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ABSTRACT OF THE DISSERTATION
PRINCIPAL COMPONENT AND SECOND GENERATION WAVELET ANALYSIS
OF TREASURY YIELD CURVE EVOLUTION
by
Mark L. Copper
Florida International University, 2004

Miami, Florida

Professor Joel R. Barber, Major Professor

Prices of U.S. Treasury securities vary over time and across maturities. When the
market in Treasurys is sufficiently complete and frictionless, these prices may be modeled
by a function time and maturity. A cross-section of this function for time held fixed is
called the yield curve; the aggregate of these sections is the evolution of the yield curve.
This dissertation studies aspects of this evolution.

There are two complementary approaches to the study of yield curve evolution here. The
first is principal components analysis; the second is wavelet analysis. In both approaches
both the time and maturity variables are discretized. In principal components analysis the
vectors of yield curve shifts are viewed as observations of a multivariate normal distribution.
The resulting covariance matrix is diagonalized; the resulting eigenvalues and eigenvectors
(the principal components) are used to draw inferences about the yield curve evolution.

In wavelet analysis, the vectors of shifts are resolved into hierarchies of localized fun-
damental shifts (wavelets) that leave specified global properties invariant (average change
and duration change). The hierarchies relate to the degree of localization with movements

restricted to a single maturity at the base and general movements at the apex. Second
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generation wavelet techniques allow better adaptation of the model to economic observ-
ables. Statistically, the wavelet approach is inherently nonparametric while the wavelets
themselves are better adapted to describing a complete market.

Principal components analysis provides information on the dimension of the yield curve
process. While there is no clear demarkation between operative factors and noise, the top
six principal components pick up 99% of total interest rate variation 95% of the time.
An economically justified basis of this process is hard to find; for example a simple linear
model will not suffice for the first principal component and the shape of this component is
nonstationary.

Wavelet analysis works more directly with yield curve observations than principal com-
ponents analysis. In fact the complete process from bond data to multiresolution is pre-
sented, including the dedicated Perl programs and the details of the portfolio metrics and
specially adapted wavelet construction. The result is more robust statistics which provide

balance to the more fragile principal components analysis.
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1 Introduction

The following study examines and compares two approaches to interest rate risk. The
first approach centers around the principal component analysis of sample covariance matri-
ces derived from the history of the term structure of interest rates. This approach was first
used in [1] and is closely related to the use of common factor analysis by Litterman and
Scheinkman in [20]. Moreover, this approach has continued to be of interest to researchers,
both as a simple model for term structure evolution [8] [14] [30] and for other, closely related
interest rate risk questions [3] [7] [13] [19]. Here I update the principal component analysis
of [1] for more recent data, I perform statistical tests of hypotheses occasioned by princi-
pal component analysis, and I consider some of the limitations of the principal component
approach.

In the second approach term structure shifts are decomposed into atoms called “wavelets”.
In contrast to principal component analysis where the basis best adapted to the data is cho-
sen, wavelet bases are formed subject to certain structural constraints. Although there is a
loss of efficiency in the choice of a more structured basis, the structure provides an increased
ability to capture local trends and fluctuations transparently.

Although the term “wavelet” itself appears to be fairly new, the mathematical devel-
opment it pertains to arises from mainstream mathematical analysis. See Meyer’s histor-
ical perspective [24]. And like evolutionary convergence essentially the same ideas devel-
oped independently in several different engineering and scientific fields. See Sweldens’ and

Schrdder’s overview in the introduction to [32]. It is no surprise then that these techniques



of “signal processing” would be applied to financial time series as well. In fact, there are
now book-length treatments of just this topic available [12].

To my knowledge, however, there has been no attempt to apply wavelet analysis to
term structure evolution. Heretofore, the barrier to a using wavelet analysis as described
in [24] is quite basic; the key ingredient in the development of the theory was a family of
basis functions that remained invariant under both translations and dilations. Although
this made the full arsenal of Fourier analysis available, it did not match up well with term
structure data. The term structure, as a construct, derives from a family of fixed income
securities where maturities are clustered toward the short term in no neat pattern, where
all maturities are constrained to an interval, and where translation invariant measure does
not appear to have a reasonable economic interpretation.

On the other hand, these types of constraints are commonly encountered in many ap-
plications, not just finance and economics, and several authors addressed them. A line of
development particularly promising for our purpose is due to Wim Sweldon, whose own
work was inspired by the earlier investigations of Donoho [5] and Lounsbery [21].

“Second generation” wavelet analysis [31], as Sweldens has called it, obtained central
elements of wavelet analysis without the Fourier transform and in such a way that the
analysis could be extended easily to irregularly spaced observations on a finite interval
equipped with any one of many possible metrics. Moreover, Sweldens’s approach provides
a way to exploit the latitude in the choice of wavelet basis so that the optimal wavelet basis
for modeling yield curve shifts might be used.

Armed with this innovation, I returned to term structure analysis with two goals. First,

I wanted to see if a more rational framework for approximation than used for principal



components analysis would provide insights into interest rate movement. Specifically, the
yardstick in principal components analysis is finite dimensional euclidean measure. Prior
to analysis, a yield curve is abstracted from securities prices; the yield curve is evaluated
at a vector of (usually hypothetical and certainly arbitrary) maturities. This is done at
two successive times, and the magnitude of the yield curve change during the intervening
time is the sum of squares of differences between between the yield curve values along the
vector, no matter how the vector of maturities is distributed. This, it appeared to me, is
disconnected from the economics; not only do sums of squares have no economic meaning,
but the location of a yield change along the spectrum of maturities certainly does. It is
true, as shown in Sections 2.1 and 2.2, that we can reconnect to the economics further down
the line, but it was still a question to me whether a more direct approach might be fruitful.

A more compelling alternative measure of the magnitude of an interest rate change would
be the impact of a yield curve shift on the value of a portfolio. Using Swelden’s approach,
we may choose a portfolio, the market portfolio, say, and construct wavelets which, as term
structure shifts, have no effect on portfolio value. Thus, when wavelet analysis begins with
the raw data of a yield curve shift and rewrites it as a sum of a simple smooth curve and
wavelets, it follows that the smooth curve represents exactly the same impact on the value
of the portfolio as the input data. One may then study the joint distribution of the curve
parameters, or one may study the wavelets, but in either case, one maintains an economic
connection to the original data.

The euclidean nature of principal components analysis has another important facet.
Principal components analysis “diagonalizes” the covariance matrix. That is, there is a

reformulation of our observation vector that greatly simplifies the structure of the multi-



variate random variable that our yield curve shifts comprise. Our “raw” data for yield
curve changes consists of observations of interest rate changes for an array of individual
zero coupon bonds. Now naive observation indicates that there is significant correlation of
interest rate changes among these bonds, especially among bonds with similar maturities.
Principal components analysis extends this intuition by extracting patterns of interest rate
movements.

Each pattern extracted by PCA comprises a vector of perfectly correlated interest rate
movements among the bonds, there is no correlation among the different patterns them-
selves, and, taken together, the patterns may be used to construct any individual observation
by scaling and superposition. Moreover, these patterns are arranged into a hierarchy of vari-
ances which measures the contribution each pattern makes to the whole. In fact, PCA may
capture real simplicity when it might not be apparent otherwise. That is, the effective rank
of the covariance matrix may be very small; nearly all the observed interest rate movement
may be accounted for by of a handful of patterns. It is, perhaps, an interesting occurence
that interest rate movements do exhibit such simplicity; this is explored in Section 2.4.2.

Like a dog catching the proverbial bus, however, it is a little unclear what to make of
these simplifying patterns once we have them, and it is this problem that underlies the
statistical investigation that follows. To begin with, it would be interesting to relate the
principal components to economic factors, much as Litterman and Scheinkman [20] try
to do. Failing that, perhaps there are simple rules that can reproduce the top principal
components, and these simple rules, if not economically justified a priori may be justified a
posteriori by being useful. Unfortunately, the statistical tests we perform seem to cast more

shadow than light. There is no support for the simplest economic hypothesis, that interest



rates are all essentially the same type of thing and respond in unision to economic changes.
In the tests that follow (Section 2.4), we see that the dominant principal component is not
parallel translation, or even a line at all. And whatever it is, it does not persist; that is,
we need more than just chance to explain the differences between the dominant principal
components over different epochs.

This is all vaguely disconcerting. The dominant principal component looks as if it could
reasonably be approximated by a nearly flat line, and it looks as if the dominant princi-
pal component persists over successive five year periods. Furthermore, it seems odd that
we must jump all the way from interest rate changes on single bonds to patterns of per-
fectly correlated changes all across the yield curve, that in order to incorporate exceptional
behaviour in a neighborhood of a single maturity, we must involve the entire yield curve.

Certainly, it is possible to indicate the gradation of correlation of rate movements among
bonds with closer maturities more highly correlated than more distant maturities, but this
is done by superposition of patterns, each of which involves the entire yield curve. In fact,
it is quite informative to see how articulation is introduced as one incorporates principal
components with lower variances. Looking at the principal components in Figures 2.1 and
2.2 and looking at the variances in Table 2.2, one can “see” how interest rate movements
are predominantly positively correlated across the yield curve with secondary decouplings
brought in by various yield curve twists associated to the principal components beyond the
first.

Nevertheless, there is something stiff and unforgiving about PCA. I do not know whether
a more careful formulation would alleviate this jarring against intuition or whether distri-

butional assumptions underlying the statistical tests should be revised or whether intuition



should simply submit to the statistical results as they stand. It would be nice to have an
independent take on the phenomena, one that could transparently represent phenomena
at all scales from local to global. Thus my second goal in exploring the wavelet analysis
of term structure fluctuations has been to provide a more flexible basis for modeling term
structure shifts.

The data principal components analysis begins with, as presented in Chapter 2, is not
strictly raw data but rather a yield curve approximation at each time of observation. In
reality, choosing the appropriate approximation is not a simple matter as Bliss [2] has shown.
I have used Bliss’s implementation of McCulloch’s [22] method,! in which cubic splines are
regressed against raw data, the nodes of which splines are chosen adaptively. Once the
spline approximations to the yield curve have been made at each observation time, all the
splines are evaluated at the same fixed set of maturities. This generates the multivariate
sample to which PCA is applied.

Wavelet analysis, often called “multiresolution analysis” in this context, begins with a
linear spline interpolating a raw zero-coupon yield curve, coupon Treasurys having been
stripped with a bootstrap method.

Multiresolution analysis then generates a cascade of splines that approximate an inter-
est rate movement. The approximations are reminisent of, but quite distinct from, OLS
regression. The cascade consists of a series of splines with progressively fewer nodes, each
one a smoother but coarser approximation of the original data. Our splines? all retain the

same portfolio weighted average change and duration as the input shift.

! Another formulation question that would be interesting to check is whether PCA is
substantially affected by the choice yield curve approximation method.

2Although our splines are linear here, higher (and lower) order splines may be used in
much the same way; see [32] for an indication.



At each step of the cascade, the information that is lost in going from a finer to a
coarser approximation is stored in a wavelet. Thus, at each step, the magnitude of the
wavelet indicates the quality of the approximation at the next level of smoothness and the
support of the wavelet indicates the scale at which the adjustment is being made.

At the end of the multiresolution process, one is left with a simple polynomial approxi-
mation (i.e. a spline on one interval) of the yield curve and a collection of wavelets. At each
level one has separated the yield curve shift into locally disassociated movement, captured
by the wavelet, and coherent movement, captured by the yield curve shift approximation
at the next level, and one has repeated this process as long as it was possible to do so.
No information has been lost, and input data can be recovered completely by reversing the
process.

With wavelet analysis we have a way to model term structure shifts with changes re-
stricted to segments of the term structure on a full gamut of scales of resolution. Simple
order statistics of the wavelet coefficients indicate where introducing more detail into the
yield curve shift approximations will most efficiently improve the model. Thus, just as
principal components with smaller and smaller associated variances may be introduced to
refine a PCA model of yield curve shifts, the location of wavelet coefficients indicate where
new nodes might be most effectively added when refining the multiresolution model.

Since I know of no exposition of second generation wavelet analysis in the finance litera-
ture, I have included an introduction to the simple techniques I use here in Chapter 3. The
devil being in the details, I have also included in the appendix the program listings which
I developed for extracting, preparing and transforming data from the CRSP bond file, and

algorithm details are exposed in Chapter 5.



Gross results seem to indicate phenomena similar to those from PCA. Comparing Figures
2.1 and 6.5, there appears to be a correspondence between the fact that the first wavelet
coefficient at each level is the largest and the fact that first principal component is convex for
the first five years along the yield curve. That there should be no good linear approximation
to the first principal component might be related to the apparent independence of short and
long term rate changes displayed in Figure 6.1. Finally, the linear approximation generated
by multiresolution cascade only rarely fails to provide a good fit to the observed change
(Figure 6.2); this could be related to the rapidity with which the principal component
variances decay (Figure 2.3).

This last observation raises a question about the extremes of the wavelet coefficient dis-
tribution. Might they be larger than would be expected if the deviation from 0 where simply
a Gaussian noise term? Figure 6.3 shows large wavelet coeflicients occur more frequently
than would be compatible with the large number of very small terms if all terms were just
noise. This suggests a possible signal-noise model—perhaps coefficients are normally dis-
tributed with small variance most of the time, but when an infrequent signal arrives from
the economy the coefficients are normally distributed with much larger variance—but it
forces one to use nonparametric methods for further statistical examination of the wavelet
coefficients. I did perform nonparametric tests to confirm the appearance that wavelet
coeflicients at larger scales tend to be larger, and I concluded Chapter 6 with a look at
two methods that attempt to separate signal from noise, most especially with the object of
resizing wavelet coefficients by level in order to refine the apparent relative contributions of

the wavelet coefficients to fitting yield curve shifts.



2 Principal Components

The goal of principal component analysis is to clarify the correlations among the com-
ponents of a multivariate random variable. We use these relations to detail the interest rate
risk of a fixed income portfolio.

Suppose that X is a multivariate random variable, and suppose that ¥ is its covariance

matrix. Since ¥ is a positive symmetric matrix, ¥ may be factored
Y. = HAH' (2.1)

where H is a rotation matrix, HH' = H'H = I,det(H) = 1, and A is a positive diagonal
matrix, A = diag(A1,...,An), with A\; > 0,7 = 1,...,m. It is convenient to assume, as
we may, that the \; are arranged in decreasing order, A1 > Ay > ... > Ay, With this
assumption, the columns of H are unique up to sign. Let U; denote the jth column of H.
The U; are known as the principal components of X. See [25] for details.

In order to fix ideas, let us assume that the probability distribution of X is multivariate

normal, N (g, ). In this case the density function of X is
1
fx(o) = @n)"/*(det D)2 exp |~ (@~ )5z - )] (22)

Now substitute HAH' for ¥ and write Y = H'X. Then the density (2.2) factorizes as

ot 2
(y ”)z

I:I 27r i 25 (2.3)

That is, simply by rotating the axes appropriately, we may view the distribution of X as
the joint distribution of m independent univariate normal random variables.
In our application, X will denote a change in the yield curve for U.S. Treasurys. Then

the factorization (2.3) provides an alternative view of the way yields change on the family



of Treasury securities. The basis in which X is first presented derives from observations of
bond prices, and X; denotes the yield change for zero-coupon bonds that mature in ¢; units
of time from the present. The alternate view recombines yield movements on individual
but correlated bonds into uncorrelated patterns of movement. The first pattern is the
unitary combination of yield movements with maximum variance; the second is the unitary
combination with maximum variance subject to the constraint of being uncorrelated to the
first pattern, and so on. Thus, in the alternate basis X is the contribution to X made by
the pattern whose contribution is expected to be largest among all unitary patterns. We
sacrifice simplicity of representation in order to achieve simplicity of interrelation.

Geometrically, the level surfaces of the function kx, defined on R™ by

kx(z) = (z — p)'E(z — p),

form an ellipsoid, and the components of Z = H'X lie along the semi-axes of the ellipsoid.
Knowing these semi-axes, the analyst may identify levels of interest rate risk in a family of

portfolios.

2.1 Portfolio interest rate risk

Let A denote a portfolio whose risk we examine. That is, with a schedule of cash flow
dates fixed, A; is the cash flow scheduled for portfolio A at time t;,7 = 1,...,m. Similarly,
let d; be the present market value of a $1 payment scheduled for time ¢;. As a notational

convenience let T and D denote the diagonal matrices T}; = t; and Dj; = d; respectively. It
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is also convenient to let B = DA and to let ¢ the m x 1 column vector of ones. Thus, for
example, the market value of A is V = /B,

If the discount function D should change in such a way that

T og(De) — T og(De) + X

then, clearly, the portfolio value V = /B is a non-linear function of X. However, V
is differentiable and the best approximation to the change in the value of V' by a linear

function is given by the differential applied to X:

VV(0)X = X'TB. (2.4)

We therefore regard the variance of X'T'B as the approximate variance of portfolio value

var(V'). Since we are assuming that X is N(u, X), this approximate variance is

B'TSTB. (2.5)

Using (2.5) as our measure of risk, then, a portfolio manager might ask for the portfolio
with present value $1 and minimal interest rate risk. It is straightforward to see, using

Langrange multipliers for instance, that this portfolio must be

T-lyn-ir-i,
JT-IE-IT-1

Unfortunately, this mathematical eloquence may not translate to a practical alternative
for the portfolio manager. After all, the zero coupon bonds maturing at times ¢; were purely

hypothetical constructions. Principal component analysis may be a more flexible tool for

moderating interest rate risk in conjunction with market realities and manager goals.
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2.2 Principal components and immunization

Substituting the principal component decomposition of 2 (2.1) into our working measure

of portfolio interest rate risk (2.5), we obtain
B'TETB =Y M(H'TB)}. (2.6)
i

Recalling that Ay > Xg > ... > A, we see the most volatile component of our portfolio is
(H'TB);. Since we have that
TB =Y (H'TB)U;,

i
we interpret (H'TB); as the projection of TB along the principal component U;. Thus
one step in reducing interest rate risk that may be practical is simply to select a portfolio
A such that the projection of TDA along U; is minimal. A conservative estimate of the
benefit of such a step may be obtained as follows. From (2.6) and the Cauchy inequality
it follows that if the value of the portfolio A equals 1, By = 1, then our risk measure (2.5)
satisfies

B'TETB < \ Eggt?Bf.
If, in addition, it is required that U;TB = 0, then our risk measure satisfies
B'TETB<); max Y B}
Bi=1

UTB =0

In the historical data below, we find that Ay is less than 1/3 the size of A;.
If TDA contains no component of U, then we say that A is immunized along Uy.!

Similarly, should interest rate risk reduction be high enough a priority, then TDA may be

L Although we have vectorized notation, this use of the term ”immunize” is completely
classical in the case Uy = ¢//m

12



chosen to minimize its projection along several of the most volatile principal components.
Moreover, since these constraints, —e < (H'TDA); < € for example, are linear, they can
easily be integrated with other practical constraints in a linear program.

Since immunization is based on the gradient (2.4), it is strictly a ”local” technique,
properly applied only when the shock considered transpires over a ”small” interval of time.
Just as the gradient method is used to integrate differential equations (cf. [10], p. 263), so the
stochastic calculus provides processes that integrate ”infinitesimal” conditions on random
variables. The description of these processes is greatly simplified by their diagonalization,
and they are presented as such in Heath, Jarrow and Morton [15], and, indeed, Jarrow [17]
uses principal components to construct discretized models of approximate solutions to their

stochastic differential equations.?

2.3 Estimating principal components from historical data

Using historical data to estimate principal components in the evolution of the yield curve
requires two levels of abstraction. First a zero-coupon yield curve must be inferred from a
universe of securities, many of which are coupon bearing. Second, to define and compare
yield curve changes, every constructed zero-coupon yield curve must be interpolated at a

common set of nodes. For the estimates presented below, we use Bliss’s unfiltered imple-

2The reader may wonder why local methods would be of any interest at all when global
methods exist. One difficulty is simply that the global methods are considerably more
complicated and for all that remain deficient in ways. For example, as Rogers in [28] points
out, the Heath-Jarrow-Morton model does not provide workable formulae in cases where
the instantaneous spot rate is constrained to be positive. Rogers indicates this problem may
be inherent to their approach, beginning, as it does, "by trying to model derived quantities
(the forward rates) instead of the fundamental quantity (the spot rate).”
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0.083 0.167 0.250 0.333 0417 0.500 0.583  0.667
0.750 0.833 0917 1.000 1.083 1.167 1.250 1.333
1.417 1500 1.750 2.000 2.500 3.000 4.000 5.000
6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000
14.000 15.000 16.000 17.000 18.000 19.000 20.000 21.000
22.000 23.000 24.000 25.000 26.000 27.000 28.000 29.000

Table 2.1: Common yield curve nodes, in years, used for principal component analysis. The
discount function is estimated each month with a cubic spline; the spline is then interpolated
at these nodes.

0.0247224 0.0067709 0.0012182 0.0005729 0.0002075 0.0001106
0.0000804 0.0000599 0.0000294 0.0000160 0.0000121 0.0000063

Table 2.2: The twelve largest eigenvalues of the sample covariance matrix for Treasury
securities 1992-2001 at nodes listed in Table 2.1.

mentation of McCulloch’s cubic spline regression for the zero-coupon yield curve.® For the
common set of nodes we use McCulloch’s own selection in data published with Kwon [23].
These nodes are given in years in Table 2.1.

A Perl program, listed in the appendix as mcmunge.pl, selects ten years’ data and
formats it for input to the second Perl program, listed as csinterpol.pl. This second
program computes the sample covariance matrix and extracts the principal components
and their eigenvalues from it. Table 2.2 lists the twelve largest eigenvalues. The remaining
eigenvalues are small, but as our tests show, still significantly different from both zero and
each other. Graphs of the first four principal components are given in Figures 2.1 and 2.2.

There seems to be some persistance in the shape of the principal component graphs. See

Barber and Copper? [1] and even Litterman and Scheinkman [20] who use factor analysis

3Details are given in Bliss’s paper [2]; Mr. Bliss kindly sent me updated data.
A graph of the fourth principal component for McCulloch and Kwon’s 8/85-2/91 data
is available from the authors
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applied to weekly returns for 1/84-6/88 and unspecfied interpolation technique.® However,
some caution in drawing conclusions directly from the graphs seems also to be warranted.
For example, Golub and Tilman’s graphs ([14], p. 94) don’t seem to line up quite as well.

Perhaps more quantitative analysis will aid the intuition conveyed by the graphs.

2.4 Tests of some statistical hypotheses

The tests described in this section were developed by several statisticians, Lawley, James,
Anderson, to name, perhaps, the principals. We rely on the exposition by Muirhead [25]. All
tests depend critically on the assumption that the random variable is multivariate normal.
All three tests on our sample data were implemented by the Perl program listed as stats.pl

in the appendix.

2.4.1 Equality of eigenvalues

First we test hypotheses that the smallest eigenvalues of the principal components are
equal to one another:

Hp: A== 2ny

fork=0,1,...,m~ 2.
In a sense this is a test for randomness. For to the extent that the eigenvalues A; are
equal, the principal components are not unique. In the extreme case, if the hypothesis Hy

were true, the distribution of X would be spherical, no direction of interest rate movements

SSee [18] for more detailed descriptions of their techniques; see [4], Section 6.4.1, for
some comparison between factor and principal component analysis.
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being any more likely than another. That is, there would be no coherence whatsoever among
movements at the different maturities.

On the other hand, Hy can also be related to the dimension of the space needed to
model yield curve shifts. To illustrate, suppose that H; were accepted, and suppose it
were determined that the eigenvalues {\g,..., \;,} were statistically indistinguishable from
0. That would essentially be the classical case of parallel translation; all yield curve shifts
being dilations of a single prototype. More generally, if Hy is acceptable for k& ”small” and
the common value A = Agy1 = - = Ay, is also "small”, we will see evidence for a k-factor
interest rate evolution with observed fluctuations in directions associated to the eigenvalue
A due merely to measurement error.

In order to formulate the statistic used to test Hj, we set

where the [; are the eigenvalues of the sample covariance matrix S and, for notational

convenience, ¢ = m — k, the number of hypothetically equal eigenvalues. Then set®

m
i I
Vk = ———*—Hz—%+1 'l,-
lq

When Hy is true, the distribution of —nlog V is asymptotically X%q +2)(g—1)/2 @ T = 0.
However, in our test cases where n = 119 for 10 years of monthly data and n = 59 for 5

years, we employ the more accurate statistic developed by Bartlett and Lawley,

2¢2 +q+2 k 12
Po=—-ln—-k-"F- "4+ — I llogV;,
bq ;(z‘—lq)2

6Note that 0 < Vi < 1 since the [; are eigenvalues of a positive matrix and the geometric
mean of these values is always less than the arithmetic mean.
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having the same asymptotic distribution but faster convergence as n — oco. See Table 2.3
for the results of this test.

We see that the data are quite highly structured and there is no case at all that the
smallest g eigenvalues are equal for any ¢, ¢ = 48,...,2. We obtain, but do not display,
similar conclusions using five year data and using coarser meshes. It would appear there
is no "natural” dimension for interest rate fluctuations; however, there is an impracticality
to such a conclusion. For if we do not conclude, say, that the smallest two eigenvalues
are equal, we are left assuming the second smallest eigenvalue is nonzero. In particular,
variation in the direction of the corresponding principal component is thus assumed to be
about 1077, whereas one basis point is only 10~%. We examine the case for a ”practical”

dimension in the next section.

2.4.2 Proportion of variation

In our first test we did not see any inherent limit to the dimensionality of the space of
observed yield curve fluctuations. Eventhough we cannot dismiss any of the eigenvalues as
insignificantly different from 0, we can still test whether the fraction of portfolio variance
explained by the last £ principal components is a relatively small amount, h, say. Formally,

we consider the hypothesis,

* Zﬁk-{—l Ai .

H = h.

ke Z;cnzl /\2

These hypotheses can be tested with the statistics

k m
Mg =—-h)Y Li+(1-h) Y b

i=1 i=k+1

For if H} is true, then (see [25], p. 416) \/nMj is asymptotically N(0,7%) as n — oo where

k m
=202y A +2(1-h)% Y A
=1 i=k+1
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q P p-value \/l_q-
48 101286.16 0.000000e+00 1.572335e-01
47 51808.85 0.000000e+00  8.228546e-02
46 45557.80  0.000000e+00  3.490286e-02
45 42303.59  0.000000e+00 2.393510e-02
44 39209.77  0.000000e+00  1.440518e-02
43 37206.09  0.000000e+00 1.051532e-02
42 35579.12  0.000000e+00  8.968597e-03
41 33788.61  0.000000e+00  7.742445e-03
40 31570.91  0.000000e+00 5.426519e-03
39 20724.92  0.000000e+00  4.004516e-03
38 28130.74  0.000000e+00  3.472371e-03
37 26126.87  0.000000e+00 2.516362¢-03
36 24281.56  0.000000e+00  1.754004e-03
35 22809.32  0.000000e+00 1.368457e-03
34 21394.59  0.000000e+00 1.163865e-03
33 19647.14  0.000000e+00  9.312330e-04
32 17397.35 0.000000e-+00 5.901655e-04
31 15501.61  0.000000e+00 3.613146e-04
30 14244.15 0.000000e+00 2.805237e-04
29 12990.39  0.000000e+00  2.150908e-04
28 11744.50  0.000000e+00  1.831290e-04
27 9930.76  0.000000e+00 1.034678e-04
26 8853.57  0.000000e+00 7.523517e-05
25 7938.86  0.000000e+00  5.830019e-05
24 7063.72  0.000000e-+00  3.963088e-05
23 6500.31 0.000000e+00  3.652810e-03
22 5751.86 0.000000e+00 2.789453e-05
21 5079.29  0.000000e+00 1.959196e-05
20 4629.85  0.000000e+00  1.426484e-05
19 4351.82  0.000000e+00 1.294142e-05
18 4053.58  0.000000e+00  1.192338e-05
17 3698.73  0.000000e+00 9.670846e-06
16 3391.38  0.000000e+00 9.324346e-06
15 2920.66 0.000000e+00 7.464477e-06
14 2401.97  0.000000e+00  4.630039%-06
13 2137.11  0.000000e+00 4.099755e-06
12 1803.86  0.000000e+00  3.398030e-06
11 1390.28  0.000000e-+00  2.108780e-06
10 1169.35 0.000000e+00  1.713246e-06

9 941.08 0.000000e+00  1.420020e-06

642.31  0.000000e+00  8.370498e-07

7 510.39  0.000000e+00 6.257029e-07

6 419.42  0.000000e+00  5.224277e-07

5 320.53 6.105600e-58  4.226790e-07

4 195.63 2.727400e-35  2.840302e-07

3 85.50 5.620500e-15  1.653242e-07

2 25.99 2.270300e-04  9.708477e-08

Table 2.3: Test for equality of the smallest ¢ = m — k sample covariance matrix eigenvalues.
The statistic P; has an asymptotically x? distribution. The p-value shows there is no
support for equality at any level. However the standard deviations, 1/I;, of the smaller
principal components are small compared to measurement uncertainty.
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[ lpe 2pe’s 3pe’s 4pc’s 5pe’s 6pc’s
Lower 5% | 67% 92% 9% % 98.1% 98.8%  99.2%
Observed 73% 93% 96.7% 98.4%  99.0%  99.4%
Upper 5% | 78% 94% 97 % 98.7% 99.2%  99.5%

Table 2.4: Confidence intervals and actual observed values of proportions of variation cap-
tured by the first 6 principal components.

Thus, replacing A; by I;, i = 1,...,m, in this expression for 72, we obtain an approximate
test of Hy for our sample data. By computing the choices of h and k that make Hj
acceptable, we derive confidence intervals.

These computations provide a ”practical” measure of the dimension of the interest rate
fluctuation space. Figure 2.3 displays graphically the fraction of total variation captured by
the first four principal components. Table 2.4 tabulates the same information for the first
six principal components and, in addition, includes the proportion actually observed. For
example, our data show that the first principal component represented 73% of the observed
interest rate fluctuation, and, if our model is correct, we can be 90% sure the first principal
component will capture between 66% and 78% of the total variation in future observations.
The actual machinery for these computations is laid out in the stats.pl listing in the
appendix.

The confidence intervals provide a basis for comparison with other measurements of
proportional variation. The 90% confidence interval for the first component alone includes
neither the 80% proportion found in [1] nor any of the proportions for the various maturities
found through factor analysis by Litterman and Scheinkman in {20], Table 2. These earlier
studies were conducted using different data; we may be seeing evidence of non-stationarity.

Also compare to Soto [30], note 16, for Spanish bonds.
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2.4.3 Shape of first principal component

Linearity. Early work in interest rate risk assumes, essentially, that only one principal
component has a non-zero eigenvalue and that the principal component equals ¢, suitably
normalized.” Even with the advent of multi-factor models we find the primary engine of
interest attributed to parallel translation. This quote from Litterman and Scheinkman [20]

seems representative of received opinion:®

[T]he yield changes caused by the first factor are basically constant across matu-
rities. That is, the first factor represents essentially a parallel change in yields. ...
Thus, hedging against Factor 1 is close to duration hedging.... The impact of

Factor 1 on yield levels leads us to name it the level factor.

Though it must be noted that Litterman and Scheinkman themselves note the slight differ-
ence between their Factor 1 and literal parallel translation.

All this begs the question, is the first principal component statistically different from
parallel translation? or, more generally, linear translation? Statistical tests for equality
between our sample first principal component and any linear model are unquestionably
negative.

In more detail, let HA** be the null hypothesis that the vector of coefficients U; of the

first principal component is equal to a specified vector U of unit length,

"See the proof of the immunization theorem, Appendix B, in Fisher-Weil [9]. This paper
also provides references to the still earlier work in interest rate risk by Macaulay, Reddington

and others.
8 Along the same lines, see Willner [34] and Soto, Note 17 [30].
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H*:Uh =UY, UYUY=1.

T. W. Anderson (See [25], section 9.6.) showed that if H** is true then the two statistics

n

Wi =nliUYS™ U —n and Wy = z
1

UYsuY —n

sum to a single statistic, W = W; + W2, having a limiting distribution of x2,_;. Here,
as before, S is the m x m sample covariance matrix, and {; is the eigenvalue of the first
principal component of S. Thus, a test of H** of asymptotic size a is to reject H** if
W > c(a;m — 1), where ¢(a;m — 1) is the upper 100a% point of the x2,_; distribution.
Note that if U; = Uf then Wy = W3 = 0, and that as U{) rotates away from Uy, W
becomes negative, W; positive. For matrices S having large condition numbers, as ours do,
very small projections along Uy, for & large can result in large contributions to the statistic
W.

This test applied to our sample data indicate that no linear first principal is remotely
acceptable. Table 2.5 illustrates the value of the statistic W in a neighborhood of the ”best”
linear approximation.® The smallest value of W obtained was 305.8, but the 1 /2% critical
point of x2,_, m = 48 is 75.7. Note that W is dominated by Wi, the part generated from
the lengths of the projections of the test vector along the principal components divided by
the eigenvalues.

Nonetheless, these results do not seem to be numerical artifacts since the same conclusion

is reached both with coarser meshes and with the smallest eigenvalues eliminated from

W is a quadratic form so there are no hidden extreme points.
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Slope Wi Wo w

0.000 | 372.7892 -6.1334 366.6558
-0.002 | 348.3617 -5.6868 342.6749
-0.004 | 329.3381 -5.2919 324.0462
-0.006 | 316.4551 -4.9565 311.4986
-0.008 | 310.5076 -4.6896 305.8179
-0.010 | 312.3468 -4.5006 307.8461
-0.012 | 322.8766 -4.3997 318.4770
-0.014 | 343.0478 -4.3976 338.6503
-0.016 | 373.8486 -4.5056 369.3429

Table 2.5: Values of the statistic W for linear first principal components with slopes as
given in the first column. W is minimal for linear vectors with slope near —0.008, but the
upper 1/2% point of x3; = 75.7 and the hypothesis of a linear first principal component
is rejected for all slopes. The second column shows how it is the projection of the linear
vector along the principal components with small eigenvalue that overwhelm W.

consideration. Similar results were also obtained for the yield curve data analyzed in [1]
and for more recent data.

Persistence. If we can’t justify viewing the first principal component as a linear shift, per-
haps the shape of this shift, whatever it is, persists over time. Visually, this seems plausible,
as illustrated in Figure 2.4. We can check this with the same test applied previously to the

linear principal component hypothesis (cf. splitstats.pl listed in the appendix). We find

Wy = 659.67, W= -041, W =659.26, c(.05;47) = 64.00.

with W as before and ¢(.05;47) denoting the upper 5% point of the x3, distribution. This
compares to W = 586 for the best linear fit to the five-year first principal component, and
it appears that the previous five-year first principal component is an even worse candidate

for the most recent five-year first principal component.
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Figure 2.4: Is the first principal component stationary? The principal components cor-
responding to the largest covariance matrix eigenvalues are shown. Ten years’ data from
1991 through 1992 are broken into two successive five year windows, and the principal
components for each interval are computed. A statistical test for equality of the principal
components corresponding to the largest variances is negative unless data corresponding to
the 42 smallest variances is neglected.

On the other hand, as we have seen, the first six principal components alone account
for over 99% of total interest rate fluctuation. If we eliminate the smallest 48 — 6 = 42

principal components as "noise”, and recompute our statistics, we obtain

Wy =371, Wo=-041, W =330, c(.0547) = 11.07.

We can’t use this calculation to support a claim that the shape of the first principal persists
over time, not without some more work at any rate, but it does show once again how our
statistics aren’t lining up with our intuition. The last 42 principal components appear
insignificant to the eye, but they play a commanding role in the analysis of the sample
covariance matrix. It is also worth noting that we also obtain a diminution of W in the
linear case when the last 42 principal components are eliminated, but we don’t get close to

the range where the hypothesis might be accepted.
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2.5 Possible shortcomings of principal component analysis

An econometric difficulty with applying principal component analysis to yield curve
evolution is that the Euclidean norm, upon which the analysis is so dependent, seems to
have no economic meaning. What does it mean for the sum of squares of key rate movements
to equal one? How does one devise a Richter scale for yield curve movements? Speaking
of key rates, how does one choose them rationally? We have followed McCulloch-Kwon
without offering any rationale, but certainly different discretizations of an interpolated
yield curve will result in principal component differences, however slight, and we have seen
how apparent slight differences can be statistically significant.

After atomizing the universe of bonds into hypothetically rationally priced zero-coupon
bonds, principal component analysis flips to the opposite extreme: all components are
whole-yield curve movements; any movement attributable to a principal component in-
volves movements of all zero-coupon bonds and these movements are perfectly correlated.
Moreover, this model is very ”stiff”; regardless of any visual impression, the first principal
component is statistically remote from any linear vector. Checking to see whether the dif-
ference between the observed first principal component and a linear vector is simply noise is
characteristic of the analytical process itself: to resolve a complex object to a comprehensi-
ble relation among elementary objects. The benefit of principal component analysis is the
simple relation it provides; the weakness is that the elementary objects may not have any
intrinsic significance. Sometimes insight into the object of study provides the significance;
Golub and Tilman, [14], Section 3.2.3, advance the intriguing theory that the first principal
component is closely related to the term structure of volatility of changes in U.S. spot rates.

Lacking such an understanding, one has no way to distinguish between data mining and the
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discovery of persistent mechanisms. In such cases the analyst is willing to sacrifice some
efficiency of representation in exchange for better understood elements. This is our goal in
the next section where we analyze yield curve data in terms of adapted wavelets.

The assumption that yield curve shocks are normally distributed proved important for
drawing statistical inferences. Even in the slightly larger class of elliptical distributions, a
diagonal covariace matrix guarantees independent components only when the distribution
is normal ([25], Theorem 1.5.3). We also encounter the usual bugbear of gaussian processes;
viz. the positive probability of negative rates. Moreover, we have assumed rate changes are
governed by a multivariate normal distribution without offering any supporting empirical
evidence. This difficulty is accentuated by evidence of non-normality presented in the next
section.

Underlying our entire analysis has been an implicit assumption that yield curve shocks
are temporally independent identically distributed. Although we do not address it here, this
is where we part company with the stochastic process approach to yield curve evolution.
For example, if the Heath-Jarrow-Morton process really caught the essence of interest rate
movements, then, not only does the probability distribution of the yield curve change depend
on the yield curve, but it also depends on its history. Testing such theories with available

data seems challenging.
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3 Second Generation Wavelets for Yield Curve Data

Assume our input data is a series of observed yield curve shifts. A given observation, ¥y,
is represented by a vector {yo}7_o which records the values of yy at maturities {zx}3_,.

We are going to rewrite this series of shifts as a pair of series. One is ”smoother” than
the original observation while the other records the information lost in the process. The
first reflects coherent movement, movement experienced by all maturities in a locale; the

second, by contrast, reflects idiosyncratic movement around a particular maturity.

3.1 The lazy transform

The first step in this process is to split the “signal” yp into two separate signals with the
“lazy” transform. That is, the result of applying the lazy transform, L, to yo is the pair of

signals, the “upper” signal of “forgotten” samples and the “lower” signal of “subsamples.”

Symbolically,
L:yo = (-1, u-). (3.1)
where
lax = Yook, k=0,1,2,... (3.2)
U-1k = Y02k+1, k=0,1,2,.... (3.3)

The lazy transform is illustrated schematically in Figure 3.1.
Note that yo may be recovered from /_; and u-; simply by interleaving the two se-
quences. A scheme for such a recovery could be obtained from Figure 3.1 simply by reversing

the direction of the arrows.
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Figure 3.1: Schematic for the “lazy” transform, the first step in the wavelet transform. yg
is the input sequence, L is the transform, and u_; and [_; are the output sequences.

3.2 The prediction step

The second, or prediction, step affects the upper signal, u_;. The subsamples in {_;
are used to predict the data at the points z5;,1. The differences between these predictions
and the values of u_; are then recorded as d_1, the difference coefficients. The idea is that
if the yields at the various maturities move together, then the data {I_;} should form the
basis for an accurate prediction and the coefficients {d_;} will tend to be small.

There are several ways of formulating a prediction that various authors have investigated
(cf. Sweldens and Schroder [32]). The simplest method assumes the least “structure”, and
merely uses the neighboring even values to predict the odd. We are going to assume there is
a modicum of structure, that the yield curve is at least continuous. Therefore we expect to
obtain a significantly more efficient encoding of the yield curve fluctuation by using linear

interpolation of the even values to predict the odd. Thus

(Tort2 = Topp1)l 1k + (Tokr1 — Tor)l—1 k41

G-k = U=t = Tok+2 — T2k

(3.4)

and we write

P (l_l,u_l) — d_q.
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141

L2k I2h+1 Tok+2

Figure 3.2: A pictorial representation of the prediction step of the wavelet transform. The
height of the vertical line above 294 is the prediction of u_;  which is obtained by linearly
interpolating [_ x and [_y ;1. The difference between u_; ; itself and its predicted value
is the difference coefficient, d_1 ;.

Figure 3.3: Schematic of the prediction step of the wavelet transform. Transform L splits
Yo into two signals as in Figure 3.1. The lower signal, [_1, is output as before, but now it
is also used to form a prediction of the upper signal as well. This prediction is subtracted
from the true upper signal, u_;, to form a signal of differences, d.-;, which is then output
alongside [_;.

A picture of this step is provided in Figure 3.2, and a schematic dagram extending
Figure 3.1 is given in Figure 3.3. It shows the composition of the lazy transform and the
prediction step. Since the signal u_; can be recovered from d_; and {_; by interpolating
{1 and adding d_1, it follows that yy may be recovered from d_; and [_;. A scheme for
this inversion may be derived from Figure 3.3 by toggling “~” to “+” and reversing the

direction of right pointing arrows (the vertical arrows remaining as they are).
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3.3 The update step

The last function, the update step, is applied to the lower signal, I_;. As we have
explained, if yield fluctuations correlate strongly across maturities which are close together,
the difference, or detail, coefficients d_; be small, and consequently the lower signal, though
coarser, will remain a good estimator of the entire yield curve shift. This is the strategy for
obtaining a simpler approximation which minimizes the loss of local information. On the
other hand there may be (and are!) global properties of the observed signal that we want
a simplified approximation to retain. The update step is designed to recoup information
from the detail coefficients in such a way that, by minimal changes to I induced by
neighboring d_.; x, the updated signal retains specified global properties of yp.

In our application, the global quantity of a yield curve shift we want a simplification to
share with its original is the amount by which the value of a portfolio changes. Suppose, for
purposes of illustration, that our portfolio is a continuous perpetuity that pays interest on
a single unit of currency. If the continously compounded interest rate at a time z is r(z),

then the value of the portfolio at time 0 would be

/ e @y
0

Next, suppose that the yield curve undergoes a shift, r — r + Ar. Then we are going to

regard Ar as our signal, and the quantities we will use the update step to preserve are
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I 1 k41

Ik T2k+1 T2k+2

Figure 3.4: Hatched area and its moment represent global information lost in the prediction
step.

o
/ Ar(z)e @2y, (3.5)
0

which we regard as the mean value of the shift (weighted by the discount function) and

0

which we regard as an approximation to the change in value the portfolio undergoes.
Returning to our general discrete case (using yg instead of Ar), the global quantities we
wish to preserve correspond to areas and moments. The first quantity, the average change,
corresponds to the integral (3.5). It is the area under the linear interpolation of yy (divided
by the length of the interval). The second quantity, the first moment of change, corresponds
to the integral (3.6) and is the “moment of inertia” of the area under the interpolated yg.
The hatched area in Figure 3.4 represents how the area would change if the prediction
step were not followed by an update. Figure 3.5 illustrates how the {_; ; are updated to a
new sequence y_i k. The new sequence y_; has the same average and same first moment
as yg. This is indicated by arranging for the hatched areas in Figures 3.4 and 3.5 to have

the same area and the same first moment.
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Y1,k+1

l1k+1

Tok T2k+1 Tok+2

Figure 3.5: Pictorial representation of the update step; information lost in prediction (Figure
3.4 is reincorporated in such a way as to preserve both area and moment of area.

The hatched area in Figure 3.4 is simply %d_l’k($2k+2 — Z9g); the hatched area in
Figure 3.5 is %(y-ljk + Y—1.k+1)(Tok+2 — Z2x)- Setting these quantities equal to each other

and simplifying, we have the linear equation

d_1k = Y1k + Y-1,k41- (3.7)

It’s a little messier, but the moment of the hatched area in Figure 3.4 is

d.y
6

3

2 2
(=T2kTok+1 — Tog + Thpyo + To2k12T2k+1)

while the moment of the hatched area in Figure 3.5 is

4, 5 1, 5, 5 1,
(—§$2k ~ gT2kT2k+2 + 6$2k+2)y——1,k + ('éx% + 5 T2kTok+2 + §$2k+2)y—1,k+1-

Setting the moments equal gives us a second linear equation in y_; ; and y_; x41. Putting
this equation together with (3.7) we obtain a linear system in y_;; and y_j541. The

determinant of coefficients of y_; ; and y_; x4+ from this system may be calculated to be
1323, + 1020k Tok+2 + Tk o (3.8)

which is positive whenever 0 < z9; < %2542 as we do in fact assume. Thus, we can always

find y_; 4 and y_1k+1 in Figure 3.5 to fit our requirements.
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Figure 3.6: Scheme of the entire wavelet transform through lifting

The general case involves one more complication in that there are many points zog11 SO
the updates at interior points zo; must be coordinated (see Section 5.1), but this will do

for our introductory sketch. We symbolize the update by

U: (l_l,d_l) = Yy-1.

The entire wavelet transform is schematized in Figure 3.6.

The final point to make concerning the update step is that the diagram can be inverted.
The update step is invertible because the determinant (3.8) is nonzero, and we have already
observed the previous steps were invertible. Again the inversion may be diagramed by
reversing the right pointing arrows and toggling the + and — signs. The final result is that
the original signal yp can be recovered from the coarse approximation y_; and the details
d_1 that the coarse approximation leaves out.

The process that takes the input sequence yg to the pair of output sequences (d_1,y—1)
can, in turn, be applied to the sequence y_; itself. That is, the same process, suitably
modified, would take y.; as input and produce a new pair of sequences d_»,y.o as output.
Thus, with our specific prediction and update routines, we would begin with a sequence yq
defined on a mesh of points {zx}}_, where n would be a perfect power of 2, say n = 2/. We

would then iterate our process j times and from yo produce a series of detail coefficients,
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Yo Y-1 Y-2 s Yi-1 Y—j
Figure 3.7: Multiresolution analysis of yy. Repeated application of L, P, and U generates a
series of sequences of detail coefficients d_1, ..., d_; and the coarsest possible approximation

y-j. The process is invertible, so yy can be recovered from the di and y_;; that is, no
information is lost in multiresolution analysis.

{d_1,d_3,...,d_;} and one last approximation y-j, defined only at points zyp and z,.
We view the totality of these iterations as a single transformation, calling it the wavelet
transform or multiresolution analysis. We have illustrated the multiresolution process in
Figure 3.7.

Since each of the steps

Yyj > (dojo1,9--1)

is invertible, it follows that perfect recovery of the orginal sequence y, is possible if one
should know only the details of the transforms, the nodes zj, the detail coefficients d_;
and the final approximation y_;. In other words, this is just a fancy change of basis for the
vector yp; nevertheless, it is hoped that this change of basis, like the principal components

analysis of the previous section, will help illuminate the process of interest rate evolution.

36



4 Data and Data Preparation

The data used to illustrate the wavelet analysis comes from the CRSP 2001 Monthly
Treasury Database. Data from the CRSP files were extracted and processed using the free
software, Larry Wall’s Perl (portable extraction and report language) and the Perl Data
Language package.

The program, mbxmunge .pl in the appendix, extracts 120 months of data and uses the
unfiltered Fama-Bliss [2], or “bootstrap” method to construct a piecewise linear yield curve,
nodes at the maturity dates of outstanding issues at the time of observation. When several
issues matured on the same date, yields to maturity of the various issues were averaged to
obtain the yield for that particular date.

The term “bootstrap” is used only to mean that the yield curve determined by shorter
term securities was used to “strip” longer term coupon bearing securities before using these
latter securities to extend the yield curve. Coupon prices were obtained by linearly interpo-
lating the yields at neighboring maturities whenever no security was scheduled to mature
on a coupon payment date. The simple (continuously compounded) yield to maturity was
then used as the yield curve value at that maturity. When the yield curve did not extend
far enough to strip the last few coupons, a modified internal rate of return was used to
estimate the yield. The modification was simply that the yields at the coupon dates would
lie on the line determined by the previous latest maturity and the new one.

The output of this extraction program is then a table corresponding to each observa-
tion month. Each such table comprises a schedule of unique maturity dates and a yield

corresponding to each such date.
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The yield curve shifts. In order to estimate the yield curve shift from one month to the
next, the smallest common refinement of the two successive months’ maturity tables was
taken. Linear interpolation was then used to estimate the yield curve at the nodes added
by the refinement. The instantaneous spot rate was always taken equal to the shortest
observed yield, and difference curves were computed over intervals shorter than the longest
maturity of any observed yield curve. Thus the common refinement provided a ”common
denominator” between successive months, and differences in yields were computed at the
nodes of this refinement.

Finally differences for all pairs of successive months were put on the same footing by
linear interpolation at a dyadic mesh of nodes. Thus the input for the wavelet transform of
each month’s yield curve shift was a table of yield differences computed on the minimum
possible mesh and then interpolated to a common set of nodes used for all yield curve shifts
in the data set under .study. Commensurate with the typical number of maturity dates for
outstanding Treasurys, the number of nodes in the common mesh was taken to be 257; that
is, one plus a power of 2 (since the mesh is dyadic), 8 deemed the most appropriate power.

Moreover, since maturities are highly concentrated towards the short end of the yield
curve, we did not use equally spaced intervals for our mesh points. This is a significant
departure from the format for ”first generation” wavelets (basically those defined by trans-
lation and dilation of a single ”mother wavelet” or, equivalently, through special properties
of the wavelet Fourier transform). Our definition and use of wavelets follows Wim Sweldens
and Peter Schrider [32]. The idea is that by adapting our analysis of the yield curve to the

information available about it, (much as McCulloch chose spline knots), we will isolate the
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salient sections of yield curve movement more effectively. The actual mesh, in days to cash

flow, may be found in the appendix in ycmesh.dat.
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5 The Wavelet Transform of Yield Curve Shifts

Having estimated all yield curve shifts in the interval being studied at a common set
of nodes, we proceed to compute a wavelet transform of each of the difference curves. The
particular wavelet transfrom used here is an adaptation of the biorthogonal (2,2) Cohen-
Daubechies-Feauveau transform. This adaptation uses ”"second generation wavelets” or
the "lifting scheme”. This adaptation is used because it extends the wavelet transform to
bounded intervals, irregular samples, and weighted inner products.

All of these extensions are important in the study of the yield curve. The yield curve is
necessarily bounded at zero maturity and practically bounded at 10 to 30 years on the far
end. The irregularity of maturity dates of outstanding securities at any given time brings
in irregular samples. Weighted inner products are related to the magnitudes of the yield
curve shifts, as we will explain next.

As we noted in our overview of the lifting scheme, the wavelet transform tries to analyze
the yield curve shift into shifts that are localized to maturities in a short interval and broader
shifts that involve a range of maturities. This is quite familiar to market participants, of
course; as this is written (summer 2003) pundits discuss why short-term and long-term rates
should be moving in opposite directions. In order to analyze a movement into local and
global components, it is necessary to specify exactly what we mean by a global movement.
Imagine, for example, a shift where the shortest and longest term rates remain constant
while the yield curve, as a whole flattens out. How should such a movement be resolved

into local and global movements?
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Our criterion for global movements will be stated in terms of the effect the movement
has on the value of a porfolio. The global component of a movement will have the same
effect while the local component will have no effect. Specifically, denote a portfolio by a

sum of delta functions
> bids (5.1)
i
corresponding to a payment schedule {z;}. The function §; is the point mass concentrated

at z;, and b; is the current market value of the payment expected at time z;. Thus the

value of the entire portfolio may be expressed

T
/O S bidi(w)dz,

where 1" is an upper bound for all maturities z;. Thinking of expression (5.1) as a weight

function for the integral inner product and letting Ar denote the yield curve shift, we regard

% / (Ar)(@) Y bidilw)de (5.2)

as the average shift. Suitably normalized, the first moment of this same integral,

/ 2(Ar)() Y bidi(z)ds (5.3)

is the duration, or coefficient of the best linear approximation to the portfolio change in
value brought on by Ar. In terms of these measures, then, a yield curve shift will be resolved
into shifts that are local and shifts that are flatter while retaining the same average and
duration as the original. The portfolio we work with is the market portfolio of Treasurys,
the face value of which is reported by the U.S. Government and recorded in the CRSP files.

It is important to note that the concepts of local and global expand as we work from

finer to coarser scales. For example if a yield curve shift were to consist of a single “chirp” at
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a single maturity, the successive separations into local and global from the finest to coarsest
levels would spread the effect of the chirp to the entire curve, much as a single Hershey’s

Kiss might slowly melt in a baking tin.

5.1 Update details

The estimation of the global component of a given yield curve fluctuation is obtained
first by subsampling and second by updating the subsamples so that, serving as nodes
of a linearly interpolated approximation to the originally observed yield curve shift, they
determine a function with the same moments (5.2) and (5.3) as the original. We describe
how this is done.

We begin with our fundamental functions
Bijs i=0,-1,...,-n, j=0,1,...,2""

The finest level of nodes is chosen, as we have described, comensurate with the level of
observation. In particular, as seen in ycmesh.dat in the appendix, we start with the interval
1 to 3713 days (just over 10 years) and subdivide it into 256 subintervals, shorter intervals
for shorter maturities, longer intervals for longer maturities. For the first level, level ¢ = 0,
the functions ¢y ; are piecewise linear functions interpolating the delta funtions on the 257
points of the observation mesh. For example, ¢ is the piecewise linear function on the
interval [1,3713] which equals 1 at 1, and 0 at all other observation points.

The functions ¢;; are called fundamental because all observations and transforms of

observations may be expressed in terms of them. For example the “observed” yield curve
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shift for January of 1992 was 29, 29, 31, 34 and 38 basis points at 1, 4, 7, 10 and 13 days,

and so on. Thus the January yield curve shift corresponds to the combination,
29¢0,0 + 29¢0,1 + 31¢p 2 + 34¢o3 + 38Po s + . ...

In general, when there are 2" + 1 original observation points, and the observed values are

{s;}, then the original (level 0) linearly interpolated approximation is the function

271
>~ s0¢0,-
7=0

The level —1 approximation lives on the even indexed points, 0,2,4,..., having the

general form
2n—1

> so1ip-14-
i=o

The lazy transform provides the basis for the coarser estimate simply by subsampling:
29, 31,38, and so on at the even indexed points. Interpolation predicts 30 and 34.5 bp at
the omitted points, so the first detail coeflicients are d_; o = —1 and d_1,; = —.5 bp.

The integral of the January 1992 yield curve shift against the weight of market portfolio

cash flows is

[ @9600(0) + 2960.(2) + 31602(e) + --) T bsi(a)da, (5.4

as in (5.2). Note that, by linearity, it is enough to compute the integrals of the functions

¢i,; alone. Thus, set
Y A d’m(x)z x0r(z)dz,
k

and (5.4) becomes a sum of these precomputed integrals,

29MyY +20MS7) +31M) + ...
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Similarly, the first moment of January 1992’s movement may be expressed as a linear

combination of the moments of the fundamental functions,
20M{ ) + 20M8Y) + 31y +

where
uo - ("
M;; /$¢i,j($)zbk5k($)d$
k

In order to retain the integral and moment for the coarser levels, it is required that the

new coefficients s_; ; satisfy

s-10MO g + s MQ) | + . =200 + 2007 + 31M7) + (5.5)

s-1oMY o+ 5o MY | 4= 20080 + 20057 + 310 + .. (5.6)

and we wapt the method used to derive the the s_; ;j to be the same, regardless of particular
shift at hand.

Consider, for example the level —1 fundamental functions, ¢_; ;. Each of these is
also a perfectly valid yield curve shift in itself; in particular, each may be expressed as a

combination of level 0 fundamental functions:

b1 =D h1jkdok
k

It is easy to work out the coefficients h_; ;; in partcular situations, but one knows that
they may always be found from the observation that functions which are piecewise linear
with nodes‘ on a subset of ycmesh.dat are also piecewise linear with nodes on ycmesh.dat
itself.

Moreover, since the nodes of ¢_; ; are contained in level —1 nodes, the prediction step

from level 0 to level —1 is perfect and the detail coefficients are all zero for these functions.
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Since the functions themselves are unchanged by the successive application of the lazy
transform and the prediction step, their integrals and first moments are unchanged as well.
Consequently, whenever the details are 0, the coefficients s_1; = sg,2;. The general form

would need to be
5_1,j = 80,25 + (something depending on the detail coefficients)

The simplest dependence would be linear; the least distortion of local information would

require that only details close to sp2; be used. Hence, the relation
815 = S0.2j + A-1,j-1d-15-1 + By 4d 15 (5.7)

is proposed.

Having gleaned information from hypothetical shifts which were all global and no local
(the ¢_1,;), we investigate shifts at level 0 that disappear at level —1. That is, we investigate
whether an update step of the form (5.7) can provide us with a function which is 0 at level
—1, which has a single non-zero detail coeficient, and which satisfies (5.5) and (5.6).

If lazy-predict-update applied to a yield curve shift did result in a function withs_; ; =0
for all j with the single detail coefficient d_;; = 1 and the other detail coefficients were

equal to 0, then only two even coefficients of the original shift could possibly be non-zero:

S02c = S-1k— B-1k
S02k+2 = S—1k+1— A_14-

In fact, since we assume the s_; ; all equal zero, we must have

802k = —B_yy
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S02k+2 = —A_1.

Finally, in order to get the detail coefficients right, the shift at level 0 must be of the form

~B_1 ;-1 + o2k+1 — A1 D1 k+1- (5.8)

Since (5.8) maps to zero at level —1, its integral and first moment must also be 0. This

leads to the linear equation

MSO) MEO) B_1 M(O)
Lk 1k+1 kL 0,2k+1 (5.9)

M—(}l),k Mgll),k-&l A—Lk M(g,l‘a?k-H
for each k. Thus the integrals and moments of the fundamental functions determine the
coeflicients B_ ; and A_;, and these coefficients are used to calculate the update trans-
formation of any yield curve shift.

Thus, 80 long as the system (5.9) has a solution, the update map may be taken in the
simple form (5.7). The function (5.8) is known as a wavelet.

Returning to the January, 1992, shift, our first two equations corresponding to k& = 0

and k =1 in (5.9) are

3507 17536 11 B_1p - - 7014
21043 105217 A 1p ) 42087
17536 64211 1 B_1; - — 0
105217 896006 A_1a ) 0
for which we obtain
B_1p 07692
A_1p . .38462

]
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and, referring to our model (5.7),
5-10=29+.07692 - (=1) and s_i; =31 +.38462 - (~1)

in basis points.

The scaling function integrals Mi(f;-) and first moments Mz(;) are computed by the rou-
tine in wghtkern.pl, listed in the appendix, which sends its output to wsclfcnint.dat,
available fr;)m the author on request. The update coefficients are computed by the routine
wupdatecoef.pl, listed in the appendix, which, in turn sends its output to wupdatecoef .dat,
also available from the author on request. The appendix also contains images of the first
12 level —1 wavelets. The asymmetry of these wavelets is due to the irregularity of the
point-mass‘ measure of total Treasury payments for the weighted inner product. All the
wavelets have mean change and duration change equal to zero; this explains the "wave”,

the oscillation above and below 0, at least where the inner product is nonzero.

5.2 The wavelet transform

The process described above takes the yield curve described at 2" + 1 points and maps it
to a coarser representation based on 277! + 1 points. It separates the yield curve shift into
wider scale movements and localized wavelets of movement. This separation involves no loss
of information since the finer scale representation can be reconstructed from the coarser scale
representation and the wavelets. This same process is repeated on the coarse representation

to generate an even coarser representation and wavelets scaled to intervals twice as large as
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the first. In fact, this process is repeated until we end up with a representation based only
on the end points of the maturity interval we started with and wavelets of ever widening
scale. The appendix contains images of the first 12 wavelets at level —2 as well as all the
wavelets from levels —5, —6, —7, —8. These wavelets also have zero integral and zero ﬁrst
moment when computed against the weight (5.1). Additional asymmetry is induced by the
irregularity of the cash flow schedule. The wavelets all have the same basic shape; only the
scale changes from level to level.

First generation wavelets are strictly dilations and translations of a single generating .
“mother” wavelet. Second generation wavelets are more flexible. The price to pay is the loss
of some nice properties such as orthogonality, but just as the second generation wavelets
have “similar” shapes, other important properties of wavelets are sufficiently robust to hold
for second generation wavelets as well.

The final result is called a “multiresolution” analysis of our finest scale representation.
It begins with }_ 5o j¢0,; and generates successively coarser and smoother approximations to
the yield curve shift, finally stopping at a simple line, s_;, 0¢_n g + 5—pn,1¢—n, 1. Moreover,
this process can be reversed because all the information lost in a coarser approximation has
been saved in the detail coefficients.

To formulate this resolution, let 1; ; denote the special function with the following two

properties.

1. 9;; is a function in level ¢ + 1 that multiresolution takes to zero in level 4; that is,.the

approximation of +; ; on level 4 is 0.

2. All details of this map are 0 except d; ; and that detail is 1.
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These 7;; are called wavelets, and each step in the multiresolution process amounts to

rewriting the approximation at level ¢ + 1 as the sum of the approximation at level ¢ and

wavelets:
D siv1 b1y = Z Si i+ Z d; j%s.5-

Thus, our fine scale function, which we regard as level 0, was first written

2'":
> s0,id0,
=0

n = 8 in our example run and transformed to a function written

2n—1 2n—1___1

Dosoniboni+ > doiihoi
i=0 i=0

Repeating until we arrive at level —n, we end with
n 2771
5-n0b-no +5-n1bn1it+ Y, Y, d_jp_ji (5.10)
j=1 =0
The ﬁrét two terms of (5.10) constitute the linear curve shift having the same mean and
duration change as the observed shift. That is, measured in terms of the mean and duration
change described in (5.2) and (5.3), these two terms describe the best linear approximation
to the yield curve shift. For example, if the yield curve shift were the paradigmatic parallel
shift, then éll the detail coefficients would be zero, and the shift would be entirely captured
by the two coefficients s_, o and s_, 1 of (5.10).
The detail or wavelet coefficients indicate not only the extent to which the yield curve
shift fails to be linear, but it also hints at the nature of the failure. In particular if a simple

piecewise linear model accurately depicts yield curve movements, we expect most detail

coefficients to be essentially zero.
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We call the map that begins with the "observed” yield curve shift {sg;} and resolves
it to (5.10). the wavelet transform of the yield curve shft. We propose to study the wavelet
transform of historical yield curve shifts for insights into the evolution of the yield curve.

Once the yield curve shifts had been approximated and the update coefficients computed,
the routine listed in wwaveycdif.pl was used to compute the wavelet transform of the 119
monthly yiéld curve shifts observed in the years 1992 through 2001. The listing is in the
appendix. The wavelet transforms are written to the file wycwavtran.dat and is available
from the author. The wavelet transform of just the January 1992 shift is given in Table 5.1.
All entries in Table 5.1 are detail coefficients except the first and last. The first and last
coeﬁ‘icients.indicate the linear yield curve shift with the same mean shift and same duration
change. This linear shift comprises 8bp at the short end and 3bp at the long end. The
odd columns in Table 5.1 (assuming 0 off-set) all comprise the first pass (level —1) detail
coefficients. Columns 2 and 6 comprise the second pass details, column 4 the third, etc.

The wa§elet transform of the January 1992 shift detailed in Table 5.1 resolves the finest
approximation of the yield curve shift to the coarsest approximation and a sum of wavelets.
Inverting this process, we may start with the coarsest approximation and add the details for
each level back in, one level at a time, obtaining at each level a finer approximation to the
observed yield curve shift. This can be read off from the formula in (5.10 and is indicated

graphically in Figure 5.1.
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0 1 2 3 4 5 6 7
0.000825 -0.000058  0.001227  0.000000 -0.002739 -0.009000 -0.004357  0.001046
-0.001444 -0.000467 -0.003219  0.001636 -0.000077  0.0000692 -0.001128 -0.001198
0.000847  0.000000  0.001178 -0.060074  0.000139 -0.000108  0.000901  0.000413
-0.000597  0.000302  0.000752 -0.000089  0.000211 -0.000056  0.000132  0.000205
-0.000066  0.000000 -0.000071 -0.000274 -0.000087  0.000028  0.000655  0.000384
-0.001118  0.000166  0.000777  0.000036  0.000718 -0.000203 -0.000026 -0.000000
0.000005  0.000016  0.000019  0.000257  0.000433 -0.000147  0.000459  0.000720
-0.061362  0.000119  0.000327  0.000000 -0.000490 -0.000250 -0.001051 -0.000000
0.000383  0.000678 -0.001538  0.000120 -0.000549  0.000175 -0.000582 -0.000145
-0.001179  -6.000199 -0.000883 -0.000553 -0.001293 -0.000143 -0.000280 -0.000441
-0.000148  -0.000024  0.000157 -0.000953 -0.000675 -0.000003 0.001181 -0.000069
0.000053 -0.000016 -0.000163 -0.000013 -0.000002  0.000187  0.000360 -0.000056
-0.000854 -0.000065 -0.000005 -0.000003 -0.000174  0.000026 -0.000191  0.000009
-0.001068  0.000524  0.000778 -0.001712 -0.004497  0.000967  0.003279  0.000006
-0.000985 -0.000032  0.000056  0.000103  0.000303  0.000085 -0.000339 -0.000052
-0.000098 -0.000038  0.000365  0.000048 -0.000140 -0.000125  0.000177  0.000268
0.000481 -0.000098  0.000332  0.000034 -0.001822 -0.000402  0.000669  0.000378
0.000123 -0.000336 -0.000284  0.000066 -0.000291 -0.000083  0.000211  0.000136
-0.000671  -0.000034 -0.000404 -0.000235  0.000655  0.000712 -0.001537 -0.000352
-0.000772  0.000034  0.000326  0.000025  0.000870 -0.000013 -0.000304  0.000000
0.000064  0.000003  0.000189 -0.000004 0.000041 -0.000002 -0.000048  0.000001
0.000102 -0.000000  0.000346  0.000047 -0.000448 -0.000524  0.000282 -0.000020
0.000119  0.000047  0.000182 -0.000296 -0.000249  0.000102  0.000098 -0.000001
0.000186  0.000055  0.000112  0.000015  0.000071  0.000009  0.000382 -0.000207
0.000670  -0.001048  0.000450 -0.000193  0.001373  0.000041 -0.000381 -0.000046
0.000787  0.000038  0.000086  0.000003 -0.000027 -0.000124  0.000218  0.000085
-0.000203 -0.000199 -0.000600  0.000010 -0.000384 -0.000132 -0.001945 -0.010058
0.000248  0.003665  0.003025 -0.000619  0.001791  0.001014 -0.000625 -0.000081
0.000436  0.000587  0.001787  0.000053  0.000728  0.000000  0.000154  0.000075
0.000502  -0.000028  0.000085  0.000012 -0.000389 -0.000199 -0.000044  0.000012
-0.000651 -0.000026  0.000038  0.000144 -0.000124 -0.000011 -0.000272  0.000020
0.000564  0.000068 -0.000061 -0.000026  0.000054 -0.000038 -0.000182 -0.000004
0.000267

Table 5.1: Wavelet transform (multiresolution analysis) of the yield curve shift in January,
1992. Read this table from left to right, then top to bottom. That is, with zero offset,
coefficients whose indices are divisible by 8 are found in the first column.
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Figure 5.1:- Beginning from the coarse approximation of the yield curve shift obtained by the
wavelet transform, level —8, one can work back to the raw data by adding the details back
in. One simply multiplies the wavelets for January 1992 (see appendix) by the coefficients
from Table 5.1 and adds the resulting functions to the previous level’s approximation.
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6 Wavelet transforms of Treasury yield curve shifts

Having transformed yield curve shifts over 10 years, we look for clues to the way the

yield curve moves in the array of wavelet transform coefficients.

6.1 The linear model

If yield curve movements were simply parallel translations except for statistical "noise”
we would expect to see the level —8 scaling coefficients (coefficients s-, 0 and $_p1 in
equation (5.10)) highly correlated with each other and of similar magnitude. We would also
expect these coefficients to be of significantly larger magnitude than the detail coefficients.
That is, it is only noise that keeps the detail coefficients from being exactly 0 and only noise
that keeps the scaling coefficients from being exactly equal to each other.

On the contrary, the data tabulated in Figure 6.1 indicates that, even though there is
some correlation between one day and ten year rate movements, there is no support for
a hypothesis that the closest linear approximations to yield curve movements is any fixed
slope, much less slope 0. On the other hand, Figure 6.2 shows good separation between the
coarse scaling coefficients and the detail coefficients. In fact, we see that while 70% of the
scaling coefficients exceed 10bp in absolute value, only 20% of the detail coefficients are so
large. While it would be hard to argue that the detail coefficients are just noise, it does
appear that a two factor linear model obtained from wavelet analysis offers a good rough

model.
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Figure 6.1: Changes in ten year rates are plotted against changes in one day rates for 119
months. The best linear fit is superposed. Correlation between rate changes is positive but
weak with R? = 3.3%. The slope of the regression line is .30, significant at the 5% level.
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Figure 6.2: Cumulative distribution of coarsest scaling coefficients (squares) and all detail
coefficients (circles). About 70% of scaling coefficients are larger than 10bp while only 20%
of detail coeflicients are.
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Figure 6.3: The detail coefficients are ranked in one hundred quantiles according to size.
The median value from each is plotted against the middle of the corresponding quantile of
the standard normal distribution. The extent to which the graph departs from linear is a
measure of the extent to which the aggregate of detail coefficients fails to be normal.

6.2 The distribution of detail coefficients

If 2bp v;/ere prososed as the noise threshold, roughly 50% of the detail coefficients would
import yield curve changes. Perhaps there is useful information hidden in these coeflicients;
perhaps we can use this information to refine the two factor linear model. First, however,
let us consider whether the detail coefficients exhibit the characteristics of simple ”white
noise”. Mdst naively, we consider whether the 119 x 255 = 30345 detail coefficients might
themselves be normally distributed. This possibility is quashed by a glance at the ”quantile-
quantile” plot in Figure 6.3. For if the detail coefficients were normally distributed, a linear
transformation would bring their distribution to the standard normal distribution; that is,

the elements of the plot would lie along a straight line. On the contrary, we see too narrow
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a head matched with too broad shoulders for the distribution to be normal. Or again,
the details are normally essentially zero and spike suddenly when rate change information
comes through.

Non-normality for the aggregate of detail coefficients does not imply that the detail
coefficients are individually non-normal. However, with 119 samples for each detail coef-
ficient, there is enough data to conduct a reasonable test for the normal distribution of
detail coefficients at each position at each level. Using the R statistical package,’ we ran
the Shapiro-Wilk test [29] on all detail coefficients, level —2 and lower, 127 in all>. Of these
127 coefficients, the Shapiro-Wilk test rejects normality for all but 8 at the 5% significance
level. Actual statistic and p-values are available from the author. We will proceed under

the assumption that the detail coeflicients are not normally distributed.

6.3 Power-law distributions

Assuming that the detail coefficients are not normally distributed, it is natural to look for
another simple model. Recently, power-laws distributions have proved useful for modeling
quantitative changes in the financial markets [11]. Figure 6.4 illustrates the extent to which
a power-law distribution might successfully model the distribution of detail coeflicients.
The graph,. though not so concave as would arise from a normal distribution, is nonetheless
definitely concave, rendering a power-law model for the distribution of detail coefficients

undesirable.

‘http://www.r-project.org.

2We regard the information content of level —1 coefficients as somewhat dubious, arising
as they do. from intervals smaller than actually observed, but rather necessitated by the
requirement of plotting successive months on the same grid.
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Figure 6.4: This plots the fraction of detail coefficients greater than the argument on a
log-log scale. If a power-law distribution provided a good model, the graph would be linear.

6.4 Nonparametric tests

Absent a model for the distribution of detail coefficients, we may still examine the data
nonparametrically, and we might also consider methods developed to denoise signals. We
first consider two nonparametric tests analogous to analysis of variance. Our question here
is whether or not the level of the coefficient is related to its magnitude. To the extent
that interest rates move together, we expect to see the lower level (lower frequency) detail

coefficients significantly larger than higher level (higher frequency) detail coefficients.
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6.4.1 Kruskal-Wallis

We use the Kruskal-Wallis test (cf. [16], Ch. 6.1) to help us determine whether level
correlates to coefficient size. Specifically, we set
T3 = ]dij - medianj(dij)]

where the d;; denote the detail coefficients obtained in the multiresolution analysis (5.10).
The i = —1,-2,...,—8 are the levels of the coefficients, and j = 0,1,2,...,28"" are the
indices of the coefficients within the levels starting from the shortest term maturities.

As with parametric one-way ANOVA, we propose to model the magnitudes by

Tij = W1+ T + ey,

where the mean u is chosen so that the "treatment” effects 7; average to 0, and it is assumed
that the e;; are independent identically distributed. The hypothesis tested is

Hy:m1=7T9=...=7T_3g

against the alternative hypothesis that not all 7; are equal.
The statistic used to test Hj is obtained by replacing each detail coefficient by its overall

ranking among all detail coefficients. Letting R; denote the average rank on level 2 and R

stand for the average overall rank, R = w, then the statistic for this test may be
written
6 S e 2
H= —ore—— 287 (R; — R)%.
R(2R - 1) i:z_:l (B~ R)

Now, if Hy is true, then H is approximately x? with 6 degrees of freedom. Feeding our

data to the Kruskal-Wallis test in the statistical package® R, we obtain that H = 3752.72,

3http://www.r-project.org
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so we would reject Hy at any significance level. It is consistent with our expectations that
level would be related to magnitude somehow; nevertheless, with so much data and so many
levels, it is probably a weak result to claim there is some treatment effect. The next statistic

tests the same null hypothesis (6.4.1) against a particular ordering of the treatment effects

Tie

6.4.2 Jonckheere-Terpstra

In our second test, the Jonckheere-Terpstra test (cf. [16], Ch. 6.2), relative rank supplants

overall ranking. The alternative hypothesis is
Hy:71<7142<...<177

with at least one strict inequality. Our statistic is

T=2 222 Toeo) (@ = us).

v<e i j
where (g ) is the indicator function on the positive real line. This is simply the number
of times a detail coefficient at a lower level exceeds a coefficient at a higher level. Thus the
larger J is, the more inclined we are towards the alternative hypothesis H,. On the other

hand, if the null holds, J is approximately normal. Let J* denote the standardized J,

oo =B
v/var(J)

The proceedure jonktest.pl, listed in the appendix, computes this statistic to be in excess
of 62. Consequently, we find it far more likely that coefficients should tend to be larger at
lower levels than at higher levels.

Practically, this means that, should one be in need of a more refined yield curve shift

model than the two parameter linear one, then one should first avail oneself of the three
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parameter model comprising the coarsest scaling coefficients together with the lowest level
detail coefficient. A yet finer model would include the additional two level —7 detail coefhi-
cients, and so on.

Although still somewhat crude, this test suggests there is no simple cut-off, there is no
level where detail coeflicients clearly transit from including rare large shifts to comprising
simple white noise. Nevertheless, the benefit we look to wavelets for is a means of measuring
not only the level of resolution we need for our purposes but also which coefficients within

a level are of greatest importance.

6.5 Mean absolute deviation of detail coefficients

Not only may there be significant differences in detail coefficient magnitude among the
various levels, there may also be useful differences among coefficients at different maturities
within a particular level. We would like to conduct a two-way analysis of variance, but
the fact that the number of detail coefficients double when we move up a level gives us a
pyramid rather than a rectangle as a cross-classified design matrix, which precludes any
simple application of such an analysis. This would be interesting to come back to.

Lacking a systematic analysis of variance, there is still some value in laying out a table
of the scales for each of the detail coefficients. Given the apparent nonnormality of the
detail coeflicient distribution, the standard deviation of the detail coefficients may not be
the best indicator of how the bulk of coefficients are disbursed. Indeed, in a model where
the detail coefficients at a given level and maturity are zero except for noise and rare, large
signals from the economy, a more resistant measure of scale is appropriate. For in such

models standard deviation can be distorted by a single out-sized coefficient. Even in a
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model where the detail coefficients are just Gaussian noise, nonparametric scale estimators
are still acceptable, if less efficient. See [33], Chapter 5.5, for more discussion and further
references.

One commonly used measurement of scale is the “mean absolute deviation” (MAD):

MAD = median {|d; ; — median(d; ;)|}

where the medians are taken over the number of observations in the sample, 119 in our ten
year case.

The mean absolute deviation of each coefficient over the 119 monthly observations in
the ten year interval 1992-2001 is plotted in Figure 6.5. Note how on every level the median
magnitude is greatest at the short end of the yield curve. Thus, for example, a more effective
strategy for constructing a 9 parameter model than that suggested in Section 6.4 would be
to include the first detail coeflicient from each of levels —2 through —8 than simply to

include all coefficients from levels —6, —7 and —8.

6.6 Adaptive thresholding

On the other hand, it should not be just the likely magnitude of a detail coefficient
that concerns us; somehow we need to balance both the magnitude and the breadth of a
detail coefficient. The wavelets at lower levels correspond to shifts involving broader ranges
of maturities and may therefore reflect the impact of macroeconomic events on interest
rates while wavelets of the same magnitude at the more transient higher levels may be

more reflective of market microstructure idiosyncracies. Indeed, the lower level coeflicients
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Figure 6.5: The mean absolute deviation (MAD) of each of the 255 detail coefficients is
computed and sorted into the corresponding multiresolution levels. Data is taken from
monthly observations during 1992-2001. Levels are —8 to —1 top to bottom. A common
scale is used throughout; the tallest bar is about 42 basis points.

62



incorporate yield changes across several issues and can be regarded as exhibiting less market
"noise”.

To be more systematic in selecting the ”significant” detail coefficients, we use adaptive
thresholding techniques to separate the coefficients into ”signal” and "noise”. The basic
strategy is to take the non-normal interest rate change process and separate the center from
the tails. The center is discarded and the unusually large coefficients at each level are used
to reconstruct yield curve shifts which, it is hoped, are better indicators of the effect of
events in the ambient economy.

We consider two approaches. The first has solid theoretical underpinnings and is widely
used, but violations of technical conditions in our context of biorthogonal wavelet basis and
irregular mesh lead us to search for corroborative evidence. The second method turns a test
for zero mean normally distributed data on its head; we separate out all data that keeps
the null hypothesis from being accepted and discard the rest. Either way, the interpretation
of the fat-tailed observed distribution is a superposition of low amplitude white noise on a

process of larger, rarer shifts.

6.6.1 Using SURE for threshold selection

The first technique applies Stein’s unbiased risk estimate (SURE) to wavelet analysis.
First examined by Donoho and Johnstone [6] (cf. [26], Chapter 8, for a discussion and
related references), this method chooses a coefficient threshold that minimizes an estimate

of loss. Specifically, a one-parameter family of threshold functions is proposed:

;

z—A, if x> A

ax(z) =14 o, if x| < A

g+ X if z<-A
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Applied to a set of coefficients, d) reduces small coefficients to zero and reduces the mag-
nitude of all others by A. Supposing that {z;}¢ , denote detail coefficients at a given level

scaled so that the "noise” component has unit variance,?

we estimate the "signal” contained
in the scaled detail coefficient to be 8)(z;). Now, if {y;}&; denoted the true denoised nor-

malized coefficients, then a measure of our estimation error, the L? loss, would be

d
Y (Oalz) —v)?,

=1

and our goal is to minimize the expected loss, or risk. Stein’s estimator of the L? loss is

d
SURE(A) =d — 2+ #{i : [zs] <A} + ) (min(lz], A))?.

i=1
Here # denotes the number of elements in a set. Now the only undetermined input to this
estimator is the threshold coefficient A and the one we choose at each level is the one which
minimizes SURE.

We compute this parameter for each month at each level and average the parameters
across all months. The program for this is listed as SURE.pl in the appendix, and the
results are tabulated in the second column of Table 6.1. Note how A actually increases
as one moves from level —1 to level —4. This may not be surprising in view of the mean
absolute deviation (MAD) of the detail coefficients displayed in Figure 6.5; however, it does
not correspond well to our intuition that the narrower based detail coeflicients of levels —1
and —2 need to overcomé a higher threshold to be considered significant; hence our look

next at Ogden and Parzen’s thresholding procedure next.

4 Although it is problematical to assume a variance of noise before we determine which
component of the observation is noise, it is by regarding the statistical outliers as the
"signal” that we may reasonably take the MAD over 0.6745 as the noise variance.
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Level SURE Ogden-Parzen
-1 0.00000280 0.00080079
—2 0.00000721 0.00074951
-3 0.00001737 0.00069807
-4  0.00003898 0.00064385
-5 0.00003866 0.00057573
-6 0.00001119 0.00048471
-7 0.00000074 0.00042075
-8 0 0.00017274

Table 6.1: The average thresholding parameter A determined for each level by the SURE
and Ogden-Parzen methods

6.6.2 Using recursive hypothesis testing for threshold selection

The approach separating "noise” from ”signal” developed by Ogden and Parzen [27]
follows along the same lines as the Donoho-Johnstone algorithm just described. That is,
the method begins with the consideration of detail coeficients for an observation at a
fixed level, then the thresholding function ¢, is applied to each coefficient. Moreover, the
parameter A is deterﬁined by the coefficients themselves; the difference arises in the method
by which A is chosen.

Specifically, the Ogden-Parzen method starts with detail coefficients {z;}¢_, normalized
as before. These coefficients are tested to see if they could reasonably be Gaussian white
noise. If the test should fail, however, it is the test rather than the hypothesis that is
rejected. The largest coefficient is removed and the remaining coefficients are tested again.
Like a salesman who only understands ”yes”, the analyst repeats this cycle until a test
shows it is reasonable to assume the remaining set of coeflicients constitute white noise,
and ) is set equal to the largest remaining coefficient.

The test statistic is simply

(6.1)

2
max(z;)
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where I is the set of indices of coeflicients which have not yet been rejected as outliers to
white noise. The hypothesis is that (6.1) is the largest observation in d = #{I} samples
from a x? distribution with one degree of freedom. The analyst chooses a significance level

« which determines the o-critical point to be

- (o)
I ) ‘

Here @ is the cumulative distribution function for the standard normal distribution.

In the application to interest rates, we impose a stiffer standard for narrower based
detail coefficients to be regarded as "signal”. This means we choose o smaller for higher
levels of detail coefficients. In particular, we took a = .5 for level —8 and halved it each
time we moved to a higher level. With a determined, we computed A? for each month for

SUCCQSSiVely smaller sets I until we obtained
maXxi{|x; A
el (‘ ZD < Ar,

at which point we set the threshold for that level and month to max(|z;|). Averaging the
thresholds over the 119 months observations, we determined a global threshold for that
level. The programs which executed this process were called OPtestparam.pl and OP.pl
and are listed in the appendix. The global thresholds for each level obtained with the
Ogden-Parzen method are given in the third column of Table 6.1.

In constrast to the SURE method, we obtained larger thresholds and these thresholds
shrink as we descend to lower levels. This implements our intuition that lower level, broader
based detail coefficients should contain less "noise”.

Having determined thresholding parameters, we apply the thresholding function §) to

each coefficient corresponding to the level of A. The results of this operation is illustrated
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for levels —1 and -2 in Figures 6.6 and 6.7 respectively. These are scatter plots where the
horizontal coordinate corresponds to the level and location of a detail coefficient while the
vertical coordinate corresponds to the value of the coefficient. The effect of applying the
thresholding function is to remove a horizontal strip of breadth A from the center of the
plot and glue the remaining pieces back together. This is quite visible; however, it is harder
to obtain a sense of proportion. For example, A for level —1 is roughly quadruple the MAD
for level —1, and hence thresholding at level —1 removes the vast majority of the 15,232
data points. Moreover, referring to Figure 6.5, thresholds of 8 and 7 bp for levels —1 and
—2 bring the apparent significance of higher level short-term maturity volatility into better
parity with the lower levels.

Graphs 6.6 and 6.7 exhibit a barbell form which is accentuated by thresholding, and
this persists through lower levels as suggested by Figure 6.5. Even with the larger Ogden-
Parzen thresholds, the story here appears to be that yield curve volatility is dominated by

the short-maturity detail coefficients.
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Figure 6.6: Scatter plot of 119 months of 128 level —1 detail coefficients before and after
thresholding using the Ogden-Parzen parameter in Table 6.1.
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7 Conclusion

Techniques from principal components analysis (PCA) and from wavelet anaysis have
been used to examine movements in the Treasury yield curve. It is hoped that together
they provide a stereographic view of these movements. PCA generates an optimal basis for
efficient representation of term structure movement, but it is difficult to provide an economic
interpretation for the elements of this basis. For example, statistical tests in Chapter 2 keep
one from interpreting the first principal component as linear. Multiresolution analysis of the
type used here, on the other hand, always provides a linear approximation. Wim Sweldens’
second generation wavelet construction adapted to term structure analysis insures that the
linear approximation obtained retains two global properties of the input data, the average
change and the duration change. Still, the statistical analysis of wavelet data still lacks the
precision of the results of Chapter 2.4.

Although the statistics related to PCA are quite sophisticated, I have been concerned
that their application in the current context may be compromised by the preprocessing of
the data required to apply them. Wavelet analysis works more directly from observation. I
have begun the PCA with yield curve approximations like those in McCulloch and Kwon
[23]. These approximations involve sampling cubic splines; the splines have no more nodes
than the square root of the number of bonds observed. In other words, data are considerably
smoothed before PCA is applied, and this may affect the results of sensitive tests. Wavelet-
analysis, by contrast, begins with a linear interpolation of a yield curve. This yield curve is
obtained by stripping coupons from Treasurys with a straightforward bootstrap technique.

No other preparation, filtering or smoothing of the data is made. The idea is to make
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filtering decisions based on the wavelet analysis; to let multiresolution analysis do the
smoothing. Since I also wrote a bootstrapping routine, I have developed an independent
complement to PCA over which I have complete control. If it is deemed a certain type of
security should not be included in the analysis, I have only to change a few lines of code;
if it is desired to perform multiresolution with respect to a different metric than market
portfolio cash flows, I can do that too.

Thus multiresolution analysis results in a readily interpreted linear approximation, an
approximation that preserves specified economic properties, but nonetheless an approxi-
mation that lacks the optimality of the first principal component. Part of what the linear
approximation generated by multiresolution analysis lacks in optimality is compensated for
by the extra flexibility resulting from the second parameter defining the approximating line.
One may see from the apparent near independence of the short and long term scaling co-
efficients (see Figure 6.1) that one cannot really hope that a single, fixed slope line would
ever serve as a dominant principal component.

In fact, we might view multiresolution analysis as a type of regression. Like OLS regres-
sion, the output of the algorithm is a line, appropriate or not. The R? in OLS regression is
essentially the same thing as the variances obtained in our PCA analysis, Table 2.2, and it
may also be compared, though not so rigorously, with the scale statistics presented in Fig-
ure 6.5, especially when this figure has been modified appropriately with SURE threshold
selection or recursive hypothesis testing to eliminate noise terms as described in Chapter
6.6 (See Figures 6.6 and 6.7).

Proceding towards more refined, higher parameter models, Figure 2.3 shows how in-

cluding more principal components can refine the resulting approximation. As indicated
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in Table 2.4 the statistical tests here show one can be quite confident that the first four
principal components capture 98% of total yield curve variation. This is consistent with the
rapid decay of the eigenvalues in Table 2.2. Still, nagging doubts crop up. Not only do the
higher principal components seem even harder to interpret economically (see Figures 2.1
and 2.2) than the first, they also seem to be even less robust. In particular, each principal
component involves the entire yield curve.

Turning to multiresolution analysis, one finds again a less efficient representation, but
nonetheless a representation that is adaptive and one that localizes the changes to be made
if the input data itself suffers only localized changes. For example, if a yield curve shift is
observed in which the average change and the duration change are both zero, and if the yield
curve shift is limited to maturities at the short end of the yield curve, then multiresolution
analysis will resolve the shift completely into a sum of wavelets like those in the appendix
but which also have suppdrt in the same locality of the yield curve as the observed shift,
no fancy cancellation of curves which are nonzero throughout the yield curve required. One
practical implication is seen, if one restricts the window of maturities that one analyzes
the term structure in. The approximations and wavelets in that window stay the same
as for the larger window; this is quite distinct from PCA. Moreover, if there is a loss of
efficiency, Figures 6.2 and 6.3 demonstrate that large wavelet coeflicients are relatively rare
and consequently that multiresolution generated linear approximations tend to be quite
good without involving many parameters.

Where PCA statistics gave very precise estimates of the contribution made to total
variation by the various principal components, we have only very general, if satisfying, sta-

tistical tests of the relative contributions made by the various wavelets. The Kruskal-Wallis
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and Jonckheere-Terpstra tests exposed in Chapter 6.4 give evidence that the magnitudes of
the wavelet coefficients are differentiated by level and, in particular, that they are larger for
lower levels. Since the number of wavelet coefficients decreases by half as one descends from
one level to the next, we are unable to apply a standard two-way ANOVA test; however,
the scale statistics in Figure 6.5 clearly show there are also differences among coefficients
in the same level. In particular, short maturity coefficients are larger at all levels, and
consequently, any piecewise linear model for yield curve shifts needs nodes in geometric
progression for the first two years' maturities. This phenomenon is in rough correspon-
dence to both the convexity of the first principal component and, to a smaller extent, to
the magnitude of the second principal component in the very short term.

The following list will wrap matters up. It provides an overview of what I have done in

this dissertation.

Principal component results

1. Principal component variances decay rapidly but no two are equal; in particular, none

but the last may be considered 0.

2. Most variation of yield curve is explained by 4-6 principal components; approxi-
mate confidence intervals are derived for the proportions of variation explained by the

largest principal components.

3. The first principal component is not linear, nor does it appear to persist.

1For example, start with a short maturity, 3 days, say, and double it repeatedly
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Wavelet analysis results

1. Second generation wavelet analysis can be adapted directly to data. Economically

meaningful metrics can be substituted for euclidean metrics.

2. In the linear approximations of yield curve shifts derived by multiresolution analysis,
the first scaling coefficient is a poor predictor of the second; therefore, at least a two

parameter model should be used for yield curve shift approximation.

3. Detail coefficients are not normally distributed; not in aggregate nor in separate po-

sitions. Nonparametric methods are required to study wavelet coefficients.

4. Even though the aggregate distribution has tails too fat to be normal, the distribution

does not appear to be given by a power law.

5. A Kruskal-Wallis test shows significant difference in scale among levels of wavelet

coefficients.

6. A Jonckheere-Terpstra test shows lower level wavelet coefficients are larger than higher

level coefficients.

7. Absent a two-way ANOVA test, a scale diagram using mean absolute deviation to
define scale shows intralevel trends. Short maturity coefficients are largest. Good
piecewise linear yield curve shift approximations should have nodes clustered at the

short maturities.

8. SURE threshold selection and recursive hypothesis testing provide methods to filter

noise wavelet coefficients. This can refine the scale diagram.
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APPENDIX

Program Listings

mcmunge.pl
#!/usr/bin/perl -w

use strict;

open DATA, "</home/mark/treas/mc_2fullnew.dat"
or die "Cannot open mc_2fullnew.dat: $!";
open MUNGE, ">/home/mark/perl/mcmunge.dat"
or die "Cannot create mcmunge.dat: $!";

my $coef;
my $flag;

while (<DATA>)

{

# Selecting dates for which to extract data:

# Bliss handles Y2K by denoting year 2000 as 100, 1999 having been denoted
# 99,

# Set $flag if we find a date we want.

#
$flag = 1 if (/~\s*9[2-9]11~\s*10[011/);
if ($flag)

{
# The date and the number of spline coefficients are printed at the
# beginning of each new line. The remaining entries are nodes and
# spline coefficients interleaved--except that there is one more spline
# coefficient than node in McCulloch’s scheme. Bliss sets the last node
# position to 0.
#
chomp;
print MUNGE $_;
# Capture the number of spline coefficients into $coef
if (/\a{6,7H\s+(\d{1,2})/)
{
$coef = $1;
}
else # that is, if the line comprises node and spline coefficient
{
$coef--;
unless ($coef)
{
# After nodes and spline coefficients for a date have been printed
# to the line, end the line and condition continuation on the next
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# date.

print MUNGE "\n";
$flag = 0;

}

}

csinterpol.pl

#!/usr/bin/perl

#

# Takes formated McCulloch term structure data and computes
# (1) discount function at an independent mesh of points
# (2) corresponding yields on same mesh

# (3) resulting matrix of yield shifts

# (4) singular value decomposition of shift matrix

#

# Thus input is matrix of data and vector of nodes;

# program sends each of the SVD factors to a separate file.

use strict;
use PDL;
use PDL::NiceSlice;

sub csmat

{

# This matrix encodes linear conditions on coefficients of cubic spline;
# it is the matrix M in the equation MC=B where C is the vector of

# nonconstant coefficients of the cubic polynomial in each interval.

# Rows = 0 (mod 3) encode conditions on polynomial functions

# (interpolation requirements); rows = 1 and 2 (mod 3) encode smoothness
# conditions.

#

# Input should be a 1-D pdl of nodes in increasing order.

my $x = shift;

= $x(0:-2)-$x(1:-1);
# lengths of intervals between nodes times -1; negative because we are
# orienting the Taylor expansion around the right-hand endpoint of
# interval.

my $n = $h->getdim(0);

my $m = zeroes(3*$n,3*$n);

&
&
=3

|

# defines main diagonal of $m

my $d = pdl(i, 2, 6);

$d = transpose($h) x $d; # $n-by-3 matrix; same as outer ($d,$h)

$d = $d->flat; # rows concatenated into single row of 3*$n entries.
$m->diagonal(0,1) .= $d;
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# defines 1st upper diagonal of $m

$d = pd1(o, 1, 3);

my $dd = $hx*2;

$d = transpose($dd) x $d;

$d = $d->flat;
$m->(1:~-1,0:-2)->diagonal (0,1) .= $d(1:-1);

# defines 2nd upper diagonal of $m

$d = pd1(0, 0, 1);

$dd = $h*x*3;

$d = transpose($dd) x $d;

$d = $d->flat;
$m->(2:-1,0:-3)->diagonal(0,1) .= $d(2:-1);

# defines 1st lower diagonal of $m

$d = pd1(0, 1, 2);
$d = transpose(ones($h)) x $d;
$d4 = $d->flat;

$m->(0:-2,1:-1)~>diagonal (0,1) .= $d(1:-1);

# defines 4th lower diagonal of $m

$d = pd1(0, -1, -2);

$d = transpose(ones($h)) x $4;

$d = $d->flat;
$m->(0:-5,4:-1)->diagonal(0,1) .= $d(4:-1);

return $m;

}

sub cseval
{
# Expecting 3 pdl arguments: eval points, knots, polynomial coefficients
# for Taylor expansion around right-hand endpoint of each interval, resp.
#
my ($x, $x0, $coef) = @_;
my $n = $x->getdim(0);
my $y = zeroes($n); # Variable for values of spline evaluated at $x
for (my $i = 0; $i < $n; $i ++)
{
# This all assumes argument is inside interplation interval.
# Get the index of the first node greater than evaluation argument.
my $cr = which( $x0 >= $x(($1)) )->((0));
# Pull the coefficients of the interpolating cubic polynomial
my $c = $coef(,$cr-1;-);
my $h = $x(($1))-$x0(($cr));

80



$y(8i) .= $c((0)) + $h * ($c((1)) + $h * ($c((2)) + $h * $c((3))));
}
return $y;

}

open DATA, "<$ARGV[O]" or die "Unable to open $ARGV[0]: $!.";
open NET, "<$ARGV[1]" or die "Unable to open $ARGV[1]: $!.";
open MCPC, ">$ARGV[2]" or die "Unable to open $ARGV[2]: $!.";
open MCSV, ">$ARGV[3]" or die "Unable to open $ARGV[3]: $!.";
open MCRM, ">$ARGV[4]" or die "Unable to open $ARGV[4]: $!.";

my $tsnet = rcols *NET;

my $nnodes = $tsnet->getdim(0);

my $tsmat = transpose $tsnet;

# a device for sizing the matrix of interpolated values

while (<DATA>)

{

# This routine expects data from Bliss’s term structure files for

# McCulloch’s cubic spline regression, except that all data for a given
# month has been concatenated into a single line; viz. date, number of
# coefficients, then nodes and coefficients interleaved--the last

# coefficient slot is filled with a dummy "O" since there is always one
# more coefficient than node.

#

chomp;

my $mc = pdl split;

my $date = $mc((0));

my $nnode = $mc((1))-1;

my $x = $mc(2:-4:2); # knots for the month’s cubic spline

my $a = $mc(3:-1:2); # coefficients for McCulloch’s spline basis

my $f = pdl -> zeroes( $nnode, $nnode );
# This matrix will contain the values f_i(x_j) of McCulloch’s ith basis
# spline f_i at the jth node x_j.

{ # code block for scoping $h

# f_i(x_i), as in eqn. A.3, McCulloch except we have 0 offset.
my $h = $x(1:-1)-$x(0:-2); # lengths of internodal intervals
$h *= $h;

$h /= 6;
$f->diagonal(0,1)->(1:-1) .= $h;
}

{ # code block for scoping $h
# 1st col of $f: £_1(x_j), j > 1; cf. eqn. A.5
my $h = $x(1:-1)-$x(1);
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$h /= 2;

$h += $x(1)/3;
$£((0),1:-1) .= $x(1)*$h;
}

for (my $i = 1; $i < $nnode-1; $i ++)
{
# Working through the columns of $f after the first.
# £i(d_j), j > 2
my $h = $x($i+1:-1)-$x($i+1);
$h /= 2;
$h += (2+3x($i+1)-$x($1)-$x($i-1))/6;
$h *= $x($i+1) - $x($i-1);
$£(($1),$i+1:-1) .= $h;

}
my $y = 1 + inner($£f,$a(0:-2)) + $a(-1)*$x; # vector of values at nodes $x
my $m = csmat($x);

my $b = pdl->zeroes(3*$nnode-3);

$b(0:-3:3) .= $y(0:-2)-$y(1:-1); # continuity condition

$b((1)) .= $a((-1)); # 1st derivative of interpolant at left endpoint
$b((2)) .= $a((0)); # 2nd derivative of interpolant at left endpoint

my $coefs = inv($m) x transpose($b);
$coefs -> reshape(3,%nnode-1);
$coefs = append(transpose($y(1:-1)),$coefs);

my $tsval = cseval($tsnet,$x,$coefs); # prices at mesh points for $1 cf
$tsval->inplace->log;

$tsval /= -$tsnet; # yields on zero coupon bonds payable at mesh points
$tsmat = $tsmat->append(transpose($tsval));

} #end while loop through data file.

$tsmat = ($tsmat(1:-2)-$tsmat(2:-1))->sever;

# yield changes at nonzero maturities

# eliminating "dummy" first col

my $nobs = $tsmat->getdim(0);

my $aux = ones(l,$nobs)/$nobs;

$tsmat -= $tsmat x $aux; # subtracting the avg of each row from each row
my ($q, $s, $r) = svd($tsmat);

$q = $q(0:$nnodes-1;1);

# the svd function for rectangular matrix gives too many columns!
$s = $s(0:$nnodes-1;1);

$r = $r(0:$nnodes-1;1);
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wcols dog($q), *MCPC; # principal components
wcols $s, *MCSV; # singular values
wcols dog($r), *MCRM; # rotation matrix

stats.pl
#!/usr/bin/perl

use strict;

use PDL;

use PDL::NiceSlice;

use Statistics::Distributions;

for my $period ("¢, "2")

{
for (1..4)
{
stats (
mesh => "tsnet_".$_,
pc => "pcPperiod”." _".$_,
sv => "sv§period"."_".$_,
rm => “rm$period"."_".$_,
report => "hyptst$period”."_".$_,
graph => "varprop$period”.”_".$_,
table => "egeigentbl$period"."_".$_,
)
}
}
sub stats
{
my %harg = Q_;

open MCNET, "<", $arg{mesh} or die "Unable to open $arg{mesh}: $!";

open MCPC, "<", $arg{pc} or die "Unable to open $arg{pc}: $!";

open MCSV, "<", $arg{sv} or die "Unable to open $arg{sv}: $!";

open MCRM, "<", $arg{rm} or die "Unable to open $arg{rm}: $!";

open MCSTAT, ">", $arg{report} or die "Unable to open $arg{report}: $!";
open MCGRAPH, ">", $arg{graph} or die "Unable to open $arg{graph}: $!";

print MCSTAT "This output of stats generated with arguments:\n".
u@_\nn ;

my $u = cat rcols *MCPC;
my $r = cat rcols *MCRM;
my $s = rcols *MCSV;
my $h = rcols *MCNET;
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my $real = which $s > 5%10%*-14;
$s = $s($real)->sever;
$u = $u($real)->sever;
$r = $r($real)->sever;

my $n = $r->getdim(1); # number of observations

my $m = $s->getdim(0); # dimension of each observation
my $q = $m - sequence($m-1);
my 31 = $s**2;

my $tvarprop=zeroes($s);

for (my $j=0; $j<$m; $j++)
{
$tvarprop($j) .=inner($s(0:$3),$s(0:$j)) /inner($s,$s)
}

my $cond = log($1(0)) - log($1(-1));
$cond /= log(10);

wcols "%16.16f", $1, $s, $tvarprop, *MCSTAT,

{HEADER=>"\n# covar mat ev’s sing values prop var'};

printf MCSTAT "base 10 log covariance matrix condition number:\n %f \n",
$cond->sclr;

my $1t = zeroes{$m);
for (my $k = 0; $k < $m; $k++)
{
# Arith mean of smallest m-k eigenvalues; 1 tilda in Muirhead, p. 408
$1t($k) .= davg($L($k:-1));
T
my $11t = $1t->log;

my $1v = zeroes($m-1); # log V_k in Muirhead, p. 408

my $11 = $s->log;

$11 *= 2;

for (my $k = 0; $k < $m-1; $k ++)
{
$1v($k) .= dsum($11($k:-1)-$11t($k));
}

my $fr = (2+$qx(1+2%3q))/(6%8q);

my $p = $n - sequence($m-1) - $fr;
for (my $k = 0; $k < $m - 1; $k ++)
{
my $aux = $1(0:$k-1)/$1t(($k))-1;
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$aux = faux**-2;
$p(8k) += dsum($aux);
}

$p *= -$1lv;

my $chi= zeroes($m-1);
for (my $k = 0; $k < $m-1; $k ++)
{
my $free = (($q+2)*($q9-1)/2)->($k)->sclr;
$chi($k) .=Statistics::Distributions::chisqrprob($free,$p($k)->sclr);
}

# upper 5% point of st normal cumulative distn function
my $z = Statistics::Distributions::udistr(.05);

my $fact = 1-$z*sqrt(2/$n/$q);

my $cintvl = $1t(-1:1)/$fact;

print MCSTAT "Testing (a) whether the smallest k covariance matrix".
"eigenvalues are equal and (b) whether this value is”.
"insignificantly small.\n\n";

wcols "%12.5f", $q, $p, 100*$chi, 10000*$cintvl, $s(0:-2), *MCSTAT,

{HEADER=>"\n sv’s: k P k p-value (%) 95% conf int (bp)".

"largest s.v. in test set"};

open MCEQTBL, ">", $arg{table} or die "Unable to open $arg{table}: $!";
wcols $q, $p, $chi, $s(0:-2), *MCEQTBL;
close MCEQTBL;
open MCEQTBL, "<", $arg{table} or die "Unable to open $arg{table}: $!";
open NEWEQTBL, ">", “$arg{tablel}.tex"
or die "Unable to open $arg{table}.tex: $!";
while (<MCEQTBL>)
{
chomp;
my @cells = split;
printf NEWEQTBL "/d & %7.2f & %e & %e\\\\\n",
$cells[0], $cells[1], 100*$cells[2], $cells[3];
}
close MCEQTBL;
unlink $arg{tablel};

my $lpv = zeroes($m);

my $1ltv = dsum($l);

for (my $k = 0; $k < $m; $k ++)
{
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$1pv($k) .= dsum($1($k:-1))/$1tv;
}
print MCSTAT "Max likelihood fraction of variation not explained by 1st k".
"principal components:\n";

my $top = 6;
my $lsq = $L**2;
my $perc = .02+( pdl (1..120));
$perc = .1x*$perc->sever;
my $M = zeroes($perc->getdim(0),$top);
my $tau = zeroes($perc->getdim(0),$top);
for (my $j = 0; $j < $perc->getdim(0); $j++ )
{
for (my $k = 0; $k < $top; $k++)
{
$M($5,%k) .= -$perc(($j))*dsum($1(0:$k));
$M(3j,8k) += (1-$perc(($j)))*dsum($1($k+1:-1));
}
$M($j) *=sqrt($n);
for (my $k = 0; $k < $top; $k ++)
{
$tau($j,$k) .= 2x$perc(($j))**2*dsum($1lsq(0:$k));
$tau($j,$k) += 2% (1-Pperc(($j))) **2+dsum($1sq($k+i:-1));
}
$tau($j)->inplace->sqrt;
$M(83) /= $tau($j);
for (my $k = 0; $k < $top; $k ++)
{
$tau($j,$k) .= Statistics::Distributions::uprob($M($j,$k;-));
}

}
$tau = cat(1-$perc,dog($tau));
wcols "%4.4f", dog($tau), *MCSTAT,
{HEADER=>"\n# % 1 pc 2 pc 3 pc 4 pc 5 pc 6pc"};
wcols dog($tau), *MCGRAPH;

print MCSTAT "\nTest to see if 1st principal component is a line.\n";
# Using Statistic W from Muirhead, p. 419.
my $numpts = 17;
my $inc = .002;
for (my $j=$m-1; $3>0; $j--)
{
my $v = $u(0:$j) * $s(0:83) / $s((0));
my $vi = $u(0:$3) * $s((0)) / $s(0:83);
my $w = zeroes($numpts,4);
for (my $i = 0; $i < $numpts; $i++)
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{

my $h0 = -$i*x$inc*$h;

$h0 += ones($h);

$h0 /= sqrt(inner($h0,$h0));
$w($i,0) .= -$ix*$inc;

$w($i,1) .= $n*(inner($h0 x $vi,$h0 x $vi)-1);
$w($i,2) .= $n*(inner($h0 x $v,$h0 x $v)-1);
$w($1,3) .= $uw($i,1)+$w($i,2);

}

my $chi2= zeroes($numpts);

for (my $i = 0; $i < $numpts; $i ++)
{
$chi2($i) .=Statistics::Distributions::chisqrprob($j,$w($i,3)->sclr);
}

print MCSTAT "$j\n";

wcols "%8.4f", dog($w), $chi2, *MCSTAT,

{HEADER=>"\n slope W_S"1 W_S W p-value"};

}

}

splitstats.pl
#!/usr/bin/perl

use strict;

use PDL;

use PDL::NiceSlice;

use Statistics::Distributions;

open MCPC1, "<pcl_1" or die "Unable to open pci_1: $!";

open MCPC2, "<pc2_1" or die "Unable to open pc2_1: $!";

open MCSV2, "<sv2_1" or die "Unable to open sv2_1: $!";

open MCRM2, "<rm2_1" or die "Unable to open rm2_1: $!";

open MCNET, "<tsnet_1" or die "Unable to open tsmet_1: $!";

open MCSTAT, ">splithyptest" or die "Unable to open splithyptest”;

my $ul = cat rcols *MCPC1;
my $h0 = $ul(0;-);
my $u = cat rcols *MCPC2;

my $r = cat rcols *MCRMZ;
my $n = $r->getdim(1);
my $s = rcols *MCSV2;

my $m = $s->getdim(0);
my $w = zeroes(3);

# Test to see if 1st principal components computed from successive
# intervals are equal.
for (my $j=$m-1; $j>0; $j--)
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{
print MCSTAT “\n",$j+1,"\n";
my $v = $u(0:83) * $s(0:83) / $s((0));

my $vi = $u(0:$j) * $s((0)) / $s(0:8j);
$w(0) .= $n*(inner($h0 x $vi,$h0 x $vi)-1);
$w(1l) .= $n*(inner($h0 x $v,$n0 x $v)-1);
$w(2) .= $w(O)+$w(l);

wcols $w, *MCSTAT;

my $chisq = Statistics::Distributions::chisqrdistr($j,.05);
printf MCSTAT "Upper 5%% chi-square boundary: %6.3f\n", $chisq;
}

mbxmunge.p!l
#!/usr/bin/perl

use strict;

use PDL; # Pearl Data Language

use PDL::NiceSlice; # cleaner indexing routines

use Date::Calc qw(:all);

# documentation: http://theoryx5.uwinnipeg.ca/CPAN/data/Date-Calc/Calc.html

sub decode_crsp_date

{

if ($_[01 =" /(\d{4}) (\d{2}) (\a{2})/)
{
($1, $2, $3);
}#endif

}

sub six_mo_bak

{

# shift insures 6 mo from mo end is at mo end

($_[01, $_[11, $_[2]1) = Add_Delta_ Days($_[0], $_[1], $.[2]1, 1);
($_[01, $_[11, $_[2]1) = Add_Delta_YM($_[0], $_[1], $_[2], 0, -6);
Add_Delta_Days($._[0], $_[1], $_[21, -1);

}

sub rate

{
my ($r_0, $a, $t_0, $t) = Q_;
$r_ 0 + $a * ( $t - $t_0 );

¥

sub discount

{
my ($r, $t) = @_;
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exp -$t*$r;
}

sub newton_step

{

my($t_0, $t, $r_0, $c, $p, $a) = @_;

my $n = $p - inner($c, discount($t, rate($r_0, $a, $t_0, $t)));

my $d = inner($c, discount($t, rate($r_0, $a, $t_0, $t))*$t*($t-$t_0));
$a - $n/$d;
}

sub newton_loop

{

my ($t_0,$t,$r_0,$c,$p,%a,$eps) = @_;

my $count = 1;

while (1)
{
my $anew = newton_step($t_0,$t,$r_0,%c,$p,%a);
if ( abs ( $anew - $a ) < $eps )

{

return $anew;

}
else

{

$a = $anew;

}
die "Newton’s method did not converge to IRR" if ( $count > 5 );
$count ++;

3

my $eps = 10%*(-9);

open DATA, "/home/mark/treas/mbx.dat" or die "Cannot open mbx.dat: $!";
open YIELDCURVE, ">pcwlinyc" or die "Cannot create yieldcurve file: $!”;

my ($obsdates, $matnir, $bid, $ask, $accint);

($obsdates, $matnir, $bid, $ask, $accint) = rcols *DATA, 0,1,2,3,4,
{INCLUDE => '/~ (200(199[23456789])/’};

$matnir = rint (10**6x$matnir);

my $intrate = $matnir}10*x6;

my $maturity = ($matnir-$intrate)/10%*6;

$intrate %= 10%x5;

$intrate = $intrate - $intrate}10;

$intrate /=10%%5;

my ($templ,$temp2,$temp3);
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rle($obsdates,$tempi=null,$temp2=null); # Slices "run-length encode"
$temp3 = cumusumover ($tempi($templ;?)); # NiceSlice "where" modifier
$obsdates = $temp2(which($templ));

# Now $obsdates contains one copy of each observation date

my $price = .5 * ($bid + $ask) + $accint;

$maturity = cat $maturity, $intrate, $price;

my @monthly;

push @monthly, $maturity(0:$temp3(0)-1);

for (my $i=1; $i < nelem($obsdates); $i++)
{
push @monthly, $maturity($temp3($i-1):$temp3($i)-1);
}

# @monthly is an array of pdl’s. Each pdl contains the maturity, coupon
# interest rate, and estimated price of all outstanding securities, one
# column for each security.
for (my $i = 0; $i < nelem($obsdates); $i++)

{# step through each month in data set

my @dim = dims $monthly[$i];

my $sched = zerces($dim[0]+1,62);
# $sched is the matrix of cash flow maturities for bonds ocutstanding
# at $obsdates. Each column corresponds to a treasury, earlier
# maturities to the left, later to the right. A column consists of
# number of days to a cash flow, interest or principle. Longest term
# cf’s are listed first, closer in cf’s are listed below. Columns are
# padded below with 0’s.
#
#
#
#

We pad on left with column of 0’s for ease of yield curve definition.
It appears T-bond issued 2/2000 matured 11/2000 w/ 61 coupon pmts, so
62 rows are used.

my ($y1, $m1, $d1) = decode_crsp_date($obsdates($i));
my $no_cfs = zeroes($dim[0]);

for (my $j = 0; $j < $dim[0]; $j++)
{ # cash flow dates in each column of sched, in reverse order
my ($y2, $m2, $d2) = decode_crsp_date($monthly[$i]->($j,0));
my $delta = Delta_Days($yl,$mi,$d1,$y2,$m2,$d2);
do
{
# filling columns of $sched with # days to coupon pmts
$sched($j+1,$no_cfs($j)) .= $delta;
$no_cfs($j)++;
($y2, $m2, $d2) = &six_mo_bak($y2, $m2, $d2);
$delta = Delta_Days($yi,$mi,$d1,$y2,$m2,$d2);
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} while $delta > 0;

$no_cfs($j)~-;

} # end for (j)
my $yc = $sched(:,(0))->copy;
# $yc will be month’s yield curve
rle($yc,$tempi=null, $temp2=null);
$yc = $temp2(which($templ));
# remove multiple occurences of same date
$yc = cat $yc, zeroes( $yc->getdim(0)), zeroes( $yc->getdim(0));
# $yc initialized with unique maturity dates and zeros
my $y = $monthly[$il->(:,(1));
# aux yield array; init as coupon rates
my $z = $monthly[$i]l->(:,(2));
# price of final pmt; init as security price
my $k = 0;
# $j - $k will be number of unique maturity dates.

$y(0) .= (1og(100) + log(i+$y(0)/2) - log( $z(0) ))/$yc(1,0);

$yc(0,1) .= $y(0);
$yc(1,1) .= $y(0);
my $el = 0;

for (my $j=1; $j<$dim[0] ; $j++)
{ # $j steps through each treasury outstanding at obs date.
# look back to see which treasurys mature earlier:
my $ndx = which($monthly[$i]l->(:,0) < $monthly[$il->($3,0));
if ($j > $ndx((-1)) + 1 || $ndx -> isempty)
{
$kt+;
$el++; # $el is the number reps of this maturity; init below
}
else
{
$el = 0;
}

# $ndx is empty when multiple securities mature at shortest term

my $m = 0;
# using $m to index coupon pmt dates; init with latest
if ( $yc($j-%k,0) < $sched($j+1,$m+1))
{
$m++;
# indicates whether coup pmt date lies after previous maturity
)
if ($yc($3j-%$k,0) < $sched($j+1,$m+1))
{

$m++;
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}

die "More than an 18 month gap in maturities."
if ($yc($j-$k,0) < $sched($j+1,$m+1));

if ( $sched($j+1,$m+1) )
{ # stripping out the present value of coupon payments...
# first interolate the discount rate...
my $r = interpol($sched(($j+1),$m+1:$no_cfs($j)),$yc(0:$j-%k, (0)),
$yc(0:$j-8k, (1)));
# next compute the value of coupon pmts...
$z($j) -= 50 * $y($j) * sumover(discount($r, $sched(($j+1),
$m+1:$no_cfs($3))));
die "Can’t have negative security prices" if $z($j)<=0;
}
if ( $m )
{# use approx method to estimate $yc
my $t0 = $yc(($j-%$k),(0));
my $t = $sched(($j+1),0:%m);
my $r0 = $yc(($j-%k),(1));
my $c = ones($m+1)*50*$y(($j));
$c(-1) += 100;
my $a = O;
$a = newton_loop($t0,$t,$r0,%$c,$z($j),%a,$eps);
$yc($j-%k+1, 1) .= $r0 + $a * ($t((-1)) - $t0);
}
else
{
$y($3) .= 1og(100) + log(1+$y($j)/2) - log( $z($3) );
$y($3j) /= $sched($j+1,0);
$yc($j-8k+1, 1) .= $el/($el+1)*$yc($j-Sk+1,1)+1/($el+1)*3y($j);
} # end if/elsif/else
} # end for (j)
$yc(:, (1)) *= 365;
wcols $yc(,2;-)+$obsdates(($i)), $yc(,0;-), $yc(,1;-), *YIELDCURVE;
} # end for (i)

wghtkern.pl
#!/usr/bin/perl

use strict;
use PDL; # Pearl Data Language
use PDL::NiceSlice; # cleaner indexing routines

open CFSCH, "<cfsched.dat" or die "Cannot open cfsched.dat: g1,

my ($date, $dtcf, $cf) = rcols *CFSCH, 0,1,2;

# contains cash flow schedule for each observation date, observation
# date in the 1st col, days to cash flow in 2nd, amount of cf in 3rd
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open YC, "<pcwlinyc" or die "Cannot open pcwlinyc: $!";

my ($ndate, $node, $rate) = rcols *YC, 0,1,2;

# contains piecewise linear bootstrap yield curve for each observation

# date, observation date in the 1st col, yield curve node in 2nd, interest
# rate in 3rd.

open MSH, "<ycmesh" or die "Cannot open ycmesh: $!¥;

my $mesh = rcols *MSH;

my $numnodes = $mesh->dim(0);

my $depth = sclr rint(log($numnodes-1)/log(2)); # assuming mesh is dyadic
# Our scaling functions start out as interpolated delta functions on a

# mesh; succeeding scaling functions are defined on submeshes

open SCL, ">wsclfcnint.dat" or die "Cannot create wsclfcnint.dat: $!";

my ($templ,$temp2) = rle($date); # Slices "run-length encode"
$date = $temp2($templ;?); # pdl of unique observ dates

# pdl of number of cf’s per observation:

my $ptspd = cumusumover ($templ($templ;?));

$ptspd = append(0,$ptspd);

rle($ndate,$templ=null,$temp2=null);

$ndate = $temp2($templ;?); # pdl of unique observ dates

my $ndspd = cumusumover($templ($templ;?)); # pdl of yc nodes per observ
$ndspd = append(0,$ndspd);

for (my $i=0; $i<$date->dim(0); $i++)

{

# cash flow sched

my $x = $dtcf($ptspd(($i)) :$ptspd(($i+1))-1;1);

# yield curve nodes

my $x0 = $node($ndspd(($i)) :$ndspd(($i+1))-1;1);

# yield curve values at nodes

my $y0 = $rate($ndspd(($i)):$ndspd(($i+1))-1;1);

# yield curve values interpolated at cf dates

my ($y,$idx) = interpolate($x,$x0,$y0);

# yc data was stored as annualized--need daily rate

$y *= -$x/365;

$y->inplace->exp; # discount function

$y *= $cf($ptspd(($i)) :$ptspd(($i+1))-1); # PV of cf’s
# Next we restrict the discounted cf function to the interval where
# the mesh is defined.

my $ul = $mesh((-1));

$y = $y($x<=$ul;?)->sever;
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$x = $x($x<=%$ul;?)->sever;

# Allocating a pdl for scaling function “"integrals":
my $m = zeroes(2*($depth+1),$numnodes) ;
for (my $j=0; $j<=$depth; $j++)
{
# Defining both scaling function and integral
my $phi = append ($mesh(0:2%*$j:2%%$j),10%%5);
$m($j,0) .= inner($y,interpol($x,$phi,pd1(1,0,0)));
$m($j+$depth+1,0) .= inner($x*$y,interpol ($x,$phi,pd1(1,0,0)));
for (my $k=1; $k<($numnodes-1)/2**$j; $k++)
{
my $phi = $mesh(2#*$j* ($k-1) : 2%*$j* ($k+1) : 2%*$3) ;
$phi = append(0, $phi)->sever;
$phi = append($phi, 10**5)->sever;
$m($j,8k) .= inner($y,interpol($x,$phi,pdl(0,0,1,0,0)));
$m($j+$depth+1,$k) .=inner ($x*$y,interpol ($x,$phi,pd1(0,0,1,0,0)));
} # end for (k)
$phi = append (0,$mesh(-1-2*x$j:-1:2*x$3j));
$m($j, ($numnodes-1) /2**$j) .= inner($y,interpol ($x,$phi,pd1(0,0,1)));
$m($j+$depth+1, ($numnodes-1)/2%*$j) .= inner($x=*3y,
interpol($x,$phi,pd1(0,0,1)));
} # end for (j)

wcols dog($m), *SCL;

} # end for (i)

wupdatecoef.pl
#!/usr/bin/perl -w

use Carp;

use strict;

use PDL;

use PDL::NiceSlice;

my $eps = 10%*-8;

my $depth = 8;

my $idx = pdl (0,$depth+1);
my $months = 120;

open WSI, "<wsclfcnint.dat" or die "cannot open wsclfcnint.dat: $i";
my $mom = cat rcols *WSI;

open UPDC, ">wupdatecoef.dat" or die "cannot create wupdatecoef.dat: $!";

for (my $i=0; $i<$months; $i++)
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{

my $uc =

{

zeroes (2% ($depth-1) ,2x$depth); # update coefficient vector;
for (my $k=1; $k <= $depth; S$k++)

for (my $j=1; $j <= 2*x($depth-$k); $j++)

{

my $subm = transpose $mom($idx+$k+$ix($depth+1)*2,$j-1:$3j);

my ($r,$s,$q) =

svd($subm) ;

my $b = transpose $mom($idx+$k-1+$i*($depth+1)%2,2x$j-1);

if (all $s > $eps)

{
$uc($j-1,2%$k-2:2+$k-1)
}

elsif (all $s <= $eps)
{
$uc($j-1,2+3k-2:2+8k-1) .
}

else
{
$r = $r(0;1);
$s = $5(0;1);
$q = $q(0;1);

$uc($j-1,2+$k-2:2+$k-1) .

} # end if/elsif/else
} # end for($j)
} # end for($k)
wcols dog($uc), *UPDC;
} # end for($i)

joncktest.pl
#!/usr/bin/perl -w

use strict;
use PDL;
use PDL::NiceSlice;

my $w = cat rcols ’wycwavtran.dat’;

$w->reshape(257,119);

my @level;

for (my $i=1; $i<9; $i++)
{
my $tmp = $w(1:-2:2;]);
$tmp->reshape (2+*(8-$1i) *119);
my $median = (stats($tmp))[2];
$tmp -= $median;
$tmp->inplace->abs;
push Qlevel, $tmp;
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$w = $w(0:-1:2;1);
}
my $u = O;
for (my $i = 1; $i < 8; $i++)
{
for (my $j = 0; $j < nelem($level[$il); $j++)
{
for (my $k = 0; $k < $i; $k ++)
{
$u += which($level[$k]<$level[$i]->(($j)))->nelem;
}
}
}

print $u, "\n";

my $N = 265%119;
my $n = 119x2**sequence(8)->(-1:0);
my $num = $N**2 - sum($n**2);

EN**2x (2x$N+3) - sum( $n**2*(2x$n+3) );
$den /= T72;

my $J = ($u - $num)/sqrt($den);
print $J, "\n";

SURE.pl
#!/usr/bin/perl -w

use strict;
use PDL;
use PDL::NiceSlice;

my $w = cat rcols ’wycwavtran.dat’;

$w->reshape (257,119) ;

my $z = $w ~> copy;

my @level;

for (my $i=1; $i<9; $i++)
{
my $tmp = $z2(1:-2:2);
$tmp->inplace->abs;
$tmp = gsort $tmp;
push Qlevel, $tmp;
$z = $2(0:-1:2;1);
}

my $sig = $level[0]->flat;
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for (my $i = 1; $i < 8; $i ++)
{
$sig = append($sig,$level[$i]->flat)
}

$sig -= median $sig;

$sig -> inplace -> abs;

$sig = median $sig;

$sig /= 0.6745;

my $lam = zeroes(8);

for (my $i = 0; $i < 8; $i ++)
{
my $x = pop @level;
$x *= sqrt(2*x8+1);
$x /= $sig;
my $min = zeroes(119);
for (my $j = 0; $j < 119; $j ++)
{
my $tmp = zeroes(2%x$i);
for (my $k = 0; $k < 2#x$i; $k ++)
{
$tmp($k) .= inner($x(0:$k,$j),$x(0:$k,$j));
$tmp($k) += $x($k,$j;-) **2% (2%+$i-1-%k) ;
$tmp($k) += 2x*x$i - 2x$k - 2;
} # end for($k)
$min($j) .= $x(minimum_ind ($tmp),$j;~);
$min($j) .= 0 if $min($j) > 2%*$i;
$min($j) .= sqrt(2*$i)
if inner($x(,%$j),$x(,$3j)) <= 1 + sqrt($i)**3/sqrt (2*x$i);
} # end for($j)
$1lam($i) .= davg $min;
} # end for($i)

$lam *= $sig;
$lam /= sqrt(2%*8+1);
wcols $lam, ’SUREthresh.dat’;

OPtestparam.pl
#!/usr/bin/perl -w

use strict;
use PDL;
use PDL::NiceSlice;

my $d = 119%2%*7;
my $cut =zeroes($d,8);
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for (my $i = $d; $i >0; $i --)

{
for (my $j = 8; $j > 0; $j --)
{
my $inter = ((1-2%%-$j)*x(1/$i)+1)/2;
$cut($d-%$i,$j-1) .= (ndtri($inter))*x2;
}
}
wcols dog($cut), ’OPtestparam.dat’;
OP.pl

#!/usr/bin/perl -w

use strict;
use PDL;
use PDL::NiceSlice;

my $w = cat rcols ’wycwavtran.dat’;
$w->reshape(257,119);
my $z = $w -> copy;
my @level;
for (my $i=1; $i<9; $i++)
{
my $tmp = $z2(1:-2:2) -> flat;
push @level, $tmp;
$z = $2(0:-1:2;1);
}

my $sig = zeroes(8);

for (my $i = 0; $i < 8; $i ++)
{
my $dat = $level[$il;
$dat -= median $dat;
$dat ~-> inplace -> abs;
$sig($i) .= median $dat;
}

$sig /= 0.6745;

my $cut = cat rcols ’OPtestparam.dat’;
my $opthresh = zeroes(8);
for (my $i = 0; $i < 8; $i ++)

{

my $x = shift Qlevel;
$x *= 2+x4/$sig(($1));
$x *= $x;

$x = gsort $x;

$x = $x(-1:0);
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my $idx = (which $x < $cut(119%(2%*7-2%x(7-$1)):-1,7-$1i;-))->(0);
$opthresh($i) .= sqrt($x(($idx)))*$sig*2**-4;
}

wcols $opthresh, ’0OPthresh.dat’;

Yield Curve Mesh

ycmesh.dat
1 4 7 10 13 16 19 22
25 28 31 34 37 40 43 46
49 52 55 58 61 64 67 70
73 76 79 82 85 88 91 94
a7 100 103 106 109 112 115 118
121 124 127 130 133 136 139 142
145 148 151 154 157 160’ 163 166
169 172 175 178 181 184 187 190
193 201.5 210 218.5 227 235.5 244 252.5
261 269.5 278 286.5 295 303.5 312 320.5
329 337.5 346 354.5 363 371.5 380 388.5
397 405.5 414 422.5 431 439.5 448 456.5
465 473.5 482 490.5 499 507.5 516 524.5
533 541.5 550 568.5 567 575.5 584 592.5
601 609.5 618 626.5 635 643.5 652 660.5
669 677.5 686 694.5 703 711.5 720 728.5
737 752.5 768 783.5 799 814.5 830 845.5
861 876.5 892 907.5 923 938.5 954 969.5
985 1000.5 1016 1031.5 1047 1062.5 1078 1093.5
1109 1124.5 1140 1155.5 1171 1186.5 1202 1217.5
1233 1248.5 1264 1279.%5 1295 1310.5 1326 1341.5
1357 1372.5 1388 1403.5 1419 1434.5 1450 1465.5
1481 1496.5 1512 1527.5 1543 1558.5 1574 1589.5
1605 1620.5 1636 1651.5 1667 1682.5 1698 1713.5

1729 1760 1791 1822 1853 1884 1915 1946
1977 2008 2039 2070 2101 2132 2163 2194
2225 2256 2287 2318 2349 2380 2411 2442
2473 2504 2535 2566 2597 2628 2659 2690
2721 2752 2783 2814 2845 2876 2907 2938
2969 3000 3031 3062 3093 3124 3155 3186
3217 3248 3279 3310 3341 3372 3403 3434
3465 3496 3527 3558 3589 3620 3651 3682
3713
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Wavelet Graphs

Level —1: The first twelve wavelets of 128, January 1992
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Level —2:

Yield change Yield change Yield change

Yield change

The first twelve wavelets of 64, January 1992
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Level —5: The eight wavelets, January 1992
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Level —6: The four wavelets, January 1992
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Level —7: The two wavelets, January 1992
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Level —8: The only wavelet, January 1992
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