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ABSTRACT OF THE THESIS 

A STUDY OF RESPONSE SURFACE IN SIMULATION OF EMERGENCY ROOM

SYSTEMS

by

Daisy Correa 

Florida International University, 1999 

Miami, Florida 

Professor Martha A. Centeno, Major Professor

The purpose of this research was to characterize a response surface with respect to 

the changes made to the input variables of an emergency room system. Response Surface 

Methodology (RSM) was used to identify the behavior of the response variable with 

respect to the changes made to the input variable.

Several factors were examined for relevancy and significance for the purpose of 

experimentation. The findings of this research revealed that one factor (nurses) was very 

significant to the performance measures (time in the system). However, the interaction 

between the other factors also played an important role. It was determined that a linear 

regression is not useful in predicting the assessed value of time in the system in 

emergency rooms. Non-linear models need to be explored. A series of production rales 

were derived. These production rales can be used in a variety of situations where a 

decision on how to modify model inputs needs to be made.
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CHAPTER 1:

INTRODUCTION 1

Simulation is a tool that represents a real-world system, generates data, but it does 

not optimize. Currently, simulation results are optimized either by using various 

mathematical techniques after the simulation model has been executed or by iterating 

through a finite set of inputs, observing the system’s response to these inputs, and then 

selecting the “optimum”. Of these two approaches, the former actually gives the true 

optimum, whereas the latter merely gives an answer that is satisfactory to the user. 

However, it has been difficult to integrate simulation modeling and mathematical 

optimization; nonetheless a lot of efforts have been devoted to it. For instance, Fu and 

Healy (1997) combined optimization and simulation by using retrospective methods and 

gradient-based methods. They found that the combination of both techniques modified 

would enables the search of an optimal answer in inventory systems. Another example is 

the work of Hsu and Nelson (1988). They used a technique called multiple comparison 

with the best to find an optimal design for inventory systems and machine-repair systems. 

However, since the method only works with a finite number of system designs, it yields 

only a sub-optimal answer.

Hospitals have gained substantially with the use of simulation modeling. Durham 

Regional Hospital was able to show that they would save about $150K annually if they

1 Funded under NASA Grant NAGO10-0212
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implement the configuration found using simulation. St. Luke Hospital was looking to 

decrease the length of stay in the emergency rooms (ER). A simulation model was used 

to find a configuration that would decrease it by as much as 40 percent. Other hospitals 

also used simulation modeling to improve emergency rooms and maintain the best quality 

care for the patients. Despite these successes, few efforts have attempted to use 

optimization in the simulation of ER systems.

The purpose of this research effort was to study the response surface of emergency 

room systems with respect to changes to the input variables. By gaining an understanding 

of the input and output relationships in ER systems, it was expected that heuristics could 

readily be developed to optimize the decision variables.

A generic model was determined by ways of surveys and interviews. Therefore, 

to experiment with this generic model a simulation model was developed using ARENA. 

Once the model was validated and verified, several experiments were ran. From these 

experiments and with the use of RSM, the most significant input variables, other wise 

known as factors, were determined. Additionally, from the use of RSM response surfaces 

were graphed in which the production rales were derived.

1.1 P r o b l e m  S t a t e m e n t

Simulation models are executed for a specified amount of time or for a specified 

number of units. A simulation model is given a set of inputs, so that it can generate data 

to make inferences about the system's performance. Traditional simulation modeling
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(TSM) does not optimize the collected data although a system analyst is typically 

concerned with establishing the optimal conditions to operate the system. In general, 

optimization seeks values for a set of decision variables that would maximize or 

minimize an objective function, subject to some constraints (Rardin, 1998). Thus, it is 

natural that researchers have strived to merge the power and flexibility of simulation with 

the mathematical sharpness of optimization. The ability to ran a simulation model, which 

will produce optimal answers for a set of decision variables, is highly desirable.

Several methods and techniques have been explored that would enable simulation 

modeling to optimize. Figure 1 shows the different optimization methods that have been 

used for simulation. All these methods have benefited simulation in the search of 

optimizing the output variables. However, the majority of the methods find "near" 

optimal solutions.

Figure 1: Optimization Methods

3



In the category of Gradient-based search methods, several techniques have been 

used, including finite difference and perturbation analysis. Finite Difference (FD) 

estimation requires the derivatives of output variables to estimate the gradient. To gain 

reliability of the gradient multiple observations are needed at the expense of 

computational effort. The idea behind perturbation analysis (PA) is that it is capable of 

producing all the necessary partial derivatives in one simulation run. Frequency domain 

experimentation (FDE) performs its analysis during one long simulation run; however, it 

oscillates the value of the parameter according to a sinusoidal function during the 

simulation execution (Fu, 1994b), Fu and Healy (1997) combined gradient-based search 

method with a retrospective algorithm to develop a hybrid approach to improve the 

convergence properties of the gradient scheme and reduce the computational effort of the 

retrospective approach. Likelihood ratio (LR) method takes the derivative of the 

expected value of the output variables with respect to the input variables.

Response Surface Method (RSM) is a heuristic that guarantees no success 

(Kleijnen, 1995). If the number of control variables grows, the effort to find an accurate 

estimate for the coefficients also increases, hence, the efficiency and the cost would be ill 

favored. In the first of its two-phase sequence, RSM uses gradient methods to iteratively 

locate a "best guess" of optimal parameters. To minimize the iterative process a 

screening procedure is applied to the factors. The downfall of the screening process is 

that the user may drop a factor that may have been an important one. Therefore, 

screening from a list of hundreds of factors to narrow the list to a manageable few would 

be necessary but if done incorrectly, the user may not reach the optimum answer.
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According to Safizadeh (1990), RSM assumes that the user is able to identify, at least 

approximately, the region of interest as is characterized by the constraints that were 

defined for the problem.

These techniques (FDE, LR, PA, FD, and RSM) are robust techniques that work 

well if and only if the underlying assumptions are strictly met. However, satisfying these 

assumptions is not always an easy task. For instance, FDE and PA require that the 

modeler have complete knowledge of the simulation model itself to add tracking 

capabilities. For example, when performing sensitivity analysis using PA, the system can 

change or be perturbed by in infinitesimal amount. Therefore the modeler will need to 

know where to add the tracking sequence within the model. In addition, using PA for 

complex simulation models may not be adequate because it assumes that the perturbation 

of the decision variable is small, and that it does not alter the order of events during the 

simulation ran. In the case of Fu and Healy’s (1997) work, the difficulty they ran into was 

establishing the initial step size for the search and the update period for the inputs. The 

major drawback of LR is that estimating the gradient is not always possible, and it 

requires the differentiation of a probability measure.

The success of these techniques varies depending on the domain of the simulation 

model. Simulation models are used to represent a great variety of systems, such as 

computer systems, manufacturing, business, government, ecology and environment, 

society and behavior, bio-science, and Health Care Facilities (HCF) (Pegden, Shannon, 

and Sadowski, 1995). In most cases of simulation optimization, what works in one area 

does not work in another. Consequently, the use of these optimization techniques has
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been confined to a small set of classes of systems. Researchers are still looking for more 

general optimization algorithms or heuristics, so that a larger set of systems may be 

optimized.

A class of systems of significant interest is health care systems. In fact, the last 

decade (1990’s) has seen a lot of discussion on the high cost of health care. HCF have 

been forced to closely study their revenues and expenses, so that they can continue to 

deliver quality service at a lower cost. Simulation models have proven to be an asset in 

the study, modeling, and analysis of ER facilities in a HCF (Lowery, 1996). In fact, 

modeling ER systems has resulted many times in significant cost reduction and in better 

perceived quality. For instance, Lowder (1997) reported that for Durham Regional 

Hospital a $150,000 annual saving was obtained after a thorough study was done. By 

simulating the addition of a new service area, they were able to reduce the level of 

staffing and reduce the waiting time per patient.

Other efforts that show the importance of simulation in health care systems 

include McGuire (1994), Garcia et al. (1995), and Kirtland et al. (1995). McGuire (1994) 

addresses this issue of customer satisfaction by applying simulation to reduce the length 

of stay for patients within the ER. He states that the significant percentage of a hospital’s 

total admission arrive through the ER; thus, increasing customer satisfaction would 

increase the number of annual visits. His study revealed that the patients are less willing 

to accept long waits in any department, particularly in the ER.

Baptist Health Systems (1998) statistics for its 1996 fiscal year state that 124,100 

of its patients entered the emergency room. Comparing this to the number of admissions
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to the hospital (approximately 51,500), it can be observed that more than twice as many 

patients interact with the ER than with other systems in the HCF. With such a large 

amount of patients in ER rooms, it is only natural that improvements should be sought in 

ER’s.

Garcia et al. (1995) studied the ER at Mercy Hospital to reduce the time in the 

system for non-critical patients with the assistance of simulation modeling. They 

determined a reduction of 25 percent in the length of stay for these non-critical patients 

without jeopardizing the lives of the critical patients. Kirtland et al. (1995) also found 

simulation useful in the reduction of patient waiting times in the ER, The project 

considered 1 1  alternatives of which the impact of the changes from the top three would 

reduce the patient turnaround time by 38 minutes. A high standard of quality care, and a 

reduced time in ER should result in more satisfied customers (patients); hence, it should 

generate a greater income for the hospital.

These efforts have shown that simulation modeling is indeed a valuable tool for 

the analysis of ERs. However, ER managers still have to engage in iterative, off-line 

output analysis to determine the “optimal performance” levels. To help them, several 

companies have attempted to combine optimization and simulation into one package. For 

instance, ProModel Corporation added SimRunner Optimization to their PROMODEL 

software. It provides the best answer under a sophisticated "what-if" analysis in a short 

amount of time. However, ProModel was specifically designed for all types of 

manufacturing systems ranging from small job shops and machining cells to large mass 

production, flexible manufacturing systems, and supply chain systems (Benson, 1997).
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Although ProModel could be used to model ER facilities, it would require a significant 

learning for ER managers. ProModel Corporation realized this drawback and developed 

MedModel. This new software grants the ability to model complex interdependencies 

found in ERs and provides ease of use. MedModel is also capable of using SimRunner. 

SimRunner gives psuedo optimal answers in the sense that it merely provides satisfactory 

responses for the user. In this sense, SimRunner still uses an iterative approach within its 

genetic algorithm scheme.

Despite SimRunner"s limited success, there still is significant room for 

improvement. A better understanding of the response surface of ER systems would lead 

to better optimization approaches.

1*2 G o a l  a n d  S p e c if ic  O b je c t iv e s

The goal of this effort was to characterize the response surface, with respect to the 

changes made to the input variables, of an emergency room system. In other words, this 

is a study of how several measures of performance reacted to variation in the controllable 

inputs.

By understanding the behavior of response variables, it would be possible to 

establish relationships between inputs and outputs. The methodology of this effort is 

described in Chapter 3. The experiments, experimental model, and results are described 

in Chapter 4.
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CHAPTER 2:

LITERATURE REVIEW

This chapter provides a review of some of the relevant works on simulation 

optimization. Researchers have tried to use many different techniques to optimize 

simulation outputs; however, the literature reveals that in many instances the technique is 

applicable only to a very narrow domain. Most of the published efforts have focused on 

manufacturing systems. Only a handful of these efforts have addressed simulation 

optimization for ER systems. This review classifies the various efforts by methods or 

techniques, with a historical perspective.

2.1 O p t im iz a t io n  T e c h n iq u e s  f o r  S im u l a t io n

Several methods and techniques have been explored that would enable simulation 

modeling to optimize.

Figure 1 shows the different optimization methods that have been used for 

simulation.

The gradient method has been considered successful based on its reliability and 

efficiency. The methods within gradient search are finite differences, likelihood ratio, 

frequency domain, and perturbation analysis. In finite differences, the simulation model 

is ran several times to obtain a secant as an estimate to the gradient (Azadivar, 1992). In 

the likelihood ratio method, the gradient of the simulation output variable with respect to
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its input variables is estimated. The way this method operates is to differentiate the 

essential probability measure of the system. In Perturbation analysis, all gradients of the 

objective function are estimated from a single simulation ran. Frequency domain analysis 

is one in which selected input parameters are oscillated sinusoidally at different 

frequencies during one long simulation ran (Carson and Maria, 1997). It was initially 

proposed as a screening tool to identify important factors from a large set of parameters, 

consequently providing a more efficient method over traditional factorial design 

computations.

Methods in the area of stochastic optimization include the Robbins-Monro 

algorithm and the Kiefer-Wolfowitz algorithm (Fu, 1994a). These methods only find a 

local optimum from the iterative procedures of estimating the gradient of the performance 

measures with respect to the parameter.

Five types of heuristic methods are found in the field of direct search method, 

genetic algorithms, evolutionary strategies, Tabu search, simplex search, and simulated 

annealing. Genetic algorithm (GA) is analogous to the biological evolution. This is due 

to the fact that variables are represented as genes on a chromosome. More specifically, an 

offspring’s genetic DNA is a combination of both parents’ DNA. The chance of survival 

for the offspring increases when the combination of the parents’traits generates new traits 

within the offspring. The difference between GA and other optimization techniques such 

as Gradient Strategies is that GA provides a robust search strategy that does not require 

continuity and differentiability for the problem domain (Joshi et al., 1996). Amaral et al. 

(1992) used genetic algorithms to find "good solutions" for a Combinatorial Optimization
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Problem (COP). Yunker and Tew (1994) used GA to compare pattern search and RSM 

search. Tompkins and Azadivar (1995) also used GA to develop a simulation- 

optimization method that works on qualitative variables. They combined GA with 

object-oriented simulation, in a way in which genetic algorithms recommend system 

designs. These designs get converted into simulation models to generate data that guide 

the algorithm in its selection of future designs.

An evolutionary strategy (ES) is similar to genetic algorithms in the sense that 

they mock the principles of the natural evolution as a method to optimize (Carson and 

Maria, 1997). In the method called Tabu search (TS), attributes are defined to restrict the 

process from choosing certain solution that may resemble solutions in the past. This 

feature was designed to help avoid being stuck in local minimum.

In the next method called the simplex search, the process starts with an n- 

dimensional space. The search continues to first guess at the n+1 points from the 

solution space. Proceeds to drop the worst point from the solution space and adding new 

points that reflect away from the point just dropped.

The last of the heuristic approaches is simulated annealing (SA). The goal of SA 

is to obtain a global optimum by using the hill climbing technique. The name simulated 

annealing comes from the annealing process of slowly cooling metals to improve its 

strength. In analogous to the cooling process, the settings of the variable being evaluated 

are perturbed or changed to see if the outcome is better than the previous. However, SA 

requires more objective function evaluations than other optimization techniques (Shaffer, 

1999).
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An asynchronous team (A-Team) is a process that involves the combination of 

several problem-solving strategies. Talukdar (1998) explains that A-Teams are a way of 

organizing large numbers of very different agents to solve a problem. These agents are 

independent of each other and can work in parallel all the time. Although the agents may 

not “speak” the same language, a few rules are used to warrant a speedy convergence of 

their efforts to find good solutions.

Supporting statistical optimization techniques are multiple comparison, 

importance sampling, and ranking and selection. By way of multiple comparison, the 

idea is to make inferences on the performance measure of interest through confidence 

intervals (Fu, 1994b). Under multiple comparison, there are three different categories. 

The first procedure is known as "brute force" paired-t, Bonferroni, all-pair-wise 

comparison approach that works particularly well when common random numbers are 

applied. The second is called an all-pair-wise multiple comparison (MCA). This 

procedure requires equal variances and independence. The third is called multiple 

comparison with the best (MCB) (Fu, 1994a). The idea behind MCB is the reduction of 

comparisons needed to pick only the best. Importance sampling is a variance reduction 

technique in Monte Carlo estimation, which effectively achieves notable speed-ups in 

simulation involving rare events. The idea behind this method is the assignment of 

different probability distribution for rare event, such as within a failure analysis project 

and then running the new simulation model to note the new observations. Ranking and 

selection contains two procedures that need to be considered for the performance of 

optimization. The first is called indifference zone, which involves selecting the best

12



system design that is within some pre-specified difference from the true optimum. The 

second is called subset selection, which is employed when a subset of system designs is 

selected with the best system design within it. These procedures work well when the 

parameter set is finite. However, the disadvantage of this procedure in the requirement of 

independence over competing designs.

Some of the more recent work has been in retrospective simulation. Healy and 

Schmben (1991) explain that in the real world one can not make correct decisions after 

the fact. Therefore, the idea behind retrospective simulation is to solve a deterministic 

optimization problem with the awareness of the uncertainties as though these outcomes 

were known in advance. Chen and Schmeiser (1994) developed a subclass of 

retrospective algorithms called retrospective approximation. Healy (1994) experimented 

with the technique and produced a variant which addresses conditions that will make 

more sense to define the "best" solution as one that is most likely to present desirable 

results.

Several efforts pertain to multidisciplinary analysis of systems. Multidisciplinary 

analysis is where one design space is dependent of the design space of other design 

spaces. Evans et al. (1991) discussed the unique difficulties within this problem area 

along with the important characteristics, and discussed a way that these problem 

characteristics would affect the choice of a particular technique. They provide a 

framework for multi-criteria optimization of simulation models. Therefore, based on the 

various characteristics of a problem, a particular optimization technique is suggested. 

Evans and Mollaghasemi (1994) introduce simulation optimization for multi-criteria
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design of manufacturing systems. Together they describe an interactive methodology for 

multiple response optimization of simulation models. The approach taken is unlike other 

approaches in the sense that it does not seek to first find the response surface equation 

and later optimize them; instead, they use a technique called STEP method to arrive at a 

best trade-off solution. Lee et al. (1996) developed an effective algorithm using RSM 

and testing it on a turning operation. Their research is developed with the use of weights 

and trade off to find the optimum cutting condition for the turning process with minimum 

processing time and good surface texture.

A more common approach to simulation optimization is response surface methods 

(RSM). RSM fit a series of regression models of the response variables and optimizes 

the resulting regression function. Some authors distinguish RSM as having two different 

categories, meta-models and sequential procedures. However, most of the literature talks 

mostly about sequential procedures. It has been identified that there is little benefit from 

applying meta-models because of its large computational effort. Therefore, RSM is 

defined by applying the second category. The process begins with a first order function to 

which the steepest ascent/descent search methods are applied. As the locality of the 

optimal is approached, higher order functions are utilized. Kleijnen (1995) suggests that 

before RSM is applied a technique called sequential bifurcation should be performed. 

Sequential bifurcation is a screening process that searches for important factors from a set 

of many factors. From this short list of important factors, RSM is used to approximate 

the behavior of the simulation model.
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Komgold and Gabriele (1997) utilized RSM to build local response surfaces to 

efficiently optimize multidisciplinary systems with discrete variables. The purpose of 

using RSM for their research was to predict the response at points where observations 

have not been taken previously.

Hood and Welch (1993) enumerate a couple of examples. One example was the 

use of RSM in a semiconductor manufacturing line, which concerns two variables. The 

“arrival” of an interruption and the length of the interruption. An interruption in this 

semiconductor facility problem is either a tool set up, preventive maintenance, and repair 

of failures. However, in this example, only the setup interruption will be evaluated. The 

second example was an extension of the first. They considered all three of the 

interruptions, where the problem would have a total of six parameters (arrivals and 

service times). This example was to show the flexibility RSM. The technique may be 

applied to a system and evaluate the parameters that are of interest to the analyst.

Gaston and Walton (1994) also applied RSM to a semiconductor facility, They 

realized that the application of RSM with simulation reduces the time spent if the 

experiment was evaluated changing one variable at a time.

Boning and Mozumder (1994) used RSM to develop a tool called DOE/Opt. The 

purpose of this tool was to integrate the techniques of DOE, regression analysis, and 

optimization. The use of this tool was to support manufacturing processes in the field of 

integrated circuit technology.
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Chiu et al. (1994) employed RSM to explore their multi-layered neural network 

designed for time series forecasting. They found that with RSM the neural network 

provided a more accurate prediction of the response.

2.2 Sim u la tio n  fo r  M o d eling  E R  System s

Several improvements have been made using simulation in the ER. In general, the 

research has been concentrated in reducing the time in the system for the patients to target 

customer satisfaction. For instance, McGuire (1994) describes a team of the SunHealth 

Alliance hospital’s ER using simulation technology to find a solution to reduce the length 

of stay. With the model once built, the team tested 5 different alternatives and found that 

each alternative had its own type of improvement. Some modifications were made to 

these alternatives to combine the best of the changes. This combination of the 

alternatives was suggested to the management of the ER. Freedman (1994) studied the 

effects of policy and resource allocation changes on the average length of stay. Using 

simulation as the tool to analyzing the problems within the hospitals, Freedman was able 

to identify that with the implementation of a computerized information system for better 

communication between the housekeeping staff and the hospital’s medical staff, it would 

reduce the time patients wait to get admitted to the hospital.

Another hospital that employed simulation to better analyze the quality of patient 

care and the use of resources was Mercy Hospital. Pallin and Kittell (1992) evaluated a 

fast track alternative where the patient would be referred to their private medical doctor
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instead of having them return for a second visit to the hospital. They were able to identify 

savings of 50 percent in terms of staffing and resources as a result of the simulation 

model without penalizing the care of the patients.

To further collaborate to the search of increasing the ’’bottom line” by reducing 

cost and increasing customer satisfaction is Manansang and Heim (1996). In an approach 

to cost savings in the ER, they investigated the coordination of multiple resource 

allocation and resource sharing dependencies in the University of Washington Medical 

Center. The primary concern for this research was the utilization of professionals and the 

technological resources providing support to them. With the development of a prototype 

of a simulation-based decision support system they were able to conduct “what-if” 

experiments so that the hospital can work more efficiently and patients can be provided 

with better service,

Durham Region Hospital was very involved in reengineering and redesign 

projects (Lowder, 1997). In this case they used simulation to model a new express 

service area for the hospital. The results showed that the proposed staffing levels could 

be reduced, the model gave the hospital the ability to avoid bottlenecks in the radiology 

department, and that the new express service should be closed during the weekends. This 

evidently led to a cost saving of about $150,000.

However, most of the literature found in this review has taken the iterative process 

to find their solutions. These articles find answers to where customers are satisfied and 

even the hospitals gain substantial savings. The iterative “w hat-if s” of simulation can do 

this for the user. However, optimization methodology can have a more significant impact
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on the hospital with the use of simulation.

2.3  S u m m a r y

In this chapter, several techniques in simulation optimization were discussed in 

the environment of manufacturing processes. However, the application of them in an ER 

system has been performed very seldom. Nevertheless, many improvements were made 

with the use of simulation, the utilization of optimization techniques that does not require 

an iterative process may reduce the time spent analyzing the output.
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CHAPTER 3:

M ETHODOLOGY

This chapter describes the several steps taken to achieve the research goal of this 

effort. It also explains the rationale for having chosen such steps, methods, and 

techniques. These steps will be explained further in this chapter as follows:

1. Establish a generic ER simulation model.

2. Build a simulation model.

3. Determine relevant interactions among the inputs with respect to the outputs, 

using Design of Experiments (DOE).

4. Graphical analysis of the response surface.

5. Analysis of the response surface using RSM.

For a detailed discussion of the various analysis and results, see Chapter 4.

3.1  E s t a b l is h  a  G e n e r ic  E R  S y st e m

The main goal of this research effort was to understand the behavior of the 

measures of performance as the inputs change. Hence, the goal assumes implicitly that a 

model of a system would have to be developed, so that appropriate experimentation could 

be done. Consequently, it was necessary to answer the following questions: which ER 

system should be used fo r  the model? This question led to other questions, including:

• If ER system “Alpha” is used, will the conclusions drawn be applicable to any
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other ER system?

• If the conclusions drawn by using the ER system “Alpha” can not be 

generalized, is it possible to devise a generic ER system?

• Is there a single generic ER system?

• Are there several classes of ER systems for which different generic models 

could be developed?

Before this research could continue, these questions had to be answered. 

Furthermore, there was a lack of familiarity with the various processes followed in an ER 

system and their configuration. Hence, a survey was developed to collect data.

A survey was devised and distributed to hospitals around the United States for the 

purpose of finding similarities among ER systems and to get familiar with the physical 

configuration, number of resources, and the processes within ER system. The 

development of the survey was based on work done by Alvarez (1999). Alvarez’s survey 

was useful in the sense of understanding the format and, most importantly, the length of 

the survey. The length is critical in a survey formulation because hospitals are very 

careful as to taking time out from helping the sick to answer a long survey. In addition to 

Alvarez’s work, the web was used to gather more information, such as the size of the 

hospital and some of their resources for the construction of the survey. Several hospitals 

around the country have web sites that describe their ER system to an extent. Hence, it 

was possible to acquire enough knowledge about ER operations and their vocabulary. 

The surveys (Figure 2) were distributed via email and via fax.
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PHYSICAL CONFIGURATION: RESOURCES:

1) How many fast tracks in the ER?
o n  i □  2 □  3 □  4 + n
Comment:
How many beds in the fast track?

6) What is the total number of nurses 
that work in the ER?

□  0-5 D 6 -1 0  D l l +
Comment:

2) How many beds in the ER?
□ 0-5  0 6 -1 0  D ll-1 5  □  16-20 D21-25 Q26+ 
How many more?

7) Is there a difference between the 
nurses? Meaning are they all RN’s? 

Yes D  No D  explain:

3) How many beds are in the hospital? 
□0-100D l01-150D l51-200 D201-250 Q251+
How many more?

8) What is the number of physicians 
dedicated to the ER?

□  0 □  1 □  2 □  3 □  4+

4) Do you have private rooms for each patient 
when they enter the ER?
Yes D  No 1 IComment:

9) Any specialist in the ER? 
Yes □  No □

5) What dedicated auxiliaries does your ER have? 
1 Ix-ravs 1 Iblood analysis Other:

10) What kind of specialist?
1 1 Neurology D  Cardiology 

Other

11) What type of technicians work in 
the ER?
Who depend on them?
What type of jobs are performed by 
these technicians?

PROCESSES:

12) How are the patients classified?
For example: type 1: emergent type 2: urgent 
type3: non-urgent, etc. Please specify:

13) How many shifts does the ER work have? 
lD 2D 3D more

14) What are the times of each shift? For Example a 
3 shift may be :
8:00 AM-4:00PM 4:00PM-12:00AM
12:00AM-8:00 AM Please specify:_________

15) Can you briefly describe the flow of 
patients when they enter the ER?

If you have any additional comments 
please write them below.

Figure 2: Survey Distributed
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The survey questions were divided into three sections: physical configuration, 

resources, and processes. Some of the questions that were asked in the survey were for 

designing the experiments described in section 4.2, Since there is a possibility of having 

an infinite amount of alternatives for each factor, questions such as one and two will 

provide good starting point for the assigning of levels to the factors. These two questions 

will provide the physical configuration in addition to the ER capacity of the system. 

Other questions such as three, four, and five, were utilized to make sure that the ER’s that 

were surveyed were about the same size. For example, it was imperative that all the 

hospitals face the same conditions and situations. An ER that sees 5,000 patients a year is 

run differently than an ER which sees 80,000 patients. According to the Emergency 

Nurses Association (ENA) (ENA, 1997), a facility that sees approximately 40,000-50,000 

patients a year is to staff an average of 33 registered nurses (RN) in the ER to handle the 

demand. Some of the other questions on the survey, such as those in the resources 

section, served as a starting point for building the simulation model.

Once the answers began to arrive, some ER administrators were contacted via 

email and by telephone because some of the answers were illegible. During these 

sessions of clarification, additional information was gathered. From the follow up 

interviews, it was noted that it is possible that a smaller size facility never see what is 

considered here a “critical” patient. Therefore, the auxiliaries needed to handle critical 

patient in this facility would not be needed. The purpose of the question also served as 

redundancy, in case they failed to mention it during the processing section of the survey.

With the surveys that returned, the responses were analyzed to determine if a
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generic ER system existed. From conversation with the ER administrators, and by 

looking at some of the responses, it seemed that every single ER was different from every 

other ER. However, by categorizing and tallying each one of the responses, it became 

clear that there were some commonalties among the responses. The data was closely 

scrutinized using tallies, charts, and other basic descriptive statistics. To best describe a 

simulation model of an ER system as generic, it was essential to find if there was a 

significant amount of processes that fell into the same classification. The processes for 

each respondent were drawn to visualize similarities and differences. This led to four 

different classes as discussed in Chapter 4.

Descriptive statistics were used for basic analysis of the survey responses. A full- 

scale inferential analysis was not possible due to the small size of the sample set. 

Nonetheless, it was possible to establish appropriate boundaries for some of the input 

parameters. A detailed analysis of the survey responses is given in Section 4.1.

3 .2  D e t e r m in e  R e l e v a n t  In t e r a c t io n s

In an ER system, many factors may be evaluated under many different levels. 

These factors include nurses, doctors, beds, configuration, demand rate, service rate, and 

so forth. All of these factors affect the measures of performance differently. 

Furthermore, for an experiment that could have at least six factors, with the possibility of 

each having fifty levels, it would be time consuming to test all the alternatives for each 

factor and for each possible interaction. In fact, for six factors and fifty levels for each, it
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would be necessary to do approximately fifteen billion experiments. Hence, a question 

arises: are all the factors significant? Are all the interactions significant? Not every 

factor may be as significant; not every level of a factor may be relevant. If some of the 

factors/levels were not significant, it would be possible to reduce the size of the 

experiment, e.g. from six factors to five and from fifty levels to thirty. If the latter were 

true the number of experiments would drop from 15 billion to 24 million. Therefore, 

Designs of Experiments (DOE) was used to identify which factors were significant.

DOE would work with simulation data in the same fashion as it works with other 

experimental data. In the case of simulation, the factors are the input variables such as 

the number of nurses, doctors, fast track beds, regular beds, and so on. The levels 

associated with each of these factors would be the domain of these variables, e.g. 1, 2, 5, 

etc. For example, nurses (A) can have two levels, e.g. 2 and 4; Doctors (B) can also have 

two levels, e.g. 1 and 2; and regular beds (C) may also have two levels, e.g. 10, 15. The 

combination of their different levels will provide eight different treatment designs in the 

experiment. In simulation terms, the response is the output given for a measure of 

performance. Hence, one observes how the measure of performance responds to the 

various settings of A, B, and C. Each run is considered an experiment. The different set 

of experiments conducted with the simulation model is called a full experimental design.

In the case of an ER system, there are many factors to consider at many levels; 

hence, a random balance fractional design was formulated to reduce the experimental 

space. In a random balance experiment, the researcher establishes before hand how many 

experiments he or she would like to run. Once this is established, it is simply a matter of
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selecting the most appropriate experiments (Anderson and McLean, 1974). For example, 

suppose that now A and B may have levels in the range of two to five and C may have 15 

levels, such that factor A has 5 levels, factor B has 4 levels, and factor C has 15 levels.

The total number of treatment combinations in this example would be 5*4*15 = 

300 experiments. Hence, it would be very time consuming to execute all these 

experiments. Thus, the researcher may decide to look at only 25 treatment combinations. 

The method of obtaining the 25 treatment combinations out of the possible 300 by 

random balance design is as follows:

1. For factor A take a random number between one and five, Ri.

2. For factor B take a random number between one and four, R2.

3. For factor C take a random number between one and fifteen, R3.

4. Execute the experiment given by the combination (Ri, R2, R3).

5. Repeat 1 to 4 for the other 24 treatment combinations.

For the DOE analysis of this effort, four factors were used at many different 

levels. These factors are nurses, doctors, fast track beds, and regular beds. A random 

balance experiment was designed using the random number generation capabilities of 

Excel.

As the experiments were ran and the outputs analyzed, it was noted that a random 

balance experiment was not going to give a full picture of the surface behavior because it 

would leave unexplored points on the surface. Hence, the surface would be extrapolated 

linearly, yielding a flat plane, even in areas where it may not be flat. Consequently, a 

smaller full factorial experiment was done. A detailed discussion of this experimentation
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is given in Section 4.3.

3 .3  R e s p o n s e  S u r f a c e  M e t h o d o l o g y

Before starting the RSM analysis, the response surface was graphed. The purpose 

of graphing the results was to see the output response, so that a visual assessment of the 

response surface could be made. It was expected that this assessment could facilitate the 

RSM analysis. Several tools can be used to graph data, such as is Excel, Mathcad, 

Mathematica, SAS, and so on. Mathcad was chosen because it is capable of graphing in 

3-D, and it has a very user-friendly platform.

In general, RSM is the combination of design of experiments (DOE), regression 

analysis, and steepest ascent/descent. The first phase (DOE) is used as a screening 

process. The second phase of RSM is the application of regression analysis on the data 

collected from the experimentation. In terms of simulation, the relationship between the 

input variable (factor in DOE) and the effects it has on the output response is evaluated 

by fitting the independent variable to a polynomial form, such as Y = fl0 + /3lX l + P2X 2,

where, X t and X 2 are the two factors and /?0, and /?2 are the unknown regression

coefficients to estimate the response.

In this context, the regression process starts off by initially attempting to fit a first- 

degree polynomial, i.e. it looks first for a plane to fit the surface. If the model does not 

pass the test of adequacy, then the process is repeated with a higher degree polynomial. 

A first-degree model can be written as follows:
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Y = A> + E#xi+£
1= 1

where F = Response Variable

fik = k* Regression Coefficient 

£ = fit error term

The test of adequacy of fitting a first-degree model is determined through the use 

of an F test. If a first-degree polynomial is not an adequate model, then it must be 

upgraded to a second-degree polynomial to see if this new polynomial provides a better 

fit for the data. A second-degree model is written as follows:

Y — P q +  P xXx +  P 2X2 A  1*1 "** A j 2 * 2  A 2*1 * 2  £

This process is repeated until an adequate model is found. For this effort, SPSS 

was used to do all regression analysis since this tool can perform linear and non-linear 

regression analysis.

The last phase of RSM requires to perform additional experiments along the 

steepest ascent plane. This plane is the one that actually looks for an optimal point on the 

surface. The goal of the effort was focused on understanding the behavior of the surface, 

not in finding a particular optimal solution. Hence, the last phase of RSM analysis was 

not done.
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3.4  S u m m a r y

Various steps and techniques were used to meet the goal of this effort. The 

outcomes and conclusion derived from each one of them are explained in detail in 

Chapter 4.

28



CHAPTER 4: 

EXPERIMENTS, ANALYSIS, AND RESULTS

This chapter discusses the various analyses done to meet the goal. For a detail 

discussion of why a specific analysis was done, see Chapter 3. The order of the 

discussion matches the order in Chapter 3. In other words:

• Analysis of Survey

• Simulation Model Used

• Relevant Factors and Interactions

• RSM

4.1 Analysis o f  Survey

A survey (Figure 2) was distributed to establish whether a generic model of an ER 

system could be developed. Approximately 50 hospitals were solicited and only 11 

replied. All the hospitals were given exactly the same survey; yet, a few of them 

answered the questions in detail, while others just ignored some sections completely. 

Table 1 and Table 2 provide a summary of the survey responses, whereas Appendix A 

gives a more detailed summary of the responses. Table 1 shows that 45% of the hospitals 

have between two to four fast-track beds in their ER. Approximately, 27% had no more 

than one bed; another, 27% had between five and eight beds, but no ER had more than
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certified. The impact of this assumption is that it will no longer be possible to model 

doctors as various types of resources. The same thing happened with the support 

technicians. In the beginning of this study, it was hoped that cost would be one of the 

variables (measure of performance) to observe and study; however, it was impossible to 

collect relevant data. Therefore, the idea was dropped.

From the processing section of the surveys, flow charts were assembled to observe 

the similarities and differences from one ER to another. The process flows were 

consolidated as in Figure 3. It was clear that there were differences in the processes 

followed by each ER. Some of the differences were when the registration was performed 

or where a critical patient goes first when arriving to the ER. Registration may be 

performed after the patient is triaged, or it may be performed along bedside. However, 

many of the processes were relatively the same.

Based on the density at each step in the ER processes, they were classified into 

three different classes (Figure 4 to Figure 6) of generic ER systems. Approximately, 

25%, 12.5%, and 62.5% of the ERs surveyed follow the processes of Class 1, Class 3, and 

Class 2 respectively. For all the classes, it should be noted that patients enter the ER by 

either ambulance or their own means. In the figures, the dashed lines represent the non- 

critical patients, whereas the solid line represents the critical patients.

Class 1 (Figure 4) represents 25% of the ERs. Patients first see a triage nurse, 

who has a variety of tasks, such as taking vital signs, begin a mini-registration procedure, 

and initiate protocols. The triage nurse assigns the acuity of the patients as soon as they 

enter the ER after which, if the patient is a non-critical patient, s/he goes to the waiting
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In this class (Figure 6), there are critical and non-critical patients. A Meeter 

Greeter at the front door first sees 25% non-critical patients before they see the triage 

nurse. Duties of the Meeter Greeter are to write down the name, the time the patient 

walked in the ER, and a chief complaint. Once this is complete, these patients join the 

other 75% of non-critical patients that see a triage nurse directly upon entering the ER. 

After triage, patients go see if there is a registration clerk available and sit in the waiting 

room if not. Once they have completed registering, a charge nurse (also know as 

communication central), is responsible for making sure a bed is available for the ER 

patients. The charge nurse will indicate to both the patient and doctor when the patient 

will be entering the treatment room. However, only some of the non-critical patients will 

see the charge nurse. Depending on the ER, some ERs do not have a charge nurse and 

consequently the patient will go directly to the treatment area. Once in the treatment area 

the processes are the same for all types of patients.

.In Class 2, critical patients bypass the waiting room and registration, and they go 

directly to the treatment area or the resuscitation room (for 33.3% of critical patients) and 

receive bedside (parallel) registration. In the resuscitation room, patients that are about to 

expire within five to fifteen minutes are stabilized and then sent over to the treatment 

area. After the doctor has treated the patient, the patient is transferred to the diagnostic 

and therapeutics area for further observation. As in the other classes, the same procedure 

is followed in this area. Then depending if the patient needs to be admitted into the 

hospital or sent home, the patient will be discharged from the ER.

The traditional simulation modeling methodology was used to build, verify, and
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validate the simulation model before the model could be used for experimentation. The 

simulation model was constructed using the ARENA software. A detailed flowchart of 

the model is given in Figure 7.

Data from a local hospital was used for the arrival process and the various service 

processes. These data was analyzed and appropriate probability models were established. 

It was noted that patient's arrival patterns follow two different distributions, depending 

on the time of day. Between 12:00 midnight and 6:00 A.M., patients arrive at a rate of 

approximately 1 patient per hour according to a Poisson distribution (X=,992), which 

implies that the interarrival time follows and exponential distribution with mean of ~ 

1.008 hours between patients. During the other 18 hours, patients arrive at a rate of 

approximately 2 per hour according to a Gamma, with mean of .599 hours between 

patients and a shape parameter of .478.

In situations where the arrival rate changes, it is recommended to use the thinning 

process, so that entities are adequately generated. Under this approach entities are 

generated at the fastest rate for all periods, but the created entity is thinned out if it was 

not supposed to enter. The entities are thinned out probabilistically. Of the two 

distributions, the Gamma has the fastest rate (2 per hour vs. 1 per hour). Hence, it was 

chosen to produce the entities. However, the thinning process works well only when the 

distribution is the same for all periods. In this case, there are two periods and two 

different distributions. One distribution is Exponential, and the other is Gamma. 

Fortunately, the Exponential is a special case of the Gamma; hence, the Gamma can be 

used to represent the arrivals of both periods provided that the shape parameter is
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controlled properly. In the model, this is implemented by having variables in the entity 

creation mechanism. For each period the variables are given the appropriate values, so 

that the first period (midnight to 6:00 AM) gets an Exponential pattern, i.e. the 

Exponential becomes a Gamma (X,l), and the second period gets a Gamma (X, r).

In the simulation model of Class 2, 25% of the non-critical patients see a meeter 

greeter, while the rest of the non-critical patients see the triage nurse directly. The time 

spent at the meeter greeter was established by a mini time study. The study emulated the 

meeter greeter and his/her tasks. Five subjects acted as patients entering the ER with an 

illness. From this experimentation, a triangular distribution with parameters .5 minutes 

for the minimum, .85 minutes as the mode, and 1 minute as the maximum were set.

After seeing the meeter greeter, non-critical patients go to the Triage area. If there 

is an available triage nurse, the service begins immediately for a time that is uniform 

(5,10). Otherwise, patients must wait until there is one available. Upon completion of 

the service with the triage nurse, all non-critical patients proceed to the registration area. 

The service at the registration area is exponentially distributed with mean of 10 minutes. 

After registering, non-critical patients will sit in the waiting room until a bed becomes 

available. The bed can be a fast-track bed, which is dedicated to non-critical patients, or a 

regular bed, which are for critical and non-critical patients. Regardless of what bed it is, 

these patients will occupy the first available bed in the ER. Then, they will start 

treatment.
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typically spend a certain amount of time in the ER according to their acuity level. 

Depending on this level the patient will remain in recovery until this amount of time 

minus the time spent with a doctor and nurse, whereupon patients are discharged. The 

times for these services follow distributions shown in Table 4. All the parameters are 

expressed in minutes.

In most cases, the ERs in Class 2 have parallel registration for critical patients. 

By the time a critical patient has been given treatment by the doctors and nurses of the 

ER, s/he would have been registered completely. Critical patients bypass the triage and 

are sent to start treatment. Thirty-three percent of critical patients will enter the 

Resuscitation Room. In this area, doctors and nurses perform life saving medical 

treatment according to the distributions for Rush Doctor Time in Table 4. Once they 

have been treated in this area, these patients will be transferred to the regular treatment 

area once there is a regular bed available and follow the same process as the other 67% of 

critical patients.

i l l i I B M il i f t i i l l i i i i M W I i i i i i e i l i l i i i Erlang( 1.02,4)*60
Type 2 Uniform (30,60)
Type 3 Uniform (30.40) Gamma(S4,1.5)
Type 4 Uniform ( 1,5) Uniform (20,40)
Type 5 Uniform (1,30) ■ m w i

Tab!e 4: Service Time Distributions

The complete ARENA Model is given in Appendix B. This is a non-terminating 

system; hence, all data is collected using a single replication. Once the model was built,
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verified and validated, the simulation length was determined using:

SL = T  + WT + ST 

where SL = Simulation Length

T = time to generate observations,

WT = warm up time, and 

ST = safety time for this system.

At least 15 batches were needed in order to obtain unbiased results; thus, the 

values used were:

SL = 27,272 + 2,000 + 738 = 32,000 

Now the model was ready to serve as an experimental tool.

4 .3  D e te rm in in g  R e l e v a n t  I n t e r a c t i o n s

In addition to the simulation model, the survey assisted in establishing different 

factors and their levels. These are registration clerk, triage nurse, registered nurses (3,13), 

doctors (1,4), regular beds (10,28), and fast track beds (1,4). Since there was no data on 

the number of registration clerks and triage nurses available, it was assumed that these 

factors would be kept at the constant level of one. These factors and levels yield 3,344 

experiments. However, since it would be time consuming to test all combinations, a 

fractional factorial experiment was developed. Only 25 treatments were explored 

considering the length of each replication, and the time it would take to generate output

from each experiment and analyze them. Table 5 gives the 25 experiments generated
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increased. This expected behavior is observed for patients type 4 (Figure 9) and type 5 

(Figure 10); yet, the reverse occurs for patients type 2 (Figure 11). A similar behavior is 

observed for type 2 when the factor varied is doctors (Figure 12) and for most types when 

the factor varied is regular bed (Figure 13 to Figure 16). How can this be? Table 6 was 

created to help understand the reason for the upward slope of time in the system vs. 

increase number of resources (nurses). However, this attempt was unsuccessful. Several 

suggestions to better understand this situation are to experiment with the model by 

creating equal proportions for all patient types. This experimentation may clarify if the 

behavior is due to patient type interaction. Another suggestion is to just create one 

patient type for the whole experiment to see the relationship between the number of 

resources and the time in the system, one patient type at a time.

An idea about why these patients have such erratic behavior may be due to the fact 

that once they enter the ER and have attained a bed, they must wait until a nurse is 

available. Patient type 1 enters the resuscitation room and gets stabilized, yet, once they 

get stabilized they must wait for as long as needed until the first bed is available. Patients 

type 3, 4, and 5 enter the ER as soon as a bed is available and continue to wait there until 

a nurse is ready for them. Another suggestion is to run more experiments from the 3,344 

available, which may demonstrate a clearer trend in the data.
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by testing the equality of the means. In other words, by testing

H 0 • — pij Vi, j

H , : pii * pij for at least one i # j.

The null hypothesis Ho is rejected with significance level of a  if

F > FA0 ̂  * cr,vl;v2

where F  -  var*at*on among group means 
0 variation within groups

vi;v2 = critical value

v l = degrees of freedom between groups 

v2 = degrees of freedom within groups

For this analysis, the two factors under consideration are the number of nurses and 

number of doctors. The significance level chosen was a  = 0.05 and with v l  = 2 and v2 = 

22. Table 9 shows a summary of the various significance values for the individual factors 

and interactions for all types, whereas Appendix D provides detailed ANOVA tables. 

Nurses shows that it is most significant when dealing with patients type 4 and 5. For 

patients type 2, technically speaking it shows that it is not significant; however, it did not 

meet the requirement by a very small margin. When checking the significance of doctors, 

the table shows that it is not significant for type 5. Regardless of these individual 

assessments, the interaction of both factors is statistically significant.
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SELECT CASE ND:
CASE ND = 1 

IF NN > 6 THEN 
Increase NN by 0 

ELSE
Increase NN by 1 

END IF

CASE ND = 2:
IF 6 < NN < 8 THEN 

Increase NN by 2 
ELSE

Increase NN by 0 
END IF

END SELECT ND _________
where NN = number of nurses in the ER

ND = number of doctors in the ER

Table 12: Rules to change Nurses for Tsys2

SELECT CASE NN 
CASE NN > 6 

SELECT CASE ND 
CASE ND = 1

Increase ND by 3 
CASE ND = 2

Increase ND by 2 
CASE ND = 3

Increase ND by 1 
CASE ND = 4

Increase ND by 0 
CASE ND > 5 THEN

Increase ND by -1 
END SELECT ND

END SELECT NN _________________ _
Table 13: Rules to change Doctors for Tsys2

A more extensive experimentation needs to be done to improve these rales so that 

the utilization of the resources is also taken into account. Also, other rales could be
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derived. These rales could be used in several ways in the context of simulation studies. 

An example is to use these rales to guide an expert system that changes parameter in the 

context of goal driven simulation.

EF 1 < ND < 4 THEN
Increase ND by (4 - ND)

IF 6 < NN < 10 THEN 
Increase NN by (6 -  NN)

ELSE
No data available to make decision.

END IF
ELSE

IF ND = 5 THEN
Increase ND by 0 
EF 6 < NN < 10 THEN

Increase NN by (6 -  NN)
ELSE

No data available to make decision. 
END IF

ELSE
No data available to make decision.

END IF
END IF__________ _______________________ __
Table 14: Combined Production Rules for Tsys2

Figure 19 shows the behavior of Tsys4. It shows that when there are less than 3 

doctors present, increasing the resource doctor by one unit will drastically reduce time in 

the system for patients type 4. Once there are 3 or more doctors, the time in the system 

levels off, i.e. adding units of the resource doctors has no impact on Tsys4. Some of the 

decision rales that may be derived for Tsys4 in Table 15 and Table 16. As in Tsys2, the 

production rales of greater interest are when the number of nurses and the number of 

doctors would change simultaneously. Table 17 shows the simultaneous changes for
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SELECT CASE NN
CASE NN > 6

SELECT CASE ND
CASE ND = 1

Increase ND by 3
CASE ND = 2

Increase ND by 2
CASE ND = 3

Increase ND by 1
CASE ND = 4

Increase ND by 0
CASE ND> 5 THEN

Increase ND by -1
END SELECT ND

END SELECT NN
Table 16: Rules to change Doctors for Tsys4

EF 1 < ND < 4 THEN
Increase ND by (4 - ND)
SELECT CASE NN 

CASE NN = 6 THEN
Increase NN by 1 

CASE NN = 7 THEN 
Increase NN by 0 

CASE 8 < NN < 10 THEN 
Increase NN by (7-NN)

END SELECT NN 
ELSE

No data available to make decision.
END IF
IF ND = 5 THEN 

Increase ND by 0 
SELECT CASE NN 

CASE NN = 6 THEN 
Increase NN by 1 

CASE 7 < NN < 10 THEN 
Increase NN by (7-NN)

END SELECT NN 
ELSE

No data available to make decision.
END IF__________________
Table 17: Combined Production Rules for Tsys4
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Table 18 shows the results of fitting the following polynomial for Tsys4. These 

results yield the following first-degree models:

r ^ 4 = 7 2 .8 1 2 - .1 8 * -1 .3 9 * ,  

where x\ = nurses and xi = doctors. The true values for fiQ, /?p and f$2 lie 

somewhere, with 95% confidence, between the intervals of (Figure 20):

68.36 < fi0 < 77.27,

-0.70 < < 0.33, and

-1.90< P2 <-0.87.

Model Summary

Model R R Square
Adjusted R 

Square

Std. Error 
of the 

Estimate
1 ,769a .591 .554 1.7542

a. Predictors: (Constant), DOC, NURSE

ANOVAb

Model
Sum of 

Squares df
Mean

Square F Sig.
1 Regression 97.983 2 48.992 15.922 .ooo3

Residual 67.695 22 3.077
Total 165.678 24

a. Predictors: (Constant), DOC, NURSE

b. Dependent Variable: TSYS4

Coefficients a

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.B Std. Error Beta
1 (Constant) 72.812 2.148 33.891 .000

NURSE -.182 .248 -.100 -.734 .471
DOC -1.388 .248 -.763 -5.595 .000

a. Dependent Variable: TSYS4

Table 18: First-Degree Fitted Model for Tsys4
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Nonetheless, several decision rales may be formulated as shown in Table 20 and Table 

21.

Model Summary

Model R R Square
Adjusted R 

Square

Std. Error 
of the 

Estimate
1 ,434a .188 .115 4.0833

a. Predictors: (Constant), DOC, NURSE

ANOVAb

Model
Sum of 

Squares df
Mean

Square F Siq.
1 Regression 85.131 2 42.565 2.553 ,101a

Residual 366.812 22 16.673
Total 451.942 24

a. Predictors: (Constant), DOC, NURSE

b. Dependent Variable: TSYSS

Coefficients 3

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Siq.B Std. Error Beta
1 (Constant) 71.778 5.001 14.353 .000

NURSE -.316 .577 -.105 -.547 .590
DOC -1.266 .577 -.421 -2.192 .039

a. Dependent Variable: TSYS5

Table 19: First-Degree Fitted Model for TsysS
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SELECT CASE NN 
CASE NN > 6
SELECT CASE ND 

CASE ND = 1
Increase ND by 1 

CASE ND = 2
Increase ND by 0 

CASE 3 < ND < 5
Increase ND by (2-ND)

END SELECT ND
END SELECT NN __________________

Table 21: Rules to Change Doctors for TsysS

Understanding the behavior of the three surfaces simultaneously was a new 

challenge altogether. The first thing that was observed was that the range for Tsys was 

very different for each type of patient. Thus, Tsys4 and TsysS had to be scaled, so that 

the three surfaces could be graphed simultaneously. The scale adjustment used was:

j  = experiment number (1 to 25)

TsySy = Time in the system for patient type i from experiment j

LVF =Lowest Value of Factor being scaled 

RF  = Range of Tsys#

LVF*= Lowest Value of Factor being scaled up to 

RF*= Range Tsys being scaled up to

(Tsysy -L V F )  

RF
*RF*+ LVF*

where i = patient type (4 or 5)

Thus, the equation for Tsys4 is:
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(Tsys4j -65)
*43 + 222

and the equation for TsysS is:

(Tsys5j -6 0 )

18
*43 + 222

Which yielded the values shown in Table 22.

Experiments
Noe-scaled

Tsys2
scaled
Tsys4

scaled
TsysS

1 235 267 'JK 1JL
2 254 259 266
3 242 260 250
4 265

—
249

5 265 259 249
6 253 242 222
7 239 227 223
8 227 228 222
9 227 228 224
10 227 227 224
11 234 227 235
12 262 226 233
13 260 226 233
14 258 226 233
15 258 226 233
16 222 226 235
17 260 225 233
18 255 226 233
19 253 226 232
20 253 226 232
21 222 226 235
22 260 225 233
23 255 226 233
24 253 226 232
25 253 226 232tmml

Table 22: Sea ed Factors

Once the factors for Tsys4 and TsysS were scaled, they were combined into one 

graph as in, Figure 23. This graph shows the behavior of the system from the doctor’s

69



axis. It seems that when the system has less than 2 doctors, the behavior is quite similar 

for all three types. When there is only 1 doctor, all the times in the systems are at their 

highest. As soon as there are 2 doctors, however, the time drastically reduces. Moreover, 

the graph demonstrates that as 3 doctors or more are present patients type 4 and 5 

maintain a low level of time in the system, leading to the conclusion that the patients that 

benefit the most of increasing doctors are those less critical. Once again, the behavior of 

Type 2 patients is awkward since they tend to spend more time in the system. This 

behavior requires further investigation. It is worth noting that the time in the system for 

all three patient types levels out after Doctors reaches 4 clearly indicating that the 

threshold for efficiently adding units of this resource is relatively low. It would be 

interesting to study how sensitive is this threshold to the demand of the ER.

From Figure 24 and Figure 25, it is possible to see that the resource Nurses has a 

minimal impact on the time in the system. This may be due to the fact that the level of 

this resource began at 6, not at 1.
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CHAPTERS:

CONCLUSIONS AND FUTURE W ORK

By gaining an understanding of the input and output relationships in ER systems, 

it has been possible to derive decision rales that may help in the development of 

algorithms and heuristics to optimize simulation output. This effort has shed significant 

light on the behavior of the ER systems. Based on the data collected and the analysis 

done (as described in Chapter 3 and 4), several conclusions have been drawn and several 

lessons learned. Among these are the following:

• It is possible to have a generic model. Specifically, three different classes 

were derived, with Class 1 and Class 3 having significant overlap with Class 

2.

• Of the four independent variables that were considered, Nurses and Doctors 

were found to be the most significant for most patient types.

• The interaction among the factors, mainly doctors and nurses, were found to 

have a high significance level.

• When applying RSM to the data it was concluded that linear regression was 

not useful in explaining the variation of the dependent variable, Tsys. Hence, 

only rales can be formulated at this point.

• Production rales were derived for the purpose of modifying model inputs. 

These production rales may be useful for the purpose of goal driven
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simulation. Improvements to these production rales would be beneficial if the 

utilization of the resources were taken into account.

Despite these significant contributions, this effort should be further continued to 

make these conclusions stronger, and to further understand these ER systems. Some 

suggestions for further extension of this work include:

• Explore more treatments: There are a total of 3,344 experiments that are 

needed to fully see the effects on the response surface. This effort only 

explored 25 of them. It would be relatively simple to repeat the analysis in 

Section 4.3 for the other set of 25 treatments. The purpose for these 

experiments would be to see if having more data added to the information 

provided in this effort will show any trends in the behavior.

• Remove outliers: Re-evaluate the data of the original 25 experiments and 

remove any outlier that there might be. This will help understand and explain 

why the slope of some of these relationships is positive. As part of this re- 

evaluation, other non-linear regression model may be considered. As a result 

of removing these outliers, the standard deviation may drastically reduce; 

hence, the analysis of this section may change. However, careful investigation 

of these observations is in order, because it may be that these observations 

provide special circumstances to the study.

• Explore other measures of performance: The DOE analysis revealed a

curious behavior for Tsys for patient type 1. Since these are the most ill 

patients, maybe what should be studied is the time in the queue (Tque) after
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they have been stabilized. In fact, it may be altogether more revealing to look 

at the Tque rather than Tsys because it offers a natural convergence point: 

zero. Not only should Tque be analyzed, but the utilization of resources must 

be looked into. Having more resources available may not be the answer. 

There may be a small number of beds available and yet have many nurses 

waiting around to provide care for patients.

• Re-evaluate this effort with fixed demand o f patients: Creating an equal

number of patient per type may reveal a clearer relationship between the type 

of patient and the resources. This may explain the output behavior of time in 

the system for a particular type of patient.
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APPENDIX A

The first table is the raw data from the collection of surveys. It was used to come 

up with the boundaries of the levels for the factors nurses, doctors, and the two types of 

beds, fast track and regular beds. The second table shows the percentage of how each 

question was answered for the five questions discussed in Section 4.1.



APPENDIX B

This appendix shows the Model frame and the Experimental frame of the 

simulation model developed for the generic model.
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Model Frame

0$ CREATE,
vble,1)*7;MARK(Time_ER);

87$ BRANCH,
1,0.001:Gamma{1/MaxRate,

1 ,1 0 :

With,ArrivalRate(period)/MaxRate,36$,Yes:
Else,88$,Yes;

36$ COUNT: enter_patients,1;
1$ ASSIGN;

ptype=discrete(.08177,1,.11112,2,.51782,3, .96646,4,1,5,4):
DrT=ED(ptype):
NurseT=ED(ptype+5): 
goingtowait=uniform(15,45);

51$ COUNT: ptype+3,1;
65$ BRANCH, 1,10:

If,ptype==l.or.ptype==2,CheckBedAvail,Yes:
Else,92$,Yes;

CheckBedAvail BRANCH, 1,10:
If,NR(RGBed)==MR(RGBed).and.NR(RushBed)==MR(RushBed),OutER,Yes:

Else,2$,Yes;
OutER
3$

COUNT:
DISPOSE;

AnotherHospital,1;

2 $

76$
74$
75$

BRANCH,

COUNT: 
ASSIGN: 
ROUTE:

1 , 10:
With,.33,76$,Yes: 
Else,101$,Yes; 
ptype+8,1;
DrRushT=ED(ptype+10); 
0.0,RushForBed;

101$ BRANCH, 1,10:
If,NR(RGBed)==MR(RGBed),OutER,Yes:

77$
38$

COUNT: 
ROUTE:

Else,77$,Yes; 
rest,1;
0.0,RegularBeds;

92$ BRANCH, 1 ,1 0 :

If ,nq(l)+nq(2)+nq(3)+nq(9)+nr(1)+nr(2)+nr(7) .gt.3 0,noroom,Yes:
Else,go_get_branch,Yes;

noroom
91$

COUNT:
DISPOSE;

go_get_branch BRANCH,

80$
6 8 $

COUNT: 
ROUTE:

Noentry,1;

1 , 10:
With,.25,80$,Yes: 
Else,79$,Yes; 
willgreet,1;
0.0,Meeter_Greeter;

79$ COUNT: NOgreet,1;

92



88$ DISPOSE;

5$ STATION, Triage;
105$ ASSIGN: goingtowait=uniform (15,45);
15$ QUEUE, TriageQ:MARK(Timein_Triage);
93$ SCAN: Tnow-

Timein_triage.gt.goingtowait.or.N R (2).It.mr(2);
94$ BRANCH, 1,10:

If,Tnow-
Timein_triage.gt.goingtowait,109$,Yes:

Else,17$,Yes;
109$ COUNT: leavingTri,1;
108$ DISPOSE;
17$ SEIZE, 1:

triage_nurse,1;
19$ DELAY: uniform{5,10,5);
24$ RELEASE: triage_nurse,1;
22$ TALLY: ptype+3,int(Timein_Triage),1;
23$ ROUTE: 0.0,WaitingRoom_Registration;

6$ STATION, WaitingRoom__Regi stration;
107$ ASSIGN: goingtowait=uniform(15,45);
16$ QUEUE, RegisQ:MARK(Timein_Regist);
98$ SCAN: Tnow-

Timein_Regist.gt.goingtowait.or.NR(1) .lt.mr(l);
99$ BRANCH, 1,10:

If,Tnow-
Timein_Regist.gt.goingtowait,111$,Yes:

Else,18$,Yes;
111$ COUNT: leavingReg,1;
110$ DISPOSE;
18$ SEIZE, 1:

Reg_Clerk, 1 ,*
20$ DELAY: expo(10,6);
21$ RELEASE: Reg_Clerk,1;
25$ TALLY: ptype+6,int(Timein_Regist),1;
26$ QUEUE, Wa i t ingQ:MARK(Time in_WR);
39$ SCAN: nr(FTBed) .It. mr(ftbed) .OR.

nr(RGBed) .It. (mr(RGBed) - 1).or.Tnow-Timein_WR.gt.2 4 0;
100$ BRANCH, 1,10:

If,Tnow-
Timein_WR.gt.240,113$,Yes:

Else,52$,Yes;
113$ COUNT: LeavingWR,1;
112$ DISPOSE;
52$ TALLY: ptype+9,interval(TimeIn_WR),1;
40$ BRANCH, 1,10:

If,nr(ftbed) .It.
mr(ftbed),41$,Yes:

Else,42$,Yes;

7 8 $  ROUTE: 0 . G , T r i a g e ;
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42$
4 1 $ ROUTE: 

ROUTE:
0.0,FastTrack; 
0.0,RegularBeds;

37$ STATION, RegularBeds;
4 $ QUEUE, RGBQ:MARK{Timein_RGBed);
7$ SEIZE, 1:

RGBed,1;
10$ QUEUE, NursesQ;
11$ SEIZE, 1:

Nurses,1;
12$ DELAY: nurseT;
8$ QUEUE, DocQ;
9$ SEIZE, 1:

Doctors,1;
13$ DELAY: DrT;
14$ RELEASE: Doctors,1:

Nurses,1;
43$ ROUTE: 0.0,Recovery_for_RGB;

48$ STATION, Recovery_for_RGB;
44$ DELAY: ed(ptype+12);
45$ RELEASE: RGBed,1;
46$ TALLY: ptype,int(Time_ER),1;
47$ DISPOSE;

49$ STATION, FastTrack;
27$ QUEUE, FTBedQ:MARK(Timein_FTBed);
28$ SEIZE, 1:

FTBed,1;
31$ QUEUE, NursesQ;
32$ SEIZE, 1:

Nurses,1;
33$ DELAY: nurseT;
29$ QUEUE, DocQ;
30$ SEIZE, 1:

Doctors,1;
34$ DELAY: DrT;
35$ RELEASE: Doctors,1:

Nurses,1;
50$ ROUTE: 0.0,Recovery_f or_FTB;

57$ STATION, Recovery_for_FTB;
53$ DELAY: ed(ptype+12);
54$ RELEASE: FTBed,1;
55$ TALLY: ptype,int(Time_ER),1;
56$ DISPOSE;

58$ CREATE, 1,0:1,1;
84$ DELAY: 360;
59$ ASSIGN: vble=.478:

enter_patients=2:
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85$
86$

DELAY: 
ASSIGN:

period=2;
1080; 
vble=l:
enter_patients=l: 
period=l:NEXT(84$);

6 6 $
60$
95$

STATION, Meeter_Greeter;
QUEUE, MeetGreetQ:MARK(Timeat_meet);

SCAN: Tnow-
Timeat_meet.gt.goingtowait.or.NR(7).It.mr(7);

96$ BRANCH, 1,10:
If,Tnow-

Timeat_meet.gt.goingtowait,106$,Yes:
Else,61$,Yes;

106$ COUNT: leavingGreet, 1 ;
97$ DISPOSE;
61$ SEIZE, 1:

Greeter,1;
62$ DELAY: Triangular(.5, .85,1,7) ;
63$ RELEASE: Greeter,1;
64$ TALLY: ptype+12,int(Timeat_meet
67$ ROUTE: 0.0,Triage;

69$ STATION, RushForBed;
104$ BRANCH, 1,10:

QUEUE,

If,NR(RushBed).It.MR(RushBed).and.N R (5).It.MR(5),and.NR(6).lt.MR( 
6),rbql,Yes:

Else,OutER,Yes;
rbql

RushBedQ:MARK(Timein_Rush):DETACH;
rbql,helpl: 
nql,goagain: 
dql,goagain2;
1:helpl

70$
71$
82$
81$
83$
73$
72$
goagain
90$
nql
goagain2
103$
dql

MATCH,: 

SEIZE,

DELAY: 
RELEASE:
QUEUE, 
SCAN: 
RELEASE: 
TALLY: 
ROUTE:
DELAY:
SCAN:
QUEUE,
DELAY:
SCAN:
QUEUE,

RushBed,1:
Doctors,1:
Nurses,1;
DrRushT;
Doctors,1:
Nurses,1; 
rushtoregQ;
nr(RGBed).It.mr(RGBed);
RushBed,1;
ptype+25,int(timein_rush),1; 
0.0,RegularBeds;
1;
NQ(10).gt.0.and.NR(5).lt.MR(5); 
dummynurseQ,1:DETACH;
1;NQ(10).gt.0.and.NR(6).lt.MR{6); 
dummydocQ,1:DETACH;
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89$ CREATE,

102$ CREATE,

1 , . 0 0 1 : 1 , 1 : N E X T ( 9 0 $ ) ;

1,.001:1,1:NEXT(103$);
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Experimental Frame

ATTRIBUTES :

VARIABLES:

QUEUES:

RESOURCES:

STATIONS:

1,ptype:
2,Timein_Regxst:
3,Timein_Triage:
4,Timein_WR:
5,Time_ER:
6,DrT:
7»Timein_RGBed:
8,NurseT;
9,Timein_FTBed:
10,timeat_meet:
11,Timein_Rush:
12,DrRushT:
14,goingtowait;
1,vble,1:
2,enter_patients,1:
3,MaxRate,.1947:
4,period,1:
5,ArrivalRate{2),.1157,.1947;
1,RegisQ,FirstlnFirstOut:
2,TriageQ,FirstlnFirstOut:
3,WaitingQ,LowValueFirst(ptype):
4,RGBQ,LowValueFirst(ptype),shared:
5,FTBedQ,FirstlnFirstOut:
6,NursesQ,LowValueFirst(ptype),shared:
7,DocQ,LowValueFirst(ptype),shared:
8, durnmyq, FirstlnFirstOut:
9,MeetGreetQ,FirstlnFirstOut:
10,RushBedQ,FirstlnFirstOut:
11,rushtoregQ,FirstlnFirstOut:
12,dummynurseQ,FirstlnFirstOut:
13,dummydocQ,FirstlnFirstOut;
1,Reg_Clerk,Capacity(1,),-,Stationary:
2,triage_nurse,Capacity(1,),-,Stationary:
3,RGBed,Capacity(15,),-,Stationary:
4,FTBed,Capacity(5,),-,Stationary:
5,Nurses,Capacity(10,),-,Stationary;
6,Doctors,Capacity(5,),-,Stationary;
7,Greeter,Capacity( 1 , ) , Stationary:
8,RushBed,Capacity( 1 , ) , Stationary;
1,Triage:
2,Wa i t ingRoom_Regi s tra t i on:
3,RegularBeds:
4,FastTrack:
5,Recovery_for_RGB:
6,Recovery_for_FTB:
7,Meeter_Greeter:
8,RushForBed;
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COUNTERS:

TALLIES:

DSTATS:

1,expo_di s t,,Replicate:
2,gamma_dist,.Replicate;
3,AnotherHospital,,Replicate:
4.In of Type 1,,Replicate:
5.In of Type 2,,Replicate:
6,In of Type 3,,Replicate:
7,In of Type 4,,Replicate:
8,In of Type 5,,Replicate:
9,InRushJTypel,,Replicate:
10,InRush_Type2,,Replicate:
11,rest,,Replicate:
12,willgreet,,Replicate:
13,N0greet,,Replicate:
14,NoEntry,,Replicate:
15,leavingGreet,,Replicate:
16,leavingTri,,Replicate:
17»leavingReg,,Replicate:
18,LeavingWR,,Replicate;
1,T_sysl,"tsysl.dat":
2,T_sys2,"tsys2.dat":
3,T_sys3,"tsys3.dat":
4,T_sys4,"tsys4.dat":
5,T_sys5,"tsysS.dat":
6,Time_Tri_P3:
7, Time_Tri_P4:
8,Time_Tri_P5:
9,Time_Reg_P3:
10,Time_Reg_P4:
11,Time_Reg_P5:
12,Time_Waiting_P3:
13,Time_Waiting_P4:
14,Time_Waiting_P5:
15,time_greet_p3:
16,time_greet_p4:
17,time_greet_p5:
26,T ime in_Rush_P1:
27»Timein_Rush_P2;
1,NR(1)/MR(1),Regi s_C1erk_ut i1:
2,NR(2)/MR(2),Triage_Nurse_util:
3,NQ(1),Avg_#_RegisQ:
4,NQ(2),Aver_#_TriageQ;
5,NQ{3),Avg_#_Wai tQ:
6,NQ(4),#_RGBedQ:
7,NQ{5),#_FTBedQ:
8,NR(3},#_RGBedsBusy:
9,NR(4),#_FTBedBusy;
10,NR(5)/MR(5),Nurse_Util:
11, NR {6) /MR {6) , Doc_tJtil;
12,NR(3)/MR(3),RGBed_Util:
13,NQ(6),#inNursesQ:
14,NQ(7),#inDocQ:
15,NQ{10),#inrushbedQ;
16,NQ(9),iinMeetQ:
17,NR(7),busyGreeter:
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18,N R (8),BusyRushBed;
OUTPUTS:

REPLICATE, 
EXPRESSIONS:

nurseT-DrT-DrRushT)
nurseT-DrT-DrRushT)
DrT) :
nurseT-DrT): 
nurseT-DrT);

1,DAVG(11),,Doc Util:
2,DAVG(10),,Nurse Util:
3,DAVG(12),,RGBed Util:
4,TAVG(1),,Avg_Tl:
5,TAVG(2),,Avg_T2:
6,TAVG(3),,Avg_T3:
7,TAVG(4),,Avg_T4:
8,TAVG(5),,Avg_T5;
1,0.0,26978,Yes,Yes,2000;
1,DrT_Pl,uniform(10.2,19.8,2) :
2 , DrT__P2 , uni form (10 .2,19.8,2) :
3,DrT_P3,uniform(10,15,2) :
4,DrT_P4,uniform(1,5,2):
5 , DrT__P5 , uni form (1, 5,2):
6,NurseT_Pl,uniform(30, 60,3):
7 ,NurseT__P2 ,uniform(30, 60, 3) :
8,NurseT_P3,uniform(30,40,3):
9,NurseT_P4,uniform(20,40,3):
10,NurseT_P5,uniform(1, 30, 3) : 
H,DrRushT_Pl,uniform(5,15, 8) :
12,DrRushT_P2,uniform(5,15,8) :
13,Leaveaf ter_Pl,MX (0, (erla(1.02,4)*60)-
14,Leaveafter_P2,MX(0,(norm(230.4,123))-
15,Leaveafter_P3,MX(0,(gamma(84,1.5))-nurseT-
16,Leaveaf ter_P4,MX (0, (norm(33.12,17.7))-
17,Leaveafter_P5,M X (0,(norm(33.12,17.7))-



This appendix shows the regression lines and the test of significance for 

each of the factors for the first iteration of the DOE experiment. Once the most 

significant factor (nurses) was determined and removed a second iteration was performed 

to the determine the second most significant factor (doctors). Now doctors and nurses are 

removed, leaving fast track and regular beds for analysis. However, since the results of 

the investigation determined that only doctors and nurses were to be used for further 

investigation in RSM, the last set of graph in this appendix were not used. However, they 

were kept for future work.

APPENDIX C
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This appendix shows the results of the full factorial ANOVA Table of the two 

significant factors, nurses and doctors.

APPENDIX D
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5 x 5  Full Factorial ANOVA Table for Tsys2

ANOV#

Model
Sum of 
Squares df

Mean
Square F Sig.

1 Regression 4992.755 2 2496.377 5.908 .009a
Residual 9296.285 22 422.558
Total 14289.040 24

a. Predictors: (Constant), DOCTORS, NURSES 
fa- Dependent Variable: TSYS2

Coefficients?

Model

Unstandardized
Coefficients

Standard!
zed

Coefficien
ts

t Sig.B Std. Error Beta
1 (Constant) 199.566 13.552 14.726

NURSES 2.621 1.359 .337 1.929 .067
DOCTORS 9.298 3.802 .428 2.446 .023

a- Dependent Variable: TSYS2
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5 x 5  Full Factorial ANOVA Table for Tsys4

ANOV/£

Model
Sum of 

Squares df
Mean

Square F Sig.
1 Regression 2290.906 2 1145.453 3.880 ,036a

Residual 6494.134 22 295.188
Total 8785.040 24

a. Predictors: (Constant), DOCTORS, NURSES
b. Dependent Variable: TSYSS

Coefficients*

Model

Unstandardized
Coefficients

Standard!
zed

Coefficien
ts

t Sig.B Std. Error Beta
1 (Constant) 100.405 11.326 8.865 .000

NURSES -2.680 1.136 -.440 -2.359 .028
DOCTORS -3.261 3.178 -.191 -1.026 .316

a- Dependent Variable: TSYSS
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5 x 5  Full Factorial ANOVA Table for TsysS

ANOV/tf1

Model
Sum of 

Squares df
Mean

Square F Sig.
1 Regression 565.179 2 282.589 11.365 .000a

Residual 547.041 22 24.866
Total 1112.220 24

a. Predictors; (Constant), DOCTORS, NURSES
b. Dependent Variable: TSYS4

Coefficients?

Model

Unstandardized
Coefficients

Standard!
zed

Coefficien
ts

t Sig.B Std. Error Beta
1 (Constant) 84.846 3.287 25.810 .000

NURSES -1.162 .330 -.536 -3.523 .002
DOCTORS -2.320 .922 -.382 -2.515 .020

a- Dependent Variable: TSYS4
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