
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

7-29-2005

Analyzing characteristics of Java classes as related to
implementation-based testing
David C. Crowther
Florida International University

DOI: 10.25148/etd.FI14061548
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer Sciences Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Crowther, David C., "Analyzing characteristics of Java classes as related to implementation-based testing" (2005). FIU Electronic Theses
and Dissertations. 2672.
https://digitalcommons.fiu.edu/etd/2672

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F2672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F2672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F2672&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F2672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/2672?utm_source=digitalcommons.fiu.edu%2Fetd%2F2672&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

ANALYZING CHARACTERISTICS OF JAVA CLASSES AS RELATED TO

IMPLEMENTATION-BASED TESTING

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

David C. Crowther

2005

To: Dean Vish Prasad
College of Engineering and Computing

This thesis, written by David C. Crowther, and entitled Analyzing Characteristics of Java
Classes as Related to Implementation-based Testing, having been approved in respect to
style and intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Masoud Milani

S. Masoud Sadjadi

Peter J. Clarke, Major Professor

Date of Defense: July 29, 2005

The thesis of David C. Crowther is approved.

Dean Vish Prasad
College of Engineering and Computing

Dean Douglas Wartzok
University Graduate School

Florida International University, 2005

ii

DEDICATION

I dedicate this thesis to my loving wife, Kyla, who was completely supportive and

understanding of the time and effort necessary to complete this, and gave me the

motivation and inspiration to do so.

iii

ACKNOWLEDGMENTS

I would like to thank, first and foremost my major professor, Dr. Peter Clarke,

who encouraged me to pursue this project, and provided me with the support and

guidance to accomplish it. I could not be more grateful for the experience, and everything

I have learned through this endeavor, and could not have asked for a better advisor.

I would also like to thank my committee members Dr. Masoud Milani, and Dr. S.

Masoud Sadjadi for offering their support in reviewing my work and offering their

insight on this project. Additionally, I thank Dr. Vagelis Hristidis for his support.

I am very grateful to Djuradj Babich, who along with Dr. Clarke assisted me in

developing the tool used in this project. I also appreciate the remaining members of the

Software Testing Research Group: Ethan Cabiac and Jonathan Alava for their thoughts

and feedback. A special thanks also goes to former graduate student David Peraza, who

worked with me on several projects, offered support and encouragement, and remains a

good friend.

Finally, I owe immense gratitude to my family for their support. To my parents,

thanks for providing me the opportunities I needed to make it this far. To my brothers,

thanks for being there for me and encouraging me. And most of all to my wife, without

whose love and support I could not have accomplished this.

iv

ABSTRACT OF THE THESIS

ANALYZING CHARACTERISTICS OF JAVA CLASSES AS RELATED TO

IMPLEMENTATION-BASED TESTING

by

David C. Crowther

Florida International University, 2005

Miami, Florida

Professor Peter Clarke, Major Professor

In this thesis, I present a class abstraction technique (CAT) that supports the

testing process by capturing aspects of software complexity based on the combination of

class characteristics present in Java applications. I describe TaxTOOLJ, which is the tool

that was developed to catalog Java classes based on this CAT, and detail the experiments

that were run to catalog several large Java applications from different domains. From the

results, I show the types of classes developed in these applications, as well as which

groups of classes are most commonly developed, which groups of classes are most

common within a given domain, and what degree of overlap exists between

classifications in different applications and domains. Finally, I draw conclusions about

the types of classes being written, and discuss how this work can be utilized to enhance

implementation-based testing of Java applications.

v

TABLE CONTENTS

APT PAGE

1, INTRODUCTION ... 1

2. BACKGROUND ..
2.1 Definitions ... 4

2.2 Mass Characteristics ...

2.3 Implementation-based Testing of Java Classes .. 10

2.4 Taxonomy of G Classes ... 11

3. RELATED W ORK 13

3.1 Class Abstraction Techniques ... 13

3.2 00 Design Metrics ... 14

3.3 Testing Tools for Java ... 15

4: M otivation ... 16

5. Taxonom y of Java Classes .. 1

5.1 Descriptors 18

.2 Illustrative Example .. 23

5.3 Groups of Java Classes ... 26

6. Taxi LJ ... 33

6.1 ClouseauJ_API .. 33

6. TaxCatalogerJ .. 34

6.3 Tax epositoryJ ... 36

6.4 Validation of Taxi LJ .. 38

7. EXPERIM ENTS 40

7.1 Overview of Approach .. 40

7.2 Description of Test Applications .. 40

7.3 Execution of Experiments ... 45

8. EVALUATION F EXPERIM ENTS .. 48

.1 Results 48

8.2 Analysis ... 58

8.3 Discussion .. 63

9. Conclusion and Future W ork .. 66

LIST REFERENCES .. ,.68

APPENDICES 71

vi

LIST OF TABLES

TABLE PAGE

Table 5.1 Core descriptors and type families used in a cataloged entry 18

Table 5.2 Add-on Descriptors used in a cataloged entry .. 21

Table 5.3 Type families used in a cataloged entry.. 23

Table 7.1 Specfications of Applications in Test Suite .. 41

Table 8.1 Classification Statistics for each Application ... 50

Table 8.2 Cataloging Results for BCEL 51

Table 8.3 Cataloging Results for Soot ... 52

Table 8.4 Cataloging Results for JDT 52

Table 8.5 Cataloging Results for FastWars .. 54

Table 8.6 Cataloging Results for Humanoid .. 54

Table 8.7 Cataloging Results for SiteCompiler .. 55

Table 8.8 Cataloging Results for Muffin .. 56

Table 8.9 Cataloging Results for Java 1.5 Library ... 57

Table 8.10 Cataloging Results for MolEvolve.. 57

Table 8.11 Cataloging Results for RabbIT2 58

Table 8.12 Classification Statistics By Domain.. 59

Table 8.13 Cataloging Results for Compiler Tools .. 60

Table 8.14 Cataloging Results for Computer Games ... 60

Table 8.15 Cataloging Results for WebTools .. 61

Table 8.16 Cataloging Results for JDK 1.5 61

Table 8.17 Overall Classification Statistics (JDK1.4) .. 62

Table 8.18 Overall Cataloging Results (JDK 1.4) ... 62

vii

1. INTRODUCTION

Software engineers are developing systems that are larger and more complex than

systems developed a decade ago. The complexity of present software systems is no

longer restricted to the interactions between entities in a sequential process, but rather

interactions between entities in concurrent and distributed processes. The Object-

Oriented (00) programming paradigm has been adopted as a standard for developing

such systems, as it provides several benefits during analysis and design of large-scale

systems. However, as 0 systems exhibit properties of abstraction, encapsulation,

genericity, inheritance, and polymorphism, they score lower in terms of testability when

compared to systems that use the traditional procedural approach [Younessi 2003].

Additionally, the incorporation of several pre-O features such as exception handling,

concurrency, and synchronization make testing 00 systems even more challenging.

Subsequently, there have been numerous software testing techniques developed

for testing classes in an 00 application [Clarke and Malloy 2005]. These are typically

divided into two categories specification-based and implementation-based, with the latter

focusing on the internal structure of the code and the adequacy of code coverage. While

new implementation-based testing techniques (IBTTs) are continually designed, there has

been little research showing what types of classes are being written, and which IBTTs are

best suited for a class based on the combination of its characteristics. Specifically, for

Java, one of the most popular 00 languages, there has not been a study that analyzes all

the combinations of class characteristics for Java applications. This is the first such study

in the research literature for Java classes.

1

In this thesis, I present a class abstraction technique (CAT) that supports the

testing process by capturing aspects of software complexity based on the combination of

class characteristics present in Java applications. This technique is based on the CAT

designed by Clarke et al., which was designed primarily for the C++ programming

language, but has the ability to handle virtually any 00 language [Clarke and Malloy

2005; Clarke et al. 2003]. This was accomplished by defining a set of core descriptors for

the characteristics common to most 00 languages, while a set of add-on descriptors

would need to be identified for the specific language to catalog. By specifying the

appropriate add-on descriptors for Java, this taxonomy was created to completely support

the analysis of 00 characteristics for Java classes. I worked on the team, which defined

the taxonomy for Java classes, and developed the tool to catalog classes based on it

[Crowther et al. 2005]. The team consisted of myself, my advisor, Dr. Peter Clarke, and

fellow graduate student Djuradj Babich. My unique contribution to the project was

designing the TaxCatalogerJ and TaxRepositoryJ components of the tool, and performing

experiments to catalog classes in several Java applications from various domains.

This tool described in this study extracts the combination of characteristics for

Java classes, provides insight on the types of classes being written, and supplies a

foundation for supporting implementation-based testing efforts for the Java language.

This information can be used to map IBTTs tot the members of Java classes [Clarke and

Malloy 2005]. It may also be possible to use the classification generated by the taxonomy

for a given class to show how testable a class is, or to indicate if it is defect-prone. Such

information could significantly improve the effectiveness and efficiency of a testing

effort.

2

In the chapters to come, I establish the foundation for creating the Java taxonomy

and then present the complete taxonomy, along with an example of applying the

taxonomy to classes written in Java version 1.5 [Sun 2005]. I show tree structures that

represent how the groups of classes are generated, and compute the total number of

groups of classes that can be written in Java 1.4, as well as Java 1.5. I also describe the

tool developed, TaxTOOLJ, which stands for Taxonomy Tool for the 00 Language Java.

I then detail the experiments that were executed to catalog several large Java applications

from different domains. Consequently, I show the types of classes developed in these

applications, as well as which groups of classes are most commonly developed, which

groups of classes are most common within a given domain, and what degree of overlap

exists between classifications in different apps and domains. I also present the percentage

of groups cataloged to total classes, and the percentage of groups cataloged out of the

total possible for the application, domain, and overall levels. Finally, I draw conclusions

about the types of classes being used, and suggest reasons for the given results and

discuss how this work can be further enhanced to support the testing process for Java

applications.

3

2. BACKGROUND

This chapter presents background material that is foundational to this study

beginning with an introduction of relevant concepts and definitions. The next sections

discuss class characteristics of and implementation-based testing for Java classes. Finally,

the last section presents the 00 taxonomy from which this work was based.

2.1 Definitions

This section introduces some of the important definitions related to software

testing, as well as concepts that will be used throughout the paper. The first subsection

presents software testing terminology that will be used throughout the paper. The second

subsection establishes the concept of class-based testing, including implementation-based

testing, which is the target of this research.

2.1.1 Terminology

So what exactly is software testing? It is defined as the execution of code using

combinations of input and state selected to reveal bugs [Binder 2000]. Its role is limited

purely to identifying bugs, which raises the level of confidence in an application. Bugs

are defined by McGregor and Sykes as, mistakes, misunderstandings, omissions, or even

misguided intent on the part of the developers, where diagnosing or correcting these bugs

is known as debugging [McGregor and Sykes 2001]. The test input normally comes from

test cases, which specify the state of the code being tested and its environment, the test

inputs or conditions, and the expected results. A test message is a request that an

operation be performed by some object [McGregor and Sykes 2001]. A test suite is a

4

collection of test cases, typically related by a testing goal or implementation dependency,

and a test run is an execution of a test suite with its results. Regression testing occurs

when tests are rerun to ensure that the system does not regress after a change [Bruegge

and Dutoit 2004]. In other words, the system passes all the tests it did before the change.

Because components, physical and replaceable parts of a system [Bruegge and

Dutoit 2004], usually need to interact with other components, it is common practice to

create a partial component to mimic a required component. Two such instances of this are

drivers and stubs. A test driver is a class or utility program that applies test cases to a

component to be tested. A test stub is a partial, temporary implementation of a

component, which allows a dependent component to be tested. Furthermore, a test

harness is a system of test drivers and other tools to support test execution.

2.1.2 Class-Based Testing

Class-based testing is the process of operating a class under specified conditions,

observing or recording the results, and making an evaluation of some aspect of the class.

This definition is based on the IEEE/ANSI definition of software testing [WEE/ANSI

Standards Committee 1990]. Class-based testing is comparable to unit testing used for

procedural programs where each class is tested individually against its specification

[McGregor and Sykes 2001]. Subsequently if problems occur when integrating with other

classes, there is a high probability that the error is in the interfacing of the classes as

opposed to an individual class itself.

The two main ways to test a class are execution-based dynamic testing and static

reviews [McGregor and Sykes 2001]. Reviews are a manual inspection of parts or all

5

aspects of a class without actually executing the class. Execution-based testing involves

identifying, running and evaluating test cases for a class.

Reviews may be formal or informal and should involve a review team separate

from the developer [Bruegge and Dutoit 2004]. Reviews help eliminate biased testing

that could come from the developer, and also provide an additional pairs of eyes to

increase the chances of spotting errors. Additionally, reviews allow the class itself to be

inspected for errors, potentially spotting an error in code that may produce the right

output the majority of the time. The two main drawbacks to reviews are: the allowance

for human error, and the amount of resources required for regression testing. These

shortcomings make reviews alone impractical for most systems.

Execution-based testing on the other hand is usually done by the developer. Once

test cases have been constructed, they can be automated, which allows them to be run

over and over again. While this process can help eliminate human error on subsequent

runs, there is still a chance the test code itself will contain an error. Additionally, when

classes are highly coupled with other classes constructing test drivers can become quite

complex and costly. For these reasons, often the test drivers themselves will be tested to

ensure their correctness [McGregor and Sykes 2001].

The following sections deal with the different approaches for class-based testing,

specification-based, implementation-based, and hybrid-based testing. While both

specification-based and implementation-based testing have their advantages and

disadvantages, it is generally accepted that some combination of the above techniques

(hybrid-based testing) is most effective [McGregor and Sykes 2001].

6

2.1.3 Specification-Based Testing

Specification-based testing, also known as blackbox or functional testing, focuses

on the input/output behavior or functionality of the component [Bruegge and Dutoit

2004]. The name blackbox provides a visual depiction of this technique, where nothing

inside the box (implementation) can be seen during testing. No internal aspects of the

component nor the behavior or the structure of the component are considered; leaving the

tester the ability to develop test cases by just looking at the specification [Clarke 2003].

Three methods used for specification-based testing include equivalence,

boundary, and state-based testing. In equivalence testing values in the domain are

partitioned into equivalence classes, within which any value tested should produce the

same result as any other. Boundary testing focuses on testing the extreme input values,

such as the minimum and maximum values along with other values within their

proximity. Finally state-based testing generates test cases from a UML statechart, where

test input ensures each transition is traversed and the output state will be compared to the

expected state [Bruegge and Dutoit 2004].

2.1.4 Implementation-Based Testing

Implementation-based testing, also known as whitebox or structural testing,

focuses purely on the internal structure of a component [Bruegge and Dutoit 2004]. The

terms glass box and clear box are also used, providing a better visual analogy for the

definition [Binder 2000]. Here the tester analyzes the code and generates test input to

ensure that various execution paths are tested to increase the coverage of source code

[McGregor and Sykes 2001].

7

Several common implementation-based testing techniques, IBTTs, are based on

dataflow, control flow, and object state analysis. Data flow analysis involves test tuple

generation, which generates test cases based on some coverage criteria. In data flow

analysis each variable definition is matched up with the places in code where the variable

is used, constituting a def-use pair. Coverage criteria for data flow testing can be based

on all-defs, where each definition must be tested with at least one use; or all-uses, where

each definition must be tested with each of its uses [Beizer 1990]. One data flow

technique for analyzing classes proposed by [Harrold and Rothermel 1994] included

three levels of testing def-use pairs based on pairs found inside a method (intra-method),

from another method (inter-method), or through different method sequences in a class

(intra-class).

Control flow testing analyzes which statements are executed in the code, based on

a given adequacy criterion. Path testing attempts to test every path through a control flow

graph, in which code statements can be executed. This is often infeasible, however, due

to loops in the code. Branch testing seeks to ensure every outcome of a conditional

statement is executed during testing. Branches are formed by each decision statement in a

program, so for an if statement both the true and false initiate a new branch. All-edges

and all-paths are key measures for determining branch coverage [Beizer 1990].

Object state testing is a technique where different message sequences are

executed by instances of classes being tested. These sequences are generated based on

criteria associated with the implementations of these classes. Kung et al. presented a

method to accomplish this, whereby message sequences are generated by a test tree that

is formed from an object state test model [Kung et al. 1996].

8

2.1.5 Hybrid-based Testing

In practice usually a combination of specification-based and implementation-

based strategies are used, yielding a new testing approach known as hybrid-based testing.

Hybrid-based testing hopes to attain fuller coverage than possible with either

specification-based or implementation-based testing alone [Binder 2000]. One of the

most popular examples of hybrid testing is incremental testing, developed by [Harrold et

al 1992], which attacks the problem of testing inheritance in object-oriented systems. In

this approach a base class is tested first, wherein a testing history is associated with each

test case for the features that it tests. A subclass will derive the test history of its parent as

well as refine and add test cases according to its specification. Here implementation-

based testing is used, because the code is analyzed to classify the inheritance features of a

derived class, and specification-based techniques are also seen when the member

functions are tested as a whole in the class.

2.2 Class Characteristics

The wide spread use of the 00 paradigm is one of the many reasons for the

popularity of software applications being written in the Java language [Sun 2005]. The

foundational unit of these programs is the class, which defines how to create objects -

instances of the class [Arnold et al. 2000]. The members of a class in Java are referred to

as fields and methods. In this thesis, the terminology by Meyer is used for consistency

with other references describing the taxonomy of 00 classes [Meyer 1997]. That is,

members are referred to as features, fields as attributes and methods as routines.

9

Clarke and Malloy define

class characteristics for a given class C as the properties of the features in

C and the dependencies C has with other types (built-in and user-defined)

in the implementation. The properties of the features in C describe how

criteria such as types, accessibility, shared class features, polymorphism,

dynamic binding, deferred features, exception handling, and concurrency

are represented in the attributes and routines of C. The dependencies of C

with other types are realized through declarations and definitions of C's

features and C's role in an inheritance hierarchy.

[Clarke and Malloy 2005]

The properties of the features in a class are described in references [Arnold et al. 2000;

Meyer 1997; Sebesta 2004; Stroustrup 2004].

2.3 Implementation-based Testing of Java Classes

Software testing refers to: (1) the use of techniques and methods to generate test

cases, and (2) deciding whether or not the test cases developed adequately cover some

predetermined test criteria. As noted in the introduction, applications developed under the

00 paradigm score lower in terms of testability when compared to systems developed

using a procedural approach. This is due to the additional complexity created by the

composition of 00 features such as abstraction, encapsulation, genericity, inheritance,

and polymorphism [Younessi 2003].

To address this problem of low testability for 00 software, researchers continue

to develop new testing techniques. Many of these are IBTTs, which focus on generating

test cases based on the source code of a class, or evaluating a test set based on some

aspect (adequacy criterion) of the source code. Test sets are also generated based on the

10

specification of a class using specification-based testing techniques. There are several

IIBTTs for testing classes, in this case, classes written in Java [Edelstein et al. 2002; Sinha

and Harrold 1999; Souter and Polock 2000; Fu et al. 2004]. Clarke and Malloy motivate

the need for the taxonomy of 00 classes by highlighting several IBTTs and the class

characteristics that each focuses on during testing [Clarke and Malloy 2005]. The advent

of Java 1.5 [Sun 2005] will surely inspire new IBTTs to address the characteristics

classes will now have that were not possible for classes written using Java version 1.4.x.

2.4 Taxonomy of 00 Classes

Clarke et al. developed a taxonomy of 00 classes, which allowed classes within

an 00 application to be classified based on the characteristics they possesses [Clarke

2003; Clarke and Malloy 2005; and Clarke et al. 2003]. The taxonomy of 00 classes

identifies these characteristics based on the dependencies the class has with other types

(built-in and user-defined). A class's dependencies are established by the features it

declares as well as those that are inherited [Clarke et al. 2003]. Once a class's

characteristics are identified they are extracted and placed in a cataloged entry. This

taxonomy allows classes to be cataloged from virtually any 00 language. It allows the

set of all 0 classes to be partitioned into mutually exclusive groups (taxa), and the

strings representing these groups are unambiguous [Clarke 2003].

Clarke and Malloy define a cataloged entry as a 5-tuple consisting of: (1) Class

Name (2) Nomenclature Component - the group (or taxon) containing the class, (3)

Attributes Component - a list of entries representing the subgroups attributes, (4)

Routines Component - a list of entries representing the routines, and (5) Feature

11

Classification Component - a list summarizing the inherited features of the class. Each

component entry consists of two parts: (1) a modifier - describing the properties of the

class and its features (attributes and routines), and (2) the type families - types associated

with the class. A modifier consists of a list of descriptors (core and add-on) representing

the class characteristics. The core descriptors represent class characteristics found in most

00 languages and the add-ons descriptors represent characteristics specific to a given

language [Clarke and Malloy 2005]. A detailed explanation of the descriptors and type

families is given in section 5.1.

12

3. RELATED WORK

In this chapter various other studies which are relevant to this research are

presented. First, several class abstraction techniques are described, followed by a look at

research of 00 Design metrics. Finally, a study on software testing tools is discussed.

3.1 Class Abstraction Techniques

Several class abstraction techniques (CATs) exist that allow a tester to abstract

away details of the source code, providing an alternative view of the entities represented

in the code. These abstract views include various graphical representations, such as class

diagrams [Matzko et al. 2002], various graphs such as control flow graphs (CFGs)

[Harrold and Rothermel 1994], and object-oriented design metrics (OODMs) [Briand et

al. 1999; Harrison et al. 1997]. Other CATs more closely related to this work are the

classification of features in a derived class [Harrold et al 1992] and the taxonomy of 00

classes [Clarke and Malloy 2005; Clarke et al. 2003].

Harrold et al. classify the features of a derived class and use this classification to

identify those test cases of the parent class that can be reused when testing the derived

class [Harrold et al 1992]. The taxonomy of 00 classes presented by Clarke et al. extend

that classification to include characteristics for classes written in virtually any 00

language [Clarke and Malloy 2005; Clarke et al. 2003].

This work adds to the work done by Clarke et al. by extending their taxonomy to

catalog classes written in the Java programming language. An overview of this taxonomy

was presented in section 2.4. The taxonomy consists of a set of core descriptors used to

represent the characteristics for classes written in many 0 languages. To describe

13

characteristics for classes of a specific language add-on descriptors for the component

entries are defined. Clarke et al. defined the add-on descriptors for the C++ language,

providing a way to catalog any class in C++. For the Java taxonomy add-on descriptors

were defined and the type families were restricted according to the specification of Java

version 1.5 [Sun 2005].

3.2 00 Design Metrics

Many of the OODMs presented in the literature attempt to assess the fault-

proneness and/or testability of a class, based on a single characteristic of the class.

Harrison et al. overview several OODM suites providing examples of single class

characteristics such as, Number of Public Methods and Number of Inherited Methods per

Class [Harrison et al. 1997]. Briand et al. state that there are over 30 different metrics

used to measure object-oriented coupling. To consolidate the metrics for object-oriented

coupling they present a standardized terminology and provide a formalism for expressing

these software measures [Briand et al. 1999]. Many of those definitions are similar to the

definitions used by Clarke [Clarke 2003] to define the taxonomy of 00 classes. While

OODMs attempt to measure a class by individual characteristics (metrics), this taxonomy

provides an approach that allows the combination of characteristics for classes, attributes

and routines to be abstracted for analyzing classes. For example, the taxonomy for Java

classes can be applied to an application to identify all the classes in that application that

contain nested classes, are abstract, and declare primitive types and instances of

parameterized classes.

14

3.3 Testing Tools for Java

There are many software testing tools available for the Java language, ranging from

metrics reporting tools to load/performance testing tools [Dustin 2003]. With regards to

class-based testing, numerous unit testing tools are available as freew e, while several

more sophisticated tools are also on the market. Crowther and Clarke examined various

unit-based testing tools for Java, and showed that while there are plenty of testing tools

available, most only support basic unit testing [Crowther and Clarke 2005]. All of the

tools analyzed in this study, provided a test harness for constructing and running test

cases, and supplied the capability for performing regression testing with them. The more

sophisticated tools also included features such as: displaying code coverage for a test

suite, automatically generating test cases, drivers and stubs based on the requirements

and/or the code, as well as provided various other metrics for an application. However,

there are numerous implementation-based testing techniques which are not yet supported

by any practical tool, leaving the tester to manually verify that the test cases achieve a

certain adequacy criterion. A few such techniques are message sequencing, data flow

testing, and mutation testing. As more testing tools are developed to support these and

other implementation-based testing techniques, this taxonomy could be further used to

show which software testing tools would be best suited for a Java application based on

the characteristics of the classes it contains.

15

4. Motivation

The motivation for building this class abstraction tool for Java and performing

this study of the class characteristics present in various Java applications, was to provide

more information about the types of classes being written in Java, and search for ways

this information can benefit the testing of Java applications. This study identifies the

types of classes that are being written in general, as well as in various domains. The

abstraction used in this taxonomy reduces the number of possible classes written in Java

from an infinite set to a finite number of categories, based on the characteristics a class

possesses. It is hoped that this taxonomy will provide a means for associating faults in

Java classes to a combination of class characteristics, and thus be able to identify more

defect-prone classes in an application. It may also be possible for this taxonomy to show

how testable a given class is. Such information could significantly improve the

effectiveness and efficiency of a testing effort.

While much research has been conducted focusing on isolated features of the Java

language, there currently is no way to describe all possible combinations of the

characteristics for Java classes and thus capture all aspects of a software application's

complexity. Bruntink and van Deursen posed several fundamental questions regarding

the testability of 0 classes [Bruntink and van Deursen 2004], asking, "What is it that

makes one class easier to test than another?", and "How can I tell that I am writing a class

that will be hard to test?" This tool seeks to assist in answering those questions based on

the combination of characteristics a class possesses. For example given the test histories

of a large enough sample of Java applications it may be possible to show whether it is

easier to test a class with inherited features that can run in multiple threads, and uses the

16

traditional Java types, or a class that uses generic and parameterized types with no

derived features.

Several of the IBTTs, mentioned in sections 2.1.4 and 2.3, generate test tuples

based on data flow analysis. In actuality, these IBTTs are generating the test tuple

information based on the characteristics of the classes being analyzed. For example, the

IBTT by Harrold et al. generates all def-use pairs for variables of primitive types that are

local to the class, the IBTT by Souter et al. generates test triples for variables that are

references to objects and do not escape a given scope, and the IBTTs by Sinha et al. and

Fu et al. generate test tuples for variables in exception handling constructs [Harrold and

Rothermel 1994; Souter and Polock 2000; Sinha and Harrold 1999; Fu et al. 2004]. Each

of these techniques generates a subset of the traditional all def-uses criterion, by limiting

the scope analyzed within a class. However, in order to obtain a complete view of all the

uses for a given variable, it will be necessary to augment these techniques with other

properties of the class. It is evident for these and other IBTTs, that a technique which

combined all the characteristics of a class would greatly enhance the test information

produced. Furthermore, there currently is no measure to indicate the combinations of

class characteristics that can be tested by existing IBTTs. The taxonomy presented in this

study, provides the information necessary to achieve these tasks.

17

5. Taxonomy of Java Classes

This chapter overviews the descriptors and type families used in the taxonomy,

presents an example of cataloging classes using Java 1.5, and enumerates all the possible

groups of Java classes generated by the taxonomy for Java versions 1.4 and 1.5.

5.1 Descriptors

The following subsections provide a complete description of the taxonomy for

Java classes, including core descriptors, add-on descriptors, and type families.

5.1.1 Core 00 Descriptor

In this subsection the core descriptors that can be applied to most 00 languages

for classes, attributes, and routines are specified. A summary of the core descriptors is

provided in Table 5.1, which is followed by a description of each. The core descriptor

definitions are based on the definitions provided in [Clarke et al. 2003].

Descriptors
Nomenclature Attributes Routines

Generic New New
Concurrent Recursive Recursive

Abstract Concurrent Redefined
Inheritance-free Polymorphic Concurrent

Parent Private Synchronized
External Child Protected Exception-R
Internal Child Public Exception-H

Constant Has-Polymorphic

Static Non-Virtual

Virtual

Deferred
Private

Protected

Public
Static

Table 5.1 Core descriptors and type families used in a cataloged entry

18

Class Add-ons:

* Generic - indicates that a class uses formal generic parameters for unknown
types.

* Concurrent - indicates that instances of a class will run in threads/processes.

* Abstract - indicates a class that contains features, which will be implemented by
another class.

* Inheritance free - indicates that a class does not have a parent. In Java, we define
this as a class that is derived directly from java.lang.Object.

* Parent - indicates that a class has one or more subclasses.

* External Child - indicates that a class has a parent, but no children.

* Internal Child - indicates that a class has, and is a parent.

Attribute Add-ons:

* New - indicates that an attribute is defined within the class being cataloged.

* Recursive - indicates that an attribute is inherited from an ancestor class.

* Concurrent - indicates the type of an attribute will run in a thread/process.

* Polymorphic - indicates that an attribute has the potential to be polymorphic (i.e.
the attribute is a reference to a user-defined type and this type has children).

* Private - indicates that an attribute can only be accessed within the class where it
is declared.

* Protected - indicates that an attribute can only be accessed by a limited number of
classes. In Java this would be the class where it is declared, any subclass, and any
class within the same package.

* Public - indicates that an attribute can be accessed by any class.

* Constant - indicates the value of the attribute will not change.

* Static - indicates there is one instance of an attribute, which is shared for a class.

19

Routine Add-ons:

* New - indicates that a routine is defined within the class being cataloged.

* Recursive - indicates that a routine is inherited from an ancestor class.

* Redefined - indicates that a routine is derived from a parent class, but a new
implementation is provided in the class being cataloged.

* Concurrent - indicates that a routine instantiates a thread or process.

* Synchronized - indicates a routine contains code that can only be accessed by one
thread at a time (i.e. a critical section).

* Exception-R - indicates that an exception is raised within a routine.

* Exception-H - indicates that an exception is handled within a routine.

* Has-Polymorphic - indicates that a routine contains local variables, which are
polymorphic.

* Non-Virtual - indicates that a routine is statically bound.

* Virtual - indicates that a routine is dynamically bound.

* Private - indicates that a routine can only be accessed within the class where it is
declared.

* Protected - indicates that a routine can only be accessed by a limited number of
classes. In Java this would be the class where it is declared, any subclass, and any
class within the same package.

* Public - indicates that an attribute can be accessed by any class.

* Static - indicates the routine is shared for a class.

5.12 Add-on Descriptors for Java

In this subsection the descriptors that are specific to the Java language including

class, attribute, and routine add-ons are identified. These descriptors are summarized in

20

Table 5.2, and are described below. Each of these descriptors are defined based on the

corresponding Java keywords/concepts [Sun 2005].

Descriptors
Nomenclature Attributes Routines

Public Transient Final
Final Volatile Native

Has-Nested Generic
Has-Inner

Interface
Implements
Serializable

Table 5.2 Add-on Descriptors used in a cataloged entry

Class Add-ons:

* Public - indicates that a class (or interface) can be accessed from outside its
package.

" Final - indicates that a class (or interface) cannot be extended by another class.

* Has-Nested - indicates that a class has a class declared inside of it. For this
taxonomy we will only consider static nested classes to be nested, since non-static
ones will fall into the inner class category.

* Has-Inner - indicates that a class has a non-static class declared inside of it.

* Interface - indicates that a class-like structure has only empty method
declarations. For our purposes we are considering an interface to be a special type
of class.

* Implements - indicates that a class implements an interface.

* Serializable - indicates that an instance of a class can be converted into a stream
of bytes, such that an equivalent object can be recreated from this byte stream (de-
serialization).

21

Attribute Add-ons:

* Transient - indicates that an attribute is not serializable.

* Volatile - indicates that an attribute's value can be changed at any time (by
another thread).

Routine Add-ons:

* Final - indicates that a routine cannot be further redefined by a subclass.

* Native - indicates that a routine written in another language is invoked from a
routine in a Java program.

* Generic - indicates that a routine uses an unknown type.

5.1.3 Type Families

In this section, the type families that are used by the taxonomy are defined, and

these are displayed in Table 5.3. These type families represent the complete set of types

that can be used in an 00 language , however the Java programming language does not

use all of these types [Crowther et al. 2005]. In Java all user-defined, library, and generic

types are reference by default for the types U*, L*, and A* respectively, however

whenever an anonymous instance of these types is declared, there is no reference to it and

so the types U, L, or A can be used as well. Primitive types, on the other hand, can never

be passed by reference, but need to be wrapped inside a class in order to achieve this

functionality, so there is no need for the type P*.

22

Type
Families

NA no type
P primitive type
P* reference to P
U user-defined type
U* reference to U
L library type
L* reference to L
A any type (generic)
A* reference to A
m<n> parameterized type

<n>* reference to m<n>
where m C {U,L} and n is any combination of

{P,P*,U,U*,LL*,A,A* }
Table 5.3 Type families used in a cataloged entry

5.2 Illustrative Example

Figure 5.1(a) shows the Java source code for the classes ThreadCount and

InnerPrinter, while Figure 5.1(b) displays the cataloged entry for the class ThreadCount.

Class ThreadCount instantiates five concurrent objects, assigns each object a unique

identifier, and stores the identifier of each concurrent object into an instance of a

templated array. A list of identifiers for active threads objects are periodically printed.

ThreadCount declares seven attributes, three routines and an inner class.

The nomenclature of class ThreadCount, shown in Figure 5.1(b), is (Public) (Has-

Inner) Concurrent External Child Families P U L* L<L*> *. The add-on descriptors for

ThreadCount are (Public) and (Has-Inner) reflecting the fact that ThreadCount is

declared public and declares an inner class (InnerPrinter, lines 36 through 42 of Figure

5.1(a)). The core descriptors Concurrent and External Child state that ThreadCount

instantiates concurrent objects and is a derived class with no descendants, respectively.

23

The type families P U L* L<L*> * indicate that ThreadCount declares instance variables

or routine locals (local variables or parameters) that are primitive types P, objects U,

references to standard library objects L*, and references to instances of templated

standard class libraries L<L*>*.

The attribute NUMBER OBJS, on line 4 of Figure 5.1(a), is cataloged as Private

Constant Family P, the first entry in the Attributes component of Figure 5.1(b). This entry

summarizes the properties of NUMBER OBJS, i.e., NUMBER OBJS is declared as

private, is a named constant and is a primitive type. The attributes countDelay,

numThreads, delay and threadNum, on lines 5 and 6, are cataloged as Private Family P.

These four attributes are all declared private and are primitive types. The attribute

countThreads on line 7 has an entry similar to the attributes on lines 5 and 6 but it is also

declared static and therefore receives the component entry Private Static Family P. The

final entry in the Attributes component is store, which is declared as private, static, and a

reference to an instance of a templated class library (ArrayList), hence the component

entry Private Static Family L<L*> *.

The constructor, lines 9 through 14 of Figure 1(a), is classified as Non-Virtual

Public Family P, the first entry in the Routines component of Figure 1(b). The descriptors

Non-Virtual and Public are used because the constructor is statically bound and is

publicly accessible. The type family for the constructor is P because the only local

declaration is of type int, a primitive type. The entry Exception-H Virtual Public Family

U* L* represents the routine run(), lines 15 through 30, because it contains an exception

handler, it is dynamically bound, can be accessed publicly and there are two declarations;

one declaration is a reference to a user defined class InnerPrinter and the other is a

24

05

U a
r I

Q ro

CL"

P'll

r,

CL4
u ro j

roro Q 4 n
4J 41 4.

o,

H ® . H 4

u 6-J 6-j

N

4

as

O 04 G
as ra .^

S 4 Q) (D ua -- Q 4 4 'LS - -
u w (d - + "

Ea n 41 if f:i O
n + 4 .,i 4J

{d Q) Q) tl2 Q) t3a U1

Q} 4 jj R$ U ? I r4 d Q) I-D 1-3 Q) Q) Q)
O J I"D '- ,-4 S4 1~a C RS - O S 4 0 M 4 > N 4 a s

U X PQ 00 Ql r-, H E-+ Q) If o W ri 4, r O (d H " -1 O
OU E V a as coH

i II 41 .u " 1 41 11 o S V P M 1 4 4J M a) U as
41 04 0 U) 1:11 11 41 4j W . 4.) 4 -
I~ W >i rn :: "r-I .l-J as rl U -rl U) - = 4 cW 2i O Q) O P-t

E-+ O R U r1 1 ::j 04 .t.) 4J

U Q) Q) (0 r O 4 .,,-A > y, "4 .t.) P4 r-d w ,

(0 4J 1,4 41 s~ + (0 H Id -- Q) 4.) >1 W 41 -4 V Q) 41 V 4 C*S0) 33 I. E rl C + Q) Q) 41 1:1 (o 0 Q4 O t O 04

".-d 4 "ei O U U U Id G 1 "-d 4 Q) } g '0 H 4J
4-4 .u E+ U -14 ",A N p, o t17 d4 U 3 0 (0 O., o ;:I
O 0 43 4J (d to P4 U 4 :3 Q) ri Q? II Q} R9! 41 II O a?

th ".i .u 4J (d M Q) rO " 4 ro Z9 4J 4 .u Q., 1 O 4J u " 4J i 4 d/ b j "4
U) fA 4) a 93 4J 4J 4 M '"o t -- Q) r a) 1 41 1D 1.- td 4 to ".i O Ea +

1 > to to "e"1 ".i a8 to .C; Q) 11 (0 O 4) "'-i Q) -' (n t H 4J 11 4J E rl O 4J Q)
. r 4 rl 44

m O 0 U > Q) ".i w
Q) CF .0 41 Q? @ ®1 Q) 5 >, (d Q) Pt H 04 to "' 4

u 4J 4.) J a, C? E (0 a) S"+ O y O (D U k4 -- N ri 41 >
33 i3 r$ tssS 40 (d (0 ".i -1 S-4 O rj t 3 41 $4 -A o k G ".t "®"i En t t En

O ' I rl td r"A > > > rt Q) - 41 ri l (d rl .U O rl r4 r>1 O
U O rl 0 -H ".i -4 .H .C$ Q d1 {P] ,tt 41 U A to 44 ,q A U) w

$4 k $4 4

'64 0, of 04 Q4 P; Aa Pt Ot,f Ch

H N m 0 kO h m O r d N M tr 0 40 r, m m o -1 rt v Ln o c- M 0 r-I ca) r) d! tft %D c® 07 m 0 rl N r5' , .
,-1 -d,-sH HrtH -1H H cvcvcv(NcvCN cvcvrv cvm rr)rnm () m m r; ,b+.r ,v T*

reference to a class in the standard Java class library InterrruptedException. The entry

Concurrent Non-Virtual Public Static Families P, U, L* represents the routine main(...)

shown on lines 31 through 35 in Figure 5.1(a). The descriptor Concurrent represents the

fact that concurrent objects are instantiated in the routine and the type family U is used

since the objects instantiated are anonymous. Type family L* represents the args

parameter of type String[] (a reference to a class library). The other descriptors (Non-

Virtual Public Static and types family P are the same as previously described. The

Feature Classification component has the entry Not Cataloged since classes from the

standard class libraries are not cataloged.

5.3 Groups of Java Classes

In this subsection, I compute the total number of groups of Java classes generated

using the taxonomy for both Java 1.4 and Java 1.5. The add-on descriptor tree, Figure

5.2(a), shows the possible branches a class can follow based on the add-on descriptors

that apply to it. From the root node the two possible branches are Public and Not Public,

which is followed by the choices Final and Not Final. Note that these choices appear

twice once for the Public branch and once for the Not Public branch, and this represents

all the possible combinations of these two descriptors. The italicized descriptors represent

default descriptors and are specified for completeness of the tree, but not used in the

component entries. At each subsequent level, the descriptor branches will be repeated for

each branch of the previous level. A path in the tree from the "root" to a leaf generates

the add-on part of the Nomenclature entry. The tree shown in Figure 5.2(a) contains the

path: Not Public Final Has-Nested Not Has-Inner Implements Serializable. Omitting the

26

ui

Nat Pubili Not Interface or

No [asNestedp

F aNot Has-Inner nterface
Not Seriali able

Not Fnat H as-Ne ted K ne npeip

Se iable
Public

Fin

Concreteb Inert tacc Free

Sequen la Pea

Ab ract Extema hid F(amIyNA Fa ny P
Famies P U* L.

Non-Gener c Intern Child FamiTes P U U* L L*
FamhesP U<L*>*,

Concurrent

Seq et

Generic

Concurrent

(b)

Figure 5.2 Trees showing the possible groups of Java classes,
(a) Tree showing the add-on descriptors.
(b) Tree showing the core descriptors and type families

27

default add-on descriptors we get the following string of descriptors that would be shown

in the Nomenclature entry: Final Has-Nested Implements Serializable.

Figure 5.2(b) can be described in a similar manner with additional details

provided in [Clarke and Malloy 2005]. The core descriptor tree, Figure 5.2(b), is

appended to each leaf of the add-on tree, Figure 5.2(a), generating the Nomenclature

entries for a superset of all the possible groups of Java classes. Note that not all paths

through the tree are legal Nomenclature entries i.e., some of the branches must be pruned.

To compute the total number of legal groups of classes win Java 1.5, the tree is

partitioned as follows:

" TT - the combined tree representing the add-on and core descriptors, and type
families.

* TA - the tree of add-on descriptors Figure 5.2(a), and

" TCF - the tree of core descriptors and type families in Figure 5.2(b),

In addition, TCF is further divided into four similar trees as described below.

* TCFNG - tree (Non-Generic) that does not contain unknown types i.e., type
families A or A*.

* TCFG - tree (Generic) that contains unknown types.

* TCFNGF - tree that does not contain unknown types and the branches Parent and
Internal Child are pruned i.e., Final classes cannot have descendant classes.

* TCFo_F - tree containing unknown types and the branches Parent and Internal
Child are pruned.

The number of leaves for the tree TCFNG is computed as follows:

(1) leaves(TCFNG) = 2 * 2 * 4 * FNG = 704

28

where

* the first 2 represents the branches {Sequential, Concurrent}

* the second 2 the branches { Concrete, Abstract 1,

* the 4, the branches { Inheritance-free, Parent, External Child, Internal Child }, and

* FNG represents the different combinations of the type families excluding the
unknown types A, A*. That is, NA plus F{P, U, U*, L, L*} - 0 plus all possible

combinations of m<n>and m<n>*, where m = { U, L} - 0, n = { U*, L*} - 0
and fmarks the powerset of.

The number of leaves for the tree TCFG is computed as follows:

(2) leaves(TCFG) = 2 * 2 * 4 * FG = 2496

where

* the first three terms are similar to equation (1),

* FG represents all the different combinations of the type families. That is, NA plus
S{P, U, U*, L, L*, A, A*} - 0 plus all possible combinations of m<n>and

m<n>*, where m= 3{ U, LI - and n = 3{ U*, L*, A *} - 0.

29

The number of leaves for the tree TCFNG_F is computed as follows:

(3) leaves (TCFNGF) = 2 * 2 * 2 * FNG_F= 352

where

* the first 2 represents the branches {Sequential, Concurrent}

* the second 2 the branches { Concrete, Abstract},

* the third 2 the branches {Inheritance-free, External Child}, and

* the families are similar to equation (1).

The number of leaves for the tree TCFG_F is computed as follows:

(4) leaves(TCFGF) = 2 2* 2 * FGF= 1248

where

* the first three terms are similar to equation (3),

* the families are similar to equation (2).

Therefore, the number of leaves for the tree TT is computed as follows:

(5) leaves(TT) =2 * 2 * 2 * 3 * 2 * (leaves(TCFNG) + leaves(TCFG) + leaves

(TCFNGF) + leaves(TCFGF)

where

* the first five terms represent the tree for the add-on descriptors excluding the
branches {Not Final, Final}, which are considered in the remaining terms of the
equation.

* the terms containing the leaves for the various trees represent the values computed
in equations (1) through (4).

30

From equation (5) the total number of groups generated by this taxonomy for Java

1.5 is calculated as 230,400. While this total accurately describes the groups of classes

possible using Java 1.5, the majority of the applications analyzed in this study use Java

1.4 or earlier. Thus, it is also necessary to consider the total number of classifications

possible in Java 1.4.

For Java 1.4, the Generic branch of the core descriptor tree can be pruned, as

there is no mechanism for creating a generic class in Java 1.4. Likewise, the type families

can have the generic, and parameterized types trimmed (i.e. A, A*, m<n.>, and m<n> *).

The base formula remains the same as:

(6) leaves(TT) = leaves(TA) * leaves(TCF), where,

In this case, TCF is divided into two trees as described below.

" TCFF - the tree that traverses the Final branch causing the Parent and Internal
Child branches to be pruned.

* TCFNF - the tree that does not contain the Final branch, and thus contains the
Parent and Internal Child branches.

The number of leaves for the tree TCFF is computed as follows:

(7) leaves(TCFF) = 2 * 2 * 2 * F = 256

where

" the first 2 represents the branches {Sequential, Concurrent}

* the second 2, the branches {Concrete, Abstract},

" the third 2, the branches {Inheritance-free and External Child }, and

* F represents the different combinations of the type families not considering
generics or parameterized types. That is, NA plus f{P, U, U*, L, L*j - 0.

31

The number of leaves for the tree TCNF is computed as follows:

(8) leaves(TCFNF) =2 * 2 * 4 * F=512

where

* the first two terms are similar to equation (7),

* the 4, represents the branches {Inheritance-free, Parent, External Child, Internal

Child}

* And F denotes the types as in equation (7).

Thus the number of leaves for the TT tree for Java 1.4 is computed as follows:

(9) leaves(TT) = 2 * 2 * 2 * 3 * 2 * (leaves(TCFF) + leaves(TCFNF))

where

* the first five terms represent the tree for the add-on descriptors, again excluding
the branches { Not Final, Final 1.

* the terms containing the leaves for the TCFF and TCFNF trees represent the values
computed in equations (7) and (8) respectively.

Using equation (9), the total number of groups generated by this taxonomy for

Java 1.4 is computed to be 36,864. This is a massive drop from the total groups of classes

computed for Java 1.5. It is interesting to observe how quickly the number of

classifications goes up with just a few extra types, while also noting the increased

complexity possible with the introduction of generic and parameterized types.

32

6. TaxTOOLJ

This chapter describes TaxTOOLJ, the tool developed for cataloging Java classes

using the class abstraction technique described in chapter 5. The tool is composed of

three packages: ClouseauJ_API, TaxCatalogerJ, and TaxRepositoryJ, as shown in Figure

6.1. These packages are described in the following sections.

C1ousauJi AP Ta._ R1epos itory

0
r

Ta _C talogrJ

Figure 6.1 Package Diagram for TaxTOOLJ

6.1 ClouseauJAPI

The ClouseauJ_API provides an interface that allows the TaxCatalogerJ package

to access all the information required (accessibility, visibility, and types of packages,

classes, methods, and fields for the program under consideration) to generate

a cataloged entry. This information is extracted from the classes in a Java application by

using the Reflection facility in Java.

33

The Reflection facility provides access to the information of a class through a

Class object [Arnold et al. 2000], which contains information about every class in the

Java application. Even though class Class is not formally a part of Java Reflection (it

resides in the package java.lang), it is a foundation and a starting point of the reflection

facility. The core reflection API is located in the package java.lang.reflect and includes

three classes Field, Method, and Constructor.

Using Reflection allowed the class descriptors and the majority of the type

families for the nomenclature portion of a tax entry. However, some of the descriptors for

a routine component entry cannot be determined with Reflection alone. This includes

identifying raised and handled exceptions, as well as the types of the local variables of a

routine, also propagated to the nomenclature, along with any descriptors they might

necessitate. For example, if a method for a class creates an instance of Thread as part of

its implementation, the descriptor Concurrent would apply as a consequence. Finding

these additional descriptors and types will require the querying of an abstract syntax tree

for the application, which can be accomplished with tools such as the JDT package of the

Eclipse platform [Eclipse 2004] or Barat [OSTG 2005b]. This is outside of the scope of

this study, and is listed in the future work, however completion of this portion of the tool

will allow additional types to be propagated to the nomenclature makng a class's

categorization a little more precise.

6.2 TaxCatalogerJ

TaxCatalogerJ, shown in Figure 5.3, uses the ClouseauJ-API to access

information used to catalog each class in a Java application, starting with the classes in

34

the global package of the application followed by the class definitions in other packages.

TaxCatalogerJ queries ClouseauJ for the information to generate entries for the

Nomenclature, Attributes, Routines and Feature Classification components. When the

entries for the Attributes and Routines components are generated, the type family parts of

the Nomenclature component entry as well as Feature Classification will be updated. As

noted above, the attribute and routine entries will be completed in a future study. As

TaxCatalogerJ processes the classes, the results are stored in a repository formed in the

TaxRepositoryJ package.

The TaxCatalogerJ package is made up of two classes TaxRunner and

TaxController. TaxRunner serves as a launching point for the tool providing the

directory containing the application to catalog to TaxController. TaxController

then queries ClouseauJ for all the classes underneath this root directory. When the list of

classes is returned, it is passed to a processing function to ensure that the classes are

cataloged appropriately, so that the cataloged class is sure to receive all inherited types.

Originally, the processing of the classes was attempted as a depth first search,

under the assumption that Java does not support multiple inheritance, and thus the only

dependencies of concern were parent - child. However, interfaces in Java, which are a

special type of class, can extend multiple interfaces, achieving multiple inheritance.

Instead, the following less efficient procedure was used. First all the classes in the

application were placed in a list, and sorted by number of parents. Then one iteration

through the list was made where all classes with no parents or having a library class as a

parent were processed, and moved to a processed list. On each subsequent iteration, any

class whose parent was already processed was cataloged and moved to the processed list.

35

This continued until no classes remained in the pending list, at which point,

TaxRepositoryJ contained the full taxonomy for the application.

6.3 TaxRepositoryJ

The TaxRepositoryJ package stores cataloged entries as they are processed

allowing them to then be exported to a file or displayed to the screen. The dependencies

of the classes in the TaxRepositoryJ package are structured hierarchically the same way

they appear in a cataloged entry, as shown in the UML diagram in Figure 6.3. The top

level class is TaxEntry, which contains an instance of the Nomenclature,

Attributes, Routines, and Feature Classification classes. Each of these

sections, except Feature_Classification, may contain one or more component

entries, so each of these classes contains a collection of Component Entrys. The

Feature_Classification class contains a collection of FeatClassEntrys,

which stores specifically the inheritance type and polymorphic type (for routines) of the

features inherited by the cataloged class. The ComponentEntry class declares an

instance of Modifier, and of ListTypes. Internally it stores a list of actual

declarations and signatures for the features it represents.

The Modifier class declares a CoreDescriptor, and an

Addon-Descriptor, but uses these as polymorphic placeholders for their respective

subclasses. CoreDescriptor, and AddonDescriptor provide signatures for

their subclasses to implement, as well as a collection for holding their descriptors. They

both have a subclass for the Class, Attribute, and Routine descriptors for a cataloged

entry. These subclasses store descriptors that are appropriate for what they represent. For

36

example, a CoreClass object may store the descriptor Inheritance-Free, while an

AddonRoutine object could store a Transient descriptor. For each of these six

subclasses, there is an enumerated type that contains the descriptors that apply to it.

These enumerated types are stored in the TaxTypes class, which can be accessed

throughout the package.

The ListTypes class is used to store the type families for a component entry.

It uses a collection of AssociatedTypes to hold these values. The

AssociatedType class stores any variable type, where each of the main variable

types are stored in an enum VarType. For parameterized types, the Varitypes for the

m and n values are stored internally. The VarType enumeration is stored in its own Java

file in order to allow it to be accessed outside the TaxRepositoryJ package.

A future GUI interface could allow easy traversal through the entries, where one

could easily link from a parent entry to a child or vice versa. Additionally, there could be

options to sort and group the entries based on their classification.

37

Feature Properties

Nomenclature

Routines

Component Entry

ListTypes 0.1 Fe classifcation

Modifier 1
CoreDescriptor Addon Descriptor

Core _Class Core_ attribute or-_Routine Addon Class Addon Attribute ddonRoutine

Figure 6.2 Class diagram for TaxRepositoryJ

6.4 Validation of TaxTOOLJ

TaxTOOLJ was validated by testing it with a several small sample applications,

and manually checking the cataloged entries that were generated against the code for the

classes they represented. Additionally, as the applications in the test suite were cataloged,

they were reviewed for errors.

One of the sample applications, Threads, contained the ThreadCount class

used in the illustrative example from section 5.2. The nomenclature component entry

generated by TaxTOOLJ matched the nomenclature of the component entry shown in

38

Figure 5.1, except for the absence of the U type, which is defined within a routine body,

and will require further enhancements to the tool to obtain.

Another sample application was Geometry, a simple application developed

specifically to test the tool. It included classes that would generate all class descriptors,

and types not yet generated by the Threads application. Additionally, many features were

added to exercise specific scenarios within the tool.

Finally, as the applications from the test suite were processed with TaxTOOLJ,

their results were reviewed. The number of class files stored under the application root

was compared with the number of entries generated by the tool to make sure all the

classes had been cataloged. Also, random Java files were opened and checked against

their cataloged entries. Additionally, entries that appeared to be irregular, were

scrutinized in this same manner. As discrepancies were found their cause was tracked

down, and corrected.

39

7. EXPERIMENTS

This chapter describes the experiments performed using TaxTOOLJ. The first

section gives an overview of the process. The next section describes the applications that

were analyzed. Finally, the last section discusses the setup and execution of the

experiments.

7.1 Overview of Approach

The applications chosen to evaluate were taken from several different application

domains including: Compilers, Computer Games, Web Tools, and JDK 1.5 Apps. While

not an actual domain, the JDK 1.5 Apps category is used to separate the Java 1.4 and 1.5

applications, as the number of groups possible changes between these versions of Java.

Most of the test suite is a subset of the test suite used by Brunelle et al. to investigate

different dynamic binding techniques for Java programs [Brunelle et al 2003]. Also

included are the JDT library for Eclipse, the Java libraries for JDK 1.4, and 1.5, and a

sample Java 1.5 application found on www.sourceforge.net. Additional applications fromn

these and other application domains can be analyzed in a future study to add credence to

the results found here and possibly reveal additional insight.

7.2 Description of Test Applications

This section provides information about each of the applications that were

evaluated. Table 7.1 shows which domain each application falls under, the number of

classes in it, and its size on disk. The number of lines of code was not included in these

statistics, because for some of the applications, only the .class files were available.

40

Domain Application Name Classes Size (kb)
Compiler Tools BCEL 373 1,083
Compiler Tools Soot 2094 5,257

Compiler Tools JDT (Eclipse) 4927 25,397
Computer Games FastWars 12 21
Computer Games Humanoid 105 519
Web Tools SiteCompiler 36 69
Web Tools Muffin 131 413
JDK 1.5 Apps Java 1.5 Library 2133 4,271
JDK 1.5 Apps MolEvolve 34 73
JDK 1.5 Apps RabbIT2 121 343

Table 7.1 Specifications of Applications in Test Suite

7.2.1 Compiler Tools

BCEL

BCEL (The Byte Code Engineering Library) allows users to access the Java class

files (bytecode files) for analysis or manipulation, as well as provides the ability to create

new Java class files [Apache 2003]. A typical use would be to read a class file,

manipulate it based on some logic, and create a new class from it, with the new class

available for use within the running application. BCEL is currently used in various

applications, such as compilers, optimizers, obfuscators, bytecode verifiers and analysis

tools, with its most popular use being included in a compiler with the Apache Software

Foundation. It is classified in the Compiler Tools domain, as it is used by other

applications to access and manipulate existing Java programs.

Soot

Soot is a Java optimization framework, which analyzes and manipulates Java

bytecode. Much like BCEL it can be used in a wide variety of applications such as

compilers and optimizers, or as a stand-alone tool for code inspection. There are four

41

different interfaces for Soot (Baf, Jimple, Shimple, and Grimp) each with their own

unique features, which are described at, http://www.sable.mcgill.ca/soot/ [Sable 2005].

Also falling under the Compiler Tools domain, SOOT is one of the larger applications

evaluated containing 1,947 classes and taking up over 5 megabytes of disk space.

JDT

The JDT project provides a set of plug-ins for the Eclipse platform that supplies a

full IDE for developing Java applications, while also allowing access to the infrastructure

of a Java application [Eclipse 2005]. The JDT plug-ins fall into the following categories:

JDT Core, JDT UI, JDT Debug, and JDT APT. JDT Core provides the core functionality

for accessing code within an application, including an AST parser, which likely will be

used to further enhance TaxTOOLJ. JDT UI supplies the user interface for using JDT,

including various views for the Eclipse workbench, code manipulation tools, and a Java

editor. JDT Debug adds debugging support for the JDT project by interacting with the

Java VM. Finally, JDT APT adds support for annotation processing for Java 5.0. Another

Compiler Tool, JDT is the largest application analyzed, containing almost 5000 classes

and taking up about 25 megabytes of disk space.

7.2.2 Computer Games

Fast Wars

From the Computer Games domain, FastWars is an arcade style game written as

a Java applet by Mike Fairbank [Fairbank 2005]. It is a simple hand-eye coordination

game where a player tries to destroy incoming missiles before they explode. The missiles

are green circles appearing on different parts of the screen, which get larger as they

42

approach, and turning red if they hit and explode. The user moves the mouse over a

missile in order to shoot it down. This is a relatively small program consisting of only 12

classes.

Humanoid

Peter Pilgrim provides another arcade style game with Humanoid, another open

source Java application. In this game, the player controls a spacecraft, and attempts to

protect humanoids on a distant planet from alien invaders. While still a small application,

it is significantly larger than FastWars, taking up about half a megabyte of space with

104 classes [Pilgrim 1999].

7.2.3 Web Tools

SiteCompiler

SiteCompiler is a web-authoring tool that assists in the creation and maintenance

of large websites [Barkley 2004]. It features a static template engine that generates

HTML from source files, and helps standardize a website's appearance. Falling under the

Web Tool domain, this is a fairly small application consisting of 35 classes and taking up

only 70kb of space.

Muffin

Muffin is a web filtering application, which can remove cookies, animations,

advertisements, and other unnecessary/unwanted web elements to improve one's online

experience. In addition to the many filters provided, Muffin provides an interface to

allow users to write their own filters [Muffin 2000]. Muffin is also classified as a Web

Tool, and is still fairly small with 71 classes taking 413 kilobytes of space.

43

7.2.4 JDK 1.5 Apps

Java 1.5 Library

J2SE 5.0, whose libraries are contained in JDK 1.5, has added significant

functionality to the Java language. In a push likely rivaling Microsoft's C# language,

Java 1.5's major enhancements include the addition of generic and parameterized types

as well as new language constructs such as the for each statement. While several libraries

are included in the Java runtime environment, only the java library itself (all packages

beginning with "java.") was evaluated in this experiment. In this case, classes in the java

library are considered user-defined, while classes in the other Java libraries are

considered library types. The JDK 1.5 library is easily the largest application in the JDK

1.5 Apps domain taking up over 4 megabytes with 2,133 classes.

MolEvolve

Molevolve is a Java library for running a Genetic Algorithm to model the 3-

dimensional structures of peptide chains from amino-acid sequences [Cyberdemia 2005].

Users can perform various functions and operations from this model, or can specify their

own model. While Molevolve should actually be placed in a scientific domain, for the

purpose of this study, it is being classified under JDK 1.5 Apps in order to compare it

against other JDK 1.5 applications.

RabbIT2

Developed by Olofsson et al., RabbIT is another web proxy application that helps

speed up intemet access over low-speed connections, or when accessing slow websites.

This is accomplished by compressing text and images, eliminating advertising and

44

unnecessary images, caching previously accessed pages, and various other techniques

[Olofsson et al. 2002]. Again this could be grouped with the other Web Tools, but instead

is being compared with other JDK 1.5 applications.

7.3 Execution of Experiments

This section overviews the process of setting up and running the experiments.

First the environment in which the experiments were run is described, and then the

procedure for running the experiments is given.

7.3.1 Environment

Setting up the environment for the experiments consisted of: installing the

cataloging tool on a test server, downloading the applications for the test suite, setting up

the environment, processing the test applications, and storing the results.

The experiments were run on a Dell Dimension 8400, which has a Pentium IV

3.2 Ghz processor and 1 GB of RAM on the Windows XP Professional platform. Using a

fast machine like this, provided a good gauge of how quickly the tool could catalog

applications of various sizes.

The application was originally developed in JCreator, but was modified to run

outside of an IDE, by using batch files to compile and run the program. This allowed the

tool to become portable to any domain. Installing TaxTOOLJ consisted of copying the

application files to a designated directory on the server, along with the batch files, and

defining the classpaths for the applications to catalog in the appropriate batch file.

45

Once the tool was in place, the selected applications were copied to the specified

Test directory, where they would be cataloged from. Each applications was downloaded

from either its corresponding homepage, or from www.sourceforge.net [OSTG 2005a]. In

the TaxRunner class of the TaxController package a script was created, which allowed

the user to specify the application directory under Test to catalog. Additionally, in order

for the Reflection facility to have the necessary access to the class files, the root of each

application to catalog was placed on the classpath as described in the preceding

paragraph.

7.3.2 Procedure

After each application was processed the collection of tax entries created for it

were exported to a file results. txt; then the entries were grouped by classification

keeping a total of the classes included, which were output to a file totals . txt. The

totals file was then imported into Microsoft Excel and sorted in descending order by the

number of classes for each group to rank the groups in order by the most common

classifications. Once in Excel, totals, averages, and percentages were easily computed.

While this sort can later be added to the tool, this was a quick way to order the results.

These results and corresponding analysis are discussed in the next chapter.

The process of grouping the totals for domain and overall results was not able to

be achieved in Excel. While Excel allowed data to be easily sorted, there was no

mechanism to merge identical entries. So additional code was written in the

TaxCatalogerJ package, which allowed result files to be combined. This function read in

the specified result files, and then passed them to the same grouping function described

46

previously to compute the desired totals. The files to group were passed to the function as

Strings in an ArrayList, and then as each result line was processed it was added to a hash.

The hash used the classification string as the key, and accumulated the totals of the

classifications as they were added. Once the totals were computed, they were again

exported to a file and sorted using Excel.

47

8. EVALUATION OF EXPERIMENTS

This chapter evaluates the experiments that were executed. The first section

displays the results, and is followed be a section providing analysis of these results.

Finally, the last section provides additional thoughts on the results and analysis.

8.1 Results

Table 8.1 displays some general statistics regarding the applications that were

tested. The total classes, total groups, average classes per group, and percentage of

classes reduced are given. As the number of classes in an application increased, the

number of groups increased along with the average classes per group due to a higher

chance for redundancy. One exception was Humanoid, which despite using 104 classes,

only had 2 classes per group, which was lower than SiteCompiler's 2.3 classes per group

achieved in 36 classes. For the percentage of total groups, the total groups for an

application were divided by the total groups available based on the version of Java the

application was developed in. Thus, for the applications in the JDK 1.5 Apps domain the

number used for the total groups possible was 230,400, while all the remaining apps used

36,864 for the number of groups available before Java 1.5. Appendix B.1, at the end of

the paper, provides a graph showing what percent of the total classes can be reduced into

the groups identified.

Note that for JDT, only 4748 of the 4927 classes were cataloged, due to a "Heap

out of memory" error that occurred as the tool approached 5000 classes. This problem

was identified as a problem with Java using one ClassLoader for an application by

default, and so all the classes loaded by ClouseauJ_API were never being removed from

48

memory. Since the classes not cataloged are only a small percentage of total classes,

adding them to the results should result in only neglible changes. More memory can be

added to the server to work around the problem, but the underlying issue, creating a

separate ClassLoader for ClouseauJ_API, will be addressed in a future version of the

tool.

In the text to follow, the results of cataloging each application are described, and a

corresponding table with sample results is shown for each. The results are displayed in

the Tables 8.2-8.11, with one table for each application. Each table consists of four

columns: rank, classification, classes, and percent of total. Rank indicates how a group

scored in terms of number of classes it applied to. Classification lists the Nomenclature

classification generated by the tool. Classes displays the number of classes belonging to a

group, and the % of Total indicates what percentage of the total number of classes belong

to this group. The rows of each table give the top three ranked groups along with the

median and lowest ranked group. Since the groups are only sorted by number of classes,

ties are broken randomly. Thus the lowest item, which likely will always have one class,

and possibly the median value will be a random selection of all the groups that have an

equivalent rank. Appendix A contains the complete classification rankings and

nomenclature entries for one sample application (SiteCompiler).

49

Average Percent of Running
Classes / Classes Time

Application Classes Groups Group Reduced (seconds)
BCEL 373 75 5.0 79.9 7

Soot 2094 174 12.0 91.7 13
DT 4748 283 16.8 94.0 76

FastWars 12 10 1.2 16.7 1
Humanoid 105 51 2.1 51.4 5
SiteCompiler 36 16 2.3 63.9 1
Muffin 131 43 3.0 67.2 4
Java 1.5 2133 431 4.9 79.8 13
Library

MolEvolve 34 24 14 29.4 1
RabbIT2 121 64 1.9 47.1 6

Table 8.1 Classification Statistics for each Application

8.1.1 Compiler Tools

The BCEL application is one of the larger applications cataloged taking up over a

megabyte of space and having 371 classes. Its top classification group, as shown in Table

8.2, was (Public) (Serializable) External Child Families L*. This indicates its classes are

accessible outside their package, provide a means for storing themselves to disk, have

parents but no children, and use only library types. This accounted for 86 classes, which

is almost a fourth of all the classes in the application. The next highest classification was

identical with the inclusion of the Add-on descriptor Implements, and accounted for

another 10 percent of classes. The third ranked group adds the P type to the second

category with 22 classes. One quick observation that can be seen here, is that each of the

top three categories includes the External Child descriptor. With these groups equating to

almost 40 percent of the application, it can be seen that the most common classes written

for BCEL extend another class, but are not further subclassed. Also there are 38 classes

50

that fall into a unique category, which is another 10% of the total classes. For example,

the class org.apachebcel.verifier.statics.Pass2Verifier$CPESSC_Visitor is classified as

(Implements) External Child Families P L*.

BCEL

Rank Classification Classes % of Total
I (Public) (Serializable) External Child 86 23.1

Family L*
2 n (Public) (Implements) (Serializable) 36 9.7

External Child Family L*

3 rd (Public) (Implements) (Serializable) 22 5.9
External Child Families P L*

Median (Public) Abstract Inheritance Free Family 2 .5
L*

Lower (Implements) External Child Families P L* 1 .3
Table 8.2 Cataloging Results for BCEL

The results for Soot, are shown in Table 8.3, with the highest ranking group being

External Child Families U* P L* with 252 classes, which, along with the next groups, is

following the running trend of External Child leading the pack. While the top

classification includes primitives, Soot seems to favor user-defined and library types in

the more popular categories. And despite the 2094 total classes, the median category,

(Public) (Final) (Implements) Inheritance Free Family L*, still only holds three classes.

These classes are soot.PrimType, and soot.RefLikeType.

51

Soot

Rank Classification Classes % of Total
1 st External Child Families U* P L* 252 12.0

"(Public) (Final) External Child Families U* 159 7.6
L*

3 r (Public) External Child Families U* L* 141 6.7
Median (Public) (Final) (Implements) Inheritance 3 .1

Free Family L*

Lower Abstract Internal Child Families U* L* 1 .1
Table 8.3 Cataloging Results for Soot

The results for JDT are displayed in Table 8.4. The top result was (Final)

(Implements) Inheritance Free Family U*, containing over 534 classes, while accounting

for less than 20% of the total application. The next group is (Public) External Child

Families U* P L*, and the following group inserts the P type into the second. At the

bottom of the list the class, org.eclipse.jdt.interal.ui.callhierarchy.SearchScopeAction,

adds the Abstract Internal Child Families U* L* classification.

JDT

Rank Classification Classes % o Total

1 st (Final) (Implements) Inheritance Free 534 11.2
Family U*

2 (Public) External Child Families U* P L* 524 11.0

3 rd (Public) External Child Families U* L* 204 4.3

Median (Public) (Final) External Child Families P 3 <.1
L*

Lower Abstract Internal Child Families U* L* 1 <.1
Table 8.4 Cataloging Results for JDT

52

8.1.2 Computer Games

FastWars top classifications were (Public) (Implements) (Serializable) External

Child Families U* P L*, and External Child Families U* L* as shown in Table 8.5.

These however, were only comprised of two classes each with HighScoresPanel and

FastWars falling into the first category, while FastWars$2 and FastWars$1 are in the

second. As the entire application only contained 16 classes, the results shown mostly give

a sampling of the types of classes in the application. It can be noted that the top groups

again possess the External Child descriptor. FastWars uses a good variety of variable

types and most of the classes fall into a distinct group with only two groups containing

more than one class.

Table 8.6 displays the top ranking classification for Humanoid as (Final)

(Implements) Inheritance Free Family U*, indicating that these classes cannot be

subclassed and they implement an interface. Moreover, they have no parent other than

Object and use all user-defined types. As they are not Public, these classes can only be

instantiated within their own package. The classes in the next set of groups are Public

and have a parent but no children, while including primitives and user-defined types. The

third group is like the first without the Final descriptor, and adding library types. These

top three account for 34% of the classes in the application. A sample category from the

lower ranks is (Public) (Interface) Abstract Inheritance Free Family L* for class

xenon.gamekit.ImageRenderer.

53

Fast Wars

Rank Classification Classes % of Total
1 st (Public) (Implements) (Serializable) 2 16.7

External Child Families U* P L*
2 External Child Families U* L* 2 16.7
3 r (Public) External Child Families P L* 1 8.3
Median (Implements) Inheritance Free Families U* 1 8.3

L*

Lower (Serializable) External Child Family U* 1 8.3
Table 8.5 Cataloging Results for FastWars

Humanoid

Rank Classification Classes % of Total

1 St (Final) (Implements) Inheritance Free 14 13.3
Family U*

2 n (Public) External Child Families U* P L* 13 12.4

3 rd (Implements) Inheritance Free Families U* 9 8.6
L*

Median (Public) (Implements) Inheritance Free 1 1.0
Families P L*

Lower (Public) (Interface) Abstract Inheritance 1 1.0
Free Family L*

Table 8.6 Cataloging Results for Humanoid

54

8.1.3 Web Tools

SiteCompiler's top group was (Implements) Inheritance Free Families U* L* used

in 12 classes, which represents 33.3% of the 36 classes in the application. These classes

have no parent, but implement an interface, while using user-defined and library types.

The next two groupings are both external children and, along with the other top

groupings, avoid using primitive types, relying on user-defined and library types instead.

The median entry (Public) (Interface) (Implements) Abstract Inheritance Free Family L*

applied to just one class, info.barkley.sitecompiler.StackingStringMap. Again, over half

of the groups cataloged contain only 1 class, showing a good amount of uniqueness

among classes. These findings are shown in Table 8.7.

SiteCompiler

Rank Classification Classes % of Total

1T (Implements) Inheritance Free Families U* 12 33.3
L*

2 External Child Families U* L* 6 16.7

3 r (Public) (Serializable) External Child 3 8.3
Family L* _

Median (Public) (Interface) (Implements) Abstract 1 2.8
Inheritance Free Family L*

Lower (Public) Inheritance Free Families U* P L* 1 2.8
Table 8.7 Cataloging Results for SiteCompiler

In Table 8.8 Muffin's top classification results are shown, with the top group

being (Public) (Implements) Inheritance Free Families U* L* taking up over 20% of the

application. Two of the top three entries had the descriptors Public and Inheritance Free,

while each one contained the Implements descriptor. This shows that most classes in

Muffin had no parents but did fulfill the requirements of an existing interface. The most

55

common types were user-defined and library. Additionally, the top three descriptors

account for over 40% the application, so there is a fair amount of commonality in the

types of classes being developed here. org.doit.muffin.Key was one of the many classes

in a group by itself, in this case Inheritance Free Family L*.

Muffin

Rank Classification lasses % of Total

1st (Public) (Implements) Inheritance Free 27 20.6
Families U* L*

2n (Public) (Implements) (Serializable) 22 16.8
External Child Families U* L*

3 rd (Public) (Implements) Inheritance Free 15 11.5
Family U*

Median (Public) (Serializable) External Child 1 1.4
Family L*

Lower Inheritance Free Family L* 1 1.4
Table 8.8 Cataloging Results for Muffin

8.1.4 JDK 1.5 Apps

Table 8.9 shows the results for cataloging the Java 1.5 library, where the most

common type of class is (Public) (Serializable) External Child Families U* P, The next

highest category is (Implements) Inheritance Free Family U*, followed by (Final)

External Child Families U* P. The classifications for Java 1.5 are fairly distributed with

the top result only taking up 10.1% of all the classes. Additionally, the median group had

only 1 class, which is less than a tenth of a percent of all the classes. The median selected

here is (Public) External Child Families U* P L*, which came from the

java.util.jar.JarInputStream class. Interestingly, this group was one of the more popular

overall, scoring third in the Compiler Tools domain, second in Web Tools, and third

56

overall, yet only had one entry in the Java library. Most likely, this is due to the fact that

when cataloging Java, all classes under the "java." package were considered user-defined.

Java 1.5 Library

Rank Classification Classes of Total

1 St (Public) (Serializable) External Child 216 10.1
Families U* P

2 (Implements) Inheritance Free Family U* 125 5.9

3r (Final) External Child Families U* P 62 2.9
Median (Public) External Child Families U* P L* 1 <.1
Lower (Implements) Abstract Inheritance Free 1 <.1

Parent Families U* P
Table 8.9 Cataloging Results for Java 1.5 Library

As a small application, MolEvolve's top result contained only 4 classes, yet took

up 12% of all classes. This was (Implements) Inheritance Free Families U* L* for

classes: com.cyberdemia.molevolve.gui.MolevolveFrame$4, MolevolveFrame$3,

MolevolveFrame$2, and MolevolveFrame$1. As seen in Table 8.10, the top three

classifications all include the Inheritance Free descriptor. However, it is not surprising

that there is little reuse of classes in such a small application. As a JDK 1.5 app, various

parameterized types, such as L<U*>, are seen throughout the entries.

MolEvolve

Rank Classification Classes % of Total

1 st (Implements) Inheritance Free Families U* 4 11.8
L*

(Public) (Implements) Inheritance Free 3 8.8
Families U* L<U*>* L*

rd (Public) (Interface) Abstract Inheritance 2 5.9
Free Families U* L* L<U*>*

Median (Public) (Implements) (Serializable) 1 2.9
Inheritance Free Families P L<U*>* L*

Lower (Public) Inheritance Free Fami L* 1 2.9
Table 8.10 Cataloging Results for MolEvolve

57

RabbIT2's most popular class characteristics were Public, Inheritance Free, and

External Child while all the traditional Java types are used. Table 8.11 lists the top entry

as (Public) (Implements) Inheritance Free Families U* L*, which is the second ranked

entry of Muffin, showing some consistency between two very similar applications. In the

lower rankings were the inclusion of parameterized types and generic types, showing this

application has started taking advantage of some of the new features introduced in Java

1.5. For example, the median entry, (Public) Inheritance Free Families U* P L*

L<U*> *, for class rabbit.htmLHTMLBlock uses parameterized types of the form

L<U*>*.

RabbIT2

Rank Classification Classes % of Total

1st (Public) (Implements) Inheritance Free 15 12.4
Families U* L*

2 (Implements) Inheritance Free Families U* 8 6.6
L*

3 rd (Public) (Serializable) External Child 7 5.8
Families P L*

Median (Public) Inheritance Free Families U* P L* 1 .8
L<U*>*

Lower (Public) (Interface) Abstract Inheritance 1 .8
Free Families U* P L*

Table 8.11 Cataloging Results for RabbIT2

8.2 Analysis

The results of the applications in each domain were combined to find the results

for each domain. Table 8.12 lists general statistics on he combined results for each

domain. Note that the average classes/group only increased from the application specific

58

average for the WebTools domain, and that increase was nominal. Tables 8.13 - 8.17 are

structured identically to the result tables in the last section, but display rankings at the

domain level. Appendix B.2 displays a graph of number of groups to classes reduced for

each domain.

Percent of
Avg Classes

Domain Classes Groups Classes/Group Reduced
Compilers 7215 361 20.0 95.0
Computer 117 56 2.1 52.1
Games

Web Tools 167 53 3.2 68.3
JDK 1.5 Apps 2288 484 4.7 78.8

Table 8.12 Classification Statistics By Domain

Table 8.13 shows the highest rank group for the Compilers domain was (Public)

External Child Families U* P L*, which was the second ranked group for JDT, and fairly

distributed across the other applications. The next group, (Final) (Implements)

Inheritance Free Family U*, comes from JDT's top rank, while External Child Families

U* P L* is Soot's top ranked group. The Compiler Tools domain shows The fact that the

number of classes per group jumps up from averaging under 10 up to 20 percent when

combined.

The top classification in the Computer Games domain was (Final) (Implements)

Inheritance Free Family U*, as shown in Table 8.14. This is the highest ranked group for

Humanoid, the larger of the games evaluated. No additional classes are added for this

category, and just one gained for the second and third categories for FastWars. Again the

59

median value contains a low number of classes in, leading to another domain with little

standardization in types of classes.

Compiler Tools

Rank Classification Classes % of Total
1St (Public) External Child Families U* P L* 593 8.2
2 (Final) (Implements) Inheritance Free Family 534 7.4

U*

3 External Child Families U* P L* 365 5.1
Median (Implements) Inheritance Free Family P 3 1

Lower (Implements) Abstract Inheritance Free 1 >.1

Parent Families U* P

Table 8.13 Cataloging Results for Compiler Tools

Computer Games

Rank Classification Classes % of Total

1 st (Final) (Implements) Inheritance Free Family 14 12.0
U*

2 nd (Public) External Child Families U* P L* 13 11.1

3 rd (Implements) Inheritance Free Families U* 10 8.6
L*

Median (Public) (Has Inner) (Serializable) External 1 .9

Child Families U* P L*

Lower (Public) (Implements) Inheritance Free 1 .9
Family L*

Table 8.14 Cataloging Results for Computer Games

Table 8.15 shows the results for WebTools, which are dominated by the bigger

application, Muffin. The top three groups match Muffin's top three entries. Overall the

average classes/group has a slight improvement over either application's score, but the

median category still holds only 1 class. This makes apparent that there is little

commonality between the classes of these two applications.

60

Web Tools

Rank Classification Classes % of Total
1 st (Public) (Implements) Inheritance Free 28 16.8

Families U* L*
2 n (Public) (Implements) (Serializable) External 22 13.2

Child Families U* L*
3r (Public) (Implements) Inheritance Free 15 9.0

Familt U
Median (Interface) Abstract Inheritance Free Families 1 .9

U*P
Lower (Public) (Implements) (Serializable) External 1 .9

Child Family U *
Table 8.15 Cataloging Results for WebTools

The combined results for the JDK 1.5 Applications are shown in Table 8.16. The

top results come almost entirely from the JDK 1.5 library. This is not surprising, given

the size of the Java libraries compared to the other small applications tested for this

domain. The average classes per group stays under 5, mostly being pulled up by the Java

1.5 library, which again shows a lack of commonality of class characteristics in this

domain.

JK1.5

Rank Classification Classes % of Total
$s (Public) (Serializable) External Child 216 9.4

Families U* P

2 "d (Implements) Inheritance Free Family U* 127 5.6

3 rd (Final) External Child Families U* P 62 2.7
Median (Public) Generic External Child Families U* 1 <.1

U<A*>* PA*

Lower (Implements) Abstract Inheritance Free 1 <.1
Parent Families U* P

Table 8.16 Cataloging Results for JDK 1.5

61

The overall results combines the results for all the Java 1.4 applications, while the

overall results for Java 1.5 are already given in the Java 1.5 App's domain. These results

finally seem to buck the trends, with the top groups being fairly distributed across the

applications, and there is an improvement in the reuse of groups among applications.

Table 8.18 shows that the average classes per group for all applications was higher than

the highest individual application. In Table 8.19, which contains the combined results of

all applications, it can be seen that the first and third results are distributed across most of

the applications. Only the second entry came almost exclusively from the biggest

application, JDT. Appendix B.3 shows the number of groups versus classes reduced for

all Java 1.4 applications.

Overall Classes Groups Average Classes/Grou
7499 380 19.7

Table 8.17 Overall Classification Statistics (JDK1.4)

Overall
Rank Classification Classes % of Total
1st (Public) External Child Families U* P L* 608 8.1

2 n (Final) (Implements) Inheritance Free 548 7.3
Family U*

3 rd External Child Families U* P L* 369 4.9
Median (Public) (Has Inner) Abstract Inheritance 3 >.1

Free Parent Families U* P L*

Lower (Implements) Abstract Inheritance Free 1 >.1
Parent Families U* P

Table 8.18 Overall Cataloging Results (JDK 1.4)

62

8.3 Discussion

8.3.1 Observations and Questions

The most striking observations from these results are the lack of commonality

between the class characteristics being developed, and the popularity of the External

Child descriptor. The addition of more applications for these domains, and the inclusion

of additional domains, may strengthen or change these findings.

The most surprising result was the uniqueness of the types of classes being

developed. This clearly exhibits the complexity of software systems being developed, and

the need for specific solutions to accommodate various requirements. This also may have

implications in the effectiveness of software engineering techniques, including the use of

patterns, to make software development more standard. This may also show a difference

in programming techniques taught to and utilized by different developers, or may just be

an indication of the creative uniqueness found in different individuals and organizations.

Another interesting observation was the prevalence of the External Child

descriptor. It is found in all the top overall rankings and the majority of all domain and

individual rankings. Most often if it is absent, it is replaced by the Inheritance Free

descriptor. This shows that the majority of classes developed are not inherited from

within their application. Most commonly, a class will inherit from a library type, and not

be further subclassed. Does this mean that Java developers do not consider inheritance

often when writing classes? Or does it indicate a lack of time or communication where

classes intended to be further subclassed, have not yet attained this goal. Or perhaps,

63

could the vast libraries of classes available already provide the majority of functionality

that needs to be reused?

The Public descriptor was also fairly common among classes, indicating that they

can be accessed from any other Java class. The fact that an interface for an application

usually accounts for only a small percentage of the classes, implies that this descriptor is

not needed for the majority of these classes. This may be an indication of lack of

attention given to the security of an application, time dedicated to development, or

possibly knowledge of the accessibility options.

The most common types used in the higher ranking groups were user-defineds

followed by library types. Primitives were also found regularly throughout, but may often

be substituted with appropriate wrapper types. Only one of the applications evaluated

took advantage of the new parameterized and generic types made available in Java 1.5.

Surely as more applications migrate to Java 1.5, and new ones are developed with it these

types should become more widespread.

8.3.2 Application to Implementation-Based Testing

As new implementation-based testing techniques (TBTTs) continue to address

different aspects of the OO testability problem, this is the first study that combines all the

characteristics of classes in a Java application to analyze during testing. For example, the

IBTT by Harrold et al. generates all def-use pairs for variables of primitive types that are

local to the class [Harrold et al 1992]. These variable definitions can be found by pulling

out all the cataloged entries where the Nomenclature includes type family P. The IBTT

by Souter and Polock generates test triples for variables that are references to objects and

64

do not escape a given scope [Souter and Polock 2000]. TaxTOOLJ can identify the tax

entries with U* and L* types in the Nomenclature, and compare their actual declarations

to the actual declarations for the Routine and Attribute component entries to identify the

scope of the variables. The ability to find local routine variable will be made available in

a future version of the tool. The IBTTs by Sinha and Harrold and Fu et al. generate test

tuples for variables in exception handling constructs [Sinha and Harrold 1999; Fu et al.

2004]. TaxTOOJ can identify the routines which handle exceptions by extracting the

Routines with the descriptor Exception-H. Again, identifying routines that handle

exceptions will be made possible with future enhancements to the tool.

Furthermore, Clarke and Malloy have developed an algorithm for mapping

implementation-based testing techniques to a class under test using the taxonomy of 00

classes [Clarke and Malloy 2005]. This algorithm can be used for the IBTTs described

here and many more, providing a means for using the taxonomy of Java classes to

identify suitable testing techniques for Java classes in an application under test. For

example, consider how the data flow technique by Harrold et al. would map to the top

ranked classifications in this study. The top group, (Public) External Child Families U* P

L*, would find this technique suitable because this technique works with variables of

primitive types, and this groups nomenclature includes the P type family. This identifies

608 classes for where this technique can be applied. On the flipside, the second group,

(Final) (Implements) Inheritance Free Family U*, does not include the P type family, so

Harrold's technique would not be usable on the 548 classes in this group. Rapidly

identifying the classes appropriate for a testing technique in this manner, can significantly

improve a test effort's efficiency.

65

9. Conclusion and Future Work

This study involved extending the taxonomy of 00 classes for use with the Java

language, developing TaxTOOLJ, the tool for categorizing Java classes based on this

taxonomy, and evaluating several Java applications using TaxTOOLJ. The applications

evaluated were both large and small and from various domains. The most significant

result identified was the lack of commonality among classes both within a given domain

and overall, leaving possible implications to the success of standardization efforts. Also

the prevalence of the Public descriptor among highly ranked groups, may suggest a lack

of focus on security issues for these Java applications. Furthermore, it was observed that

most classes developed were not further subclassed within an application, while the

majority did inherit from an existing library type. Additionally, testing of applications

from these domains and others is necessary to strengthen these results.

This tool presented in this study, extracts the characteristics of Java classes to

provide a foundation for supporting implementation-based testing efforts for the Java

language. The information generated can be used to map Java classes to the most suitable

implementation-based testing techniques for them [Clarke and Malloy 2005].

Additionally, this study has paved the way for additional research in this area including

identifying defect-prone classes, and measuring the testability of a class based on its

combination of characteristics. Utilizing the classifications generated by the taxonomy in

these ways, could significantly improve the effectiveness and efficiency of a testing

effort.

The next phase of this tool will be to complete cataloging the routine and attribute

entries for tax entries including finding additional descriptors and types which require the

66

querying of an abstract syntax tree. This can be accomplished with tools such as the JDT

package of the Eclipse platform [Eclipse 2004] or Barat [OSTG 2005b], and would also

allow additional types to be propagated to the nomenclature making a classes

categorization a little more precise. Also, the memory limitation caused by the

ClassLoader problem will be addressed, along with adding additional memory to the test

machine, in order to allow larger applications to be cataloged.

Many additional empirical studies can be based on this work, including using this

tool to relate the occurrence of faults to the properties of the features in a class, and

seeing if the testability of a class can be gauged based on its characteristics. Another

study could be to analyze the types of classes being developed by less and more

experienced developers or students. Additionally, more applications from the domains

presented and other application domains can be analyzed to add credence to the results

found here and possibly reveal additional insight.

67

LIST OF REFERENCES

Apache Software Foundation. 2003. BCEL. http://jakarta.apache.org/bcel/.

Arnold, K., Gosling, J. and Holmes, D. 2000. The Java Programming Language, Third
Edition. Addison Wesley.

Barkley, A. 2004. barkley.info - SiteCompiler.
http://www.barkley.info/andrew/technology/sitecompiler.html.

Beizer, B. 1990. Software Testing Techniques, Second Edition. Van Nostrand Reinhold.

Binder , R. V. 2000. Testing Object-Oriented Systems. Addison-Wesley.

Briand, L. C., Daly, J. W., and J. K. Wst. 1999. A unified framework for coupling
measurement in object-oriented systems. IEEE Trans. Softw. Eng 25, 1 (January), 91-
121.

Bruegge, B. and Dutoit, A. H. 2004. Object-Oriented Software Engineering Using UML,
Patterns, and Java. Pearson Prentice Hall.

Brunelle, P., Merlo, E., and Antoniol, G. 2003. Investigating java type analyses for the
receiver-classes testing criterion. In Proceedings of the 1 4th International Symposium on
Software Reliability Engineering. IEEE.

Bruntink, M. and van Deursen, A. 2004. Predicting class testability using object-oriented
metrics. In Proceedings of SCAM '04. IEEE, 136-145.

Clarke, P. J. 2003. A taxonomy of classes to support integration testing and the mapping
of implementation-based testing techniques to classes. PhD thesis, Clemson University.
August.

Clarke, P. J. and Malloy, B. A. 2005. A taxonomy of oo classes to support the mapping of
testing techniques to a class. Journal of Object Technology 4, 5 (July).

Clarke, P. J., Malloy, B. A., and Gibson, P. 2003. Using a taxonomy tool to identify
changes in 0 software. In Proceedings of 7th European CSMR. IEEE, 213-222.

Crowther, D. C. and Clarke, P. J. 2005. Examining software testing tools. Dr Dobbs

Journal 373, (June), 26-33.

Crowther, D., Babich, D., Clarke, P. J. 2005. A class abstraction technique to support the

analysis of java programs during testing. In Proceedings of the 3rd ACIS International

68

Conference on Software Engineering Research, Management and Applications (to
appear). IEEE Computer Society Press.

Cyberdemia Research and Services. 2005. Molevolve.
http://www.cyberdemia.com/products/molevolve.html.

Dustin, E. 2003. Effective Software Testing. Addison-Wesley.

Eclipse Foundation. 2004. Eclipse Java Development Tools.
http://www.eclipse.org/dt/index.html.

Edelstein, 0., Farchi, E., Nir, Y., Ratsaby, ., and Ur, S. 2002. Multithreaded java
program test generation. IBM Systems Journal 41, 1, 111-125.

Fairbank, M. 2005. FastWars. http://www.fastwars.com.

Fu, C., Ryder, B. G., Milanova, A., and Wonnacott, D. 2004. Testing of Java web
services for robustness. In Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 23-24.

Harrison, R., Counsell, S., and Nithi, R. 1997. An overview of object-oriented design
metrics. In 8th International Workshop on Software Technology and Engineering
Practice. IEEE, 230-237.

Harrold, M. J., McGregor, J. M., and Fitzpatrick, K. J. 1992. Incremental testing of
object-oriented class structures. In Proceedings of the 14th International Conference on
So are Engineering. ACM, 68-80.

Harrold, M. J. and Rothermel, G. 1994. Performing data flow testing on classes. In
Proceedings of the 2nd ACM SIGSOFT Symposium on Foundations of Software

Engineering. ACM, 154-163.

IEEE/ANSI Standards Committee. 1990. Std 610.12-1990.

Kung, D., Lu, Y., Venugopalan, N., Hsia, P., Toyoshima, Y. Y., Chen, C., and Gao, J.
1996. Object state testing and fault analysis for reliable software systems. In Proceedings
of the 7th International Symposium on Reliability Engineering. IEEE, 239-242.

Matzko, S., Clarke, P., Gibbs, T. H., Malloy, B. A., Power, J. F., and Monahan, R. 2002.
Reveal: A tool to reverse engineer class diagrams. In Proceedings of the 40th
International Conference on Tools Pacific. ACM, 13-21.

McGregor, J. D. and Sykes, D. A. 2001. A Practical Guide To Testing Object-Oriented

Software. Addison-Wesley.

69

Meyer, B. 1997. Object-Oriented Software Construction. Prentice Hall PTR.

Muffin. 200. Muffin World Wide Web Filtering System. http://muffin.doit.org/

Olofsson, R., Widlert, F., La Torre, A., Andersson, H., Odling, N., Carlsson, V.,
Blomqvist M., and Lofstedt L. 2002. RabbIT proxy for a faster web.
http://www.khelekore.org/rabbit/.

OSTG (Open Source Technology Group). 2005. SourceForge.net.
http://www.sourceforge.net.

OSTG (Open Source Technology Group). 2005. SourceForge.net: Project Info - Barat.
http://sourceforge.net/projects/barat/.

Pilgrim, P. 1999. Humanoid Video Arcade Game.
http://www.xenonsoft.demon.co.uk/humanoid/humanoid.html.

Sebesta, R. W.2004. Concepts of Programming Languages. Addison Wesley Longman,
Inc.

Sinha, S. and Harrold , M. J. 1999. Criteria for testing exception-handling constructs in
java programs. In Proceedings of the International Conference on Software Maintenance
(August). IEEE, 348-347.

Sable Research Group. 2005. Soot: A java optimization framework.
http://www.sable.mcgill.ca/soot/.

Souter, A. L. and Pollock, L. L. 2000. OMEN: A strategy for testing object-oriented
software. In Proceedings of ISSTA. ACM, 49-59.

Stroustrup, B. 2004. The C++ Programming Language, Special 3rd Edition.. Addison
Wesley.

Sun Microsystems, Inc. 2005. Core java J2SE 5.0.
http://ava.sun.com/j2se/1.5.O/index.jsp.

Younessi, H. 2003. Managing software defects in an object-oriented environment.

Defense Software Engineering, 13-16.

70

APPENDICES

7

Appendix A.1 Ranking of Groups for SiteCompiler

Rank Classes Classification
1 12 (Implements) Inheritance Free Families U* L*
2 6 External Child Families U* L*
3 3 (Public) (Serializable) External Child Family L*
4 2 (Public) (Has Nested) (Interface) Abstract Inheritance Free Family L*
5 2 (Public) (Interface) Abstract Inheritance Free Family NA
6 1 (Public) (Final) External Child Families U* P L*
7 1 External Child Families U* P L*
8 1 (Public) (Interface) (Implements) Abstract Inheritance Free Family L*
9 1 (Public) (Has Nested) (Interface) Abstract Inheritance Free Family NA

10 1 (Implements) Inheritance Free Family U*
11 1 Inheritance Free Families U* L*
12 1 (Public) (Implements) Inheritance Free Families U* L*
13 1 (Public) (Serializable) Internal Child Family L*
14 1 (Public) (Final) (Has Nested) Inheritance Free Families U* P L*
15 1 (Public) Inheritance Free Parent Families U* P L*
16 1 (Public) Inheritance Free Families U* P L*

72

Appendix A.2 Nomenclature Cataloged Entries for SiteCompiler

Class Name: info.bark ey.sitecompiler.StringMap$KeySet$Iterator
--
Nomenclature:
(Public) (Interface) Abstract Inheritance Free Family NA

Class Na-e: info. barkley.sitecompiler.PageProcessor
-- -----------

Nomenclature:

(Public) (Final) External Child Farnilies U* P L*

Class Name: info.barkley.sitecompiler.PageProcessorxcetio

--

Nomenclature:
(Public) (Serializable) External Chil U*y L*

Class Name: info.barkley.sitecompiler.SiteCocpilerGi

Nomenclature:
(Public) Inheritance Free Families U* P L*

Class Name: info.barkley.sitecompiler.HastackingStringa

Nomenclature:
(Public) (Implements) Inhertance Free Families U* L*

Class Name: info.barkley.sitecompiler.Stac gStringMap

Nomenclature:
(Public) (Interface) (Implements) Abstract Inheritance Free Family L*

Class Name: info.barkley.sitecompiler.SiteCompilerGui$14

Nomenclature:
External Child Families U* P L*

73

Class Name: info.barkley.sitecompiler.SiteCompilerGui$13
--
Nomenclature:

External Child Families U* L*

--
Class Name: info.barkley.sitecompiler.SiteCompilerGui$12

--

Nomenclature:

(Implements) Inheritance Free Family U*

--

Class Name: info~barkley sitecompiler.SiteCompilerGui$ 11

Nomenclature:

(Implements) Inheritance Free Families U* L*

Class Name: info barkley~sitecompiler.SiteCompilerGui $10

Nomenclature:
External Child Families U* L*

Class Name: info.barkley sitecompiler.SiteCompiler$FileList$Iterator

Nomenclature:

(Public) (Interface) Abstract Inheritance Free Family NA

Class Name: info.barkley.sitecompiler.SiteCompiler

Nomenclature:

(Public) (Final) (Has Nested) Inheritance Free Families U* P L*

Class Name: info~barkley sitecompiler.PageModel

Nomenclature:
(Public) Inheritance Free Parent Families U* P L*

Class Name: info.barkley.sitecompiler.SiteCompiler$4

74

Nomenclature:
(Implements) Inheritance Free Families U* L*

Class Name: info.barkley.sitecompiler.SiteCompiler$3
--
Nomenclature:
(Implements) Inheritance Free Families U* L*

Class Name: info.barkley.sitecompiler.SiteCompiler$2
--
Nomenclature:
(Implements) Inheritance Free Families U* L*

Class Name: info.barley.sitecompiler.SiteCompileroui$9

Nomenclature:
(Implements) Inheritance Free Families U* L*

Class Name: info.barkley.util.NestedException

Nomenclature:
(Public) (Serializable) Internal Child Family L*

Class Name: info.barkley.sitecompiler.SiteCompiler$I

Nomenclature:
(Implements) Inheritance Free Families U* L*

Class Name: info.barkley.sitecompiler.SiteCompilerGui$8

Nomenclature:
External Child Families U* L*

Class Name: info.barkley.sitecompiler.SiteCompiler$Configuration

Nomenclature:
Inheritance Free Families U* L*

75

Class Name: info.b kley.sitecompiler.SiteCompilerGui$7
--
Nomenclature:
(Implements) Inheritance Free Families U* L*

Class Name: info.bakey.sitecompiler.SiteCompilerGui$6
--

Nomenclature:

(Implements) Inheritance Free Families U* L*

Class Name: info.barkley.sitecompiler.SiteCompilerGui$5

--

Nomenclature:

External Child Families U* L*

Class Name: info.barkley.sitecompiler.SiteCompilerGui$4

--

Nomenclature:
External Child Families U* L*

Class Name: info ,barkley.sitecomiler.Hash~tackingString ap$2

Nomenclature:

(Implements) Inheritance Free Families U* L*

Class Name: info.barkley.sitecompiler.SiteCompilerGui$3

Nomenclature:
(Implements) Inheritance Free Families U* L*

Class Name: info.barkley.sitecompiler.Hashtackingtring ap$1

Nomenclature:
(Implements) Inheritance Free Families U* L*

Class Name: info.barkley.sitecompiler.SiteCompilerGui$2

76

Nomenclature:
(Implements) Inheritance Free Families U* L*

Class Name: info.barkley.sitecompiler.SiteCompilerGui$1

Nomenclature:
External Child Families U* L*

Class Name: info.barkley.sitecompiler.SiteCompiler$FileList
--
Nomenclature:
(Public) (Has Nested) (Interface) Abstract Inheritance Free Family NA

Class Name: info.barkley.sitecompiler.StringMap$KeySet

Nomenclature:
(Public) (Has Nested) (Interface) Abstract Inheritance Free Family L*

Class Name: info.barkley.sitecompiler.PageModelException

Nomenclature:
(Public) (Serializable) External Child Family L*

Class Name: info.barkley.sitecompiler.StringMap

Nomenclature:
(Public) (Has Nested) (Interface) Abstract Inheritance Free Family L*

Class Name: info.barkley.sitecompiler.SiteCompilerException

Nomenclature:
(Public) (Serializable) External Child Family L*

77

Appendix B.1 Classes Reduced Application

Vail,

:

i

i '

t'

s

78

- i B.2 Classes Reduced Domain

i

t

t.

."ii(,i efS '" i :%4 ,+r ..

79

Appendix B.3 Class Breakdown / Overall

80

	Florida International University
	FIU Digital Commons
	7-29-2005

	Analyzing characteristics of Java classes as related to implementation-based testing
	David C. Crowther
	Recommended Citation

	tmp.1481661329.pdf.y6ZZf

