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ABSTRACT F THE THESIS

SECURE POWER GRID INFRASTRUCTURE SIMULATION AND

TEST-BED SYSTEM CREATION

by

Nelson Cristaldo

Florida International University, 2007

Miami, Florida

Professor Osama Mohammed, Major Professor

This thesis describes the design and construction of the test-bed system as well as its

implementation to simulate the distributed control scheme. Some important elements of

the system incorporate flexible power system network hardware and a data acquisition

(DAQ) system to evaluate the issues that could trigger cascaded failures.

The objective of this research was to create an integrated simulation environment that

represents the power system devices, the control, the protection, and the communication

subsystems in the same simulation environment. We have utilized this simulator to

conduct system studies and evaluate the interaction between power system components

under steady-state and transient operation. The results of these studies have been used to

enhance the system's ability to identify, and respond to the system's dynamic transients;

improving the survivability and robustness of the power system during and after a

disturbance by utilizing distributed control strategies. Experiments demonstrated in this

thesis show the applicability of the developed simulator to conduct system studies and to

evaluate the proposed distributed control infrastructure. The results show the advantages

of utilizing distributed control and the impact in the system security and reliability.
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Chapter 1

Introduction

1.1 Literature Review

Cascading failures in power system networks cause blackouts, which often lead to

severe social and economic consequences. Cascading failures are usually initiated by a set

of equipment failures that cause operating limit violations.

It is often very difficult to understand what really causes a cascading failure; although

some general indications are determined. For example; the probability of a cascading event

increases as the transmission system loading increases [1].

A well know example of transmission overload that caused a cascading failure is the

U.S. 1965 Northeastern blackout; where, a faulty relay setting on a line between Niagara

and Toronto tripped. This occasioned the power to shift to three parallel lines, which

rapidly became overloaded, triggering other relay actions. The excess generated power at

Niagara was immediately sent to New York State, overloading additional lines and

resulting in a cascaded failure [2]. The consequences of blackouts like this one and others

can become very severe as shown in Table 1.1 [3].

Throughout the history of blackouts in the U.S., cascading failures have reshaped the

power system regulation and technology. For example; the 1965 blackout resulted in the

creation of the North American Electric Reliability Council (NERC). After the 1977

failure, engineers developed the "N-1" reliability criterion that requires systems to be

operated so as to withstand all single contingencies (i.e. one line de-energized, one

generator unit outage, line-ground short circuit); this reliability criterion was then adopted

by the NERC. In the aftermath of the 2003 blackouts that affected the northeastern of the
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U.S. and other tied regions, renewed attention has been focused on maintaining the highest

level of reliability and security in the power system operations response to these events.

Table 1.1 - Several large scale cascading failures (NERC)

DATE Location Consequences

9 Nov. 1965 Northeaster U.S., 30,000,000 customers (20,000 MW) interrupted.
Ontario

9,000,000 customers (6,000 MW) interrupted.
13 July 1977 New York City Widespread looting and chaos. Police made 4000

arrests.

2 July 1996 Western U.S. 2,000,000 customers (11,850 MW) interrupted.

3 July 1996 Western U.S. The disturbance from July 2 reoccurred.

10 Aug. 1996 Western U.S. 30,000,000 customers (20,000 MW) interrupted.

2 June 1998 U. cetral 152,000 customers (950 MW) interrupted.

Canada

Nov. 1988 to 29 large cascading failures over 15 years-1.9 per

June 2003 Western India year. Millions of customers interrupted in most
cases.

Midwestern and 50,000,000 customers interrupted. Estimates of the

14 Aug. 2003 Northeastern US, social costs range from $6 billion (Graves, 2003) to
Southeastern $10 billion (ICF, 2003). Massive traffic jams in New
Canada York City.

57,000,000 customers interrupted. At least 5 deaths
27 Sept. 2003 Italy resulted. 30,000 passengers stranded in trains for

hours.

The most recent large scale failures in the electrical grid systems have revealed

weaknesses in the control infrastructures, operating procedures and, in some cases, detailed

understanding of the system dynamic response to an initial minor disturbance.

The results of these recent failures have reshaped many current ventures and redirected

future focus of research in the broad area of electricity grid infrastructure development,
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insertion of new technologies to the grid, advanced control application, and increased

reliability and security measures for the future electric system.

Some specific research focuses on this new trend are the development of custom

microgrids, adaptive islanding, and integration of different types of distributed generation

units into the electrical grid. Also the developments of high fidelity modeling for

simulation and hardware in the loop, and the implementation of collaborative networks and

intelligent agents in addition to the application of Flexibles AC Transmission System

(FACTS) devices have become important.

The motivation for this thesis is based on the concept of Secure Power Grid

Infrastructure proposed by Mohammed [4]. The research focused on the critical issues

related to modernization and reliability enhancements of electric networks infrastructure.

Several research works by Talukdar and Caponogara [5-6] developed the mathematical

structure and problem solving techniques for controlling networks with collaborative nets.

Their work also includes the development of a framework for specifying the agents' tasks,

the collaboration protocols, coordination layer, and agents' implementation in power

system application.

The research work by Rehtanz, Handschin, and Becker [7-8] proposed the utilization of

autonomous system and intelligent agents in the power system control and operation. They

clearly exposed the infrastructure problems of centralized control and the advantages of

distributed control infrastructure. The core of their work focuses on the design and

application of control system architecture which provides and uses data and information on

the various process levels appropriately. Also, their research included the development of

the comrunication infrastructure technology required for the utilization of distributed
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control agents, the multi-agent negotiation models for power system applications. These

authors also proposed the utilization of multi-agents approach to power system disturbance

diagnosis, power system restoration, power system protection, coordination for secondary

voltage control, and the development of a coordinating autonomous FACTS control

systems.

This thesis proposes a method for limiting the costs of cascading failures by

eliminating violation before dependent outages occurs. Specifically, the method developed

here will create a hardware test-bed system to prove some of the concepts on distributed

control infrastructures. This test-bed will help verify the applicability of FACTS devices as

autonomous agents working in a coordinated network to control and mitigate transient

stability problems that could trigger a cascaded event.

12 Problem Statement

In the past, the central control infrastructure was capable to preserve security and

reliability of the power system because operations were planned and unscheduled

transactions were uncommon. System analysis and corrective control actions were

achieved by following the operating course of action based on off-line studies. Details on

the current state of the art in power system operation are in chapter 2. In this chapter a

summary of the standardized real-time sequence of operation as well as static and dynamic

stability assessment methods in bulk control.

Nowadays, preserving security and reliability have become a very difficult task in a

deregulated environment were very large and complex interconnected systems are

subjected to unplanned fast changes. Even though determination of thermal limits and

4



voltages violations are done on-line, system security and reliability are still based on off-

line system stability assessment [9].

Usually, the central control system effectively manages simultaneous conflicting

objectives. For example, if a fault is created due to a lightning strike on a transmission line,

the designed protection relays will trip the line to clear the fault and quickly restore the line

to its operating mode. Here, the reliability and protection objectives were simultaneously

achieved.

Central control infrastructure, shown in Figure (1.2.1), operates the electric power

systems under very well defined system objectives, including:

" Economics - maximize the net economic benefit of service.

" Reliability - minimize the risk of service interruption.

* Protection - minimize the risk of infrastructure damage.

AL 

A

g m

fR n

Figure (1.2.1) Centralized control infrastructure.
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On the contrary; centralized control systems do a very poor job balancing conflicting

objectives during unexpected events. This is due to the fact that the central control

infrastructure depends on the Supervisory Control and Data Acquisition (SCADA) Systems

that does not predict nor respond to perturbations in the system. The system restoration

depends on human operators (lack of real-time control systems). Even, aspiring to achieve

real time control of the entire network from a central main frame location is highly

improbable if not impossible. This is due to the complexity of power grid and the large

amount of data computation. For example, only in the U.S. eastern interconnect there are

approximately 100 control areas and about 50,000 buses controlled by hundreds of human

operators, and thousands of instruments.

In other words, the central control infrastructure is not adequate to react effectively to

local operating constraints violation or suppress it in time before causing a cascading

failure. This is due to the size of system information involved, the lack of real-time control

and the high inertia of the power system.

For this reason it has been proposed to decentralize the control of power networks in a

distributed manner with the utilization of many autonomous agents. The proposed control

scheme utilize software control agents; where, each agent solves its local problem using

model predictive real-time control and cooperation within neighboring agents, as shown in

Figure (1.2.2).

This thesis demonstrates that it is possible to perform network task without large scale

centralized control. This feature could be valuable in the U.S. where centralization of

control and regulatory function has proved technically difficult due to the free market

operation of the power system.

6
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Figure (1.2.2) Distributed control infrastructure.

1.3 Contributions oft tis Research to the Current State of the Art

The specific goal of this research is to develop a test-bed system to prove that a

distributed network infrastructure with autonomous agents is capable of eliminating power

system violation before the protection system acts to disconnect equipment. For this

method to be capable of increasing the over all reliability of the system without conflicting

with other objectives; the agents must locally suppress violations, while maintaining

everything else constant.

Essentially, the goal of this thesis is to concentrate on transient stability control aspects,

and to implement the concepts of distributed monitoring, evaluation and control with

system coordination.
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The methodology used to design transient stability control techniques relies on the use

of Flexible AC Transmission System (FACTS) devices. Some of the most relevant

contribution of this thesis to the current state of art includes:

" Create an integrated simulation environment that will represent the power

system devices, the control, the protection, and the communication subsystems

in the same simulation environment.

" To utilize the developed simulator to conduct system studies and evaluate the

performance of distributed control agents and the interaction between the power

system components under steady-state and transient operation.

* The results of these studies will be used to enhance the system's ability to

identify, and respond to system's dynamic transients.

" Improve the survivability and robustness of the power system during and after a

disturbance by utilizing distributed control strategies.

* This will increase the power system reliability and security under different

operating conditions.

Finally, the development test-bed power system and the experimental results of

implementing the distributed control infrastructure. This serves as a way to measure the

performance of autonomous control for FACTS devices as well as demonstrate the benefits

of a distributed control infrastructure in power system operation. The results would be the

ability to mitigate a contingency that could trigger a cascaded event.

These are the important contribution of this work since it implies that it is possible to

solve some global power network problems without the centralized control infrastructures

8



and suggest the possibility to develop a self-monitoring, self-corrective and self-healing

power grid.

1.4 Organization of Thesis

This thesis is organized in several additional chapters. Chapter 2 covers the power

system operation utilizing the standard centralize control and the real-time sequence of

operation. This chapter also covers the issues and disadvantages that centralized (bulk)

control encounters while trying to solve dynamic control problems. Chapter 3 covers the

concept of distributed control infrastructure and distributed control agents as well as its

implementation into the power system network. In Chapter 4, the telecommunication

network infrastructure is described and discussed in addition to the methods of

implementation. This network infrastructure is required for the implementation of the

distributed control infrastructure. Chapter 5 concentrates on the utilization of power

electronic converters and the application of FACTS devices as distributed agents. Chapter 6

focuses on the application of real-time control implementation for these distributed agents.

Chapter 7 discusses the development of the hardware test-bed system in the laboratory.

This chapter also includes details on the design, scale, components, as well as software and

hardware interfaces. Chapter 8 shows the distributed control experiments and their

implementation of the integrated test-bed system. Chapter 9 gives a discussion of the

results obtained by the implementation examples. Chapter 10 gives recommendations for

future work.

9



Chapter 2

Overview of Current State of Power System Operations

The electric utility industry is probably the largest and most complex industry in the

world. With the present rise in demand of electrical energy, utility systems will continue to

grow both in size and complexity. Also, our dependence on electricity is so great that it is

essential to have an uninterrupted supply of power within set limits of frequency and

voltage levels. Due to economic reasons and uncertainties in the forecast of loads, power

reliability does not reach the 100% level. Consequently, the burden on system operators has

increased tremendously in their effort to ensure that all customers are satisfied. Therefore, it

becomes a necessity to evaluate new control system infrastructures; such as, the distributed

control infrastructure.

2.1 Power System Operation

The power flow is strictly governed by the electric network equations. The flow pattern

depends mainly on the load, the generation, distribution, and the network configuration,

The amount of the power generated by each unit is constrained by its capacity. The rating

of each line limits its flow of electric power, and so is the power handled by each

transformer. For system security purposes, constraints may be imposed on the bus voltage

angle across the lines. Voltages levels are to be within acceptable range. All of these

conditions may be expressed in the form of equality constraints and the set of inequality

constraints [10].

When the above constraints are satisfied, the power system is said to be in the normal

operating state. Under such a condition, all the loads are met and all the system components

are loaded within specified limits. It is the aim of the operator to maintain the system in the

10



normal operating condition, even under expected circumstances. The controls chosen by

the operator to achieve this aim are thus preventing in nature.

In practice, regional transmission organization (RTO) and independent system

operators (ISOs), operate and coordinate the competitive wholesale electricity market. This

ensures that the security and reliability from a centralized control and dispatch center are

achieved. Federally regulated RTO are independent and impartial in managing the regional

transmission system and the wholesale electricity market. RTO's associate members

include power generators owners, transmission owners, electricity distributors, power

marketers, and large consumers [10].

According to the U.S. Federal Energy Regulatory Commission (FERC), the RTO's

goal is to promote efficiency in wholesale electricity markets and to ensure that electricity

consumers pay the lowest price possible for reliable service. Listed below, is the FERC's

definition of the minimum function than RTOs must satisfy:

* Tariff Administration and Design

* Congestion Management

* Parallel Path Flow

* Total Transmission Capability (TTC)

* Available Transmission Capability (ATC)

" Market Monitoring

* Planning and Expansion

* Interregional Coordination

Figure (2.1.1) shows the profile of the power system operation. The figure also show

the centralized infrastructure (i.e. RTO, ISO); as well as its components, and

11



characteristics. Furthermore, figure shows the operation of RTOs with each of them

monitoring its region and delivering power at the lowest possible price while maintaining

the highest possible system reliability.

FE RC

Centra zedC ~ntrol andDjlc entr Centra :-i C ntr~ojtnd Disp at I C nter

e MarkIt on tom 'Tani Aditntion nd eign
~PtsnningCnnE n ion Mannageennt

ngo c r RTO *P ril!e Pat FlowRTeTota ITran missIOn Cp bilty (TTC
A A v ale Ta it Cp iATC)

Rem t nt rc nne tion

Figure (2.1.1) Profile of the power system operation.

RTOs are responsible for maintaining the integrity of the regional power grid and for

managing changes and additions to the grid to accommodate new generating plants,

substations and transmission lines. Also, they must analyze and forecast the future

electricity needs of the region. The RTOs must ensure that the growth of the electric system

takes place efficiently in an orderly planned fashion and that reliability is maintained.

RTOs must develop innovative programs, such as demand-response initiatives and efforts

to support renewable energy, to help expand supply options and keep prices competitive.
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2.2 Real-Time Sequence of Operation

To ensure the maximum reliability of the electric system, RTOs manage a sophisticated

regional planning process for generation and transmission expansion. Utilizing

sophisticated information technology systems, RTOs provide real-time information to

market participants to support their daily transactions and business decision-making.

RTO's operators utilize their SCADA system and Energy Management System (EMS)

to monitor the high-voltage transmission grid 24 hours a day, seven days a week. This is in

hope of keeping the electricity supply and demand in balance by telling the power

producers how much energy should be generated and by adjusting import and export

transactions. Figure (2.2.1) shows the RTO's state-of-the art architecture of an on-line EMS

at the control and dispatch center.

Study
Sequence

L~ ug

____/Operator fArke Iinpt

Power F ow

~C ntrol
De astons

on-Line 4A
Sequtence

State
SCAD A Estimntion

DATA BASE

Figure (2.2.1) State-of-the art architecture of an EMS at the control center.
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Also, RTOs coordinate the continuous buying, selling and delivery of wholesale

electricity through robust, open and competitive markets. In operating the markets, RTOs

balance the needs of suppliers, wholesale customers and other market participants and

continuously monitors market behavior. The wholesale electricity market is similar to a

stock exchange. It establishes a market price for electricity by matching supply with

demand. Online-tools make trading easy for members/customers by enabling them to

submit bids and offers while providing them with continuous real-time data.

At the control center, power engineers and operators study thousands of "what if"

scenarios and prepare to deal with virtually any event. Their power system security

assessment consists of a set of procedures and methods used to determine whether the

system is in a secure (stable) or in alert (insecure, unstable) state. Each variable that might

affect supply and demand for electricity is carefully considered - from extreme weather

conditions, emergency situations and equipment failures to the more easily anticipated

cycles of hours, days, weeks and seasons.

The stability assessment can be broken down in Steady-State Stability Limits (SSSL),

Voltage Stability Limits (VSL), and Transient Stability Limits (TSL). As shown below in

Figure (2.2.2).

Figure (2,2.2) Security assessment for stability limits of the power system.
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Parameters such as voltage violations, frequency changes and thermal limits are easily

identified using on-line assessments, and Available Transfer Capability (ATC), Total

Transfer Capability (TTC), and Transmission Reliability Margin (TRM) are

straightforward calculation, especially for local monitoring. Once the stability limits are set

for the scheduled system's loading; the TTC and TRM can be easily calculated and locally

monitored in real-time. However, the TSL is basically impossible to be determined in real-

time. Therefore, TSL is determined off line, this is one of the main limitations of bulk

control infrastructure. Further definitions and details can be found in Appendix A

Even with the centralized state-of-the art system described above, there is a wide range

of power system decision problems, traditionally falling under one of the three categories

of operation, maintenance, and planning.

Some of these decision problems include generation dispatching, fuel scheduling,

control-room preventive and corrective actions, incident restoration, transmission service

scheduling, unit commitment, transmission equipment maintenance, control system

planning and transmission upgrade. All of them share common attributes, which are:

* The stability limit is a local property of the system state vector.

* Complex and computational intense application are required to solve the

dynamic control problems.

* The essential decision variables are inherent uncertain.

This means that for each new solution of the system state there is a new stability limit.

For example, every time shunt reactors and static capacitors are switched, the reactive

compensation varies and the voltage profile and stability conditions change. In other words,

stability limits exists and are not fixed and change with the system's loading, voltage and
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topology. This "changing nature" of the system stability is the main problem for on-line

assessment because it requires very high computational speed to be able to compute

stability limits and then utilize the results to perform corrective control actions.

Therefore, centralized infrastructures are not adequate to react effectively to local

operating constrain violation or suppress it in time before causing a cascading failure.

2.3 The Dynamic Control Problem (DCP)

Dynamic control problems (DCP) can be described as problems whose variables

represent the state and the control inputs to the system network. The network constrains are

the representation of its dynamic and operating requirements [6].

Large networks such as electric power grid contain many devices that are constantly

controlled to maintain the network under its security limits and maximize its operation. The

adequate operations of such networks rely on the solution of DCP. In other words, the

security of an electric power system depends on the ability of the control system to solve

the DCP.

Whenever a contingency occurs, imbalances between these quantities force some

generators to speed up while others slow down. If the difference in angle between any two

machines increases indefinitely or if the oscillatory transient is not sufficiently damped, the

system will become unstable; the generators will lose synchronization and, consequently,

the system will collapse [11]. The core of the problem is the fact that mechanical

adjustments are much slower than electric changes.

For example in electric power systems, generators can be modeled by two components;

a mechanical part (turbine) and an electric part (generator).
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The mechanical power input and electric power output are identical in steady-state

stable condition as in equation (2-1).

T,=T -T, N-m (2-1)

Where, T is the accelerating torque in Newton-meters. T, is the mechanical driving

torque and T, is the electrical or load torque.

The dynamic equation or swing equation that governs the motion of the machine rotor

relating the inertia torque to the resultant of the mechanical and electrical torques on the

rotor are described in (2-2) and (2-3).

b 0C (0 (2-2)

-= Pm Ds-- o Pe rad/s2  (2-3)
H H H

Where, 6 is the related rotor torque angle of the generator, O is the rotor speed

deviation of the generator after any change, Qo is the initial speed of the generator. H is

the effective inertia of the generator, D is the damping factor of the generator and Pe is the

electric power injection from the generator to the network.

This thesis applies distributed real-time control solution approach to address the DCP

in power system networks. To investigate the potential of distributed control, the thesis

presents experiments in a representative power networks model, in which the control task is

to restore (after major disturbances) the synchronous mode of the generators. The system

setup and results for the experiments are detailed in the later chapters.
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Chapter 3

Distributed Control Infrastructure

This chapter covers the basics of Distributed Control Infrastructure, its advantages and

its potential implementation in the electric networks [5].

The opportunity of implementing distributed control in electric networks lies in the

potential of improving performance, adaptability, robustness, and overall security of the

grid. The research efforts in this thesis consist of applying the principles of distributed

control infrastructures in an electrical system to evaluate its advantages over central control

infrastructure.

3.1 Distributed Control and Software Agents

A distributed control system can be described as a control system with distributed

processor capacity. Distributed control infrastructures for power systems utilize software

control agents assigned to specific controlled equipments to perform specific set of tasks.

This software-control agent solves its local problem, and in coordination with

neighboring agents to achieve the global system objectives in an optimal way. The local

control action and coordination between agents happens in two different levels, the agent

will periodically update its status through interaction at the second level.

The N distributed subsystems, of the large-scale power system, generates local

solutions at the N subsystems, and then provides a new set of control parameters for the

entire power system.

The different control decisions generated at the second level are then arranged by the

system coordinator to provide a feasible solution to the global problem see Figure (3.1.1).
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The coordinator's objective is to avoid too strong corrective control actions originated

from the situation where the control force is stronger than the system's oscillatory force.

C(OPJ)INATf)R Lis

es

Figure (3.1.1) Multilevel distributed control system.

This coordination scheme requires a collaborative network to exchange information

between neighboring agents and accomplish the common goal.

Unlike centered control infrastructures, the distributed control infrastructure can

provide faster response to quickly solve the system's Dynamic Control Problem (DCP) and

therefore increase the reliability margin of the system. The reliability margin accounts for

the uncertainties associated with the transmission system where the power transfer

operating point should be below the reliability margin.

3.2 Distributed Control Infrastructure Solution for DCP

Figure (3.2.1) shows an illustration of the solution approach for DCP based on a

distributed control infrastructure. Note that the dynamic control problem (P ), breaks up

into a set of small and localized sub-problems, {(P ... Pm)}, then matches and engages the

software-agents {( Ag1 ... Agm )} in solving the sub-problems {( Pj .. m )}-
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These agents are independent, and set in a collaborative network. Independence refers

to the agent's ability to make decision without central supervision. The collaborative

network involves exchange of information and coordination among agents.

':4 x < ' 
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Figure (3.2.1) An illustration of the distributed control solution for DCP.

Because of the size of the physical network, the agents only share information and have

coordination with a near neighbor. Even though in the case of power system network there

is only one layer for decision making, the coordination level is embedded in the

collaboration protocol for this infrastructure.

3.3 Distributed Control Infrastructure in Power System Networks

This section concentrates on the transient stability problems of the power system, the

limitations of its actual control system, and how distributed control would address these

problems enhancing the speed of response of the control system.
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As previously stated, the standard solution for DCP in power system is based on off-

line system assessment done by a centralized optimizer computer and SCADA systems.

Such inflexible system is not adequate to address DCP given that the secure operation of

the system relies on the real-time solutions of such problems.

The transient stability problem includes the implementation of preventive and real-time

control actions to maintain the generators synchronized and, in that way, sustain continuous

supply of power to customers. The physical limitations to achieve this goal lie in the slow

reaction time of mechanical equipment compared to changes in the electric equipment.

The continuous and unscheduled shift of demand patterns is driving the grid to its

limits, leaving less space for error, and making blackouts more likely to happen.

Two problems were clearly stated. First, DCP requires adaptability and fast response of

the control system. Second, the system lacks of agents fast enough to control the electrical

system without having to perform load shedding.

New breakthrough technologies such as solid-state power control devices or Flexible

AC Transmission Systems (FACTS) are being developed to provide a quick response to

system disturbances. These devices can be switched at high speed so as to influence

electric-power output and, thereby, compensate for its imbalance with mechanical-power

input, absorb oscillations, and preserve the synchronization of the generators.

To demonstrate the effectiveness of the distributed control solutions on DCP (transient

stability), we developed a distributed control infrastructure that utilize FACTS devices as

distributed agents throughout the power system.

Details on the telecommunication network infrastructure implementation are discussed

in the following chapter.
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Chapter 4

Telecommunication Network Infrastructure

As stated before, agents are independent but set in a collaborative network. This

collaborative network implies data sharing for control coordination. Due to the importance

of collaboration and coordination, a rigid telecommunication network is required, between

agents in order to share data, and control signal. The structure of the collaborative network

and the telecommunication network is outlined in this chapter.

4.1 Distributed Control Infrastructure and Telecommunication Network

Synchronous networks (SCADA and EMS systems) are coordinated under a

centralized control and developed to solve hard off-line optimization problems, whereas

collaborative networks are being developed to solve online optimization and local control

problems.

Collaborative networks focuses on the structure, behavior, and evolving dynamics of

networks of autonomous entities that collaborate to better achieve common or compatible

goals. Collaborative networks, together with distributed agents and problem separation,

form the core solution to solve dynamic control problems in a distributed control

infrastructure.

The distributed agent's model has two sub-systems, the control sub-system (agent) and

the equipment sub-system (controlled device) as shown in Figure (4.1.1). The agent's

collaborative network requires a telecommunication network infrastructure to share data

and to coordinate control action among them. The proposed telecommunication network

incorporates industry standards Internet Protocol (IP) protocol for the agents at network

layer, and Transport Control Protocol (TCP) at the transport layer.
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Figure (4.1.1) Collaborative and telecommunication network.

The agents programs are matched to specific FACTS control system in the physical

network, also they communicate with the nearest neighboring agent to share local values

and control schemes.

4.2 Telecommunication Network Methods of Implementation

Two different layers of communication networks were implemented into the power

system simulator developed here.

* The collaboration network for the distributed control infrastructure.

* The SCADA environment for the central control infrastructure.

First, the implementation of real-time control with hardware in the loop requires the

simulation to be distributed over several processors to achieve real-time operation.
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Communication links such as TCP/IP, FireWire or Shared Memory are used to

communicate from command station to target computers. This real-time simulation with

hardware in the loop tool was used to control the distributed agents. The distributed agents

are implemented here as FACTS devices. As previously mentioned software-agents are

independent and set in a collaborative network. In the implementation done here, the

laboratory network is setup to achieve agent's independence and collaborative

communication network. Real-time stations (RTS) are used to independently control the

distributed agents; the target computers are linked, through TCP/IP protocol, to one

command station that has the collaborative protocols and is used to share data between

targets. Figure (4.2.1) shows the first communication network setup for the 9-bus test

system with two distributed control agents.
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Figure (4.2.1) The communication setup for the 9-bus system with two FACTS devices.
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Both agents with its respective FACTS devices are located as near as possible to the

generators for a more efficient operation. The agents and its controlled FACTS devices are

interfaced through a FPGA card for data acquisition and control action.

The communication layer for the SCADA system is independent of the first one. Figure

(4.2.2) shows the central control data acquisition system.

Oommunia ao Bs Cmuni Von Bus

Figure (4.2.2) The central control data acquisition system.

The Remote Terminal Units (RTUs) shown in Figure (4.2.3) are designed to capture

and transfer data to the master station (i.e. rms Voltage, rms Current, Power and

Frequency). The RTUs also display voltage and current waveform profiles at different time

instants. The Master-Station shown in Figure (4.2.4) is designed to collect data from the

RTUs in near real-time speed. The Master-Station provides control over the RTUs and a

One-line diagram of the system simulating a SCADA environment.
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Figure (4.2.3) Remote terminal units (RTUs) display.
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Figure (4.2.4) faster station display.
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Chapter 5

Application of Power Electronics Processors as Distributed Agents

The discussion of distributed control given earlier conveyed the idea that the distributed

control approach encompasses collaborative networks, problem division and distributed

agents. It was also mentioned that there is a lack of agents that can act fast enough to

control the power system oscillations without having to perform load shedding or

triggering protection relays.

This chapter outlines the opportunities, advantages and capabilities of power electronic

processors technologies such as FACTS devices to serve as distributed agents. Specifically,

this chapter describes the basic concepts of the Thyristor-Switch Braking Resistor, its

application on transient stability problems and its potential as a distributed control agent.

5.1 Power Electronics and Flexible AC Transmission Systems (FACTS)

In broad terms, the task of power electronic converters is to process and control the

flow (voltage, current and frequency) of electric energy by the action of switching "On"

and "Off' solid-state semiconductor devices [12].

Power converters are devices such as inverters or rectifier that changes the form of the

power (i.e. AC to DC, DC to AC). While a power processor consists of more than one

conversion stage, so that the instantaneous power input does not have to equal the

instantaneous power output.

Figure (5.1.1) shows a power electronic processor block diagram, where the input to

the processor is from the grid and governed by the physical-electrical circuit laws, while

the output of the processor is a controllable factor (i.e. voltage, current, frequency) that can

be optimally suited for a specific purpose.
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Figure (5.1.1) Block diagram of a power electronic processor.

Flexible AC Transmission Systems include one type of power processor that is

revolutionizing all areas of electric energy. FACTS involves conversion and/or switching

power electronics in the range of a few tens to hundreds megawatts, allowing fast and

direct control on some parameters of power systems, such as line and shunt impedances.

5.2 Application of FACTS Devices as Distributed Agents

FACTS devices open new opportunities for controlling power and enhancing the

overall security and reliability of power systems. This is possible due to the ability of

FACTS devices to control interrelated parameters that governs the operation of the system

including series impedance, shunt impedance, current, voltage, phase angle, and damping

of oscillation at various frequencies. All this constraints can not be overcome by

mechanical action or switching because of its characteristically slow response and

discontinuous control action [13].

Full control of the system's parameters combined with fast response makes FACTS

devices the best candidate to perform as an autonomous agent. The use of FACTS devices

as distributed agents together with the distributed control and coordination algorithms will
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have beneficial effects on the system by improving its performance, adaptability,

robustness, and overall security.

Some other important benefits of FACTS technology includes:

* Full control of power flow needed to ensure optimal flow.

* Increase of the loading capability of transmission lines to its thermal limits.

* Increase of the system security through raising its Transient Stability Limits,

Available Transfer Capability, and Total Transfer Capability.

* Provides secure tie line connections to neighboring utilities.

" Provides flexibility in sitting new generation.

* Reduces reactive flow enhancing real power flow.

5.3 Thyristor Switch Braking Resistor (TSBR)

To demonstrate the effectiveness of the distributed control approach for dynamic

control problems, we developed a distributed control strategy that employs Thyristor

Switch Braking Resistor (TSBR) FACTS-type devices as distributed agents. This section

describes the basic concepts of TSBR, its design and operation.

The TSBR in Figure (5.3.1) is a shunt-connected Thyristor-switch resistor. This TSBR,

also referred as dynamic brake, is controlled on and off to aid in the stabilization of power

system transients and sub-synchronous oscillations by reducing the net available energy for

acceleration and hence the speed deviation of the generating unit during a disturbance.

The best location for a TSBR is near a generator that would need braking during

transient stability conditions. Given the appropriate rating and control, a TSBR can be

designed to simultaneously undertake multiple functions. The three phases can be

connected in delta or wye, although delta would be more convenient because it does not
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need a ground path (See Figure (5.3.2). The TSBR is a simple, cost effective and highly

reliable FACTS controller.

TSBR can be utilized for:

* Preventing instability during the first power swing cycle.

* Damping sub-synchronous resonance resulting from capacitor compensation.

* Enhancing damping and preventing dynamic instability involving low

frequency oscillations.

" Aiding the synchronization of a generator to the grid.

I I

Figure (5.3.1) One-line diagram including TSBR.

This FACTS device could be optimized to damp the sub-transient oscillations by

adding an energy storage device such as a superconducting Magnetic or battery system, or

even a dc capacitor-based storage [13]. This will allow the FACTS to operate not only in

the braking mode but also in the energy supply mode.
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Figure (5.3.2) Wye and delta configuration for the TSBR.

The role of TSBR in terms of equal area criterion for transient stability is shown in

Figure (5.3.3). Where, Pe1 is the electric power supplied from the generator with a rotor

angle 6, . At steady state, the mechanical power Pm is equal to Pe1 . If a fault occurs, the

electrical power will be decreased to Pe2 very close to zero. If the mechanical power

remains unchanged, the generator will accelerate because of the difference Pm - Pe2 * 0 .

If the fault clears before reaching the maximum clearing angle 6., so that 62 6 m then

the generator will remain in synchronism and reach a new steady state Pe3 at 63 for the

new values of E sE2 /X,where Pe2 <Pe3 <Pe1 . Now, if the fault is ceared after reaching

the maximum clearing angle 6., so that 6ma <62, then the generator will keep

accelerating until it losses synchronismn [14].
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Figure (5.3.3) Power angle diagram without TSBR.

The TSBR can aid the transient stability by increasing the TSL and reduce the

acceleration. Figure (5.3.4) shows the performance of the TSBR during the fault. The

maximum angle 63 is much smaller than in Figure (5.3.3), which denotes, that the TSBR

increases the stability margin.

Figure (5.3.5) shows the waveforms in time domain for the swing, including the power

angle, the speed deviation and the TSBR power. The control parameter for the TSBR is the

speed deviation Ao = Co -oO, where o is the actual speed of the generator and co, is the

steady state speed for the generator or initial speed, is the control parameter for the TSBR.

The TSBR is switched on when the speed deviation is positive and switched off when the

speed deviation is negative.
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Figure (5.3.5) Operation for damping oscillation and dynamic instability.

During the fault the TSBR power will be zero or very smnall, and once the fault is

cleared, the generator speed will increase and so will the power absorbed by the TSBR. The
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TSRB will only absorb the extra power when the speed of the generator is higher than

normal acting as a dynamic brake, but would not help when the speed is lower than normal.

The TSBR acts as a variable resistor that absorbs energy according to the total average

duty cycle that the TSBR in "on". In other words, the total equivalent resistance of the

TSBR varies according to the total average duty cycle of the controller.

Another important advantage of this control system is that it can be easily implemented

as a distributed agent in a distributed control infrastructure. The following section

concentrates on the real-time distributed control implementation for the TSBR.

5.4 Real-Time Distributed Control Implementation for the TSBR

Figure (5.4.1) shows the main control block diagram which was used for closed-loop

frequency control of a Thyristor switch braking resistor model. The control model consists

of two subsystems; the first subsystem runs on the PC command station while the second

subsystem runs at the target PC or real-time station (RTS), referrer to Figure (4.2.1). The

control results and parameters are then transferred to the command station for data logging,

data sharing and display. Figure (5.4.2) show the real-time distributed control

implementation for two TSBR devices.

The TSBR control consists of a Proportional Integral Derivative (PID) controller with

gains calculated to adjust the amount of power to be absorbed by the device.

A PID controller is a common feedback loop control systems. The controller takes a

measured value from a process or other apparatus and compares it with a reference setpoint

value. The difference is then used to adjust some input to process in order to bring the

process' measured value to its desired setpoint.
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The PID controller gives accurate and stable control and can often be adjusted without

advanced mathematics. The parameters blocks for the PID controller are shown in Figure

(5.4.3) the gains were set to the following set of values: Integral Gain (Ki)= 5; Proportional

Gain (Kp)= 1; Sampling Time (Ts) = 0.00015. The control signals are generated by Matlab

(RT-Lab eviroment) and then sent to a control board that runs the TSBR. The frequency is

sensed using a frequency transducer and then fed to one of the ADC channels of the Field

Programmable Gate Array (FPGA) board.

[Ts(z1

$etpoin~t

Figure (5.4.3) Matlab blocks for the PID controller.

As previously mentioned the collaboration protocols are the set of rules under which

the agents exchange information, help one another, and take combined actions to improve

collective performance.

The agents of the collaborative network are deployed to control the TSBR. The agents

are matched to each device and run an asynchronous protocol in parallel. The asynchronous

protocol implies that the agents will share the frequency data at each location but will not

hold off their computations to obtain the latest outcome of the neighbors', this means that

the agents work freely. This type of protocol is very significant for transient stability

problems because the agents work in parallel and can respond quickly to disturbances. This
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type of protocol allows the agents to achieve the overall systems' objective function with

minimum control. As mentioned before, the objective function in this case is the power

balance of the generators, the electrical power equals to the mechanical power.

The details on the integration of software and hardware subsystem to implement real-

time distributed control system are outlined in the following chapter. The evaluation and

experimental results of the real-time distributed control implementation will be outlined in

later chapters.
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Chapter 6

Hardware and Software Integration for the Real-Time Control System

This chapter outlines the digital real-time control with Hardware-in-the-Loop (HIL)

system used as part of the software subsystem in the modeling of the FACTS devices on

the power system simulator.

This tool was used with the aim of meeting the transient simulation needs of electronic

power processors while solving the limitations of traditional real-time control. The power

system simulator has two main subsystems: a software and hardware subsystem. The two

subsystems were coordinated to achieve the real time control. The software subsystem

includes Matlab toolbox and a C++ compiler. The hardware subsystem includes a Field

Programmable Gate Array (FPGA) data acquisition card, the corresponding control board,

the sensors, and the desired equipment to be controlled. The use of a real-time control

environment to achieve HIL simulation allows rapid prototyping, testing, emulation, and

control strategies evaluation [16].

6.1 Introduction

An electrical network loaded with power electronics converters is a complex and

nonlinear system. Consequently, performing system-level testing which is one of the major

steps in developing a complex product in a comprehensive and cost effective way require

real-time control with hardware in the loop.

One of the most demanding aspects for real-time control systems is to connect the

inputs and outputs of the tested control system to a real-time simulation of the target

process. As this implies that all control loops are closed via the simulator, this method is

often called Hardware-in-the-Loop (HIL) simulation. By using the HIL simulations we can
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evaluate different subsystem interactions. A particular merit of this approach is that it even

permits a gradual change-over from simulation to actual application, as it allows to start

from a pure simulation and to gradually integrate real electrical and mechanical subsystems

into the loop as they become available. HIL simulation can help reduce development

cycles, cut overall cost, prevent costly failures, and test a subsystem exhaustively before

integrating it into the actual operational system.

A multi-distributed modeling concept allows the simulation to run very fast and

achieve real-time operation. In this approach, the global model is distributed over several

processors through a communication link (i.e. TCP/IP, FireWire, Shared Memory).

Also, it allows the subsystems (components or group of components) to be executed at

different update rates, cycles can be freed up for executing the subsystem(s) that need a

faster updated. The multi-distributed modeling can involve different operating systems.

Real time operating system (i.e. QNX, Linux) reduces considerably the simulation time

requirement. This chapter describes the real time control environment used as part of the

software subsystem of the power system simulator. Also, it outlines its software subsystem.

6.2 Block Diagram and Schematic Interface

The real-time control system is based on a real-time distributed simulation platform. It

is optimized to run MATLAB in real-time, with fixed time step solvers, on a PC-Cluster.

MATLAB is widely used in the dynamic and control system analysis as well as simulation

areas.

MATLAB is the basic "numerical analysis engine" with add-on components called

toolboxes. Simulink, a toolbox of MATLAB, is dynamic system simulation software that

provides a convenient graphical user interface for building system models based on their
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equations. The Real Time Workshop (RTW) toolbox is capable of generating real time

code for Simulink models. The real-time code is used to control a system in the HIL

environment. The data generated by any of the system components, digital or hardware,

can be displayed in real-time and/or saved for later use.

The system uses the Simulink as an interface for building, editing and viewing graphic

models in block-diagram format. The block diagram models are converted into C-code

using RTW, and then transferred in to target machine for real-time simulation. Figure

(6.2.1) shows the real time simulator software subsystems architecture.
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control decisions to the equipment. The target PC is also sending and receiving data from

de master PC through TCP/IP interconnection protocol.

A major requirement for real-time HIL applications is the interfacing with real world

hardware devices, controller or physical plant. The DAQ (I/O) provides the interface

between the target computer and the HIL system. High performance I/O Xilink Virtex-JI

pro FPGA DAQ was used. This FPGA DAQ card can run controlled inverter with AC-side

diode rectifier at time step of 10 microseconds. This allowed the desire fast control

response necessary to damp transient oscillation in the system.

In the real-time simulator, I/O interfaces are configured through Simulink custom

blocks. The inputs and outputs interface to these blocks can be managed through Simulink,

without worrying about low-level driver programming.

The RT-Simulator manages the automatic generation of I/O drivers and models code to

allow the direction of the data flow into the physical I/O cards.

6.3 Real Time System Configuration

This real time system will provide the infrastructure for the distributed agents with an

efficient and reliable way to locally detect, evaluate, and mitigate different system

oscillations to prevent widespread outages.

Figure (6.3.1) shows the configuration of the real time simulator that consists of:

* One or more target PC's (computation nodes); one command station to manage the

communication between the hosts and the targets and the communication between

all other target PC's. The targets use the QNX real-time operating system or Linux;
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* One or more host PC's allowing multiple users to access the targets; one of the

hosts has the full control of the simulator, while the other hosts, operating in read-

only mode, can receive and display signals from the real-time simulator;

" I/O's of various types (analog input and output, digital input and output, PWM

input and output, timers, encoders, etc). The I/O's can be managed by dedicated

processors distributed over several nodes.

The real-time simulation environment uses Ethernet connection (100 Mb/s) to

communicate between the host and the target PC. The Ethernet connection between the

target nodes allows parallel computation of models with small time step size. Full control

of the target application and the computer is provided to the user through the RT-shell [16].

Ipa
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Figure (6.3.1) Configuration of the real time simulator

This chapter outlined the real time tools and configurations used in the development of

the power system simulator with IL.
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Chapter 7

Test-bed System Development and Integration

This chapter presents the development of the hardware test-bed system capable of

performing the operation of modern power system infrastructure. The design and

construction of the test-bed system as well as its implementation to simulate the distributed

control scheme is given.

Some important elements of the system incorporate real life, flexible power system

network hardware and data acquisition (DAQ) system to evaluate the issues that could

trigger cascaded failures.

7.1 Introduction

This test-bed simulator was developed to perform operation comparable to that of

modem power systems. One of the main advantages of this system is its ability to emulate

the interactions between the electrical network main subsystems in a real-time

environment. Figure (7.1.1) shows the electric network's subsystems.

This simulator was built in our research laboratory and used as a real-time test-bed to

allow rigorous, transparent and replicable testing of power system dynamic responses to

different contingencies.

The simulator was also used to implement and validate different corrective control

strategies and demonstrate the distributed control concepts outlined here. A real-time test-

bed system can improve development time of new infrastructures, avoid expensive

malfunctions, reduce cost, and rigorously test the system before its implementation and

eventual utilization in an operational system.
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Figure (7.1. 1) Power sy em four main subsystems.

This chapter provides the system's description and scaling method. The hardware sub-

system includes existing laboratory equipment in addition to newly designed components.

The implementation of the software sub-system and control scheme is also presented..

7.2 System Description and Sealing

The power systemn simulator contains different equipments and components such as

generators, buses, transmission lines, protective devices (e.g. Breaker, relays, fuses),

current transducers, voltage transducers, linear loads, nonlinear loads and, FACTS devices.

Equipments and components are set up as building blocks.

The building block scheme allows a flexible systemn configuration and the

representation of different operating conditions. Figure (7.2.1) shows the building blocks

for various system components. The system was designed in this way to allow rapid

prototyping and building flexibility. Buses and transmission line models; as well as, sensor,

static loads and motors are ser in this building block scheme,
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Figure (7.2.1) Scheme for components' blocks.

The power system simulator is a three phase system simulator operating at a 2 V

208 V. This simulator was originally designed to model the scale up IEEE 9-bus test

system. The system was scaled down by using the voltage transformer VT's and the current

transformer (CT's) ratios as in equation (7-1).

ZS = RCT Zpri (7

R yr

Where Ze is the impedance in the secondary side in ohms that represents the scaled

impedance using the VT's and CT's turns ratio, Z, is the impedance of the primary in

ohms. Here, R VT and RcT are the VT turns ratio and CT current ratio, respectively. This

method allows the rapid scaling of the system component such as transmission lines.

Basically, the system is scaled referred to the low side of the voltage and current

transformer.
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7,3 Hardware Sub-System

This section reviews design and development of the test-bed components; as well as,

the existing equipment in the laboratory.

7.3.1 Test-Bed Equipment

The Power System Test-bed is equipped with two sets of Console Workstation Model

shown in Figure (7.3.1.1). The laboratory's workstations provide the necessary components

to perform motors and generators experiments, also serve as versatile power and instrument

facilities for a wide range of other laboratory experiments.

The power console contains six power supplies, whose ranges are compatible with the

requirements of the motors and generators. Each power supply is equipped with an

indicating pilot light, a magnetic circuit breaker to protect against overloads, and 25-

ampere color-coded output jacks.

The ratings of the power supplies are as follows:

* Fixed 120V.AC, 1-phase, 2-wire, 6A;

* Fixed 120/208V.AC, 3-phase, 4-wire, 6A;

" Variable 140/0-240V.AC, 3-phase, 4-wire, 6A;

" Variable 0-150V.DC, L.OA, isolated, 1% nns;

* Variable 0-125V.DC, 5.OA, isolated, 1% rms;

The metering console contains all of the instruments provided in the three separate

meter panels, AC Voltmeter-Ammeter, DC Voltmeter-Ammeter, and AC Wattmeter.

Input power required is 120/208V.AC - 3-phase - 5W - 15A. Each workstation unit is

provided complete with cords [16].
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Figure (7.3.1.1) Supply and metering console workstation.

The workstation also contains three phase transformer set up, motors, generators,

resistive loads, reactive loads, capacitor banks, resistor banks and inductance banks. These

equipments are used as required, based on the selected experiment.

The motor-generator set up shown in Figure (73.1.2) consists of one synchronous

alternator coupled with a DC motor. The synchronous alternator is a three-phase, one-third

horsepower, rated at 1750-RPM, and 208 VLL at 60Hz. The machine is mounted behind a

terminal box which consists of two ports for field connection to the rotor and six ports for

three-phase connection to the stator. It also has six circuit breaker terminals and a circuit

breaker switch. A toggle switch enables the user to switch the field connection for

induction starting or synchronous run [17].
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The DC machine, used as the generator's prime mover, is a two-pole, compound-

wound rotor machine having a series field, a shunt field, and an armature winding. This

machine is rated at:

" Shunt or Series motor: 125-V, 3.5-A, 1/3-HP, 1800-RPM;

* Shunt Field Excitation: 0.5-A at 125-V;

The terminal box includes terminal pairs for the field rheostat, shunt field and series

field. Four terminals comprise the start switch and the knob for the field rheostat is located

on top of the terminal box. The rheostat is rated at 300- Q, 100-Watts, and 0.575-A with a

linear taper. Below the field rheostat is a 1-A slow-blow fuse.

Figure (7.3.1.2) Motor-generator set-up.

The three-phase transformer in Figure (7.3.1.3) is made up of three single-phase

transformers with multiple prirnary and secondary taps. Each transformer may be used

separately or combined for three-phase we or delta configuration. Each transformer is

rated at 120-VA at 6Hz.
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Figure (7.3.1.3) Three-phase transformer.

The resistance-reactance load device has three variables, resistance, capacitance and

inductance. The value of the resistance is controlled by six toggle switches each of which

adds 2000- Q in parallel with each other. The reactance loads are controlled by related

knobs which serve to adjust the power factor of the load for either lagging (inductive) or

leading (capacitive). The entire load may be used as single or three-phase applications for

purely resistive, purely reactive or combined loads. See Figure (7.3.1.4).

Togge Three Phase apac tive andInd uctiv
Switch Rs isie oa Lo d

Figure (7.3,1,4) Resistance-reactance load.
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Another important component in the set-up is the synchronizing module shown in

Figure (7.3.1.5). This device indicates the degree to which two systems (generators or

power networks) are synchronized with each other. For two electrical systems to be

considered in synchronism, both systems must be operating at the same frequency, and the

phase angle between the systems must be zero.

Figure (7.3 1.5) Synchronizing module.

The synchronizing module consists on a three-pole switch with a lamp across each pair

of contacts, which operates on the difference in voltage. When the two voltages have the

same phase sequence and frequency, there is no difference between the voltages at any

point in any of the cycles. Refer to Appendix B.

The laboratory is also equipped with mobile resistance, capacitance and inductance

load carts designed to provide a suitable resistance load for use with AC or DC Generators.

This mobile cart allows flexible configuration into the system; as well as, a high loading

capacity. Figure (7.3.1.6) shows the resistor bank.
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This resistor bank is utilized to represent very large loads into the power system; the

resistor bank is rated at:

" 4.2-kW, 208/120-V.AC, for three-phase with four wires;

" Maximum power per phase is 1.4-kW at 120-V;

Figure (7.3.1.6) Resistance load cart.

7.3.2 Power Electronic Converter Board

The test-bed hardware also includes power electronic equipments. Figure (7.3.2.1)

shows the power electronic converter board and Figure (7.3.2.2) shows the circuit layout

for the converter. The converter board consists of two independent three phase inverters.

Each 3-phase inverter uses MOSFETs as switching devices. The converter board is used to

perform a variety of experiments including DC/DC, AC/DC, AC/AC and AC and DC

machine drives, FACTS, and actuators.

The power electronic converter board is utilized in a real-time distributed simulation

platform. It is optimized to be run by Simulink and SimPowerSystems in real-time, with
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fixed time step solvers [18]. This converter board can be configured to be used for more

than one conversion stage; which makes it a real-time power processor.

The main features of the converter board are:

* Two independent 3-phase PWM converters for complete simultaneous control of

two machines at the same time;

* Current and voltage sensors with wide range capabilities;

* Use of low voltages (<50V) to achieve low cost;

* Complete digital/analog interface with FPGA board;

* Digital PWM input channels for real-time digital control;

* On-board isolated drive circuit;

* Fault protection;

* Output filter;

Figure (7.3.2.1) Power electronic converter board.
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As discussed earlier, the electronic power processor such FACTS devices can be used

for direct control of some parameters of the power systems offering the required

controllability over the power flow. This power electronic converter board is used to model

a TSBR.

7.3.2.1 Thyristor Switch Braking Resistor (TSBR) Model

The physical model of the TSBR is developed using the following components:

* A Step-down transformer 208/30 VLL;

* A three-phase diode rectifier;

* A power electronic converter board;

* A resistor bank;

Figure (7.3.2.1.1) show the layout of the TSBR attached the generator bus.

The converter board is interfaced with the real-time digital simulator program RT-lab.

The hardware and software sub-system were coordinated to achieve the real-time

simnulation.
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Figure (7.3.2.L.l) Layout of the TSBR attached to the generator bus.

This real-time environment simulation is used to test and evaluate the control strategies

of the TSBR. A schematic view of the RT-lab Real-Time Station (RTS) is shown in Figure

(7.3.2.1.2). The RTS consist of, a PC running on real-time operating system RT-QNX. This

PC has a dual-Xeon processor of 3.4 GHz and interface to the power converter board

through a FPGA card. This FPGA DAQ card can run HIL control at time step of up to 10

microseconds. The simulation data is then send to a command PC for data logging and

display.

The simulator uses Ethernet connection (100 Mb/s) to communicate between the host

and the target PC. The Ethermet connection between target nodes allows parallel

computation of models with small time step size.
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This real time system allows full control of the TSBR and to simulate the dynamic

characteristic of this devise under different conditions. The implementation and

experimental verification of TSBR controller is described in the next chapter.

HIL

Figure (7.3.2.1.2) Schematic of the (RTS) and the command station.

7.3.3 Development of the Transmission Line Model

The transmission line model is a three phase transmission line simulator operating at

208 volts. This line model has been built and used to simulate lines of up to 300 miles in

length, and was originally designed to model a 230 kV, four wire (3-phase and neutral)

transmission line.

The transmission line model consists of various modules that can be interconnected in

different configurations depending on the system being modeled. The transmission line

model is constructed using lumped parameters for the resistance, the inductance, and line to

ground capacitances. The designed prototype diagram for the transmission line model is

shown in Figure (7.3.3.1).
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The basic line impedance module consist of three 2.5 ohm at 60Hz air core inductors

with fixed shunt capacitance. Figure (7.3.3.2) and Figure (7.3.3.3) show two different sets

of transmission line models built in the laboratory. The shunt capacitance is set to match

the line characteristic. The capacitor size ranges from 0.25 pf to 3.0 pf . The model

represents the transmission line magnetic as well as the electric field characteristics. Faults

may be applied at the connection points between any of the modules.

Figure (7.3 3 1) Prototype schematic for the transmission line model.

Figure (7.3.3.2) Transmission line model for 150 miles.
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Figure (7.3.3.3) Transmission line model for 70 miles.

The ABDC parameters for the transmission line model are represented as a matrix in

equation (7-2) [19].

VSIL(l+YZI) 
(Z, + Z, + 1YZZ2) LR

Is _ 1 Z) R

Where the parameters ABCD are as follows,

A = D = (1+ YZI) in per-unit (7-3)

B=(Z, +Z 2 + YZZ2 ) in ohm s (7-4)

C= Y (7-5)

Where A, B, C and D are de parameters that depend on the transmission-line constants

R, L, C and G. ABCD parameters can be used to described the variation of the line voltage

with the line loading.
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7.3.4 Development of the Bus-Bar Model

Another important component of the hardware development is the bus-bar model. The

bus model consists of a module that contains switching devices, measurement devices

(sensors) and data acquisition (DAQ) terminals. This module is then interfaced to a

computer through a data acquisition card from National Instruments. The computer uses

LabView software package, for data display, assessment and control; acting as a Remote

Terminal Unit (RTU). Figure (7.3.4.1) shows the prototype model for the bus-bar.

Figure (7.3.4.1) Prototype model for the bus-bar.

The bus-bar is designed to capture 3-phase current profile and 3-phase line to line

voltage profile; this is done through the utilization of voltages and current transformers to

step-down the voltage to the voltage input level of the analog to digital converter inbuilt in

the data acquisition card.
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The developed bus-bar module is presently monitoring the three-phase currents

('a k ,I,), three-phase voltages (Va , Vb , Va), frequency, power factor, real power and

reactive power.

Figure (7.3.4.2) shows the system bus module. The switching and protection functions

were carried out employing the hardware in the loop (HIL) concepts.

The main features of the module are:

* Designed to carry currents up to 20A of current and voltages up to 530V;

0 Solid state relay with non-zero crossing, instantaneous turn on. The maximum

turn-on time = /2 cycle;

* Three phase current and voltage sensors;

0 100 pins terminal for digital and analog signals;

Figure (7.3.4.2) The system bus-bar module.
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7.3.5 Physical Model of the Overall Test-Bed

This section presents the integrated hardware test-bed power system developed and

utilized to demonstrate the feasibility of the distributed control infrastructure into the power

system. Three different test-bed configurations were used for the experimental

implementation of distributed control infrastructure. This section describes the three test-

bed configurations.

The first network configuration is shown in Figure (7.3.5.1) and consists of a two-bus

test system with two synchronous generators, and one static load connected at Bus_2 and

one TSBR in at Bus_1. The two buses are connected through two parallel transmission line

models. This first configuration was used to measure the response of the TSBR model in a

simple system with two synchronized generators.

Figure (7.3.5.1) Two-bus test system.

Figure (7.3.5.2) shows the one-line diagram for the two-bus test system; as well as, the

RTUs (DAQ system) and control for the TSBR device.
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Figure (7.3.5.2) One-line diagram for the two-bus test system.

The second test-bed configuration is shown in Figure (7.3.5.3) and consists of a four-

bus test system with two synchronous generators, three static loads, one motor load and

two TSBR devices.

This test-bed configuration contains three RTUs, two RTS Agents, and one Master-

computer station and the necessary telecommunication infrastructure for data acquisition

and data sharing.

The one-line diagram for this test-bed configuration is shown in Figure (7.3.5.4). This

system was used to evaluate the transient response of the system with two TSBR working

as distributed agents. The experimental results and details in the implementation are

discussed in the next chapter.

61



Figure (7.3.5.3) Four-bus test system.

Vv

Figure (7.3.5.4) One-line diagram for the four-bus test system.
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The third test-bed configuration shown in Figure (7.3.5.5) is a modified scaled replica

of the classical model of a multimachine system; the IEEE standard 9-bus test system. This

model is useful for transient stability evaluation in a power system. This system is more

representative than the four-bus system, and extensively used for system analysis and

control evaluation for transient stability issues.

The 9-bus test system consists of nine buses interconnected by six transmission lines is

a ring type interconnection configuration; the system has three generator buses connected

to the step-up transformer, respectively. Also, the system includes two TSBR in the

distributed control scheme.

Figures (7.3.5.5) Modify IEEE 9-bus multimachine test system.
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Figure (7.3.5.6) shows the one-line configuration for the 9-bus test system. With the

telecommunication network infrastructure included and the distributed control agents.
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Figure (7.3.5.6) One-line configuration for the 9-bus test system.

As outlined before, the power system simulator requires data sharing to collect data

from the RTUs and to coordinate between distributed agents. To address this matter, the

laboratory test-bed setup incorporates emerging technologies such as client/server system.

Client/server technology, in the context of this thesis, refers to using multiple slave server

computers to provide information to a master client computer.
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Chapter 8

System Implementation and Experimental Results

This chapter presents the results of employing distributed control infrastructure to solve

transient stability problems in representative power networks. The results indicate that the

collaborative distributed control infrastructure is effective in these highly complex

scenarios. Specifically, the proposed scheme restored the synchronous operation of

generators after major disturbances. This thesis provides empirical results that the agents'

asynchronous effort constantly converges to good solutions.

In this chapter the basic concepts of transient stability are given. The experimental

setup and case of studies are performed and the evaluation of the system performance is

completed.

8.1 Transient Stability Problem

As previously mentioned, the electric network contains a large number of different

equipments (such as generators, motors, static loads, controllers, and protection devices)

and thousands of miles of transmission lines.

Synchronous alternators generate power that is transmitted through the transmission

network and delivered to remote sites. When the network is operating under normal

conditions, its generating units run at the synchronous frequency and all generators are

synchronized. They should remain in this state for safety and technical reasons [20]. In

other words if the frequency is higher than the nominal, then there is an excess power and

vice versa.

Abnormal conditions, such as the surge of power demand and lightning strikes, create

unbalance the mechanical power input and the electric power drawn at the generator. If the
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difference in angle between any two machines increases indefinitely the system will

become unstable, the generators will lose synchronization and the system will collapses.

The transient stability challenge includes the implementation of preventive and on-line

control measures to maintain synchronism between generators. This maintains the

adequacy of the supply of power to customers [11]. The physical limitations to accomplish

this objective lie in the inability of the control system to quickly adjust the mechanical-

power input to match the electric-power output. This transient stability problem is what we

have previously defined as a dynamic control problem (DCP).

As mentioned earlier, FACTS devices open new opportunities for controlling the

power flow enhancing the reliability and overall security of power systems. This is possible

due to the ability of FACTS to control interrelated parameters that govern the operation of

the system including series impedance, shunt impedance, current, voltage, phase angle, and

damping of oscillation at various frequencies. These devices can be controlled at high

speed and so its influence onto the power system and, thereby, absorb oscillations, and

uphold the synchronization between generators.

8.2 Case of Studies and System Performance Evaluation

The experimental setup for the different case of studies consists of:

1. Determining the system configuration;

2. Determining the operating constraints;

3. Determining the set of disturbances;

4. Determining the problems that were caused due to the disturbances;

The procedures to evaluate the control strategy for transient stability problems are

described in Figure (8.2.1).
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Select the Network Configuration

Determine a Safe Operating Condition

Select Contingencies

Define the Control Strategy

Imp ement the Control Strategy

Evaluate Performance

Figure (8.2.1 ) Procedures to assess transient stability problems.

Four cases studies were used here to evaluate the ability of the distributed control

infrastructure to solve the dynamic control problem of transient stability. The four cases are

described next.

8.2.1 Two-Bus Test System Example

As previously mentioned in chapter 6, the two-bus test system consists of a two-bus

test-bed system with two synchronous generators, and one static load connected at Bus_2

and one TSBR in at Bus_ 1. The two buses are connected through two parallel transmission

lines. This first test system was used to measure the response of the TSBR model in a

simple system with two synchronized generators. The system was subjected to a faulty

relay that trips one of the lines. The system suffers the imbalance of electrical and

mechanical power due to the change in power flow from line 1 to line 2.
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Figure (8.2.1.1) shows the one-line diagram for the two-bus test system, where line_1

is tripped due to the faulty relay.

Figure (8.2.1.1) The two-bus test system during the event.

To evaluate the impact of the TSBR in the frequency respond of the system, the system

was first assessed without the TSBR and then with TSBR. The result of this event is shown

in Figure (8.2.1.2) where the frequency is increased due to the change in the system. The

frequency profile shows a slow increase in time, but this could eventually trigger the

protective frequency relays and take the system out of synchronism. Another problem that

can be observed is the sub-transient oscillation of the system. It is important to notice that

this problem is due to the absence of the governor control and the excitation control in the

system.
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Figure (8.2.1.2) Frequency profile before, during and after the line tripped.
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Figure (8.2,1.3) Frequency response of the system with control action.
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Figure (8.2.1.3) shows the frequency response of the system with the addition of the

TSBR. It is observed that the frequency is increased during the interval of the event, and

quickly goes back to the normal operating condition due to the control action of the TSBR.

Also it is noticeable that the sub-transient oscillation is very small compared to the previous

experiment. This is due to the ability of the TSBR control to suppress the speed deviation

between the two generators.

8.2.2 Four-Bus Test System Example

The four-bus test system consists of two synchronous generators, three static loads, one

motor load and two TSBR. This example was used to evaluate the performance of the

distributed control infrastructure for the system under heavily loaded conditions. As

previously stated, the system usually becomes more vulnerable when it is heavily loaded.

This also increases the chance of having a cascading event that could end up in a blackout.

To evaluate the effectiveness of the distributed control infrastructure, the system was

inflicted with a three-phase fault at Bus_3. The two transmission lines connected to the bus

were momentarily tripped to clear the fault. Figure (8.2.2.1) shows the one-line diagram for

the four-bus test system during the three phase fault at Bus_3. The result of applying a

three-phase fault into a heavily loaded system is shown in Figure (8.2.2.2) where the

system frequency decreases during the fault because the generators suffered the effect of

the fault. After the fault is cleared, the frequency violently increased because the generators

are now generating more power than required. Because the system was already heavily

loaded, the transient stability limit was violated during the fault and the system frequency

became uncontrollable. In this case, a frequency collapse becomes unavoidable triggering a

cascaded event that disconnected the two generators from the system, "BLACKOUT".
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Figure (8.2.2.1) The four-bus test system during the tr ee-phase fault at Bus_3.
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Figure (8.2.2.3) shows the frequency profile of the system with the fast control action

of the two TSBR working in coordination to avoid a frequency collapse in the system.

We used the same heavily loaded system and applied the same three-phase fault to

Bus_3. The result of the experiment shows that the distributed control infrastructure was

successful avoiding the system frequency to collapse and trigger a cascaded event. The two

TSBR were able to absorb the extra power generated by the generators and successfully

control the system frequency. Therefore, the system was able to undergo the fault and

survive the event.

y,.

0 1 2 3 4 5 7

Tim (s)

Figure (8.2.2.3) The distributed control infrastructure solving the DCP.

It is also of great value to follow the Load rms current response at the faulted bus

before, during and after the contingency.

Figure (8.2.2.4) shows the load current forcibly decreasing due to the three-phase fault

at the bus, also show the load current satisfactorily recovering due to the fast control action

to maintain the system in stable mode.

72



Lead Current During Disturbance

1.2

O.4 ---_-_-_-_-_-_--_--

o. + - - -- -- -- --------

0

0 1 2 3 4 5 6 7 8

Tire(s)

Figure (8.2.2.4) The load rms current recovering to normal operational mode.

8.2.3 Classical 9-Bus Standard Test System Example

The third test-bed configuration is a modified scaled replica of the classical IEEE 9-bus

test model of a multimachine system. This system is extensively used for system analysis

and control evaluation for transient stability issues. The 9-bus test system was used to

evaluate the distributed control infrastructure in a multimachine system with three

generators and six transmission lines is a ring type interconnection. In order to prove the

robustness and the adaptability of the distributed control infrastructure, the system was put

to test in two different set of conditions. Theses include:

* Testing the system infrastructure under unexpected load variation.

* Testing the system infrastructure to undergo a fault condition.

The results of these experiments show the flexibility and robustness of the distributed

control infrastructure to undergo a fault condition, and react to unexpected events.

73



8.2.3.1 The 9-Bus System Under Unexpected Load Variation Example

Figure (8.2.3.1.1) shows the one-line diagram for the 9-bus test system with an

unexpected load variation at Bus_2. It also shows the real-time distributed control

infrastructure for the system previously described. For this experiment the load is critically

decreased, so the generators will respond with a quick increase in speed and so the

frequency of the system.

r p my Prme

Figure (8.2.3.1.1) The 9-bus test with an unexpected load variation at Bus_2.

The result of critical decrease in the load at Bus_2 is shown in Figure (8.2.3.1.2); this

figure shows the system without the implementation of distributed control action. The

frequency profile for each generator shows quick increase in the frequency measured at

each generating bus and plotted against time. This increase in the system frequency affects
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the power quality delivered to the loads. This also could trigger a cascaded event if it is not

controlled.
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Figure (8.2.3.1.2) The frequency profile increasing after the load variation.

The same system configuration with the same load variation was used to prove the

coordination scheme of the distributed control infrastructure. Figure (8.2.3.1.3) shows that

the frequency for each generator is quickly controlled by the TSBR. The distributed control

infrastructure showed an outstanding performance by braking the three generators without

taking them out of synchronism. This complex dynamic control problem was solved by the

distributed agents because of its coordination scheme and its parallel operation. The

coordination scheme plays a very important part in this type of dynamic control problems.

This is because if the agents were not coordinated, then they could take the system out of

synchronism by braking one generator more than the other. This is actually the case
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considering that there is no generator control (i.e. governor control, excitation control,

automatic voltage regulation (AVR), power system stabilizer (PSS)).
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Figure (8.2.3.1.3) The frequency is controlled by the distributed control agents.

8.2.3.2 The 9-Bus System Undergoes a Three-Phase Fault Example

To evaluate the performance of the distributed control infrastructure, the 9-bus system

was inflicted with a three-phase fault at Bus_3; the two transmission lines connected to the

bus were momentarily tripped to clear the fault. The system frequency decreases during the

fault because the generators suffered the effect of the fault. After the fault is cleared, the

frequency violently increased because the generators are now generating more power than

required.

Figure (8.2.3.2.1) shows the one-line diagram for the 9-bus test system during the three

phase fault at Bus_3. The result of applying a three-phase fault into the system is shown in
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Figure (8.2.3.2.2) without the distributed control infrastructure and in Figure (8.2.3.2.3)

with distributed control infrastructure implementation.

The system without distributed control did not lose synchronism because, according to

the special report of group 32 of CIGRE, - Any network that meets the steady- state

stability limit (SSSL) conditions can withstand dynamic perturbations and end up in a

stable operating state [21].

Though, it is noticeable that the system working without the implementation of the

distributed control infrastructure takes longer to recover from the fault and bring the system

frequency to normal operating condition.
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Figure (8.2.3.2.1) the 9-bus one-line diagram during the three phase fault at Bus 3.
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Figure (8.2.3.2.2) The frequency profile without the distributed control agents

Figure (8.2.3.2.3) The frequency profile with distributed control agents.

The generators' frequency response to the fault shows the advantages of the distributed

control infrastructure over the system without distributed control. It is clear that the system

with distributed control not only recovers faster but also the generators show a more

synchronized dynamic response during the fault. While the system without distributed

control, not only takes longer to recovers but also the generators show a lot of oscillations

during the recovery time.

For this experiment, the rm--s voltage profile for the nine buses were recorded and

compared. Figure (8.2.3.2.4) shows the rms voltage profile for the system working without

the distributed control infrastructure. Figure (8.2.3.2.5) shows the ms voltage profile for
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the system working with the distributed control infrastructure. Both figures show the

advantages of the distributed control infrastructure. The faster voltage recovery in Figure

(8.2.3.2.5) is the result of a faster frequency recovery.

Figure (8.2.3.2.4) The rs voltage profile without the distribt ed control action.

2

Figure (8.2.3.2.5) The rms voltage profile with the distributed control action.
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These case studies show the different disturbances and their effect on the system's

frequency. Also, the system was tested for normal and abnormal system variations, such as

normal load variations and abrupt variation either in generation or loads.

These results reported in this chapter are preliminary. However, it establishes the basic

ground work for further developments and indicates that the suggested solution approach

has merit; as well as, provides insights into the difficulties that lie ahead.

This chapter also provided experimental evidence that distributed control can be

effective in complex real-world power system. It touched upon the status of transient

stability in power systems and enumerated the basic steps for the analyses thereof. Then,

these steps were followed to evaluate the performances of the distributed control

infrastructure in three test power systems. This included the two-bus test-bed system, the

four-bus test-bed system and the standard 9-bus network. Finally, with respect to the core

questions of the thesis, the results offer empirical evidence that local and distributed agents

effort converges constantly to good quality solutions.

This work presented pragmatic evidence that distributed agents can solve global power

networks problems, and provided insights as further progress beyond [5, 8] and towards

universal application of distributed control infrastructure. A hardware test-bed power

system was utilized to evaluate the performance of distributed control architecture. The

FACTS devices were utilized as autonomous agents working in a collaborative

telecommunication network infrastructure.

Next we discuss the results of the experiments and provide recommendation for future

work.
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Chapter 9

Discussion and Results

As previously stated, cascading failures and blackouts result from violations that have

been allowed to persist long enough to trigger the protective system.

The specific goal of this work was to develop a test-bed system to prove that a

distributed network infrastructure with autonomous agents is capable of eliminating power

system violations before the protection system acts to disconnect equipment.

This means that agents should locally suppress violations while maintaining everything

else constant, then the method is capable of increasing the overall reliability of the system

without conflicting with other objectives (i.e. economics, reliability, protection).

Experiments performed for this thesis demonstrate that:

" The applicability of the developed test-bed to conduct system stability studies and

to evaluate the strategies of distributed control infrastructure.

" That the utilization of FACTS devices allowed direct and constant control on the

parameter that govern the performance of power system; this open opportunities to

effectively utilize FACTS as local independent agents working in a collaborative

network.

* It is possible to design a distributed control infrastructure of autonomous agents

with limited communication abilities that can eliminate power network violations

before they can trigger the protective system.

These are important results; because it implies that it is possible to solve some global

power network problems without centralized control infrastructures. Finally it is believed

that it is possible to develop a self-monitoring, self-corrective and self-healing power grid.
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Chapter 10

Recommendation and Future Work

This chapter addresses the recommendation for future work. With additional

development, it seems probable that this technology could improve the ability of power

systems to make better tradeoffs between conflicting objectives. In future work, it is

recommended to refine this method, perhaps through the use of improved network models,

and further study the benefits, costs, and risks of distributed agents for power networks.

The coordination and cooperation protocols and rules could be greatly improved

through the implementation of intelligent operation such as Artificial Neural Networks,

Expert Systems, Fuzzy Logic, and Genetic Algorithms. This would increase the

adaptability of independent agents.

Also TSBR is working only in the braking mode in this thesis. It is the major

importance that the system could also operate in an energy supply mode; instead of just

wasting the extra energy of the generator while a speed deviation is created. The TSBR

could be modified to store the extra energy for later injection back to the system.

The utilization of different type of FACTS devices is also encouraged; UPFC and

STATCOM could have a much better impact as autonomous distributed agents.

The test-bed system can be further improved by creating a generator control system,

(i.e. excitation control, governor control).

The test-bed software subsystem could also be improved by adding an on-line load

flow program in the master computer; as well as, on-line alarms for voltage and loading

violations, a program to determine the available transfer capability. The system should also

include all the protection algorithms to perform protection and coordination analysis.
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APPENDIX A

Power System Stability Assessment

Any network that meets the steady state stability limit (SSSL) conditions can withstand

dynamic perturbations and end up in a stable operating state [20]. This means that SSSL

can be expressed for a given topology and set of voltages conditions, the SSSL is the total

MW loading of the system. This also means that SSSL and TSL are closely related,

although until now there is no mathematical model that shows such relationship [21]. Once

the stability limits are set for the scheduled system's loading; the TTC and TRM can be

easily calculated and locally monitored in real-time as shown in Figure (A.1)

EC)

Figure (A.1) TTC and TRM seem from the steady-state stability perspective.

According to NERC [22], TTC is given by:

TTC = Min {Thermal Limit, Voltage Limit, Stability Limit} (A-1)

Where thermal violation, voltage violation and frequency oscillations can be identified

through on-line assessment and combined with off-line stability assessment for scheduled

systems loading and other possible case scenario. (e.i. unscheduled inter-area transactions).
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APPENDIX B

Description of the Test-Bed Elements

This appendix reviews the details on the design and development of the test-bed power

system simulator. The details of the equipments and components utilized for the

development of the simulator are also described. Also, this appendix outlines the

systematic methodology followed to achieve the experimental results.

1. Test-Bed Power System Simulator

The test-bed power system simulator was developed with the aim to emulate the

interactions between the electrical network main subsystems in a real-time environment. In

other words the test-bed is capable to simulate the interaction between the control system,

the power system equipments, the communication network and the protection system.

This simulator was built in the laboratory and was used as a real-time test-bed. This

will allow rigorous, transparent and replicable testing of power system dyna ic responses

to different contingencies. Also, the simulator was used to validate our proposed corrective

control strategies and properly verify the concepts of distributed control infrastructures.

Another main advantage of utilizing this type of simulator is the ability to improve

development time of new infrastructures, avoid expensive malfunctions, reduce cost, and

rigorously test the system before its implementation and eventual utilization in an

operational system.

2. Layout of the Overall Test-Bed

The layout of the overall test-bed power system simulator is showing in Figure (B.2. 1).

This figure also shows the physical configuration of the test-bed including the utilized

equipment and components already available in the laboratory. This configuration contains
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nine buses; six are represented by the sets of bus-bar models named B_1, B_2, B_3, B_4,

B_5 and B_6. The other three remaining buses are represented by the nodes (Node_1,

Node_2, Node _3) between the generators and the step-up transformers (not showed in the

figure). Each of the bus-bar models is monitored and controlled by a remote terminal unit

(RTU); these PCs are fitted with high-speed data acquisition cards.

A set of three motor-generator set-ups were utilized for the configuration (G_1, G_2,

G-3); this set-up consist of a DC motor attached to a synchronous alternator through a

shaft. The DC motor is utilized as the prime mover for the synchronous alternator, the DC

motor is a two pole, compound wound rotor machine with a series field, shunt and armature

winding. This machine is rated at 125-Volts, 3.5-Amps, 1/3-hp at 1800-rpms and shut-filed

rated at 0.5-Amps at 125-Volts. The synchronous alternator is a three-phase, 1/3-hp, rated

at 1750-rpms, and 208 line-to-line voltage at 60Hz. The machine is mounted behind a

terminal box which consists of two ports for field connection to the rotor and six ports for

three-phase connection to the stator. It also has six circuit breaker terminals and a circuit

breaker switch. A toggle switch enables the user to switch the field connection for

induction starting or synchronous run.

The six transmission lines (T-L_1, T-L_2, T-L_3, T-L_4, T-L 5, T- L_6) shown in the

configuration are represented by the transmission line models developed.

Three load-boxes (Load_1, Load 2, Load 3) were utilized to represent the loads in the

simulator. The resistance-reactance load device has three variables, resistance, capacitance

and inductance. The value of the resistance is controlled by six toggle switches each of

which adds 2000-ohms in parallel with each other. The reactance loads are controlled by

related knobs which serve to adjust the power factor of the load for either lagging
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(inductive) or leading (capacitive). The entire load may be used as single or three-phase

applications for purely resistive, purely reactive or combined loads.

Also, the system simulator contains two Thyristor Switch Braking Resistor models

(TSBR_1, TSBR); as previously mentioned in Chapter 5 are utilized as autonomous agents

to prove some concepts on distributed control infrastructure for the power system. The

TSBR model consists of one step-down three-phase transformer, one power electronic

converter board and one resistive load-cart. The high side of the transformer is connected at

the generator node. The low side of the transformer is connected to the power electronic

converter board. The power electronic converter board consists of two independent three

phase inverters. Each 3-phase PWM converters uses power MOSFETs as switching

devices. The load-cart is utilized as the braking resistor. Each TSBR device is controlled by

a real-time station (RTS). This PC utilizes a real-time operating system that allows real-

time control over the power electronic converter board.

The entire simulator is controlled from the Master Station, This work-station PC is

equipped with a high-speed processor that allows the processing of large amount of data.

The Master Station collects data from each RTU. It also has full control over the operation

of each RTU. This master/slave configuration emulates the SCADA environment in a

central control infrastructure. Due to the high processing capacity of the Master Station, it

is also utilized as the system coordinator for both RTS. This coordinator is responsible for

the collaborative protocols and data sharing between both TSBR devices. The

communication between the Master Station and RTSs; as well as, RTUs is done through

two independent communication networks. The communication network utilized TCP/IP

protocols. Two communication buses are included in the system (C-Bus 1, C-Bus_2).
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Figure (13:2.1) Physical configuration of the test-bed power system simulator,
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APPENDIX C

Procedures for Laboratory Test-Bed

The following steps can be identified to perform transient stability experiments with

distributed control implementation on the hardware test-bed power system simulator.

Select power system parameters, components and ratings; this step is important for

technical and safety reasons. All equipments and components have thermal limits that

should never be reached for the steady state operation. All components and equipments

can handle a physical limit violation for small periods of time (i.e. transient stability

experiments, dynamic stability experiments).

Arrange the hardware components to the desired system layout. This step is possible

due to the flexibility of the components blocks. In other words, the system can easily be

rearranged for a different system layout.

Run the developed program in LabView software package at each RTU and Master

Station; this step allows the SCADA environment to be setup before running the

equipments. Make sure that all relays are set in the open mode, and that all loads are off.

For the specified configuration shown in Figure (B.2.1) the following procedures

were developed. Start the Generator_1 and use the RTU at Bus_1 to monitor the voltage,

frequency and phase for Generator 1. Once the desired voltage and frequency are

reached, use the Master Station to close the relay that connects line_1 to Bus_1 and the

relay that connects line_1 to Bus_6. Now, we can load the Generator 1 by closing the

relay that connects Bus_6 to Load 3. Lightly load the generator, start the Generator_2

and use the synchronizer device to bypass the relay that connects line_3 to Bus_2; this

procedure allows removing the synchronizer device after synchronization. Close the relay
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that connects line_3 to Bus_6. Now use the RTU at Bus 2 to read the voltage at Bus_2.

At this point the synchronizer will flash until the phase, voltage and frequency of the

generator matches the phase, voltage and frequency of Bus_2. As the frequency of the

machine approaches that of the line, the frequency of the "flashing" will decrease. As the

phase approaches that of the line, the lamps will become dim. At the instant the three

lamps are all dark, the synchronizing conditions are met. Now, the relay that connects

line_3 to Bus_2 can be safely closed. At this point Generator_1 and Generator_2 are

sharing the load and working in synchronism. Now, close the following set of relays that

connects:

" Line_2 to Bus_1 and Bus_4;

* Line_4 to Bus_2 and Bus_5;

" Line_5 to Bus_3 and Bus_5;

" Line_6 to Bus _3 and Bus_4;

At this point all RTUs and Master Station should be reading the bus voltages and

some current absorbed by the transmission line models. Now, close the relays that

connect Load_2 to Bus_5 and Load_1 to Bus_4. At this point the system can be slowly

loaded to the desired point; this loading process should be done in steps of 2000 ohms

every 5 seconds and carefully adjusting the power outputs of the generators when needed.

This allows the generator to reach the new steady state operation point before the next

increase of load. Now, connect the synchronizer in series to the line between Node_3 and

Bus_3 and close the relay that connects the synchronizer to Bus_3. Start Generator_3 and

adjust the phase, voltage and frequency. At the instant the three lamps are all dark, the
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synchronizing conditions are met and the synchronizing switch can be closed safely. At

this point, the three generators are sharing the load and working in synchronism.

Once the desired loading conditions are met and the system is operating in steady

state mode, the two FACTS devices can be turned-on. Run the control program,

developed on RT-Lab software package on the two RTS PCs from the Master Station.

Now the system is ready for experimental applications. The following experiments

are suggested:

* Three-phase fault at any line;

" Fault at a generator bus and load bus;

* Small changes in load by adding or removing loads in steps of 2000 ohms;

" Abrupt changes in load by adding motors or removing large loads;

In order to study the results, the system is designed to keep records of the events if

desired. This feature is initiated from the Master Station with the following options:

" Choose which parameter at which location is desired to be recorded;

* Choose where the information should be stored (i.e. Master Station or any

RTU);

* Choose how the data should be recorded (i.e. time scale, sampling scale,

format, etc)

" Choose the data to be printed or exported to a data base program or system

historian (i.e. Microsoft Excel, Microsoft Access);
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APPENDIX D

Design and Development of Transmission Line and Bus Models

1. D-1 Transmission Line Models

The test-bed power system simulator is a three phase system simulator rated at 2-k VA,

208-V. This simulator was originally designed to model the scaled up IEEE 9-bus test

system. Here, the system was scaled do by using the voltage transformer VT's and the

current transformer (CT's) ratios as in equation (B-4.I).

ZSec = cR*P" (B-4.1)
RVT

Where Z. is the impedance in the secondary side in ohms that represents the scaled

impedance using the VT's and CT's turns ratio, Z, is the impedance of the primary in

ohms. Here, R VT and R C are the VT turns ratio and CT current ratio, respectively. This

method allows the rapid scaling of the system components such as transmission lines.

Basically, the system is scaled referring to the low side of the voltage and current

transformer. The following example is solved for a 55-km, 50-MVA, and 110-kV overhead

transmission line with the following characteristics: Conductor type = Cu 150 mm2 ,

RL = 0.119 Q /km - R =6.55Q

X=0.40 Q/km - XL=22'0Q

CL =9.2 nF /k CL = 509 nF

The maximum current must be define to select the correct CT ratio,

1L 50*106
IL = -o 263 Amps

*110*103
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We can safely approximate the CT ratio and VT ratio to be,

R 200 110kV
CT - 2 40 RVT - - 529.2

5 v 3 *120

Now, the line resistance and reactance; as well as, the shunt reactance can be obtained,

6.55* 40

RL - 52. 0.495Q_ 529.2

22.0*40
XL= -1.66Q

529.2

6.3*103 * 40
Xe= = 476.19Q

529.2

The above values correspond to the scaled transmission line; these values were utilized

to design the 7-model shown in Figures (B.4.1). These values were utilized to choose the

components for the transmission line model shown in Figure (B.4.2).

X R

Y Y

Figure (B.4.2) Scaled transmission line model.
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2. D-2 Design and Development of the Bus-Bar Model

The bus-bar model consists of a module that contains switching devices, measurement

devices (sensors) and data acquisition (DAQ) terminals. This module is then interfaced to a

PC through a data acquisition card from National Instruments. The PC uses LabView

software package for data display, assessment and control and it is acting as a Remote

Terminal Unit (RTU). Figure (B.5. 1) shows the prototype model for the bus-bar.

Figure (B.5.1) Prototype model for the bus-bar.

The main features of the module are:

0 Designed to carry currents up to 20-A of current and voltages up to 530-V;

* Featuring a solid state relay with non-zero crossing, instantaneous turn on. The

maximum turn-on time = 2 cycle;

* Three phase current and voltage sensors;

* 100 pins terminal for digital and analog signals;

The bus-bar is designed to capture the 3-phase current profiles (a ,,b 1) and the three-

phase line to line voltage profiles (Va, Vb ,V). This is done through the utilization of

voltages and current sensors. In order to use these sensors for data acquisition system, fine-

tuning was required. The utilization of a 100- multi-turn potentiometer was necessary to
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achieve the required tuning. Figure (B.5.2) shows the circuit schematics for the sensor

components.

Figure (B.5.2) Circuit schematics for the sensor components.

The computer interface was done by creating two fifty-pins connectors and determining

the pin assignment of the set of inputs and outputs is as shown in Figure (B.5.3).

f{ tn a vsc1

- * Vbal

A32 -57 Id

a a-* Vac2
A- 1* 

AJ l a l bc
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. x.,Vbc3

is Vba3

1a3

T O 7 --

Fgreo (B 5 ) i assnet

Flnithe l a manal

R96

PR3TGf 44 9 rM

CT~afst & M c5
P N J:OSM M M M6
PU A SAT v_ b
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Figure (B.5.3) Pin assignment.

Further details can be found in the laboratory manual,
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