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ABSTRACT OF THE THESIS 

INTELLIGENT DYNAMIC SPACE MANAGEMENT SYSTEM

by

Margaret-Rose Dabdoub 

Florida International University, 1996 

Professor Subbarao Wunnava, Major Professor

The objective of this work is to design, simulate and synthesize a dynamic space 

controller system. The concept of space allocation and management can be applied to 

more than physical space. It may also be taken in the contexts of memory, network 

or bus management. The management and allocation of any space depends mostly on 

the twin factors of demand and availability. Time, the size and amount of space 

available, as well as the number of requests for the spaces, must also be considered. 

The proposed design has the capability to monitor multiple spaces for vacancies, 

length of time occupied and to dynamically track the number and location of available 

spaces. This system is easily programmed to adapt to the user’s application and is 

modular in design in order to facilitate expansion. The specific problem addressed in 

this work is a parking lot controller.
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CHAPTER 1

INTRODUCTION

1.1 Service Queues

Throughout the course of a day one encounters many situations in which it is 

required to wait for some type of service. Some examples are waiting in line at a 

checkout counter, or waiting on a train, an elevator or parking space. How long the 

wait is, is determined by the availability of the item or service in demand. One area of 

study, queueing theory, deals with the mathematical analysis and models of queues or 

waiting lines [9]. Questions such as "How many servers are available to clients ?”, 

“How many clients are waiting for each server ?”, “How long does it take each server to 

process a client?” are addressed in this field. The service, whatever it may be, implies a 

combination of time and space allocation per customer. Each customer has to enter the 

system at some point in time and in some area of the system, usually the input to the 

system. It then takes a certain amount of time to handle/serve each customer and make 

room and time for the next. The idea is to as efficiently and accurately as possible 

provide enough servers per client to minimize wait time. At the same time, the idea of 

cost efficiency must be weighed against the necessity of improving the efficiency of the 

service.
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1.1.1 Space Allocation

Space plays a major part in many aspects of today’s world. This is evident in 

areas such as urban development and industrial expansion. There are many situations in 

which a limited amount of space is in demand by a number of clients. Hotel room 

reservations and parking spaces make good examples. The problem of space allocation 

falls within the scope of queueing theory.

The basic characteristics of a queueing system are identified as follows:

(i) The input or arrival pattern of customers;

(ii) The pattern of service;

(iii) The number of servers or service channels;

(iv) The capacity of the system; and

(v) The queue discipline [18].

These characteristics may be applied to the space allocation and management 

system. The arrival pattern in this field can vary. In some cases it may be random or it 

may be a fixed pattern. For instance, if the space in question is a retail store shelf, the 

arrival of the new stock will probably depend on a fixed time from the date ordered to 

delivery of the order. The amount of stock and the frequency with which it is ordered is 

directly related to the amount sold, which could, in turn, vary on a daily or weekly basis. 

This would provide a random pattern of service of the stock. In most cases the amount of 

spaces available will be limited. The total number of servers (spaces in this case) will be 

fixed but the number available at any one time can vary. In the case of a fixed number of 

servers and one server per customer, the capacity of the system will be limited and equal
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to the number of servers. The capacity of the system may be fixed if the number of 

servers are fixed. For this system the queue discipline is First come First served [4].

1.2 Approach to the Problem

The approach to this problem will try to involve the main principles of queueing 

theory without the benefit of any mathematical models. It is not the objective of this 

thesis to develop or to apply any queueing system model/algorithm other than a simple 

intuitive approach to this application. The objective of this work is to design a controller 

that will monitor the use of designated spaces. The system will be modeled, however, 

through the hardware design of the controller module. This will be done through 

hardware description language (HDL) and then simulated to verify its functionality. The 

design of this space allocation controller will be aided with the use of the Very High 

Speed Integrated Circuits Hardware Description Language (VHDL) language.

1.3 What is VHDL

VHDL (Very High Speed Integrated Circuit Hardware Description Language) is a 

hardware description language (HDL). HDLs describe hardware and use that description 

to simulate, model, test, design and document a digital system. Some languages use 

primitive constructs or symbols to replace schematics of digital circuits, while others are 

more structured and can represent the circuit at different levels of abstraction. VHDL is a 

highly sophisticated HDL which supports hierarchical descriptions and timing constraints 

of digital systems [5].
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1.3.1 The Design Cycle

The design cycle covers the various levels of abstractions.There are two categories 

of abstraction, behavioral and structural. Behavioral abstraction deals with the function 

of the system in terms of its inputs and outputs. The structural abstraction describes the 

system in terms of its interconnections to more primitive components. In Figure 1.1 the 

different levels of the design cycle are illustrated. The System, Chip and Register levels 

fall under the behavioral abstraction. The System level describes the VHDL or English 

description of the design; Chip, Integrated Circuits (ICs) such as a microprocessor and the 

Register level applies to complex logic circuits. The Gate, Circuit and Layout levels 

belong under the structural abstraction. The Gate level describes the fundamental logic 

gates and flip-flops, while the Circuit level presents transistors and passive elements. 

Finally the Layout describes the silicon masking and manufacturing of the design at its 

lowest level.

1.4 History of VHDL

The process of designing, testing, producing and maintaining digital systems can 

be very tedious and costly. The U.S. Department of Defense (DoD), being involved in a 

variety of military projects awards a number of contracts to many different manufacturers. 

Generally, each manufacturer goes about the design and documentation of a system in 

different ways, which affect the cost and on-going maintenance of the system. As a result, 

the DoD found it necessary to establish a standard to adhere to when evaluating proposals 

on the basis of the digital system design documentation, production and maintenance
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costs. With such a standard in place, the DoD hoped to cut costs during the on-going life 

cycle of the system.

Behavioral Domain Structural Domain

System

Chip

Register

Gate

Circuit

Layout

Figure 1.1 The Design Cycle

In an effort to formalize documentation and design in the Very High Speed 

Integrated Circuit (VHSIC) program the DoD held a workshop in summer of 1981, which 

investigated the requirements necessary for HDLs to be considered a standard. 

Representatives from the United States Air Force (USAF) and from industry, including Dr. 

John Hines, Roger Lipsett, Ron Waxman, Moe Shahdad and Dave Barton met in June 

1981 [27], A document entitled the “Department of Defense Requirements for Hardware 

Description Languages” was produced at the end of the workshop [17]. In 1983 the DoD 

contracted with IBM, Texas Instrument and Intermetrics corporations to further develop
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the VHDL language based on the requirements established at the 1981 workshop. Within 

six months a second version of VHDL was released but with several shortcomings. 

However, by the end of 1984, significant improvements were made to VHDL. These 

improvements were then incorporated in version six. Quite a few of the people that 

participated in the Woods Hole workshop also participated in this collaboration. From 

IBM came Larry Saunders, Ron Waxman; from TI came Don Newman, Dave Ackley and 

from Intermetrics, Moe Shahdad, Victor Berman, Bill Bail and Bill Carlson [24].

In 1985 the VHDL copyright was handed over to the Institute of Electrical and 

Electronic Engineers (IEEE) in order to continue with the industrial standardization and 

development of the hardware description language. The work done by the IEEE 

produced what is now formally known as VHDL 1076-1987, the standard HDL from 

the IEEE. The latest version of the IEEE standard is VHDL-1993.

Several members of the 1983 team later published papers reflecting the 

development of VHDL. The article entitled “Where VHDL Fits Within the CAD 

Environment” was presented by John Hines at the 24th ACM/IEEE Design Automation 

Conference Proceedings in 1987 [3], Another team member, Larry Saunders also 

presented “The IBM VHDL Design System” at the same conference.

1.5 Why VHDL

VHDL was the result of a government effort to standardize the VHSIC program. 

This forced most of the industry interested in DoD contracts to conform to the standard 

required by using the VHDL language.
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VHDL can support different design methodologies such as top-down or library 

based [15]. It also supports different design technologies, for example. Application 

Specific Integrated Circuit (ASIC) or random logic. This property of VHDL makes it a 

suitable design tool for designers of different companies with a variety of design 

needs, whether it be a gate-level or system level approach. VHDL also supports generic 

modeling which allows a component to be represented by an actual manufacturer’s device 

without changing the component model.

It is important to understand that VHDL is technology and process independent. 

In other words, a high-level description can be written for a digital system and then 

translated into gate-level using the technology desired, for example CMOS. VHDL does 

not need to "know" the technology the design is based on or the process that will be 

followed for implementation in order to describe and simulate the design [5].

VHDL can simulate the operation of a digital system through its behavioral 

descriptions. It can model the behavior of the digital system at the black box down to the 

gate level. This is an important feature of VHDL, whereby components of a system 

which are represented at different behavioral levels can be integrated into the description 

of the complete system, regardless of the level used to describe the system. This also 

enhances the maintenance procedures for existing digital systems in that a redesign or 

modification in the system can be checked by re-simulating the system with the new 

VHDL defined component. VHDL surpasses other HDLs in this respect, as they operate 

best at the logic and gate level and not at the system level [15].

7



Another advantage of this wide descriptive capability of VHDL is the fact that any 

VHDL standard system should be able to run any VHDL standard component. This leads 

to the sharing or exchange of common VHDL modules or components between 

different design teams. These common modules can be included in libraries which can 

then be accessed by the different designers. Designers are able to use high-level 

descriptions of sub-modules of a complete digital system and integrate them into their 

design description. This allows each sub-system to be developed and tested independently 

of other sub-systems. Ultimately this reduces the time and effort needed for the 

development of the complete system.

VHDL also has the capability to model hardware timing. It supports minimum and 

maximum timing, setup times, holds and spike detection. Overall, VHDL exhibits most of 

the requirements set out as standard by the DoD requirements. To summarize, it 

documents; it is capable of high-level design; it supports simulation, synthesis and testing 

of hardware and can be used as a driver for a physical design tool. It supports hierarchical 

descriptions, libraries, generic models, sequential and concurrent simulation statements, 

timing control, sub-programs (functions and procedures) and type declarations. As a 

result of all this VHDL has emerged as one of the most important HDLs over the last 

twenty years and has been strongly supported by the industry.

1.6 VHDL Compatibility

One feature of VHDL is its versatility with different technologies. Viewlogic’s
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VHDL design process allows the use of different manufacturers’ device libraries. 

At the same time, many other computer-aided design tool manufacturers do use 

products of Viewlogics’s design package. In particular the Xilinx corporation, one of 

the leaders in Field Programmable Gate Array (FPGA) technology, markets XACT 

Design Manager which supports wirelist files produced with Viewlogic’s design 

synthesizer. To use the wirelist file XACT provides for the conversion of the wirelist file 

into its own netlist file which it then manipulates into FPGA configuration information. 

The design process can therefore start with the VHDL description of the system then 

synthesize according to the target technology, convert into Xilinx format and, finally, 

configure the FPGA.
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CHAPTER 2

VHDL: A POWERFUL DIGITAL DESIGN AND SIMULATION TOOL

2.1 The Need for Modeling Capabilities

Most of the present day electronic, communication, and control systems tend to be 

heavily digital and computer oriented. The complexity of the digital circuits has grown to 

fantastic proportions. With several digital modules in a system, interfaces in the forward 

and feedback paths, logical, functional, interface and timing accuracy is of utmost 

importance. It is neither practical nor feasible to build several of the digital modules in a 

laboratory environment, test each independently, and interface them together for a system 

level test. Often such tests are highly subjective, cumbersome and may not give a real 

picture of the system under consideration.

An attractive alternative is to simulate the modules, sub-systems, and integrated 

systems and study the functional, interface and timing response. There have been several 

digital systems simulation software and hardware description language (HDL) packages 

in use such as the Instruction Set Processor Specification (ISPS) and A Hardware 

Programming Language (AHPL) [20]. These do not follow set standards and some of 

them are incremental. In the last ten years, there has been growing interest in the VHDL 

(Very High Speed Integrated Circuit HDL) design platform with capabilities to design 

and simulate the sub-modules, then integrate them and study the response of the system 

as a whole. In addition VHDL has been following the standards set by the IEEE and 

leading industries.
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At Florida International University, the VHDL package in use is Viewlogic’s 

Powerview. It adheres to most IEEE standards with a few modifications. The package 

provides the designer with several tools. The tools most used in the design environment 

are ViewDraw, a schematic capture program; VHDL Analyzer, the program that 

"compiles" and transforms the VHDL description file; ViewSIM, the simulation 

program, and ViewSynthesis, which is the tool that creates the schematic from a VHDL 

description.To understand how these tools work one should have some knowledge of the 

simulation process. The following sections discusses the techniques involved in design 

modeling and give an example of how a design is accomplished using these tools.

2.2 VHDL System Design

A design is typically presented in a top-down approach. Its’ specifications are 

given as an outline of the complete functional system. A break-down of the system 

facilitates the design by incorporating smaller modules which in turn can be broken 

down into further detail. In this way the overall design is structured and the individual 

components may be created more easily. A VHDL description is made up of several 

sections: an entity declaration, an architectural description, a configuration and a package. 

The latter two are optional and may not be required, however the first two are mandatory. 

To model wire connections VHDL provides objects called Signals that take on digital 

logic values known as a BIT or vlbit in VIEWlogic's version. Other objects and type 

declarations are permitted, including some user-defined types.
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2.2.1 The VHDL System Block Description.

The first step in describing a digital system in VHDL, is the declaration of an 

entity. The entity declaration details the interface, that is, the inputs and outputs of the 

device. See Figure 2.1. The VHDL keyword Entity begins this section and is followed 

by the design name and the keyword IS. The PORT declaration follows this detailing the 

specific inputs and outputs of the design. The system inputs cannot be assigned a value 

within the entity (i.e. used as outputs), nor can the outputs be used as inputs (i.e. to assign 

values to) other signals or components in the entity. Essentially, the entity describes a 

black box view of the system. What makes up this black box or how it operates is 

described in its architecture. Therefore, the next step is to specify the architecture of the 

system.

Entity entity_name IS
PORT ( Signal input_signal :IN vlbit; Signal ouput_signal:OUT vlbit);

 End entity_name;___________________________________________________
Figure 2.1. Format of an Entity Description

2.2.2 The VHDL Functional Description of a System

The architecture of a design gives the description of it’s functions. This section 

starts with the VHDL keyword Architecture followed by an identifier and the design 

name. An identifier specifies the type of description that will be given. Any components 

or signals that will be used in the description can be declared next. To begin the actual 

description the keyword BEGIN is used and the architectural body is completed with the 

keyword END followed by the identifier.
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The architecture can be a structural, behavioral or data flow description of the 

design entity. A structural architecture describes the operation through the 

interconnections to other entities and is used when timing is a factor. Behavioral 

descriptions are used when the functionality of the system needs to be tested. The data 

flow description specifies the path the data follows in the actual hardware 

implementation.

In a purely structural environment, concurrent statements are issued to declare the 

use of or instantiate the component. The input and output connections of the component 

are the focus of this description. The use of internal signals may be necessary to 

establish the interconnection of the component to the system’s inputs and outputs to any 

other component. The data flow level uses concurrent signal assignments rather than 

instantiations. It presents the actual path the data signal may take in an implementation. 

It can also benefit from the use of internal signals. The behavioral description is most 

often presented as a process. This is a block of sequential statements, that is, statements 

that are executed in the order stated. The Process statement, although concurrent, 

implies that the statements to follow will be executed sequentially. The IF-THEN-ELSE 

and WAIT statements are examples of sequential statements.

An entity can have more than one type of architectural description; meanwhile, an 

architectural body can be a combination of different architectures [3]. Normally, a 

configuration is declared to specify which of the architectures is to be used in the 

simulation or synthesis. In the case of Viewlogic only one architecture is allowed per 

entity within a file [33].

13



The three descriptions are depicted in figures 2.2 (a), (b) and (c), using a full 

subtractor as a design example. Note that the terms structural, dataflow or behavioral is 

used here as illustrations. They are not VHDL keywords, they are user-defined; 

however, the identifier is mandatory.

2.2.3 The VHDL Analyzer

The VHDL listing is analyzed using Viewlogic’s VHDL Analyzer. If there are no 

syntactical, semantical or lexical errors upon analysis then the design is ready for testing. 

The VHDL Analyzer creates intermediate files that are placed in a design library. With 

the Viewlogic VHDL Analyzer these files have the extensions of .vli and .vsm. Both 

these files are necessary to perform a simulation using the ViewSIM tool. To create the 

black box schematic, another tool VHDL=>sym is used. This depends only on the entity 

description. The architectural description does not have to be written to accomplish this 

task. The resulting black box representation is seen in Figure 2.3.

ENTITY Full_Subtractor IS -  Declaration of the Entity
PO RT(A, B, Bin : IN vlbit; S, B o u t: OUT vlbit); -- Interface Information 

EN D  FullJSubtractor; -  End of Entity Declaration

A R C H ITE C TU R E dataflow O F Full_Subtractor IS
— Data Flow Description of Full_Subtractor 

Signal o _ l, a _ l, a_2, n_l: vlbit; -  Internal Signals

BEG IN -  Begin Data Flow description
o _ l <= B OR Bin; — Assign temporary internal signals
n_l <= NOT A; 

a_l <= B AND Bin; 
a_2 <= o _ l A N D  n_l;
Bout <= a_ l OR a_2; -  Assign Output Bout final value
S <= A XOR B XOR Bin; — Assign Output S final value 

EN D  dataflow; -  End Data Flow description

Figure 2.2(a) Data Flow Description of Full Subtractor
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ARCHITECTURE structural OF Full_Subtractor IS
-  Structural Description of Full_Subtractor 

Component OR2 -  Declare Components to be used
Port (x,y:IN vlbit; z:OUT vlbit); 

end Component;

Component NOT1
Port (x:IN vlbit; z:OUT vlbit); 

end component;

Component AND2
Port (x,y:IN vlbit; z:OUT vlbit); 

end Component-

Component XOR3
Port (x,y,w:IN vlbit; z:OUT vlbit); 

end component;

Signal o_l, a_l,a_2, n_l :vlbit; -  Declare Internal Signals

BEGIN -  Begin Structural description
G 1: OR2 Port Map (B,Bin,o_l); -  Instantiations of compnents.
G2: NOT1 Port Map (A,n_l); -  Signals are used in order declared in components
G3: AND2 Port Map (B,Bin,a_l);
G4: AND2 Port Map (o_l,n_l,a_2);
G5: OR2 Port Map (a_l,a_2,Bout); -F inal output Bout is out put of 2input OR gate
G6: XOR3 Port Map (A,B,Bin,S); -  Final output S is output of 3 input exclusive or gate 

END structural; -  End structural description

Figure 2.2(b) Structural Description of Full Subtractor
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ARCHITECTURE behavior OF Fu!l_Subtractor IS 
BEGIN

SUBTRACT: Process (A,B,Bin)
BEGIN

IF (A=’0’ AND B=’0’THEN 
IF ( Bin = ’O’ )THEN 

S<= ’O’;
Bout <= ’O’;

ELSE
s<= ’ 1’;
Bout <= ’ 1’;

END IF;
ELSIF (A=’0’ AND B=' l ’THEN 

IF ( Bin = ’O’ )THEN 
S<= ’1’;
Bout <= ’1’;

ELSE
s<= ’O’;
Bout <= ’1’;

END IF;
ELSIF (A=’ 1 ’ AND B=’0’THEN 

IF ( Bin = ’0’ )THEN 
S<=’1’;
Bout <= ’O’;

ELSE
s<= ’O’;
Bout <= ’O’;

END IF;
ELSE

IF (Bin = ’0’)THEN 
S<= ’O’;
Bout <= ’O’;

ELSE
S<= ' 1 ’;
Bout <= ’1’;

END IF;
END IF;

END Process Subtract;

END behavior;

Figure 2.2(c) Behavioral Description of Full Subtractor
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Figure 2.3. Symbol Representation of Full Subtractor

2.3 Simulation

A brief explanation of simulation and how signals are handled is given here 

before describing the complete process. Simulation is used to verify that the system’s 

functional requirements are met and also to check the system response for faults in certain 

situations. Simulators in VHDL act on the entity and architectural description of a 

design. Two main steps are taken before simulation is finally carried out; elaboration and 

initialization. In the elaboration phase, the entity is expanded and linked, storage for 

signals and other objects is allocated, constants and variables initial values are assigned. 

In the initialization phase, the values are assigned to declared signals, any processes are 

executed once and the simulation time is forced to zero nanoseconds [3].

It is always important to know just how well a system performs before it is put 

into production. Simulation offers ways not only to test a specific module but also it’s
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behavior when interfaced with other systems simply by modeling the other systems. The 

different systems can be simulated together even if they are not at the same level of 

abstraction.

Simulators can be classified into two types, oblivious and event driven. The 

former evaluates the outputs of all components at fixed points in time. The latter, as the 

name suggests, evaluates only that part of a circuit that is affected by an event or change 

on any of its inputs or related signals[20]. The oblivious method of simulation 

performs a sequential evaluation of the entire circuit until its output is stable. If at 

any point in the circuit, any value changes then there must be another simulation pass to 

determine if there is stability in the outputs. For this reason the oblivious method has 

proved to be inefficient. The event driven simulation is more efficient in that it does not 

evaluate the whole circuit but only the nodes affected by the changing inputs. This 

method lends itself very well to concurrent signal assignments.

2.3.1 Timing Considerations

Timing is, of course, a very important factor in hardware designs. The signals in a 

hardware component arrive at an output after a certain propagation time. This time may 

depend on the complexity of the circuitry that provides the signal. If no propagation time 

is specified then the propagation time is referred to as delta time. Delta time is a non

zero time that is greater than zero but less than any standard unit of time [1]. Digital 

circuits can incorporate signal delays essential to the function of the system. On the 

other hand, the circuit may require an immediate change in the output to reflect any
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change in the input. VHDL allows the AFTER clause to impose a delay on a signal 

assignment. Delays can be identified as inertial or transport. Inertial delay implies that 

the signal will only be assigned if it remains at the same level for, at least, as long as the 

delay time specified in the AFTER clause. With transport delays any change on the input 

signals will propagate to the output after the delay specified, regardless of the time it stays 

at the new level [1]. Figures 2.4(a) and (b) illustrates these. Unless otherwise specified 

all delayed signal assignments are assumed to be of the inertial delay type as that is what 

most represents the properties of capacitive networks in digital systems.

The use of concurrent and sequential constructs in VHDL enables a designer to 

model the design as close as possible. The concurrent signal assignment implies an 

immediate effect on the output signal. The statement a <- x OR y;, depicts a logical 

OR operation on inputs x and y that drives the output a. Any changes on the right- 

hand side (RHS) of the statement changes the value of the output on the left-hand side.

b <= a AFTER 10 NS; b<= TRANSPORT a AFTER IONS;

a a

b b j n

0 5 10 15 NS
(a)

0 5 10 15 NS
(b)

Figure 2.4. Inertial and Transport delays for signal assignments.
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0 18 28 38 48 0 NS

Figure 2.5. Concurrent Signal Assignment Waveforms

Concurrent statements can be regarded as simultaneous occurrences; a parallel 

effect. The signals may be forced to have delays but the evaluation takes place 

simultaneously. The output values do not take effect until the delay time. If delta delay 

time is taken into consideration each signal transaction will be evaluated every 18 time 

period resulting in the waveforms of Figure 2.5. A simulation example of concurrency is 

shown in Figure 2.6(a) for the data flow description of the full subtractor of Figure 

2.2(b). Compare this to the resulting waveforms of the same description with delays, 

Figure 2.6(b) . Each signal assignment is delayed 10 nanoseconds, therefore the total 

propagation delay for output Bout is 30 nanoseconds. This is because the listing 

describes a three-stage circuit.

Sequential statements on the other hand, are executed one at a time. This forces a 

delay in signal assignments because the statements are carried out in the order they are 

written. Again, delays may also be specified for these assignments using the AFTER 

clause. Signal assignments are evaluated with consideration of the existing transactions 

on that driver. The new transactions on the same signal may take precedence over the old 

or be added to it, depending on the type of assignment or the timing. Think of sequential
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statements as a way of scheduling the signal assignments. The rules of thumb of 

sequential signal assignments are outlined in Table 2.1

TRANSPORT INERTIAL

New Transaction BEFORE 

Already Existing

Overwrite Existing 

Transaction.

Overwrite Existing 

Transaction.

New Transaction AFTER 

Already Existing

APPEND the new 

transaction to the driver.

Overwrite the existing value 

if different, otherwise keep 

both.

Table 2.1 Guide to evaluate transactions on driver of signal with multiple assignments.

Sequential statements are found in behavioral descriptions such as the one in 

Figure 2.2(c). The simulation of that entity is the same as the structural or data flow 

description without delays. To illustrate the difference, delays of 10 ns and 20 ns were 

added to the signal assignments of S and Bout respectively, and the design simulated 

again. The results can be seen in Figure 2.7 (a) and (b). Note the difference between the 

waveforms of the concurrent and sequential descriptions. The delay here is a total of 20 

ns and not 60 ns as it might have been if the description was concurrent.

2.3.2 Simulating the Design

In order to test the design the simulator, ViewSIM, is invoked. A waveform for 

each input and output was generated by cycling through the eight combinations of A, B 

and Bin as inputs to the Full Subtractor. The batch process is accomplished through the 

use of a command file, which details the logic levels of the signals at particular times in

21



the simulation cycle. The waveforms of the dataflow and behavioral descriptions of the 

Full Subtractor have already been seen in Figures 2.5(a) and 2.7(a). After verifying that 

each output was correct for each input combination the next step is to synthesize the 

model.

Figure 2.6(a). Simulation of Data flow description of full subtractor
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Figure 2.6(b). Simulation of Data flow description of full subtractor with delays

2,4 Synthesizing the VHDL Description

Viewlogic provides the designer with a synthesis tool called View Synthesis. 

Within ViewSynthesis the target technology can be specified from a library database. 

The design may be targeted to any technology desired. This feature of VHDL makes 

digital designs portable; remember the design is not technology dependent. In this case, 

the XC4000 library was selected. ViewSynthesis analyzes the VHDL listing before it 

tries to synthesize. The synthesis process attempts to translate the digital design into an 

optimized gate-level representation [32]. The result of this process is a wirelist file 

detailing the interconnections of the design’s elements.

Timing is not a factor in synthesis. This does not mean that it is not important. It 

does not translate into the digital design. Timing specifications are more useful for

23



simulation than they are for synthesis. This is illustrated in the schematics generated for 

the descriptions of the full subtractor with and without delays. See Figures 2.8(a) and

(b).

The VHDL descriptions of Figures 2.2(a) (b) and (c) were synthesized. The 

synthesized schematics are shown in Figures 2.8(a)-(d). Notice the difference between 

the different models. Comparing the language description of the Full Subtractor in 

Figure 2.2(a) and the final schematic of Figure 2.8(a) it is clear that the final design is 

slightly different to the original description. This is because the synthesizer tries to find 

the most optimum design in terms of the number of gates, the timing, loads and the area 

used in the design at the semi-conductor level.
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Figure 2.7(a). Simulation of Behavioral Description of the Full Subtractor
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Figure 2.7(b). Simulation of Behavioral Description of the Full Subtractor with Delays
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Figure 2.8(a). Synthesized Schematic of Full Subtractor
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Figure 2.8(b). Synthesized Schematic of Data Flow Description of Full Subtractor
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Figure 2.8(c). Synthesized Schematic of Behavioral Description of Full Subtractor
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Figure 2.8(d). Synthesized Schematic of Structural Description of Full Subtractor
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CHAPTER 3 

CONCEPTS OF SPACE ALLOCATION AND MANAGEMENT

3.1 Memory Management

Computers use memory as a means of temporarily storing programs and related 

data for execution. How a computer manages memory is dependent on the features of the 

microprocessor and the operating system being used for that computer [28].

In memory management, the necessity arises to allot specified amounts of 

Random Access Memory (RAM) or space in memory, for use by certain programs. Some 

programs utilize more memory than others, and in a limited RAM configuration there 

needs to be some control over which programs are guaranteed memory to run, and the 

minimum amount of memory they need to execute. In earlier technology, only one 

program could effectively be loaded and executed in memory at one time.

As processors developed, they brought with them the ability to access larger areas 

of memory and better techniques to manage it. The memory can be partitioned or 

segmented. In the partition approach, main memory is cut up into blocks that are allotted 

to a particular application. If the application is too big for an available block then it 

cannot run until a large enough block becomes available. If the space is bigger than the 

application then some portion of the block is unused and wasted. Improvements on the 

partition idea resulted in a technique known as Paging.

Instead of large partitions, memory would be divided into relatively small equal 

blocks of memory known as page frames. Each application would also be organized into
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small blocks referred to a pages. When the application starts it is loaded into the page 

frames of main memory. They need not be loaded consecutively. A page table is created 

for each process loaded into memory. The page table contains the number of the frame 

where each page of a process is located in memory. This frame number serves as a base 

address for the physical address. The physical address is the actual location in memory.

Within each page of the process, a logical address is used to refer to data or 

instructions belonging to the program. The logical address indicates the page number 

and offset relative to the beginning of the page instead of the program as was the case 

with larger partitioning schemes. The physical address is determined from the page table 

holding the frame number and the offset given by the logical address. See Figure 3.1.

Logical
Address

Physical
Address

13 1 1 5 1 |l 7.1 IS 1—
Page

Offset
Frame

Offset
Number Number

10

11
\ 12/

14

Process A 
Page Table

Page 0 

of A 10

Page 1 

of A 11

\
S

Page 2 

of A
12

Page 5 

of B 13

Page3 
of A 14

Frames in Memory 

Figure 3.1 Logical and physical addresses in Paging

Paging allows for a multiprogramming environment. Taken a step further, paging 

may be implemented on demand, where only certain pages of a program may be loaded
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into memory when requested instead of loading the entire program. In this way, even 

more programs may be loaded into memory, a page or more at a time depending on the 

execution of the program. A program that is larger than main memory can be executed in 

this way. The pages of the program are stored on the disk creating the illusion of a larger 

or virtual memory.

Segmentation is another way of organizing memory into large sections. The 

programmer using this memory needs to be aware of the segment usage and privilege. 

The segments can be of varied sizes and can be changed by the operating system. 

Program instructions are referenced using the segment number and an offset to make up 

the address. A segment may be used to run programs or to store data that can be 

available to other programs. Segmentation also works with the concept of virtual 

memory. In the case of the Pentium processor, the non-segmented memory is 2^2 =4 

Gigabytes of memory (32 address lines); however, with its 14-bit segment reference 

address the processor can sees 2^6 = 64 terabytes of memory [28]. This is far more than 

the hard disk space available. The earlier Intel 8086|ip also uses this segmentation 

scheme with four 16-bit segment address registers and 16-bit pointers to index each 

segment. The segments include a Code, Data, Stack and Extra segments each with its 

respective index register. The physical address is generated by shifting the segment 

registers four bits to the left and adding the 16-bit offset provided by the index/pointer 

register to create a 20-bit physical address. The segments may overlap or be completely 

isolated from each other [31].
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For personal computers running in the Disk Operating System (DOS) 

environment main memory is partitioned into conventional, upper and extended memory. 

Conventional memory denotes the first 640 Kbytes of RAM, while the upper memory 

block is the next 384 Kbytes. Memory addressed over 1 Mbyte is referred to as extended 

memory. Memory can also be added to a system by the addition of expanded-memory 

boards, in which case it is considered separate from the conventional and extended 

memories and is called expanded memory [18]. Again, virtual memory implementation 

is done mainly through the use of the hard disk.

There are software packages that manage the use of these memory areas. Popular 

names include HIMEM.SYS, which is used so that the area above 1 Mbyte may be shared 

between applications. The expanded memory manager, EMM386.SYS, on the other 

hand only allows an application access to a limited amount of memory at a time. This 

scheme proved to be slower because the number and size of processes that could be 

brought into memory for execution is reduced.

Extended Memory

Expanded
Memory
Board

1 MB

384KB UPPer Hard diskMemory

Conventional 
640 KB Memory

Virtual Memory

Figure 3.2 Memory organization in PCs.
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3,2 Bus Management

In microprocessor based systems such as computers, the bus is a path connecting 

two or more devices [28]. It is a shared transmission medium, where every device 

attached to the bus may receive the information, however only one device may transmit at 

a time. If more than one device tries to transmit simultaneously then contention arises; the 

signal will be distorted and the information corrupted.

Bus management is based on the simple principle of one client using the server at 

a time. The server being the bus and the client any device connected to the bus.

The bus may be functionally or physically dedicated. The phrase “functional dedication” 

means that the bus is used for a particular purpose such as addressing only. The 8086 

based microcomputers use a set of address and data lines that are time multiplexed [31]. 

An address is placed on the bus and the Address Latch Enable (ALE) signal is issued to 

indicate that there is a valid address on the bus. The 16 data lines are shared with lower 

16 address lines. After latching, the address bus is separated from the data bus. Physical 

dedication refers to the use of several buses to connect small groups of modules. This 

minimizes the chances of bus contention and yields a higher throughput as it isolates the 

buses through the use of an adapter to the main bus.

A bus can be managed by an arbiter, also known as a bus controller, which 

allocates time on the bus for other devices. Since one hardware device is responsible for 

managing the bus, this is referred to as a centralized approach. Intel's Peripheral 

Component Interconnect (PCI) bus is an example of a bus architecture incorporating the 

centralized scheme [28]. On the other hand, each module may have particular control
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logic that allows access to the bus. The modules then share the bus. When it needs to 

use the bus, the control logic designates the module "master", and the receiving or 

transmitting device as the slave. Therefore only one module controls the bus just as if it 

were centralized. Whether it is a centralized or distributed arbitration scheme, still, only 

one module may use the bus at any one time.

Bus management considerations are also a factor in network management which 

is discussed in the next section.

Expansion Bus 

Figure 3.3 Traditional Bus Hierarchy

3.3 Network Management

In the case of networking, users are simultaneously accessing servers and thus the 

possibility arises for collisions on the network. A good network management system or 

controller will prevent such scenarios by monitoring the traffic and allocating users to 

different servers depending on the level of congestion. Networks use protocols to
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provide control over network traffic. One widely known protocol is called Carrier Sense 

Multiple Access with Collision Detect (CMDA/CD), which runs on Ethernet [29] When 

a station wants to transmit it first tests to see if the line is idle. If it is, it will transmit and 

wait for an acknowledgement of its transmission. If an acknowledgement is not received 

in a pre-determined amount of time it will wait a random amount of time and then repeat 

the transmission if the line is idle. A collision is assumed to have occurred when no 

acknowledgement is received. The station will cease transmission on detection of a 

collision and it will send a "jamming" signal to all stations to indicate this. It will then 

wait a random amount of time before it tries to re-transmit.

This is just one of many protocols that are used to manage traffic on networks. In 

a data communications network such as a telephone network, circuits can be routed and 

reconnected through the use of switches. These switches are known as Space-division 

switches as they allow separate circuits to use the connections of the switch to route to 

lines of the telephone network [7]. The switches are usually set up in a matrix and allow 

the inputs to be routed to the outputs of the switches in the next column. The inter

connections continue until the final output connections are established to the outside 

lines. Any input can reach any output and thus provide full accessibility. See Figure 3.4. 

This example can be viewed as the management of space - the telephone lines. Of course 

the outputs cannot be used if they are being held by another connection. The rules 

governing the priority on connections is another aspect of the space management issue.
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Inputs Outputs
1 2 3 4 1 2 3 4

Figure 3.4 Space Division Switch Matrix for telephone network.

3.4 Physical Space Management

There are many situations that depict some type of physical space management 

from zoning real estate to arranging items on a store shelf. The underlying principle of 

space management can apply here too, in that if the space is occupied then it is usually 

not available for use. The method of management is dependent on the situation.

Managing space or seating in a restaurant may seem to be a random process, 

however there are techniques used to estimate the next available seating. Usually, the wait 

time is based on the progress and the amount of current customers being served. 

Obviously if every customer in the restaurant is seated simultaneously, then the wait time
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for the next available seat depends partly on the quickest orders. The situation gets more 

complicated when trying to arrange seating for a group of people. The availability of the 

required number of seats, whether the arrangement is fixed or seating has to be set up to 

accommodate the number of customers, is another factor that greatly affects customer 

service. For example a group of four may arrive at a restaurant where the only two tables 

left are tables for two at separate ends of the restaurant. It would be too awkward to be 

carrying tables from one end of a restaurant to another to accommodate seating. The 

waiting time may now depend on any of the other tables with a higher seating capacity, or 

even another two-seater close to the ones available.

To help with this problem of seating arrangement, some restaurants have tried 

implementing a software system that is programmed with the seating arrangement of the 

restaurant. The tables are numbered as before and the seating capacity of each table is 

also recorded. The innovation here is the addition of a switch or transmitter, to be more 

exact, attached to each table. When the table is free, the transmitter is turned on by the 

waiter; a signal is sent to the computer running the software to indicate its status and of 

course the table number. The table can then be assigned to any party that might be 

waiting. The software keeps track of the wait time for seating and helps the host in the 

overall seating arrangement of the restaurant. A popular restaurant chain, TGI 

FRIDAYS, is responsible for the implementation of this system; however, due to 

copyrights the researcher was unable to uncover anymore information than what was 

stated herein [30]. It is believed, that the transmitter is wireless.
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As another example of a physical space management, the parking garage system is 

studied. There are many parking facilities in place with different management 

techniques. Some have simple entrance and exit gates with no parking fee included. 

Those that charge a parking fee may incorporate a manned ticket booth at both entrance 

and exit gates. Some replace the manual labor at the entrance gate with an automatic gate 

that issues a ticket upon arrival. This ticket which has the entrance time stamped and 

punched in on it is then presented at the exit gate to determine time spent and fee owed.

Some techniques use magnetic stripe cards to allow entry and exit into the lot 

while it monitors time and charge of the car parked. Fee calculation can be done in a 

few different ways here. One way is, the customer may have a personal or employee 

parking card with customer billing address or employee information on it. The customer 

can gain access to the parking area by inserting the card into the card reader/writer at the 

entrance gate. The arrival time is written onto the card and then the fee calculated at the 

exit gate by inserting the card into a card reader. The charge can then be billed to the 

customer’s address. These magnetic stripe cards can be used as debit cards also. Instead 

of billing, money can be deducted from the cards on the way out the exit. If the charge is 

more than the amount left on the card then a bill for the remainder can be sent out to the 

customer.

Another may be through the use of a vending machine type pay booth, before 

returning to the car. Upon entry the card is issued with the time written on it and the 

customer parks the car. When the customer is leaving the garage, the card is inserted into 

the pay booth that calculates the fee and writes a code to enable the customer to pass
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through the exit gate within a specified time. At the exit gate the customer inserts the 

card to open the gate and leaves the parking lot. If the customer does not make it out 

within the time allotted, another fee will have to be paid through the machine [25]. This 

method is found is Europe in places such as Heathrow airport in London, in the city of 

Geneva and here in the USA, in Indianapolis, IN.

Once inside the parking garages, it is left to the customer to find a space to park. 

In small garages it may be easy to identify an available space. However, for much larger 

garages and at peak service/traffic periods it may take quite some time to find a space. 

One of the objectives of this work is to aid the customer to find a space without 

spending too much time to do it.
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Chapter 4

Design of Intelligent Space Management System

4.1 System Design

The space management system designed by the author incorporates basic features 

that are applicable to a variety of situations. Although some systems may direct users to 

the general area where space is available not many, if any, detail the exact location. One 

of the objectives of this space management system is to facilitate the identification of an 

available space. To accomplish this, sensors are used to monitor the designated space. 

Certain other features and requirements were laid out in the design of the space 

management system. They are as follows:

To reflect the status of each space or the contents of each space.

To be able to handle/service the object entering the system.

. To provide some measure of security or supervision of the items entering the system. 

To provide overall system status information, such as information about the length of 

time each space is occupied, or how long one item has remained in same space (flow 

of items in and out of the system)

The system is made up of different sub-modules. A Main module, a 5-bit counter, 

a Space Counter module, a Display module, thirty-two Signal_Time modules, one clock 

generators and ten Mux_scan modules that are the multiplexer-counter combinations. 

The system receives a Master clock of 273Hz, thirty-two sensor signals and outputs a 

FULL signal and a serial output. The serial output contains a 16-bit stream of
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information reflecting the status of a space. There are three pieces of information 

embedded into the serial bit-stream, the number of the space, the status of the space and 

the time, in minutes, that the space has been occupied.

4.1.1 The Display Module

The display module gives the number of the space nearest the entrance that is 

vacant. It will keep displaying the same number until that space becomes occupied. The 

sensors are checked by multiplexing the lines through a 32 to 1 multiplexer driven by a 

five-bit counter. The module is clocked at one-sixteenth the master input clock; however, 

as a means of providing a more fault tolerant design the counter is driven at half that 

frequency (See Figure 4.2 and 4.3). This yields more time with which to clock in the 

sensor signal, latch it and then latch in the space number from the counter output and then 

reset the counter so that it always checks spaces from the entrance or space number one. 

Therefore if there are any intermediate signals or glitches from the sensors or the 

multiplexer output there will be a delay whereby such errors will not be clocked into the 

outputs.

The display module is an independent of the entire system, except that its clock is 

taken from the clock generator. It also detects when the system is full by simple ANDing 

of the sensor inputs. The Full Signal can be combined with the Display and also be 

shown outside the system to notify other patrons.
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Display Module

Figure 4.1 Block Diagram of Display Module

Figure 4.2 Layout of Display Module with Fault Tolerance
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Figure 4.3 Clocking Scheme in Display module to achieve fault tolerance.

4.1.2 Main Module

The other modules are designed so that their outputs are multiplexed into the 

main serial output. The Main module consists of a 16 to 1 multiplexer that accepts 

inputs from a five bit counter on inputs 10 through 14, the status bit of that space is 

connected to 15 and the signal_time outputs for each space is sent to the remaining inputs, 

least significant first. The counter should be clocked at one sixteenth the master clock so 

that a complete scan of the multiplexer inputs is done before the counter changes value.

The main module is the coordinator in a sense of all the information passing 

through the system. It drives a serial output that can be passed into eight bit shift register 

for serial transmission to a PC, where the information can be stored. This interface was 

not designed but could also be done by clocking in the output at least the same frequency 

of the master clock or double try and account for any jitter on the line.
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4.1.3 Space Counter

The Space Counter module provides the status bit information to the Main 

module. It does this by use of the multiplexer- counter combination . The counter in this 

module is clocked at one sixteenth the master clock to provide synchronized outputs with 

the counter values that are going into the Main module.

4.1.4 Signal _Time Module

Each space has a signal_timer module associated with it. When a space becomes 

occupied, the sensor signal becomes high, the timer is triggered and begins to count. It 

counts in steps of one minute. The clock input is derived from a clock generator that 

provides a one minute period by dividing the master clock by sixteen and then by one 

thousand and twenty-four. Notice that the timer outputs are ten bits long. This means that 

each space can be monitored up to 210 = 1024 count. Now if the timer is clocked every 

minute it can yield a maximum of 1024/60 hours. This will be enough time in a parking 

lot that has daily hours and is closed at night. Also if the parking is limited to a certain 

amount of time the space can be identified and the car ticketed for overtime charges, 

thereby increasing revenue.

In order to obtain this one minute clock period the Master clock is then obligated 

to be about 273Hz (ie. 273Hz = 16*1024/60secs). Each timer is reset at the end of the 

main multiplexer scan cycle. The count driving the main multiplexer is NORed to obtain 

a ‘1’ everytime it goes to zero. This signal is ORed with the Master Reset and tied to the
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timer’s reset. In this way, the time being read is not reset by an event on the sensor before 

it has a chance to be transmitted properly through the Main Module.

The task still remains to properly send these timer outputs into the Main module. 

This is done by again multiplexing the respective output bits of each timer into ten 

multiplexers. One multiplexer for every bit of the timer. Thus, the first multiplexer will 

accept bit zero from timer of space number one, then bit zero from timer of space 

number two, etc and pass its output to input 16 of the multiplexer in Main module. The 

second multiplexer will accept bit one from all timers and pass that into input 17 of the 

main module multiplexer and so on.
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Figure 4.4 Diagram of Sub-module Interconnections in prototype.
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4.2 Sensors

As stated before, the monitoring of each space is done by sensors. There are many 

different types of sensors that could be used for monitoring objects in physical space. 

Pressure sensitive devices can be useful in cases where heavy objects are being 

monitored. Pressure sensors are used to detect passing cars and the traffic flow on the 

road. Loop detectors are used on roadways to detect passing cars as they approach traffic 

signals or entrance and exit gates of parking lots. Pressure sensors are also used at these 

entrance and exit gates. Proximity sensors that use sonar are useful in detecting how 

close an object is or can be used to identify distance between walls.

In this design, the sensors are expected to provide a digital (DC) output voltage 

signal to reflect the status of the space. Specifically, if the space is occupied, the ouptut 

voltage level is high or SVolts, otherwise if the space is free, the voltage level is low or 

OVolts. So the transducer should produce a DC voltage from whichever type of sensor is 

chosen. For the application of a parking lot controller the sensor chosen was a diffuse 

reflective infra-red sensor. The detection of an object in space was accomplished by 

transmitting an infra-red beam in the direction of the object and detecting the reflected 

beam as shown in Figure 4.5. If no reflection is detected then it is assumed that no object 

is present and the receiver/sensor output is zero Volts. However, upon detecting the 

infra-red signal the output of the sensor would be 5 Volts. The main reason for choosing 

this infra-red sensor is cost. It is relatively cheap with an estimated retail price of thirty 

dollars. Besides the cost, the sensor’s performance is also a factor. This transmitter- 

receiver pair gives fairly reliable output as far as detecting an object within several

49



inches. If need be it can be made to detect a signal from a maximum of eight feet away. 

Most cars are about fifteen feet long and standard parking spaces are about eighteen feet 

long, therefore the car may be, at the most, only a few feet away form the sensor [4]. 

This is still within sensing range of the sensor. Furthermore, once the object is detected, 

any other object passing momentarily between the sensor and the car, would still reflect 

the infra-red signal back to the receiver. In this way, the signal is not interrupted and still 

indicates an object in the space.

Figure 4.5 Diffuse Reflection of the Infra-red Sensor.

4.3 Implementing with VHDL

The design was coded using the Viewlogic’s version of the VHDL language. 

This does not adhere one hundred percent to the IEEE standard but still encompasses 

most of the constructs of the language [33],

The multiplexer entity was described using the behavioral constructs of the 

language. The code described a 32 -input multiplexer by using IF statements to decide 

what the output should be depending on the select lines. The structural or dataflow 

description of this multiplexer would entail large amounts of code and possibly a much
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more complex a design.

The counter was created using a feature of Viewlogic’s standard, the pla_table. 

This allows the designer to create a present and next state table which can be used with 

latches or flip-flops. Also provided in the procedural library were the descriptions of D 

flip-flops which could easily be incorporated into the design..

The five bit counter was reused in creating the ten bit counter, the five bit counter 

became a component of the ten bit counter entity timers3. Each were described in the 

dataflow abstraction.

A five input nor gate, mnor5 was created using the concurrent signal assignment. 

The code describing these and other enties used can be found in Appendix C.

4.4 Hardware Implementation

The space management system could be implemented with standard logic gates. 

The size and quantity of the necessary devices would create a physically large system 

that could be more difficult to decode because of the complexity of the wiring. 

Remember, the design called for a 32-input mux and a 5- bit counter, each of which 

would be used approximately twelve times in the case of the mux and about fifty-five 

times for the 5-bit counter. Nowadays, digital systems design is moving towards more 

small scale and low power devices to handle complex circuitry. Custom-made devices 

such as PLDs and FPGAs would be the more likely route to implement this design.
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4.5 Functional system using FPGA Technology

Field Programmable Gate Arrays (FPGAs) are fast becoming a useful part of the 

design and manufacturing process. This is part of the effort by industry to pursue more 

efficient means of designing systems. With the old method of system design most of 

the implementation was done through the use of standard logic Integrated Circuits (ICs). 

See Figure 4.6. Some designs incorporated custom or semi-custom made ICs that 

performed particular functions. Usually all system designs start off with specifications 

and a system block diagram. The features and requirements of the system are presented 

within the specifications. Then the design was partitioned and each section was described 

in as much detail as necessary, usually down to the logic level. Once the sections were 

correctly designed they would be integrated. If any software was required it would be 

written at this stage.

A prototype would be constructed using breadboards and it would be tested along 

with the software and revised if necessary. Difficulties could arise at this point 

especially if there was any integration with a larger system. The compatibility of the 

interface, speed and software can influence the integration. It could take anywhere from 

six to twelve months to get to this testing stage. The next stage would be to create the 

printed circuit boards (PCB). Testing would continue during the manufacturing of the 

boards which could sometimes lead to design changes and as a result a number of PCB 

fabrication attempts would take place. The time-to-market could be anywhere from two 

to three years when this route is taken.
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In creating a PCB, many considerations must be taken into account. These 

include the size of the board, the maintainability of the design and board, and the cost. 

Earlier PCBs were manufactured using standard or customized logic ICs. This method, 

however, proved to have some disadvantages due to the technology used to implement it. 

Some of the disadvantages of standard logic ICs are

• large power consumption

• large physical space needed

• special ventilation and cooling required

• a high failure rate due to the large number of individual ICs [8].

In an effort to steer away from these disadvantages, other forms of technology 

were developed and eventually brought to the consumer, namely, the designer. 

Programmable Logic Devices such as ROMs, EEPROMs, PLAs and Gate Arrays 

opened the door for more customer specific system designs, giving engineers an edge in 

PCB production. Gate Arrays are semi-custom ICs with functional cells. Although the 

designers may target their designs towards a certain Gate Array, it is the manufacturer 

that fabricates the final design product. FPGAs go a step further in the design process as 

they give the designer almost total control throughout the design and manufacturing 

stages.

The new approach in system design can be described as follows: As is

customary, the system specifications and diagram is presented. (See Figure 4.7.) The next 

stage is similar to the old process in that it partitions the complete system into blocks, but 

differs in that the blocks are mainly functional modules, such as microprocessors,
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PLDs, FPGAs and some interface logic, A high level description is done with the aid of 

schematic capture software or some abstract design language such as VHDL. Simulation 

of the system follows once the description is complete, When the simulation presents an 

accurate functional picture of the design a netlist may be extracted. This netlist is used in 

creating the PCB. As before, during the PCB production stage, revisions can be made to 

the design. However, with this method any change that arises could be effected through 

the system software, the PLDs or the FPGAs and would not affect the PCB design. The 

complete process time could take anywhere from three to six months; a dramatic 

reduction compared to the old method.
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4.5.1 Contents of an FPGA

The term FPGA was coined after the first Xilinx® Logic Cell Array (LCA) was 

produced; industry did not accept the term LCA [13], FPGAs are comprised of building 

blocks that are universal functions. That is, the functions can be used to make any logic 

function. The building blocks are called Configurable Logic Blocks (CLBs). In 

addition to the CLBs are I/O blocks (lOBs) and interconnect network. (See Figure 4.8.) 

The CLB is made up of flip-flops, multiplexers and a combinatorial logic block. (See 

Figure 4.9.) The CLBs are laid out in a matrix and can be connected horizontally and 

vertically throughout the LCA by what are known as Programmable Interconnect Points 

(PIP). There are general purpose lines that run short lengths of metal lines vertically and 

horizontally, through the PIPs, forming a grid known as a switching matrix. The 

switching matrix allows many different interconnections to be possible between the 

CLBs and other elements. By the particular connection of these PIPs and the switch 

matrix, a certain routing is obtained between the elements and the CLBs, thereby 

programming the FPGA. Typically, a CLB output may be routed through a PIP to a 

switch matrix, out to another element. Throughout the LCA, there are also long lines that 

traverse the length and width of the die. However, these do not intersect with the switch 

matrix. The Input/Output block provides the interface between the external device pins 

and the internal signals, again via the interconnection network.

With the aid of modern design software FPGAs take on a quality similar to a Gate 

Array by which the design can be repeatedly programmed into the device. The design 

software must perform two important tasks. It must first translate the design. Translation
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is a conversion of the functions of the design into the cells (functions) of the particular 

FPGA. Its second task is to verify that this translated design is correct.

GLOBAL BUFFER DIRECT INPUT GLOBAL BUFFER INTERCONNECT

Figure 4.8. Schematic of Layout forLCA. (Courtesy Xilinx . [13])

58



Figure 4.9. Schematic of CLB architecture for the XC4003A FPGA

4.5.2 Advantages of FPGAs

There are several advantages to be gained in the design process by using FPGAs. 

Unlike some other technologies, FPGAs cut back on the time and expense of redesigning 

incorrectly printed circuit boards. The fact that the user programs the FPGA, saves time 

that would be spent in the manufacturing process. The time-to-market cycle is greatly 

influenced by using FPGAs. Shortened time-to-market cycles are now between three and 

nine months. Since the programming process is software driven they can be 

reprogrammed with new design changes very quickly. Although each FPGA may be 

relatively expensive, they do provide for cost efficiency by eliminating the overhead
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costs, such as manufacturing the redesigned boards; the overtime cost of labor in 

redesigning boards. Also, designers’ efforts can be applied in other areas instead of the 

redesign process.

The example given by Jenkins [13] clearly shows the advantages that FPGAs 

bring to the design process. The author gives an account of how three manufacturers that 

had produced disk controller cards targeted for the yet unreleased SCSI bus 

specifications, dealt with the revised version that was finally and officially released.

Only one company, Company C was spared the agony of returning to "square 

one". The other two companies, call them Company A and B, had to make major design 

changes to their product. Company A had 90% of its design embedded in gate array 

technology and the rest in TTL bus interface logic. It had to take its product off the 

market and redesign the board completely to account for the changes. Company B had to 

used a microprocessor- based design with standard logic ICs. It tried to depend mostly 

on software (90%) to support the design. The drawback in this case was that the 

software could not adapt to the changes in speed that the new specification had defined. 

Therefore, Company B had to also redesign its board.

The company that held up best to the changes had a different approach. It used 

an FPGA to accomplish the speed-sensitive protocol logic necessary for the SCSI bus. 

The remainder of the design was implemented with a micro-controller. Since the changes 

applied to the FPGA portion of the design, it would be easy to make amends to it and 

simply reprogram the FPGA with the new version of the design. And that is exactly 

what Company C did. For boards that were already in the customers’ hands, the new

60



parts were sent out to them. Company C saved on the time and costs of manufacturing 

new boards. The final result is that instead of throwing away boards that don\ work, the 

FPGA is simply reprogrammed with the new design.

Summary of Advantages of FPGAs

1. Reduces the design cycle

2. Reduces cost of manufacturing boards

3. Reduces time-to-market cycle

4. Reduces number of board rejections

5. Makes it easier to implement design changes

4.5.3 FPGA Implementation

In the final implementation of this work the target technology will be the Xilinx 

XC4003A series FPGA. This part was chosen on the basis of availability and also 

because of its more advanced features. The XC4000A series is a third generation LCA 

with enhancements to the logic and I/O block functions as well as the interconnection 

options. The XC4003A contains one hundred CLBs, and with thirty-two storage 

locations per CLB this device can support a 3,200 bit RAM. It has eighty IOBs with 

sixteen user-defined I/O pins, an additional eight switch inputs and sixteen LED outputs. 

The layout of the CLB and I/Os are made more symmetrical in the form of a matrix or 

grid appearance to facilitate the interconnections to the switch matrix. See Figure 5 for
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the arrangement of the switch matrix. The total gate count is approximately 3,000 

enabling the LCA to handle larger designs than previous series.

Figure 5. Switch Matrix architecture for XC4003A
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CHAPTERS

RESULTS

5.1 Simulation

The VHDL designs were simulated using Viewlogic’s ViewSim Simulation 

software. The resulting waveforms can be found in Appendix B. The simulations were 

accomplished by running a batch file specifying the varying inputs and the clock signal. 

The simulated clock pulse for each module was modeled after the expected clock input 

frequency. The designs proved true where simulation results are concerned.

One thing that deserves mentioning, as far as the simulation process is concerned, 

is the apparent glitch that occurs when more than one bit at a time changes in a vector. 

There is an instantaneous glitch between such transitions and this can be seen even with 

the vector waveforms generated through the “wfm” command of the simulator package.

This may be a benign property; however, if such a vector is used to clock or drive 

another, there may be a glitch on the output where both vectors simultaneously have a 

Hamming distance of at least one between their current and next values. A good example 

of this was seen in the case of the multiplexer-counter combination module, mux_scann. 

The author notes that the behavioral description of the module may have also contributed 

to the glitches. When the multiplexer input was changing from 00000H to 00001H and 

the value of the counter was also changing from 00000H to 00001H, the output of the 

multiplexer had the spike exactly at the mid-points of the transition on the rising edge of 

the counter’s clock. See Figure 5.1. What seems to have happened here is that the
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outputs of the counter affect the output of the mux slower than the direct multiplexer 

inputs, because the select lines of the mux has a longer propagation delay than the mux 

inputs. Thus, for an instant, the multiplexer output was a ‘1’, but then the counter values 

changed and settled and the multiplexer passed the ‘new’ value, ‘O’, of the input selected 

by the new counter value.

Figure 5.1 Waveforms with Glitches in Mux_scan 

Different methods of implementing a more glitch-free module were tried and 

tested using the WAIT statements. The wait statements delayed the function of the mux 

by 1 ns and simulation was without error. However, these designs were not synthesized 

because Viewlogic’s synthesis software does not support the use of WAIT statements 

and thus no netlist could be created to incorporate into the FPGA implementation [33]. 

The propagation delay and other attributes of the gates and other devices in the 

synthesized schematic may be changed to achieve the desired timing results. This is a 

more involved approach and was not pursued for this work. The propagation delays may
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be set as generic also in the VHDL code listing, but here again timing does not translate 

to the synthesized schematic.

Furthermore, during simulation, the correct periods and pulse widths should be 

calculated and applied to reflect the real-time use of the design. The functionality of the 

system can be best verified in this manner. Of course, it is always good practice to 

investigate the behavior of the system with unexpected inputs. Using information 

gathered in these tests can be used to design a more fault tolerant system.

5.2 Synthesis

The synthesized models were generated with the XC4000 library as its target 

technology. For the most part synthesis was error free, except for a minor problem in the 

Display module. In the description of the display module, the inverted output of the 

multiplexer was originally used to reset the counter. The attempted synthesis of this 

module revealed a network cycle within the design. It was not clear how this cycle 

manifested, except that the counter being reset was the same counter driving the 

multiplexer select lines. The thinking here is that this may have been interpreted as a 

loop of some sort by the synthesis algorithm in its attempt to detail the netlist.

The solution to this network cycle came in the guise of a D-Flip Flop. If there was 

a loop along the path from the multiplexer output to the counter reset, the flip flop would 

then be the best way to buffer or interrupt that loop. Thus Display module was modified 

accordingly, where the input to the D flip flop was the output of the multiplexer; the 

output of the flip flop drove the reset of the counter and the flip flop was clocked by the

65



negative edge of the clock driving the counter. Using the negative edge of the clock gave 

the counter and the multiplexer outputs more than enough time to settle. Once this was 

implemented the network cycle error was not encountered again and the synthesis of the 

display module was completed. Please see the synthesized schematics in Appendix C.

5.3 Implementation

As part of the synthesis process, the IOPAD program was invoked to produce 

input and output pins for the design. The iopad feature allows these designated pins to be 

allocated on the target device, in this case the FPGA. These pins can then be assigned to 

preferred I/O pins on the device. This can be done through the schematic capture 

program ViewDraw. The pin assignments were done for the Display module design and 

translated to the Xilinx netlist file of type .xnf.

The Xilinx netlist file then needs to be prepared into a bit stream which is 

downloaded into the XC4003A FPGA on the demo board. Once this was accomplished 

the proper external connections were made; however, the system seemed to work only 

for a portion of the sensor inputs. The Display module had thirty-two sensor inputs and 

a 5-bit maximum count input number as well as reset, clock and an up_enable counter 

control line. When the system found space number 8 or higher empty, the display would 

exhibit incorrect behavior. It should continuously display only the empty space it has 

encountered, instead it jumped between certain values, all still within the maximum count 

range. The counter outputs were also checked and found to be counting correctly.
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The output of the multiplexer then seemed to be the next possible suspect. This 

output was connected to an oscilloscope and a glitch was indeed occurring on the output 

at the very same time that correlated to the latched value being displayed. Thus it 

seemed that for some unknown reason, although the sensors ( DIP switches ) were not 

changing, the output of the multiplexer did change.

Even more sophisticated latching and clocking was implemented to try and settle 

the output of the mux. Unfortunately the results were not rewarding. By latching the 

multiplexer output, the system was able to count up to space number 14 without errors. 

Upon finding space number 15 empty the display showed that value then almost 

immediately went to “1”. This suggests another trigger of sorts that latched in a zero 

from the counter. Note: a zero on the counter translates to space #1 , etc. It is more 

important to note that when the additional latching features were implemented the display 

module design could not be contained in one FPGA. The design had to be split into two 

separate modules and interconnected to each other as necessary. This implies that the 

design may have already been close to capacity of the FPGA. Indeed the report listed 

100% utilization of all 61 input/output pins. This could have caused loading on the 

inputs and outputs of the device. About 78% of the CLB function generators were used 

on the FPGA and only 6% of the CLB flip flops.

The complete space management system was not implemented with the FPGA. 

Judging from the utilization report above it would be safe to say that it could not have fit 

into that particular model. The entire design repeatedly used the multiplexer-counter 

combination to describe its functionality and would need approximately eleven more
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similar FPGAs to accommodate the eleven mux_scan modules, and several more yet to 

accommodate the thirty-two 10-bit timer modules,
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary of Work

This work demonstrated the capabilities of VHDL in designing a digital system. 

VHDL behavioral descriptions were written for a 32-to-l multiplexer, a 5-bit counter 

with programmable maximum count, a 10-bit counter, a BCD to 7-Segment Display 

Driver, and a 5-bit Binary to BCD converter. These semi-complex logic circuit 

descriptions became the building blocks for the entire system. Code for one module 

could be used and adapted in different parts of the system. This follows along the new 

industrial trend of re-using code to reduce the design time of the process.

Synthesis of these modules in the Xilinx XC4000 Library was fairly 

straightforward and uncomplicated. The resulting netlists’ reports showed no violations 

in neither the input loadings nor the output drive calculations per net. The time it takes 

from the design is described to the actual hardware is sped up significantly, because of 

the ability to generate the netlist and a working prototype. This reduced time is one of the 

main advantages of the ASIC and digital circuit design process.

6.2 VHDL in Industry and Education

It took almost ten years from the first workshop on standardization, but VHDL 

has finally matured into a formalized and practical design tool. VHDL is fast becoming 

the common tool for circuit and ASIC designs in industry. The portability of the VHDL
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netlist to an ASIC configuration software is another key feature that incites this new 

design process to success. Many engineering companies have customized their in-house 

design software to work with third-party vendors’ VHDL packages. In light of this 

migration towards a more standardized design process, companies are actively seeking 

engineers with VHDL and ASIC experience. In order to give its graduates a fighting 

chance in the ever-changing field of engineering, educational institutions will have to 

introduce this new design technology into the curriculum. Today’s engineer should not 

only know the theory behind digital hardware design but also the current and state-of- 

the-art tools to implement that theory.

6.3 Future Work

The system was designed with the intention of having it transmit serial data to a 

main computer, the monitor. This monitor-system interface was not developed due to 

time constraints and the complexity of the task. The monitor would be able to connect to 

the space management system by an RS-232C or similar personal computer interface. 

The software driving this communication would be able to accept continuous input from 

the system and store the information on a daily basis. The program would also allow the 

programming of the system in terms of how many spaces are to be monitored. Any 

attendant wanting information about the status of the spaces being monitored would 

simply initiate a display process that would give a flat, on-screen graphical representation 

of the spatial arrangement. This display would also give the user access to the status and
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time of occupation for each space. The software may be written using the C+/C++ 

Languages,

The serial output of the space management system may be shifted into the monitor 

by a clock one-half times the Master clock. This ensures that for every transmission 

clock one bit is sampled in the middle of its pulse width to ensure no change in the values 

are occurring.. Each 16-bit stream holds information about one particular space.

Another enhancement that could be attempted is the configuration of several of 

these systems as modules in a token ring network. This would lend to the expansion of 

the system in an environment where more than just thirty-two spaces exist.

Also, in the future, with more sophisticated synthesis tools and increased capacity 

FPGAs, the system may be able to fit completely into just one device.

6.4 Other Applications

The system design was applied to a parking lot scenario; however, it is not limited 

to that application alone. The space management system could be applied in large 

warehouses, for example, furniture storage areas. It could be applied to movie theater 

seating, where by the empty seat number would help patrons to find a seat in dark and 

crowded cinemas. The diffuse-reflective sensor might not be useful in this environment 

but pressure sensors for the seats or imaging sensors may be more suitable. There could 

also be “triggers” on the seats when they are pulled down, signifying that someone is 

seated in that chair.
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APPENDIX A

VHDL CODE LISTINGS 

FOR THE SPACE MANAGEMENT SYSTEM
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ENTITY mnor5 IS
PORT (s3,s2,sl,s0,b3 :IN vlbit; norout :OUT vlbit); 

END tnnor5;

ARCHITECTURE dataflow OF mnor5 IS 

SIGNAL x: vlbit;

BEGIN

x <= s3 OR s2 OR si OR sO; 
norout <= b3 NOR x;

END dataflow;

Figure A .l VHDL code for 5-bit NOR gate.
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cntjn.vhd
Complete 5-bit counter with Programmable PLC as Counter limit 
Concurrency; with reset.
Used in mux5_scan.vhd 
rev, Nov, 7, 1995 

library synth; 
use synth.stdsynth.all;

ENTITY c n tjn  IS
PORT (SIGNAL RESET, UP_ENABLE,CLK:IN vlbit;

PLC :IN vlbit_ld (4 downto 0); 
signal c_out :out vlbit;
signal bed :out vlbit_ld(4 downto 0));

end c n tjn ;

Architecture first of c irtjn  Is

constant tbl: vlbit_2d(0 to 31,9 downto 0):= (
B"00000_00001",
B"00001_00010",
B"00030.00011",
B"00011_00100",
B"ooioo_ooior',
B"00101_00110",
B"0o iio_oom ",
B"00111_01000",
B,,01000_01001",
B"01001_01010",
B "o io io_o io ir,
B"01011_01100",
B"01100.01101",
B"01101_01110",
B"01110_01111",
B"0llli_10000",
B" 10000.10001",
B"10001_10010",
B’T0010_10011",
B"10011_10100",
B"10100_10101",
B"10101_10110",
B'T0110_10111",
B"10111_11000",
B"11000_11001",
B"11001.11010",
B"11010_11011",
B"11011.11100",
B" 11100.11101",
B 'T llO l.llllO ",
B" 111 10.11111",
B"1111 1.00000"

);
signal incz,bcdl,muxz :vlbit_ld (4 downto 0); 
signal int :vlbit;



begin
pla_table(bcdl, incz,tbl);
int <= ’O’ when bed 1 = pic else ’1’;
muxz <=B"000G0" when bedl=plcelse

incz whenf 1 ’ =ap_enable) else
bcdl;

c_out <ss ’ F when (’1’ =up_enable AND int=’0’)else ’O’; 

dffc_v(muxz,reset,elk,bed 1); 

bcd<=bcdl ;

end first;

Figure A.2 VHDL code for 5-bit counter.
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entity dlvl6 IS
PORT (SIGNAL reset,Mclk:IN vlbit;SIGNAL elkdl6:out vlbit); 

end divl6;

ARCHITECTURE structural OF divl6 IS

component cnt_in
PORT (SIGNAL RESET, UP_ENABLE,CLK:IN vlbit; 
PLC :IN vlbit_ld (4 downto 0); 
signal c_out :out vlbit;
signal bed :out vlbit_ld(4 downto 0»; 

end component;

library synth;
use synth.stdsynth.all;

SIGNAL qcO,qc 1 ,c4,c 16,c32,c64 , up:vlbit; 
Signal pic ,bcd:vlbit_ld(4 downto 0);

BEGIN
up<= ’1’;
pic <= (’0 7 1 7 1 7 1 7 1 ’); 

d l6: cnt_in Port MAP(reset,up,MCLK,plc,c4,bcd); 
clkdl6 <= NOT BCD(3);

end structural;

Figure A.3 VHDL code for Divide by 16 counter.
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library synth;
use synth.stdsynth.all;

entity divl024 IS
Port (Reset,CLK;IN vlbit; clkdl024:out vlbit); 

end div!024 ;

Architecture structural of dlvl024 Is

component timers3
port (reset,up_enable,Clk:In vlbit; c_out,c_out2 :out vlbit; 
final_count:out v!bit_ld(9 downto 0)); 

end component;

Signal up,cl,c2,q,x:vlbit;
Signal times; vlbit_ld(9 downto 0);

Begin

up <= ’ 1’;
dl024: timers3 Port MAP(reset,up ,CLK,cl,c2,times); 

clkdl024 <= NOT times(9);

end structural;

Figure A. 4 VHDL code for a Divide by 1024 counter.

80



library synth;
use synth.stdsynth.all;

entity bin2bcda IS
Port (numbenin vlbit_ld(4 downto 0); bed 1 ,bcd2:Out vlbit_ld(3 downto 0)); 

end bin2bcda;

-  this is modified to show 1 for zero input -> don’t count from zero up 
Architecture behavior of binlbcda IS 
constant tbl: vlbit_2d(0 to 31, 12 downto 0 ) := (

b "ooooo„ooooooor\
B"00001.00000010",
B"00010_0000Q0H",
B"00011_00000100",
B"00100_00000101",
B"00101_00000110",
B"00110_00000111",
B"00111.00001000",
B"01000.00001001",
B"01001_00010000",
B "01010.00010001",
B"01011.00010010",
B"01100.00010011",
B"01101.00010100",
B"01110.00010101",
B"01111.00010110",
B" 10000.00010111",
B" 10001.00011000",
B" 10010.00011001",
B" 10011.00100000",
B" 10100.00100001",
B" 10101.00100010",
B" 10110.00100011",
B" 10111.00100100",
B" 11000.00100101",
B" 11001.00100110",
B" 11010.00100111",
B"11011.00101000",
B" 11100.00101001",
B" 11101.00110000",
B"11110_00110001",
B"ll 111.00110010" );

signal bcda,bcdb:vlbit.ld(7 downto 0); 
signal num:vlbit_ld(4 downto 0);

begin
pla_table(number,bcda,tbl); 

bcdl <= bcda(3 downto 0); 
bcd2 <= bcda(7 downto 4); 

end behavior;

Figure A.5 VHDL code for Binary to BCD conversion.
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BCD27SEG.VHD 
Binary to 7 segment display decoder 
Process -sequential IF statements 
rev. OCt. 25, 1995

entity bcd27seg is
port(bcd: in vlbit_ld(3 downto 0); segment: out vlbit_ld(6 downto 0)); 

end bcd27seg;

architecture display of bcd27seg is 
begin

process (bed) 
begin

if bed = B"0000" then
segment <= B" 1000000"; 

elsif bed = B "0001" then
segment <=B" 1111001"; 

elsif bed = B"0010" then
segment <= B "0100100"; 

elsif bed = B"0011" then
segment <= B"0110000"; 

elsif bed = B"0100" then
segment <= B "0011001"; 

elsif bed = B"0101" then
segment <= B "0010010"; 

elsif bed = B"0110" then
segment <= B "0000010"; 

elsif bed = B"01 I I " then
segment <= B" 1111000"; 

elsif bed = B" 1000" then
segment <= B"0000000"; 

elsif bed = B"1001" then
segment <= B "0010000";

else
segment <= B"XXXXXXX";

end if; 
end process; 

end display;

Figure A.6 VHDL code for BCD to Seven Segment Display Converter.
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entity elkdrvs IS
PORT (MCLK, reset:IN vlbit;clkdl6,clkdl024:out vlbit); 

end elkdrvs;

ARCHITECTURE structural OF elkdrvs IS

COMPONENT div 16
PORT (SIGNAL reset,Mclk:IN vlbit;SIGNAL clkdl6:out vlbit); 

END COMPONENT;

Component div 1024
PORT (SIGNAL reset,clk:IN vlbit;SIGNAL clkdl024:out vlbit); 

END COMPONENT;

SIGNAL c 16 :vlbit;

BEGIN

aa: div 16 PortMAp (reset.Mclk, c l6);
clkdl6 <= cl6 ; 

bb: div 1024 Port MAp (reset,c!6, clkdl024);

END structural;

Figure A.7 VHDL code for the Clock Generator Module.
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muxlb.vhd
Complete Thirty-two input Multiplexer using 
Process and sequential IF statements

ENTITY MUX 16 IS
Port(I:IN vlb itjd  (15 downto 0); SeltIN vlbit_ld (4 downto 0); F:OUT vlbit);

end MUX16;

Architecture behavior of MUX 16 IS

BEGIN

Scans: Process(selJ)
Begin

IF (SEL=B "00000") THEN 
F<=I(0);

ELSIF (SEL=B"00001") THEN 
F<=I(1);

ELSIF (SEL=B"00010") THEN 
F<=I(2);

ELSIF (SEL=B"00011") THEN 
F<—1(3);

ELSIF (SEL=B"00100") THEN 
F<=I(4);

ELSIF (SEL=B"00101") THEN 
F<=I(5);

ELSIF (SEL=B"00110") THEN 
F<—1(6);

ELSIF (SEL=B"00111") THEN 
F<=I(7);

ELSIF (SEL=B"01000") THEN 
F<=I(8);

ELSIF (SEL=B"01001") THEN 
F<=I(9);

ELSIF (SEL=B"0I010") THEN 
F<=I(10);

ELSIF (SEL=B"01011") THEN 
F<=I(11);

ELSIF (SEL=B"01100") THEN 
F<=I(12);

ELSIF (SEL=B"01101") THEN 
F<=I( 13);

ELSIF (SEL=B"01110") THEN 
F<=I(14);

ELSIF (SEL=B"01 111") THEN 
F<=I(15);

ELSE
F<=*0’;

END IF;
END PROCESS SCANS;

END behavior;

Figure A.8 VHDL Code for a 16 to 1 Multiplexer.
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mux32.vhd
Complete Thirty-two input Multiplexer using 
Process and sequential IF statements

ENTITY MUX32 IS
Port(I:IN vlbit_ld (31 downto 0); SekIN vlbit_ld (4 downto 0); ROUT vlbit); 

end MUX32;

Architecture behavior of MUX32 IS 

BEGIN

Scans: Process
Begin
IF (SEL=B "00000") THEN 

F<=I(0);
ELSIF (SEL=B "00001") THEN 

F<—1(1);
ELSIF (SEL=B"00010") THEN 

F<=I(2);
ELSIF (SEL=B"00011") THEN 

F<=I(3);
ELSIF (SEL=B"00100") THEN 

F<=I(4);
ELSIF (SEL=B"00101") THEN 

F<=I(5);
ELSIF (SEL=B"00110") THEN 

F<=I(6);
ELSIF (SEL=B"00111") THEN 

F<=I(7);
ELSIF (SEL=B"01000") THEN 

F<=I(8);
ELSIF (SEL=B"01001") THEN 

F<==I(9);
ELSIF (SEL=B"01010") THEN 

F<=I(10);
ELSIF (SEL=B"01011") THEN 

F<=I(11);
ELSIF (SEL=B"01100") THEN 

F<=I( 12);
ELSIF (SEL=B”01101") THEN 

F<=I(13);
ELSIF (SEL=B"01110") THEN 

F<=I(14);
ELSIF (SEL=B"01 111") THEN 

F<=I(15);
ELSIF (SEL=B"10000") THEN 

F<=I(16);
ELSIF (SEL=B" 10001") THEN 

F<=I(17);
ELSIF (SEL=B" 10010") THEN 

F<=I(18);
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ELSIF (SEL=B"I0011") THEN 
F<=I(19);

ELSIF (SEL=B" 10100") THEN 
F<=I(20);

ELSIF (SEL=B" 10101") THEN 
F<=I(21);

ELSIF (SEL=B" 10110") THEN 
F<=I(22);

ELSIF (SEL<=B"10113") THEN 
F<=I(23);

ELSIF (SEL<=B" 11000") THEN 
F<=I(24);

ELSIF (SEL<=B"11001") THEN 
F<=I(25);

ELSIF (SEL<=B" 11010") THEN 
F<—1(26);

ELSIF (SEL<=B"11011") THEN 
F<=I(27);

ELSIF (SEL<=B" 11100") THEN 
F<=I(28);

ELSIF (SEL<=B" 11101") THEN 
F<=I(29);

ELSIF (SEL<=B" 11110") THEN 
F<=I(30);

ELSIF (SEL<=B" 11111") THEN 
F<—1(31);

ELSE
F<=’X’;

END IF;

END PROCESS SCANS;
END behavior;

Figure A.9 VHDL code for 32 to 1 Multiplexer.
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-  This Timers3.vhd. It is the 10-bit time counter for each space 
~ It uses the cntjn.vhd design but PLC is set to maximum count.

library synth;
use synth.stdsynth.all;

entity timers3 IS
port (reset,up_enable,Clk:In vlbit; c_out,c_out2 :out vlbit; 
final_count:out vlbit_ld(9 downto 0)); 

end timers3;
cntjn.vhd
Complete 5-bit counter with Programmable PLC as Counter limit 
Concurrency; with reset.
Used in space_cnt.vhd 
rev. Nov. 7, 1995

Architecture two_cntin of timers3 Is

component cnt_in
PORT (SIGNAL RESET, UP_ENABLE,CLK:IN vlbit;

PLC :IN vlbit_ld (4 downto 0); 
signal c_out :out vlbit;
signal bed :out vlbit_ld(4 downto 0));

end component;

signal bed 1 ,bcd2,plcf:vlbit_ 1 d (4 downto 0); 
signal cout,cout2,ncout:vlbit;

begin
picf<=(, r , , r , , r ; r , , r ) ;  

cnt 1: cnt J n  Port Map (Reset, Up_enable, CLk,plcf,cout,bcd 1);
ncout <= Not cout; 

cnt2: cn tjn  Port map (Reset, Up_enable, ncout,plcf,cout2,bcd2);

final_count <= (bcd2(4),bcd2(3),bcd2(2),bcd2( 1 ),bcd2(0),bcd 1 (4),bed 1 (3), bed 1 (2),bcdl( 1 ),bcd 1 (0)); 
c_out <= cout; 
c_out2 <= cout2; 

end two_cntin;

Figure A.10 VHDL code for the 10-bit Timer module.
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library synth;
use synth.stdsynth.all;

entity display_driver IS
Port (number:in vlbit 1 d(4 downto 0); Displ,DispO:Out vlbit 1 d(6 downto 0));

end display_driver;

Architecture structure of display__driver Is

component bin2bcda
Port (number:in vlbit_ld(4 downto 0); bcdl,bcd2:Out vlbit_ld(3 downto 0)); 

end component;

component bcd27seg
port(bcd: in vlbit_ld(3 downto 0); segment: out vlbit_ld(6 downto 0)); 

end component;

signal setl,set2 ;vlbit_ld (3 downto 0); 

begin

o l: bin2bcda POrt MAp (number,setl,set2); 
o2: bcd27seg POrt MAp (setl.DispO); 
o3: bcd27seg POrt MAp (set2,Displ);

end structure;

Figure A .l l  VHDL code for Display Driver module.



-- New display driver with latched number
-  6/26/96
library synth;
use synth.stdsynth.all;

entity ndispld IS
POrt ( number:in vlbit_ld(4 downto 0); full,reset,clk.in vlbit; num0:out vlbit_ld(4 downto 0); 

DisplJDispO.Out vlbit_ld(6 downto 0));

end ndispld;

Architecture structure of ndispld Is

component display_driver
POrt (number:in vlbit_ld(4 downto 0); 
Displ,DispO:Out vlbit_ld(6 downto 0»; 

end component;

signal numltch;vlbit_ld(4 downto 0); 
signal Dl, D0:vlbit_ld(6 DOWNTO 0);

begin

dffc_v(number,reset,elk, numltch);

od2: Display_driver POrt MAp (numltch, D1,D0); 
numO <=numltch;

DispI <= B"1111111" WHEN FULL = ’1’ ELSE D l; 
DispO <= B"1111111" WHEN FULL = ’! ’ ELSE DO;

end structure;

FIGURE A. 12 VHDL code for the Display driver.
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-  Create reset device for timers3
-  June 16 1996
-  signaLtime.vhd 
library synth;
use synth.stdsynth.all;

entity signal_iime IS
Port (Reset,Up_enable,sens_sig,CLK:IN vlbit;
Synchr:IN vlbit_ld(3 downto 0);
Times:out vlbit_ld(9 downto 0)); 

end signal_time;

Architecture structural of signal„time Is

component timers3
port (reset,up_enable,Clk:In vlbit; c_out,c_out2 :out vlbit; 
final_count:out vlbit_ld(9 downto 0)); 

end component;

component Nor5
PORT (s3,s2,sl,s0,b3 :IN vlbit; norout .OUT vlbit);

END component;

Signal a,b,rst,cl,c2,q,x:vlbit;

Begin

nclk: nor5 Port MAP(Synchr(0),Synchr(0),Synchr( 1 ),Synchr(2),Synchr(3),b);
a<= Not sens_sig; 
rst <s= q OR RESET; 
dffc(a,reset,b,q);

x<— Sens_sig and CLK; 
time_it: timers3 Port MAP(rst,up„enable,x,cl,c2,times);

end structural;

Figure A.13 VHDL code for the Signal_Time module.
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ENTITY itiain_moda IS 
PORT (Muxin.IN vlbit_ 1 d( 15 downto 0);up_enable, Mclk, reset: in vlbit; 

MMC:Out vlbit_ld(4 downto 0); F:OUT vlbit); 
end main_inoda;

Architecture structural of main_moda Is

component mux 16
Port(I:IN vlbit_ld (15 downto 0); SekIN vlbit_ld (4 downto 0); 

F:OUT vlbit); 
end component;

component cnt_in
PORT (SIGNAL RESET, UPJENABLE,CLK:IN vlbit;
PLC :IN vlbit_ld (4 downto 0); 
signal c_out :out vlbit;
signal bed :out vlbit_l d(4 downto 0));

end component;

library synth;
use synth.stdsynth.all;

signal c_out: vlbit;
signal PLC,count:vlbit_ld(4 downto 0);

begin
pic < = (*071717171’);

b: cnt_in Port MAp (reset,up_enable,Mclk,PLC,c_out,count);
MMC <= count; 

a: mux 16 Port MAp (Muxin,count,F);

end structural;

Figure A.14 VHDL code for the main module.
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mux32_scan.vhd
Multiplexer Counter combination to Produce Scanning effect of 
all 32 inputs. mux32-if statements; cntjn* 
rev. Oct. 25, 1995 

ENTITY mux32_scan IS
Port(plc:IN vlbit_ld(4 downto 0); PIN vlbit_ld(31 downto 0); up_enable, clkjn, reset: in vlbit; 

cout, F:OUT vlbit);
END mux32_scan;

Architecture behavior of mux32_scan IS 

COMPONENT
mux32 Port(I:IN vlbit_ld (31 downto 0); SehIN vlbit_ld (4 downto 0);F:OUT vlbit);

END COMPONENT;

COMPONENT
cntjn port(reset, up_enable,clk:in vlbit;PLC:in vlbit_ld(4 downto 0); c_out: out vlbit; 

bcdiout vlbit_ld(4 downto 0));
END COMPONENT;

SIGNAL SEL:vlbit_ld(4 downto 0);

BEGIN
cnt: cntjn  PORT MAP(reset,up_enable,elkJn,PLC,cout,sel);

ml: mux32 PORTMAP(I,sel,F);
END Behavior;

Figure A. 15 VHDL code for Multiplexer -counter combination .
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-  6/26/96
library synth;
use synth.stdsynth.all;

entity muxcnt2 IS
POrt (sensrin vlbit_ld(31 downto 0); PLC:in vlbit_Id(4 downto 0); 

up_enable,reset,clk.in vlbit; Full, f :out vlbit;numO:out vlbit_ld(4 downto 0));

end muxcnt2;

Architecture structure of muxcnfl Is

COMPONENT mux32 Port(I:IN vlbifjd (31 downto 0); 
Sel:IN vlbit_ld (4 downto 0);F:OUT vlbit);
END COMPONENT;

component cntjn
PORT (SIGNAL RESET, UPJENABLE,CLK: IN vlbit; 
PLC ;IN vlbit__ld (4 downto 0); 
signal c_out :out vlbit;
signal bed :out vlbit_ld(4 downto 0));

end component;

signal fl,a,x,s,y,ck,s2,q0,d3,ql,xx,nrst: vlbit; 
signal number:vlbit_ld(4 downto 0);

begin

FULL<= Sens(O) And Sens(l) and Sens(2) and sens(3) and Sens(4) And 
Sens(5)and Sens(6) and sens(7) and Sens(8) And Sens(9) and Sens(lO) and 
sens(l1) and Sens(12) And Sens(13) and Sens(14) and sens(15) and Sens(O) And 
Sens(l) and Sens(18) and sens(19) and Sens(20) And Sens(21) and Sens(22) and 
sens(23) and Sens(24) And Sens(25) and Sens{26) and sens(27) and Sens(28) And 
Sens(29) and Sens(30) and sens(31);

a <= Not s; -  create input for mux latch
x <= CK and (reset OR nrst); -- two ways to reset 
d3 <= not qO;
dffc(d3,reset,elk,qO); -- divied clock by 2
xx <= d3 and elk; -  create pulse for latching mux output
dffc(a,x,xx,q 1); -  latch to hold mux output.
ck <= (not qO) and (not elk); -- negative edge to clock for reset counter

xx <= (not elk) and qO; 
odO: cntjn Port MAp (x,up_enable,qO,PLC,y,number);

odl: mux32 Port MAp (sens,number,s);

dffc(a,reset,ck,nrst); — reset with delay eliminate feedback;
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f< = q l; 
numO <= number; 

end structure;

Figure A. 16 VHDL code for the Muxcnt2 used to display space number.
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ENTITY spaee_cntr IS 
PORT (I:IN vlbit_ld(31 downto 0);up_enable, elk, reset: in vlbit; 

PLC:In vlbit_ld(4 downto 0); F:OUT vlbit); 
end space_cntr;

Architecture structural of space_cntr Is

component mux_scann
Port(I:IN vlbit_ld(31 downto 0);up_enable, clk_in,reset :in vlbit; 

PLC:In vlbit_ld(4 downto 0);cout, F:OUT vlbit); 
end component;

signal c_out: vlbit;

begin

a: mux_scann Port MAp (I,reset,up_enable,clk,plc,c_out,F); 

end structural;

library synth;
use synth.stdsynth.all;

Figure A.17 VHDL code for the Space_cntr Module.
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-  Complete combination of system
-  July 7 1996
-- compsya.vhd renamed and changed to latch f_ser output
library synth;
use synth.stdsynth.all;

entity compsyb IS

Port (Reset,Up_enable,MCLK:IN vlbit;PLC :IN vlbit_ld(4 downto 0); 
Sens:IN vlbit_ld(31 downto 0); Displ,DispO:Out vlbit_ld(6 downto0); 
tessjust :Out vlbit_Jd(4 downto 0);Tim0:OUT vlbit_ld(9 downto 0);str0:out 
vlbit_ld(31 downto 0);clkl6,clkl2,FULL,f_ser:out vlbit);

end compsyb;

Architecture structural of compsyb Is

component main_moda
PORT (Muxin:IN vlbit_ld(15 downto 0);up_enable, Mclk, reset: in vlbit; 
MMCrOut vlbit_ld(4 downto 0); F:OUT vlbit); 
end component;

-  clock dividers!!!--------------------- -----
component elkdrvs

PORT (MCLK , reset:IN vlbit;clkdl6,clkdl024:out vlbit); 
end component;

-component timers3
PORT (SIGNAL RESET, UP_ENABLE,CLK:IN vlbit; 
signal c_out :out vlbit;
signal bed :out vlbit_ld(4 downto 0));

-end component;
-  don’t need here 6/20/96

component signal_time

Port (Reset,Up„enable,sens_sig,CLK:IN vlbit; 
SynchrrIN vlbit_ld(3 downto 0);

Times:out vlbit_ld(9 downto 0));

end component;

component space_cntr
PORT (LIN vlbit_ld(31 downto 0);up_enable,elk,reset :in vlbit;

PLC.In vlbit_ld(4 downto 0); F:OUT vlbit); 
end component;
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component cntjn
PORT (SIGNAL RESET, UPJ3NABLE,CLK:IN vlbit; 
PLC ;IN vlbit_ld (4 downto 0); 
signal c_out .out vlbit;
signal bed :out vibit_ld(4 downto 0));

end component;

component mux_scann
Port(I:IN vlbit_ld(31 downto 0); 

up_enable, elkjn, reset: in vlbit;
PLC:In vlbit_ld(4 downto 0);cout, ROUT vlbit);

end component;

-component displaymod2
POrt (sens:in vlbit_ld(31 downto 0);

-PLC:in vlbit_ld(4 downto 0);
~up_enable,reset,clk:in vlbit;
-Displ,DispO:Out vlbit_ld(6 downto 0));

-end component;

component ndispld
POrt ( numberin vlbit_ld(4 downto 0); full,reset,clk:in vlbit; 
numOrout vlbit_ld(4 downto 0); Displ,DispO:Out vlbit_ld(6 downto 0));

end component;

component muxcnt2
POrt (sens:in vlbit_ld(31 downto 0); PLC:in vlbit_ld(4 downto 0); 

up_enable,reset,clk:in vlbit; Full, f :out vlbit; 
numO:out vlbit_ld(4 downto 0));

end component;

Signal Clkdl6,clkdl024,d0,di,d2,d3,d4,d5,d6,d7,d8,d9: vlbit; 
Signal t,fll,f,fO,fl,nmclk:vlbit;

Signal dum:vlbit_ld(12 downto 0);
Signal plc2 ,bed,synchr,number,numltch;vlbit_ld(4 downto 0); 
Signal synco :v!bit_ld(3 downto 0);
Signal streamO,stream 1 ,stream2,stream3,stream4,streamS, 
stream6,stream7,stream8,stream9: vlbit_ld(31 downto 0);

Signal 10,11,12,13,14,15,16,17,18,19,110,111,112,113,114,115 : vlbit; 
Signal I: vlbit_ld(15 downto 0);
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Signal Times31, Times30, Times29, Times28, Times27: vlbit_ld(9 downto 0);
Signal Times26, Times25, Times24, Times23, Times22: vlbit_ld(9 downto 0);
Signal Times21, Times20,Times 19, Times 18, Times 17,Times 16: vlbit_ld(9 downto 0); 
Signal Times 15, Times 14,Times 13, Times 12, Times! 1 .Times 10: vlbit_ld(9 downto 0); 
Signal Times9, TimesS, Times7, Times6, TimesS, Times4: vlbit_ld(9 downto 0);
Signal Times3,Times2, Times 1, TimesO: vlbit_ld(9 downto 0);

signal clkdelay:vlbit;

begin

elks : elkdrvs Port MAp (MCLK,reset,elkd 16,clkd 1024); 
clkl6<=clkdl6;

clkl2<=clkdl024;

synco <= synchr(3 downto 0);

Modi: spaee_cntr PORT Map (sens,UP_ENABLE,CLKdl6,RESET,PLC,15);
-- Count through the spaces to give bed to big multiplexer, 

tess <= bed; 
elkdelay <= elkd 16 ;
Mod2: cnt_in Port MAp(reset,up_enable,elkdelay,PLC,dum(10),bed);

-- 1(4 downto 0) <=bcd;
10 <= bcd(0);
11 <= bcd(l);
12 <= bcd(2);
13 <= bcd(3);
14 <= bcd(4);

-Declare counters for timers for space signals
sO: signal_time Port MAP (reset,up_enable,Sens(0),CLKdl024,synco,TimesO); 
si: signal_time Port MAP (reset,up_enable,Sens( 1 ),CLKd 1024,synco,Times 1); 
s2: signal_time Port MAP (reset,up_enable,Sens(2),CLKd 1024,synco,Times2); 
s3: signal_time Port MAP (reset,up_enable,Sens(3),CLKd 1024,synco,1Times3); 
s4: signal_time Port MAP (reset,up_enable,Sens(4),CLKd 1024,synco,'Times4); 
s5: signal_time Port MAP (reset,up_enable,Sens(5),CLKd 1024,synco,TimesS); 
s6: signaLtime Port MAP (reset,up_enable,Sens(6),CLKdl024,synco,Times6); 
s7: signal_time Port MAP (reset,up_enable,Sens(7),CLKdl024,synco,Times7); 
s8: signaLtime Port MAP (reset,up_enable,Sens(8),CLKdl024,synco,Times8); 
s9: signaLtime Port MAP (reset,up_enable,Sens(9),CLKd 1024,synco,Times9); 
slO: signaLtime Port MAP (reset,up_enable,Sens(10),CLKd 1024,synco,TimeslO); 
si 1: signaLtime Port MAP (reset,up_enable,Sens( 11 ),CLKd1024,synco,Times 11); 
s i2: signaLtime Port MAP (reset,up_enable,Sens( 12),CLKd 1024,synco,Timesl2); 
s i3: signaLtime Port MAP (reset,up_enable,Sens( 13),CLKd 1024,synco,Times 13); 
sl4: signaLtime Port MAP (reset,up_enable,Sens( 14),CLKd 1024,synco,Times 14); 
s i5: signaLtime Port MAP (reset,up_enable,Sens( 15),CLKd 1024,synco,Times 15); 
s i6: signaLtime Port MAP (reset,up_enable,Sens( 16),CLKd 1024,synco,Times 16); 
sl7: signaLtime Port MAP (reset,up_enable,Sens(17),CLKdl024,synco,Timesl7); 
s l8: signaLtime Port MAP (reset,up_enable,Sens( 18),CLKd 1024,synco,Times 18); 
s i9: signaLtime Port MAP (reset,up_enable,Sens( 19),CLKd1024,synco,'Timesl9);
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s20: signaljime Port MAP (reset,up_enable,Sens(20),CLKdl024,synco,Times20) 
s21: signaLtime Port MAP (reset,up_enabie,Sens(21 ),CLKd 1024,synco,Times21) 
s22: signaLtime Port MAP (reset,up_enable,Sens(22),CLKdl024,synco,Times22) 
s23: signaLtime Port MAP (reset,up_enable,Sens(23),CLKdl024,synco,Times23) 
s24: signaLtime Port MAP (reset,up„enable,Sens(24),CLKdl024,synco,Times24) 
s25: signaLtime Port MAP (reset,up_enable,Sens(25),CLKdl024,synco,Times25) 
s26: signaLtime Port MAP (reset,up_enabie,Sens(26),CLKdlQ24,synco,Times26) 
s27: signaljime Port MAP (reset,up_enable,Sens(27),CLKdl024,synco,Times27) 
s28: signaljime Port MAP (reset,up_enable,Sens(28),CLKd 1024,synco,Times28) 
s29: signaljime Port MAP (reset,up_enable,Sens(29),CLKd 1024,synco,Times29) 
s30: signaljime Port MAP (reset,up_enable,Sens(30),CLKd 1024,synco,Times30) 
s31: signaljime Port MAP (reset,up_enable,Sens(31 ),CLKdl024,synco,Times31)

TimO <= TImesO;

streamO <= (Times31 (0),Times30(0),times29(0),times28(0),times27(0), 
times26(0),times25(0),times24(0),times23(0),times22(0),times21(0), 
times20(0),times 19(0), times 18(0),times 17(0),times 16(0),times 15(0), 
times 14(0),times 13(0),times 12(0),times 11 (0),times 10(0),times9(0), 
times8(0),times7(0),times6(0),times5(0),times4(0),times3(0), 
times2(0),times 1(0),timesO(O));

StrO <= StreamO;

stream 1 <= (Ti mes31 (1 ),Times30( 1 ),times29( 1 ),times28( 1 ),times27 (1), 
times26( 1 ),times25( 1 ),times24( 1 ),times23( 1 ),times22( 1 ),times21(1), 
times20( 1),times 19(1),times 18( 1),times 17(1),times 16( 1),times 15(1), 
times 14(1),times 13(1),times 12( 1),times 11(1),times 10( 1 ),times9( 1), 
times8( 1 ),times7( 1 ),times6( 1 ),times5( 1 ),times4( 1 ),times3( 1), 
times2( 1),times 1 (1 ),times0( 1));

stream2 <= (Times31 (2),Times30(2),times29(2),times28(2),times27(2), 
times26(2),times25(2),times24(2),times23(2),times22(2),times21(2), 
times20(2),times 19(2),times 18(2),times 17(2),times 16(2),times 15(2), 
timesl4(2),times 13(2),timesl 2(2),times 11 (2),times 10(2),times9(2), 
times8(2),times7(2),times6(2),times5(2),times4(2),times3(2), 
times2(2),times 1 (2),times0(2));

stream3 <= (Times31 (3),Times30(3),times29(3),times28(3),times27(3), 
times26(3),times25(3),times24(3),times23(3),times22(3),times21(3), 
times20(3),times 19(3),times 18(3),times 17(3),times 16(3),times 15(3), 
times 14(3),times 13(3),times 12(3),times 11 (3),times 10(3),times9(3), 
times8(3),times7(3),times6(3),times5(3),times4(3),times3(3), 
times2(3),times 1 (3),times0(3));

stream4 <= (Times31 (4),Times30(4),times29(4),times28(4),times27(4), 
times26(4),times25(4),times24(4),times23(4),times22(4),times21(4), 
times20(4),times 19(4),times 18(4),times 17(4),times 16(4), times 15(4), 
times 14(4),times 13(4),times 12(4),times 11 (4),times 10(4),times9(4), 
times8(4),times7(4),times6(4),times5(4),times4(4),times3(4), 
times2(4),times 1 (4),times0(4));
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streamS <= (Times31(5),Times30(5),times29(5),times28(5),times27(5), 
times26(5),times25(5),times24(5),times23(5),times22(5),times21(5), 
times20(5),times 19(5),times 18(5),times 17(5),times 16(5),times 15(5), 
times 14(5), times 13(5),times 12(5),times 11 (5),times 10(5),times9(5), 
times8(5),times7(5),times6(5),times5(5),times4(5),times3(5), 
times2(5),times 1 (5),times0(5));

stream6 <= (Times31 (6),Times30(6),times29(6),times28(6),times27(6), 
times26(6),times25(6),times24(6),times23(6),times22(6),times21(6), 
times20(6),times 19(6), times 18(6), times 17(6),times 16(6),times 15 (6), 
times 14(6),times 13(6),times 12(6),times 11 (6),times 10(6),times9(6), 
times8(6),times7(6),times6(6),times5(6),times4(6),times3(6), 
times2(6),times 1 (6),times0(6));

stream7 <= (Times31 (7),Times30(7),times29(7),times28(7),times27(7),
times26(7),times25(7),times24(7),times23(7),times22(7),times21(7),
times20(7),timesl9(7),timesl8(7),timesl7(7),timesl6(7),timesl5(7),
times 14(7),times 13(7),times 12(7),times 11 (7),times 10(7),times9(7),
times8(7),times7(7),times6(7),times5(7),times4(7),times3(7),
times2(7),timesl(7),times0(7));

stream8 <= (Times31 (8),Times30(8),times29(8),times28(8),times27(8),
times26(8),times25(8),times24(8),times23(8),times22(8),times21(8),
times20(8),timesl9(8),timesl8(8),timesl7(8),timesl6(8),timesl5(8),
ti mes 14(8),times 13(8),times 12(8),times 11 (8),times 10(8),times9(8),
times8(8),times7(8),times6(8),times5(8),times4(8),times3(8),
times2(8),timesl(8),times0(8));

stream9 <= (Times31 (9),Times30(9),times29(9),times28(9),times27(9), 
times26(9),times25(9),times24(9),times23(9),times22(9),times21(9), 
times20(9),times 19(9),times 18(9),times 17(9),times 16(9),timesl 5(9), 
times 14(9),times 13(9),times 12(9),times 11 (9),times 10(9),times9(9), 
times8(9),times7(9),times6(9),times5(9),times4(9),times3(9), 
times2(9),timesl(9),times0(9));

timuxO: mux_scann POrt Map (stream0,up_enab!e,clkdl6,reset,PLC,dum(0),I6); 
timuxl: mux_scann POrt Map (stream 1 ,up_enable,clkd 16,reset,PLC,dum( 1 ),I7); 
timux2: mux_scann POrt Map (stream2,up_enable,clkdl6,reset,PLC,dum(2),18); 
timux3: mux_scann POrt Map (stream3,up„enable,elkdl6,reset,PLC,dum(3),19); 
timux4: mux_scann POrt Map (stream4,up_enable,clkdl6,reset,PLC,dum(4),110) 
timux5: mux_scann POrt Map (stream5,up_enable,clkdl6,reset,PLC,dum(5),Il 1) 
timux6: mux_scann POrt Map (stream6,up_enable,clkd 16,reset,PLC,dum(6),112) 
timux7: mux_scann POrt Map (stream7,up_enable,clkdl6,reset,PLC,dum(7),I13) 
timux8: mux_scann POrt Map (stream8,up_enable,clkdl6,reset,PLC,dum(8),114) 
timux9: mux_scann POrt Map (stream9,up_enable,clkd 16,reset,PLC,dum(9),115)
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I <= (115,114,113,112,111,110,19,18,17,16,15,14,13,12,II,10);

U1 : mainjmoda Port Map (I,up_enable,Mclk,reset,synchr.fO);
-  Big Multiplexer -  .

nmclk <= not Mclk;
dffc(f0, reset, nmelk,f 1); 
f_ser <=f 1;

U2: muxcnt2 Port Map (sens,pic,up_enable,reset,clkd 16,fll,f,number);

U3: ndispld port map (number,fll,reset,f,numltch,DISPl,DISPO); 
just <= numltch;

FULL <= fll;

end structural;

Figure A.18 VHDL code for the entire space management system.
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APPENDIX B

SIMULATION RESULTS 

OF THE SPACE MANAGEMENT SYSTEM
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Figure B.l Simulation Results of the 5-input NOR gate.
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Figure B.2 Simulation Results of the 5-Bit Counter.
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Figure B.3 Simulation of the Divide by 16 Counter.
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Figure B.4 Simulation Results of the Divide by 1024 Counter.
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Figure B.S(a) Simulation Results of the Binary to BCD converter. (Zoomed view)
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Figure B.5(b) Simulation Results of the Binary to BCD converter.
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Figure B.6 Simulation Results of the BCD to Seven Segment Converter.
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Figure B.7 Simulation Results of the Clock Generator.



Figure B.8 Simulation Results of the 16-input Multiplexer.
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Figure B.9 Simulation Results of the 32-input Multiplexer.

112



113



Figure B.10(b) Simulation Results of the 10-bit timer. (Zoomed View)
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Figure B .ll Simulation Results of the Display Driver Module.
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Figure B.13 Simulation results of the Signal_Time Module
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Figure B.14 Simulation results of the main module.
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Figure B.15 Simulation Results of the Mux-Scann module,

119



120



Figure B.16(b) Simulation of Muxcnt2 Module. (Zoomed View)
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Figure 8.17(a) Simulation Results of the Space_Cntr module.
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APPENDIX C

SYNTHESIZED SCHEMATICS 

OF THE SPACE MANAGEMENT SYSTEM
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Figure C. 1 Synthesized Schematic of a 5-input NOR gate.
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Figure C.2 Synthesized Schematic of 5-Bit Counter

126



I *

£jL

Figure C.3 Synthesized Schematic of Divide by 16 counter.
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Figure C.5 Synthesized Schematic of Binary to BCD Converter.
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Figure C.6 Synthesized Schematic of BCD to Seven Segment Converter.
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Figure C.7(a) Synthesized Schematic of Clock Generator.
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Figure C.7(b) Synthesized Schematic of Clock Generator

132

<21 
Jcc

a.a
r'V

'®



133

cI
k

d
rv

o



Figure C.8 Synthesized Schematic of 16 to 1 Multiplexer

134



Figure C.9(a) Synthesized Schematic o f 32 to 1 Multiplexer
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Figure C.9(b) Synthesized Schematic of 32 to 1 Multiplexer
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Figure C.9(c) Synthesized Schematic of 32 to 1 Multiplexer
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Figure C.9(d) Synthesized Schematic of 32 to 1 Multiplexer
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Figure C.10 Synthesized Schematic o f Timer Module

139



Figure C . l l  Synthesized Schematic o f Display Driver
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Figure C.12 Synthesized Schematic of Display Module
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Figure C.13 Synthesized Schematic of Signal Timer Module
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Figure C.14 Synthesized Schematic o f the Main Module
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Figure C. 15(a) Synthesized Schematic of a Mux_scann module.
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Figure C. 15(b) Synthesized Schematic o f a Mux_scann module.
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Figure C. 15(c) Synthesized Schematic o f a Mux_scann module
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Figure C. 15(d) Synthesized Schematic of aMux_scann module
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Figure C. 16(a) Synthesized Schematic of Muxcnt2 Module.
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Figure C. 16(b) Synthesized Schematic of Muxcnt2 Module.
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Figure
C.17(a) Synthesized Schematic

ic of Space_cntr Module
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Figure C. 17(b) Synthesized Schematic o f Space_cntr module.
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Figure C. 17(c) Synthesized Schematic of Space_cntr module.
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Figure C. 18 Synthesized Symbol of Complete System.
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