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Prices of U.S. Treasury securities vary over time and across maturities. When the 
market in Treasurys is sufficiently complete and frictionless, these prices may be modeled 
by a function time and maturity. A cross-section of this function for time held fixed is 
called the yield curve; the aggregate of these sections is the evolution of the yield curve. 

This dissertation studies aspects of this evolution.

There are two complementary approaches to the study of yield curve evolution here. The 
first is principal components analysis; the second is wavelet analysis. In both approaches 

both the time and maturity variables are discretized. In principal components analysis the 
vectors of yield curve shifts are viewed as observations of a multivariate normal distribution. 
The resulting covariance matrix is diagonalized; the resulting eigenvalues and eigenvectors 

(the principal components) are used to draw inferences about the yield curve evolution.

In wavelet analysis, the vectors of shifts are resolved into hierarchies of localized fun

damental shifts (wavelets) that leave specified global properties invariant (average change 

and duration change). The hierarchies relate to the degree of localization with movements 

restricted to a single maturity at the base and general movements at the apex. Second



generation wavelet techniques allow better adaptation of the model to economic observ
ables. Statistically, the wavelet approach is inherently nonparametric while the wavelets 
themselves are better adapted to describing a complete market.

Principal components analysis provides information on the dimension of the yield curve 
process. While there is no clear demarkation between operative factors and noise, the top 
six principal components pick up 99% of total interest rate variation 95% of the time. 
An economically justified basis of this process is hard to find; for example a simple linear 
model will not suffice for the first principal component and the shape of this component is 
nonstationary.

Wavelet analysis works more directly with yield curve observations than principal com
ponents analysis. In fact the complete process from bond data to multiresolution is pre
sented, including the dedicated Perl programs and the details of the portfolio metrics and 

specially adapted wavelet construction. The result is more robust statistics which provide 

balance to the more fragile principal components analysis.
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1 Introduction

The following study examines and compares two approaches to interest rate risk. The 
first approach centers around the principal component analysis of sample covariance matri
ces derived from the history of the term structure of interest rates. This approach was first 
used in [1] and is closely related to the use of common factor analysis by Litterman and 
Scheinkman in [20]. Moreover, this approach has continued to be of interest to researchers, 
both as a simple model for term structure evolution [8] [14] [30] and for other, closely related 
interest rate risk questions [3] [7] [13] [19]. Here I update the principal component analysis 
of [1] for more recent data, I perform statistical tests of hypotheses occasioned by princi
pal component analysis, and I consider some of the limitations of the principal component 
approach.

In the second approach term structure shifts are decomposed into atoms called “wavelets” . 

In contrast to principal component analysis where the basis best adapted to the data is cho

sen, wavelet bases are formed subject to certain structural constraints. Although there is a 
loss of efficiency in the choice of a more structured basis, the structure provides an increased 
ability to capture local trends and fluctuations transparently.

Although the term “wavelet” itself appears to be fairly new, the mathematical devel

opment it pertains to arises from mainstream mathematical analysis. See Meyer’s histor

ical perspective [24]. And like evolutionary convergence essentially the same ideas devel

oped independently in several different engineering and scientific fields. See Sweldens’ and 

Schroder’s overview in the introduction to [32]. It is no surprise then that these techniques
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of “signal processing” would be applied to financial time series as well. In fact, there are 
now book-length treatments of just this topic available [12].

To my knowledge, however, there has been no attem pt to apply wavelet analysis to 
term structure evolution. Heretofore, the barrier to a using wavelet analysis as described 
in [24] is quite basic; the key ingredient in the development of the theory was a family of 
basis functions that remained invariant under both translations and dilations. Although 
this made the full arsenal of Fourier analysis available, it did not match up well with term 
structure data. The term structure, as a construct, derives from a family of fixed income 
securities where maturities are clustered toward the short term in no neat pattern, where 
all maturities are constrained to an interval, and where translation invariant measure does 
not appear to have a reasonable economic interpretation.

On the other hand, these types of constraints are commonly encountered in many ap
plications, not just finance and economics, and several authors addressed them. A line of 

development particularly promising for our purpose is due to Wim Sweldon, whose own 

work was inspired by the earlier investigations of Donoho [5] and Lounsbery [21].
“Second generation” wavelet analysis [31], as Sweldens has called it, obtained central 

elements of wavelet analysis without the Fourier transform and in such a way that the 
analysis could be extended easily to irregularly spaced observations on a finite interval 

equipped with any one of many possible metrics. Moreover, Sweldens’s approach provides 

a way to exploit the latitude in the choice of wavelet basis so that the optimal wavelet basis 

for modeling yield curve shifts might be used.

Armed with this innovation, I returned to term structure analysis with two goals. First, 

I wanted to see if a more rational framework for approximation than used for principal
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components analysis would provide insights into interest rate movement. Specifically, the 
yardstick in principal components analysis is finite dimensional euclidean measure. Prior 
to analysis, a yield curve is abstracted from securities prices; the yield curve is evaluated 
at a vector of (usually hypothetical and certainly arbitrary) maturities. This is done at 
two successive times, and the magnitude of the yield curve change during the intervening 
time is the sum of squares of differences between between the yield curve values along the 
vector, no m atter how the vector of maturities is distributed. This, it appeared to me, is 
disconnected from the economics; not only do sums of squares have no economic meaning, 
but the location of a yield change along the spectrum of maturities certainly does. It is 
true, as shown in Sections 2.1 and 2.2, that we can reconnect to the economics further down 
the line, but it was still a question to me whether a more direct approach might be fruitful.

A more compelling alternative measure of the magnitude of an interest rate change would 
be the impact of a yield curve shift on the value of a portfolio. Using Swelden’s approach, 

we may choose a portfolio, the market portfolio, say, and construct wavelets which, as term 

structure shifts, have no effect on portfolio value. Thus, when wavelet analysis begins with 

the raw data of a yield curve shift and rewrites it as a sum of a simple smooth curve and 

wavelets, it follows that the smooth curve represents exactly the same impact on the value 

of the portfolio as the input data. One may then study the joint distribution of the curve 

parameters, or one may study the wavelets, but in either case, one maintains an economic 

connection to the original data.

The euclidean nature of principal components analysis has another important facet. 

Principal components analysis “diagonalizes” the covariance matrix. That is, there is a 

reformulation of our observation vector that greatly simplifies the structure of the multi
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variate random variable that our yield curve shifts comprise. Our “raw” data for yield 
curve changes consists of observations of interest rate changes for an array of individual 
zero coupon bonds. Now naive observation indicates that there is significant correlation of 
interest rate changes among these bonds, especially among bonds with similar maturities. 
Principal components analysis extends this intuition by extracting patterns of interest rate 
movements.

Each pattern extracted by PGA comprises a vector of perfectly correlated interest rate 
movements among the bonds, there is no correlation among the different patterns them
selves, and, taken together, the patterns may be used to construct any individual observation 
by scaling and superposition. Moreover, these patterns are arranged into a hierarchy of vari
ances which measures the contribution each pattern makes to the whole. In fact, PCA may 
capture real simplicity when it might not be apparent otherwise. That is, the effective rank 
of the covariance matrix may be very small; nearly all the observed interest rate movement 

may be accounted for by of a handful of patterns. It is, perhaps, an interesting occurence 
tha t interest rate movements do exhibit such simplicity; this is explored in Section 2.4.2.

Like a dog catching the proverbial bus, however, it is a little unclear what to make of 

these simplifying patterns once we have them, and it is this problem that underlies the 
statistical investigation that follows. To begin with, it would be interesting to relate the 

principal components to economic factors, much as Litterman and Scheinkman [20] try 

to do. Failing that, perhaps there are simple rules that can reproduce the top principal 

components, and these simple rules, if not economically justified a priori  may be justified a 

posteriori by being useful. Unfortunately, the statistical tests we perform seem to cast more 

shadow than light. There is no support for the simplest economic hypothesis, that interest
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rates are all essentially the same type of thing and respond in unision to economic changes. 
In the tests that follow (Section 2.4), we see that the dominant principal component is not 
parallel translation, or even a line at all. And whatever it is, it does not persist; that is, 
we need more than just chance to explain the differences between the dominant principal 
components over different epochs.

This is all vaguely disconcerting. The dominant principal component looks as if it could 
reasonably be approximated by a nearly flat line, and it looks as if the dominant princi
pal component persists over successive five year periods. Furthermore, it seems odd that 
we must jum p all the way from interest rate changes on single bonds to patterns of per
fectly correlated changes all across the yield curve, that in order to incorporate exceptional 
behaviour in a neighborhood of a single maturity, we must involve the entire yield curve.

Certainly, it is possible to indicate the gradation of correlation of rate movements among 

bonds with closer maturities more highly correlated than more distant maturities, but this 

is done by superposition of patterns, each of which involves the entire yield curve. In fact, 
it is quite informative to see how articulation is introduced as one incorporates principal 
components with lower variances. Looking at the principal components in Figures 2.1 and

2.2 and looking at the variances in Table 2.2, one can “see” how interest rate movements 

are predominantly positively correlated across the yield curve with secondary decouplings 

brought in by various yield curve twists associated to the principal components beyond the 

first.

Nevertheless, there is something stiff and unforgiving about PCA. I do not know whether 

a more careful formulation would alleviate this jarring against intuition or whether distri

butional assumptions underlying the statistical tests should be revised or whether intuition
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should simply submit to the statistical results as they stand. It would be nice to have an 
independent take on the phenomena, one that could transparently represent phenomena 
at all scales from local to global. Thus my second goal in exploring the wavelet analysis 
of term structure fluctuations has been to provide a more flexible basis for modeling term 
structure shifts.

The data principal components analysis begins with, as presented in Chapter 2, is not 
strictly raw data but rather a yield curve approximation at each time of observation. In 
reality, choosing the appropriate approximation is not a simple matter as Bliss [2] has shown. 
I have used Bliss’s implementation of McCulloch’s [22] method,1 in which cubic splines are 
regressed against raw data, the nodes of which splines are chosen adaptively. Once the 

spline approximations to the yield curve have been made at each observation time, all the 

splines are evaluated at the same fixed set of maturities. This generates the multivariate 
sample to which PC A is applied.

Wavelet analysis, often called “multiresolution analysis” in this context, begins with a 
linear spline interpolating a raw zero-coupon yield curve, coupon Treasurys having been 
stripped with a bootstrap method.

Multiresolution analysis then generates a cascade of splines that approximate an inter
est rate movement. The approximations are reminisent of, but quite distinct from, OLS 

regression. The cascade consists of a series of splines with progressively fewer nodes, each 

one a smoother but coarser approximation of the original data. Our splines2 all retain the 

same portfolio weighted average change and duration as the input shift.

1 Another formulation question that would be interesting to check is whether PCA is 
substantially affected by the choice yield curve approximation method.

2Although our splines are linear here, higher (and lower) order splines may be used in 
much the same way; see [32] for an indication.
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At each step of the cascade, the information that is lost in going from a finer to a 
coarser approximation is stored in a wavelet. Thus, at each step, the magnitude of the 
wavelet indicates the quality of the approximation at the next level of smoothness and the 
support of the wavelet indicates the scale at which the adjustment is being made.

At the end of the multiresolution process, one is left with a simple polynomial approxi
mation (i.e. a spline on one interval) of the yield curve and a collection of wavelets. At each 
level one has separated the yield curve shift into locally disassociated movement, captured 
by the wavelet, and coherent movement, captured by the yield curve shift approximation 
at the next level, and one has repeated this process as long as it was possible to do so. 
No information has been lost, and input data can be recovered completely by reversing the 
process.

W ith wavelet analysis we have a way to model term structure shifts with changes re
stricted to segments of the term structure on a full gamut of scales of resolution. Simple 

order statistics of the wavelet coefficients indicate where introducing more detail into the 

yield curve shift approximations will most efficiently improve the model. Thus, just as 
principal components with smaller and smaller associated variances may be introduced to 
refine a PCA model of yield curve shifts, the location of wavelet coefficients indicate where 
new nodes might be most effectively added when refining the multiresolution model.

Since I know of no exposition of second generation wavelet analysis in the finance litera

ture, I have included an introduction to the simple techniques I use here in Chapter 3. The 

devil being in the details, I have also included in the appendix the program listings which 

1 developed for extracting, preparing and transforming data from the CRSP bond file, and 

algorithm details are exposed in Chapter 5.
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Gross results seem to indicate phenomena similar to those from PCA. Comparing Figures
2.1 and 6.5, there appears to be a correspondence between the fact that the first wavelet 
coefficient at each level is the largest and the fact that first principal component is convex for 
the first five years along the yield curve. That there should be no good linear approximation 
to the first principal component might be related to the apparent independence of short and 
long term rate changes displayed in Figure 6.1. Finally, the linear approximation generated 
by multiresolution cascade only rarely fails to provide a good fit to the observed change 
(Figure 6.2); this could be related to the rapidity with which the principal component 
variances decay (Figure 2.3).

This last observation raises a question about the extremes of the wavelet coefficient dis
tribution. Might they be larger than would be expected if the deviation from 0 where simply 

a Gaussian noise term? Figure 6.3 shows large wavelet coefficients occur more frequently 
than would be compatible with the large number of very small terms if all terms were just 

noise. This suggests a possible signal-noise model—perhaps coefficients are normally dis

tributed with small variance most of the time, but when an infrequent signal arrives from 
the economy the coefficients are normally distributed with much larger variance—but it 

forces one to use nonparametric methods for further statistical examination of the wavelet 

coefficients. I did perform nonparametric tests to confirm the appearance that wavelet 
coefficients at larger scales tend to be larger, and I concluded Chapter 6 with a look at 

two methods that attem pt to separate signal from noise, most especially with the object of 

resizing wavelet coefficients by level in order to refine the apparent relative contributions of 

the wavelet coefficients to fitting yield curve shifts.



2 Principal Components

The goal of principal component analysis is to clarify the correlations among the com
ponents of a multivariate random variable. We use these relations to detail the interest rate 
risk of a fixed income portfolio.

Suppose that X  is a multivariate random variable, and suppose that E is its covariance 
matrix. Since E is a positive symmetric matrix, E may be factored

E =  HAH'  (2.1)

where JET is a rotation matrix, H H '  =  H 'H  =  / ,  det(ff) =  1, and A is a positive diagonal
matrix, A =  diag(Ai,. . . ,  Am), with Aj >  0, j  — 1 ,. . .  ,m . It is convenient to assume, as
we may, that the Aj  are arranged in decreasing order, Ai > A2 > . . .  > Am. W ith this
assumption, the columns of H  are unique up to sign. Let Uj denote the j th  column of H.  

The Uj are known as the principal components of X .  See [25] for details.
In order to fix ideas, let us assume that the probability distribution of X  is multivariate 

normal, N(/i,  E). In this case the density function of X  is

1f x (x) =  (27r)m/2(detE) 1//2exp - ^ ( z - a O '£  l ( * ~  h) (2 .2)

Now substitute H A H ' for E and write Y  — H 'X ,  Then the density (2.2) factorizes as

W B ) = n ^ e"  2Ai (2-3)

That is, simply by rotating the axes appropriately, we may view the distribution of X  as 

the joint distribution of m  independent univariate normal random variables.

In our application, X  will denote a change in the yield curve for U.S. Treasury s. Then 

the factorization (2.3) provides an alternative view of the way yields change on the family
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of Treasury securities. The basis in which X  is first presented derives from observations of 
bond prices, and Xi  denotes the yield change for zero-coupon bonds that mature in ti units 
of time from the present. The alternate view recombines yield movements on individual 
but correlated bonds into uncorrelated patterns of movement. The first pattern is the 
unitary combination of yield movements with maximum variance; the second is the unitary 
combination with maximum variance subject to the constraint of being uncorrelated to the 
first pattern, and so on. Thus, in the alternate basis X \  is the contribution to X  made by 
the pattern whose contribution is expected to be largest among all unitary patterns. We 
sacrifice simplicity of representation in order to achieve simplicity of interrelation.

Geometrically, the level surfaces of the function k x , defined on TZm by

kx (x) =  (x — fi)’E(x  — /i),

form an ellipsoid, and the components of Z  — H ' X  lie along the semi-axes of the ellipsoid. 

Knowing these semi-axes, the analyst may identify levels of interest rate risk in a family of 
portfolios.

2.1 Portfolio interest rate risk

Let A  denote a portfolio whose risk we examine. That is, with a schedule of cash flow 

dates fixed, Ai  is the cash flow scheduled for portfolio A  at time ti, i =  1 , . . . ,  to. Similarly, 

let di be the present market value of a $1 payment scheduled for time ti. As a notational 
convenience let T  and D denote the diagonal matrices Tu =  ti and Du =  di respectively. It

10



is also convenient to let B  =  D A  and to let i the m  x 1 column vector of ones. Thus, for
example, the market value of A  is V  =  l'B.

If the discount function D should change in such a way that

T"1 log(Dt) -> T~~l log (Di) +  X

then, clearly, the portfolio value V  = l 'B is a non-linear function of X . However, V 
is differentiable and the best approximation to the change in the value of V by a linear 
function is given by the differential applied to X :

W (0 )X  =  X ' T B .  (2.4)

We therefore regard the variance of X ' T B  as the approximate variance of portfolio value 
var(F). Since we are assuming that X  is iV(/j,£), this approximate variance is

B 'T E T B .  (2.5)

Using (2.5) as our measure of risk, then, a portfolio manager might ask for the portfolio
with present value $1 and minimal interest rate risk. It is straightforward to see, using
Langrange multipliers for instance, that this portfolio must be

T ~ l E~~lT ~ l l

Unfortunately, this mathematical eloquence may not translate to a practical alternative 

for the portfolio manager. After all, the zero coupon bonds maturing at times ti were purely 

hypothetical constructions. Principal component analysis may be a more flexible tool for 

moderating interest rate risk in conjunction with market realities and manager goals.

11



2.2 Principal components and immunization

Substituting the principal component decomposition of S (2.1) into our working measure 
of portfolio interest rate risk (2.5), we obtain

B 'TTiTB =  J 2  Ai (H'TB)?.  (2.6)
i

Recalling that Ai > A2 > . . .  > Am, we see the most volatile component of our portfolio is 
(H 'T B)i .  Since we have that

T B  =  Y ^ (H ’TB)iUi ,
i

we interpret (H'TB)  \ as the projection of T B  along the principal component Uj. Thus 
one step in reducing interest rate risk that may be practical is simply to select a portfolio 
A  such that the projection of T D A  along U\ is minimal. A conservative estimate of the 
benefit of such a step may be obtained as follows. Prom (2.6) and the Cauchy inequality 
it follows that if the value of the portfolio A  equals 1, B i  =  1, then our risk measure (2.5) 
satisfies

B'T'ETB <  A im a x V ^ B ? .
B b —  1 1

If, in addition, it is required that U[TB =  0, then our risk measure satisfies

B't TsT B  <  A2 max Y $ B i- 
B i  =  1

U[TB =  0
In the historical data below, we find that A2 is less than 1/3 the size of Ai.

If T D A  contains no component of Ui, then we say that A  is immunized along U\.1 

Similarly, should interest rate risk reduction be high enough a priority, then T D A  may be

Although we have vectorized notation, this use of the term ’’immunize” is completely 
classical in the case U\ =  i/^/rn

12



chosen to minimize its projection along several of the most volatile principal components. 
Moreover, since these constraints, — e < (H'TD A)i <  e for example, are linear, they can 
easily be integrated with other practical constraints in a linear program.

Since immunization is based on the gradient (2.4), it is strictly a ’’local” technique, 
properly applied only when the shock considered transpires over a ’’small” interval of time. 
Just as the gradient method is used to integrate differential equations (cf. [10], p. 263), so the 
stochastic calculus provides processes that integrate ” infinitesimal” conditions on random 
variables. The description of these processes is greatly simplified by their diagonalization, 
and they are presented as such in Heath, Jarrow and Morton [15], and, indeed, Jarrow [17] 
uses principal components to construct discretized models of approximate solutions to their 
stochastic differential equations.2

2.3 Estimating principal components from historical data

Using historical data to estimate principal components in the evolution of the yield curve 

requires two levels of abstraction. First a zero-coupon yield curve must be inferred from a 

universe of securities, many of which are coupon bearing. Second, to define and compare 
yield curve changes, every constructed zero-coupon yield curve must be interpolated at a 

common set of nodes. For the estimates presented below, we use Bliss’s unfiltered imple-

2The reader may wonder why local methods would be of any interest at all when global 
methods exist. One difficulty is simply that the global methods are considerably more 
complicated and for all that remain deficient in ways. For example, as Rogers in [28] points 
out, the Heath-Jarrow-Morton model does not provide workable formulae in cases where 
the instantaneous spot rate is constrained to be positive. Rogers indicates this problem may 
be inherent to their approach, beginning, as it does, ”by trying to model derived quantities 
(the forward rates) instead of the fundamental quantity (the spot rate).”
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0.083 0.167
0.750 0.833
1.417 1.500
6.000 7.000

14.000 15.000
22.000 23.000

0.250 0.333
0.917 1.000
1.750 2.000
8.000 9.000

16.000 17.000
24.000 25,000

0.417 0.500
1.083 1.167
2.500 3.000

10.000 11.000
18.000 19.000
26.000 27.000

0.583 0.667
1.250 1.333
4.000 5.000

12.000 13.000
20.000 21.000
28.000 29.000

Table 2.1: Common yield curve nodes, in years, used for principal component analysis. The 
discount function is estimated each month with a cubic spline; the spline is then interpolated 
at these nodes.

0.0247224 0.0067709 0.0012182 0.0005729 0.0002075 0.0001106
0.0000804 0.0000599 0.0000294 0.0000160 0.0000121 0.0000063

Table 2.2: The twelve largest eigenvalues of the sample covariance matrix for Treasury 
securities 1992-2001 at nodes listed in Table 2.1.

mentation of McCulloch’s cubic spline regression for the zero-coupon yield curve.3 For the 
common set of nodes we use McCulloch’s own selection in data published with Kwon [23]. 
These nodes are given in years in Table 2.1.

A Perl program, listed in the appendix as mcmimge.pl, selects ten years’ data and 

formats it for input to the second Perl program, listed as c s in te r p o l .p l .  This second 
program computes the sample covariance matrix and extracts the principal components 
and their eigenvalues from it. Table 2.2 lists the twelve largest eigenvalues. The remaining 

eigenvalues are small, but as our tests show, still significantly different from both zero and 

each other. Graphs of the first four principal components are given in Figures 2.1 and 2.2. 

There seems to be some persistance in the shape of the principal component graphs. See 

Barber and Copper4 [1] and even Litterman and Scheinkman [20] who use factor analysis

3Details are given in Bliss’s paper [2]; Mr. Bliss kindly sent me updated data.
4 A graph of the fourth principal component for McCulloch and Kwon’s 8/85-2/91 data 

is available from the authors
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Figure 2.1: Principal components derived from monthly McCulloch yield curve estimate 
changes. Parameters derived by R. Bliss from 1992-2001 CRSP Treasury data using Mc- 
Culloch’s programs.
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Figure 2.2: Principal components derived from monthly McCulloch yield curve estimate 
changes. Parameters derived by E. Bliss from 1992-2001 CRSP Treasury data using Mc- 
Culloch’s programs.
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applied to weekly returns for 1/84-6/88 and unspecfied interpolation technique.5 However, 
some caution in drawing conclusions directly from the graphs seems also to be warranted. 
For example, Golub and Tilman’s graphs ([14], p. 94) don’t seem to line up quite as well. 
Perhaps more quantitative analysis will aid the intuition conveyed by the graphs.

2.4 Tests of some statistical hypotheses

The tests described in this section were developed by several statisticians, Lawley, James, 
Anderson, to name, perhaps, the principals. We rely on the exposition by Muirhead [25]. All 
tests depend critically on the assumption that the random variable is multivariate normal. 
All three tests on our sample data were implemented by the Perl program listed as s t a t s  .p i  
in the appendix.

2.4.1 Equality of eigenvalues

First we test hypotheses that the smallest eigenvalues of the principal components are 
equal to one another:

Hk • =  * • • =  Xm

for k =  0 ,1 , . . . ,  m  — 2.

In a sense this is a test for randomness. For to the extent that the eigenvalues Aj  are 

equal, the principal components are not unique. In the extreme case, if the hypothesis H q 

were true, the distribution of X  would be spherical, no direction of interest rate movements

5See [18] for more detailed descriptions of their techniques; see [4], Section 6.4.1, for 
some comparison between factor and principal component analysis.
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being any more likely than another. That is, there would be no coherence whatsoever among 
movements at the different maturities.

On the other hand, Hk can also be related to the dimension of the space needed to 
model yield curve shifts. To illustrate, suppose that H\  were accepted, and suppose it 
were determined that the eigenvalues {A2, . . . ,  Am} were statistically indistinguishable from
0. That would essentially be the classical case of parallel translation; all yield curve shifts 
being dilations of a single prototype. More generally, if Hk is acceptable for k ” small” and 
the common value A =  \k+ i  =  • • • =  Am is also ’’small” , we will see evidence for a k-factor 
interest rate evolution with observed fluctuations in directions associated to the eigenvalue 
A due merely to measurement error.

In order to formulate the statistic used to test Hk, we set
1 m  

q i=k+1
where the k  are the eigenvalues of the sample covariance matrix S  and, for notational 
convenience, q =  m  — k, the number of hypothetically equal eigenvalues. Then set6

i e u + i  k
i$ '

,2When Hk is true, the distribution of —n log 14 is asymptotically X(q+2)(q-i ) / 2  as n —» 00. 
However, in our test cases where n =  119 for 10 years of monthly data and n — 59 for 5 

years, we employ the more accurate statistic developed by Bartlett and Lawley,

Pk =  ~~ n _ k  _  V + £ + 2 + £  i* log 14 ,

6Note that 0 < 14 < 1 since the I* are eigenvalues of a positive matrix and the geometric 
mean of these values is always less than the arithmetic mean.
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having the same asymptotic distribution but faster convergence as n  —> oo. See Table 2.3 
for the results of this test.

We see that the data are quite highly structured and there is no case at all that the 
smallest q eigenvalues are equal for any q, q =  4 8 , . . . ,  2. We obtain, but do not display, 
similar conclusions using five year data and using coarser meshes. It would appear there 
is no ’’natural” dimension for interest rate fluctuations; however, there is an impracticality 
to such a conclusion. For if we do not conclude, say, that the smallest two eigenvalues 
are equal, we are left assuming the second smallest eigenvalue is nonzero. In particular, 
variation in the direction of the corresponding principal component is thus assumed to be 

about 10”7. whereas one basis point is only 10-4 . We examine the case for a ’’practical” 
dimension in the next section.

2.4.2 Proportion of variation

In our first test we did not see any inherent limit to the dimensionality of the space of 

observed yield curve fluctuations. Eventhough we cannot dismiss any of the eigenvalues as 
insignificantly different from 0, we can still test whether the fraction of portfolio variance 

explained by the last k principal components is a relatively small amount, h, say. Formally, 

we consider the hypothesis,
rr* J 2 iL k + 1 _  uMk . —  — n.2-jk=l Ai

These hypotheses can be tested with the statistics
k m

M k =  - h Y , h  + ( l - h )  £  h.
i=l i=k+1

For if H k is true, then (see [25], p. 416) \ f n M k is asymptotically IV(0, r 2) as n  —> oo where
k m

r 2 =  2/i2 £  A? +  2(1 - h f  j r  \ l
i= 1 i = A + l
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q Pk p-value
48 101286.16 0.000000e+00 1.572335e-01
47 51808.85 0.000000e+00 8.228546e-02
48 45557.80 0.000000e+00 3.490286e-02
45 42303.59 0.000000e+00 2.393510e-02
44 39209.77 0.000000e+00 1.440518e-02
43 37206.09 0.000000e+00 l,051532e-02
42 35579.12: 0.000000e+00 8.968597e-03
41 33788.61 0.000000e+00 7.742445e-03
40 31570.91 0.000000e+00 5.426519e-03
39 29724.92 0.000000e+00 4.004516e-03
38 28130.74 0.000000e+00 3.472371e-03
37 26126.87 0.000000e+00 2.516362e-03
36 24281.56 0.000000e+00 1.754004e-03
35 22809.32 0.000000e+00 1.368457e-03
34 21394.59 0.000000e+00 1.163865e-03
33 19647.14 0.000000e+00 9.312330e-04
32 17397.35 0.000000e+00 5.901655e-04
31 15501.61 0.000000e+00 3.613146e-04
30 14244.15 0.000000e+00 2.805237e-04
29 12990.39 0.000000e+00 2.150908e-04
28 11744.50 0.000000e+00 1.831290e-04
27 9930.76 0.000000e+00 1.034678e-04
26 8853.57 0.000000e+00 7.523517e-05
25 7938.86 0.000000e+00 5.830019e-05
24 7063.72 0.000000e+00 3.963088e-05
23 6500.31 0.000000e+00 3.652810e-05
22 5751.86 0.000000e+00 2.789453e-05
21 5079.29 0.000000e+00 1.959196e-05
20 4629.85 0.000000e+00 1.426484e-05
19 4351.82 0.000000e+00 1.294142e-05
18 4053.58 0.000000e+00 1.192338e-05
17 3698.73 0.000000e+00 9.670846e-06
16 3391.38 0.000000e+00 9.324346e-06
15 2920.66 0.000000e+00 7.464477e-06
14 2401.97 0.000000e+00 4.630039e-06
13 2137.11 0.000000e+00 4.099755e-06
12 1803.86 0.000000e+00 3.398030e-06
11 1390.28 0.000000e+00 2.108780e-06
10 1169.35 0.000000e+00 1.713246e-06
9 941.08 0.000000e+00 1.420020e-06
8 642.31 0.000000e+00 8.370498e-07
7 510.39 0.000000e+00 6.257029e-07
6 419.42 0.000000e+00 5.224277e-07
5 320.53 6.105600e-58 4.226790e-07
4 195.63 2.727400e-35 2.840302e-07
3 85.50 5.920500e-15 1.653242e-07
2 25.99 2.270300e-04 9.708477e-08

Table 2.3: Test for equality of the smallest q =  m  — k sample covariance matrix eigenvalues. 
The statistic Pk has an asymptotically x 2 distribution. The p-value shows there is no 
support for equality at any level. However the standard deviations, of the smaller 
principal components are small compared to measurement uncertainty.
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1 p.c. 2 p.c.’s 3 p.c.’s 4 p.c.’s 5 p.c.’s 6 p.c.’s
Lower 5% 67% 92% 96 % 98.1% 98.8% 99.2%
Observed 73% 93% 96.7% 98.4% 99.0% 99.4%
Upper 5% 78% 94% 97 % 98.7% 99.2% 99.5%

Table 2.4: Confidence intervals and actual observed values of proportions of variation cap
tured by the first 6 principal components.

Thus, replacing A* by lj, % =  1 , . . . ,  to, in this expression for r 2, we obtain an approximate 
test of Hjl for our sample data. By computing the choices of h and k that make jEF| 
acceptable, we derive confidence intervals.

These computations provide a ” practical” measure of the dimension of the interest rate 
fluctuation space. Figure 2.3 displays graphically the fraction of total variation captured by 
the first four principal components. Table 2.4 tabulates the same information for the first 
six principal components and, in addition, includes the proportion actually observed. For 
example, our data show that the first principal component represented 73% of the observed 

interest rate fluctuation, and, if our model is correct, we can be 90% sure the first principal 

component will capture between 66% and 78% of the total variation in future observations. 
The actual machinery for these computations is laid out in the s t a t s . p l  listing in the 
appendix.

The confidence intervals provide a basis for comparison with other measurements of 
proportional variation. The 90% confidence interval for the first component alone includes 

neither the 80% proportion found in [1] nor any of the proportions for the various maturities 

found through factor analysis by Litterman and Scheinkman in [20], Table 2. These earlier 

studies were conducted using different data; we may be seeing evidence of non-stationarity. 

Also compare to Soto [30], note 16, for Spanish bonds.
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Figure 2.3: p-values for the explanatory power of the 4 largest principal components. 90% 
confidence intervals are indicated by the vertical dotted lines. The vertical axis is scaled 
logarithmically for better visualization.



2.4.3 Shape of first principal component

Linearity. Early work in interest rate risk assumes, essentially, that only one principal 
component has a non-zero eigenvalue and that the principal component equals i, suitably 
normalized.7 Even with the advent of multi-factor models we find the primary engine of 
interest attributed to parallel translation. This quote from Litterman and Scheinkman [20] 
seems representative of received opinion:8

[T]he yield changes caused by the first factor are basically constant across matu
rities. That is, the first factor represents essentially a parallel change in yields., . .
Thus, hedging against Factor 1 is close to duration hedging.. . .  The impact of 
Factor 1 on yield levels leads us to name it the level factor.

Though it must be noted that Litterman and Scheinkman themselves note the slight differ
ence between their Factor 1 and literal parallel translation.

All this begs the question, is the first principal component statistically different from 
parallel translation? or, more generally, linear translation? Statistical tests for equality 

between our sample first principal component and any linear model are unquestionably 

negative.

In more detail, let H** be the null hypothesis that the vector of coefficients U\ of the 

first principal component is equal to a specified vector Ilf of unit length,

7See the proof of the immunization theorem, Appendix B, in Fisher-Weil [9]. This paper 
also provides references to the still earlier work in interest rate risk by Macaulay, Reddington 
and others.

8Along the same lines, see Willner [34] and Soto, Note 1? [30].
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if** : Ui = £/?, Eff'lf? =  1.

T. W. Anderson (See [25], section 9.6.) showed that if if** is true then the two statistics

Wi = n l iU a'S ~ l Ux -  n and W2 =  f  Eff'SEfj5 -  nh

sum to a single statistic, W  =  W\  +  W 2 , having a limiting distribution of X m - v  Here, 
as before, S  is the m  x m  sample covariance matrix, and l\ is the eigenvalue of the first 
principal component of S. Thus, a test of H** of asymptotic size a  is to reject H** if 
W  > c (a ;m  — 1), where c(a;m  — 1) is the upper 100a% point of the Xm-i  distribution. 
Note that if U\ =  Uf  then W\  =  W 2 =  0, and that as Uf  rotates away from W 2 

becomes negative, W\  positive. For matrices S  having large condition numbers, as ours do, 

very small projections along Uk for k large can result in large contributions to the statistic 
W .

This test applied to our sample data indicate that no linear first principal is remotely 
acceptable. Table 2.5 illustrates the value of the statistic W  in a neighborhood of the ’’best” 

linear approximation.9 The smallest value of W  obtained was 305.8, but the 1/2% critical 

point of X m - 1? to =  48 is 75.7. Note that W  is dominated by W\, the part generated from 
the lengths of the projections of the test vector along the principal components divided by 

the eigenvalues.

Nonetheless, these results do not seem to be numerical artifacts since the same conclusion 

is reached both with coarser meshes and with the smallest eigenvalues eliminated from

9W  is a quadratic form so there are no hidden extreme points.
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Slope Wi W2 W
0.000 372.7892 -6.1334 366.6558

-0.002 348.3617 -5.6868 342.6749
-0.004 329.3381 -5.2919 324.0462
-0.006 316.4551 -4.9565 311.4986
-0.008 310.5076 -4.6896 305.8179
-0.010 312.3468 -4.5006 307.8461
-0.012 322.8766 -4.3997 318.4770
-0.014 343.0478 -4.3976 338.6503
-0.016 373.8486 -4.5056 369.3429

Table 2.5: Values of the statistic W  for linear first principal components with slopes as 
given in the first column. W  is minimal for linear vectors with slope near —0.008, but the 
upper 1/2% point of x f7 =  75.7 and the hypothesis of a linear first principal component 
is rejected for all slopes. The second column shows how it is the projection of the linear 
vector along the principal components with small eigenvalue that overwhelm W.

consideration. Similar results were also obtained for the yield curve data analyzed in [1] 
and for more recent data.

Persistence. If we can’t justify viewing the first principal component as a linear shift, per
haps the shape of this shift, whatever it is, persists over time. Visually, this seems plausible, 

as illustrated in Figure 2.4. We can check this with the same test applied previously to the 

linear principal component hypothesis (cf. s p l i t s t a t s . p l  listed in the appendix). We find

Wi =  659.67, W2 =  -0.41, W  =  659.26, c(.05; 47) =  64.00.

with W  as before and c(.05; 47) denoting the upper 5% point of the Xa7 distribution. This 
compares to W — 586 for the best linear fit to the five-year first principal component, and 

it appears tha t the previous five-year first principal component is an even worse candidate 

for the most recent five-year first principal component.
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Years to maturity

Figure 2.4: Is the first principal component stationary? The principal components cor
responding to the largest covariance matrix eigenvalues are shown. Ten years’ data from 
1991 through 1992 are broken into two successive five year windows, and the principal 
components for each interval are computed. A statistical test for equality of the principal 
components corresponding to the largest variances is negative unless data corresponding to 
the 42 smallest variances is neglected.

On the other hand, as we have seen, the first six principal components alone account 
for over 99% of total interest rate fluctuation. If we eliminate the smallest 48 — 6 =  42 
principal components as ”noise” , and recompute our statistics, we obtain

W t =  3.71, W2 =  —0.41, W  =  3.30, c(.05; 47) =  11.07.

We can’t use this calculation to support a claim that the shape of the first principal persists 
over time, not without some more work at any rate, but it does show once again how our 

statistics aren’t lining up with our intuition. The last 42 principal components appear 

insignificant to the eye, but they play a commanding role in the analysis of the sample 
covariance matrix. It is also worth noting that we also obtain a diminution of W  in the 

linear case when the last 42 principal components are eliminated, but we don’t get close to 

the range where the hypothesis might be accepted.
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2.5 Possible shortcomings of principal component analysis

An econometric difficulty with applying principal component analysis to yield curve 
evolution is that the Euclidean norm, upon which the analysis is so dependent, seems to 
have no economic meaning. What does it mean for the sum of squares of key rate movements 
to equal one? How does one devise a Richter scale for yield curve movements? Speaking 
of key rates, how does one choose them rationally? We have followed McCulloch-Kwon 
without offering any rationale, but certainly different discretizations of an interpolated 
yield curve will result in principal component differences, however slight, and we have seen 
how apparent slight differences can be statistically significant.

After atomizing the universe of bonds into hypothetically rationally priced zero-coupon 

bonds, principal component analysis flips to the opposite extreme: all components are 
whole-yield curve movements; any movement attributable to a principal component in

volves movements of all zero-coupon bonds and these movements are perfectly correlated. 
Moreover, this model is very ”stiff” ; regardless of any visual impression, the first principal 
component is statistically remote from any linear vector. Checking to see whether the dif

ference between the observed first principal component and a linear vector is simply noise is 

characteristic of the analytical process itself: to resolve a complex object to a comprehensi
ble relation among elementary objects. The benefit of principal component analysis is the 

simple relation it provides; the weakness is that the elementary objects may not have any 

intrinsic significance. Sometimes insight into the object of study provides the significance; 

Golub and Tilman, [14], Section 3.2.3, advance the intriguing theory that the first principal 

component is closely related to the term structure of volatility of changes in U.S. spot rates. 

Lacking such an understanding, one has no way to distinguish between data mining and the
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discovery of persistent mechanisms. In such cases the analyst is willing to sacrifice some 
efficiency of representation in exchange for better understood elements. This is our goal in 
the next section where we analyze yield curve data in terms of adapted wavelets.

The assumption that yield curve shocks are normally distributed proved important for 
drawing statistical inferences. Even in the slightly larger class of elliptical distributions, a 
diagonal covariace matrix guarantees independent components only when the distribution 
is normal ([25], Theorem 1.5.3). We also encounter the usual bugbear of gaussian processes; 
viz. the positive probability of negative rates. Moreover, we have assumed rate changes are 
governed by a multivariate normal distribution without offering any supporting empirical 
evidence. This difficulty is accentuated by evidence of non-normality presented in the next 
section.

Underlying our entire analysis has been an implicit assumption that yield curve shocks 

are temporally independent identically distributed. Although we do not address it here, this 
is where we part company with the stochastic process approach to yield curve evolution. 

For example, if the Heath-Jarrow-Morton process really caught the essence of interest rate 
movements, then, not only does the probability distribution of the yield curve change depend 
on the yield curve, but it also depends on its history. Testing such theories with available 

data seems challenging.
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3 Second Generation Wavelets for Yield Curve Data

Assume our input data is a series of observed yield curve shifts, A given observation, yo, 

is represented by a vector {yo,k}k=o which records the values of yo at maturities
We are going to rewrite this series of shifts as a pair of series. One is ’’smoother” than 

the original observation while the other records the information lost in the process. The 
first reflects coherent movement, movement experienced by all maturities in a locale; the 
second, by contrast, reflects idiosyncratic movement around a particular maturity.

3.1 The lazy transform

The first step in this process is to split the “signal” yo into two separate signals with the
“lazy” transform. That is, the result of applying the lazy transform, L, to yo is the pair of

signals, the “upper” signal of “forgotten” samples and the “lower” signal of “subsamples.” 
Symbolically,

L : y 0 ^  (3.1)

where

l-i ,k — l/o,2Jb & =  0 ,1 ,2 ,. . .  (3.2)

u-i ,k  — t/o,2ifc+i5 k =  0 ,1 ,2 , . . . .  (3.3)

The lazy transform is illustrated schematically in Figure 3.1.

Note that yo may be recovered from I_i and u - \  simply by interleaving the two se

quences. A scheme for such a recovery could be obtained from Figure 3.1 simply by reversing 

the direction of the arrows.
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Figure 3.1: Schematic for the “lazy” transform, the first step in the wavelet transform, yo 
is the input sequence, L is the transform, and U - \  and l_i are the output sequences.

3.2 The prediction step

The second, or prediction, step affects the upper signal, u_i. The subsamples in f_\  

are used to predict the data at the points X 2j + \ - The differences between these predictions 
and the values of u - \  are then recorded as d_i, the difference coefficients. The idea is that 
if the yields at the various maturities move together, then the data { l - i }  should form the 
basis for an accurate prediction and the coefficients {gL-i} will tend to be small.

There are several ways of formulating a prediction that various authors have investigated 
(cf. Sweldens and Schroder [32]). The simplest method assumes the least “structure” , and 

merely uses the neighboring even values to predict the odd. We are going to assume there is 

a modicum of structure, that the yield curve is at least continuous. Therefore we expect to 

obtain a significantly more efficient encoding of the yield curve fluctuation by using linear 
interpolation of the even values to predict the odd. Thus

, (%2k+2 -  X 2 k + l ) l - l , k + (%2k+l  ~  X 2 k ) l - l , k + l  tod-i,* =  u - h k ----------------------------------------     — ----------- (3 .4)%2k+2 ~  %2k

and we write

P  : ( l _ i , U - i )  d - 1.
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Figure 3.2: A pictorial representation of the prediction step of the wavelet transform. The 
height of the vertical line above X2k+i is the prediction of which is obtained by linearly 
interpolating and The difference between itself and its predicted value
is the difference coefficient, cL.i j .

Figure 3.3: Schematic of the prediction step of the wavelet transform. Transform L splits 
yo into two signals as in Figure 3.1. The lower signal, I_i, is output as before, but now it 
is also used to form a prediction of the upper signal as well. This prediction is subtracted 
from the true upper signal, it_i, to form a signal of differences, d_i, which is then output 
alongside I_

A picture of this step is provided in Figure 3.2, and a schematic dagram extending 

Figure 3.1 is given in Figure 3.3. It shows the composition of the lazy transform and the 

prediction step. Since the signal u - 1  can be recovered from cLi and l_i by interpolating 

Z_i and adding d - i, it follows that yo may be recovered from d - i and I_i. A scheme for 

this inversion may be derived from Figure 3.3 by toggling ” to “+ ” and reversing the 

direction of right pointing arrows (the vertical arrows remaining as they are).
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3.3 The update step

The last function, the update step, is applied to the lower signal, l - \ .  As we have 
explained, if yield fluctuations correlate strongly across maturities which are close together, 
the difference, or detail, coefficients d - \  be small, and consequently the lower signal, though 
coarser, will remain a good estimator of the entire yield curve shift. This is the strategy for 
obtaining a simpler approximation which minimizes the loss of local information. On the 
other hand there may be (and are!) global properties of the observed signal that we want 
a simplified approximation to retain. The update step is designed to recoup information 
from the detail coefficients in such a way that, by minimal changes to f_ is& induced by 
neighboring c L t h e  updated signal retains specified global properties of t/o-

In our application, the global quantity of a yield curve shift we want a simplification to 
share with its original is the amount by which the value of a portfolio changes. Suppose, for 

purposes of illustration, that our portfolio is a continuous perpetuity that pays interest on 

a single unit of currency. If the continously compounded interest rate at a time x  is r(x),  

then the value of the portfolio at time 0 would be

r  e- r{x)xdx .Jo

Next, suppose that the yield curve undergoes a shift, r  -> r  4- A r. Then we are going to 

regard A r  as our signal, and the quantities we will use the update step to preserve are
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l-l ,k
x 2k x 2 k + l  x 2k+2

Figure 3.4: Hatched area and its moment represent global information lost in the prediction 
step.

[  A r (x )e~r^ xdx, (3.5)Jo
which we regard as the mean value of the shift (weighted by the discount function) and

[  x A r(x )e~ r^ xdx, (3.6)J o
which we regard as an approximation to the change in value the portfolio undergoes.

Returning to our general discrete case (using yo instead of A r), the global quantities we 

wish to preserve correspond to areas and moments. The first quantity, the average change, 

corresponds to the integral (3.5). It is the area under the linear interpolation of yo (divided 

by the length of the interval). The second quantity, the first moment of change, corresponds 
to the integral (3.6) and is the “moment of inertia” of the area under the interpolated yo.

The hatched area in Figure 3.4 represents how the area would change if the prediction 

step were not followed by an update. Figure 3.5 illustrates how the l - i ,k  are updated to a

new sequence y~i,k- The new sequence y - i  has the same average and same first moment

as yo- This is indicated by arranging for the hatched areas in Figures 3.4 and 3.5 to have 

the same area and the same first moment.
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Figure 3.5: Pictorial representation of the update step; information lost in prediction (Figure 
3.4 is reincorporated in such a way as to preserve both area and moment of area.

The hatched area in Figure 3.4 is simply ^ d - \ tk{x2 k+ 2  ~  x 2Jt)j the hatched area in 
Figure 3.5 is +  y ~ i , k + i ) ( x 2 k+ 2  — x 2k)- Setting these quantities equal to each other
and simplifying, we have the linear equation

d - i , k  =  y ~ i , k  +  y ~ i , k + i -  (3.7)

I t ’s a little messier, but the moment of the hatched area in Figure 3.4 is

d_ \ k / 2 2 \—^ J~ ( ~ x 2kx 2k+1 ~~ x 2k +  x 2k+2 +  x 2k+ 2x 2 k + l )

while the moment of the hatched area in Figure 3.5 is

4 5 1 5 5 1
( ~ - X 2 k -  ^ x 2k x 2k + 2  +  QX 2k + 2 ) y ~ l , k  +  ( q X2 k +  ^ x 2k x 2k + 2  +  ^ x 2 k + 2 ) V - l , k + l -

Setting the moments equal gives us a second linear equation in y ~ \ , k  and y - i ^ + i -  Putting 

this equation together with (3.7) we obtain a linear system in y ~ \ ^  and y ^ k + i -  The 

determinant of coefficients of y - \ , k  and y ~ i , k + i  from this system may be calculated to be

13 x \ h +  lOX2kx 2k+2 +  x 2k+2 (3.8)

which is positive whenever 0 < %2k < x 2k+ 2  as we do in fact assume. Thus, we can always 

find y ~ \ , k  and y ~ i , k + i  in Figure 3.5 to fit our requirements.
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Figure 3.6: Scheme of the entire wavelet transform through lifting

The general case involves one more complication in that there are many points X2k+i so 
the updates at interior points X2k must be coordinated (see Section 5.1), but this will do 
for our introductory sketch. We symbolize the update by

U : (I_i, d_i) y_ lm

The entire wavelet transform is schematized in Figure 3.6.

The final point to make concerning the update step is that the diagram can be inverted. 

The update step is invertible because the determinant (3.8) is nonzero, and we have already 
observed the previous steps were invertible. Again the inversion may be diagramed by 

reversing the right pointing arrows and toggling the +  and — signs. The final result is that 

the original signal yo can be recovered from the coarse approximation y_ i and the details 

d - 1  tha t the coarse approximation leaves out.

The process that takes the input sequence yo to the pair of output sequences (d_i,f/_i) 

can, in turn, be applied to the sequence y - \  itself. That is, the same process, suitably 

modified, would take y_i as input and produce a new pair of sequences cL2, y ~ 2  as output. 

Thus, with our specific prediction and update routines, we would begin with a sequence yo 

defined on a mesh of points {xk}^=Q where n  would be a perfect power of 2, say n =  2J". We 

would then iterate our process j  times and from yo produce a series of detail coefficients,
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Figure 3,7: Multiresolution analysis of yo. Repeated application of L, P , and U generates a 
series of sequences of detail coefficients d_ i , . . . ,  d - j  and the coarsest possible approximation 
V-j- The process is invertible, so yo can be recovered from the d^ and y_j; that is, no 
information is lost in multiresolution analysis.

{d_i, d_2, . . . ,  d - j }  and one last approximation y_j, defined only at points xq and x n. 

We view the totality of these iterations as a single transformation, calling it the wavelet 
transform or multiresolution analysis. We have illustrated the multiresolution process in 
Figure 3.7,

Since each of the steps

y - j  ^  ( d - j - u y - j - i )

is invertible, it follows that perfect recovery of the orginal sequence yo is possible if one 

should know only the details of the transforms, the nodes x^, the detail coefficients d-k  

and the final approximation y_y. In other words, this is just a fancy change of basis for the 

vector yo; nevertheless, it is hoped that this change of basis, like the principal components 

analysis of the previous section, will help illuminate the process of interest rate evolution.
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4 Data and Data Preparation

The data used to illustrate the wavelet analysis comes from the CRSP 2001 Monthly 
Treasury Database. Data from the CRSP files were extracted and processed using the free 
software, Larry Wall’s Perl (portable extraction and report language) and the Perl Data 
Language package.

The program, mbxmunge. p i  in the appendix, extracts 120 months of data and uses the 
unfiltered Fama-Bliss [2], or “bootstrap” method to construct a piecewise linear yield curve, 
nodes at the maturity dates of outstanding issues at the time of observation. When several 
issues matured on the same date, yields to maturity of the various issues were averaged to 
obtain the yield for that particular date.

The term  “bootstrap” is used only to mean that the yield curve determined by shorter 
term  securities was used to “strip” longer term coupon bearing securities before using these 

latter securities to extend the yield curve. Coupon prices were obtained by linearly interpo
lating the yields at neighboring maturities whenever no security was scheduled to mature 

on a coupon payment date. The simple (continuously compounded) yield to m aturity was 

then used as the yield curve value at that maturity. When the yield curve did not extend 

far enough to strip the last few coupons, a modified internal rate of return was used to 

estimate the yield. The modification was simply that the yields at the coupon dates would 

lie on the line determined by the previous latest maturity and the new one.

The output of this extraction program is then a table corresponding to each observa

tion month. Each such table comprises a schedule of unique maturity dates and a yield 

corresponding to each such date.
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The yield curve shifts. In order to estimate the yield curve shift from one month to the 
next, the smallest common refinement of the two successive months’ maturity tables was 
taken. Linear interpolation was then used to estimate the yield curve at the nodes added 
by the refinement. The instantaneous spot rate was always taken equal to the shortest 
observed yield, and difference curves were computed over intervals shorter than the longest 
m aturity of any observed yield curve. Thus the common refinement provided a ” common 
denominator” between successive months, and differences in yields were computed at the 
nodes of this refinement.

Finally differences for all pairs of successive months were put on the same footing by 
linear interpolation at a dyadic mesh of nodes. Thus the input for the wavelet transform of 
each month’s yield curve shift was a table of yield differences computed on the minimum 

possible mesh and then interpolated to a common set of nodes used for all yield curve shifts 

in the data set under study. Commensurate with the typical number of maturity dates for 

outstanding Treasurys, the number of nodes in the common mesh was taken to be 257; that 
is, one plus a power of 2 (since the mesh is dyadic), 8 deemed the most appropriate power.

Moreover, since maturities are highly concentrated towards the short end of the yield 

curve, we did not use equally spaced intervals for our mesh points. This is a significant 

departure from the format for ’’first generation” wavelets (basically those defined by trans

lation and dilation of a single ’’mother wavelet” or, equivalently, through special properties 

of the wavelet Fourier transform). Our definition and use of wavelets follows Wim Sweldens 

and Peter Schroder [32]. The idea is that by adapting our analysis of the yield curve to the 

information available about it, (much as McCulloch chose spline knots), we will isolate the

38



salient sections of yield curve movement more effectively. The actual mesh, in days to cash 

flow, may be found in the appendix in ycm esh.dat.
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5 The Wavelet Transform of Yield Curve Shifts

Having estimated all yield curve shifts in the interval being studied at a common set 
of nodes, we proceed to compute a wavelet transform of each of the difference curves. The 
particular wavelet transfrom used here is an adaptation of the biorthogonal (2,2) Cohen- 
Daubechies-Feauveau transform. This adaptation uses ” second generation wavelets” or 
the ” lifting scheme” . This adaptation is used because it extends the wavelet transform to 
bounded intervals, irregular samples, and weighted inner products.

All of these extensions are important in the study of the yield curve. The yield curve is 
necessarily bounded at zero maturity and practically bounded at 10 to 30 years on the far 
end. The irregularity of maturity dates of outstanding securities at any given time brings 
in irregular samples. Weighted inner products are related to the magnitudes of the yield 
curve shifts, as we will explain next.

As we noted in our overview of the lifting scheme, the wavelet transform tries to analyze 

the yield curve shift into shifts that are localized to maturities in a short interval and broader 

shifts that involve a range of maturities. This is quite familiar to market participants, of 

course; as this is written (summer 2003) pundits discuss why short-term and long-term rates 

should be moving in opposite directions. In order to analyze a movement into local and 

global components, it is necessary to specify exactly what we mean by a global movement. 

Imagine, for example, a shift where the shortest and longest term  rates remain constant 

while the yield curve, as a whole flattens out. How should such a movement be resolved 
into local and global movements?
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Our criterion for global movements will be stated in terms of the effect the movement 
has on the value of a porfolio. The global component of a movement will have the same 
effect while the local component will have no effect. Specifically, denote a portfolio by a 
sum of delta functions

(5.1)
i

corresponding to a payment schedule {xi} .  The function 5i is the point mass concentrated 
at X{, and bi is the current market value of the payment expected at time x .̂ Thus the 
value of the entire portfolio may be expressed

r T
/  Y^bi5i{x)dx,h  y

where T  is an upper bound for all maturities X{. Thinking of expression (5.1) as a weight 

function for the integral inner product and letting A r denote the yield curve shift, we regard

™ J (Ar ) ( x ) ^ 2  biSi(x)dx (5.2)
i

as the average shift. Suitably normalized, the first moment of this same integral,

J x (A r)(x )£ b iS i(x )d x  (5.3)
i

is the duration, or coefficient of the best linear approximation to the portfolio change in 

value brought on by A r. In terms of these measures, then, a yield curve shift will be resolved 

into shifts that are local and shifts that are flatter while retaining the same average and

duration as the original. The portfolio we work with is the market portfolio of Treasurys,
the face value of which is reported by the U.S. Government and recorded in the CRSP files.

It is im portant to note that the concepts of local and global expand as we work from 

finer to coarser scales. For example if a yield curve shift were to consist of a single “chirp” at
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a single maturity, the successive separations into local and global from the finest to coarsest 
levels would spread the effect of the chirp to the entire curve, much as a single Hershey’s 
Kiss might slowly melt in a baking tin.

5.1 Update details

The estimation of the global component of a given yield curve fluctuation is obtained 
first by subsampling and second by updating the subsamples so that, serving as nodes 
of a linearly interpolated approximation to the originally observed yield curve shift, they 
determine a function with the same moments (5.2) and (5.3) as the original. We describe 
how this is done.

We begin with our fundamental functions

» =  j  =  0 ,1 , . . . , 2n+i.

The finest level of nodes is chosen, as we have described, comensurate with the level of 
observation. In particular, as seen in ycmesh. d a t in the appendix, we start with the interval 

1 to 3713 days (just over 10 years) and subdivide it into 256 subintervals, shorter intervals 
for shorter maturities, longer intervals for longer maturities. For the first level, level i — 0, 

the functions (f>qj are piecewise linear functions interpolating the delta funtions on the 257 

points of the observation mesh. For example, ^o,o is the piecewise linear function on the 

interval [1,3713] which equals 1 at 1, and 0 at all other observation points.

The functions f c j  are called fundamental because all observations and transforms of 

observations may be expressed in terms of them. For example the “observed” yield curve
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shift for January of 1992 was 29, 29, 31, 34 and 38 basis points at 1, 4, 7, 10 and 13 days, 
and so on. Thus the January yield curve shift corresponds to the combination,

29<?!>o,o +  29^o,i +  310o,2 +  340q,3 +  380o,4 +  • • • •

2n
so,i0o,j-

3=0

The level —1 approximation lives on the even indexed points, 0 ,2 ,4 ,. . . ,  having the
general form

The lazy transform provides the basis for the coarser estimate simply by subsampling: 

29,31,38, and so on at the even indexed points. Interpolation predicts 30 and 34.5 bp at 

the omitted points, so the first detail coefficients are cL-i;o =  —1 and eL. 1,1 =  —.5 bp.
The integral of the January 1992 yield curve shift against the weight of market portfolio 

cash flows is

as in (5.2). Note that, by linearity, it is enough to compute the integrals of the functions 

<j>ij alone. Thus, set

In general, when there are 2” +  1 original observation points, and the observed values are
{ s j } ,  then the original (level 0) linearly interpolated approximation is the function

2n~ 1
t :  5_i, j  ̂ - i  j .  
3=0

•T

and (5.4) becomes a sum of these precomputed integrals,

29M0(“) +  29M<°1) +31M<“) + . . . .
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Similarly, the first moment of January 1992’s movement may be expressed as a linear 
combination of the moments of the fundamental functions,

2 9 M $  +  2 9 M $  +  3 1 ^  +  . . . .

where

M I j  =  [  x(j)i d {x) J 2  bkSk(x)dx.
h  k

In order to retain the integral and moment for the coarser levels, it is required that the 
new coefficients s_ i j  satisfy

+ ■■■ = 29 A f$  +  2 9 M $  + 31 + . . .  (5.5)

+  . . .  =  29 +  29 +  3 1M $  +  . . .  (5.6)

and we want the method used to derive the the s ~ i j  to be the same, regardless of particular 
shift at hand.

Consider, for example the level —1 fundamental functions, <f>-ij. Each of these is 

also a perfectly valid yield curve shift in itself; in particular, each may be expressed as a 
combination of level 0 fundamental functions;

=  y*!k
It is easy to work out the coefficients h - in partcular situations, but one knows that

they may always be found from the observation that functions which are piecewise linear

with nodes on a subset of ycm esh.dat are also piecewise linear with nodes on ycm esh.dat 

itself.
Moreover, since the nodes of are contained in level —1 nodes, the prediction step 

from level 0 to level - 1  is perfect and the detail coefficients are all zero for these functions.
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Since the functions themselves are unchanged by the successive application of the lazy 
transform and the prediction step, their integrals and first moments are unchanged as well. 
Consequently, whenever the details are 0, the coefficients s - i j  — so,2j- The general form 
would need to be

s - i , j  == sQ,2j  +  (something depending on the detail coefficients)

The simplest dependence would be linear; the least distortion of local information would 
require that only details close to so,2j be used. Hence, the relation

s - i  ,j =  so,2 j +  +  B - i j d - i j  (5.7)

is proposed.

Having gleaned information from hypothetical shifts which were all global and no local 
(the we investigate shifts at level 0 that disappear at level —1. That is, we investigate

whether an update step of the form (5.7) can provide us with a function which is 0 at level 

— 1, which has a single non-zero detail coefficient, and which satisfies (5.5) and (5.6).

If lazy-predict-update applied to a yield curve shift did result in a function with 3 - i j  =  0 
for all j  with the single detail coefficient =  1 and the other detail coefficients were

equal to 0, then only two even coefficients of the original shift could possibly be non-zero:

SO,2k =  S-l,jfe ~  5 —1,k 

SQ,2k+2 =  S - l , k + l  ~  ^ —l,k-

In fact, since we assume the s - i j  all equal zero, we must have

So,2k =  -5 -1 ,* :
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B - i ,k jyr(°)Q,2k+1
_ _ A-i^k jlfW0,2fe+l

SQ,2k+2 = k-

Finally, in order to get the detail coefficients right, the shift at level 0 must be of the form

+  $0,2k+l ~ (5-8)

Since (5.8) maps to zero at level —1, its integral and first moment must also be 0. This 
leads to the linear equation

>, m (°) . . .  i  r r  , l  r m ? i  ., (5.9)

for each k. Thus the integrals and moments of the fundamental functions determine the 
coefficients and A - a n d  these coefficients are used to calculate the update trans
formation of any yield curve shift.

Thus, so long as the system (5.9) has a solution, the update map may be taken in the 

simple form (5.7). The function (5.8) is known as a wavelet.

Returning to the January, 1992, shift, our first two equations corresponding to k — 0 
and k =  1 in (5.9) are

B - i,o 

^-1,0 

B -M
A -i,i 0

for which we obtain

3507 17536
21043 105217

17536 64211

105217 896006

7014

42087

0

5-1,0 .07692

A-i ,o .38462
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B - 1 , 1 0
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------1
o_________i

and, referring to our model (5.7),

«-i,o =  29 +  .07692 - (—1) and s_ M =  31 +  .38462 • ( -1 )

in basis points.

The scaling function integrals and first moments are computed by the rou
tine in w gh tkern .p l, listed in the appendix, which sends its output to w sc lfc n in t .d a t ,  
available from the author on request. The update coefficients are computed by the routine 
wupdatecoef .pi, listed in the appendix, which, in turn  sends its output to wupdatecoef .dat, 
also available from the author on request. The appendix also contains images of the first 
12 level —1 wavelets. The asymmetry of these wavelets is due to the irregularity of the 
point-mass measure of total Treasury payments for the weighted inner product. All the 

wavelets have mean change and duration change equal to zero; this explains the ’’wave” , 

the oscillation above and below 0, at least where the inner product is nonzero.

5.2 The wavelet transform

The process described, above takes the yield curve described at 2n-f 1 points and maps it 

to a coarser representation based on 2n_1 +  1 points. It separates the yield curve shift into 

wider scale-movements and localized wavelets of movement. This separation involves no loss 

of information since the finer scale representation can be reconstructed from the coarser scale 

representation and the wavelets. This same process is repeated on the coarse representation 

to generate an even coarser representation and wavelets scaled to intervals twice as large as
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the first. In fact, this process is repeated until we end up with a representation based only 
on the end points of the maturity interval we started with and wavelets of ever widening 
scale. The appendix contains images of the first 12 wavelets at level - 2  as well as all the 
wavelets from levels —5, —6, —7, —8. These wavelets also have zero integral and zero first 
moment when computed against the weight (5.1). Additional asymmetry is induced by the 
irregularity of the cash flow schedule. The wavelets all have the same basic shape; only the 
scale changes from level to level.

First generation wavelets are strictly dilations and translations of a single generating • 
“mother” wavelet. Second generation wavelets are more flexible. The price to pay is the loss 
of some nice properties such as orthogonality, but just as the second generation wavelets 
have “similar” shapes, other important properties of wavelets are sufficiently robust to hold 
for second generation wavelets as well.

The final result is called a “multiresolution” analysis of our finest scale representation. 

It begins with ]T) so,j<^o,j and generates successively coarser and smoother approximations to 
the yield curve shift, finally stopping at a simple line, s_n?o^-n,o +  s - Hii n, 1 . Moreover, 
this process can be reversed because all the information lost in a coarser approximation has 

been saved- in the detail coefficients.

To formulate this resolution, let ipij denote the special function with the following two 

properties.

1 . ifjij is a function in level i +  1 that multiresolution takes to zero in level i; that is, the 
approximation of ipij on level i is 0,

2 . All details of this map are 0 except d i j  and that detail is 1.
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These t/jij are called wavelets, and each step in the multiresolution process amounts to 
rewriting the approximation at level i +  1 as the sum of the approximation at level i and 
wavelets:

5 3  — 5 3  sh3(f)h3 +  53
Thus, our fine scale function, which we regard as level 0, was first written

2n53 s0,i$0,ii=0

n =  8 in our example run and transformed to a function written
2n~1 2n_1—1

5 3  +  53i—0 i=0
Repeating until we arrive at level — n, we end with

n 2n--?'-i
71,0̂ —71,0 T  ®—n,l4*—n,l +  53 53 (5.10)j = 1 i= 0

The first two terms of (5.10) constitute the linear curve shift having the same mean and 
duration change as the observed shift. That is, measured in terms of the mean and duration 
change described in (5.2) and (5.3), these two terms describe the best linear approximation 
to the yield curve shift. For example, if the yield curve shift were the paradigmatic parallel 

shift, then all the detail coefficients would be zero, and the shift would be entirely captured 

by the two coefficients s_n)o and s_n>i of (5.10).

The detail or wavelet coefficients indicate not only the extent to which the yield curve 

shift fails to be linear, but it also hints at the nature of the failure. In particular if a simple 

piecewise linear model accurately depicts yield curve movements, we expect most detail 
coefficients to be essentially zero.
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We call the map that begins with the ” observed” yield curve shift {so,j} and resolves 
it to (5.10) the wavelet transform of the yield curve shft. We propose to study the wavelet 
transform of historical yield curve shifts for insights into the evolution of the yield curve.

Once the yield curve shifts had been approximated and the update coefficients computed, 
the routine listed in wwaveycdif .p i  was used to compute the wavelet transform of the 119 
monthly yield curve shifts observed in the years 1992 through 2001. The listing is in the 
appendix. The wavelet transforms are written to the file wycwavtran. dat and is available 

from the author. The wavelet transform of just the January 1992 shift is given in Table 5.1. 
All entries in Table 5.1 are detail coefficients except the first and last. The first and last 
coefficients indicate the linear yield curve shift with the same mean shift and same duration 
change. This linear shift comprises 8bp at the short end and 3bp at the long end. The 
odd columns in Table 5.1 (assuming 0 off-set) all comprise the first pass (level —1) detail 
coefficients. Columns 2 and 6 comprise the second pass details, column 4 the third, etc.

The wavelet transform of the January 1992 shift detailed in Table 5.1 resolves the finest 
approximation of the yield curve shift to the coarsest approximation and a sum of wavelets. 

Inverting this process, we may start with the coarsest approximation and add the details for 

each level back in, one level at a time, obtaining at each level a finer approximation to the 
observed yield curve shift. This can be read off from the formula in (5.10 and is indicated 
graphically in Figure 5.1.
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0 1 2 3 4 5 6 7
0.000825 - 0.000058 0.001227 0.000000 - 0.002739 - 0.009000 - 0.004357 0.001046

- 0.001444 - 0.000467 - 0.003219 0.001636 - 0.000077 0.000092 - 0.001128 - 0.001198
0.000847 0.000000 0.001178 - 0.000074 0.000139 - 0.000108 0.000901 0.000413

- 0.000597 0.000302 0.000752 - 0.000089 0.000211 - 0.000056 0.000132 0.000205
- 0.000066 0.000000 - 0.000071 - 0.000274 - 0.000087 0.000028 0.000655 0.000384
- 0.001118 0.000166 0.000777 0.000036 0.000718 - 0.000203 - 0.000026 - 0.000000
0.000005 0.000016 0.000019 0.000257 0.000433 - 0.000147 0.000459 0.000720

- 0.001362 0.000119 0.000327 0.000000 - 0.000490 - 0.000250 - 0.001051 - 0.000000
0.000383 0.000678 - 0.001538 0.000120 - 0.000549 0.000175 - 0.000582 -0.000145

- 0.001179 - 0.000199 - 0.000883 - 0.000553 - 0.001293 - 0.000143 - 0.000280 - 0.000441
- 0.000148 - 0.000024 0.000157 - 0.000953 - 0.000675 - 0.000003 0.001181 - 0.000069
0.000053 - 0.000016 - 0.000163 - 0.000013 - 0.000002 0.000187 0.000360 - 0.000056

- 0.000854 - 0.000065 - 0.000005 - 0.000003 - 0.000174 0.000026 - 0.000191 0.000009
-0.001068 0.000524 0.000778 - 0.001712 - 0.004497 0.000967 0.003279 0.000006
-0.000985 - 0.000032 0.000056 0.000103 0.000303 0.000085 - 0.000339 - 0.000052
- 0.000098 - 0.000038 0.000365 0.000048 - 0.000140 - 0.000125 0.000177 0.000268
0.000481 - 0.000098 0.000332 0.000034 - 0.001822 - 0.000402 0.000669 0.000378
0.000123 - 0.000336 - 0.000284 0.000066 - 0.000291 - 0.000083 0.000211 0.000136

- 0.000671 - 0.000034 - 0.000404 - 0.000235 0.000655 0.000712 - 0.001537 - 0.000352
- 0.000772 0.000034 0.000326 0.000025 0.000870 - 0.000013 - 0.000304 0.000000
0.000064 0.000003 0.000189 - 0.000004 0.000041 - 0.000002 - 0.000048 0.000001
0.000102 - 0.000000 0.000346 0.000047 - 0.000448 - 0.000524 0.000282 - 0.000020
0.000119 0.000047 0.000182 - 0.000296 - 0.000249 0.000102 0.000098 - 0.000001
0.000186 0.000055 0.000112 0.000015 0.000071 0.000009 0.000382 - 0.000207
0.000670 - 0.001048 0.000450 - 0.000193 0.001373 0.000041 - 0.000381 - 0.000046
0.000787 0.000038 0.000086 0.000003 - 0.000027 - 0.000124 0.000218 0.000085

- 0.000203 - 0.000199 - 0.000600 0.000010 - 0.000384 - 0.000132 -0.001945 - 0.010058
0.000248 0.003665 0.003025 - 0.000619 0.001791 0.001014 - 0.000625 - 0.000081
0.000436 0.000587 0.001787 0.000053 0.000728 0.000000 0.000154 0.000075
0.000502 - 0.000028 0.000085 0.000012 - 0.000389 - 0.000199 - 0.000044 0.000012

- 0.000651 - 0.000026 0.000038 0.000144 - 0.000124 - 0.000011 - 0.000272 0.000020
0.000564
0.000267

0.000068 - 0.000061 - 0.000026 0.000054 - 0.000038 - 0.000182 - 0.000004

Table 5.1: Wavelet transform (multiresolution analysis) of the yield curve shift in January, 
1992. Read this table from left to right, then top to bottom. That is, with zero offset, 
coefficients whose indices are divisible by 8 are found in the first column.
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Days to m aturity Days to m aturity

Level —6 Level —5
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Days to  m aturity Days to  m aturity
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CCSXt

Days to m aturity Days to m aturity

Figure 5.1: Beginning from the coarse approximation of the yield curve shift obtained by the 
wavelet transform, level —8, one can work back to the raw data by adding the details back 
in. One simply multiplies the wavelets for January 1992 (see appendix) by the coefficients 
from Table 5.1 and adds the resulting functions to the previous level’s approximation.
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6 Wavelet transforms of Treasury yield curve shifts

Having transformed yield curve shifts over 10 years, we look for clues to the way the 
yield curve moves in the array of wavelet transform coefficients.

6.1 The linear model

If yield curve movements were simply parallel translations except for statistical ” noise” 
we would expect to see the level — 8 scaling coefficients (coefficients 5 -n,o and s - n,i in 
equation (5.10)) highly correlated with each other and of similar magnitude. We would also 
expect these coefficients to be of significantly larger magnitude than the detail coefficients. 
That is, it is only noise that keeps the detail coefficients from being exactly 0 and only noise 
that keeps the scaling coefficients from being exactly equal to each other.

On the contrary, the data tabulated in Figure 6.1 indicates that, even though there is 

some correlation between one day and ten year rate movements, there is no support for 

a hypothesis that the closest linear approximations to yield curve movements is any fixed 

slope, much less slope 0. On the other hand, Figure 6.2 shows good separation between the 

coarse scaling coefficients and the detail coefficients. In fact, we see that while 70% of the 
scaling coefficients exceed lObp in absolute value, only 20% of the detail coefficients are so 
large. While it would be hard to argue that the detail coefficients are just noise, it does 

appear that a two factor linear model obtained from wavelet analysis offers a good rough 

model.
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Change in 1 day ra te

Figure 6.1: Changes in ten year rates are plotted against changes in one day rates for 119 
months. The best linear fit is superposed. Correlation between rate changes is positive but 
weak with R 2 =  3.3%. The slope of the regression line is .30, significant at the 5% level.
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Figure 6.2: Cumulative distribution of coarsest scaling coefficients (squares) and all detail 
coefficients (circles). About 70% of scaling coefficients are larger than lObp while only 20% 
of detail coefficients are.
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Norm ally d is tr ib u ted  quan tiles

Figure 6.3: The detail coefficients are ranked in one hundred quantiles according to size. 
The median value from each is plotted against the middle of the corresponding quantile of 
the standard normal distribution. The extent to which the graph departs from linear is a 
measure of the extent to which the aggregate of detail coefficients fails to be normal.

6.2 The distribution of detail coefficients

If 2bp were prososed as the noise threshold, roughly 50% of the detail coefficients would 
import yield curve changes. Perhaps there is useful information hidden in these coefficients; 
perhaps we can use this information to refine the two factor linear model. First, however, 

let us consider whether the detail coefficients exhibit the characteristics of simple ’’white 

noise” . Most naively, we consider whether the 119 x 255 =  30345 detail coefficients might 

themselves be normally distributed. This possibility is quashed by a glance at the ’’quantile- 
quantile” plot in Figure 6.3. For if the detail coefficients were normally distributed, a linear 
transformation would bring their distribution to the standard normal distribution; that is, 

the elements of the plot would lie along a straight line. On the contrary, we see too narrow
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a head matched with too broad shoulders for the distribution to be normal. Or again, 
the details are normally essentially zero and spike suddenly when rate change information 
comes through.

Non-normality for the aggregate of detail coefficients does not imply that the detail 
coefficients are individually non-normal. However, with 119 samples for each detail coef
ficient, there is enough data to conduct a reasonable test for the normal distribution of 
detail coefficients at each position at each level. Using the R  statistical package,1 we ran 
the Shapiro-Wilk test [29] on all detail coefficients, level — 2 and lower, 127 in all2. Of these 
127 coefficients, the Shapiro-Wilk test rejects normality for all but 8 at the 5% significance 
level. Actual statistic and p-values are available from the author. We will proceed under 
the assumption that the detail coefficients are not normally distributed.

6.3 Power-law distributions

Assuming that the detail coefficients are not normally distributed, it is natural to look for 
another simple model. Recently, power-laws distributions have proved useful for modeling 

quantitative changes in the financial markets [1 1 ]. Figure 6.4 illustrates the extent to which 
a power-law distribution might successfully model the distribution of detail coefficients. 
The graph, though not so concave as would arise from a normal distribution, is nonetheless 

definitely concave, rendering a power-law model for the distribution of detail coefficients 

undesirable.

xh t t p : / / ww w. r - p r o j  e c t . o r g .
2 We regard the information content of level —1 coefficients as somewhat dubious, arising 

as they do. from intervals smaller than actually observed, but rather necessitated by the 
requirement of plotting successive months on the same grid.
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Figure 6.4: This plots the fraction of detail coefficients greater than the argument on a 
log-log scale. If a power-law distribution provided a good model, the graph would be linear.

6.4 Nonparametric tests

Absent a model for the distribution of detail coefficients, we may still examine the data 

nonparametrically, and we might also consider methods developed to denoise signals. We 
first consider two nonparametric tests analogous to analysis of variance. Our question here 
is whether or not the level of the coefficient is related to its magnitude. To the extent 

that interest rates move together, we expect to see the lower level (lower frequency) detail 

coefficients significantly larger than higher level (higher frequency) detail coefficients.
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6.4.1 Kruskal-Wallis

We use the Kruskal-Wallis test (cf. [16], Ch. 6.1) to help us determine whether level 
correlates to coefficient size. Specifically, we set

Xij = | dij — medianj(dij)\

where the denote the detail coefficients obtained in the multiresolution analysis (5.10). 
The i — —1, —2 , . . . ,  — 8 are the levels of the coefficients, and j  =  0 ,1 ,2 , . . . ,  28+* are the 
indices of the coefficients within the levels starting from the shortest term maturities.

As with parametric one-way ANOVA, we propose to model the magnitudes by

Xij =  (I + + Cjj,

where the mean p  is chosen so that the ’’treatm ent” effects t* average to 0, and it is assumed 

that the e -̂ are independent identically distributed. The hypothesis tested is

Ho '• T_1 =  T_ 2 =  • • • =  T_ 8

against the alternative hypothesis that not all r* are equal.

The statistic used to test Ho is obtained by replacing each detail coefficient by its overall 
ranking among all detail coefficients. Letting Hi denote the average rank on level i and R  

stand for the average overall rank, R  =  255‘1219+1, then the statistic for this test may be 

written

Now, if H q is true, then H  is approximately x 2 with 6 degrees of freedom. Feeding our

data to the Kruskal-Wallis test in the statistical package3 R , we obtain that H  =  3752.72,

3h t t p : / / www. r - p r o j  e c t . o r g
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so we would reject H q at any significance level. It is consistent with our expectations that 
level would be related to magnitude somehow; nevertheless, with so much data and so many 
levels, it is probably a weak result to claim there is some treatment effect. The next statistic 
tests the same null hypothesis (6.4.1) against a particular ordering of the treatment effects

n-

6.4.2 Jonckheere-Terpstra

In our second test, the Jonckheere-Terpstra test (cf. [16], Ch. 6.2), relative rank supplants 
overall ranking. The alternative hypothesis is

H a : r - i  < r_2 < . . .  < r_7

with at least one strict inequality. Our statistic is

J  — -%)»{»)(x v j  ~  %ui)-
v < u  i j

where I(o,oo) is the indicator function on the positive real line. This is simply the number 

of times a detail coefficient at a lower level exceeds a coefficient at a higher level. Thus the 
larger J  is, the more inclined we are towards the alternative hypothesis H a. On the other 
hand, if the null holds, J  is approximately normal. Let J* denote the standardized J ,

t* J - m
V^var(J)'

The proceedure jonktest .pi, listed in the appendix, computes this statistic to be in excess 

of 62, Consequently, we find it far more likely that coefficients should tend to be larger at 
lower levels than at higher levels.

Practically, this means that, should one be in need of a more refined yield curve shift 

model than the two parameter linear one, then one should first avail oneself of the three
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parameter model comprising the coarsest scaling coefficients together with the lowest level 
detail coefficient. A yet finer model would include the additional two level —7 detail coeffi
cients, and so on.

Although still somewhat crude, this test suggests there is no simple cut-off, there is no 
level where detail coefficients clearly transit from including rare large shifts to comprising 
simple white noise. Nevertheless, the benefit we look to wavelets for is a means of measuring 
not only the level of resolution we need for our purposes but also which coefficients within 
a level are of greatest importance.

6.5 Mean absolute deviation of detail coefficients

Not only may there be significant differences in detail coefficient magnitude among the 
various levels, there may also be useful differences among coefficients at different maturities 

within a particular level. We would like to conduct a two-way analysis of variance, but 
the fact that the number of detail coefficients double when we move up a level gives us a 
pyramid rather than a rectangle as a cross-classified design matrix, which precludes any 

simple application of such an analysis. This would be interesting to come back to.

Lacking a systematic analysis of variance, there is still some value in laying out a table 
of the scales for each of the detail coefficients. Given the apparent nonnormality of the 
detail coefficient distribution, the standard deviation of the detail coefficients may not be 

the best indicator of how the bulk of coefficients are disbursed. Indeed, in a model where 

the detail coefficients at a given level and maturity are zero except for noise and rare, large 

signals from the economy, a more resistant measure of scale is appropriate. For in such 

models standard deviation can be distorted by a single out-sized coefficient. Even in a
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model where the detail coefficients are just Gaussian noise, nonparametric scale estimators 
are still acceptable, if less efficient. See [33], Chapter 5.5, for more discussion and further 
references.

One commonly used measurement of scale is the “mean absolute deviation” (MAD):

MAD =  median {| d ij — median(d<y)|}

where the medians are taken over the number of observations in the sample, 119 in our ten 
year case.

The mean absolute deviation of each coefficient over the 119 monthly observations in 
the ten year interval 1992-2001 is plotted in Figure 6.5. Note how on every level the median 
magnitude is greatest at the short end of the yield curve. Thus, for example, a more effective 
strategy for constructing a 9 parameter model than that suggested in Section 6.4 would be 
to include the first detail coefficient from each of levels —2 through —8 than simply to 
include all coefficients from levels —6, —7 and —8.

6.6 Adaptive thresholding

On the other hand, it should not be just the likely magnitude of a detail coefficient 

that concerns us; somehow we need to balance both the magnitude and the breadth of a 

detail coefficient. The wavelets at lower levels correspond to shifts involving broader ranges 
of maturities and may therefore reflect the impact of macroeconomic events on interest 

rates while wavelets of the same magnitude at the more transient higher levels may be 

more reflective of market microstructure idiosyncracies. Indeed, the lower level coefficients
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Figure 6.5: The mean absolute deviation (MAD) of each of the 255 detail coefficients is 
computed and sorted into the corresponding multiresolution levels. Data is taken from 
monthly observations during 1992-2001. Levels are - 8  to - 1  top to bottom. A common 
scale is used throughout; the tallest bar is about 42 basis points.



incorporate yield changes across several issues and can be regarded as exhibiting less market 
” noise” .

To be more systematic in selecting the ” significant” detail coefficients, we use adaptive 
thresholding techniques to separate the coefficients into ”signal” and ’’noise”. The basic 
strategy is to take the non-normal interest rate change process and separate the center from 
the tails. The center is discarded and the unusually large coefficients at each level are used 
to reconstruct yield curve shifts which, it is hoped, are better indicators of the effect of 
events in the ambient economy.

We consider two approaches. The first has solid theoretical underpinnings and is widely 
used, but violations of technical conditions in our context of biorthogonal wavelet basis and 
irregular mesh lead us to search for corroborative evidence. The second method turns a test 
for zero mean normally distributed data on its head; we separate out all data that keeps 
the null hypothesis from being accepted and discard the rest. Either way, the interpretation 

of the fat-tailed observed distribution is a superposition of low amplitude white noise on a 
process of larger, rarer shifts.

6.6.1 Using SURE for threshold selection

The first technique applies Stein’s unbiased risk estimate (SURE) to wavelet analysis. 

First examined by Donoho and Johnstone [6] (cf. [26], Chapter 8, for a discussion and 

related references), this method chooses a coefficient threshold that minimizes an estimate 
of loss. Specifically, a one-parameter family of threshold functions is proposed:

x  — A, if x >  A,
0, if M < A,
x  -j- A, if x < —A.
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Applied to a set of coefficients, 5\  reduces small coefficients- to zero and reduces the mag
nitude of all others by A. Supposing that {xi}f=l  denote detail coefficients at a given level 
scaled so that the ”noise” component has unit variance,4 we estimate the ’’signal” contained 
in the scaled detail coefficient to be S\(xi). Now, if {y*}?-! denoted the true denoised nor
malized coefficients, then a measure of our estimation error, the L 2 loss, would be

E < * A t a ) - w ) 2 ,i—1
and our goal is to minimize the expected loss, or risk. Stein’s estimator of the L 2 loss is

d
SURE(A) =  d — 2 • : \x{\ <  A} +  (imn(|£i|, A))2 .

i=1
Here #  denotes the number of elements in a set. Now the only undetermined input to this 
estimator is the threshold coefficient A and the one we choose at each level is the one which 
minimizes SURE.

We compute this parameter for each month at each level and average the parameters 
across all months. The program for this is listed as SURE.pl in the appendix, and the 

results are tabulated in the second column of Table 6.1. Note how A actually increases 
as one moves from level —1 to level —4. This may not be surprising in view of the mean 

absolute deviation (MAD) of the detail coefficients displayed in Figure 6.5; however, it does 
not correspond well to our intuition that the narrower based detail coefficients of levels — 1 

and — 2 need to overcome a higher threshold to be considered significant; hence our look 

next at Ogden and Parzen’s thresholding procedure next.

4Although it is problematical to assume a variance of noise before we determine which 
component of the observation is noise, it is by regarding the statistical outliers as the 
’’signal” that we may reasonably take the MAD over 0.6745 as the noise variance.
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Level SURE Ogden-Parzen
- 1 0.00000280 0.00080079
- 2 0.00000721 0.00074951
- 3 0.00001737 0.00069807
- 4 0.00003898 0.00064385
- 5 0.00003866 0.00057573
— 6 0.00001119 0.00048471
—7 0.00000074 0.00042075
— 8 0 0.00017274

Table 6.1: The average thresholding parameter A determined for each level by the SURE 
and Ogden-Parzen methods

6.6.2 Using recursive hypothesis testing for threshold selection

The approach separating ”noise” from ’’signal” developed by Ogden and Parzen [27] 
follows along the same lines as the Donoho-Johnstone algorithm just described. That is, 
the method begins with the consideration of detail coefficients for an observation at a 
fixed level, then the thresholding function 5\  is applied to each coefficient. Moreover, the 
param eter A is determined by the coefficients themselves; the difference arises in the method 
by which A is chosen.

Specifically, the Ogden-Parzen method starts with detail coefficients {xi}f=1 normalized 
as before. These coefficients are tested to see if they could reasonably be Gaussian white 
noise. If the test should fail, however, it is the test rather than the hypothesis that is 

rejected. The largest coefficient is removed and the remaining coefficients are tested again. 
Like a salesman who only understands ”yes”, the analyst repeats this cycle until a test 

shows it is reasonable to assume the remaining set of coefficients constitute white noise, 
and A is set equal to the largest remaining coefficient.

The test statistic is simply

max(zf) (6 .1 )
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where I  is the set of indices of coefficients which have not yet been rejected as outliers to
white noise. The hypothesis is that (6.1) is the largest observation in d =  # { /}  samples

Here #  is the cumulative distribution function for the standard normal distribution.

detail coefficients to be regarded as ’’signal” . This means we choose a  smaller for higher

at which point we set the threshold for that level and month to max(|xj|). Averaging the 
thresholds over the 119 months observations, we determined a global threshold for that 
level. The programs which executed this process were called O Ptestpaxam .pl and 0 P .p l 

and are listed in the appendix. The global thresholds for each level obtained with the 
Ogden-Parzen method are given in the third column of Table 6.1.

In constrast to the SURE method, we obtained larger thresholds and these thresholds 

shrink as we descend to lower levels. This implements our intuition that lower level, broader 
based detail coefficients should contain less ”noise”.

Having determined thresholding parameters, we apply the thresholding function to 

each coefficient corresponding to the level of A. The results of this operation is illustrated

from a x 2 distribution with one degree of freedom. The analyst chooses a significance level
a  which determines the a-critical point to be

In the application to interest rates, we impose a stiffer standard for narrower based

levels of detail coefficients. In particular, we took a  =  .5 for level - 8  and halved it each
time we moved to a higher level. W ith a  determined, we computed Af for each month for
successively smaller sets I  until we obtained

max(|xj|) < Aj
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for levels — 1 and —2 in Figures 6.6 and 6.7 respectively. These are scatter plots where the 
horizontal coordinate corresponds to the level and location of a detail coefficient while the 
vertical coordinate corresponds to the value of the coefficient. The effect of applying the 
thresholding function is to remove a horizontal strip of breadth A from the center of the 
plot and glue the remaining pieces back together. This is quite visible; however, it is harder 
to obtain a sense of proportion. For example, A for level —1 is roughly quadruple the MAD 
for level —1, and hence thresholding at level —1 removes the vast majority of the 15,232 
data points. Moreover, referring to Figure 6.5, thresholds of 8 and 7 bp for levels —1 and 
— 2 bring the apparent significance of higher level short-term maturity volatility into better 
parity with the lower levels.

Graphs 6.6 and 6.7 exhibit a barbell form which is accentuated by thresholding, and 
this persists through lower levels as suggested by Figure 6.5. Even with the larger Ogden- 
Parzen thresholds, the story here appears to be that yield curve volatility is dominated by 

the short-maturity detail coefficients.
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Figure 6 .6 : Scatter plot of 119 months of 128 level —1 detail coefficients before and after 
thresholding using the Ogden-Parzen parameter in Table 6.1.
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Figure 6.7: Scatter plot of 119 months of 64 level —2 detail coefficients before and after 
thresholding using the Ogden-Parzen parameter in Table 6.1.
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7 Conclusion

Techniques from principal components analysis (PCA) and from wavelet anaysis have 
been used to examine movements in the Treasury yield curve. It is hoped that together 
they provide a stereographic view of these movements. PCA generates an optimal basis for 
efficient representation of term structure movement, but it is difficult to provide an economic 
interpretation for the elements of this basis. For example, statistical tests in Chapter 2 keep 
one from interpreting the first principal component as linear. Multiresolution analysis of the 
type used here, on the other hand, always provides a linear approximation. Wim Sweldens’ 
second generation wavelet construction adapted to term structure analysis insures that the 
linear approximation obtained retains two global properties of the input data, the average 

change and the duration change. Still, the statistical analysis of wavelet data still lacks the 
precision of the results of Chapter 2.4.

Although the statistics related to PCA are quite sophisticated, I have been concerned 
tha t their application in the current context may be compromised by the preprocessing of 
the data required to apply them. Wavelet analysis works more directly from observation. I 
have begun the PCA with yield curve approximations like those in McCulloch and Kwon
[23]. These approximations involve sampling cubic splines; the splines have no more nodes 

than the square root of the number of bonds observed. In other words, data are considerably 

smoothed before PCA is applied, and this may affect the results of sensitive tests. Wavelet- 
analysis, by contrast, begins with a linear interpolation of a yield curve. This yield curve is 

obtained by stripping coupons from Treasurys with a straightforward bootstrap technique. 
No other preparation, filtering or smoothing of the data is made. The idea is to make
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filtering decisions based on the wavelet analysis; to let multiresolution analysis do the 
smoothing. Since I also wrote a bootstrapping routine, I have developed an independent 
complement to PCA over which I have complete control. If it is deemed a certain type of 
security should not be included in the analysis, I have only to change a few lines of code; 
if it is desired to perform multiresolution with respect to a different metric than market 
portfolio cash flows, I can do that too.

Thus multiresolution analysis results in a readily interpreted linear approximation, an, 
approximation that preserves specified economic properties, but nonetheless an approxi
mation that lacks the optimality of the first principal component. Part of what the linear 
approximation generated by multiresolution analysis lacks in optimality is compensated for 
by the extra flexibility resulting from the second parameter defining the approximating line. 
One may see from the apparent near independence of the short and long term scaling co
efficients (see Figure 6.1) that one cannot really hope that a single, fixed slope line would 

ever serve as a dominant principal component.
In fact, we might view multiresolution analysis as a type of regression. Like OLS regres

sion, the output of the algorithm is a line, appropriate or not. The R 2 in OLS regression is 

essentially the same thing as the variances obtained in our PCA analysis, Table 2.2, and it 
may also be compared, though not so rigorously, with the scale statistics presented in Fig
ure 6.5, especially when this figure has been modified appropriately with SURE threshold 

selection or recursive hypothesis testing to eliminate noise terms as described in Chapter

6.6 (See Figures 6.6 and 6.7).
Proceding towards more refined, higher parameter models, Figure 2.3 shows how in

cluding more principal components can refine the resulting approximation. As indicated
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in Table 2.4 the statistical tests here show one can be quite confident that the first four 
principal components capture 98% of total yield curve variation. This is consistent with the 
rapid decay of the eigenvalues in Table 2.2. Still, nagging doubts crop up. Not only do the 
higher principal components seem even harder to interpret economically (see Figures 2.1 
and 2.2) than the first, they also seem to be even less robust. In particular, each principal 
component involves the entire yield curve.

Turning to multiresolution analysis, one finds again a less efficient representation, but 
nonetheless a representation that is adaptive and one that localizes the changes to be made 
if the input data itself suffers only localized changes. For example, if a yield curve shift is 
observed in which the average change and the duration change are both zero, and if the yield 
curve shift is limited to maturities at the short end of the yield curve, then multiresolution 
analysis will resolve the shift completely into a sum of wavelets like those in the appendix 
but which also have support in the same locality of the yield curve as the observed shift, 
no fancy cancellation of curves which are nonzero throughout the yield curve required. One 
practical implication is seen, if one restricts the window of maturities that one analyzes 
the term  structure in. The approximations and wavelets in that window stay the same 

as for the larger window; this is quite distinct from PCA. Moreover, if there is a loss of 
efficiency, Figures 6.2 and 6.3 demonstrate that large wavelet coefficients are relatively rare 
and consequently that multiresolution generated linear approximations tend to be quite 
good without involving many parameters.

Where PCA statistics gave very precise estimates of the contribution made to total 

variation by the various principal components, we have only very general, if satisfying, sta

tistical tests of the relative contributions made by the various wavelets. The Kruskal-Wallis
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and Jonckheere-Terpstra tests exposed in Chapter 6.4 give evidence that the magnitudes of 
the wavelet coefficients are differentiated by level and, in particular, that they are larger for 
lower levels. Since the number of wavelet coefficients decreases by half as one descends from 
one level to the next, we are unable to apply a standard two-way ANOVA test; however, 
the scale statistics in Figure 6.5 clearly show there are also differences among coefficients 
in the same level. In particular, short maturity coefficients are larger at all levels, and 
consequently, any piecewise linear model for yield curve shifts needs nodes in geometric 
progression for the first two years1 maturities. This phenomenon is in rough correspon
dence to both the convexity of the first principal component and, to a smaller extent, to 
the magnitude of the second principal component in the very short term.

The following list will wrap matters up. It provides an overview of what I have done in 
this dissertation.

Principal component results

1. Principal component variances decay rapidly but no two are equal; in particular, none 
but the last may be considered 0.

2. Most variation of yield curve is explained by 4-6 principal components; approxi
mate confidence intervals are derived for the proportions of variation explained by the 

largest principal components.

3. The first principal component is not linear, nor does it appear to persist.

1For example, start with a short maturity, 3 days, say, and double it repeatedly
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Wavelet analysis results

1. Second generation wavelet analysis can be adapted directly to data. Economically 
meaningful metrics can be substituted for euclidean metrics.

2. In the linear approximations of yield curve shifts derived by multiresolution analysis, 
the first scaling coefficient is a poor predictor of the second; therefore, at least a two 
parameter model should be used for yield curve shift approximation.

3. Detail coefficients are not normally distributed; not in aggregate nor in separate po
sitions. Nonparametric methods are required to study wavelet coefficients.

4. Even though the aggregate distribution has tails too fat to be normal, the distribution 
does not appear to be given by a power law.

5. A Kruskal-Wallis test shows significant difference in scale among levels of wavelet 
coefficients.

6 . A Jonckheere-Terpstra test shows lower level wavelet coefficients are larger than higher 
level coefficients.

7. Absent a two-way ANOVA test, a scale diagram using mean absolute deviation to 
define scale shows intralevel trends. Short maturity coefficients are largest. Good 

piecewise linear yield curve shift approximations should have nodes clustered at the 

short maturities.

8 . SURE threshold selection and recursive hypothesis testing provide methods to filter 
noise wavelet coefficients. This can refine the scale diagram.
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APPENDIX
Program Listings
mcmunge.pl 
#!/usr/bin/perl -w

use strict;

open DATA, "</home/mark/treas/mc_2fullnew.dat" 
or die "Cannot open mc_2fullnew.dat: $!"; 

open MUNGE, ">/home/mark/perl/mcmunge.dat"
or die "Cannot create mcmunge.dat: $!";

my $coef; 
my $flag;

while(<DATA>)

# Selecting dates for which to extract data:
# Bliss handles Y2K by denoting year 2000 as 100, 1999 having been denoted
# 99.
# Set $flag if we find a date we want.
#
$flag = 1 if (/~\s*9 [2-9]I~\s*10[01]/); 
if ($flag)

# The date and the number of spline coefficients are printed at the
# beginning of each new line. The remaining entries are nodes and
# spline coefficients interleaved— except that there is one more spline
# coefficient than node in McCulloch5s scheme. Bliss sets the last node
# position to 0.
#
chomp;
print MUNGE $_;
# Capture the number of spline coefficients into $coef 
if (/\d{6»7}\s+(\d{l,2»/)

$coef = $1 ;

>
else # that is, if the line comprises node and spline coefficient 

{
$coef— ; 
unless ($coef)

{
# After nodes and spline coefficients for a date have been printed
# to the line, end the line and condition continuation on the next
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# d a te .
print MUIGE "\n";
$flag = 0;
}

>
>

>
csinterpol.pl 
#!/usr/bin/perl
#
# Takes formated McCulloch. term structure data and computes
# (1) discount function at an independent mesh of points
# (2) corresponding yields on same mesh
# (3) resulting matrix of yield shifts
# (4) singular value decomposition of shift matrix
#
# Thus input is matrix of data and vector of nodes;
# program sends each of the SVD factors to a separate file.

use strict; 
use PDL;
use PDL::NiceSlice;

sub csmat
{
# This matrix encodes linear conditions on coefficients of cubic spline;
# it is the matrix M in the equation MC=B where C is the vector of
# nonconstant coefficients of the cubic polynomial in each interval.
# Rows = 0 (mod 3) encode conditions on polynomial functions
# (interpolation requirements); rows = 1 and 2 (mod 3) encode smoothness
# conditions.
#
# Input should be a 1-D pdl of nodes in increasing order, 
my $x = shift;
my $h = $x(0:-2)-$x(l:-l);

# lengths of intervals between nodes times -1; negative because we are
# orienting the Taylor expansion around the right-hand endpoint of
# interval.

my $n = $h->getdim(0); 
my $m = zeroes(3*$n,3*$n);

# defines main diagonal of $m 
my $d = pdl(l, 2, 6);
$d = transpose($h) x $d; # $n-by-3 matrix; same as outer($d,$h)
$d = $d->flat; # rows concatenated into single row of 3*$n entries.
$m->diagonal(0,1) .= $d;
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# defines 1st upper diagonal of $m 
$d = pdl(0, 1, 3);
my $dd = $h**2;
$d = transpose($dd) x $d;
$d = $d->flat;
$m->(1: -1,0:-2)->diagonal(0,1) .= $d(l:-l);

# defines 2nd upper diagonal of $m 
$d = pdl(0» 0* 1);
$dd = $h**3;
$d = transpose($dd) x $d;
$d = $d->flat;
$m->(2:-1,0 :-3)->diagonal(0,1) ,= $d(2:-l);

# defines 1st lower diagonal of $m 
$d = pdl(0» 1, 2);
$d = transpose(ones($h)) x $d;
$d = $d->flat;
$m->(0:-2,1:-l)->diagonal(0,l) .= $d(l:-l);

# defines 4th lower diagonal of $m 
$d = pdl(0, -1, - 2) ;
$d = transpose(ones($h)) x $d;
$d = $d->flat;
$m->(0:-5,4:-1)->diagonal(0,1) .= $d(4:-l);

return $m;
>
sub cseval
{
# Expecting 3 pdl arguments: eval points, knots, polynomial coefficients
# for Taylor expansion around right-hand endpoint of each interval, resp,
#
my ($x, $x0, $coef) = 
my $n = $x->getdim(0);
my $y = zeroes($n); # Variable for values of spline evaluated at $x 
for (my $i = 0; $i < $n; $i ++)

# This all assumes argument is inside interplation interval.
# Get the index of the first node greater than evaluation argument, 
my $cr = which( $x0 >= $x(($i)) )->((0));
# Pull the coefficients of the interpolating cubic polynomial 
my $c = $coef(,$cr-l;-);
my $h = $x(($i))-$x0(($cr));
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$y($i) .= $c((0)) + $h * ($c((l)) + $h * ($c((2)) + $h * $c((3)))); 
>

return $y;
>
open DATA, "<$ARGV [0]1 or die "Unable to open $ARGV[0]: $!
open NET, "<$ARGV[1]1 or die "Unable to open $ARGV[1]: $!
open MCPC, ">$ARGV [2]' or die "Unable to open $ARGV [2] : $!
open MCSV, ">$ARGV [3]' or die "Unable to open $ARGV [3] : $!
open MCRM, ">$ARGV [4]' or die "Unable to open $ARGV [4] : $!

my $tsnet = rcols *NET; 
my $nnodes = $tsnet->getdim(0); 
my $tsmat - transpose $tsnet;
# a device for sizing the matrix of interpolated values

while (<DATA>)
{
# This routine expects data from Bliss’s term structure files for
# McCulloch’s cubic spline regression, except that all data for a given
# month has been concatenated into a single line; viz. date, number of
# coefficients, then nodes and coefficients interleaved— the last
# coefficient slot is filled with a dummy "0" since there is always one
# more coefficient than node.
#
chomp;
my $mc = pdl split; 
my $date = $mc((0)); 
my $nnode = $mc((l))-l;
my $x = $mc(2:-4:2); # knots for the month’s cubic spline
my $a = $mc(3:-l:2); # coefficients for McCulloch’s spline basis
my $f = pdl -> zeroes( $nnode, $nnode );

# This matrix will contain the values f_i(x_j) of McCulloch’s ith basis
# spline f_i at the jth node x_j.

{ # code block for scoping $h
# f_i(x_i), as in eqn. A.3, McCulloch except we have 0 offset. 
my $h = $x(l:-l)-$x(0:-2); # lengths of internodal intervals 
$h *= $h;
$h /= 6;
$f->diagonal(0,1)->(1:-1) .= $h;
>
{ # code block for scoping $h
# 1st col of $f: f_l(x_j), j > 1; cf. eqn. A.5 
my $h = $x(l:-l)-$x(l);
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$h /=  2 ;
$h += $ x ( l) /3 ;
$f«0),l:-i) .= $x(l)*$h;
}

for ( my $i = 1; $i < $nnode-l; $i ++)

# Working through the columns of $f after the first.
# f_i(d_j), j > 2
my $h = $x($i+l:-l)-$x($i+l);
$h /=  2 ;
$h += (2*$x($i+l)-$x($i)-$x($i-l))/6;
$h *= $x($i+l) - $x($i-l);
$f(($i)»$i+i:-l) .= $h;
}

my $y = 1 + inner($f»$a(0:-2)) + $a(~l)*$x; # vector of values at nodes $x

my $m = csmat($x);

my $b = pdl->zeroes(3*$nnode-3);
$b(0:-3:3) .= $y(0:-2)-$y(l:-l); # continuity condition
$b((1)) .= $a((-1)); # 1st derivative of interpolant at left endpoint
$b((2)) .= $a((0)); # 2nd derivative of interpolant at left endpoint

my $coefs = inv($m) x transpose($b);
$coefs -> reshape(3,$nnode-l);
$coefs = append(transpose($y(l:-l))»$coefs);

my $tsval = cseval($tsnet,$x,$coefs); # prices at mesh points for $1 cf 
$tsval->inplace->log;
$tsval /= -$tsnet; # yields on zero coupon bonds payable at mesh points 
$tsmat = $tsmat->append(transpose($tsval));
> #end while loop through data file.

$tsmat = ($t smat(1:-2)-$t smat(2:-1))->sever;
# yield changes at nonzero maturities
# eliminating "dummy" first col 
my $nobs = $tsmat->getdim(0); 
my $aux = ones(1,$nobs)/$nobs;
Stsmat -= $tsmat x $aux; # subtracting the avg of each row from each row 
my ($q» $s, $r) = svd($tsmat);
$q = $q(0:$nnodes-l;1);
# the svd function for rectangular matrix gives too many columns!
$s = $s(0:$nnodes-l;I);
$r = $r(0:$zmodes-l;1);
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wcols dog($q) , *MCPC; # principal components
wcols $s» *MCSV; # singular values
wcols dog($r), *MCRM; # rotation matrix
stats.pl
#!/usr/bin/perl

use strict; 
use PDL;
use PDL::NiceSlice;
use Statistics::Distributions;

for mj $period ("", "2")

for (1 . .4 )  
stats (
mesh => "tsnet_"
pc => "pc$period"
sv => "sv$period".
rm => "rm$period".
report => "hyptst$period"
graph => "varprop$period"
table => "eqeigentbl$period".
)
}

>
sub stats
{
my y.arg =
open MCNET, "<", $arg{mesh> or die "Unable to open $arg{mesh}: $!";
open MCPC, "<"» $arg{pc> or die "Unable to open $arg{pc>: $!";
open MCSV, "<"* $arg{sv} or die "Unable to open $arg{sv}: $!";
open MCRM, "<"» $arg{rm> or die "Unable to open $arg{rm>: $!";
open MCSTAT, ">"* $arg{report> or die "Unable to open $arg{report>: $!";
open MCGRAPH, ">"» $arg{graph> or die "Unable to open $arg{graph>: $!";

print MCSTAT "This output of stats generated with arguments:\n".
"@_\n";

my $u = cat rcols *MCPC; 
my $r = cat rcols *MCRM; 
my $s = rcols *MCSV; 
my $h = rcols *MCNET;
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mj $real = which. $s > 5*10**-14;
$s = $s($real)->sever;
$u = $u($real)->sever;
$r = $r($real)->sever;

my $n = $r->getdim(l); # number of observations
my $m = $s->getdim(0); # dimension of each observation
my $q = $m - sequence($m-l);
my $1 = $s**2;
my $tvaxprop=zeroes($s);
for (my $j=0; $j<$m; $j++)

■C
$tvarprop($j).=inner($s(0:$j),$s(0:$j))/inner($s»$s)
}

my $cond = log($l(0)) - log($l(-l));
$cond /= log(10);

wcols "7,16.16f", $1, $s, $tvarprop, *MCSTAT,
{HEADER=>"\n# covar mat ev’s sing values prop var"};
printf MCSTAT "base 10 log covariance matrix condition number:\n %f \n", 

$cond->sclr;

my $lt = zeroes($m) ;
for (my $k = 0; $k < $m; $k++)

# Arith mean of smallest m-k eigenvalues; 1 tilda in Muirhead, p. 408 
$lt($k) .= davg($l($k:-l));
>

my $llt = $lt->log;

my $lv = zeroes($m-l); # log V_k in Muirhead, p. 408
my $11 = $s->log;
$11 *= 2 ;
for (my $k = 0; $k < $m-l; $k ++)

{
$lv($k) .= dsum($ll($k:-1)-$llt($k));
>

my $fr = (2+$q*(l+2*$q))/(6*$q); 

my $p = $n - sequence($m-l) - $fr;

for (my $k = 0; $k < $m - 1; $k ++)
{
my $aux = $l(0:$k-l)/$lt(($k))-t;
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$aux = $aux**-2; 
$p($k) += dsum($aux);
>

$p *= -$lv;

my $chi= zeroes($m-l);
for (my $k = 0; $k < $m-l; $k ++)

{
my $free = (($q+2)*($q-l)/2)->($k)->sclr;
$chi($k) .=Statistics::Distributions::chisqrprob($free,$p($k)->sclr);
>

# upper 5% point of st normal cumulative distn function 
my $z = Statistics::Distributions::udistr(.05) ; 
my $fact = l-$z*sqrt(2/$n/$q); 
my $cintvl = $lt(-l:l)/$fact;

print MCSTAT "Testing (a) whether the smallest k covariance matrix". 
"eigenvalues are equal and (b) whether this value is".
"insignificantly small.\n\n"; 

wcols "%12.5f" , $q, $p, 100*$chi, 10000*$cintvl, $s(0:-2) , +MCSTAT, 
{HEADER=>"\n svJs: k P_k p-value (%) 95% conf int (bp)",
"largest s.v. in test set"};

open MCEQTBL, ">"» $arg{table> or die "Unable to open $arg{table>: $!"; 
wcols $q, $p, $chi, $s(0:-2), *MCEQTBL; 
close MCEQTBL;
open MCEQTBL, "<", $arg{table} or die "Unable to open $arg{table>: $!"; 
open NEWEQTBL, ">", "$arg{table}.tex"

or die "Unable to open $arg{table}.tex: $!"; 
while «MCEQTBL»

chomp;
my ©cells = split;
printf NEWEQTBL "%d k  %7.2f & %e k  %e\\\\\n",
$cells [0], $cells [1], 100*$cells [2], $cells [3];
}

close MCEQTBL; 
unlink $arg{table>;

my $lpv = zeroes($m);
my $ltv = dsum($l);
for (my $k = 0; $k < $m; $k ++)
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$lpv($k) .= dsnm($l($k:-1))/$ltv;
>

print MCSTAT "Max likelihood fraction of variation not explained by 1st k". 
"principal components:\n";

my $top = 6;
my $lsq = $1**2;
my $perc = .02*( pdl (1..120));
$perc = .l**$perc->sever;
my $M = zeroes($perc->getdim(0)»$top);
my $tau = zeroes($perc->getdim(0),$top);
for (my $j = 0; $j < $perc->getdim(0); $j++ )

for (my $k = 0; $k < $top; $k++)

$M($j,$k) -$perc(($j))*dsum($l(0:$k));
$M($j,$k) += (l-$perc(($j)))*dsum($l($k+l:-l));
>

$M($j) *=sqrt($n);
for (my $k = 0; $k < $top; $k ++)

$tau($j,$k) .= 2*$perc(($j))**2*dsum($lsq(0:$k));
$tau($j,$k) += 2*(l-$perc(($j)))**2*dsum($lsq($k+l;-l));
>

$tau($j)->inplace->sqrt;
$M($j) /= $tau($j);
for (my $k = 0;' $k < $top; $k ++)

$tau($j,$k) .= Statistics::Distributions::uprob($H($j,$k;-));
>

>
$tau = cat(l-$perc,dog($tau)); 
wcols "7,4.4f"» dog($tau) , *MCSTAT,
{HEADEE=>"\n# % 1 pc 2 pc 3 pc 4 pc 5 pc 6pc">;
wcols dog($tau), *MCGRAPH;

print MCSTAT "\nTest to see if 1st principal component is a line.\n";
# Using Statistic W from Muirhead, p. 419.
my $numpts = 17;
my $inc = .002;
for (my $j=$m-i; $j>0; $j— )

my $v = $u(0:$j) * $s(0:$j) / $s((0)); 
my $vi = $u(0:$j) * $s((0)) / $s(0:$j); 
my $w = zeroe s($numpt s,4); 
for (my $i = 0; $i < $mimpts; $i++)
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my $hO = -$i*$inc*$h;
$hO += ones($h);
$h.O /= sqrt(inner($hO,$hO)) ;
$w($i,0) .= -$i*$inc;
$w($i,l) .= $n*(inner($h0 x $vi,$h0 x $vi)-l);
$w($i,2) .= $n*(inner($h0 x $v,$h0 x $v)-l);
$w($i,3) .= $w($i,l)+$w($i,2);
>

my $chi2= zeroes($numpts);
for (my $i = 0; $i < $numpts; $i ++)

{
$chi2($i) .=Statistics::Distributions::chisqrprob($j,$w($i,3)~>sclr);
>

print MCSTAT "$j\n";
wcols "7,8.4f"» dog($w), $chi2» *MCSTAT,
•£HEADER=>"\n slope W_S~1 W_S W p-value"};
}

}
splitstats.pl 
#!/usr/bin/perl

use strict; 
use PDL;
use PDL::NiceSlice;
use Statistics::Distributions;

open MCPC1, "<pcl_l" or die "Unable to open pcl_l: $!";
open MCPC2, "<pc2_l" or die "Unable to open pc2_l: $!";
open MCSV2, "<sv2_l" or die "Unable to open sv2_l: $!";
open MCRM2, "<rm2_l" or die "Unable to open rm2_l: $!";
open MCNET, "<tsnet_l" or die "Unable to open tsnet_l: $!";
open MCSTAT, ">splithyptest" or die "Unable to open splithyptest";

my $ul = cat rcols *MCPC1; 
my $h0 = $ul(0;-); 
my $u = cat rcols *MCPC2; 
my $r = cat rcols *MCRM2; 
my $n = $r->getdim(l); 
my $s = rcols *MCSV2; 
my $m = $s->getdim(0); 
my $w = zeroes(3);

# Test to see if 1st principal components computed from successive
# intervals are equal.
for (my $j=$m-l; $j >0; $j —  )

{
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print MCSTAT "\n",$j+l,"\n";
my $¥ = $u(0:$j) * $s(0:$j) / $s((0));
my $vi = $u(0:$j) * $s((0)) / $s(0:$j);
$w(0) .= $n*(inner($h0 x $vi,$h0 x $vi)-l) ;

$w(l) .= $n*(inner($h0 x $v,$h0 x $v)-l);
$w(2) .= $w(0)+$w(l); 
wcols $w, *MCSTAT;

my $chisq = Statistics::Distributions::chisqrdistr($j,.05) ; 
printf MCSTAT "Upper 5°/,'/, chi-square boundary: #/,6.3f\n", $chisq;
>

mbxmunge.pl 
#!/usr/bin/per1

use strict;
use PDL; # Pearl Data Language
use PDL::IiceSlice; # cleaner indexing routines
use Date::Calc qw(:all);
# documentation: http://theoryxS.uwinnipeg.ca/CPAN/data/Date-Calc/Calc.html

sub decode_crsp_date

if ($_[0] /(\d{4»(\d{2»(\d{2})/)
{
($1, $2, $3);
>#endif

{

sub six_mo_bak
{
# shift insures 6 mo from mo end is at mo end 
($_ [0] , $_ [1], $_ [2]) = Add_Delta_Days($_[0], $_ [1], $_[2], 1);
($_[0], $„[!]» $_[2]) = Add_Delta_YM($_[0] , $_[1], $_[2], 0, -6);
Add_Delta_Days($_ [0], $„[!], $_[2]» -1);
>
sub rate
{
my ($r_0, $a, $t_0 , $t) = ;
$r_0 + $a * ( $t - $t_0 );
}
sub discount
{
my ($r, $t) =
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exp -$t*$r;
>
sub newton_step
{
my($t_0, $t, $r_0, $c, $p, $a) =
my $n = $p - inner($c, discount($t, rate($r_0, $a» $t_0, $t)));
my $d = inner($c, discount($t» rate($r_0, $a, $t_0, $t))*$t*($t-$t_0));
$a ~ $n/$d;
>
sub newton.loop

my ($t_0,$t,$r_0,$c,$p,$a,$eps) = Q_; 
my $count = 1;
while (1)

{
my $anew = newton_step($t_0,$t,$r_0,$c,$p,$a);
if ( abs ( $anew - $a ) < $eps )

{
return $anew;
>

else
{
$a = $anew;
}

die "Newton’s method did not converge to IRR" if ( $count > 5 );
$count ++;
>

>
my $eps - 10**(-9);

open DATA, "/home/mark/treas/mbx.dat" or die "Cannot open mbx.dat; $!"; 
open YIELDCURVE, ">pcwlinyc" or die "Cannot create yieldcurve file: $!";

my ($obsdates, $matnir, $bid, $ask, $accint);
($obsdates, $matnir, $bid, $ask, $accint) = rcols *DATA, 0,1,2,3,4, 

{INCLUDE => V ~  (2001199[23456789])/’>;
$matnir = rint (10**6*$matnir); 
my $intrate = $matnir#/,10**6; 
my $maturity = ($matnir-$intrate)/10**6;
$intrate %= 10**5;
$intrate = $intrate - $intrate%10;
$intrate /=10**5; 
my ($templ,$temp2,$temp3);
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rle($obsdates,$templ=null,$temp2=null); # Slices "run-length encode"
$temp3 = cumusumover(Itempl(Itempl;?) ) ; # NiceSlice "where" modifier 
lobsdates = $temp2(which($templ));
# Now lobsdates contains one copy of each observation date 
my Iprice = .5 * (Ibid + $ask) + laccint;
Imaturity = cat Imaturity, lintrate, Iprice;

my ©monthly;
push ©monthly, Imaturity(0:|temp3(0)-l); 
for (my $i=l; |i < nelem(lobsdates); |i++)

push ©monthly, Imaturity($temp3($i-l):$temp3($i)-l);
>

# ©monthly is an array of pdl’s. Each pdl contains the maturity, coupon
# interest rate, and estimated price of all outstanding securities, one
# column for each security.
for (my |i = 0; |i < nelem(lobsdates); |i++)

{# step through each month in data set 
my ©dim = dims Imonthly[$i]; 
my Isched = zeroes(Idim[0]+1,62);
# Isched is the matrix of cash flow maturities for bonds outstanding
# at lobsdates. Each column corresponds to a treasury, earlier
# maturities to the left, later to the right. A column consists of
# number of days to a cash flow, interest or principle. Longest term
# cf >s are listed first, closer in cfJs are listed below. Columns are
# padded below with O ’s.
#
# We pad on left with column of 0’s for ease of yield curve definition.
# It appears T-bond issued 2/2000 matured 11/2000 w/ 61 coupon pmts, so
# 62 rows are used.

my (|yl, $ml, $dl) = decode_crsp_date(lobsdates(|i)); 
my |no_cfs = zeroes($dim[0]);

for (my $j =0; $j < $dim[0]; $j++)
{ # cash flow dates in each column of sched, in reverse order 
my (|y2, |m2, $d2) = decode_crsp_date(Imonthly[$i]->($j,0)) ; 
my Idelta = Delta_Days($yl,|ml,|dl,$y2,$m2,$d2); 
do

{
# filling columns of Isched with # days to coupon pmts 
$sched(lj+l,$no_cfs(|j)) .= Idelta;
$no_cfs($j)++;
(|y2, $m2, $d2) = &six_mo_bak(|y2, $m2, $d2);
Idelta = Delta_Days(|yl,$ml,$dl,|y2,$m2,$d2);
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> while $delta > 0;
$no_cfs($j)— ;
} # end for (j) 

my $yc = $sched(:,(0))->copy;
# $yc will be month’s yield curve 
rle($yc»$templ=null»$temp2=null);
$yc = $temp2(which($templ));
# remove multiple occurences of same date
$yc = cat $yc, zeroes( $yc->getdim(0)), zeroes( $yc->getdim(0));
# $yc initialized with unique maturity dates and zeros 
my $y = $monthly[$i]->(:,(1)) ;
# aux yield array; init as coupon rates 
my $z = $ m o n t h l y [ $ i ] ,(2));
# price of final pmt; init as security price 
my $k = 0;
# $j - $k will be number of unique maturity dates.

$y(0) .= (log(lOO) + log(l+$y(0)/2) - log( $z(0) ))/$yc(l,0);
$yc(0,l) .= $y(0);
$yc(l,l) .= $y(0); 
my $el = 0;
for (my $j=l; $j<$dim[0] ; $j++)

{ # $j steps through each treasury outstanding at obs date.
# look back to see which treasurys mature earlier:
my $ndx = which($monthly[$i]->(:,0) < $monthly[$i]->($j ,0)); 
if ($j > $ndx((-l)) + 1 | |  $ndx -> isempty)

{
$k++;
$el++; # $el is the number reps of this maturity; init below
>

else
{
$el = 0;
>

# $ndx is empty when multiple securities mature at shortest term 

my $m = 0;
# using $m to index coupon pmt dates; init with latest 
if ( $yc($j-$k,0) < $sched($j+l,$m+l))

{
$m++;
# indicates whether coup pmt date lies after previous maturity
}

if ($yc($j-$k»0) < $sched($j+l,$m+l))

$m++;
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>
die "More than an 18 month gap in maturities." 

if ($yc($j-$k,0) < $sched($j+i,$m+l));

if ( $sched($j+l,$m+l) )
{ # stripping out the present value of coupon payments...
# first interolate the discount rate...
my $r = Interpol($sched(($j+l),$m+l:$no_cfs($j)),$yc(0:$j-$k»(0))» 

$yc(0:$j-$k,(1)));
# next compute the value of coupon pmts...
$z($j) -= 50 * $y($j) * sumover(discount($r, $sched(($j+l)»

$m+l:$no_cfs($j)))) ; 
die "Can’t have negative security prices" if $z($j)<=0;
>

if ( $m )
{# use approx method to estimate $yc 
my $t0 = $yc(($j-$k),(0)); 
my $t = $sched(($j+l),0:$m); 
my $r0 = $yc(($j-$k),(1)); 
my $c = ones($m+l)*50*$y(($j));
$c(-l) +* 100; 
my $a = 0;
$a = newton_loop($t0,$t,$r0,$c,$z($j),$a,$eps);
$yc($j-$k+l, 1) .= $r0 + $a * ($t((-l)) - $t0);
}

else
{
$y($j) .= log(100) + log(l+$y($j)/2) - log( $z($j) );
$y($j) /= $sched($j+l,0);
$yc($j-$k+l, 1) .= $el/($el+l)*$yc($j-$k+l,l)+l/($el+l)*$y($j);
} # end if/elsif/else 

> # end for (j)
$yc(:, (1)) *= 365;
wcols $yc(,2;-)+$obsdates(($i)), $yc(,0;-), $yc(,l;-), *YIELDCURVE;
> # end for (i)

wghtkem.pl 
#!/usr/bin/perl

use strict;
use PDL; # Pearl Data Language
use PDL::NiceSlice; # cleaner indexing routines

open CFSCH, "<cfsched.dat" or die "Cannot open cfsched.dat: $!"; 
my ($date, $dtcf, $cf) = rcols *CFSCH, 0,1*2;
# contains cash flow schedule for each observation date, observation
# date in the 1st col, days to cash flow in 2nd, amount of cf in 3rd
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open YC, "<pcwlinyc" or die "Cannot open pcwlinyc: $!"; 
my ($ndate, Inode, Irate) = rcols *YC, 0,1,2;
# contains piecewise linear bootstrap yield curve for each observation
# date, observation date in the 1st col, yield curve node in 2nd, interest
# rate in 3rd.

open MSH, "<ycmesh" or die "Cannot open ycmesh: $!"; 
my $mesh = rcols *MSH; 
my Inumnodes = $mesh->dim(0);
my Idepth = sclr rint(log($numnodes-l)/log(2)); # assuming mesh is dyadic
# Our scaling functions start out as interpolated delta functions on a
# mesh; succeeding scaling functions are defined on submeshes

open SCL, ">wsclfcnint.dat" or die "Cannot create wsclfcnint.dat: $!";

my (Itempl,$temp2) = rle(ldate); # Slices "run-length encode"
Idate = $temp2(Itempl;?); # pdl of unique observ dates
# pdl of number of cf’s per observation: 
my Iptspd = cumusumover(Itempl(Itempl;?));
Iptspd = append(0,Iptspd);

rle(Indate,|templ=mill,|temp2=null);
Indate = $temp2(|templ;?); # pdl of unique observ dates
my Indspd = cumusumover (Itempl (Itempl;?)) ; # pdl of yc nodes per observ
Indspd = append(0,Indspd);

for (my $i=0; |i<$date->dim(0); $i++)
{
# cash flow sched
my $x = $dtcf($ptspd(($i)):$ptspd(($i+l))-l; I ) ;
# yield curve nodes
my $x0 = Inode(Indspd(($!)):$ndspd(($i+l))-l;I);
# yield curve values at nodes
my $y0 = Irate($ndspd(($i)):$ndspd(($i+l))-l; 1) ;
# yield curve values interpolated at cf dates 
my ($y,$idx) = interpolate(|x,$x0,$y0);
# yc data was stored as annualized— need daily rate 
|y *= -$x/365;
$y->inplace->exp; # discount function
$y *= $cf($ptspd(($i)):$ptspd(($i+l))-l); # PV of cf3s

# Next we restrict the discounted cf function to the interval where
# the mesh is defined, 

my lul = $mesh((-1));
$y = $y($x<=|ul;?)->sever;
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$x = $x($x<=$ul;? )-> sever;
# Allocating a pdl for scaling function “integrals": 

my $m = zeroes (2* ($depth+l) ,$nuinnodes) ;
for ( m y  $j=0; $j<=$depth; $j++)

{
# Defining both scaling function and integral 
my $phi = append ($mesh(0:2**$j:2**$j),10**5);
$m($j,0) .= inner($y,interpol($x,$phi,pdl(1,0,0)));
$m($j+$depth+l,0) .= inner($x*$y,interpol($x,$phi,pdl(1,0,0))); 
for (my $k=l; $k<($numnodes-l)/2**$j; $k++)

{
my $phi = $mesh(2**$j*($k-l):2**$j*($k+l):2**$j);
$phi = append(0, $phi)->sever;
$phi = append($phi, 10**5)->sever;
$m($j,$k) .= inner($y,interpol($x,$phi,pdl(0, 0,1,0,0) ));
$m($j +$depth+l,$k).=inner($x*$y,interpol($x»$phi,pdl(0,0,1,0,0)));
} # end for (k)

$phi = append (0,$mesh(-l-2**$j:-l:2**$j));
$m($j,($numnodes-l)/2**$j) .= inner($y,interpol($x,$phi,pdl(0,0,1))); 
$m($j+$depth+l,($numnodes-l)/2**$j) .= inner($x*$y, 

interpol($x,$phi,pdl(0,0,1))) ;
y # end for (j)

wcols dog($m), *SCL;

> # end for (i)
wupdatecoef.pl 
#!/usr/bin/per1 -w

use Carp; 
use strict; 
use PDL;
use PDL::NiceSlice;

my $eps = 10**-8; 
my $depth = 8; 
my $idx = pdl (0,$depth+l); 
my $months = 120;

open WSI, "<wsclfcnint.dat" or die "cannot open wsclfcnint.dat: $!"; 
my $mom = cat rcols *WSI;

open UPDC, ">wupdatecoef.dat" or die "cannot create wupdatecoef.dat: $!"; 

for (my $i=0; $i<$months; $i++)
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my $uc = zeroes(2**($depth-l),2*$depth); # update coefficient vector; 
for (my $k=l; $k <= $depth; $k++)

{
for (my $j=l; $j <= 2**($depth-$k); $j++)

{
my $subm = transpose $mom($idx+$k+$i*($depth+l)*2,$j-l:$j); 
my ($r,$s,$q) = svd($subm);
my $b = transpose $mom($idx+$k~l+$i*($depth.+l)*2,2*$j-l); 
if (all $s > $eps)

{
$uc($j-1,2*$k-2:2*$k-l) .= $q * $s**-l x transpose($r) x $b;
>

elsif (all $s <= $eps)
{
$uc($j-l,2*$k-2:2*$k-l) .= 0;
>

else
{
$r = $r(0;I);
$s = $s(0;I);
$q = $q(0;I);
$uc($j-1,2*$k-2:2*$k-l) ,= $q * $s**-l x transpose($r) x $b; 
> # end if/elsif/else 

> # end for($j)
} # end for($k) 

wcols dog($uc), *UPDC;
> # end for($i)

joncktest.pl 
#!/usr/bin/perl -w

use strict; 
use PDL;
use PDL:rliceSlice;

my $w = cat rcols ’wycwavtran.dat’;
$w->reshape(257,119);
my ©level;
for (my $i=l; $i<9; $i++)

{
my $tmp = $w(1:-2:2;I);
$tmp->reshape(2**(8-$i)*119); 
my $median = (stats($tmp))[2];
$tmp -= $median;
$tmp->inplace->abs; 
push ©level, $tmp;

{
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$w = $w(0 : - 1 : 2 ; 1) ;
}

my $u = 0;
for (my $ 1 = 1 ;  $i < 8; $i++)

{
for (my $j =0; $j < nelem($level[$i]); $j++)

{
for (my $k = 0; $k < $i; $k ++)

{
$u += which($level[$k]<$level[$i]->(($j)))->nelem;
>

>
>

print $u, "\n"; 

my $N = 255*119;
my $n = 119*2**sequence(8)->(-l:0); 
my $num = $N**2 - sum($n**2);
$num /= 4;
my $den = $N**2*(2*$N+3) - sum( $n**2*(2*$n+3) );
$den /= 72;

my $J = ($u - $num)/sqrt($den); 
print $J, "\n";
SURE.pl
#!/usr/bin/perl -w

use strict; 
use PDL;
use PDL:rliceSlice;

my $w = cat rcols Jwycwavtran.dat’;
$w->reshape(257,119); 
my $z = $w -> copy;
my ©level;
for (my $i=l; $i<9; $i++)

my $tmp = $z(l:-2:2);
$tmp->inplace->abs;
$tmp = qsort $tmp; 
push ©level, $tmp;
$z = $z(0:-l:2;I);
>

my $sig = $level[0]->flat;
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for (my $ i = 1 ; $ i < 8 ; $ i ++)
{
$ s ig  = a p p e n d ($ s ig ,$ le v e l[$ i] -> f la t)
>

$ s ig  -= median $ sig ;
$ s ig  -> inplace -> abs;
$ s ig  = median $sig;
$ s ig  /=  0.6745;
my $lam = z e ro e s (8 ) ;
fo r  (my $ i = 0 ; $i < 8; $ i ++)

■C
my $x = pop © level;
$x *= s q r t ( 2 **8+ l ) ;
$x /=  $ s ig ;
my $min = z e ro e s (119);
for (my $j = 0 ;  $j < 119; $j ++)

{
my $tmp = zeroes(2**$i);
f o r  (my $k = 0 ; $k < 2**$i; $k ++)

{
$tmp($k) .= in n e r($ x (0 :$ k ,$ j) ,$ x ( 0 :$ k ,$ j) )  ;
$tmp($k) += $ x ($ k ,$ j;- )* * 2* (2**$ i-l--$ k );
$tmp($k) += 2**$i -  2 *$k -  2 ;
} # end fo r($ k )

$m in($j) .= $ x (m in im u m _ in d ($ tm p ),$ j;
$m in($j) .= 0 i f  $m in($j) > 2* * $ i;
$m in($j) .= s q r t ( 2 *$i)

i f  in n e r($ x ( ,$ j ) , $x( ,$ j ))  <= 1 + s q r t ($ i) * * 3 /s q r t (2 * * $ i) ; 
> # end f o r ( $ j )

$ lam ($i) .= davg $min;
> # end f o r ( $ i )

$lam *= $ s ig ;
$lam /= sqrt(2**8+l); 
wcols $lam, } SUREthresh.dat’;

OPtestparam.pl 
# ! / u s r /b i n /p e r l  -w

use s t r i c t ; 
use PDL;
use P D L ::N iceS lice;

my $d = 119*2**7; 
my $cut =zeroes($d»8);
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for (my $i = $d; $i >0; $i — )
{
for (my $j = 8; $j > 0; $j — )

{
my Sinter = ((l-2**-$j)**(l/$i)+l)/2; 
$cut($d-$i,$j-l) .= (ndtri(Sinter))**2;
>

>
wcols dog($cut), 1OPtestpaxam.datJ;

OP.pl
#!/usr/bin/perl -w

use strict; 
use PDL;
use PDL::NiceSlice;

my $w = cat rcols ’ wycwavtran.dat*;
$w~>reshape(257,119); 
my $z = $w -> copy; 
my ©level;
for (my $i=l; $i<9; $i++)

my $tmp = $z(l:-2:2) -> flat; 
push ©level, $tmp;
$z = $z(0:-l:2;1);
>

my $sig = zeroes(8 ) ;
for (my $i = 0; $i < 8 ; $i ++)

my $dat = $level [$i];
$dat -= median $dat;
$dat -> inplace -> abs;
$sig($i) .= median $dat;
}

$sig /= 0.6745;

my $cut = cat rcols JOPtestpaxam.datJ;
my $opthresh = zeroes(8 ) ;
for (my $i = 0; $i < 8 ; $i ++)

my $x - shift ©level;
$x *= 2**4/$sig(($i));
$x *= $x;
$x = qsort $x;
$x = $x(-l:0);
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my $idx = (which $x < $cut(119*(2**7-2**(7-$i))1,7—$i;—))—>(0); 
$opthresh($i) .= sqrt($x(($idx)))*$sig*2**-4;
>

wcols $opthresh, ’0Pthresh.dat*;

Yield Curve Mesh 
ycmesh.dat

1 4 7 10 13 16 19 22
25 28 31 34 37 40 43 46
49 52 55 58 61 64 67 70
73 76 79 82 85 88 91 94
97 100 103 106 109 112 115 118
121 124 127 130 133 136 139 142
145 148 151 154 157 160' 163 166
169 172 175 178 181 184 187 190
193 201.5 210 218.5 227 235.5 244 252.5
261 269.5 278 286.5 295 303.5 312 320.5
329 337.5 346 354.5 363 371.5 380 388.5
397 405.5 414 422.5 431 439.5 448 456.5
465 473.5 482 490.5 499 507.5 516 524.5
533 541.5 550 558.5 567 575.5 584 592.5
601 609.5 618 626.5 635 643.5 652 660.5
669 677.5 686 694.5 703 711.5 720 728.5
737 752.5 768 783.5 799 814.5 830 845.5
861 876.5 892 907.5 923 938.5 954 969.5
985 1000.5 1016 1031.5 1047 1062.5 1078 1093.5
1109 1124.5 1140 1155.5 1171 1186.5 1202 1217.5
1233 1248.5 1264 1279.5 1295 1310.5 1326 1341.5
1357 1372.5 1388 1403.5 1419 1434.5 1450 1465.5
1481 1496.5 1512 1527.5 1543 1558.5 1574 1589.5
1605 1620.5 1636 1651.5 1667 1682.5 1698 1713.5
1729 1760 1791 1822 1853 1884 1915 1946
1977 2008 2039 2070 2101 2132 2163 2194
2225 2256 2287 2318 2349 2380 2411 2442
2473 2504 2535 2566 2597 2628 2659 2690
2721 2752 2783 2814 2845 2876 2907 2938
2969 3000 3031 3062 3093 3124 3155 3186
3217 3248 3279 3310 3341 3372 3403 3434
3465
3713

3496 3527 3558 3589 3620 3651 3682
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Wavelet Graphs
Level — 1: The first twelve wavelets of 128, January 1992
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Level —2: The first twelve wavelets of 64, January 1992
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Level —5: The eight wavelets, January 1992
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Level —6: The four wavelets, January 1992
Wavelet 1

Days to  c a sh  flow

W avelet 3
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Level —7: The two wavelets, January 1992
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Level —8; The only wavelet, January 1992
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