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ABSTRACT OF THE DISSERTATION 

EXOTIC MESON DECAY W IDTHS

USING LATTICE QUANTUM CHROMODYNAMICS

by

M erritt S. Cook 

Florida International University, 2-006 

Miami, Florida 

Professor H. Rudolf Fiebig, Major Professor

Most experiments in particle physics are scattering experiments, the analysis of 

which leads to masses, scattering phases, decay widths and other properties of one 

or multi-particle systems. Until the advent of Lattice Quantum  Chromodynamics 

(LQCD) it was difficult to compare experimental results on low energy hadron- 

hadron scattering processes to the predictions of QCD, the current theory of strong 

interactions. The reason being, at low energies the QCD coupling constant becomes 

large and the perturbation expansion for scattering amplitudes does not converge. 

To overcome this, one puts the theory onto a lattice, imposes a momentum cutoff, 

and computes the integral numerically. For particle masses, predictions of LQCD 

agree with experiment, but the area of decay widths is largely unexplored.

LQCD provides ab initio access to unusual hadrons like exotic mesons th a t 

are predicted to contain real gluonic structure. To study decays of these type reso

nances the energy spectra of a two-particle decay state in a finite volume of dimen

sion L can be related to the associated scattering phase shift 8(k) a t momemtum k 

through exact formulae derived by Luscher.



Because the spectra can be computed using numerical Monte Carlo techniques, 

the scattering phases can thus be determined using Liischer’s formulae, and the 

corresponding decay widths can be found by fitting Breit-W igner functions.

Results of such a decay width calculation for an exotic hybrid(fi) meson (JPC =  

1“ +) are presented for the decay channel h 7ra i. This calculation employed 

Liischer’s formulae and an approximation of LQCD called the quenched approxima

tion. Energy spectra for the h and ixa\ systems were extracted using eigenvalues of 

a correlation matrix, and the corresponding scattering phase shifts were determined 

for a discrete set of 7tgi momenta. Although the number of phase shift data  points 

was sparse, fits to a Breit-Wigner model were made, resulting in a decay width of 

about 60 MeV.
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1 Introduction

1.1 T he Standard  M od el and Q C D

The Standard Model of particle interactions [1, 2] embodies three of the four 

fundamental forces in nature -  the nuclear strong force, the nuclear weak force, 

and the electromagnetic force. W ithin the structure of the Standard Model, the 

basic constituents of m atter are six quarks it, d, s, c, 6, t called flavors and six leptons 

e, z/e, /t, r , ur . Forces between these particles are mediated by gauge fields con

sisting of either gluons (strong force), W ± and Z  bosons (weak force), or photons 

(electromagnetic force). A gauge theory based on the symmetry group SU(3) x 

SU(2) x U (l), combined with spontaneous symmetry breaking, accounts for all ob

served interactions. The SU(3) group reflects the symmetry of the strong force 

where each quark has three color components. SU(3) transform ations mix colors 

and are the basis of Quantum  Chromodynamics (QCD). There are eight massless 

gluons corresponding to the eight generators th a t make up the Lie algebra of SU(3 ), 

The interaction between quarks and gluons is determined by a strong coupling 

a s. This coupling is energy scale dependent and is known as a running coupling (see 

Appendix E). Near energy scales of «  1 GeV i t ’s size is ^  1. This strong coupling 

makes the use of perturbation theory in a s or impossible, and therefore, the 

masses of mesons and baryons cannot be calculated perturbatively. The problem 

is, however, well defined within the path  intergral formalism of QCD, although it is 

intractable by analytical means. To circumvent this difficulty one puts QCD onto 

a 4-d space-time lattice and computes a functional or path  integral by numerical 

simulation, using the coupling strength as an input param eter.
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1.2 H a d ro n s , th e  q u a rk  m o d e l, a n d  e x o tic  m eso n s

Particles th a t interact through the nuclear strong force are called hadrons. Ex

amples of hadrons are baryons and mesons. Baryons (e.g.protons, neutrons) contain 

three quarks or three anti-quarks while mesons (e.g.pions) are composed of quark- 

antiquark pairs. These three-quark and quark-antiquark combinations can exist in 

many states of excitation, resulting in the m ultitude of strongly interacting particles 

seen in experiments [3].

In fact, this picture is still too simple because the vacuum of this quantum  field 

theory is complicated and thus contributes to the structure of hadrons. Also, QCD 

may allow the existence of particles made only from gluons, so called glueballs, and 

particles made from quarks and valence gluons.

The quark model is a classification scheme for hadrons in term s of their valence 

quarks only [4]. Combinations of valence quarks give rise to sets of quantum  numbers 

used to identify the hadron. Quarks are assigned effective (constituent) masses, and 

hadrons are constructed from (non-relativistic) wave functions involving color, spin, 

flavor (isospin), and an orbital component. The most extensive application of this 

model to obtain the hadron spectrum was done by Isgur and collaborators [5, 6].

Quarks have spin |  and by convention have positive parity P  =  + 1  . Anti-quarks 

have the opposite parity. Thus the parity of mesons is P  =  (—1)/+1 where I is the 

orbital angular momentum quantum number [4]. A phase factor of (—I)1 comes 

from inverting the relative position vector between the quarks with an additional 

factor of (—1) due to the opposite intrinsic parity of a quark and anti-quark. The 

to tal meson spin J  is in the range \l — s\ <  J  < | l  +  s| where s can be 0 (anti-parallel 

quark spins) or 1 (parallel quark spins).
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The charge conjugation operator converts a particle to i t ’s anti-particle. If a 

meson state is a charge conjugation eigenstate, then C-parity is determined by C =  

(—l ) l+s [4]. This includes phase factors of (—l ) l+1 for inverting the relative position 

vector during the exchange, a factor of (—l ) s because the spin polarization vectors 

of quarks and anti-quarks have opposite sign, and a factor of (—1) for exchanging 

a quark with i t ’s anti-quark. Mesons can then be classified in terms of spin-parity- 

charge(J PC) multiplets. States with parity P  =  (—1)J are called natural spin-parity 

states and can have s =  1 with C P  =  +1 or s =  0 with C P  =  — 1. Mesons with 

natural spin-parity and 5 =  1 cannot have C P  — —1. Such states, although allowed 

within QCD, are not accessible within the quark model.

Mesons with quantum  numbers th a t cannot be obtained with the (valence) quark 

model are called exotic. Hybrid mesons are quark-antiquark pairs having valence 

gluons as a structural component. When their quantum numbers are not accessible 

with quark models they are called hybrid exotics. Examples of these exotics are the 

J P O  =  o + - , i - + ,2 + -  mesons. All of these states are unstable and reveal themselves 

in experiments only as resonances at best. A resonance has a mass and a width th a t 

is related to the decay constant of the particle. Because these mesons contain real 

gluons, as opposed to  the virtual gluons responsible for the nuclear strong force, the 

verification of their existence is a signature test for QCD.

In order to describe valence gluon degrees of freedom, which are not contained 

as such in the quark model [5, 6], Isgur and Baton constructed a flux tube model 

[7, 8 ]. Predictions for the smallest hybrid meson masses fall in the region just below 

2 GeV. Decay modes and partial widths can also be studied.
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For selected hybrid meson states it is found tha t the decay products preferentially 

involve an excited meson [9], which complicates their detection. The lightest hybrid 

meson is predicted around 1.9 GeV with J PC =  1~+ [10, 11]. According to Close 

and Page [12], in the flux tube model the channels Gi7r, 6i7t, fiTr and pn have partial 

decay widths of 1 0 0 , 170, 60 and 5-20 MeV, respectively.

1.3 E x p e r im e n ta l  s i tu a tio n , JLab p ro g ra m .

Efforts to determine properties of these hybrid exotic states are unsettled from 

both experimental and theoretical viewpoints [13]. The experimental efforts date 

back over a decade, and currently, considerable resources are being devoted to their 

future study. The Jefferson Lab GlueX experimental program is designed to in

vestigate exotic states [14]. Hybrid meson studies are also part of the COMPASS 

experiment a t CERN [15] and the CLEO-c program [16] at Cornell.

Several observations of the J PC =  1~+ exotic meson have been previously re

ported:

• by Brookhaven National Lab. (in wn interactions a t 18 GeV) at mass 1370 ±  

16 MeV with decay width P =  385 ±  40 Mev, decaying into 7r?7,7r?/and7r/i 

channels [17, 18],

• by Cristal Barrel Collaboration at LEAR (in pn interactions) at mass 1400±20 

MeV and P =  310 ±  50 Mev, decaying into irrj [19].
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• by the SLAC Hybrid Facility (in j p  interactions) a t mass 1775 MeV and 

F =  100 to 200 Mev, decaying into up  and 7r/2 [20].

• by E852 at BNL at mass 1593 =t 8 MeV and T =  168 =t 20 Mev, decaying into

Tip [21, 18].

•  by E852 at BNL at mass 1597 ±  10 MeV and T =  340 ±  40 Mev, decaying into 

txrf [22 ].

1.4 Q C D  fu n d a m e n ta ls .

Quantum Chromodynamics (QCD) is a quantized gauge field theory of strongly 

interacting m atter based on the SU(3) symmetry of the Standard Model. The 

elementary degrees of freedom of QCD are called quarks and gluons. The gluons 

are The gauge fields of the theory and are responsible for m ediating the interaction 

analogous to the quanta (photons) of an electromagnetic field.

Quarks are the m atter fields of QCD and exist as six flavors (up, down, strange, 

charmed, bottom , and top) and they are assigned a baryon number th a t is conserved 

( |  for quarks(q), — ~ for anti-quarks(q)). In Nature most of the different quarks have 

vastly different masses [3]. Quarks also carry a quantum number associated with the 

SU(3) gauge symmetry group, known as color. In the fundamental representation of 

SU(3) the color quantum  number assumes three values. An arbitrary assignment is 

three prim ary colors (red(r), green(g), or blue(b)) for quarks (see Appendix D). The 

complex conjugate representation describing anti-quarks also has dimension three 

(anti-red(f), anti-green(g), or anti-blue(&)).
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The colors of quarks, or anti-quarks, cannot be distinguished experimentally. 

Thus one requires th a t arbitary transformations of colors, described by elements 

of SU(3), may be performed at any space-time point without having observable 

consequences. This symmetry is known as local gauge invariance. It inescapably 

entails the presence of a gauge field, called the gluon field in QCD. Gluons transform 

according to the adjoint representation of SU(3), meaning th a t there are eight (32 — 

1 =  8 ) colors of gluons. One may think of these as a subset of color-anticolor 

combinations; rb1 r g . . . etc, see Appendix D.

Local gauge invariance is a severe constraint on the structure of a theory. It 

determines completely the type of elementary interaction vertices. In the case of 

QCD, these are shown in Fig. 16, Appendix D.

The only free parameters th a t emerge are the strong coupling a SJ and the quark 

masses. In contrast to quantum electrodynamics (QED), where a pure photon in

teraction vertex does not exist, the gluons of QCD do interact.

The physical consequences of this feature are profound. Applying renormaliza

tion group techniques to QCD, it was shown by Gross, Wilczek and Politzer in 1973 

[23, 24] th a t the scale dependence of the strong coupling a s is such th a t it goes 

to zero a t small distances (or at large momenta or energy, see Appendix E). This 

property, known as asymptotic freedom, allows use of perturbation theory for high 

energy processes, but for low energy processes this is not possible.

It was shown by Wilson in 1974 [25] th a t objects with color separated by a 

spatial distance r  experience an attractive potential V(r) th a t rises linearly with r  

as r  —> oo (small momenta).
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This feature, known as confinement, explains the observation th a t isolated colored 

objects are not seen experimentally. In fact only colorless (white) objects are seen 

in nature as asymptotic states. The simplest ones are qq pairs or mesons with color 

fr  =  white, etc., and qqq} qqq, or baryons with color rgb =  white, etc. Four and 

five quarks states are also allowed, but at this time, it is not clear if these states have 

a compact structure or resemble hadronic molecules. Furthermore, self-interaction 

of the gluon field may give rise to a unique type of hadron only made from glue, 

so-called glueballs, and to hybrid hadrons as mentioned above, which are the subject 

of this thesis.

The physics in the mass range relevant for hadrons, say below «  2 GeV, is 

dominated by confinement. The only known practical ab initio access to (strong) 

hadronic physics is the lattice regulated formulation of QCD combined with numer

ical simulation.

In a seminal work in 1974 Kenneth Wilson [25] introduced a space-time lattice 

formulation using a path  integral technique for field quantization. As mentioned 

above, he showed tha t for sufficiently strong coupling QCD exhibits the property of 

confinement. In Euclidean space-time the theory resembles a discrete statistical me

chanics system. This feature was employed by Creutz [26] who showed in 1980 how 

to calculate hadron masses by numerical simulation, originally using an SU(2) gauge 

group. Hamber, Parisi, and Weingarten in 1981 [27, 28] extended this technique to 

the calculation of hadron masses in SU(3), as described in Section 2.
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Theoretical work on hybrid mesons using LQCD has so far concentrated mainly 

on their ground state masses. It can be roughly classified in terms of heavy quark 

systems using static quarks with valence glue treated  in the Born-Oppenheimer 

approximation [29, 30, 31], using non-relativistic LQCD [32, 33, 34], and studies 

using actions with both quenched and unquenched quark dynamics [35, 36, 37, 38, 

39, 40, 41, 42, 43].

Until now, there has been no ab initio lattice QCD based prediction of hybrid 

decay widths using light quarks. Hybrid decay widths have only been studied on 

the lattice in the heavy quark limit [44].

Resonances, being a dynamic phenomenon, do not relate to eigenstates of a 

Hamiltonian in a simple way. They are superpositions of partial waves with each 

partial wave characterized by i t ’s own angular momentum (I) and phase shift.

Calculating properties of resonances using Euclidean lattice QCD simulations 

is difficult for a number of reasons. First, as shown by Maiani and Testa [45], in 

Euclidean space-time the scattering amplitudes are real, thus preventing extraction 

of phase shifts and resonant structures. Second, on a finite volume lattice the 

spectrum is discrete and all states are bound. Third, the smallest to tal energy 

of a two-hadron state  may be larger than the energy of the original hadron thus 

preventing decay. Aspects of these points have been discussed by Michael [46, 47], 

DeGrand [48], Liischer [49], and by Lellouch and Liischer [50].

A solution to these difficulties was first proposed for lattice QCD by Liischer 

[49, 51]. He showed how the discrete two-particle energy spectrum  in a finite periodic 

box is related to continuum elastic scattering amplitudes. A decay width can then 

be extracted by fitting a Breit-W igner model, if applicable.



Feasability of this method has been dem onstrated for the 0 (3) non-linear sigma 

model in 1+1 dimensions [52], the 0 (4) non-linear sigma model in 3+1 dimen

sions [53, 54], meson-meson scattering in 2+1 dimensions using QED [55], and reso

nance scattering of two coupled Ising systems [56, 57]. Scattering lengths have also 

been studied, for example see [58, 59, 60], by looking at the lattice volume depen

dence of low lying two-particle energy levels [61 , 62], and hybrid decays in the heavy 

quark limit were investigated in [44].

1.5 P ro je c t  goals.

In this project we apply lattice quantum  chromodynamics (LQCD) to calculate 

the decay width of a J PC =  1” + hybrid exotic meson (say h) using Liischer’s method. 

In a partial wave decomposition of the 1_+ decay, this exotic meson couples to  the 

7r +  <2i channel in which the two mesons emerge in a relative s-wave (1 =  0). This 

turns out to be crucial for the feasibility of the lattice simulation because the mass 

associated with the relative kinetic energy in the two-body decay channel is zero, 

and therefore, the lattice masses of the exotic state and the two-meson state are 

expected to be close. For th a t reason, this project focused on the 1~+ decay.

Thus the primary goal of the LQCD simulation is to obtain the mass spectrum 

with as many excited states as can be determined of the coupled /q tt+Ui system. The 

spectra will be used to calculate scattering phase shifts at a discrete set of momenta 

by applying Liischer’s method. F itting  a Breit-W igner function, if successful, should 

then yield an estim ate for the decay width.
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The thesis is organized as follows: Section 2 introduces the path  integral for

mulation of LQCD in terms of gluon and fermion field actions, the fermion matrix, 

and quantum  operators. Section 2 also describes the use of effective mass func

tions and correlation functions to calculate expectation values. Section 3 describes 

in more detail the constuction of operators having the correct quantum  numbers, 

and how these operators are used to compute propagators. Section 4 includes the 

actual lattice parameters used in this simulation along with a discussion of setting 

the physical scale and the use of a correlation matrix. Section 5 outlines the basic 

theory behind Liischer’s m ethod and shows how Liischer’s formulae are used to cal

culate scattering phase shifts. In Section 6 , results are presented for the effective 

mass functions, scattering phase shifts, and decay widths. Section 7 contains the 

conclusion.
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2 Basic LQCD

2.1 P a th  integral approach

The conventional formulation of a quantum field theory, th a t is well defined in 

the non-perturbative regime, is based on a path  integral involving a classical action 

in Euclidean space-time. Euclidean time t E is related to physical or Minkowski time 

tM through a Wick rotation t E =  —Hm where tE is treated as real. A Wick rotation 

rendors path integrals convergent while leaving dynamic quantities (mass spectra, 

etc.) unchanged.

The coordinates in 4-d Euclidean space-time are,

x \=  x x 2 = y xz — z x\ — c tE (2,1)

where the metric is (8^)  =  diag(l, 1 ,1 , 1) with fi, v =  1 , 2 , 3 ,4.

The QCD action is the sum of a gauge field and a fermion or quark field action,

S q C D  Sgaug  T  S f erm  . ( 2 .2 )

The gauge fields or gluons are described by a 4-vector field A ii(x)i ji =  1 , 2 , 3 ,4  with 

an additional color index a =  1 . . .  8 ,

A^(x) =  A®(x)Aa (2.3)

where the A0 are the set of eight Gell-Mann matrices (Appendix B) th a t generate

the Lie-algebra of SU(3),

[^en î>] ^  2?/af)CAc (2.4)

and the f abc are the corresponding structure constants.
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An im portant building block of a gauge field theory is the covariant derivative,

D^(x) =  i g A ^ x ) , (2.5)

involving a param eter g. I t’s importance derives from the behavior of the actions 

under local infinitesimal transformations of the form,

Al(x)  -* A;(x) +  ^ d IIL0 a(x) +  f abctob(X) A l ( x ) , (2.6)

with arbitrary real functions uja(x). In matrix notation, A„ transforms as,

with

Then we have

where

fi(x) =  eiA“"“w  € SU(3) (2.8)

£>„(x) -> D'Ax) =  n (x )D ^ (x )n t (a;) (2.9)

Dl ( x ) =  d» +  wA'^x ) . (2 .10 )

The gluon field strength tensor, defined as

F„„(x) =  i [ Dm D„] =  d^AAx) -  a ^ „ (x )  +  iglA^x),  Aw{x)\ , (2.11)
%g

transforms like the covariant derivative

F A * )  -> F^(*)  =  n(x)F,„,(x)fit(x) (2.12)

under a gauge transformation. The gauge field action

5 ^  =  - \ J d*x Tr(F „ „ F n  (2.13)

12



where the trace (Tr) refers to color indices, is then invariant with respect to arbitrary 

local gauge transformations. A theory with a structure like this based on a non- 

Abelian group, here SU(3), is known as a Yang-Mills theory. Its Abelian version, 

based on the group U (l), describes Maxwell’s theory of electromagnetism.

The fermion, or quark, part of the action is

Sferm =  j  d 4X ^ f (x) -  Ulf)^f (x) (2.14)

where # / ,  is the Dirac field for a quark with flavor /  =  it, d, 5 , . . .  and mass rrif. 

The Dirac matrices 7 ^ used for Euclidean space-time are given in Appendix C. The 

covariant derivative in (2.14) insures th a t a local gauge transformation

^ ( x )  =  0 ( x ) ^ ( x )  (2.15)

and

^n(x) -> =  f ^ O ^ x )  (2.16)

leaves the fermion action invariant.

The quantization of the theory proceeds through considering the generating 

functional

Z[J, X, x] =  [ e-s«c0+^j„+*x+x* (2.17)

defined through path  integrals with appropriate, SU(3) invariant, measures. The 

fields J, x, x  are sources in the sense th a t certain functional derivatives of Z, taken

at vanishing sources, give all propagator functions of the theory. While A and J

are C -valued fields, the fermion fields 4 / ,#  and x> X are Grassmann valued, i.e. 

anticommuting C-numbers [63].
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As with any quantum field theory in continuous space-time it has to be regulated 

in order to deal with divergences. In the low energy regime relevant for hadron 

physics, in terms of a non-perturbative approach, this is done by introducing a 

discrete space-time lattice. In 1974 Wilson [25] proposed such a discretization in a 

way tha t manifestly preserves SU(3) gauge invariance.

The gauge field is described by so-called link variables U^x)  € SU(3) connecting 

neighbor sites x and x +  //, where fi is the vector having direction fi and a length 

of the lattice constant %  in this direction. The smallest closed paths on the lattice 

are elementary rectangles or plaquettes. Parallel transport around a plaquette with 

comer x in the /i-z/ plane (/i /  v) is provided by the product of four link variables 

(see Fig. 1),

U ^ x )  =  Ult(x)Uv(x +  (£)Ul(x +  v )U t{x ) . (2.18)

Figure 1: Illustration of the plaquette variable U^(x)  in the fi-v plane. Here a 
denotes lattice constants.
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The Wilson action for the pure gauge or gluon field is [64]

• W ]  =  E  E  (CV O O )). (2.19)
nr 1 A '  'x 1</xO<4

where Tr denotes the trace over SU(3) color

^  =  ( 2'20)

and /5 is a parameter. This action is based on a finite-volume, discrete space-time 

lattice with sites,

x =  (niUi, n2a2, n3as, n4a4) , (2.21)

where E N, 1 < %  < A^, for (jl =  1 ,2 ,3 ,4 , and as>t are lattice constants with 

dimensions of length. If the spatial and temporal lattice constants, as =  a\ =  =

«3 and at =  a4 respectively are different then we call the lattice anisotropic with 

aspect ratio £ =  as/a t .

According to Schwinger, a link variable can be related to the continuum gauge 

field A®(x) via

Un(x) =  V  exp ^  J  d sA l ( x  +  > (2 .22)

where V  denotes path ordering. In the classical continuum limit, a - 4 - 0, with as =  a 

and at =  a /f ,  one recovers Sgaug (see eq. 2.19), provided tha t

/* =  -!■ (2-23)
92

The naive lattice discretization of the Dirac action Sq) eq. (2.14), has the unde

sirable property of describing 24 =  16 mass-degenerate species of fermions (one for

each comer of the 4-d Brillouin zone) instead of just one (often called the doubling
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problem). There are two popular remedies to this lattice artifact. In the Kogut- 

Susskind or staggered scheme [65], one of the 16 fermion field degrees of freedom is 

isolated through spin-diagonalization (this technique is not used in this work). In 

the Wilson fermion scheme [6 6 ], a second derivative term  is added to the naively 

discretized Dirac action,

This has the effect tha t in the classical continuum limit, a —> 0, 15 of the 16 fermion 

species acquire masses with m  -» oo, thus decoupling them from the dynamics of 

the system and solving the fermion doubling problem.

The fermion fields ip, tp enter LQCD as integration variables in the path  integral. 

It is customary to rescale these, arriving at

Here 1 denotes the identity m atrix in color-Dirac space. The hopping param eter k 

in eq. (2.26) is related to the bare quark mass m q in eq. (2.24) by

x n = l  ^

(2.25)
x,y

with the quark or fermion m atrix defined as

Q(XJ y) — 1 $x,y ^  ^  +  (1 +  T ju )^ {y)^x,y+fi j * (2.26)

8(m , +  £•)
(2.27)

and
4

(2.28)
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Quantization of the lattice theory proceeds through a path integral in the stan

dard way. For example, repeated source derivatives of a generating functional, like 

eq. (2.17), a t vanishing sources gives the expectation value of a general function O 

of the lattice field variables,

0[U, ip, tp\ =  'ip(y1)tp(x1)'ip(y2)'ip(x2 ) . . .  ip(yn)ip(xn) A[U], (2.29)

where A[U] is the gauge field dependent part of the operator, as [64]

< O > =  Z q 1 J[dU)[di>][di>] e- s9m-s t {u, î,] ^  ̂ ; (2.30)

where,

Z 0 =  I [< # /]# ][# ] e-s,\u}~s,m,i>] _ (2.31)

The integrals over the Grassmann fields ip,ip are Gaussian. They can be performed 

analytically. For example, one obtains,

Z 0 =  j [dU] det Q[U] e - s»[u]. (2.32)

Another example is the two-point function or quark propagator,

< 'ipan(x)'ipbAy) > =  Z o 1 J l dU) det QP) e~Sg[u] Q~lihy{x, y ) , (2.33)

where a,b are color and n,v are Dirac indices.

The inverse Q~l \U] of Q[U] is understood as a m atrix in a,fi,x-space having size

3*4' N iN 2N$N4 . Computation of (columns of) Q~l p ]  is one of the m ajor numerical 

tasks of LQGD simulations. The determinant det Q[U] still requires an order of 

m agnitude larger computational power. Approximating it with one, det Q[U] =  1, 

is known as the quenched approximation. In physics terms, this means neglecting 

effects of sea quarks, or closed quarks loops, in the language of Feynman diagrams.
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We wish to study the properties of (color singlet) hadrons. The corresponding 

operators are combinations of quark-antiquark (meson) or three-quark (baryon) op

erators, or their products for multi-hadron systems. Let O be one such operator((9 ~  

ipip, ~  tfjipijj, etc.) Then the corresponding propagator is, in Minkowski space-time,

G(t , t0) =  <  0 | | 0 >

= - :O( t )Oi ( t a): +  T O ( t ) O \ t 0),  (2.34)

where :: denotes normal ordering, T  denotes time-ordering, and } 0 > is the vacuum 

state with energy E q =  0 by convention. A Wick rotation to Euclidean space-time, 

t  —> —it, transforms the propagator into a time correlation function, G(t, t0) -* 

C(t, to), where

C(t,t„) = <  O(t)O'(t0) > - <  0( t )  > <  O \ t o ) > ,  (2.35)

which is similar to the variance of a stochastic variable. A formal treatm ent of this 

relationship involves the transfer m atrix formalism, e.g. see [64].

Upon inserting a complete set of | n >  eigenstates of the Hamiltonian into 

eq. (2.34) and performing a Wick rotation one finds that,

c (M o) =  y > » e' E”(i~fo) > (2-36)
n> 0

where A n — \ <  0 \O(t0) \ n >  |2 with | 0 >  being the vacuum state (Eq =  0) and En 

the energy of | n >.  In the limit of large Euclidean time t the higher energy states 

decay faster than the ground state, leading to

C ( t , t 0) —>• Aie~El<(t~to\  for ta rg e t. (2.37)
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The so-called effective mass function,

m eff (t, t 0) =  ~~Qt In[G(t, t 0)] , (2.38)

thus developes a plateau,

m eff(t,to) —>■ for large t . (2.39)

This is the basis for energy or mass calculations on a lattice.

In practice it is often necessary to employ several operators Ok (t), k =  1 . . .  K ,  

and, thus form a time correlation matrix. Also, to extract the energy spectrum, 

alternative methods such as variational or maximum entropy techniques can be 

used (see Appendix G).

To illustrate the calculation of a correlation function consider, as a very simple 

example, the pseudo-scalar meson operator

O^+it) =  Z t a & h t U a m  , (2-40)
x

where the sum over colors, a =  1 . . .  3, is implied. The sum over all spatial lattice 

sites x makes a translationally invariant operator 0 7T+ (t) and it is therefore a zero- 

momentum operator. The corresponding (Euclidean) correlation function,

C(t,to) = <  Ow+(t)Ol+(t0) > - <  0„+(t) X  O l +(t0) > (2.41)

contains expectation values of operators as defined in eqs. (2.29) and (2.30). By 

integrating out the fermion fields, ip =  u .. .etc., in the path  integral those can be 

expressed as elements of the inverse fermion m atrix Q -1 , cf. (2.33). Equivalently, 

Wick’s theorem may be applied to reduce the expectation values in eq. (2.41). For

19



example.

< o M t ) o l +(t0) >  =  EE < da(xi)y5ua(xt) 'Ub(ytQ) j 5db(yt0) >
x y

if a.
* y

(2.42)

where the Dirac indices, /z. . .  etc., are shown explicitly. For the Wilson fermion 

action, Q has the property

75 Q{%: y)ib =  Q \ y , x ) . (2.43)

Hermitean conjugation is understood to affect color and spin indices. Equation (2.43) 

also applies to Q~l . Thus eq. (2.42) becomes

< 0^+ ( t)Ol+(tQ) > = Y 2 Y 1 <  -  Tr Q~X{xt, y t0) Q_lt (ft, y t0) >  . (2.44)
x y

Finally, translational invariance of the expectation values may be used. Adding 

Xq — y to every spatial index in < . . .  >  gives,

< O^+(t)Ol+(t0) >  =  < - T rQ_1(^ +  ^o - y t , y  +  x0 - y t 0)
X  y

Q~1+ (x +  x q -  yt, y +  x 0 -  y t0) >  (2.45)

and then changing the summation variable x —> x — x® +  y gives,

< O^+i^Ol+ito) > =  V ^ 2  <  ”  Tr Q~l (ft, x Qto) Q~1+ (xt, x0t 0) >  (2.46)

where V =  N iN 2N 3 is the spatial volume. Note carefully th a t Q 1(x, Xq) is needed 

only for a fixed but arbitrary source lattice site Xq =  (xoto).
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The above example highlights the essential workplan of this project. For the 

exotic meson, in addition to quark fields, gluon fields are needed to construct the 

operators. This is discussed in Section 3 .
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3 Operator construction

3.1 Q uantum  num bers and d iscrete sym m etr ies.

Simulation of the decay h —> tt +  ai, based on Liischer’s method, requires the 

construction of quantum operators tha t create the 1“ + exotic meson (h) ground 

state and the nai  two meson states. In order for these operators to produce a “good 

signal” in the numerical simulation, it is desireable tha t they have compatible quan

tum  numbers, meaning they transform as the basis of an irreducible representation 

(irrep) of the relevant symmetry group.

Transformation properties of quantum fields are used to determine conserved 

quantities. If a quantum field is invariant under certain continuous transformations, 

then it will possess a Noether current and there is a corresponding conservation law 

(quantum number). The field or a function of fields is then said to possess symmetry 

under the transformation. Both continuous and discrete symmetries exist.

For this lattice project we use zero-momentun operators, like eq. (2.40), dis

cussed in Section 2. However, continuous translations are replaced with a discrete 

group of translations by multiples of the lattice constants. Likewise the continu

ous rotation group 0 (3 ) is replaced with the discrete group of transformations of a 

3-dimensional lattice. We will not encounter this complication because only local 

operators (defined on one site) are used.

Of concern here are only the discrete symmetries known as parity and charge 

conjugation. Parity is an inversion of the space coordinates and charge conjugation 

is an exchange of a particle with i t ’s anti-particle.
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We wish to study an isovector meson h with quantum, numbers,

j p c  =  r + _

A set of suitable hybrid meson operators was proposed in [67], although for the 

purpose of computing its mass only. We adopt this choice here. The building blocks 

of the operators are

O h A t ) =  A A t A A b A t ) ^ bu(xt) , (3.2)
X

where /i ^  v specifies a plane in the d =  4 lattice, and Fj% is a sum of four products 

of SU(3) link matrices around clover leaf type paths centered at position x. This is 

depicted in Fig. 2. Specifically we have,

F^(x) =  UAx)Uv(x +  A UU X +  A u l(x)

+  U v ( x ) U l ( x - f a  +  v ) U l ( x - p L ) U A % -  A )  

+  U f a  -  f i ) U f a  -  ft  -  v ) U A x  — A  -  v ) U v ( x  -  v )

+  Ul(x  -  0) U f a  -  0) U v { x  +  A ”  A U t( x ) . (3.3)

One may distinguish between magnetic type gluons /i, v — 1,2,3 and electric type 

gluons with v =  4 or /r =  4.

For the decay channel 7roi a possible set of two-meson operators is

Ovaukxit) =  5Z $x-y ,fA{xt)j5 A { x t )  Mff l )  , (3-4)
x y

with k =  1 ,2 ,3 . The simplest choice for the relative distance is f  =  0, which we 

will adopt in this project. Choices of r ^  0 would require projections on irreps 

of the discrete octahedral 3-d symmetry group. Although this is not a problem
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Figure 2: Depiction of the valence gluon field, eq. (3.3), used in the hybrid exotic 
operator. The loops represent the gluon field. Space-space planes are color magnetic 
fields and space-time planes are color electric fields.

in principle, the increased number of sources needed for fermion m atrix inversions 

would be a considerable burden on available computing resources. Thus consider,

Oirauktt) =  Y 2 ' (Pa(xt)'Y5'lpa(xt) • .k ^b{yt) • (3.5)
x

The quark flavor structure of Oh and Ona^  still needs to be determined. For Oh 

we arbitrarily choose tJ)ip ~  du. Thus Oh+ describes a positively charged isovector 

meson h+ , with I  =  1, J3 =  +1. Both 7r and Gi are isovector mesons, thus a 

state with exactly matching isospin quantum numbers is given by 7r+a5 — ttqOi (see 

Appendix F). Neglecting effects of 517(2) isospin symmetry breaking on the decay 

width, we may retain only the first term ?r+a\ for constructing the operator 0^ar -̂ 

The corresponding quark flavor structure (see Appendix F) to be employed in Ovai;k 

is ^  • 'ipijj ~  du • (dd +  tm), see eq. (3.4). Hence O ^ -k  becomes,

a(xt)75 ua(xt) • db(x t ) j5jk db(xt)
X

+  da(xt)% ua(xt) • ub(x t ) j5j k uh(xt) } . (3.6)
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Besides coupling to I  =  1, it also couples to I =  2 channels. In the lattice simulation, 

however, we expect th a t excitations of states with 7 ^ 1  are suppressed because of

the projecting effect of the “clean” 7 =  1 operator Oh+ at the sink, as present in the

off-diagonal elements of the correlation matrix.

W ith isospin components defined, next we verify parity and charge conjugation 

quantum numbers. Under parity transformation V  the quark fields transform as [2],

Vip{xt)'P~~l =  y4 ip i-x t)  (3.7)

Vi){xt)V~l =  $ ( —xt)y4 (3.8)

and the SU(3) gauge fields tranform as,

VUi{xi)V~l =  U^i(-xi)  =  U}{x -  It), i =  1,2 ,3  (3.9)

VUA{xt)V~l =  U4( - x t ) . (3.10)

The hybrid operator, eq. (3.2), for magnetic type gluons, 1 < h j  <  4,

° h+.j(i) =  da(xt)jiUb(xt) Ftf ( x t )  (3.11)
X

transforms under parity as,

X

[ U - i ( - x t ) U - j ( - x  +  i ^ U ^ —x +  j , t )U ^ j(—xt)

+  U - j i - x t f U ^ i - x  -  I +  j , t )Ul. j ( - x  -  % t)U - i ( -x  -  i 11)

+  U l i ( - x  -  -  i - j , t ) U - i ( - x  -  i - j , t ) U - j ( - x  -  j , t )

+ U l j i - x  -  j ,  t)U—i(—x -  ], t)U-j(—x + i - j ,  t f U ^ i - x t ) } .
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Changing the summation variable x to —x, using periodicity, and recognizing tha t 

Fy is a sum over all quadrants in all spatial planes leaves the above expression 

invariant except tha t 74 7 ? 74 =  —'jj. Thus we have overall negative parity as desired,

The tto 1 operator eq. (3.6) transforms under parity as

'PO«+ao.k(t)V~1 =  (3.12)

+  y^(rf(-x t)747574M (-ff)) • d ( - x t ) y 4'y5'ykj4 d ( - x t )
X

+  y ^ (d (~ T t)747574u ( -x t ) )  ■ u ( -x t )^ 4 j 5j kj 4u(~xt)  (3.13)
x

=  ^ ( - d ( - T t ) 7 5u ( - f t ) )  • d ( - x t ) ^ kd ( - x t )
X

+  y ^ X ~ d ( - x t ) j 5u(~xt))  * u ( - x t ) ^ ku ( - x t )  (3.14)
x

=  —0 T+ao.k(t) (3.15)

provided tha t k =  1,2,3. Hence, the nai system has negative parity as desired. 

Under charge conjugation C the following transformations apply [2].

Ctp(x7t)C~l =  CipT(x7t) (3.16)

Ci){x, t ) (T 1 =  ~~i)T(x , i ) ( T 1 (3.17)

CUi(x1 t)C~l — U*(x, t) (3.18)

CU4& t ) C - 1 =  U \ (T, t ) , (3.19)

where C  is the charge conjugation m atrix (Appendix C) satisfying,

C~l =  - C ,  C~~1JIIC =  - 7 J ,  and C~lj 5C =  j ^ .  (3.20)
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Transforming the hybrid operator eq. (3.2) with either xpip ~  dd or 'ipip ~  uu 

gives for the magnetic case, 1 <  i, j  <  3,

C O h - j f y C * 1 =  ŷ C i p ( x t ) ' y i ' i p ( x t )  F i j ( x t ) C ~ l  (3.21)
X

=  —tpT(xt)C~1y iC%()T(xi) F*j(xt) (3.22)
X

—  \  A ' t / F  ( n ' f \  T P *  /y "/') ( 23 i/ -J 7̂  \ J J j, \ J  i j  \ J \ J
X

=  ^ ^ — ( $ ( x t ) j i ' i p ( x t ) T )  F - j ( x t )  (3.24)
x

=  ^ ^ ( —̂ (xt)jiip(xi)) F-j(xi) (3.25)
X

=  - O h'.j{t). (3.26)

Therefore, to create positive charge conjugation, it is necessary to subtract the 

adjoint of F^ [67], arriving at,

Oh -  Oh, jC~l = - O h, -  ( - O ft) =  Oft -  Oft- (3.27)

Oh.j(t) -  £ V ;J-(t) =  ^ 2 ${xt)'yi'il>(xt)[Fij(xt) -  F-j(xt) \ . (3.28)
X

Thus finally, the hybrid meson operator used for the h+ in this work is

Oh(t) — ^ 2  da(xt)'yiUi,(xt) [F^(xt) — F^ab(T£)], (3.29)
l< i< j '< 3  x

which includes the sum over all spatial planes.
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Applying charge conjugation to the irai system from eq. (3.6) (letting d =  d(xt), 

etc.),

+a°1;k(i)C'~1 =  ^ ( ^ { d TC~lj 5CuT ) ( - d TC~1% j kCdT -  uTC~1j 5j kC dr ) Sj

= E ( ( - ^ T)(+rfr̂ 7Z,̂  + ^ ^ ) )

=  (+ Urf5d)(dj57kd +  U'Js'JkU) J
x '

=  < V 0o;*W . (3.30)

Therefore, the 7rai operator has the desired charge conjugation property.

Including a sum over spatial directions, finally, the operator

3

(3-31)
k=i

for the TT+a\ is used in this work.

3.2 E q u a l t im e  c o rre la to rs .

The operators eq’s (3.29) and (3.31) are the basis for calculating correlation functions

C W (M o) = <  O x (t)O p to ) > -  <  Ox (t) X  O y( t0) > ,  (3.32)

where X  and F , standing for h and establish a 2 x 2 correlation matrix. The 

separable terms in eq. (3.32) are zero because of the quark flavor assignment in 

X  =  h and Y  =  7rai. Specifically, showing the flavor stuctrure only, from eqs. (3.29) 

and (3.6) we have,

< Oh(t) > ~ <  ud > =  0 (3.33)
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Ô rai ^ ^  dudd I duuu / > — 0 * (3.34)

In each of the above expectation values there is a factor of a contraction between 

unlike quark fields which is zero. Similar statements hold for the operators. Thus 

the correlation m atrix has the form

C(t, t0) =
< Oh(t)Ol(t0) >  < O h(t)Oln (t0) > ^

(3.35)
Oxai >  <  Oituj (t)0 ^ai (to) >  J

The remaining (nonseparable) terms in eq. (3.35) contain contractions between 

quark fields at equal times when worked out with Wick’s theorem, cf. (2.42). For 

example, showing flavor structure only,

Q h7rai (t, to) ~ <  (ud)t • (ddud +  uuud)tQ >  (3.36)

with time arguments t and to as indicated. There occur equal-time contractions : dd : 

and : uu : at time to only. The corresponding propagator elements Q~l (xto, yto) are 

calculated by default and thus pose no computational problem. This is different for

C-nai^m(t , to) (dudd +  duuu)t • (ddud +  uuud)to >  (3.37)

where we encounter equal time contractions dd and uu at time t >  to. Computing 

Q~l (xt} yt) is very resource intensive because sources have to be placed at all time 

slices t. We avoid this problem by, first, noting that at equal rrid =  m u the contrac

tions dd and uu give rise to the same propagator Q~1(xt, yt). Thus, replacing the 

(.. ) t term in eq. (3.37) by (2 du dd)t and reinstating the y-matrices we observe that 

dd ~  d'jsjkd is an cy meson operator. We now argue that altering the flavor of the 

d quark to an s quark has no significant effect on the mass spectra. The reason is
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tha t this substitution essentially changes the % into a K \  meson

«i =  djblkd  — ► d j 5j ks =  K t . (3.38)

Because the masses of the ai(1230MeV) and Arx(1270MeV) are so close [3], this 

substitution should have little effect on the mass spectrum of the 7ra\ system, and 

ultimately, on the resulting decay width. Thus, after the substitution eq. (3.37) 

becomes,

Cf7ra1,7raa (Mo) ~ <  (2 du ds)t (2 sdud)to >  . (3.39)

Here no equal time contractions occur. Note tha t the substitution must be done for 

both O  and to preserve Hermiticity of the correlation matrix.

Based upon the above argument, we adopt the approximation tha t all equal 

time contractions may be neglected in calculating C'7raij7rai (Mo) from the specific 

operators Owai and OjQ as w ritten in eqs. (3.31) and (3.6). All other m atrix elements 

are not effected.

Finally, we do not explicitly compute to) because it can be inferred from

the hermiticity of the correlation matrix.

3.3 F o rm in g  th e  c o n tra c tio n s  a n d  p ro p a g a to rs

Knowing the operators for h+ —>• M aJ, the actual correlation functions are 

calculated by contracting the various quark fields into propagators and multiplying 

the various gamma matrices out to see which elements are non-zero. For example, 

the wai component to the correlation m atrix is calculated as follows. The two tt
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0-n+{t) =  —!= ^ 2  daPi(x t) j 5̂ u au(xt) (3.40)
X

and

Ol+{t)  =  -J~  uav{xt)^vtidaix{xt) , (3.41)
X

where 7  =  7 7̂ 4 .

The two Gi operators needed are,

=  ^ ^ ( d b a ( x i ) ( j 5 l k ) a l 3 d bi3{xt) +  Uha(x t ) ( j5Jk)apU¥ (xi)J (3.42)

and

Olo(i) =  ^ ^ ^ d b/3(x t) ( j5f k)^adba(xt) +  ubp(xt)(75'fk)pauba{xt)J . (3.43)

The Dirac indices /i, g, a , /3, etc. are now explicitly shown and a normalization to

the lattice volume V  is included.

Note tha t the d flavor is retained in all operators. The d —>■ s flavor substitu

tion was only used in the argument to justify removing equal time contractions, as

discussed in Section 3.2. The combined 7rai operator is then,

Onai(t) =  7 ^ 2 3
X

dati(xt)'j5̂ u ai/(xt) • dba(xt)(75 7 /c)a(3dbf3 ( x t ) , (3.44)

The correlation m atrix element becomes,

< o nai( t ) o i ai(t) > = <
x S'

dan (xt)'j5fj-iJ'^a,v(^) dba (xt) ('Js'Jk)af}dbp (xt)

dvp>(x,t)('f5'fk>)/3>a'db>al {x,t) ua> u>(x't)^bu> ̂ d â (x't)  >  . (3.45)

operators needed for this are,
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So the m atrix element becomes

^  ^7rai ( )̂ ^  ^  ip /W I'&jiv(/j5'jk)ct/3(’75'lk1)/3'a1 'Ybv'n'
x S'

'UJav (^tyUa1 v' (% io'Jdfop (xt)dtfai

(f 'to )da>v! (x'to)daM(xt)dba (xt)dyp (x% ) > . (3.46)

A contraction gives an inverse element of the fermion matrix, see eq. (2.33). For 

convenience write G =  Q~l then,

: ^ a n (x t )^ (x ' t0) := Gâ ( x t , x ,t 0) . (3.47)

Where G is the propagator (amplitude) for the quark field at (x'to) with color/spin 

properties bv to move to (xt) and have color/spin properties a/r. For example,

: dbp(xi)db>p(a?to) Gbp b>p(xt]Xlto ) , (3.48)

For the correlator C7rai)7rai (t, to), all contractions between equal time quark fields 

are set to zero as discussed in Section 3.2:

Gbp aa(yt ,xt)  =  0. (3.49)

After doing all the remaining contractions, this m atrix element reduces to two terms 

with four propagators each, along with the gamma m atrix structure.

< Om (t)Oiai(to) > =

< v £ £  Ihjiv ('Jb'Jk)a/3 ('TsOV ) $’ ap 'Jby1 n' 
x  S'

{Gau’a'u' (xt  ̂X to)G a' p  ̂ ^(^ 0̂? Xt)

Gb'a',ba (% t0,Xt)Gbp b'p(xt,X to)

32



-  Gawa'u' (xt, Xtt Q)Ga>fl>M {x,tQ, Xt)

Gb'a’w ’ (x%, xt)Gbpib>p> (xt, oSto)} >  . (3.50)

If the approximation to drop equal time propagators was not made, then four more

terms would be needed for this m atrix element. Factoring out one of the propagators

yields,

< O™, {t)Oln (to) > =

('Ts’Tfc) uj3 ('Yb'Yk' )/?' a' 'Yhv'[jJ
x x'

G ay,a>v>(xt, X'to) [Ga> ̂ ^ (x ' to ,  X t ) G V a> fia(f% , Xt)

- G b>^M ( x ' t 0 , xt)GVa W (x't0, x t ) ] G bfiw ( x t ,  x ' t Q) >  . (3.51)

Now we apply the property of translational invariance on the lattice by letting 

x —> x +  x? and shift by an amount x' so tha t a? —» 0. The m atrix element becomes,

< O„ai(f)O+ol(f0) > =

^  y j  ’ybfw{,'Ybr)k)a@(l5'ykl)0'a,rf5isfji!
X

G  aw a'v> ( x t ,  Oto) [G  a'fi' ,a/x (Oto ? Xt)Gy<y ,ha(^t-Q, x t )

Ga1 fj,1 ,ba( t̂Q, Xt)Gva!^aiji (Oto: *^)]

Gbp,vp< (xt, Ot0) > . (3.52)

Using the relation,

Ga)j,,bu (?/; x) Ihmi' Gbvt (x, (3.53)

allows us to rewrite the m atrix element as,

< 0 „ ai(f)0 t Co) > =
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<  E 7 s Iiv ( 7 5 7 k ) ot/3 (7 5 7 k>) /3'a> lh v < ft

G ai/,aivi ( f t ,  Oto)Gj,pftpi ( f t ,  Oto) 

[75ftft" G at /̂i ̂at h (x t, Oto )75/i/// if  5a 'a //;

G  y  (xn f t  a ! " ( x t j  0 t o ) 7 5 a"o;

—7s ft ft" G fan ̂ai yin (xt, Oto)75a,,a75a/a,//

G a/i" ,6^^ ( ^ ^ 0)75^ 7 ] >  * (3‘54)

Pulling out all the gamma matrices and reducing their product gives, for one of the 

two terms,

7 5 /ti' ( f t b f t k )  otfi ( f t  5f t  k' ) f t  a ' ftbv ' f t  7 5 7  f t "  f t 5f t '  n f t5a ' a " '  f t  5a "  a

=  7 v , V  (-V v" ') V  (3.55)

The other term has identical gamma m atrix structure. Therefore, a final expression 

for this m atrix element is (see Fig. 3),

< O*ai(t)OjO](t0) > =

<E G av'a'v' (xt, Ot0)G¥ ftft ( f t ,  Ot0)

K / 4W "  (^5  ( f t ,  Ot0)

~  G ha" ft ft" (&•> OfiO^a/x'gb'a'" ^o)]

I k ^ n f t " ) $ v f t '  > * (3.56)

=  <  ^  Gavm'v1 (xtj  Oto)Gbf3ftft ( x t 1 Ot0)
x
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\f*ba",a'v' (*̂ t, G ai/̂ y au/ (^t, Otg)

G  av,a'v' (*̂ t, Oto)Gj3aii ̂ y  am (xt, Oto)]

7*a«,7fyo/„ > • (3.57)

Following the same procedure as above, the m atrix element for the h to ttoi transi

tion can be calculated:

< Oh{t)Oln {t0) >=

< V  5  -  FmniSt))
x y

day (xt)uhv ( X t ) dVfit (ytQ) ( j5%>)y>a>dy a> ( y t 0)

Ua>v>(yU)lhvllJk,da>y>(yU) >  • (3 .58 )

Moving the 7  matrices to the left and re-arranging the quark fields gives,

< Oh(t)Olai(t0) >=

X  X 1

Ubi/ (xt)lla'u1 (x t o ) d y ( x  to)do/ jj (x to)

day(xt)dyy>( £ % )  >  . (3 .5 9 )

Performing the contractions and applying translational invariance leaves,

< Oh(t)Ol0l (to) >=

X

G b v ^ a ' v ' i x t ,  Oto) \ G a 'y ' ,a y  (Ot0, X t ) G y a yyp>  (Oto, Oto)

— G a> f i p t  (Oto, O to)G V a>/z(O to, £ t) ]  >  . (3 .60 )
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The two equal time propagators in. this expression do not add much complexity 

because they are not summed over and are evaluated on one timeslice only. As 

before, we want propagators from 0 to x. Applying eq. (3.53) the equation becomes,

< Oh(t)Olai(t0) > =

X]'>™^(V7»')/3'c.'75„v ,(-P’mn(?0 ~ Fmn (£*))<?!,„,«V (St, 0tO)
X

[75̂ V" ,a1 /j,"' (ft, (Ô o 5 0A»)

“  Oto)75a,a/„ G*â ,^am {xt, Of0)75M„ J  • (3.61)

Now the gamma m atrix structure can be reduced,

7m^„ ('7'57n,)/3V75£///i/ 75̂ //^

=  7m^(75% 0/3'aK“ W ' )  * (3-62)

Also,

7m^ (757»')/3' a 1 % , M/ /J 5ataiii 75̂ // ̂

=  7ny/„ (75%')/?"<*"' (-< W ") • (3.63)

A final expression for this m atrix element is (see Fig. 3),

< > = <  y > , „ v ( : ? a < o )
X

[Gy/3»>a/1/(0«o,0to)(;^„iya„,(ft,0to)(757n')/3"a"'

— G*M«ia/„/ (xt, Ofo)GW,(>'£' (Oto, Oto) (757»' )i3'a' 1

7m.„, ( * £ , ( * )  -  *& ?(«)) > • (3-64)
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For the < 0 /l(t)0j_(to) >  m atrix element, using eq. (3.29) for O^t)  and following 

the above procedure, we arrive at (see Fig. 3)

<  O h ( t ) O l ( t 0 ) > =

< £  ~  Gâ c\{xt, Ot0)Glu4a(xt, Ot0)
X

(7 5 7 m ) VfJ, {xr)m 'rYh) Xa

-  F £ (.« ))(F ^ „ ,(O t0) -  F ^ O t o ) ) 1 > ■ (3-65)
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a I

\

X  t

X .

O t
d

Figure 3: Diagramatic illustrations of the m atrix elements <  0^ai { t ) 0 \ ai (to) > 
(upper diagram, eq. (3.56)) , < Oh(t)Olai (t0) > (middle diagram, eq. (3.64)), and 
< Oh{t)Ol(t0) >  (lower diagram, eq. (3.65)). Solid lines represent quark and anti
quark propagators G  and G* respectively, and the dashed line represents the valence 
gluon field F  — FF  Closed loops indicate color index contractions.
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3.4 S m e a rin g  o f fields

The hadron operators used in LQCD simulations create and annihilate linear 

combinations

] $  > =  J 2  j n > An (3.66)
n>0

of the physical states | n > which are ultimately determined by the lattice action. 

If we are interested in the properties (e.g. mass) of a particular state, say | n\ >, it 

is of great advantage to employ an operator, say 0 \ : tha t creates a state | T  >  such 

tha t the amplitude A\  dominates the linear combination eq. (3.66). The advantage 

is numerical: The resulting time correlation function will then give rise to a “wide” 

plateau m eff(t), see eq. (2.38), and thus greatly simplify the extraction and precision 

of the mass m\  of the state.

A physical baryon state will have a spatial extent of typically about 1 fermi. The 

operators constructed so far, however, are local or point like. They should not be 

expected to couple strongly to a spatially extended state. To remedy this situation 

a process called smearing [68] or fuzzing [69] is used. Smearing and fuzzing both 

have the effect of producing operators tha t couple more strongly with lower lying 

energy states and not with higher lying contaminating states.

A smeared fermion field tp(x) is constucted by spreading the original field ^(x) 

over neighboring sites via [68 ],

f { x )  =  i/j(x ) (3.67)
3

i>k+1(x) =  Ipk{x) +  cxmUm(x)i)k(x +  m)
m= 1

3

+  ^  otmU^x -  rh)ijjk{x -  m) (3.68)
m=1
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tp° (x) =  ip(x)

$ k+1(x) =  +  5 3  a m$k(X +
m= 1

3
+  5 3  a m^k(x — rh)Um(x -  m) (3.69)

m=l

where fc =  0 , 1 , 2 . . . K  — 1. Here a m is a strength factor which controls the amount 

of the smearing and the index m  stands for any one of three spatial directions. 

There is no smearing in the time direction. Note th a t the link matrices U{x)  act as 

parallel transporters, hence the behavior of tp(x),tp(x) and ip{x)^ip{x) under gauge 

transformations is exactly the same.

Smearing is a recursive process th a t is done K  times to form operators used in 

this analysis. Keeping all smearing levels expands the size of the correlation m atrix 

by a factor K .  For large K  and/or large strength factors a m normalization is useful 

to keep the magnitude of the correlation functions under control numerically.

To motivate a suitable normalization factor let us, for the duration of this ar

gument, assume th a t 'ip, ip are ordinary Hilbert space operators obeying the anti

commutation relation

\}Paii (x ) 5 ^Pbu{y)\ =  $ab$nv$xy • (3.70)

The smeared fields ipk  ̂ipk will not satisfy eq. (3.70) because the locality oc Sxy is lost 

in the process. However, after one iteration and at equal sites x =  y, it is straight 

forward to show from eqs. (3.68), (3.69), and (3.70) th a t

3

i ’l i x ) }  -  V i W 1 + 2 ■ (3-71)
m= 1

and,

3
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We take this to  be an indicator of the magnitude of the change in normalization. 

Thus, after each smearing iteration (3.68) and (3.69) we rescale the fields

^*+1 - > W - V +1 , t p +1 N - ^ k+1, (3.72)

where
3

W =  (l +  2 ^ a 4 ) C  (3.73)
m=1

This procedure is clearly gauge invariant.

The accumulated effect of normalization can be significant in practice. For 

example, for typical values a m =  2.5 , K  =  3 and a two-meson operator, the resulting 

correlator m atrix  element would acquire a factor N 3'8 «  1019 if rescaling was not 

done.

For the same reasons stated a t the beginning of this section it is also beneficial

to spatially spread out gluon fields with a similar iterative process which is referred

to as fuzzing. The fuzzing algorithm used in this analysis is called A PE fuzzing [69].

Here a spatial link m atrix is replaced by itself plus a real weight pn times the sum

of its four neigbhboring staples in the spatial planes.

U°m(x) =  Um{x) (3.74)
3

U ^ i x )  =  U t(x )  +  J 2 p n [ U ^ x ) U i ( x  +  n)U^(x  +  m)
n= 1
n ^ m

+  U t \ x - h ) U t ( x - h ) U kn {x +  m - h ) }  (3.75)

for m  =  1,2,3.  The iterated link variables clearly transform  covariantly under 

gauge transform ations, however, they are no longer elements of SU(3). They may 

be projected back into SU(3) by various methods [69]. We here adopt a simple
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normalization prescription with no projection back into SU(3). For reasons similar 

to those discussed above in the context of quark fields, after each iteration step 

eq. (3.75), we rescale the fuzzy link variables as

U ^ ( x )  -> N - lU ^ ( x )  where N  = (x)U^ 1 (x)) ’ . (3.76)

This procedure is clearly gauge invariant.

Finally, fuzzy link variables may be used in the smearing of fermion fields, thus 

replacing Um{x) —»• U^(x) in eq’s (3.68) and (3.69).
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4 Simulation and analysis

4.1 G o a l o f  th is  s im u la tio n .

The goal of this numerical simulation is to produce energy or mass spectra from 

the set of operators established in the previous section and to use these spectra to 

extract scattering phase shifts via Liischer’s method. This requires, first, finding the 

eigenvalues of a correlation matrix, and second, processing their time dependence 

through effective mass functions, for example, to get the energy levels.

4.2 L a tt ic e  p a ra m e te rs .

All lattice simulations were performed using the Wilson plaquette action eq. 

(2.19) and Wilson fermions eq. (2.24) in the quenched approximation. The lattice 

sizes used were 63 x 24, 8 3 x 24, 103 x 24, and 123 x 24. The number of configurations 

for these lattice sizes were 200, 200, 180, and 160 respectively. A heat bath algo

rithm  [70, 71] was employed to generate the configurations. All simulations were 

done at (3 =  6.15 with bare anisotropy  ̂ =  as/a t =  2 . Fermion m atrix inversions 

were done at four values of the hopping param eter k =.1400, .1360, .1320, and .1280 

using a multiple mass inverter [72]. For these simulations, the sources were always 

placed in the spatial middle of the lattice and at timeslice to =  3.
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As a m atter of course, the following single-meson operators,

(4.1)
X

(4.2)
X

(4.3)
X

and the hybrid operator Oh(t), as given by eq. (3.29), were employed.

Using three smearing levels, the corresponding 3x3  correlation matrices are then 

diagonalized. Their eigenvalues give rise to effective mass functions from which the 

ground state masses of the four mesons can be extracted as described in Section 2 . If 

the correlation function is dominated by a single state, then a plot of these effective 

masses reveals a plateau through which a horizontal line is fit using a least squares 

technique. The result of such a fit is a dimensionless number for atm, where a* is 

the lattice constant in the time direction and m  is the physical mass of the meson. 

For example, Fig. 4 shows a correlation function for the a\ meson and the resulting 

effective mass function.

Results obtained in this way for the 7r, p, a\ and h mesons using operator 

eqs. (4 .1 -.3 ), and (3.29) with two levels of smearing are shown in Table 1. These 

numbers will be needed to extrapolate later results to ?Bf  —> 0 and to set the physical 

scale, see Section 4.3.
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Figure 4: Correlation function (upper panel) for t he a± meson with two levels of 
smearing on the 123 x 24 lattice, and the resulting effective mass plot (lower panel) 
at  k =  .1400. Error bars represent statistical errors.

Errors presented in this work are statistical errors using the jackknife technique

[73], unless otherwise stated.

The mass of the hybrid meson is much harder to obtain because the gauge 

links contained in the operator Oh, see eq. (3.29), give rise to considerable noise 

in the numerical signal. In order to address this problem, observe that the gauge
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K atm„ atrtip atm n atmh
.1400
.1360
.1320
.1280

.533(41)

.644(34)

.748(31)

.849(35)

.550(31)

.646(29)

.751(32)

.852(27)

.652(43)

.752(31)

.857(26)

.964(32)

.'..'I! r?.'.3) 

.753(214) 

.850(261) 

.948(237)

K CLtTYlff atmp atm h
.1400
.1360
.1320
.1280

.540(45)

.649(33)

.742(26)

.853(40)

.541(33)

.623(27)

.728(31)

.834(30)

.639(41)

.745(33)

.853(36)

.961(29)

.618(241)

.714(231)

.807(246)

.914(215)

Table 1: Values of the hopping param eter k and the resulting tt, p1 cq and h masses, 
in dimensionless units for the 123 x 24 lattice(upper table) and the 103 x 24 lat- 
tice(lower table). Errors are statistical.

field action Sg[U] is invariant with respect to replacing U with U*. Hence, for each 

configuration [V] the complex conjugate configuration [U*\ is equally probable. It is 

thus admissible to enforce this symmetry. That is, once propagators are computed 

for an equilibrium field [17], the complex conjugate of the same field, [[/*], is then 

used to compute propagators, and this is counted as an additional configuration 

leading to 400,400,360,320 propagators for the four lattices. This helps enforce 

charge conjugation parity of the operators and it reduced the noise coming from the 

hybrid operator.
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In Fig. 5 a correlation function for the hybrid operator eq. (3.29) is shown. 

Comparison to Fig. 4 reveals tha t the hybrid signal still is significantly noisier. 

Accordingly the quality of the resulting effective mass function, see Fig. 5, is also 

diminished. These observations hold true, m.m., for the full simulation including 

the two-body decay channel.
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Figure 5: Exotic hybrid correlation function (upper panel) for 2 levels of smearing on 
the 123 x 24 lattice, and the resulting effective mass plot (lower panel) at k =  .1400.

/c= 1400
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4.3  E x tr a p o la t io n  to  th e  p h y sica l m ass  re g io n , a n d  s e t t in g  
th e  p h y s ic a l scale .

Meson masses were obtained at four values of the Wilson hopping param eter k (see 

Table 1), It is useful to study the dependence of the computed p, a\ and h masses 

on the pion mass. Predictions for this dependence come from chiral perturbation 

theory [74]. For example, the vector meson masses Mp =  atmp can be fitted to a 

quadratic polynomial in the square of the pion mass Mw — atm^ [75],

Mp «  A +  BM% +  C M *  . (4.4)

This model, if applicable, allows extrapolation of Mp to the physical pion mass 

region, i.e. small M^. A logarithmic term  can also be added [76]

Mp «  A A B M l  A C  M l  A In ( M |) , (4.5)

provided the model is applied in the asymptotic region, i.e. large M^.

Figure 6 : Extrapolation for the p meson mass using the 123 x 24 lattice.
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For the combined h and nai  system no predictions for the dependence of the 

spectral masses W  on are currently available. We will adopt the three param eter 

fit model

y =  p  +  qx +  r  ln (l +  x) with x =  (a^ra^)2 (4.6)

and y  being a meson mass atra, or a spectral mass atW  as the case may be. While 

inspired by eqs. (4.4) and (4.5) the model is purely heuristic. The main reason for 

i t ’s use is tha t it yields x 2-fits to our data tha t are consistently superior to those 

obtainable using eqs. (4.4) or (4.5). Examples of such fits are shown in Fig. 6 for 

the p meson mass, and in Fig, 7 for the a\ and hybrid masses. From those fits 

extrapolations to the physical pion mass are possible. Results are shown in Table 2 . 

These can be used to set the physical mass or length scale for the simulation.

Figure 7: Extrapolation for the a± meson mass (left panel) using the 103 x 24 lattice 
and h meson mass (right panel) using the 123 x 24 lattice.
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To set the physical scale, an experimental mass, say m, has to be used as input. 

Then atm =  p, where p is taken from fits with eq. (4.6), yields the lattice constant 

in physical units at =  p/m.  If the p meson mass is used we obtain1

at =  0.332(50) GeV”"1 =  0.066(10) fm [mp =  776 M eV]. (4.7)

If the di meson sets the scale then

at == 0.298(28) GeV"”1 =  0.059(06) fm [mai =  1230 M eV]. (4.8)

The above numbers are based on the 123 x 24 lattice. Unless otherwise indicated the 

p-meson based scale (4.7) on this lattice will be used to present dimensional values.

L atmf atmn atm h
12
10

.258(39)

.260(34)
.438(26)
.405(31)

.489(137)

.467(143)

Table 2: Extrapolated masses for the p, a\ and h mesons on lattices L3 x 24.

1 U n i t s  a r e  s u c h  t h a t  h  =  c  =  1 .  T h e  c o n v e r s i o n  f a c t o r  b e t w e e n  G e V  a n d  f m  is  g i v e n  b y  0 . 1 9 7 3
GeV-fm= 1.
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Using the p-scale the mass of the when extrapolated to zero pion mass, is 

1,21(18) GeV on the 103 x 24 lattice and 1.31(11) GeV on the 123 x 24 lattice. 

These values agree within errors with the 1.23 GeV mass listed by the Particle D ata 

Group [3]. On the 103 x 24 lattice, the mass of the exotic is 1.46(31) GeV using the 

p meson to set the scale and 1.73(39) GeV using the a\ to set the scale. More plots 

pertaining to the exotic meson are contained in Appendix H. The value of ~  1.5 

GeV is somewhat lower than previous lattice calculations, which ranged from ~  1.7 

to  2.1 GeV[17] , but it is in good agreement with experimental observations of these 

exotic resonances, which range from ~  1.37 to 1.40 GeV [17, 77, 78]. Note tha t 

to calculate the hybrid mass, three effective mass functions have to be evaluated - 

one for the hybrid, one for the rho, and one for the pion masses. Due to variability 

in selecting the points used for effective mass functions, there is going to be some 

systematic error in the outcome depending on which points are selected. This is one 

possible reason why the hybrid mass is lower in this calculation than in others. Also, 

to keep computer processing times reasonable, the values of the pion mass used for 

this calculation are high, ranging from 1.5 GeV to 2.4 GeV. This is another source 

of variation between these results and previous lattice results.
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4.4  P ro je c t in g  vs. diagonalizing a t  all t

A standard analysis method for extracting time correlation functions from an 

N  x N  m atrix C(t, to)  is based on solving the generalized eigenvalue problem [52]

C(t,  t o M t )  =  C ( tu to M t)A ( t )  (4.9)

where t\ is fixed, # ( t)  is an N  x TV matrix, its columns being the generalized eigen

vectors, and A (i) is diagonal. By construction, C(ti, t0) is Hermitian, thus having 

real eigenvalues. We further require th a t C ( t i , t0) be positive definite. To ensure 

the latter, t\  should be an “early” time slice. Here we use t\  — to =  4. The gener

alized eigenvalue problem, eq. (4.9), can then be cast into an ordinary one by first

diagonalizing

C {tu t 0) =  (4.10)

where P ( t1, t 0) is now unitary and D ( t i , t o )  is real diagonal and positive definite. 

Inserting eq. (4.10) into eq. (4.9) we are lead to define

C(t)  =  —= = = = = V t (t1, t t )C (t,to)V (t1, tB) - m = = ,  (4.11)
\ / U ( t i 7to)  v  U { t i : tg)

and

n t )  =  > (4-12)

in terms of which eq. (4.9) assumes the form of an ordinary eigenvalue problem

C ( tM t)  =  V(t)A(t) (4.13)

where # (f)  now is unitary and where A (t) =  d iag(A i(t). . .  AN(t)) contains the eigen

values of the generalized problem, eq. (4.9). Constructing C  according to eq. (4.11) 

merely amounts to a linear transform ation of the set of operators Ox-, X  =  1 . . .  

th a t define the correlation matrix. From eqs. (3.32) and (4.10) it is obvious that

CxY(t)  —< Ox(t)Oy(to)  >  — < O x ( i ) > <  Oy^o) >  (4.14)
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where
N (  1 \

Ox{t)  =  Y 1  ( / n i t  .  T ftiC o )) °x>{t)  etc. (4.15)
x ,=i \  v  L>{tu h) / x x 1

Because of C(t\)  =  1, the new set 0 X (t) of operators creates quantum states tha t 

are orthogonal and normalized at t =  t\. Provided th a t these match the “true” 

states of the theory, the eigenvectors of C (t), i.e. the columns of T (t), will stay

orthogonal as t >  i\ increases to the extent allowed by the errors of the simulation.

Consequently A(t) will be approximately diagonal for t > t \ .  From an analysis point 

of view there are two options: One may diagonalize O (i), eq. (4.11) on each timeslice 

t  separately (see Appendix A) and thus obtain the eigenvalues An(i), n =  1 . . .  N. 

Alternatively, the diagonal elements of C(t) may be taken as an approximation to 

its eigenvalues,

An(t) ^  Cnn(t) , n• =  1 . . .  N . (4.16)

The la tter approach has the advantage tha t statistical fluctuations in the signal for 

the An(t) are reduced, as our numerical results show. This is plausible because fluc

tuations of the eigenvector components are effectively frozen in the second approach. 

Figure 8 displays an example of correlators using both the basis transform ation tech

nique and diagonalizing on each timeslice. As it turns out effective mass function 

plateaus typically develop in the time interval 6 <  t  <  11, or so. In this region 

the projection technique yields more stable correlation functions, particularly for 

the excited states. For this reason, we will continue our analysis with the projected 

correlators and simply refer to Cnn(t) as eigenvalues An(t) for simplicity. In this 

sense, the eigenvalues An(£), n =  1 . .  .6, then give rise to effective mass functions 

from, which the spectral energies Wn are obtained. An example for the 123 x 24 

lattice at k =  .1400 is shown in Fig. 9.
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All correlator values are normalized to timeslice i =  5. No points with timeslice 

t <  5 were used for mass calculations. Figure 10 shows the spectral energies Wn, n =  

1 . . .  6, from the 123 x 24 and 103 x 24 lattices as they depend on the squared pion 

mass, x — (atmw)2 along with fits using the model eq. (4.5). A list of the numerical 

results for two lattice sizes are in Table 3. These excited spectra, including the 

extrapolations to physical pion mass —> 0 provide the input to Liischer’s method 

for calculating scattering phase shifts, and ultimately, decay widths.



6 8 10 12 14 16 18 20 22 24 26
t

18 20 22 24 26

Figure 8: Comparison of the eigenvalues of the 6 x 6  correlation m atrix C(t)  for the 
IQ3 x 24 lattice using the two analysis techniques described in Section 4,4. Results 
for “diagonalization of each timeslice” (lower panels) versus “diagonal” elements of 
the correlator C(t)  projected at t\  =  5 (upper panels). Shown with and without 
error bars for clarity.
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£=.1400

1.210(245)

0 = 6.15

.8 0 7 ( 1 0 2 )

12ax24

2.0

1.5

1.0

0.5

0.0
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t

£=.1400

.956(45)

0 = 6.15

.692(107)

123x24

1.5

1.0

0.5

0.0
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t

£=.1400 0 = 6.15

.0 8 3 ( 1 5 6 )

.550(142)

123x24

5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12
t t

Figure 9: Eigenvalues (upper left) of the 6 x 6  correlation matrix along with effective 
masses of all six eigenvalues for the 123 x 24 lattice. Error bars represent statistical
errors.
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a.m' t r

(a.m)' t T

Figure 10: Energy spectra for the 123 x 24 lattice (upper panels) and for the 103 x 24 
lattice (lower panels) extrapolated to m.n —> 0. Error bars om itted on the right 
panels for clarity.
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K atrrin a t W 1 atW-2 atW3 a t W i a t W 5 at We

.1400

.1360

.1320

.1280

.540(45)

.649(33)

.742(26)

.853(40)

.550(142)

.691(21)

.741(38)

.821(102)

.692(107)

.787(34)

.893(41)

.927(85)

.807(102)

.807(35)

.908(42)

1.034(73)

.883(126)

1.030(113)

1.180(102)

1.261(53)

1.210(85)

1.134(27)

1.253(31)

1.312(43)

.956(45)

1,420(43)

1.616(28)

1.849(41)

K a tm „ atW i atW 2 atW s a tW i a tW5 atW6

.1400

.1360

.1320

.1280

.533(41)

.644(34)

.748(31)

.849(35)

.573(72)

.693(105)

.751(112)

.784(61)

.592(113)

.705(48)

.783(42)

.811(51)

.614(57)

.738(53)

.804(39)

.907(51)

.910(112)

1.120(76)

1.140(127)

1.240(85)

1.202(94)

1.417(1033)

1.640(92)

1.783(91)

1.311(58)

1.428(59)

1.553(86)

1.621(126)

Table 3: Energy spectra Wnj n =  1 . . .  6 from the 123 x 24 lattice (upper table) and 
the 103 x 24 lattice (lower table) at four pion masses.
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5 L iischer’s m ethod  for sca ttering  phase shifts

In a series of seminal papers [49, 51, 52] Liischer has shown how to calculate con

tinuum scattering phase shifts from an LQCD simulation in Euclidean space in a 

finite volume. We here present an introduction to this method.

5.1 B asic  id e a  b e h in d  L iisc h e r’s fo rm u lae .

Liischer related continuum scattering phase shifts to the discrete two-body en

ergy spectrum  in a finite periodic box by matching poles of interacting Green func

tions (propagators) th a t live on the finite-sized periodic lattice to the poles of free 

Green functions in infinite volume [51] . Because the lattice Green functions com

prise the interaction, comparison in the asymptotic (free) region yields the phase 

shifts.

To illustrate, in one space dimension, the central idea behind this [52] consider 

a solution ip(x) — elkx of a Schrodinger equation with momentum k in the non

interacting case. Choosing kL =  2tt n the solution is periodic, satisfying ij)(x) =  

t/j(x+L), see Fig. 11(a) for k = k0 and n = 4. If an attractive potential with range 

\x\ <  0.2L is turned on, the periodic boundary condition would be violated, see 

Fig. 11(b), unless the kinematical phase kL changes. This change in the phase kL , 

made to m aintain original periodicity, is therefore a measure of the phase shift S, 

see Fig. 11(c). For the plane wave, tp(x) =  etkx, the relation between the phase shift 

and wave number a t the boundaries is,
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Figure 11: Generic solutions ip(x) of a Schrodinger equation: (a) no interaction, 
(b) an attractive potential around x «  0, and (c) with decreased wave number k to 
restore the original phase conditions, from Ref. [79].

e i (k~+S)  __ e i ( k ~ ^ ~ 8 )  e 2i8 __ e ~ i k L  ( 5  j )

The kinematical phase kL is changed by varying k or L. Varying L is similar 

to a finite-size effect. Finding the change in k at fixed L is equivalent to finding all 

(discrete) two-body levels Wn for the interacting case.

This method, which already appears in Ref. [61], was used by Liischer and Wolff

[52] to obtain scattering phase shifts in an 0(3) nonlinear sigma model on a 1+1 

dimensional lattice and by Gockeler et al [53] to obtain phase shifts for an 0 (4 ) 

nonlinear sigma model on a 3+1 dimensional lattice.
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The derivation of a three dimensional equivalent to eq. (5.1) is obtained starting 

with the Helmholtz equation,

(V 2 +  k2)G (f , k) =  6( f )  (5.2)

where G ( r ,  k) is a Green function of the two-particle system having the Fourier

representation,
1 _ * pip-r

T . T j p ^ W f  <5 J )
per J

where T is the set of lattice momenta in a periodic box of volume lA  This Green 

function can be written (knowing momentum is quantized on a lattice, p =  ^ p )  as,

1 pi f̂-n-r h. T

G&= Li E ’ with ? = 25T - (5-4)neL3 K L J K y '
Note th a t ft is being used as a spatial lattice index and not an energy spectra index. 

The spherical components defined through

G,m(r, k) =  y lm(V)G (r , k), y lm(r) =  r lYlm(0, <f>), (5.5)

where Yim are spherical harmonics, can be w ritten as a product of a generalized

(■-function Zim( 1; q2)1 a Bessel function Ji(kr), and a factor f a{h),

G lm(r, k) =  f a(k)Zlm( 1; q2) J , {k r ) . (5.6)

Here the generalized £-func!ion is defined as,

<7 / 2\ ^lm(®5 0) A ^
g |m (^ ;g )  =  E  (n2~ 7 f - (5-7)

The wave function for the two-particle state can be w ritten as a superposition 

of these Green functions times a coefficient Vim. However, these Green functions 

have a singularity at r  =  0 which must be removed by adding a Neumann function 

Ni(kr)  times a k dependent coefficient fb(k) [51].

k) =  v lm(Glm(f, k) +  f b(k)N,(kr))  (5.8)
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This wave function also has representation in terms of Bessel and Neumann 

functions,

k )  =  bim{ai{k)Ji{kr) ±  (5.9)

where the ±  indicates either an incoming(—) or outgoing(+) spherical wavefront. 

The associated scattering phase is given by,

r 2 t f , m  _  a i ( k )  + i/ 3 ,( k )
«,(*) -  i p, (k) ’ ( U}

which can be regarded as the 3-d equivalent [51] to eq. (5.1), Equating coefficients 

of Jt and Ni from eqs. (5.8) and (5.9) leaves

blm®l(k) =  V i J ^ - k l+l 4 - Z i m ( h  q2) (5.11)47T 7f 2q

and,

Taking a ratio of the modulation factors cq(fe) and A W  gives,

W j  = ^rqz,m{l'q2) ( 5 - 1 3 )

Substituting this ratio into eq. (5.10), after some algebra, one obtains a simple 

formula for the scattering phase [49]. For partial wave I =  0 it reads

A r ^ /2q k L  / r -1 j \tan d 0 =  - - — -— -  , q =  — . (5.14)
Z 00( l ; q 2) 2tr 1 7
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5.2 A p p lic a tio n  o f L iischer’s fo rm u lae .

Once the energy eigenvalues Wn are obtained from the lattice, the momenta kn 

of the decay products are found by solving the relativistic dispersion relation for kn.

w n =  s j m l  +  hi +  ^ m 2ai +  kl  (5.15)

Only energies Wn tha t fall within the elastic region,

(m^ +  m ai) < W n <  2 (77̂  +  m ai) . (5.16)

are used.

Recalling tha t all states are created with zero to tal momentum, these energy 

levels Wn are therefore a sum of the individual hadron masses and any interac

tion energy available to im part relative momentum to the final decay products in

a corresponding continuum setting. Therefore, the relative momenta kn must be 

considered continuous variables, just like the Wny in the dispersion relation. That 

is, the kn are not subject to a vm/L  restriction imposed by the lattice. The index 

n merely numbers the (six) states as they emerge from the simulation. (The point 

being th a t even though there is a restriction on allowable to tal momenta there is no 

such restriction on masses or mass differences when computed using effective mass 

functions.)

These mom enta are input to Liiseher’s formula [49] for the s-wave (I =  0) scat

tering phase shifts 5o(kn),

, r n  \ ^ ,2qn knLs
tan£0(/cn) =  —- — — — , qn =  ——  . (5.17)

Z m{l ;qi) 2tt

Here Z 00(1; q2) is a generalized (-function, see eq. (5.7), and Ls =  Las is the physical 

size of the spatial box using the bare anisotropy, as =  2at .
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The solution Sq of eq. (5.17) may be viewed as a function of the continuous 

variable q, i.e. £o =  — arctan(7rtg/^oo(l; q2))- This function was obtained by inter- 

plolating tabular data from [49] in the manner shown in Fig. 12.

Figure 12: Plot of S^/iiq2 versus q2 in the range 0.1 <  q2 <  1.0 . The line represents 
a polynomial interpolation of a function table (circles) from [49].

We then a ttem pt fits to all sets of phase shift da ta  with a Breit-W igner model,

U n S ^  =  E ~ m  ( 5 1 8 )

with

W(k) — y^m^ +  k2 +  y  m 2ai +  k2 , (5.19)

where E 0 and T are parameters. W hen the fit is successful, T may be interpreted 

as a decay width and Eq as a resonance energy.
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5.3 T h e  B reit-W ign er fu n c tio n  a n d  d ec ay  w id th s .

As a working definition we adopt the notion th a t a resonance occurs when then 

scattering phase angle 5i(k) passes through 7r/ 2  as a function of k.

The scattering amplitude for the partial wave I is [80, 81],

One may expand cot (Si) in a Taylor series.

c o t — cot(Si(Eq)) +  (E  — Eq){— - cot(Si(E))]e=eo +  • • • (5.21)

which is known as the Breit-W igner form of the equation for the scattering phase 

shift, and

is the width. The full width is a sum of partial widths in, possibly, other open 

channels i,

about the mass Eq of the resonance. Because of Si(E0) =  |  we have,

cot(5,(E)) «  (E0 - E ) ^ (5.22)

17 [A(cot(<5(£))]E=Eo
(5.23)

(5.24)
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6 Decay w idth  resu lts

In order for the decay h —»• 7r +  a± to be kinematically allowed we must have

m h =  m7T +  m ai +  A E  (6.1)

where A E  >  0 is the relative kinetic energy in the decay channel. According to 

Table 2, atA E  «  0.05-0.06 or A E  «  0.15-0.19 GeV using the scale eq. (4.7). The 

reality of a practical LQCD simulation is, unfortunately, th a t this region is very 

hard to reach with feasible lattice parameters because it requires very small quark 

or pion masses. (In addition the quenched approximation cannot be justified as 

—> 0.) In this context we exhibit in Fig. 13 a comparison of the masses and 

tUtt + mai versus raj. An actual level crossing between the h and the non-interacting 

7r +  ai system occurs only in the extrapolated data at relatively light pion mass, as it 

would in Nature, giving further credibilty to the simulation. As a side remark, it is 

interesting to note th a t the decay p -* 7T+7T is even more impractical due to the level 

crossing problem because the decay channel involves two pions in a relative p-wave. 

The energy of the la tter is very large on manageable lattice volumes, practically 

precluding a level crossing even with extrapolations like Fig. 13. For the 7r +  a\ 

system, on the other hand, the decay channel mesons can exist in a relative s-wave. 

This is the feature tha t makes the current simulation feasible.

66



Figure 13: Effective masses for the hybrid meson (unfilled dots) and a\ +  n two 
meson system (filled dots) on the 103 x 24 lattice (2 levels of smearing) This shows 
an energy level crossing at light pion mass.



6.1 R e su lts  fo r s c a t te r in g  p h a se  sh if ts  a n d  d ec ay  w id th s

In light of the kinematical situation discussed above, two approaches were tried 

to get the physical decay width. The first approach is to extrapolate the mass 

spectra to small physical pion mass, use these extrapolated spectra to compute 

momenta and phase shifts, and then fit a Breit-Wigner function to a plot of phase 

shifts 5o(kn) vs. a discrete set of momenta kn. The second approach does not use 

extrapolated mass spectra. In this approach, the spectra are taken at each of the 

four pion masses used in the simulation. Momenta and phase shifts are computed 

for spectra at each pion mass, and then one attem pts to fit Breit-W igner functions 

for the data  at each pion mass. The widths from the Breit-W igner functions for 

each pion mass are then plotted against the pion mass, and an extrapolation of the 

width to  small pion mass is attem pted.

Phase shift data  obtained using the second approach (non-extrapolated spectra) 

did not match up well to the Breit-Wigner model. The reason being, apparent from 

Fig. 13, tha t the pion masses used give rise to spectra quite far from the energy level 

crossing. Hence, it is unlikely to observe resonance behavior at those pion masses.

The first approach was successful. The extrapolated spectral masses Wn, rel

ative momenta km and s-wave scattering phase shifts So(kn) are listed in Table 4. 

Missing entries for kn and So(kn) indicate spectral levels outside the elastic region, 

see eq. (5.16). Results for two lattice sizes L3 x 24 are given. The extrapolations 

for these lattices are displayed above in Fig. 10.
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L n atWn (ifkn $o(kn)
12 1 .641(156) .162(14) 74.6(11.6)

12 2 .626(245) .151(18) 65.8(14.1)

12 3 .187(45) _ _

12 4 .468(112) .027(11) 2.1(1.8)

12 5 .309(105) -

12 6 .255(45) _

10 1 .663(214) .198(15) 77.1(10.5)

10 2 .614(27) .156(10) 50.0(6.1)

10 3 .489(43) .055(14) 6.0(3.1)

10 4 .440(103) .010(10) 0.2(0.5)

10 5 .364(98) - _

10 6 .333(43) _ -

Table 4: Extrapolated energy spectra Wn, n =  1 . . .  6 with resulting momenta and 
phase shifts of the wai system for two lattice dimensions L. The entries for atkn and 
5o(kn) th a t are blank correspond with energy spectra outside of the elastic region.

F itting  of Breit-W igner functions in principle can be done in a scale independent 

way using the model

5o(k) — arctan ( -t -— -------------------  :----- _: ) (6.2)
\ a tEQ -  ^ ( a tm n)2 +  (atk)2 -  \ / { a tm ai)2 +  {atk)2J

at fixed atm^ =  0 where atT and atE0 are the fit parameters, and atm ai is taken 

from Table 2. Fits were attempted employing a standard Levenberg-Marquardt 

algorithm [82]. However, the phase shift data is very sparse. While the fits returned 

stable results for the resonance energy parameter cpEo, the width parameter atT} 

being an indicator for a derivative, is not well determined by the algorithm.
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An alternative analysis procedure is based on the observation tha t the phase shift 

data  are clustered around two values of atk, namely «  0.17 and «  0.04, averaged 

over the L =  12 and L =  10 lattices, see Table 4. This suggests th a t no more 

than two distinct physical states are uncovered by the simulation. From Table 4, 

denoting the weighted (x2 =  min) averages of the clustered momenta by 2, the 

corresponding energies by Wi>2 =  atW (k i j2), and 7ij2 =  tan ^ (^ 1,2) via eq. (5.17), we 

obtain a set of two equations from eq. (5.13)

r, =  - .%r /2  (6.3)
atEo —

for i — 1,2. These are solved by

and

atT — 2(cji — UJ2 )— —  (6.4)
n  +  t2

UJ2T2 — UJiTi , ,atE0 = ---------------- . (6.5)
r2 — T\

The results are listed in Table 5, and using these paramters in eq. (6.2), lead to the 

Breit-W igner phase shift curves shown in Fig. 14 for the two lattice sizes.
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The uncertainties for atT and atE0 are based on the statistical jaekknife [73] 

errors for atk as listed in Table 4. Those give rise to errors / \k \^  for the weighted 

momentum averages hip- The analysis procedure described above was repeated 

many times with momenta k\^ =  kip, +  x • AAq^ where X\p are normal distributed 

random numbers with variance one. Also the at meson mass, which enters the fit 

model via eq. (6.2), was subjected to the same randomization. The errors given in 

Table 5 are the standard deviations resulting from the randomization. Table 5 also 

contains the physical values for the decay width and the resonance energy using the 

p meson to set the scale, cf. eq. (4.7). Setting the scale with the oq meson, cf. eq. 

(4.8), results in widths of 39(29)MeV and 108(48)MeV for the 123 x 24 and 103 x 24 

lattices repectively.

L atr gX o r[MeV] £o[GeV]
12

10

0.0116(87)

0.0324(143)

0.625(28)

0.618(30)

35(26)

97(43)

1.88(8)

1.84(9)

Table 5: Results for decay widths T and resonant energies E q for two lattice sizes L 
w ithout a scale and with a scale set by the p mass.

The dashed lines in the two panels of Fig. 14 were obtained using only one of the 

two data  points, a t large momenta, in each case. Those result in error bounds for T 

of 33-36 MeV and 87-119 MeV for the 123 x 24 and 103 x 24 lattices repectively.
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Finally, Fig. 15 shows the combined phase shift data from the two lattices. 

This is permissible because the p mass based scales are very close (at =  0.332 and 

0.335GeV-1). The Breit-W igner fit is based on averaging over two and four data 

points (in each cluster), resulting in F =  58(24) MeV and E0 =  1.87(6) GeV.
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a . t k

a  k

Figure 14: Resonant scattering phase shifts S0(kn) from the 1_+ hybrid exotic meson 
and 7r +  ai meson-meson operators using only extrapolated spectra from the 123 x 24 
(filled dots, upper panel) and 103 x 24 (unfilled dots, lower panel) lattices. The solid 
curves are Breit-W igner model interpolations according to eq’s (6.4) and (6.5). The 
crosses indicate the x 2 weighted averages over data  points.
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k [ G e V ]

Figure 15: Resonant scattering phase shifts SQ(kn) from the 1~+ hybrid exotic meson 
and 7r +  ai meson-meson operators using only extrapolated spectra from the 123 x 
24(filled dots) and 103 x 24(unfilled dots) lattices combined. The solid curve is a 
Breit-W igner model interpolation according to eq’s (6.4) and (6.5). The crosses 
indicate the x 2 weighted averages over data  points.
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6.2 S y s te m a tic  e r ro rs

The effects of systematic errors on the results, T and Eq, of this simulation are 

difficult to assess. In principle this can only be done by repeating it with various 

different choices of parameters. Probably the largest source of systematic error, 

stems from curve fitting and extrapolation techniques. All extrapolations were done 

with either a logarithmic term, cf. eq. (4.6), or an a;3/ 2 term  in the fit, and these 

terms produce similar results. W hen these terms are removed, the resulting linearly 

extrapolated mass spectra from the 6 x 6  correlation m atrix will shift upwards, but 

the extrapolated masses from single meson correlators will not change as much. The 

end result is a slight increase in momenta, a slighly larger phase shift, and a decay 

width increasing on the order of 10 MeV.

Another source of systematic error is fitting of the Breit-W igner functions. Given 

the sparsity of data points it is not at all d ear th a t the physical phase shifts will 

indeed follow a Breit- Wigner form. In order to resolve this problem the simulation 

would have to be repeated at several values of the gauge coupling /3, thus mapping 

out some sort of continuous curve SQ(k) vs. k, and then attem pting Breit-W igner 

fits. The results of this work do rely on the a priori assumption th a t the simulation 

data follow a Breit-W igner model. On the other hand, adopting the less strigent 

criteria th a t a resonance is present if the phase shift da ta  passes through 90 deg, 

the simulation results dearly  indicate the presence of such. This, in itself, is a 

remarkable outcome of this project. Although this does not help putting  bounds on 

the systemmatic error of T, it does appear th a t results for the resonance energy E q  

are somewhat more reliable.
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Systematic errors are also caused by finite size effects. At first sight, judging by 

the small difference of the p meson masses on the L — 12 and L — 10 lattices ŝee

Table 2) those appear to be small. Finite size effects should be expected to be much 

larger for larger-sized hadrons like the a\ for example. This is particularly true for 

two-hadron systems studied in this work. For example, the spectra displayed in 

Fig. 10 are significantly different, particularly for excited states on the L =  12 and 

L =  10 lattices, their size though being quite simular. Again these effects can only 

be studied by repeating this simulation with several lattices of different sizes.

Obtaining a single scattering phase data point requires evaluating up to three 

effective mass functions - one for the correlator m atrix eigenvalue, one for the a\ 

meson, and one for the 7r meson. The variability in choosing which time slices of the 

correlaton functions to use in fitting effective masses produces a variability in the 

decay width. Here, one usually wants to maximize the plateau width of the effective 

mass functions to optimize the statistical error. Reducing the plateau width to 

estim ate a systematic error is of limited value. An alternative analysis technique is 

Bayesian inference, e.g. the maximum entropy method, which yields mass spectral 

functions. Examples are shown in Appendix G.
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7 Summary and Conclusion

Decay properties of a hybrid exotic meson h with J PC =  1_+ were computed 

using quenched LQCD and Liischer’s method to extract contiuum scattering phase 

shifts from quantum fields in a finite box. Spectral da ta  were extrapolated to the 

physical pion mass region, mf  —>• 0. Assuming a Breit-W igner model, decay widths 

average about 60 MeV with statistical errors of about 20 MeV using combined 

extrapolated energy spectra from both the 123 x 24 and 103 x 24 lattices. For those 

lattices, taken one a t a time, the decay widths range from 35-100 MeV. These widths 

are obtained using the p meson to set the scale. If the a\ meson sets the scale, then 

the widths for these two lattices are in the range 40-110 MeV with statistical errors 

of about 30-50 MeV.

The number of data  points available to fit Breit-W igner functions is very sparse, 

the reason being th a t many energy levels fell outside of the elastic region where phase 

shifts using Liischer’s formulae cannot be computed. To overcome this limitation, a 

larger correlation m atrix will have to be used. Expanding this m atrix can be done 

by adding more smearing levels, and spatially extended operators, in the individual 

correlators or possibly by using a coupled channel type analysis in which more than 

one decay channel is represented in the matrix. More importantly, several values of 

the coupling param eter {3 need to be employed in order to have more phase shift 

data  available. This should be the next step improving on the results of this work.
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Using the p meson to set the scale, the resonance mass of the hybrid meson in 

this simulation is 1.9 ±  0.1 GeV. Using the a\ meson to set the scale, the hybrid 

mass is 2.1 ± 0 .1  GeV. In contrast to the decay width, the resonance mass turned 

out to be well determined by this LQCD simulation.

Historically, hadron mass calculations within LQCD were typically based on 

using single-hadron operators, ignoring the fact th a t most hadrons are (unstable) 

resonances and thus decay [47]. We have, in this project, taken seriously this aspect 

of hadron physics. While the numerical values for the decay width, in particular, 

should be taken as a guide, the approach of studying hadrons as resonances us

ing Liischer’s m ethod should be given serious consideration for future studies with 

LQCD.
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A p p e n d ic e s

A . R a tio n a l fo r diagonalization  o f c o r re la to r  m a tr ix

Getting an energy spectrum requires finding the eigenvalues of a correlation 

matrix. To find these eigenvalues, we convert from a m atrix of complex numbers to 

one of real numbers.

We can represent the hermitian correlation m atrix as a sum of two matices.

C =  A  +  %B =  -  iB f

Therefore,

A t  =  A  and B t  =  .

The eigenvalue equation is,

Cx  =  Ax where x =  u +  iv

Substituting for C and x,

(A +  iB)(u +  iv) =  A (u +  iv)

Au — Bv  +  i(Bu  +  Av) — Au +  iAv

This means,

Au  — Bv — Au and Bu +  Av =  Av

(6 .6)

(6.7)

(6 .8 )

(6.9)

(6.10)

(6 .11)

From the 6 x 6 original complex matrix a 12 x 12 real antisymmetric matrix is 

formed,
\

A —B

B A

( \ \
u

=  A
u

\ v)

(6.12)

Because we now' have a real matrix, a standard Jacobi Rotation program can solve 

for the twelve eigenvalues.
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These twelve eigenvalues are two-fold degenerate.

{A +  iB )(u  +  iv) =  A(u +  iv) -> (A +  i B ) ( - v  +  iu) =  \ ( - v  +  iu) . (6.13)

A —B

B  A

\ (  \—V = A
(  \u

J VG w
Giving a two-fold degenerate pair of orthogonal eigenvectors,

where,

/  \
u

T

\ v

( \u

l  \

V)

(  \

\ U  j

r p  r p

-u v +  v u

(6.14)

(6.15)

(6.16)

y t  u m + vjUi— o (6.17)
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B. G ell-M ann M atrices from  [64]

/  \  
0 1 0

1 0 0

0 0 0

Ao —

(  \
0 — * 0

i 0 0

v °  0 ° /

( \
1 0  0

0 - 1 0

0 0 0

A4 —

/ \
0 0 1

0 0 0

yl  0 0y

t  \  
0 0 -%

0 0 0

% 0 0

/  \  
0 0 0

0 0 1

0 1 0

A 7  —

(  \  
0 0 0

0 0 -%

0 i 0

A s 1
V3

—2
V i /
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c. E uclidean D irac M atrices (UKQCD convention)

7 i  =

(  \0 0 0 i

0 0 i 0

0 - i  0 0

y - i  0 0 0j

72 —

t  \0 0 0 1

0 0 - 1 0  

0 - 1 0 0

1 0  0 0
/

7 3  =

(  \  
0 0 i 0

0 0 0 - i

- i  0 0 0

0 i 0 0
/

7 4

I  \
1 0  0 0

0 1 0  0

0 0 - 1 0

0 0 0 - 1
/

7 5  =  7 x 7 2 7 3 7 4  =

(  \
0 0 1 0

0 0 0 1 

1 0  0 0

0 1 0  0
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D . Q u a rk  field  co lo r t r a n s fo rm a tio n s

Quarks exist as any of one six flavors (up, down, strange, charmed, bottom , and 

top) and they are assigned a baryon number th a t is conserved ( |  for quarks (q), 

for anti-quarks (q)). Quarks also exist as any one of three prim ary colors (red (r), 

green (g), or blue (b)), and anti-quarks exist as any one of three anti-primary colors 

(anti-red (f), anti-green (g), or anti-blue (&))

6 flavors x 3 colors =  18 distinct quarks or anti-quarks (6.18)

Quarks form bound states tha t are color neutral or white . These white states 

are created by mixing all three primary colors or by mixing one primary color with 

i t ’s anti-prim ary color. Three quarks (qqq), therefore, can form into a particles 

called baryons and two quarks (qq) can form into particles called mesons. Four and 

five quark states are also allowed.

Baryons and mesons comprise a group of particles called hadrons, the group 

upon which the nuclear strong force acts. Quarks interact by exchanging gluons. 

Gluons are electrically neutral but not color neutral. They carry one primary color 

and one anti-prim ary color (r6, rg, g f , etc.). There are nine possible combinations, 

but one of these is equated to white and is excluded, leaving eight possible combina

tions, or eight gluons. The three types of elementary interaction vertices for quarks 

and gluons are displayed in Fig. 16.

Quarks change color during the exchange of gluons. Inside a proton, for example, 

a green quark changes i t ’s color to red by emitting a gluon having green and anti-red 

colors (see Fig. 17). This gluon is then absorbed by a red quark, whereby the red 

on the quark is annihilated by the anti-red in the gluon leaving the second quark 

green. The final color state of the proton, however, remains neutral.

These quark color transformations can be represented by linear transformations. 

If a three component vector represents the quark color state  (e).
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(a) (b) (c)

Figure 16: Three elementary vertices of QCD. (a) quark-gluon, (b) 
(c) 4 -gluon.

c =

/  \
r

b

\9J
then the change from red (r) to green (g) is described by,

™(A4 -  i h ) r  =  g

\ (  \ (  \ \
0 0 1 0 0 - 2

\
i 0

0 0 0 — i 0 0 0
)

0 = 0

1 0 o j
v* o o y C w

3- gluon,

(6 .19)

(6.20)

(6.2 1 )
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Figure IT: An example of a quark color change resulting from gluon exchange.

The matrices A4 and A5 are two of the eight Gell-Mann matrices (Aa=i...8, see 

Appendix B) which are the generators of these transformations. These 3 x 3  matrices 

are Hermitian and have zero trace.

If xp is a wavefunction representing a quark color state, then a mixed color state 

can be constructed from infmitesma! transformations like the following,

 ̂ ( I + i Y , ^  (6'22)
\  a = l  J

where u a are the parameters of the transformation, TV is a large integer, and I  is the 

identity matrix. We can then build up any finite rotation in color space by repeated 

application of this infinitesmal transformation.

xp lirn^ +  i ^  =  exP ( ^ L , ^  (6*23)

This is analogous to a gauge transformation in the case,

xp— > e10 xp, (6.24)

where xp is an electromagnetic field. The exponential in eq. (6.23) represents a 3 x 3 

m atrix which is unitary (U) and has the special (S) property th a t i t ’s determinant 

equals one. Hence, this theory is called an SU(3) theory.
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E . T h e  ru n n in g  co u p lin g  c o n s ta n t

One of the im portant outcomes of quantum field theory is tha t the coupling 

strength (g) is not constant but varies with the scale (energy,inomemtum or distance 

range). This scale dependence of the coupling strength is related to the zeros of a 

certain function called the /3-function,

0(0) =  ^  7T =  a T "  (6' 25)ofi 0 In /i
where /i is the energy or mass scale and where h =  c =  1.

For Abelian quantum field theories such as quantum electrodynamics the /3- 

function is positive and the coupling strength increases as the energy scale increases 

(or as the distance scale decreases). At low energy (long distances) the coupling or 

fine structure constant,
e2 i

a  =  «   (6.26)
47r e0hc 137

increases to about a t energies of order 90 GeV or of the order of the Z  boson 

mass. In non-Abelian theories, this beta function is negative, and as a result, the 

coupling strength decreases at short distances [23, 24]. This decrease is logarithmic,

a.(p?) =  £-== ± l n ( £ )  , (6.27)
4tt fio \  A2

where A is the characteristc energy scale of QCD (A ~  200 MeV), and (3o is a constant 

computed by Wilczek, Gross and Politzer. To compute the actual /3-function for 

QCD, several Feynman diagrams are calculated to give the first quantum  corrections 

to the wave function renormalization and to the three point gluon coupling. The 

final result is [83],

P(9) =  - ^ [ j c 2 - l T ] + ° ( g S) (6-28)

where C2 and T  are called Casimir operators for the gluon and quark representations. 

/3(g) will be negative as long as T , which depends on the number of quarks, is not 

too large. This negative /3(g) means th a t dg/dfj, is also negative and the coupling g 

decreases with increasing /i. This means as quarks come closer together their force 

of attraction decreases eventually to zero, a property called asym ptotic freedom.
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F . F la v o r /iso s p in  s t r u c tu r e

The flavor/isospin structure of Oh and 0 %ai needs to be determined. For Oh we 

choose

where the ”ket” states represent isospin I  =  |  and J3 =  + | .  The direct product 

state has to tal isospin 1 = 1  and J3 =  +1.

Because the strong interactions conserve isospin (assumimg mu =  md), the 7rai 

operator 0 7rai should also have the same total isospin quantum numbers in order to 

couple maximally to  Oh- The corresponding Clesch-Gordon decomposition is

(6.29)

(6.30)

(6.31)

where the one-meson states have the flavor assignment

(6.32)

and

(6.34)

So the combined ixai system is

(6.35)

The hybrid decay written in terms of charged particles is therefore,

(6.36)
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G. M axim um  entropy m eth od  analysis

An alternative to using effective mass functions is the application of a maximum 

entropy method(MEM) or a constrained form of Bayesian inference [84]. In this 

method, a data set D, say eigenvalues of a correlation m atrix C or A is associated 

with a certain param eter set p with a probability P[p <— D]. For analyzing mass 

spectra, C  is the set of correlator values and the param eter set p represents a spectral 

density function. A correlator m odel(F) is then written,

F(p\t, t 0) =  J du p(u) e~u^~tô . (6.37)

This is similar to a sum of decaying exponentials, see eq. (2.37). After a set of p 

values is selected, the correlator model (F) is computed and compared to the actual 

correlator values (C). A probability P[p C] is constructed from the y 2-distance 

between F  and C. This probability also gets a contribution from an entropy function 

which is defined as,

S =  — J du p(u) In [p{u)]. (6.38)

The idea is to minimize the y 2-distance while maximizing the entropy. The spectral 

density function is actually a discrete sum of 5-peaks,

p(u) = E S(u  — u 0) | <  n |$ |0  > |2 (6.39)
n̂ O

th a t have finite widths. Physical information is contained in the low io-moments of 

each peak. For example, the quantity | < n |$ |0  > |2 is related to the volume of the 

peak, and the peak energy En is the mean value of w.

In Fig. 18, results of a MEM analysis are displayed for two eigenvalues of the 

correlation m atrix used in this project. The spectral density has peaks at ~  1.0 

GeV and ~  2.0 GeV for these eigenvalues. If there are multiple peaks, then only 

the lowest energy or ground state peaks are taken.
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Figure 18: Fits to the correlation functions and the resulting spectral densities 
using the maximum entropy method for eigenvalues A3 (upper panels) and A2 (lower 
panels). The lattice size is 123 x 24 and kappa=.1400. Unfilled data  points are not 
used in the fit.
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H . C o llec tio n  o f g ra p h s

Here we collect together various graphs, many of which are not shown in the 

seven chapters of this dissertation.
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Figure 19: Eigenvalues of the 6 x 6  correlation m atrix for the 123 x 24 lattice. 

Diagonalized and normalized a t t=5. Projected back to  t=5.
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Figure 20: Eigenvalues of the 6 x 6  correlation m atrix for the 83 x 24 lattice. Diag

onalized and normalized at t=5. Projected back to t=5.
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Figure 21: Effective masses for all six eigenvalues of the correlation m atrix on the 

123 x 24 lattice a t the lightest pion mass.
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Figure 22: Effective masses for all six eigenvalues of the correlation m atrix on the 

103 x 24 lattice a t the lightest pion mass.
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Figure 23: Energy spectrum for the 123 x 24 lattice extrapolated to zero pion mass. 

Error bars om itted for clarity.

Figure 24: Energy spectrum for the 103 x 24 lattice extrapolated to zero pion mass. 

Error bars om itted for clarity.

99



Figure 25: Energy spectrum for the 83 x 24 lattice extrapolated to zero pion mass. 

Error bars om itted for clarity.

Figure 26: Energy spectrum for the 123 x 24 lattice. Shown with and without error 

bars.
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Figure 27: Energy spectrum for the 103 x 24 lattice. Shown with and without error 

bars.

4 .5

Figure 28: Energy spectrum for the 83 x 24 lattice. Shown with and without error 

bars.
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Figure 29: Exotic hybrid correlation function for 2 smearings at source and sink 

points on the 123 x 24 lattice.
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Figure 30: Effective mass of the exotic hybrid on the 123 x 24 lattice for k =  .1400.
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Figure 31: An effective mass of the a l meson on the 123 x 24 lattice a t t-z =  .1400.
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Figure 32: Effective masses for the hybrid meson (unfilled dots) and a i + 7r two meson 

system (filled dots) on the 103 x 24 lattice (2 smearings a t source and sink).

Figure 33: Effective masses for the hybrid meson (unfilled dots) and a i+  7r two meson 

system(filled dots) on the 123 x 24 lattice(2 smearings a t source and sink).
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Figure 34: Effective masses of the a l  meson with linear and logarithmic fits on the 

103 x 24 lattice ,

Figure 35: Effective masses of the a l meson on the 123 x 24 lattice ,
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Figure 36: Correlation function for the a l meson with 2 smearings at source and 

sink points on the 123 x 24 lattice.

Figure 37: Lattice constants for the 123 x 24 lattice using linear and logarithmic 

fits.
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Figure 38: Lattice constants for the 10' 

fits.

x 24 lattice using linear and logarithmic
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