Some new

techniques for setting operator probabilities are also developed [Dav89, SCED89].

A large number of experiments are performed to test the effects of the differ-

ent parameter settings for the Clique problem. In general, increasing the maximum

generation can improve the result, but will require more computing time. For a set

of parameters, if the best generation is close to the maximum generation, we can

try to increase the maximum generation to get a better result. Otherwise, we can

increase the population size to reduce the stochastic effects and improve long-term

performance at a larger cost per generation. A high crossover probability and a low

mutation probability can yield good performance for the Clique problem. The exper-

imental results of adapting parameters are reported in Table 19, where population

size = 80. crossover probability = 0.5. mutation probability = 0.01.
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total best seed genetic greedy performance
vertices generation algorithm algorithm ratio

80 43 6 3839 3569 1.076
80 121 7 4042 3961 1.020
80 156 8 3920 3734 1.050
80 106 9 3944 3735 1.056
80 33 10 3791 3715 1.020
80 195 11 3905 3644 1.072
80 131 12 3838 3688 1.041
80 134 13 3850 3666 1.050
80 77 14, 3750 3664 1.023
80 137 15 3710 3636 1.020
60 46 6 2374 2277 1.043
60 109 7 2284 2110 1.082
60 155 8 2312 2163 1.069
60 178 9 2419 2276 1.063
60 43 10 2243 2040 1.100
60 72 11 2340 2216 1.056
60 64 12 2326 2261 1.029
60 53 13 2193 2110 1.039
60 158 14 2122 1955 1.085
60 55 15 2172 2036 1.067
50 48 6 1576 1431 1.101
50 37 7 1666 1638 1.017
50 141 8 1617 1600 1.011
50 137 9 1610 1460 1.103
50 17 10 1607 1425 1.128
50 56 11 1682 1668 1.008
50 112 12 1667 1568 1.063
50 51 13 1578 1514 1.042
50 173 14 1639 1551 1.057
50 120 15 1601 1453 1.102

Table 14: Density Probability = 0.4 in Initial Graph
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total best seed genetic greedy performance
vertices generation algorithm algorithm ratio

80 184 6 4791 4647 1.031
80 117 7 4998 4798 1.042
80 55 8 4856 4435 1.095
80 189 9 4790 4639 1.033
80 114 10 4790 4656 1.029
80 125 11 4875 4692 1.039
80 47 12 4671 4504 1.037
80 138 13 4842 4536 1.067
80 28 14 4549 4424 1.028
80 67 15 4505 4295 1.049
60 62 6 2956 2714 1.089
60 74 7 2798 2637 1.061
60 15 8 2782 2610 1.066
60 135 9 2880 2707 1.064
60 65 10 2749 2387 1.152
60 10 11 2763 2659 1.039
60 38 12 2816 2655 1.061
60 81 13 2720 2611 1.042
60 52 14 2626 2469 1.064
60 140 15 2727 2557 1.066
50 41 6 1968 1967 1.001
50 86 7 2054 1868 1.100
50 165 8 1944 1825 1.065
50 166 9 1945 1788 1.088
50 75 10 1980 1966 1.007
50 94 11 2095 1938 1.081
50 0 12 2013 1834 1.098
50 57 13 1897 1827 1.038
50 40 14 1958 1821 1.075
50 135 15 1987 1830 1.086

Table 15: Density Probability = 0.5 in Initial Graph
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total best seed genetic greedy performance
vertices generation algorithm algorithm ratio

80 181 6 5694 5280 1.078
80 198 7 5821 5710 1.019
80 109 8 5718 5333 1.072
80 149 9 5691 5469 1.041
80 7 10 5519 5264 1.048
80 109 11 5784 5350 1.081
80 104 12 5643 5448 1.036
80 128 13 5735 5488 1.045
80 145 14 5476 5285 1.036
80 86 15 5408 5316 1.017
60 35 6 3487 3255 1.071
60 46 7 3366 3247 1.037
60 107 8 3235 3119 1.037
60 118 9 3427 3047 1.125
60 181 10 3224 3042 1.060
60 160 11 3181 3068 1.037
60 118 12 3313 3167 1.046
60 109 13 3170 3021 1.049
60 3 14 3133 2986 1.049
60 50 15 3206 3078 1.042
50 36 6 2258 2271 0.994
50 146 7 2376 2257 1.053
50 55 8 2316 2169 1.068
50 196 9 2324 2231 1.042
50 155 10 2276 2147 1.060
50 117 11 2409 2317 1.040
50 155 12 2330 2287 1.019
50 62 13 2274 2139 1.063
50 87 14 2345 2148 1.092
50 18 15 2313 2181 1.061

Table 16: Density Probability = 0.6 in Initial Graph
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total best seed genetic greedy performance
vertices generation algorithm algorithm ratio

80 183 6 6595 6345 1.039
80 24 7 6734 6546 1.029
80 196 8 6702 6344 1.056
80 175 9 6558 6178 1.062
80 169 10 6463 6257 1.033
80 58 11 6618 6413 1.032
80 77 12 6610 6288 1.051
80 139 13 6600 6366 1.037
80 22 14 6373 5945 1.072
80 125 15 6313 6048 1.044
60 138 6 3890 3600 1.081
60 170 7 3843 3678 1.045
60 118 8 3776 3562 1.060
60 29 9 3919 3676 1.066
60 23 10 3784 3580 1.057
60 187 11 3741 3339 1.133
60 92 12 3780 3604 1.049
60 19 13 3659 3605 1.015
60 182 14 3663 3362 1.090
60 39 15 3724 3570 1.043
50 133 6 2604 2449 1.063
50 106 7 2721 2399 1.134
50 95 8 2662 2464 1.080
50 157 9 2635 2345 1.124
50 74 10 2642 2618 1.009
50 159 11 2727 2606 1.046
50 44 12 2643 2558 1.033
50 164 13 2619 2535 1.033
50 132 14 2650 2342 1.132
50 58 15 2674 2588 1.033

Table 17: Density Probability = 0.7 in Initial Graph
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seed density optimal genetic greedy
probability solutions algorithm algorithm

1 0.4 75 75 68
2 0.4 66 66 64
3 0.4 72 72 70
4 0.4 65 65 53
5 0.4 92 92 70
6 0.3 76 76 57
7 0.3 94 94 89
8 0.3 73 73 57
9 0.3 36 36 36

10 0.3 57 57 46
11 0.2 35 35 35
12 0.2 38 38 38
13 0.2 40 40 38
14 0.2 30 30 28
15 0.2 48 48 48

Table 18: Comparisons of Results for Max Cut
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total maximum best seed clique size clique size performance
vertices generation generation in initial G in result guarantee

50 100 59 1 35 33 94.29
50 200 149 1 35 35 100
60 100 65 1 35 33 94.29
60 200 113 1 35 35 100
70 100 92 1 35 34 97.14
70 200 154 1 35 35 100
90 100 96 1 20 18 90.00
90 200 116 1 20 20 100.00

100 100 70 1 20 19 95.00
100 200 111 1 20 20 100.00
50 100 79 3 35 34 97.14
50 200 136 3 35 35 100
60 100 95 3 30 29 96.67
60 200 110 3 30 30 100
70 100 75 3 30 29 96.67
70 200 102 3 30 30 100
80 100 58 3 30 29 96.67
80 200 129 3 30 30 100
90 100 79 3 30 29 96.67
90 200 132 3 30 30 100
50 100 84 5 35 34 97.14
50 200 160 5 35 35 100
60 100 96 5 35 34 97.14
60 200 124 5 35 35 100
70 100 64 5 35 34 97.14
70 200 118 5 35 35 100
80 100 99 5 35 33 94.29
80 200 154 5 35 35 100
90 100 96 5 30 29 96.67
90 200 118 5 30 30 100

Table 19: Increasing the Maximum Generation to Improve the Results
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4 Parallel Genetic Algorithms

An important open question in the study of genetic algorithms is the optimal size of a

population. The problem centers around the tradeoff between the amount of genetic

search that can be done and the amount of real time available. If the population size

is too small, then the genetic algorithm will have a, possibly improperly, constrained

search space because of an insufficient number of schemata in the population. If the

population size is too large however, an inordinate amount of time will be required

to perform all the evaluations [PLG87].

One method of overcoming the genetic search vs. real time problem is to develop

parallel genetic algorithms.

Genetic algorithms are inherently parallel. The Connection Machine system [Hil85]

makes parallel implementations of these inherently parallel algorithms possible. This

section describes the Connection Machine system, the C* parallel programming lan-

guage, and the implementation of a genetic algorithm on the Connection Machine.

4.1 Connection Machine System

The Connection Machine system is a data parallel computing system which associates

one processor with each data element (SIMD machine). This computing style exploits

the natural computational parallelism inherent in many data-intensive problems.

The Connection Machine is an integrated system of hardware and software.

The hardware elements of the system include front-end computers that provide
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the development and execution environments for the system software, a parallel pro-

cessing unit of 64K processors that execute the data parallel operations, and a high-

performance data parallel I/O system.

The front-end serves three primary functions in the Connection Machine system:

* It provides an applications development and debugging environment.

* It runs applications, transmitting instructions and data to the Connection Ma-

chine parallel processing unit.

* It provides maintenance and operations utilities for controlling the Connection

Machine and diagnosing problems.

Each data processor has its own memory and an arithmetic-logic unit that can

operate on variable-length operands. All processors have the same amount of memory,

either 64K bits or 256K bits apiece. These processors not only can process the data

stored in their memory, but also can be logically interconnected so that information

can be exchanged among the processors. All these operations happen in parallel on

all processors. Thus, the Connection Machine hardware directly supports the data

parallel problem model.

The Connection Machine system implements data parallel programming con-

structs directly in hardware and microcode. Interprocessor communication is imple-

mented by a special-purpose high speed network. Processors that hold interrelated

data elements store pointers to one another. When data is needed, it is passed over
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the network to the appropriate processors. The network supports completely general

patterns of communication, but additional special hardware supports certain com-

monly used regular patterns of communication. Nearest-neighbor communication in

a multidimensional rectangular grid is particularly efficient.

The system software is based upon the operating system or environment of the

front-end computer. The visible software extensions are minimal. Users can program

using familiar languages and programming constructs, with all the development tools

provided by the front-end computer. Programs have normal sequential control flow;

new synchronization structures are not needed. Thus, users can easily develop pro-

grams that exploit the power of the Connection Machine hardware.

4.2 C* Parallel Programming Language

The C* language, developed by Thinking Machines is a data parallel extension of

the C programming language. C"* programs are similar in style to C programs; the

extensions are easy to learn. Parallel code looks like serial code, but is executed in all

parallel processors simultaneously. C* features a single new data type, a synchronous

execution model, and a minimal number of extensions to C statement and expres-

sion syntax. C* relies on existing C operators, applied to parallel data, to express

such notations as broadcasting, reduction, and interprocessors communication in both

regular and irregular patterns.

In C* a new keyword is introduced to specify parallel data which is called a
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domain. All data in C* is divided into two kinds, scalar and multiple, which are

described by using two new keywords, mono and poly. Also C* introduces a member

function of a domain to specify the parallel codes. A data declaration that appears

within a domain declaration or within a member function of a domain will by default

be poly. All other declarations are by default mono. In terms of the computational

model, poly quantities are precisely those residing in the memories of the processor

array, and mono quantities are precisely those residing in the memory of the front-end

computer.

All code in C* is also divided into two kinds: serial and parallel. Code that belongs

to a domain is parallel, and may be executed by many data processors at once. All

other code is serial, and is executed by the front-end as if it were ordinary sequential

C code. The two types of code are distinguished by syntactic context: code may

belong to a domain (and therefore be parallel) only as the body of a member function

of the domain or as the substatement of a selection statement that selects the domain.

The two types of code are written using the same syntax; all standard C expression

operators and all standard C statement types may be used in parallel code in exactly

the manner in which they are used in serial code.
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4.3 Implementation of Parallel Genetic Algorithms

4.3.1 Parallel Data Structure

The primary parallel data structure in genetic algorithm is population. In a popula-

tion, there are a lot of strings. Each string associates with a fitness and a penalty,

and is stored in a processor. In the selection procedure, we need to generate the same

num-ber of string copies of the current generation in the next generation, and put

the position of the string in a mating pool. In the crossover procedure, we need to

generate the random crossover points. All of these operations can be done in parallel.

The parallel data structure is described as the following:

domain population

{

int x;

int old.string[maxstring), new-string[maxstring;

int old-fitness, new-fitness;

jit penalty, pool, jcross;

iut sum, tempix;

} pop-size[maxpopulation];

4.3.2 Evaluation Function

In each generation, the genetic algorithm uses strings as parameters to calculate

the evaluation function. In serial code, if there are n strings in a population, the
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evaluation function will need to be calculated n times. In a parallel algorithm, n

processors can do this work at the same time. For example, a member function for

Clique problem is described as the following:

population :: evaluationifunction(string)

i t string[maxstring];

{

mono f t i, j;

int res = 0, count = 0;

int buffer[maxstring];

penalty = 0;

for (j=1; j<=stringlength; j++)

if (string[j] == 1)

{

count++;

buffer[count] = j;

}

res = count * ( count - 1 ) / 2;

for (i=1; i<count; i++)

for (j=i+1; j<=count; j++)

if (m[buffer[i]][buffer[j]] != 1)

penalty+ +;
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res - = penalty * penalty;

if (res >= 0)

return (res);

else

return (0);

}

After calculating n fitnesses parallelly, we can use another member function to

select the largest among all the fitne ses. The parallel code to select the largest

fitness is the following:

population :: max()

mono int j, axil, position;

int ix, buffer, tempix;

buffer = 0;

tempix = 0;

if (penalty == 0)

buffer = oldifitness;

maxi = (>?=buffer);

ix = this - pop-size;

if (pop-size[ix.buffer == maxi)

tempix = ix;
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position = (>?=tempix);

sumfitness = (+= old-fitness);

}

4.3.3 Reproduction

The reproduction procedure is implemented by using a biased roulette wheel method

[Gol89]. First calculate r sub-sums which are the sums of the fitness from the first

string to the current string. Then generate n random numbers in range between 1

and the sum of fitness over all strings parallelly. If the random number is less than or

equal to a sub-sum which is the smallest that can be found, the string corresponding

to the sub-sum is copied to the next generation. The strings with a higher fitness

value have a higher probability of contributing one or more offspring in the next

generation.

For example, the n (n =8) fitnesses are 5, 7, 2, 6, 1, 0, 4, 3. The sub-sums are 5,

12, 14, 20, 21, 21, 25, 28. The algorithm is represented in the Figure 11.

The Figure 11 can be recursively represented in Figure 12. Therefore the parallel

time of this algorithm is:

T(n) - logn

We use bitwise operations to implement this algorithm. The parallel calculation

of n sub-sums is described as following member function.
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level 3

level 2

level 1

level 0

Figure 11: Parallel Algorithm for Calculating Sub-sums
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sub-sum - sub-sum -
2 2

Figure 12: Recursive Representation for Calculating Sub-s ms

population :: sumrsum(i)

int i;

{

int idx2, ix;

ix = this - pop size;

if ((ix >> i) & 1)

{

idx2 = (ix & ((1 << i) - 1 )) - 1;

popsize[ix].sum = popsize[ix}.sum + pop-size[idx2] .sum;

}
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The above member function is invoked log n times, for i = 0, 1, 2, ... , log n,

where n is the population size.

The parallel selection procedure uses binary search to find the positions:

population :: select()

{

iut first, last, ind, found;

x = imt ((double) rand() / range * sumfitness);

first = 0;

last = populationsize - 1;

found = 0;

while (first <= last && found =- 0)

{

ind = (int) ((first + last) / 2 );

if (ind == 0)

{

pool = 0;

found = 1;

}

else

if (pop-size[ind]sum >= x && pop-size[ind - 1].sum < x)
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pool = ind;

found = 1;

}

else

if (popsize[ind].sum >= x)

last = ind - 1;

else

first = ind + 1;

}

if (found == 0)

pool = 0;

4.3.4 Crossover

Parallel implementation of the crossover operator requires communication between

processors. The even numbered processors are selected to communicate with the odd

numbered processors (which is the even number minus 1). Within the code of a

member function, the variable this is a parallel pointer to the currently executing

domain instances. The member function for crossover is the following:

population :: crossover ( )
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jnt j, ix;

x = (double) rand () / range;

if (x <= cross-prob)

jcross = (int) ((double) rand () / range * stringlength + 1);

else

jcross = stringlength;

ix = this - pop size;

if (ix % 2)

{

for (j=1; j<=popsize[ix].jcross; j++)

{

pop-size[ix- 1].new-string[j] = popsize[ix-1].oldstring[j];

pop-size[ix].new-string[j] = pop-size[ix].oldstring[j];

}

if (pop-size[ixj j cross < stringlength)

for (j=pop~size[ix].jcross+1; j <= stringlength; j++)

{

pop-size[ix-1].newstring[j] = popsize[ix].oldstring[j];

popsize[ix].newstring~j] = popsize[ix--1] .oldstring[j];

}
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4.3.5 Mutation

The mutation operator can also be implemented parallelly. Each string is processed

by one processor. The member function for mutation is the following:

population :: mutation()

{

int j, ix;

ix = this - pop size;

for (j=1; j<=stringlength; j++)

if ((double) rand () /range <= mutation prob)

{

if (pop size[ix].new-stringj] == 1)

popsize[ix].newstring[j] = 0;

else

popsize[ix].newastring[j] = 1;

}
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4.4 Analysis of the Parallel Genetic Algorithm

Suppose that each processor represents one string. The number of total processors

used in the algorithm is the population size. We use n to represent the number of

processors. The analysis of parallel genetic algorithm for each phase is:

* The evaluation phase: n processors calculate the fitness of the evaluation func-

tion at the same time by using n strings as parameters. There is no communi-

cation between processors. Therefore the time complexity of this phase is not

affected by the number of processors.

* Selecting the largest fitness phase: Each processor has one fitness value. We

want to select the largest fitness value in all processors and to know which

processor occupies this value. C* programming language provides the operation

of finding the maximum number in all processors by using the operator >?=.

This operator requires O(log n) parallel time.

* Reproduction phase: This phase consists of two parts. One is to calculate the

sub-sum which is the sum from the fitness value of the first processor to the

fitness value of the current processor. A parallel algorithm was developed to do

this work in O(log n) time. Another is the selection phase which is performed

by generating the n random numbers at the same time, and then using binary

search in n processors to get n positions parallelly. The time complexity of this

phase is O(log n).
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* Crossover phase: This phase needs communication between processors. The

first processor communicates with the second; the third with the fourth; etc.

All the communications can be done at the same time. It is not affected by the

number of processors.

* Mutation phase: By using a member function, this phase can be done parallelly.

It is also not affected by the number of processors.

When increasing the number of processors, the running time of the parallel genetic

algorithm only has a little increase, and we can get better solutions. Some exper-

imental results are shown in Tables 20 - 21. maximum generation = 20, crossover

probability = 0.5, mutation probability = 0.01 are used in the experiments. The time

is counted in seconds.
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seed clique size clique size best number of CM time front end
in initial G in results generation processors (seconds) virtual time

1 5 4 16 100 14.53 19.70
2 5 4 10 100 14.59 19.92
3 5 4 3 100 14.63 19.67
4 5 4 13 100 14.85 19.71
5 5 4 18 100 14.60 19.54
1 5 5 15 1000 15.97 21.00
2 5 4 5 1000 16.07 21.03
3 5 5 14 1000 16.13 21.07
4 5 4 8 1000 16.04 21.08
5 5 4 0 1000 15.19 20.11
1 5 5 15 4000 18.89 23.05
2 5 4 3 4000 19.13 22.22
3 5 5 8 4000 19.78 22.30
4 5 5 4 4000 22.68 23.56
5 5 5 14 4000 19.16 23.61
1 6 4 16 100 16.73 20.26
2 6 5 13 100 14.77 19.84
3 6 5 13 100 19.49 20.81
4 6 5 18 100 22.00 21.11
5 6 4 3 100 18.66 21.08
1 6 6 19 1000 16.11 21.13
2 6 5 7 1000 16.09 20.89
3 6 5 7 1000 15.94 20.92
4 6 5 16 1000 16.17 21.23
5 6 5 8 1000 16.02 21.07
1 6 6 19 4000 16.88 22.08
2 6 5 7 4000 16.77 21.88
3 6 5 4 4000 16.76 21.83
4 6 6 10 4000 16.79 21.92
5 6 5 8 4000 16.75 21.95

Table 20: Total Vertices = 10 in Initial Graph G
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seed clique size clique size best number of CM time front end
in initial G in results generation processors (seconds) virtual time

1 6 5 10 100 54.79 60.14
2 6 4 4 100 53.47 59.64
3 6 4 4 100 59.16 60.52
4 6 5 5 100 49.48 58.74
5 6 4 8 100 58.90 61.50
1 6 7 17 1000 50.50 60.69
2 6 5 10 1000 61.19 62.79
3 6 5 5 1000 55.57 61.78
4 6 6 19 1000 49.41 60.81
5 6 5 8 1000 52.32 61.42
1 6 7 17 4000 49.60 60.96
2 6 5 0 4000 50.32 61.20
3 6 5 1 4000 53.81 61.73
4 6 6 15 4000 65.02 63.26
5 6 5 3 4000 49.76 61.03

1 8 5 3 100 52.47 62.05
2 8 5 13 100 51.71 60.32
3 8 5 11 100 54.48 58.69
4 8 5 5 100 49.76 61.11
5 8 5 13 100 47.84 58.90
18 7 17 1000 66.82 68.92
2 8 5 6 1000 63.45 69.28
3 8 7 12 1000 51.89 66.14
4 8 6 13 1000 53.79 68.23
5 8 6 14 1000 48.64 60.10
1 8 7 17 4000 55.94 70.10
2 8 6 14 4000 56.85 67.39
3 8 7 12 4000 52.53 66.95
4 8 6 12 4000 60.94 69.12
5 8 6 4 4000 51.53 63.07

Table 21: Total Vertices = 20 in Initial Graph G
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5 Advanced Techniques

Based on mechanisms of natural selection and genetics, by simulating some features

of biological evolution, genetic algorithms can be used to solve problems where tra-

ditional search and optimization methods are less effective [Dav9lL.

There are some encoding techniques for representing the problems. Bit string

representation is the most common encoding technique used by genetic algorithm

researchers. Bit string representation is theoretically tractable, and its simplicity

makes it easy to prove theorems. Other encoding techniques are numerical represen-

tation and order-based representation. Numerical representation uses real numbers

in a string. Order-based representation uses a random permutation to represent the

problem.

There are also several algorithms for the selection procedure [Bak87].

The crossover techniques often used are one point crossover and two point crossover.

Two point crossover is also a method for sharing information between two successful

individual strings. Two point crossover can be implemented by selecting two random

integer positions in the string and exchanging the segments from the first position to

the second position with another string similarly partitioned.

Suppose that A and B are two parent strings selected randomly from the mating

pool, and i, j are two random integer positions.

A = 1 i 2 ... bj ajb y1i .. bj-1 gbj 1... b,

B=b1 b2 .bubib .b bbg1 .. b
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After crossover, the children are

A= a1 a 2 ... ai_1bib,+, ... bl ban

B= b1 b. . bi-1aiai+1 ... aj_1a .
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6 Conclusions

In this thesis a genetic approach to generating solutions for the Clique, Vertex Cover,

and Max Cut problems is presented. All of these problems are NP-Complete problems.

The techniques used are Baker's sampling algorithm, the biased roulette wheel method

for the selection procedure, and one point crossover operator.

A series of experimental results are reported in this thesis. The experimental

results show that 77.33% of tests get optimal solutions, the average performance

guarantee is 98.80% for the clique problems; 61% of tests get optimal solutions, the

average performance guarantee is 2.65% for the vertex cover problems; and when

the density probability is higher, the genetic algorithm works better than the greedy

algorithm for the max cut problems. For the smaller size random generated testing

data, the genetic algorithm solutions are exactly identical to the optimal solutions for

the max cut problems. Genetic algorithms can provide efficient search heuristics for

solving combinatorial optimization problems.

Genetic algorithms are easy to code. All the operator functions and initial pop-

ulation, statistics and report functions can be used for other problems. Therefore,

when solving a new problem, what we need to do is to encode the problem to a string

representation, input the values of the problem and define the evaluation function

properly.

The evaluation function must have a nonnegative value. In many problems, the

objective is more naturally stated as the minimization problems, such as the Vertex
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Cover problem. We need to map the natural objective function to an evaluation

function. The following transformation is commonly used in genetic algorithms:

f'(x) = Cax - f(x) when f(x) < Cm

= 0 otherwise

where f(x) is the natural objective function, f'(x) is the evaluation function, Cmax is

a coefficient. For the Vertex Cover problem, we use the total number of vertices as

the coefficient which is the largest value of the objective function.

In a problem with one or more constraints, a cost or penalty with all constraint

violations should be included in the evaluation function. The penalty method can be

used to solve this kind of problem. We usually square the violations of the constraints.

Genetic algorithms are inherently parallel. Multi-processors make it possible to

study genetic algorithms on larger domains. Because of the availability of larger

population sizes, we can improve the results considerably by implementing the parallel

genetic algorithms. In this thesis, a parallel genetic algorithm is implemented on the

Connection Machine system.
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7 Open Problems and Future Work

The field of genetic algorithms is growing rapidly. Some applications of genetic al-

gorithms demonstrate commercial potential. We can divide genetic algorithms into

three major categories:

* Genetic algorithm theory

* Optimization

* Machine learning

In those three major categories we can list the most interesting open problems and

future work as follows:

* finding new representation techniques;

* defining evaluation function with vector fitness;

* developing new genetic operators;

* discovering more efficient parallel selection algorithms;

* changing genetic algorithm parameters dynamically;

* applying genetic algorithms to more application areas that traditional search

lacks efficient algorithms;

* applying genetic algorithm techniques to the neural network computing archi-

tectures.
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We believe that the scientists will have more understandings on the processes of bio-

logical evolutions and the behaviors of natural intelligence. Therefore the simulation

of biological evolution processes and natural intelligence behaviors will be imple-

mented by computer scientists more naturally and practically. We have no doubt

that genetic algorithms will play very important role in the fields of A (Artificial

Intelligence) and NI (Natural Intelligence) for the next decade.
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